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PREFACE

The linear theory of elasticity deals with stresses and defor-
mations in solid bodies, The basic problem in the theory of elasticity
is to solve the general eqﬁations of equilibrium combined with boun-
dary conditions which fix the values either of the stress or of the
displacement, .There are several types of solutions of the linear
theory of elastiecity, but an interesting group of solutions is Nueclei
of Strain, The.fundamantal solution for a single force applied at
a point in an isotropic solid of indefinite extent was given by Kelvin,
From his solution, other nuelei can be obtained by processes of
superposition, differentiation, and integration,

To reduce the amount of guesswork as much as possible
through systematizing the -solutions of three-dimensional problems of
elasticity by nueclei of strain is the conecern of the present thesis.
This need for such a systematization was felt by the author while
attacking the problem of a concentrated force at an interior point
in quarter=space with fixed boundary.

In the introductory chapter, we present the basic equations
of equilibrium in terms of Galerkin vectors, from which the components
of displacements and stress can be computed. For convenience, the
basic equations were stated in terms of displacements, rather than

stresses, In chapter II, we present the fundamental nuclei of strain,

their representation in terms of Galerkin vectors, and equations for

computing displacements of nuclei of strain, Formulas: for combination
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of nuclei of strain to produce zero components of displacement in

x- and y~- directions and a non-zero one term component in z-direction
at the boundary are deriﬁed in chapter III, after giving the formula
for obtaining the nth partial derivative of R2P with respect to z,
The chaﬁter is concluded with a proof for the formulse.

In Chapter IV, similar formulae for combinations of nuclei
producing at the boundary zero components of displacement in y- and
z directions and a non-zero one term component in x-direction are
derived. The derivation of formulae for combinations of nuclei
producing at the boundary zero component of displacement in x-
and z-directions and a non-zero one term component in y-direction
is also included. At the end of chapter IV, applications of the
formule in énlving some problems by nuclei of strain are given as
a concluding section.

It is worthy ‘ofmention that the derived formule were written
in a way-easy for programming. The author had in mind the application
of Computerts methods to systematize and generalize facts about
nuclei of.strain, some of which were obtained by Mark Lesley in his
Masters Thesis (available at the American University of Beirut,
Lebanon).

The author hopes that the results reported here will help
in the complete and final systematization of solutions of thregw

dimensional elasticity problems by Nuclei of Strain,
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SYMBOLS USED IN THE THESIS

The symbols are collected here for reference. They are listed

according to the order of their appearance in the text.

X | Resultant body force per unit volume
3 Stress dyadic
Sxs Sy, Sy The three vectors of force
0. ny, e Normal componegts Qf stress
O xer Txpr Ovn Shearing components of stress
> P W Unit vectors along x-, y-, z-axis respectiveiy
G Modulus of rigidity
Y Gradient
-azx! 5an) Partial derivative with respect to subscript
variable, with a superscript for order of diffe-
rentiation.
d Poigson's Ratio
u Displacement vector
Uys Uyy U, Components of Displacement
A Laplace's Operator
| F Galerkin vector
Fas Fy, F, Galerkin Functions
’} Strain Potential
R Distance from (x,y,z) to the origin
I, ¥, 8, © Single forces in x~-, y=, z-directions, Center

of Compression
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Z

n<4

n<a+ 1

Nuelel derived from single forces as indicated
by operations,
bistance from (x,y,z) to (0,0,¢), distance from
(x,y,2) to (0,0,=¢).
Nuclei located at (0,0,=c)

M " (0,0,e).
(Xzﬁ- yz-h 02}%;

B

Greatest integer in 5

» (%  j+1) respectively,

Combinations of nuclei producing a nonwzer5 one
term z component of displacement, zero x= and ) A
displacement at z = 0. See p. 17,

Produces at z = 0O

Numerical coefficients of terms in the partial

derivatives of % with respect to z., See p. 18,

Lk +4q+1 7 4k - 4gi3 Numerical coefficients of values of 26Gu, corres=

ponding to the combinations Nig-qu—rl’

N2+ 1
bk +4g43

respectively,

Numerical coefficient of terms in the partial

derivatives of‘ﬁ&f% with respect to z. See p, 18,
Numerical coefficient of terms in the partisl

derivatives of x* with respeet to z, See Pe 19,

RS
Numerical coefficient of terms in the partial
derivatives of Eg with respect to z, See P. 19.
R

¢ is replaced by z, gz is replaced by o,
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(>g2k,2j/§qq~1ﬂ~2j Numerical coefficients of terms in the (2k)'M

. . ; e +20 ,xzj
partial derivative of t2q-f14{23 *E?ﬁ&-l**gj

j 82 0,1,2,6eeeq, with respect to z. See p. 3l,
Zj | Combinations of nueclel producing a non=zero one
term x-component of displacement, zero components

of displacement in y= and z directions at z = O,

See p., 38.



Chapter 1

INTRODUCTION

1. HISTORICAL BACKGROUND

In 1821, the first attempt to deduce general equations of
equilibrium was made by Na?iér. Starting with the pleture of
‘molecular interaction, Navier deduced three differential equations
for displacements in the interior of an isotropic elastic solid .
These equations contained only one elastic constant, It was
Cauchy who, in 1822, derived the basie differential equations
used today for displacements in an isotropiec material.l 6 ]iE

The fundamental particular solution of the problem of a
single force acting at a point in the interior of an infinite soligd
was gilven by Lord Kelvin in 1848. But, it was E. Betti who first
applied the method of singularities to the theory of elasticity,
Betti started his work with a certain reciprocal theorem from which
he deduced a formula for determining the average strain produced by
given forces applied in a body [ 1] . Starting with Kelvin's solubion,
an infinite number of solutions, known as nuclei of strain, can be
obtained by superposition, differentiation and integration. [ 2] .
Later on, Boussinesq and Cerruti derived solutions for the first,
second and certain types of mixed boundary-value problems of the

semi-infinite region bounded by a plane. They used potential theory

.3

Kumbers inside square brackets refer to correspondingly numbsered
entries in the bibliography.,
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in finding éolutions for speeial problems[ 4 ]. Boussinesq, in
1878, solved the problem of a normal force acting on the plane
surface of a large solid, While Cerruti solved the corresponding
problem of a tangential force in 1882,

Love in his Treatise [1] obtained a certain function, called
the strain function,which has been found useful in simplifying the
derivations in the problems cited above. However, in 1930, Galerkin
set up three strain functions which were interpreted as the three
components of a vieetor, called the Galerkin vector, Mindlin, in 1936,
used the Galerkin vector to solve the problem of a single force
applied at an interior point in a semi-infinite elastic solid. The
force acted at some finite distance from the surface in any direction,
(See [ 6] ). Recently, Mindlin aﬁd Cheng in [2] found out the stress
functions “ for farty nuclei of strain, which were derived
from the solution of the single force in the interior of the semie
infinite solid,

In 1953, Mindlin used the Papkovitch function approach to
solve his problem of a force at a point in the interior of a semi-
infinite solid. Similarly, Rongved solved in 1955 the same problem
with the condition that the boundary is fixed. In 1956, W. Hijab
showed that the problems with mixed boundary conditions can ﬁlso
be solved using Papkoviteh functions.

In 1959=1960, an analysis was made by Chattarji and Dutt for
the stresses due to a nucleus in the form of a center of dilatation,
and another in the form of a center of rotation in an elastic infinite

solid with a rigid spherical inclusion. Use was madé of the stress

function approach to an axisymmetric problem of elastieity. Other
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special problems dealing with nuclei of strain have been solved

during the past few years,

2, EQUILIBRIUM EQUATIONS OF ELASTICITY. (see, [6])
 The camplete-systam of equations of e@uilibfium of a homoge-

‘neous isotropic elastic solid is made up of the following equations:

a) Differential equations of Equilibrium
'Ifjg_& iky + Jky + kk, 1s the resultant body force per unit
of volume, then

dive I . E & @ (1)

-

where T = s i + s_j + 8,k called the stress dyadic
in which sy 21 Txx+ j Txy+ k Typ —oommenn- (x,v,2; i,j,k)

o are normal stresses and O

where C s Gy},, i Xy?

are shearing stresses,
and 1, j, kK are the unit vectors along x=y= and z~=axes respectively.

b) Generalized Hooke's Law

One statement of Hooke's Law is the following:

sx = G(Vux + Oyu) + 1 E3C 41y u eem-nna(x,y,25 1,5,K)

(2)

where G is the modulus of rigidity, v is Poisson's ratio, v

EEE—— e

is the Gradient, and u is the displacement vector

u = lu, + iuy,+ guz.

o e

® The notation ---==- -(x,y,2; i,j,k) after an equation will mean that
the equation remains true after cyclic interchange of X,¥,2 and i,j,k
simultaneously. Then the equation written stands for three,
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Here, we have used the symbol J to stand for partial differentiation
with a subscript to denote the variable of differentiation. This
will be used throughout the thesis with a superscript denoting the
order of differentiation., When the superscript is omitted, the
order is meant to be the first,

To the above equations combined with boundary conditions,
one must'adjoin the equations of compatibility given inl 4 1.

Using the above system of equations, one can derive the

so-called basic equation of equilibrium

i
G div K = 0
(A+1_2\) v, B

where A 1s Laplace's operator.
wWhen the body forces are negligible, the basic equation of equilibrium

takes the form:

G( A 2 _____l____ v div) u = 0 (3),
1-29 |

Note: we will assume zero body forces throughout this thesis.

c) Galerkin vector

To solve a problem is to find a vector satisfying (3). One
form of solution, useful in this thesis, is the Galerkin vector, with
Galerkin functions as components. The displacement vector is derived

from the Galerkin vector by the formula:

~-

2Gu LZ(l- S) A= ‘Q’divJ F =)

where F & iF, JFy + k F, 1is the Galerkin vector, and Fyes Fyy Fg

are the Galerkin functioﬁs. In order that (4) satisfies the basic

equation (3),
ANE = 0,
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A vector function F satisfying AAF =z O is a biharmonic vector
function, The components of displacement are defined from (4)

by the equation:

Gu, g 2(l=d)AF, = d, div F -=-nn-- -(x,y,2) (5) »

The components of stress can be obtained from (5) by the aid of
Hooke!s Law. In the present thesis, we will be concerned with
components of displacement,fﬁherefore we will omit any discussion
- or fofmulaq for stresses, which can be derived at any time by
Haoke‘s Law,
If the Galerkin vector is not only a biharmonic vector,
function; but also harmonic

1.6, A F = O, then the displacement vector becomes:

Au = = Vdiv., F (6) .

One can write that the strain potential ¢ = - div. E,so that the

displacements are defined by

u = v ¢ (61),




Chapter 11l

NUCLEI OF STRAIN

1, SOME FUNDAMENTAL NUCLEI OF STRAIN[ 1 ]THEIR GALERKIN VECTORS

a) Single force

| Alsingle force is acting at the origin of an elastic soligd
with ﬁn arbitrary point (x,y,z)e It can be shown that the displa-
cements and stresses are singular at the origin,. Therefore,this
point is deleted from the solid by enclosing it in a sphere & of
small radius; the solutions in the remaining region correspond to
the deformation present in a solid with a cavity S subjected to
the action of forces with a resultant equal to the single force,
such that the displacements and stresses vanish at infinite
distance from the origin,

The Galerkin vectors for the single force are

F = iR Single force in x=direction
F = JR oo " " yedirection
F = kR " " " 2z <direction

where R is the distance from (x,y,z) to the origin [71].

b) Double Force in x-direction

Two equal and opposite forces are applied in the direction
of x-axis at (0,0,0) and (h,0,0), Passing to a limit by supposing
that h is diminished indefinitely, we describe the singularity as
a double force in x-direction. The displacements and stresses are

then the partial derivatives with respect to x of the corresponding

- 6 =
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displacements and stresses for the single force,
The Galerkin vector producing these displacements is found

by a similar differentiation of the vector for the single force,

Fel double force in x~direction

sl b

Similarly, the Galerkin vectors for other directions can be found out,

c) Double force in x-direction with moment about y=axis

A force acts at the origin in the direction of X-axis, and
an equal but opposite force is superposed at (0,h,0), Passing taqa
limit as before, we get a double force in xe-direction with moment
about z-axis., The forces applied to the body in the neighbourhood
of the origin are equivalent to a couple about the axis of z. The
components of displacement are the partial derivatives with respeet
to y of the correaponding.companenta for the single force,

The Galerkin vector is F = i E ( double force in x-direction
with moment about z-axig).

¢’} Center of Rotation

We may combine two double.forces with moment, the moments
being about the seme axis and of the same sign, and the directions
of the forees being orthogonal., The singularity is a center of
rotation about the zxis of z,

d) Center of Compression

We may superpose three double forces without moment, having
their directions parallel to the axes of coordinates, at the origin,
The singularity is described as a "center of Compression", The point

of singularity is enclosed in a cavity within the body.,
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The Galerkin vector is obtained as in the previous cases:

FeilX, i1 k 2 Center of Compression.
=== + i m + £ P

Starting with a single force or a center of compression, one
may differentiate or integréte an arbitrary number of times with
the condition that the displacements should vanish at infinite
distance from the origin., Doing this, one may obtain an indefinite
number of nuclei. It is upon this fact and the validity of the
principle of superposition that most of the results obtained in

this thesis depend.

2. NOTATION FOR NUCLEI OF STRAIN

We will use the capital letters X, Y, Z to denote the single
forces in x~ y- and z directions respectively., We will also use the
capital letter C to denote the center of compression. As theselnuclei
are considered basic, all names for other nuclei are derived from
them,

The name for any nucleus derived from the four fundamental
ones is found by prefixing to the name of the fundamerntal mucleus

from which it is derived, the operators carried in the derivation
of that nucleus,

For example,

(fZZ denotes a double force in Z*direction_;

{5x(2)X'denotes a "triple" force in x=direction ;

ffZX denotes a double force in x=direction with moment

about y-axis.

CTZ(H)Z denotes a "multiple" (n times) force in z=-direction,
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3. DISPLACEMENTS OF NUCLEL DERIVED FROM THE SINGLE FORCES, AND C. -

a) Nuclei derived from X

The Galerkin vector for the single force _: X is

F = iR .

The vector of any nucleus derived from X is found from the
above equation by carrying on it the same operators that were per-
formed on the displacements of X in the derivation. Therefore,the

vector will be of the form:

Eﬂ.i_Fx'

Then the components uyx, uy, and u, of displacement are computed using

equation (5 ) They are:

2(13)A T, = S5 Ppy

26u, =
26u, = - S F_ (7)
2Gu, = - dﬁfo :

b) Nuclei derived from Y.

The Galerkin vector for the single force Y is
F = JR.

Therefore,the vector of any nucleus: derived from Y is of

the form:

Equy‘.
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The components ux,-uy and u, of displacement are computed

from (5).
2Gu, = - cfxyFy
u, = 2(1-9)aF, - & (Pg (8)
J y 4 J = =
2GuZ - - szyFy

¢) Nuclei derived from Z.

The displacements of Z are found from the Galerkin vector
for Z which is

Fe=kR,
The Galerkin vector for any nucleus derived from 7 is of the form °

Eg.].{..Fz'

The displacements are computed by the equations:

2Gu, = ~ Cfszz
2Guy = - dyze ; =
2G 5 o (2

o, s 2{i= VAT, « G, T,

d) Nuclei derived from C,

We have previously mentioned that the Galerkin vector for C

may be taken to be:

el [N



- 1] -

Therefore, the Galerkin vector for C becomes :

E: vR,

The Galerkin vector for any nucleus derived from C is found
as described in part (a). This vector will be the gradient of g
function found by carrying the same operators on Re Let F denote

this function. Then the vector of any nucleus darived.from Cis

of the form

Since div y s A, the displacement vector becomes:
Gy z(1=20) v A F.

To introduce the potential function, we will begin with a Galerkin

vector for C:

= = - l_*" VR.
== 2(1=29 )

So that the displacement vector becones -

Xn e~ 7VAay) - (10) .

e . S

e
%A F ig called potential function,

Therefore the components of displacement are

ABuy, = = dx(%AF) ----------- (X,F,Z) 223 __(10') .
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Chapter III

FORMULAE FOR VANISHING IN-PLANE DISPLACEMENTS

1. DERIVATION OF A FORMULA FOR d, (n)g2p

In ordef that we can find general formulae for combinations
of nuclei of strain producing two zero components of displacement
and one non-zero term for the third component of displacement, a
formula for the nth partial derivative of Rzp, where p belongs to
the rational field, with respect to one variable (x,y, or z) is required.
Since

R2p (x2+ .V + Zz)p;

then
S- E 2
( )R P =

Z
dzl

(b= zz)pj where b® = xgﬂ, yzﬁ

Starting with the formula given by Ryskik and Gradstein[ 3 ]:

(ILfazz)P - Eﬁp*l}lpﬂn)¢..ip-n-*l)iZa zlE T n(n-1 2 _+332

dz (1 +az?)~P - - | 1¥p-mn. 1) 4832

nfn-lZSnnz nﬂ l +az
28 n* p_n+2) _Aa-*gl 2"") ¢ liii] (11)

we derive a formula for dn (b T )p
dz

2
(b2 + 32) - bz(l-k E—)
b2

2
=>(b? ; 29)P_ p?P(1 . ;7)13

Let b2

S [

Sb%P = ()P &P

)P e Pl ari)P

-12-
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gn 2P, RdEe s AP
P (b-+z 1} = a PP (1;az<)

Using (11), we get:

2

(b )p - S E£Pﬂ1)£2ﬂ2)¢.f£2rntl)(2az)n [1 n(ne1) l+az
dz (1+a2z2) 2P 11£p~n+1) Laz?

n(rl-l) (n-2) (ﬂ" l:az oee | ®
_* '(p~n+1 p=n,?2 % (433 ) . J

Using the fact that (l+az - a(b zz), and simplifying, we get:

&t o) _Lgﬂl)(_P*Z)...(p-ndrl)(%)n 1,0(0=1) b5z -
dzr.l( %Z) (b2;2°)B"P 14(peny1) 4z

, 8(n=1) (n=2) (n~3) szﬂﬁz 2 Feea |
24p=n;1) (pony2) | 422 |

Therefore
5P %P | p(p-1) (p-2) §~n+1}(2z)n {ilﬂ_n(n.lj 38
; REG"P 1 }(p=n4l) 432
n(n-l)(nﬂz}(ntzl fRZ H ; 4u-¢*-T (111) ,

21(p=n+1) (p=n;2) {427/

Expanding and writing the first and general term of (ll'), we gets

6™ 120 _ p(p=1) (p=2) ., (pensD) 27
z p2(n=c)
ne 2 n-2 -
, p(p-1) (p-2},. ;g?ziilir;) CoDEeRs ot R
I}(p"*‘-) (P"'E} 0w (P“ﬁ+3) (nl (HHI) (n"g) (n“3}2 i nﬂA-—i: 800

R2(n-p-2)

2 E"jd]
—%E(P'L)(E_z)-.a(g'n+ § -3+2)2"%2" , Eﬁn-l)(n ?)--~(21~1)(R \

4..,4P(P”1‘(P‘2)---(P*H+L ]_}1)?1‘1‘2 - n(ﬂ"'l) (1'1"'2)-a¢ il /RZ ,.121‘]

Rffn-ﬁ_ E] f —“'\ 43




= 1 =

where E] stands for the greatest integer in % P

2

f"'n“ =1 ° o 4
h2~dﬂ.%J stands for the greatest 1ntegerm(§ “J+'1);

and j = 1,2,3,..ﬁ,%

It is more convenient to split (12) into 2 formulags. One formula
gives the derivatives for an even order of differentiation; and the
other gives the derivatives for an odd order.

Setting n = 2k in (12), we get after simplication, whenever possible,

) |
z(2k R2P ip(pﬂlj(p_g)._.(p_2k+r1)}2?k 2k

Rz(zkup)

?p(pﬂl)(pﬁz)---(Pﬂzk 213 k( 2k 1)22k -1 2k-2
. Rz(2k-p-l)

plpel} (e2) oo, (pait - 3) (21 )(2km*)(2k a g 12,
1 o | Rzz2k-p-§) !

L 1P(p=1) (p=2) .o s (p=k=j + 2)} k(2k-1) (2k=2)...(2 -1)223-1 2j=2
(%T'J-l—l)' : | mp+j-l)

voee o 1D(p=l) (pe2) ... (el 1) 2(2k~1)(2kﬂ2}.!.].
p=1) (p (k‘l}jp-k 15 . L.

where
J : 1,2,3’ '..ikr

Setting n = 2k, 1 in (12), we get after simplication

z(2k +Lg2p ={p(p-1) (p=2) ... (p=2k)} 2°K+ 1 ;2k+ 1

Q(QE I-p)

+p(p=1) (p=2).s.. (p=2k + 1) 2% (2k e ‘22‘1(:*2;"1:)

op(=1) (p=2) 000 (p=2k 4 2)} (2K, D () (21202273 5273 | (1)
32(2k'P' )

+ﬁip(p-l)(p-2)...(p-k- yl)_} (2K + Dok (2kel) . . (23 )223-1 2j-1 ==

(=g 1)1 thk-p-fj)
, 2(p-1) (p=2) ... (p=k) 2°(2k 1)(2k-l)(2k~~]...
(K-l) RZ(k+ 1""p)




e

Where j s '1’2,3, .q.;k‘

Particular cases of cfz(n)Rzp

For different mational values of p, we get the nth partial
derivatives for different powers of R. Setting p = = %, a formula

for cﬁz(n) 1l ig obtained.

=

63(21{)‘3“1 - "%( "?]é_"l) ('%"2) oo (“'%“zk T 1) 22k sz
' r2(2k %)

=h{wial) (s %-21,_ , (=dw2k 221;..1 i (k)(zk-a.h)
R2 2k

(=5(=3=1) (=3-2)... (=3=2k + 3) (k) (2k=1) (2k=2) (2k-3} oRk=/, ,2K-~4
R2(2kf Lﬁ2} _

1+ eee

o oh(=3e1) (=3m2) oo (oBmkm s 2) (k) (2heml)f2ko2) . 0 (2421 Ve RS

(k=3 +1) ! R2(k + 5+ 3-1)

- ..%_,__]“--L-Zt.!il(_niwg k +1)21z -1”21‘[*224.-1
w22l = Ik—-l}lR - |

=1.3.5.7....(4k;1) g 3.6 T it A
——— =$1.305. 70 . (4k-3){ k(2 ) s
+1.305.7. (Lk=5) , k(Zkal)(IE.ga?k Qz2k*
Exdel 5j-k ,Rj-2
teeen (=1)7 7 477 $103.5.70 000 (2 ¢ 2§-3)] (k) (2k-1) (2k-2)...(2§-1)= (k-j@)ﬂiku
e (1)K 1.3.5.9. .. (2=1) 217K (2ka1) (2K=2) ... 0120 e

k=1) ! Rk + 1

Similarly, formulas for c5z(n}R, 1SZ(H)R'3 and CSZ(H)H”g can be obtained
when p = 3, -g and - g respectively,

Useful consequences

The first term of &, .R s some mudtiple of p2(k=p)

The second P " n n " " n

Rmﬂp =D
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The third term of &, (2X)R?P ig some multiple of gt .
- R2(k=p + 2)
® 23“'2
The +1) ¥ term " M " w 2z 3
e _ SR r2(k-p + j=1)
The 1a;t term o " " " " 521{
3212k*p)

The common ratio is E% . -‘Therefore,the number N of terms in the
R

(2k) th partial derivative of R?P with respect to z is N =k . 1.
Similarly, the number of terms in the (2k~tl}th partial derivative

of R<P with respect to 2 is = N = k . 1.

2. PRELIMINARY DISCUSSION: STATEMENT OF PROBLEM, GROUPS OF FORMULAE

A concentrated force in z-direction is applied at (0,0,c)
in a half-space occupying the region =z P/ 0, and bounded by the plane
z = 0. (x,y,z) is considered as an arbitrary point of the body,l

Nuclei will be situated at (0,0,¢) and at (0,0,~c) which is
symmetrical to (0,0,c) with respect to the boundary z = O;

We will use,

Ry to denote the distance from (x,y,z) to (0,0,-c},

Ry to denote the distance from (x,y,z) to (0,0,c); and

R, = (x2; y°, _02)%;

Any nucleus subscripted with 2 is located at (0,0,=¢); whereas any
nucleus subscripted with 1 is located at (0,0,c),

To remove the displacements at z = © of a force at (0,0,a),

nuclei are superposed at (0,0,-c). The displacements of Zg; X2,

S, Zo, C2 ete. are obtained from those of 2y X, &, Z, C ete. ,
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respectively, by replacing z 4 c and R, instead of 2z and R in their

corresponding functions,

 The formulse for combinations of nuclei fall into three groups.
One group of formulae,called Group A,?roduces at z = 0, a non-zero
one term z-displacement and vanishes in-plane displacements. The
seecond group of formulee, called Group B, produces at z = 0 a
non-zero one-term x-component of displacement and zero components
of displacamaﬁt in y= and z directions., The last group, called
Group C, produces zero displacement% in x- and z~directions, and a
non-zero one-term y-component of displacement. We treat in this
chapter group A of formulae for combinations of nuclei of strain.
Different cases will be considered according to the different

values of 2(}11z o 2Guy = 2Guy = O in all these cases; thenfore,

they will often be omitted.

3. GROUP_A:; FORMULAE FOR COMBINATIONS OF NUCLEI OF STRAIN CORRESPONDING

TO DIFFERENT TYPES OF ONE-TERM 2Gu, AND 2Gu. :;2G1.1y = O'AT. THE

BOUNDARY z = O,

§Otation

We use N to denote combinations of nuelei producing a non-zero
one-ierm z-component of displacement at z = 0 (2Gu, = 20u, = 0).
Different types of combinations are denoted by subseripts and super-

scripts added to N, We let

(1) qu denote the combinations of nuclei
s o 2q 4k + 2q=1
==5720u, = 357...(4q-1)(4q+1)...(4q s e
R4-k+4q+l
= 2
(ii) N ? denote the combinations of nuclei
4k + hg + 3

= d 2GU.Z g 31&5«:7-..«»(4_{'.1-'-'”'_;.)([,,q_Jr 1)'.‘(4q+ dk_‘_l)xzqcﬁ(-}zq.fl
R.ZE—F&.Q +
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respectively, by replacing z + ¢ and R, instead of z and R in their
corresponding functions,.

The formulae for combinations of nuclei fall into three groups.
One group of formulae,called Group A,prﬂduces at z = 0, a non-zero
one term z-displacement and vanishes in-plane displacements. The
second group of formulee , called Group B, produces at z = 0 a
non-zero one-term x~component of displacement and zero components
of displacemeﬁt in y= and z directions. The last group, called
Group C, produces zero displacements in x- and z=directions, and a
non-zero one-term y-component of displacement. We treat in this
chapter group A of formulae for combinations of nuclei of strain.
Different cases will be considered according to the.diffarent-
values of 26Guy . 2Guy = 2Guy = O in all these cases; thenfore,

they will often be omitted,

j- GROUP A: FORMULAE FOR COMBINATIONS OF NUCLEI OF STRAIN CORRESPONDING

0 DIFFERENT TYPES OF ONE-TERM 2Gu, AND 2Gu. = 26u, = O AT THE

BOUNDARY z = O

=.

Notﬁtion

We use N bo denote combinations of nuclei producing a non-zero

one-term z-component of displacement at z = 0 (20u, = Quy z 0).

Differsnt types of combinations are denotsd by subseripts and super-

seripts added to N. We let

(1) qu denote the combinations of nuclei
Ltk + bg+ 1 = |
ﬁzcﬂlz = 3-& 5&7- °» (qu*l) (4q + 1) e o2 (4-(1 e Ak :l)xzqcék > Zq-l
= R 4k 4 4q +1
S '
(1i) N<9 denote the combinations of nuclei

4K +hg s 3

5 20, 2 = 305.70.0(49-1) (4q4 1) ... (4g s 4k . 1)x9A5720r1
R 4K+4q +3

Z =
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(11i) w°9+1 denote the combinations of nuclei
tk s Aq s 3 2g+1 2q-1
- = =N = - 3*5#7*11-1(4—(3"1) (4q+1)*r-(4Q+ Lk +l}}[ 4+ Alh q
e 7% dq+ 3
‘B =
(iv) Nii‘*iq denote the combinations of nuclei
s o - ~ Ba vl ARG 0
"—"'?2{}11 o 3-54.'7.“(4(3"1)(461+1)---(4q+Z|k+3)_xq+ C T
z=0 & . R ﬂ(i- 49 + 5

where the superscript stands for the power of x in the numerator of
2Gu and the subscript denotes the power of R in the denominator of

the z-displacement,

2q+ 1
We also use n<d n<a : a ol and n~1*
4K 4q+1 4k+4q+3 4k . 4q ;3 4k L Agy 5

to stand for the numerical coefiicients of the values of 2Gu, corres-
29 -2 ya+1
ponding to the combinations N hi 1 Ak,;4q4%3’ 4k4_4q.+3 and

N4q +1 respectively.
Ak+4q+5

e use t to denote numerical coefficients of the terms in
the partial derivatives of % with respect to z. A superscript is
used to denote the order of defferentiation with respect to z. To
differentiate between the terms of the derivatives, a certain subs-
cript is added to ts The subscript stands for the power of R in a
certain term of the indicated derivative. For instance,

o denotes the numerical coefficient of the term in —-s—m in the

Lk=1 pbk=l
(2k)th partial derivative of‘% with respect to z.

.t

We let m denote numerical coefficients of the terms in the

partial derivatives of = R3 S % with respect to z. Superscripts
and subscripts are used as with t. For example,
meK + 1
denotes the n ical i &
Ak : es the numerical coefficient of the term in EZE:75

in the (2}c.+].)'th partial derivative of = %3 with respect to z.
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"We use T to denote the numerical coefficients of the terms

_ 2 '
in the partial derivatives of X __ with respect to z. Subscripts

RO
and superscripts are used as before. For instance,
_ 2
r>2k denotes the numerical coefficient of the term in &
bk, 5 2 pbk+ 5
in the (Qk)th partial derivative of Eg with respect to z.
_ R ,
Finally we use d to stand for numerical coefficients of
3
terms in .4 in the partial derivatives of = x> with respect
Ak + 5 R/
to z. Subscripts and superscripts are used as before. For example,
g2k+ 1 denotes the numerical coefficient of the term in x in
4k + 5 Lk+ 5
th ] - » xj R
the (2k, 1) *? partial derivative of = = with respect to z,
R
Case 1: 20u, is a multiple of —x
= __R2n+ 1

We begin with the combination Z, =cC. Using equations (9)

and (10'), we find that 20u, = 2(}11y = 0 and 26Guy = (3*4%>)% at z = 0,

b

To produce higher powers of R, partial derivatives of the starting
combination (after ¢ is replaced by z) with respect to z will be

considerad.

=
dg [Zz -cC2 | ., Produces 20u, = (3=4 3 ), % = (3=41 )"'RZ"B' y2Guy = 2Buy = 0

At 2z = O,cﬁz[?z-cCQJc_az=¢5222 = 02 = ¢ 3,07 produces 2Gu, = (3"4Q}H7 c %,

. 3
2Gux z 2Guy =z O, ™ien the order n of differentiation with respect e

to z ik, we have at z = 0,

" (2]{4- l){- (2k+1)

(2k
Cg 122-’302} C 57 :ng Zz“(2k+1)cgz )

(2k +1)
C2"""C CS 7 02

produces 26Gu, z (3-4+ ) 52(2k+1) %Jzﬁc

Note: (3=49) is a factor in all values of 2Gu,. Henmcerth it will

L] . L3
be omitted : 241n values of 2Gu,.
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As a sample for further reference, a list of z-components

of displacement corresponding to combinations derived from Zig=cCq
by differentiation with respect to z is given in table I, These
displacements are compiited by aid of formula (12¢),

In order that the z~component of displacement consists of

: one term only, linear combinations of the combinations of nueclei
listed in table I are required to annul wunnecessary terms in the
values of 2Gu,. The pattern in which the terms are arranged gives
immediately the method of annulment of these terms. Iﬁ table IT,
several linear combinations of nuclei, producing at z = 0, 20u, = some

maltiple of ﬂﬁ-;-—ig are given to show the method of constructing
R 2n + ,

the general formula.

The formulae for case 1 are:

- ; ok 3
t
(1) czk"l 6(2k)z =2k O (2k"1)0 ucé‘(zk)c ék-l [Nﬂ J
Z 2 z 2 = 2 Lkel
. 41(,..1
t2k 3 = _ t2k
Lk=3 |y© - oikil |4
nO Lke3 | *°° n® 2k1
41{"3 L 2k+1
200 = 3,5,7..0{lknl)E 133
Z:O 7 : W =5 st *( 3 )
where k . 1,2,3;.#&
Using the summation sign, we gets
k-1 | (2x) (2ke1) (2k)
(1) o {65 Z,=2k S Cee 5, ' C,
kel o
L 4}5'(211-1) O
" Is0 3o NAk-(2i+1)
Ak“{2i+1)
. Lk=]
af 208 = 3.5, 7...(41{-1)
z=0 RAk*I“ s . (131)
2f}ux s 2611'?' - O .



TABLE T

DISPLACEMENTS CORRESPONDING TO THE FIRST EIGHT COMBINATIONS

OF NUCLEI DERIVED FROM Z, = cC,

BY DIFFERENTIATION WITH RESPECT Td Z

2 = 2 _ 1 2
Sgly = 28,6, - ¢S50, _pv 20u, g = §f+ ég_
3
dgzz - 36502 - 06202 z-—;j? 2Gu, = g% - 15;7
4 3 4 — 9 =gt /A
6322 ® 466, »8d,.0, o T2 R? | %EZ + Jeds7 E:?
5 L 5 25 = 2 = 5
dz 22 & 56502 = 0[5302 ZW 2Gllz 8 ® 3.5 %74-213:5 ol gg > 345479 ;T]_
i 6 7 2 .2 2
ngzz = 76202 - 06202 ?:0—-) ZGU.Z - 3 .5 .7 % - 32‘,52"72.9 g%l
% R” R
2 2 5 i/
3, 0517 !9.112— - 3-5-719;11.1 C
: RI3 Rl5
abe -85 Y0 ik e L e 2 pa B
32 22 Z2 Z:O ZH b » 3‘2-315'7-9%
R- R_l
+2!32-52-72-9011£é - 221:3:95-72#9;11‘139-?-
rl3 15
& Rﬁ
8
-Lj' -'ll?. |11.1'. c
5¢7.9 Bel S EP

A factor of (3«4 ) is omitted in values for 26U

2Gux = Luvye O forall canbinstions.

L =



TABLE IT

LIST OF COMBINATIONS OF NUCLEI PRODUCING AT THE
BOUNDARY z=0, ONE NON-VANISHING z-DISPLACEMENT

OF THE FORM OF _l.___ OR 1
Rz‘k*l" 1 R"—’I-k'-[- 3

ags= ohg 7 = 07 20y = -;ﬁ
42 =6 w05 0 s 26u, = = S

2" 2 2 w2 z = 0 & = R3

.2 2 T ; 3
c rd ZZE - 2Q302 - CGZCZ “ld ZZ2 e Cz - CdzC2J —m—? ZGHZ - Rig—
gl <3 2 3 g 2
c _d zzz-Bézcz-cdzcgj -3|c {0 522 dzCZ”CézCZE -6 Zy=Co=c dzc%

Z:Oi ZG‘HZ . - 150—5
B 7

3 2
5023 -3(c (S 222" F,05

i

3

2 2
03[ d ézg-m '302-0 dgcz }-— 6{{3 i o zzz-g,d zczwcd

2

= G 3Z-Co= dzczj )] "3{0 5'5532“2 dzCE“cd 202

s
e

...Ec; zzzucz—cdzcgj] ~ 2207 20u, = 3.5.7

Co=c o 262} -10 {cjid §22-46 ZC‘2 -C &
2
02} ~{ S 422Ca= 6 50y 9 -3{e{6 22,72 8,Cpme & 205
5 2¢ .3 2 3
{d ,22-Cy-c 63029} -15[9 ¢S 2,=36 Chmcd 202} -3(c§ 52

Z
- { d 322-02"3 6302} )J Z:U " 2Guz

L

Z

Ao R
2Co] =6(c”f 6 22,308 20pme6 D0y}

-3(c{0 57920 ,C0rmc &

| 2
Zzn zdzczmcdz 02}

A

R

“ 3,5, 7-9

A factor of (3-43) is omitted in the values for 2Gu,.

- 22 =
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2k+
A t
(ii) czk{d@kfl)zz_(m{d)é z(zk, 02 (2k 1) 1 [ +]1

z
T B o, ]
n© Ak=1 n® L3 n® 2k .3
'Akﬂ Ak“B 2kf3
A | ' :
Y= ¢ 134}
z=d?2ﬁuz~ 1.3-5-7.:-(4k+1} EZEZB — _( 31 )
In compact form, the formula is: -
9 TR TR
k| (2.1 2k k.1 [ 125 O
- ],cf cd C_|- LY N
c { : 2,=(2ks1) : 2 120 o { 4k+1-2i]
= - bk 1=21
| oAk 1
‘E;“?QGHZ 2 e 1,3.5%..(4k, 1) & R4 o

2Gux - 2Guy - ? :

Case 2: 2Gu, is a multiple of =
Rzn+3

— e e T

In this case, x appears in its first power, Therefore, we
will begin with the combination of nuclei d%[?z - cCé]. This

produces at z = 0, 2Gu, = = %j o By differentiating this displacement

Z
n times with respect to 1z, one gets a term of the form of _ﬁx;_ at
z = O, cs(”‘ ié = - xcf(n) 3, The terms of cf(“)a ate obtained
by formulae (123) and (12b) after setting p = = %. A sample of those
displacements is given in Table ITI, The formilae for case 2 are

obtained by similar methods 1o ease 1,



TABLE III

DISPLACEMENTS CORRESPONDING TO COMBINATIONS OF NUCLEI

—

DERIVED FROM O, FE*GC%I BY DIFFERENTIATION WITH RESPECT TO Z

L.

dzxzz" SxCa=c G 4.0 —g=0> 20U,z %&

-

2 2 . 3 Xe
deQ“?_ dZdXC2H{_= dZ dxcz —Z:? 2GU.Z - L - 3'5 E.r..?_.

Sg

63 Ily30 5 0y 0pme0 3 640y~ uy = = %‘E +3e5.7 -’%—3-

2
g4 3 8,403 8 Cpme 6% 6.0, —m W, = - A5X 2,32 5.7 %% _ 3.5,7,9

Z:O Z R? 1 h R?
5 .
dz dxz2'56f-; dxCZ"CdZ dxcz T:O'\" 2G'LIZ - 32- 52-7 XL . 2e3s 52-71-9 XGB
RY a1l
-1-3!5-7-9.11 2:-2.2
rL3
6 6656 6 d - 3 2 . T 3 g2 }[32
J 5 S 52560 2 0, Ch=c S, O 0y oomr20u, = 3<.5%.7 =~ - 33.52.9 9 X
- R. R'

xd[*
Rﬂ.l

+3%.5%,7,9,11 X€* _ 3.5,7,9,11,13 X

R13

| A factor of (3=49) is omitted in all values for 2Gu, .

2Gu, = 2Guy = 0 for all these combinations.

-2 =

rl5
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We have:
==
dxzz'c dxcz 3—2(? 2Guz o RB
| . 3xe
Szxl2™ SxCo=e I, 0o =0 26u, = 1%5_
- L

2 g 3

| -h -0 G 2
: ZX 2

.when k £ O,

k1T (2K) (2k=1) (2 ] "maf.l
i = ﬂ',?, d i - Y - B T !
(1) e [dz dng k 7 dxcié ”dz d:x'c?. ol N4k+1
- /A 3%
2 1 w2
i Lk= oo™ —2—+2
nﬂ [ !,J{—-l] 1’11 N2k+3J
Lk=1 < 2k 3
';:giz(}uz - 1'31 Sini(l&k“'rl) P4 Ak_l _(141)
- R.d.kd,.j
Using the summation sign, the formula becomes:
? kel - 2k °
- 2%) W 5 n E i
Jk-1| (%) g o (Be=L) _cd(zk}d 5l ? fe=(21-1) |1 /
Z x 2 z x 2 Z X - =0 ;T Lk={2i=1)
L= (21-1) | | j
-_._...__}26’11 e 1i3* 5--# (4k1-1) xez‘k-‘l—‘ 9
z=0 Z= R4k+3
26m, = 2G11y = 0
r _
(11) czktof (Z1) g o(2k2)s () ¢ g oq (Bl c}
z X Z - X -
kel o2k
m i
5 § fk=(21-3) T, 1
= tk-(2i-3)
fk={21=3)
it
——_0%2[}!13 - 2-3. 5-7..:(41{—1-3) xcfk"' $

5 R4k +5

N
o
=
(]}




TABLE 1V

DISPLACEMENTS CORRESPONDING TO COMBINATIONS OF NUCLET

DERIVED FROMdi {zz-ccg] BY DIFFERENTIATION WITH RESPECT TO 7

2 2 I! 3>

dxzz-c chz -E:—Oa’s QGU.Z - - R3 + Rs
2 2 2 e xc

6,95%,= S, Co=c I S C, =07 2Gu, = jg . 18 X

g CxlamR 3500000, F 0y 5o 20Uy = 25 - 15~7 = 15—7-+1ﬁu =5
Oy Oxlgm3d ;T 0omed S 6, ——p B0u, == 458 _15.72 .3,15,7%5€ . 15, 7,058

2 2 2 Z':'_'O A ﬁ? R? R R9 5 9 Rll
L R 3 2 4 45 2 Z
e - - -1 & -nn-u- . c

3.15,7% X = 2.3.15 xzcz
- R9 -3. 5¢7-9Rj.-1

+15.7.9.11x204
i3
P2 Cx"277% 3 95037 9,905 *Fﬁﬁ}zGu = '7'E§ 2Aes ?;11
5
$3.5.7.9.11% . 3 .57 .9 .9.*20

2.3 2.5
3.52.7.9,11%°¢2 .3,5.7.9.1].19%¢2
B le 365e7.9,11,132~—=~ R15

A multiplying constant (3=42) is omitted throughout the

values of 2Gu,. 26u, = 2Guy = O for all these combinations.,
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2
Case 33 20Gu, is a multiple of . o
' RAN+5

SIS T TR et de ELE Sl s ]

In this case, terms with x* in the numerator are required,
So we begin with dii [ZQ-cCé]. This combination of nuclei gives

at z = 0, 26u, = = i S %%Eﬁ . Partial derivatives with respect to

.

z of this displacement are then considered. For the nth partial
- derivative with respect to z, we have

sk s o L, s(n) 3x° _ Lg(n)g=3 5,24 (n)ga5
dz[Rﬁ+R5] R? g gl Tamaaas R

The terms of displacement are computed using formula (12),.
A sample of these derivatives is given in table IV,
In order that the displacement consistsof one term only,

all terms before the last in the derivatives should be annulled.

Terms of the form of 21 > are annulled using combinations of
B

the type 1.'

For example:

2 2 2
e|ld"Z =S Cl-|d 7 «C = e - 3X°C
[ x 2 x 4 [ z 2 02 cajzc2} Za0 4, = RO
2 2 2 2 =) |
el I L ad B aod O 7 2 € waed 0lid? <0 =
[z x a2 xR zx;-%izz i e & 5228206302}

—T 2G‘ll

£

37

The formulse gre:

2k
0 2k+1[d(2~ 2 a2l 2 (o) .3 [2
(1) e S 2-2d C,mc S c - 24kl Iy 3]

Z 2 X 2 Z n Ak..}»
4k +3
BT 31‘21{ r
Best i TR R
Ny 1 [ A IJ e LN2k+5J 0 [ 4k+3]
A 2k+ 5 2k, 3 (15i)
2k 2k
m m
. 2k K ]- oz T° - 2, 4k 1

= 1 it LR U, = 3.5, 7--.(4]{ )

e D] g [T e
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Using the summation sign, the formula becomes:

~

Zcr1 [ (20) (ok=1) B d(zk)dzc
c ].z xz22kdz dx2c S 9
kel , 2k E 5%
I ka1 (21-3) [ 2 "] : "ik=(2i=3) [0
N R -
"2 5 L4ka{2ia3}J {5 1O 4k=(2i=3)
B20 . N el2las) T fke(21-3)
2abk+1

- ®J)e (0o k x:
7207 20y = 305. 7000 (4ke3) RAk*5

- Au, = .?G:uy =

(11) czk“*g%igk*l)dizz-QmM igk) Cpecd, e h ZCJ

x 2
kel 5241 k 2k+}
" fem 2i=5) - _ék. (= (2iw5)
2l = K 41(-(21-5)] L [ 4_1{-(21-5}}
.= Tlkel(3ims) 4 18 Lk=(2i=5)
4k+3
' 2Gu - - 3- 5: 7- *e (d—k'}'ﬁ);zc —
Tzl 2 R&k+7 '
2Gu}: - 2Guy - 0, e (15i1)

Case 4 2Guz is a multiple of __EE__,
RZn 7

T cLaE .

e

3

In case 4, x” appears in the numerator., This case is treated

as the prewious case. The combination that we start with is

1
s [Zzuccgr This combination of nuclei produces at z=0, 2Gu,, = 2x . 15x3
X

sos'™ { - 15592 v MR Sy5d g (W7,
z R5 & Z z

The terms of the displacements corresponding to combinations of nuclei,

which are derivatives with respect to z of the starting one are

computed by aid of formulae (12a) or (12b).
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The formulae for case 4 are:

2k
- 15d
a1 e [5(2“) D o D)3, _cd(zk)d:acJ_ Lk+5 [Ns ]
| Z X 2 LK 45

% x 2 2 X 2

562k 2k 2k

- -—--él_{.tz NB oo™ 15d2k+z NB 4k+5 1
i 443 | oy n1 o
4k+3 2k+7 4k+5 :

9rK it
- ““ékig" {Fik+3} i e [N;k*é]

4k+3 2k + 5

X 04k+1
4k+7

_z:(-)-},}l‘(}uz " - 3&5:7.1!(4—1("'5)

or o2+l | (2K) 3, 2k{,ﬁ.f(me;-«l) 20 CC5(2k)c536
Z x 2 x 2 x 2

kel
1552K k

2k
5 k= (21=5) 9?4ka(21-5) 1
D LY

3 _
ie0 n ; [ 1 ke (21
L= (2i=5) © n4k-(21ﬂ5) M

}[3 czlk-!- 1

—'—:‘—'}2(}11 - = 3.5.7:-.(‘5}( 5
5 O : ) Rék+7 ?

2Gu, = 2Gu

x - 0 -

y =

(11) 62k+2ﬁd(2k+13 37 a(21:1)s (30 | 3, (21“1)CF : J
-5 X 2 A x 2 x 2

[—..I

ke k e

= 5 f§+%21~71 o : J - A }21~7) [N }
T k= (217 Tor
=0 ngk (2i=7) L ) 1es ik (21 w7) Lk=(21a7)

i

mz__-—? -0 E= 3‘5.;..'(41{ I?) x304k+;
L1 z !'
Rﬂﬂ?

' B __(16i1)
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A formula for

- 2
(1)  26u_ = a multiple of X223

Z nba+l
2q+1
(1)  26u_ = a multiple of X211
RAQ+3
Before discussing the general case, we deduce a formula for
. =
the starting combinations = when 2Gu, = a multiple of EZE :
RA4G+L
X2Q+1 ®
or .

~—— o By replacing e by x in the terms of 2Gu,, and changing
r4a+3 .
the variable of differentiation to x in table I, we get a new

table for combinations of nuelei such that their corresponding

2o+1
£ % - : b.¢ Xq
2G11z are of the form of e or

2q
= e Therefors.the
RAN+4q+1 R20520 +3 :
L] ®

formula is constructed similarly to previous cases,

The formulae with the desired conditions are therefore:

7 e N
(1) ¢ {ci(zq)z -ccj(2Q)céI- A {quﬂzl . _4g=3 {?2q-%]

X 2 X <) n2q:§ L_Aq~1 n<a-4 | 4g=
b=l ba-3
£<a
o w20zl O
e & no 2q11
2Q*1
-l
220" 205 = 3e5.7..4(4g-1) platt (171)
- RAQ+1 e
q-1
F 29
2g=1  (2q) (2q) 4a-(2i+1) 2g-2(ir1)
or 1 g - = g +
"y W YT e )
hg=(2i4+1)
2q 2qu1
—=20n_ = 3&5:7-10(4 ""'1‘5 =%
Z:O Z g=1i,; R4q+1 ?
2Gu}, - ZGHX = 0



«1! (2q.1) (2q.1) +1 |y2g=1
(1) o4 1[5( G+ly weco ¢ e B L
X S gt |0
2q+1 2Q+1
t -
_cdgew SR L ded [ ]
2q-3 Aq* nl 2Q+3‘
4a=1 20+3
2 1 2q-1
—E:6§2Gu - - 3.5;7,..(4q+1) <5 __(1711)
= 34q+3
=1 2q+1 =
20-1 | (2041, __ (2q+1) ii:j 5?+E iﬂl; \2a-(21r1)
4g=(2i=1)
J 2q+1_2q~1
ﬁQGHZ e 3-5-7141(4(}1—1) X ar c q 3
e RAQ+3
2Gu, = 2Guy « 0,
The Geners! Case:
g
(1) 2Gu, = a multiple of—_X a
RAR+AQ+1
e - v - e T—
2
(11) 26u, = a mltiple of —X°3
Rék+AQ+3
2 .
(iii) 2Gu, = a multiple of __X i
RAK+hg+3
2q+1
(iv) 20u_ = o multiple of X .
- RAk+AQ+5
-]
Notation
2k,23/2q+1+2j

to denote numerical coefficients

of the terms in the (2k)h partial derivative of 9 xzj
2qfl+2j R2q+1+23

(§ = 0,1,...,29) with respect to z. The first superscript stands for

We use <
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the order of differentiation with respect to z, and the second
superscript shows the function to be differentiated (the numerator
stands for the power of x, and the denominator stands for the power
of R), To differentiate between the different terms of the indicated
derivative, a subscript is added to o< to denote a certain term,

The subseript denotes the power of R of that term in the above
described derivative,

For instance,

2k, 2q/4qs 1

Ak+4
in the ?Ek)th partial derivative of %

——l
denotes the coefficient of the term in R4k+LQ+1
iq - x<Q

s R4q+1

wzth respect
to =z,

2k+1,2j+1/2q+3+2j
X (5 = 0,1,2,..$q) is similarly defined,

The Formulae with the Desired Conditions are:

= : =

(1) o2+l cf(Zk)cﬁ(zq)z _chf(anl)cf(Eq)c “ccj(zk)cf(zq)c

7z X 2 A X 2 pd X 2
2k, 2q/4a+ 1 - 2&,20/kgs1
_é¥+Aq"l N~a 4k*4q73 N2 r
2q Lkt+hg=1 n2q Lk+Lge=3
"Lk 44g-1 4k+4q=3
2k, 2q/4as 1 J2a=l = 21,25 /2q+1+2;
- ZBubad Ly )L ) ka2l [
n29 L 2k+4qgs 1 j=0 nad Lk+2g+2J+1
21(-{— Z..q -1-1 k Ak-r 2q+2.j+l '
2k,23/2041423 2k »23/29+142]j B
D{ i
4 _Lk+2g+2]=1 §<a Seais T 2k 42042151 N2d /
w2l Lk+2q+2j=1 2j 2k+2g+2j +1
&k+ZQ+2j“1 2k+QQ+2j+1
. 2q 4k+2q=-1
_)2{}11 - 3- 5# 7:. ® (4.(}'1} (4q+l) (ﬁq-ﬁ) LA (A-Q"I'A-k“]-) < ¢ "

z=0 ) R4k+4q+1
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Using again the summation sign on k, the formula in its compact

form is: _
2y 2g-1] . (2K) (2q), (2k= 1) s (2q), _ (2K) [ (2q)
(i) C (8] . dx 2 .:c..kd X 02 Cd - dx 02
kel
>“‘ f}: zq/:lL»Qa— 2
+ g e , .
i=C .:’,q [Nﬁka-lpqﬂl- 21} S A (181)
4k+4qﬂlﬂ2i J |
L i 2k,23/2q+1+23
- / e, 21,12 N?.j |
T e Lk+2q+2] s1=21
4k+2Q+2j+1“21 : .
_ ' 29 4k+2q-1
L2V o 2G i Iﬁ!vlll -] 1 saee 1 X -C 2
A, 3 2 (4q-1) (4q+1) (4q+3) ses (4q+dks )_mr—
2{:‘;1;1}c = 2Guy « 0., f
(11) c2k+2q[d'(2k+l)€f(2q)z ik l)d.(zk) (2q),, (2k+1)(j(2Q)C_J
Z x X 2 z X 2
i;ﬂl o{2k+1 2q/4g+ 1
- +4g+1=21 qu } ' _
i=0 ;é-g Lk 14q 1=21 : ()
Lkihqele21 .
3:1 :># Cx2k+ ,2j/?q+lf2j 2
j=0 1.0 43“ G [”4k+2q+25+3-21J
Ak+2q+2j¢3-21 .
2 +20+1
-E:ﬁazGuz - J-5~7'--(AQ'1)(AQ+1)(4q+3)---(4q+4k+1) 4; Az 3q+ .
R +Aqr

(111) oZc+2a-1 ’L i:ak)d(:a«qﬂkl)z2 de(2kn1)d(2q+1} cdizk)dizq%l)%]

—

k=1 -~ k
D{Zk ,20+:1/4q+3 - 2k 2j+l/2q+3+ 2j
ZE:' +1-2i [qu*l ; _J/} /> C¥4k+2§+2j+3-21 . 291
j_" n q+ A—k*r 1"‘"")1 - - & / : - 21
C 1, s 1=21 4q+ J j=C 1«0 n k4204233 232{

Lkt 20+2]+3=21

557208, = = 357,00 (4a=1) (4a+1) (4qu 3). . . (4qs4ks1) X22+1chEr2071
% Rik+4g-3 S

(e
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; -l 2k 11 2q+1
(4%} czk+2q[cf(2k+1)cf(2q+1}32*(2k+1)cs2k}5(2q }62H0(5( ; )afﬁ g )02]

Z X Z X Z |

kel i 001 i3
= E ™ ks 4+ 321 T

10 nzq Lk +hg+3-21

5 Lk+4q+3=21
9 X 1,201 /2953, 2
< et e P G s _

5 [ T 4k12942s 5=21 N2d+l (18iv

j=0 =0 n2j+l Lk+2042F+5-21

Lk 2q+2]4 5-21

| 2g+1 Ak+2qg+1
—y 2G » 3- 5- Te eo A "'1) (4 "4‘1) (4 "'3) ®se ('4- ZPk'\'B) P8 £ ®
z=0 Yz = o : : = phkthg+5

Other cases:

The formulae for combinations of nuclei prﬁducing at z 2 O,

2Gu,; = a multiple of yh at z = C are found from those of
R2n+2h+l

group A by replacing x by y whenever x appegrs in the formulae

and the discussion given before,

It has shown before that the starting combination that

corresponds to 2Guzsbeing a multiple of Rzzfl , 1s (Siq [%2-002};

i,es the variable in the numerstor sugges%s the variable of differene
tiation of Zy = eCy, and the power of the variable in the nﬁmerator N\
gives the order of differentiation with respect to that wariable,

This fact is used, ° hence®srth %2, te find the starting

combinations corresponding to different values for 2Gu,, 26u, of 26y

For instance, to obtain xy #n the numerator of the value of 2Gu,,

we start with the combination C5x? [Zg - cCéJ. Similarly, the

combination  (h) cf§m) {22 - cCé] 256730, 2 a multiple of

xiiy™

~h o - As before, partial derivatives of this displacement
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with respect to z are then obtained so that terms with higher
powers of R are found ~:.. The formulae for this case can,

therefore}be obtained similarly to previous cases in group A,

4e PROOFS FOR THE DERIVED FORMULAR

We will supply a proof for formulae (131i) and (1311) by
mathematical induction, Proofs for all other formulae are similar,
therefore one proof is sufficient. In order that the second
Principle of Finite Induction can be used, formulae (131i) and
(1311) are combined together, Therefore,what is required tob%roved,
is the following:

0
-1 (15 ens (1) GJ' 3 “2n,1-20 -5.1)

L

o s s cln=1
EgGuZ - ( 1} 1&34-5-:-:(21‘1 1) R2n+I
2Gu, = 2(}1_1y -0

-

where [g-j+§] and l?l are the greatest integer in (g-u j+1} and

g respectively,

Call the above statement P(n). Assume the truth of all P(n)

Where n @ 1,2.3 ... .mel, Tt i required to prove P(m):w

m
cm-lycf(m)zg-mﬁiimﬂl)czﬂccfim)Cé} E%% tgﬁ+1“g(4[%‘jfill [ O

N
=% S o 2m+1“2([£luj+]—]
J=0 n2m+l~2([%*J+1J) L 2
Zﬁ EGHZ = ("l)m 1- £ 5- e (2111""1) 2—21..:&
.- R2m+1

2Gux ~ 2Guy = 0

=

~
- m_ | m| .
where E j+1£ and[éJ are the greatest integer in Gg -3+1) and

m

2

respectively,

).



Proof's

(m} (me=1) (m) 1 _ .
dz Zoemd Cy=cd, C, —55692Guz =d, Ty 26u, = 26u, = O;

'3

but -
(m)q L T ([‘2"" «1])
d = ' t 2m4l) =2( |- +1_| y== :
Z RJZ-@.C ( - ) ([ j ) erm-i-'_[} Q(E“J-rlb
Therefore,

mel |g (m), _ (mel) (m)
¢ [z szdz Cg"“-’dz 02

e

3

- '#GIIL ~ e (2m=1) - 2(]:'2 j-{-l])
z=0 'z %___ ¥lom) - 2([5"311} )ﬁ_(zmlj- (B”j"'l T (19).

&

Since P(1), P{2),...P(m~1) are assumed to be true, therefore,

O

N( 2m+l) =2 (E:j -flj )
R om 1) =2 %—j 1))

is the combination of nuclei of strain

- (19)

20, 2mﬂ1“2({ "j+1.])
s -

26u, z 2Gu, = 0O
-~ e Wi » X - pis

Using (19), and (19!'), we get that:

= :
cm..l Fj(m)z _md(m-l)c i mc]_% tgmdqu-z( [ j+11 ) y°

52 v 2 z 2 jeO n° (j2m+lu2([g-j+l] i]

< 211'!4-1*'-"*2( ["é—j-tl] ) 2

FIL 1
226" g i: t?zml)-z([-’g-jfl] );G'(?mﬂl)"z([g"j*l_l )
. piomel)ea{[3-4+1] )

E]_

- 2) (P
- Riszl-z(( B-3+17) AR

and 2GU = 2Guy = 0.
| 2m-1
+ng1* is the last term in eb (m)

1
2!511 RJ 42— C =




-3'?-5

Therefore:
- (-1]m 1.3.5.-.(2m~1)gcomputed from the formula for df(m) 1 -
2mel Z R
m , J2m=-1
and  26u, = (=1)" 1.3.5,4.(2m=1) €. and 2Gu, = 26u, = O,
R2m+l J

This proves P(m).

Hence P(n) is true for all n, where n is a positive integer.,



Chapter 1V

FORMUL.AE FOR ONE NON=VANISHING IN-PLANE DISPLACEMENTS

1. GROUP B: FORMULAE FOR COMBINATIONS OF NUCLEI OF STRAIN CORRESPONDING

TO DIFFERENT TYPES OF ONE TERM X-COMPONENT OF DISPLACEMENT AND ZERO

COMPONENTS OF DISPLAGEMENT IN Y _ AND 7 DIRECTIONS AT THE BOUNDARY Z-0

Different cases will be discussed under the heading Group B

according to the different values of 2Cuy.

However, in all these

cases, 26u,, = 26u, = 0., Therefore, whenever these components are

y = VA

omitted, they are equal to zero.

Notation

We use § to denote combinations of nuclei producing a non-zero

one-term x-component of displacement at z = 0.

Subscripts and superseripts

are used with S to denote different types of combinations. We let

(1) 5,2q denote the
LK 1+ 4q 4 3
_5:3 2G‘ux =
2
(ii)az g denote the
Z!»k-{- AQ—; 5
—_'>2G11x -
z=0
eay v 24
(lil)iﬁAk.f4q_+5 denote the
-z—:-—“;‘*QGﬂx -
: 2gs 1
(l?}zj = denote the
Ak“tAQ%r7

combinations of nuclei

- lnB- 5- 7-- ® (Aq*l) (A.q + 1) ®ee (A.q-ﬁ- Ach. 1)

combinations of nuclei

30507600 (4g-1) (4g+1),..(4q, 4k

combinstions of nueclei

3e5e700s(4g=1) (4g + 1) ..o (4g+ 4k + 3)

combinations of nuclei

= 368.7c0.(ha=1} (g D). (hg, Lk.5} X

B8 -

X2q04k+ 2q+ 1
pbk+ 4g+ 3

%2q + lcﬁ,ki- 20+ 1
RAJ{—I-ZPq +5

2q+-104k4-2q4-3
AEdaivT
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‘Here the supersecript stands for the power of x in the nume-
rator of 2Gﬁx and the subscript denotes the power of R in the
denominator of the x~displacement.,

Case 1: 2Guy, is a multiple of E:%E:TB .

We start with the combination of nuclei (3-4)) & X5

- 4e(1-2)d xCy +8 Z,. Using equations (9) and (10'), we find

R,
Partial derivatives of the starting combination (after ¢ is replaced

that 2Guy = 4(1-9) (340 )=C at 220 that is, 2Gu, = 4(1=)(3-43)d RL“)C.

by 2z} should be obtained in order that their corresponding x-displa=

- cement would contain higher powers of R.

k
(1) 6(2 )[(3-40 ) 8 Xomhe(1-0) I .Cot S zz] z:(a-mdizk*l}x?_

-8k (1-v ) o izk“l)o’xc2 - Ac(l.._a)o’izk)d C, +cs”(21§3
(2k4—1) :
7=g 20uy = 4(1-V)(3- 40)5 R] =
o A8k | 1 (2k 4 2)
(ii) & ’(340)0’ X-Ac(l- yd ¢ +8.2, = (32, )o’ X
Z X 2 X JC—-} 2

(2k) (2k+1) ; d(2k+1)dz

- 4(2k 1}(1-9}d Xg'* - X 2

- Ac(lnd))d

a—

— BB = U= Flaesy g R
Z:O Z , Z 5S¢

li:U!

Note: 4(1=7)(3~4>) is a factor in the x-displacements 2Gu,. From
here and hereafter this factor will be omitted,

A sample of the first eight partial derivatives of‘% with
respect to z (z is then replaced by c¢) is given in table I as the
values of 26u, at z = O corresponding to the combinations of nuclei

which are the first eight partial derivatives of rZQ - ccgj c—z With
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respect to z. But they are also the values of 2Gux at z = 0

corresponding to the combinations of nuclei

(n) |
['(BHA{))ﬁf X2—4c(lm€})cf CQT ngj where n = 0,1,2,..,,7.

To .obtain a non-vanishing term as a value for the x-component of
displacement, linear combinations of the nuclei given above are
found similar to those in table II,

- The formulae for case 1l(q = 0 in notation (1) and (ii)) are:

-

(1) L(3~4%')cfizk+1)xz_gk(1_;)){5(2k“1)55 G,
- kel t2k+1 | ]
»lc(1-7) d (2k) S 6 .0 (%) o , N _4k-(21-1)
: Z X2 3z X 2 éiﬁ n©
= Lkw(21=1)

-Z;T‘f' 2G11.x - 1 3«-,»-"(415—1—1) Rﬁ13

CAk"(2i“1)l

(201)

? e S s

-2Guy = ZGTJZ =0

(Zk)

(11) c2k+1[ (3= 4{))cs(2k*2) X,=4(2k:1) (1-9) " o g,

(2k+1) (2k41) : e i *
4e(1=3) " g 648 T T g 3 J - Z = (21-3) [6
z x 2 2 X 2 n® Lkw(2i=3)

20 Pk a(2143)

=k (20i1)
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' - f -3-““-_ &
Case 2: 2Guy =z a multiple o .32n+ 5

@

-

In this case , x appears in its first power. Therefore, the
starting combination is d xi(}u@ ) d,X, - Le(leyp )OS xcﬁdxz;] .
The corresponding displacements at z « 0 are 2Gu. = 3%9 y and

R
2Guy = 26uy = 0, As before, partial derivatives of the’starting

x-displacement with respect to 2z should be obtained.

(n) | (n) 2
dz dx [(3"4% )dzx‘?"ic(l"b ) S XCQ +dxz2j| CoZ E:@“?ZGIIX :dz O b. 4 E%:t Z ¢
(n+3) (ny 1) (n:1)
- 15 {] =d, 3 = =4 e ‘
z XR|lzse Z rR3| z—se Z | Boe

These partial derivatives can be computed by aid of formula (9%,
A sample of these derivatives is given in table IIT; but the combina-
tions of nuclei are different. The first three linear combinations

of nuclei producing one=term x-component of displacement of the form

X ‘
of £231:5 are given below:

L]

2
(3=43) d , Xy=be(ln %)d§02+d e — fé.c_

2 2 2 2
61(3-40 ) Jo! £ dxxz-z,(l-o )d Xcz-z,c(l-{) Yd z 305 +0 .0 ng] ;

[ 2
- {(a-m) O o Xo~he(l=3) di02+dx22] ——5>20uy = -15%c?

c2f(3-4—3)o’3 S X240 ) 5 c:fzc -/, (1—«3)52«520 & 2527
| ' Z XXQ 5 £ g xp 4C 2 x 27" g7 x%2

—

| 2 2 2
3[;63 43)6 268 X4 (1=3) 8 [Cpmbe(1-9 )0 60 1 O 25 22)

F

Sl e 2 oy
{ (349) 0 X,-4e(1-9 )dxcz+dxzz] T e 2 3575
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The following linear combination is written using the notation ?5 for

combinations of nueclei:

Bi_(B AO‘dZ’dX-B 4(1=) 2020 cse(1-9 )55 2 = C2+635222}

1 : <
- 6 [ el / = - 7
5 9] 3 [D/ 7J zzO 2(}[1 ' 3 q 7#9 ;;1 *

The formula for case 2 is split into_the following two formulae

e
&
—

(1) czk[ (3=43)0 (21”1)::5 X «8k(1=9 )} S (21{“1)6 ‘6

Z X 2 A x D

kel L 2cr -

- 4e(1-9)0 (21{)620 +d(2k)c522 - &'(21“3) -
: 2z X2 3 x 2 1 54k@(2i-3)J

is0 n
Lk=(21.3) "

4k+1

2G b 3. - --n(A-k ) __________}_f b
20 X T s

Guy, = 26u, = 0; (211)

(11) c2k+1[(3-4i>)cf(2k+2)(5xx2—4(2k+1)(1--a)c5(2k7cﬁzc
z ‘ Z X 2

k m2k+ 2 |

k1) 2 |

A X 2 Z X 2 iﬁo

25 :
Ak_(zi_ﬁ)[ 4= (2i=5)|

4k 3
——-—-%-ZG'[I s 3 5: oo (A-k 5) . x
2= X =T RAk']"? )

2Guy

ZGuz = 0. (21ii)

|

Case 3: 2Gu, is a multiple of

R IH_—T

g ——

: 2
In this case, x* appears in the numerator., The starting

combination of nuelei is

oo
L(B L) I, Xpmle(1a )8, Ct 0 ZJ = (3«43 }d 3 Xy=be(1=) ) S C +57y 0
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The corresponding x~component of displacement at z = 0 is
= - o)
z5¢ Oz {“EE *R—g']zéc

—

21
X R

2
X }ﬂ_ﬁc Z

—_—

Z_ﬁc :

—

-
loined o2 =8
F;Iﬁncuﬁ
Partial derivatives of this x-component of displacement are taken.

The result is:
(n) g 3 3
J S [(3-»4} ) dx CSZXQ-AG(I-Q 13 xczﬂti xzz}

(n+ ) (n,1) *5 ’
s 20 *!:ﬂ —\~3 d 5 z._;c'

Zm( X

A few of these partial derivatives are given in table III as the

values of 26u, at z 2 O corresponding to partial derivatives of

rz2 - ecé] 852 with respeet to z,.

]

A sample of combinations of nuclei z » O 0%, = a multiple of
x° ‘ o
R2n+7 1s given in table V.,

The Formulae for Case 3 are:

3 (2 k) 3y

(1) oK+ [ (3=43) 6(21{ 1)CE £ -Sk( - )OS izkml)d -C u4c(1nb)d

kel 2k+1 = 2k+1 b

k
(2k) h} S T tmuey 7 7 -
S g i=5) = l.k (21=5)
x 2 Z ‘54‘1{"(21_5) Z 23

Z
1=0 n o
k= (215) 20 Ma(atag -

e -
—

___526u_ 3 = 3.5.7...(4k.8) X2eAk*3
z= O X _ 3
Rﬁki—?

x 2

0

Lk=(2i=5)

_(221)

2Guy = 2Guz = 0,

?



Table V

A LSIT OF COMBINATIONS OF NUCLEI PRODUCING AT THE

BOUNDARY Z ¢ O, ZERO DISPLACEMENTS IN Y~ AND Z DIRECTIONS

2

AND A ONE NON-VANISHING X-DISPLACEMENT OF THE FORM OF P =
2n + 7
R 18

2.do 2
| (3-49) 0 26 2x,000(105 )5 20 1 z} B3 s S

3[(3 49)0‘ 6212-A\1ﬂ§))d C -Ac(l-%))d 63(3 +C 53 }
X

% % X2 2 - x2
2 o 0
- - - 245
5 7 57 D/ 5 *—“-5'*20(11 315.7 xg
R
c 3"‘-'I- 0 ) d CS K "2‘! 1"% Cj‘ 6 C bl J o= 2 2 3
[ z X 2 " ) ok R Af(le 30 zdx02+dzdxz2
' o o)
= s . =3 g =
. . 2G . - ;
9 9 g ; Z_O ux | 3¢ 04t Rl]_
5 L2 2 ) 3 3
e”| (3=43)6 * "% -3, 4(1= el 3
[ g S E3 A(1=3) )& zdxc 4e(l -O)c:f & C +dzcsng}
2 2 o o o
Tt G 200 e (6 7s
9 11 59 57 wr n 2365079 13

A factor of 4(1-9 ) (3«4 D) is omitted throughout all

values of 2Gu,. 2Gu, = 2Gu, = O for all combinations.
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(i1) 02k+3[_(3*4%3)Efézk*z)ﬁfxKQuA(Zkfl}(I-{)yj igk)ciic

| 2k+2 - §l

\ Ir = L 2

-ta(1-0)8 Vg 3 5 (B 3 7 Rerit ol
: Ak i=0 p? Lk (21=7)
Lk={2i=7) L -
=4 T . 415
- Ak“ 21”7) ——'——52G - Je tl?ltﬂ' £+7 xzc. Y ;
| 1%0 = =L __7541{-(21-7}J e o (4k+7) g ak

e &"(21*7) ®
0u, = 26u, = 0.__ (2211}

-

e et R & TR T _

(i1) 2Gu,= a multiple of X e

B T e e TR ol e e R R

Tt has been shown before that

|

=
(3+43) I Xpmde(120) 6,051 0 2, Zur?2uy 23, EJ zsc = 7 33

1 | _
Partial derivatives of<f'z EJ Z5¢ with respect to x give for 2Gu,

values of the form of X Zq__ or 32q+1 at z = 0. A sample of
R+q+3 ZQ+B

these derivatives is given in tabla IIT after interchanging x
and ¢ in the values of 2Gu,e. Then they give values for 2Gu,
corresponding to partial derivatives of (3~41})€fZX2-4c(ln€))c£x82+cj'Z

x 2
with respect to x,

The formula with the desired conditions is given in two seperate formulae:

I (29+1) (2g41)
\ g = (Zq) == a+ q-
(1) ¢ | (3=43)d ofzxz..zw(l D6} 02+d 2’2}

q —_
N Mg [ el J 20112
b - et ?{ _*‘ﬁ\"?-Gu s - 3151- .-n( 1} ar C-l.ﬁ
4§%6 nzg-fi;; | 0 4g41-21 | 720 M g
tl=<
2u, = 26u, = 0 (230
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(ii) czq [(3“4;]yj*i2q+l)cjzx2-4c(1“:))Cfi2q+2)c +{j(2q+2}zéw

2 X
w) i >
q miq*i e e
- 2= e a1 2ol
) ngd:iFZiq £§AQ+3“211 =0 2GHX - 3:5.7:5#(4Qf3} _Zglg_mg:_
= et -
B (2311)

The general casge: (i) 2Gu,, is 2 mltiple of x*q
a ple o EQE?Z§“3

5

e g Rt il
e e WA

(i1) 2Gu, is a multiple of x2q+l
n+4q+5

T s ]

-

The formulae with the desired conditions are:

(ia) oK 29 [(3*-40)6 izk“"l)dfq}xz-sul_a)ff i‘?k”l)d (2‘3""1)0

x 2

wio(1-9) 0 (B (asl) o (20) (2q+1)22]

% X 2 . X - |
k=1
(:* m{2k+l’QQ/Zq+1 I 2 ]
=/ “iiadals (x ¥
=0 g ' 1-21
o TR L el
g=1 k
:;“{;f” 2k.1,23/2q:1425 T 25 1
= k-l- 1"" -r "'"'A..l \.f
5 o —Hihal=2, 0 ticraqrl-2geat
iy hq (1=2j=21 i =
_Z"EZGHX " = Do ls ﬂa(quﬂ }(Aq*’l)-t-(Zl—k+4q+1)xzqcm{+2q+}-,
R4kféq+3
2Gu, = 20u, = O; = : __(241a)
(ib) o 2q 1‘[ (21+2) | (2k) (2941
ib) e (3-43) 3 y X))o (W o (2l

adalla &5 (2k+1) (2q+1} (2k iy . (2 +1)
Le( 3) 5 dx Cg+6{z i Cfxq 32

il

k =1 k
'j;*-cfzkfz y2alkad : 3 < 2k+2 2i/2a:142) |,
=5 4}(—} Aq-rz")l .Zj ! u; / 4k+4q+3”2j“ﬁi j
120 Ak Gl 4k+4q+3“°i j=0 10 néﬂ
2 gy 32 =21

*ﬁ;&%ﬂx 8 365.00 (4@"'1] (4—‘]4;-1) o5 (4-1{-1—4(11-3) —51'{':47'_'5‘_—" 7
0uy = 26u, = O . (24ib)

: -_5 41{+ Aq+3“2jﬂ214

)
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(11) The formula for combinations of nuclei corresponding to 2Guy

é?.q-t']_ |
R4k +4q+5

by replacing 29 by 2941, except for the poWar of e, 2Gu, would then

being a multiple of could be deduced from formilae (ia)

be the negative of that given in case (ia), Similarly, the formula

for combinations of nuclei corresponding to 2Gu, being a multiple
o5 %= +1
R‘“‘* Aq+’7

could be deduced from formula (ib) by replacing

29 by 2g4l, except for the power of e, 26u,, would then be the negative
of that in (ib)

'Otger Cases

The formulae for combinations of nuelei 2z = 0 20uy = a

multiple of “Zﬁ%éﬁ"?”“ are found from those of group B by replacing
R %

X by y whenever x appears in the formulae, The diseussion treating

mixed variables in the numerator of the value of the x=-displacemeht

holds here too,

2o GROUP C: DERTVATION OF FORMULAE FOR COMBINATIONS OF NUCLEI

CORRESPONDING TO DIFFERENT TYPES OF ONE=-TERM Y-DISPLACEMENT

AND ZERO=DISPLACEMENTS IN X = AND 7 DIRECTIONS AT THE

BOUNDARY Z = O,

The formulae for combinations of nuclei of strain correspon=
ding to 2Guy = one term of different forms and Buy = 26u, = 0 at
2 = 0 can be deduced easily from formulae for group E.I Replacing
x (capital, subscript and variable) by y (capital, subseript and

variable) whenever x appear in chapter IV under the heading group B,

1{he formlae follow immediately,
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3. DIRECT APPLICATION OF THE FORMULAE IN THE SOLUTION OF FIROT

BOUNDARY HALF~SPACE PROBLEMS IN NUCLEI OF STRAIN

We find < - the right combinations of nuclei of strain that
solve problems of different types of nuclei applied at (0,0,e} to
produce zero displacements at the boundary z = O.

1, (a) Double force in z=direction

We start with the combination szzl - cfzzz. This produces

at z = 0, by aid of equation (9);

2Gux - ZGIIV = 0,

603
R3 RB—

*

26u, = 2(1=i)

L]

To annull the terms in 26u,, formulae (13i) and (13ii) are

usede They give that:

O
26 - wlf )] 2C 2 - = ()5
N, - %u = (3=4 ) wa Gu, = 2Gu, z O3
NO e :ZG'LI - (3#_&_:‘) ) 222_ n " s
5 220 r5

The combination of nuclei with the desired conditions is:

5,8, = 9.2, éﬁ__l{ 3] | = [N{;}

wnere
N‘;: d,%, = C, =d G,
and o [dzz S 'dz =
o= 2 z 2 302 T2 202] % [%EZZ = 02 = zcél

Some of the nuclei have been written twice. Therefore, the

final combination is:

0,21+ 552§ S g0 40=2)) ¢ . 83e 4 g, - Lcigz - cS
2173225 ! f G- 273255 S 3-4:», 370 wp
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1. (b) Double Force in x-direction

Starting with d Xl - Xg’ equation (7) gives at z = 0 ¢
x

20u, = ?,Gruy « 03

To annul’ the final term, formula (15ii) gives when k « O that:

]

2 O 2
¢ csz & 0d 0 el = =" 00y w - 228 (3*#0}, 2Gu
X2 x 2 z RS X

2(}'!.1 b 0 @
3 2z=0 y

&

To annull the initial term, formula (13ii) gives when k = O that:

N . s » £ (3 2Gu, 2 2Gu, = O .
Fyly = Cy = €0y — 5> M, o 33(3 40), u, g 200y

Therefore ,the combination of nuclei with the desired conditions iss

2 2 2

. 34 3-4> L3
26 2 2
G Xy = dxxz el [d Zy = ¢d 02}

: I (_g) Double Force in y-direction

The solution is the same as (b), after replacing x subseripts
and capitals by y subseripts and capitals respectively,

2. (a) Double force in z-direction with moment about y=~axis,

We start with dle—;-dng. By equation (9), this combination
gi?es at z = Oe

26u, = Gu, = 03

J

2
2, = ={3-4) 2% - XS
5 v
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- 50 w

To annul the initial term,

(§
O

: o x
O'XZZ - f,-cj"x(}2 == 26u, = - 1;-3- y 26u, = ?.G‘lly

To annul the final term, formula (14ii) gives when k = O

(1]
5
=
i
O

| Xe
Jpylp = Fxls - ¢ J,.0y =0 2Gu, = lig y 20m,

The combination with desired conditions is

- - : - [ - “ ool -
6,21 + S B, - 2(3 40)[0’3{22 ch02J+20 ta*zxzz 0, 0y = © zxcg

After simplification, the final required combination is :
S By - (5-'-89);1’]{32 = 4e(1-29) I 0, +2e( I _7,-ed, C)).

2, (b'Double force in x=direction with moment about z~axis

CﬁyXl -<§Yx2 produces at z = O ¢

20u, = O

i
-

2(‘111.‘}r -

206u,, é%%g .

The combinatiop cfxy[zz - ¢Cs 5;5%2Guz - ﬁ%ﬂ (3=42) 2Gux = QGny - 0.
8

The combination of nuelei with desired conditions is:

& X B el | TP u g -
Y1~ y's 3-140[ et "302}

Similarly, many problems of the same type can be solved

very easily without depending on guessworks:,
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