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AN ABSTRACT OF THE THESIS OF

Jean Wadih Lahoud for Master of Engineering
Major: Mechanical Engineering

Title: RGB-D Correction and Completion and its Application to SLAM in Feature-poor
Planar Environments

This thesis focuses on using an RGB-D sensor (Microsoft Kinect) for localiza-
tion and mapping in an indoor planar environment. Such environments need special treat-
ment since commonly used algorithms such as feature tracking or Iterative Closest Point
(ICP) fail due to lack of visual features and 3D variations within the range of the Kinect.
The idea is to make use of the in-range depth data, the 2D appearance data provided by
the Kinect, and prior knowledge on the environment (planar) to correct, complete, and
extend the 3D information beyond the range of the Kinect sensor. The sensor noise is
used to robustly and adaptively fit planes through data points and use a properly designed
Markov Random Field (MRF) to label pixels that are consistent with the scene, both in
2D and 3D. As such, depth is inferred at pixels with unknown depth values. After depth
correction and extension, an adaptive and robust SLAM method is presented. This novel
method uses the new depth data to find the transformation that best registers two consec-
utive frames. Both feature-point and plane matches are used to improve registration. We
evaluate our method on two datasets and show its advantages over other RGB-D SLAM
methods.
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CHAPTER I

INTRODUCTION

Using RGB-D cameras such as the Microsoft Kinect to build dense 3D maps of

indoor environments is of great importance in various applications such as robot

navigation. This process is commonly referred to as RGB-D SLAM (Simultaneous

Localization and Mapping) and has been studied in various fields, including robotics and

computer vision. Using these sensors is appealing as they are relatively cheap,

accessible, and well supported by manufacturers and developers. The main advantage of

these devices is in their ability to capture 3D data directly without needing to infer 3D

shape from 2D appearance, which in general is not trivial.

RGB-D SLAM algorithms usually start by extracting visual features from a

frame and then match them to features in other frames. These matched points along with

their depth information are then used to track the motion of the sensor. These algorithms

tend to fail in environments that lack enough visual features or when the detected

features lack depth information due to sensor limitations. Such limitations stem from

range limits and inaccuracies due to projections on IR-absorbing or reflective surfaces.

Moreover, SLAM algorithms that rely solely on depth information, by performing ICP

on the data, also fail in environments that lack 3D geometric variations. This mainly

happens in hallways and corridors similar to the ones shown in Fig. 1. In such cases,

alternative techniques should be used to perform SLAM.

In this thesis, a novel RGB-D SLAM method is presented for a typical indoor

environment (piecewise planar), where known depth data along with 2D appearance

information are used to infer additional depth information and plane segments. This

thesis studies how reliable depth values can be used to correct unreliable depth values,

when a prior model is assumed on the 3D scene, and how to complete (or extend) the
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depth values beyond the raw measurements of the sensor (i.e., infer depth at pixels with

unknown depth values). Piecewise planar environments are considered, since many

indoor scenes with man-made objects can be modeled as such. The proposed framework

uses the RGB-D sensor’s noise profile to adaptively and robustly fit plane segments (e.g.

floor and ceiling) and iteratively complete the depth map, when possible. Depth

completion is formulated as a discrete labeling problem (Markov Random Field) with

hard constraints and solved efficiently using graph cuts. To regularize this problem, 3D

and appearance cues are exploited for encouraging pixels to take on depth values that

will be compatible in 3D to the planar assumption. The new depth information can then

be used for better motion estimation. Since benchmark RGB-D SLAM methods treat the

whole depth data equally and do not exploit all possible image features, a modified

method is proposed for a more robust motion estimation. The proposed approach

comprises a two-step RGB-D SLAM method. It first exploits all features with depth

information to find a first estimate of motion. It then uses the feature matches to find

matching planes and perform an appearance and depth consistent motion estimation.

Figure 1: Examples of areas in which regular RGB-D SLAM methods fail.

Contributions: They are four fold.

• Unlike other depth enhancement methods, this thesis addresses the problem of

correction and completion of unreliable and unknown depth values in a single

RGB-D image pair. To the best of my knowledge, this is the first work that makes
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use of local and global priors on the overall 3D scene to enable 3D aware depth

prediction and correction. Here, the global prior on the scene is that it is a

piecewise planar environment.

• Instead of discarding Kinect unreliable depth information, its noisy (probabilistic)

structure is used to perform adaptive depth smoothing and adaptive robust plane

fitting. The depth correction/completion process is modeled as a discrete MRF

(labeling problem) that can be efficiently solved using iterative interactive graph

cuts. The unary and binary terms of the MRF go beyond traditional definitions to

stress appearance and 3D cues that encourage a 3D structure compatible with the

planar assumption.

• To evaluate the proposed approach and validate the importance of depth correction

and completion in piecewise planar environments, a challenging, large-scale

ground truth dataset is compiled. Also, the merit of the solution is illustrated in

two real-world applications: RGB-D SLAM and depth upsampling.

• Instead of having all depth points contribute equally for the final transformation of

the RGB-D SLAM technique, weights are introduced to the added depth points

according to their MRF scores. MRF scores signify the accuracy of the depth

points added, among which the more accurate is chosen to have a higher

contribution for the final motion estimation.

Thesis Outline: Chapter II presents a background review on the concepts needed for

this thesis. The camera model is first introduced as well as camera calibration. A review

on the sensor used in this thesis (Kinect) is also presented with the concept of structured

lighting that it utilizes. Methods for motion estimation, such as the ICP algorithm and

feature-based SLAM, are then introduced along with their limitations.

Chapter III is a literature review survey on work that is related to the subject

considered. This chapter revises depth enhancement techniques for RGB-D sensors as
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well as current RGB-D SLAM methods.

Chapter IV is focused on the proposed correction and completion method of

depth maps in piecewise planar scenes. The first section deals with the sensor noise and

the use of unreliable depth data. The pre-processing steps are then described, which

include the adaptive depth smoothing and the adapative and robust plane fitting. The

depth completion method is then portrayed as an MRF problem that is aware of the 3D

scene.

Chapter V presents the RGB-D SLAM method that can be used in feature-poor

planar environments. This method uses the enhanced depth frames from chapter IV and

introduces modification to regular RGB-D SLAM methods to improve the results.

Chapter VI includes the experimental results for the proposed method. An

RGB-D dataset is compiled to test the proposed technique, and results upon applying the

technique on a known dataset are also presented. RGB-D SLAM and depth upsampling

results are also shown.

Finally, chapter VII concludes the thesis. Future work is also suggested , which

include ideas that can be implemented in the future.

4



CHAPTER II

BACKGROUND

This chapter provides information on the basic principles that were utilized in

this thesis and some of the challenges faced for solving the problem addressed.

A. Camera Model

Images are 2D projections of real world scene. A mathematical model is

necessary in order to establish a mathematical relationship between the coordinates of a

3D point and its projection onto the image plane. Camera models include:

• Pinhole camera model

• Orthographic projection

• Scaled orthographic projection

• Paraperspective projection

• Perspective projection

We here restrict our study to the pinhole camera model and the perspective

projection which were used in this thesis. The reader may refer to [19] for a detailed

study on camera models.

Pinhole Camera Model This model describes the projection of 3D point onto an ideal

pinhole camera, which does not include any lens. Fig. 2 shows how points from a 3D

object are projected onto the image plane of a pinhole camera.

5



Figure 2: Pinhole Camera Model

Given a 3D point P = (X ,Y,Z)T which projects to a 2D point p = (x,y)T , we define an

image frame and a world frame as shown in Fig. 3.

Figure 3: Pinhole Camera Model Reference Frame

By Thales rule, we have
X
Z
=

x
f

and
Y
Z
=

y
f

or

x = f
X
Z

and y = f
Y
Z
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Perspective Projection This is a more complex representation of a camera model

which better describes a real camera. Since camera sensor’s pixels are not exactly

square, focal lengths along x and y can be scaled, yielding

x = fx
X
Z

and y = fy
Y
Z

Figure 4: Perspective Projection

The image center or principal point c may not be at the origin, therefore

x = fx
X
Z
+ cx and y = fy

Y
Z
+ cy

where cx and cy are the location of c in the image plane. Moreover, cameras may have

frames that are not exactly rectangular. In this case,

x = fx
X
Z
− fx cotθ

Y
z
+ cx and y =

fy

sinθ

Y
Z
+ cy

where θ is the skew angle between the x-axis and the y-axis. This from can be written in

matrix from as

x̃ =
1
Z

KX
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where

K =


fx − fx cotθ cx

0
fy

sinθ
cy

0 0 1


and x̃ = [x,y,1]T are the homogeneous coordinates. K is the intrinsic parameter matrix

which can be written in a simpler form using the skew parameter s

K =


fx s cx

0 fy cy

0 0 1



Since the camera frame may not be aligned with the world frame, a rigid transformation

should be defined that relates the coordinates of a 3D point in the camera frame to its

coordinates in the world frame. The transformation is defined as follows:

CX = C
W RW X+C

W T

The rotation and translation matrices represent the extrinsic camera parameters.

B. Camera Calibration

Camera calibration refers to the process of finding the intrinsic and extrinsic

parameters of a camera. During calibration, a set of points with known positions (such as

a checkerboard edges) is imaged in a fixed world coordinate system. The calibration

process is an optimization problem that minimizes the difference between the observed

and the theoretical location of the points as predicted by the perspective projection

equations. Calibration techniques can be found in [22, 40, 43]. A Matlab toolbox for

camera calibration can be found in [7].
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C. Structured Lighting

The general principle of structured light is to project a known pattern onto a

scene and infer depth from the deformation of that pattern. Structured lighting is closely

related to stereo vision, as both are based on the fact that if two cameras observe the

same scene point then its position can be retrieved by intersecting the rays corresponding

to the projection on each image. This process is called triangulation. Passive techniques,

such as stereo vision, face problems in matching points between two images for them to

recover the 3D information. For this reason, active stereo techniques have been

introduced, where one of the cameras is replaced by a calibrated and well defined light

source that mark the scene with some known pattern [38].

Figure 5: An example of pattern projection for 3D reconstruction using structured
lighting

One of the early structured lighting techniques used a laser to direct a beam

which is known to lie within a plane. The beam’s position in the image is then detected.

For every beam point, a ray emerging from the camera is intersected with the plane of

the laser, and the intersection represents the points position in 3D. The process is shown

in Fig. 6.

Figure 6: Laser triangulation
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Early techniques which used a single beam resulted in only sparse

reconstruction. In order to obtain dense reconstruction, multiple techniques have been

introduced. One technique included moving the object of the light source in order to get

a 3D reconstruction of the whole body. A major drawback for this technique is its

inability to recover the shape of moving objects. Another technique projects multiple

stripes onto the scene in order to improve speed and also recover moving objects. This

requires coding of the stripes for the correspondence problem to be solved without

ambiguity. Many patterns have been proposed for structured light. An implementation of

a set of representative techniques and some comparative results can be found in [35]. All

techniques start by the camera and projection calibration, then establish the

correspondences between the image and the projected stripes, then reconstruct the 3D

coordinates of the points in the scene using triangulation. The difference between all the

techniques is in the way each solves the correspondence problem.

3D Reconstruction using the principle of triangulation Consider a 3D imaging

system containing a camera sensor and a projector having a fixed relative position. Two

different sets of parameters, one for the camera and the other for the projector, have to be

computed by calibration. Projector calibration can be done using the Bouguet toolbox

[7]. Note that 3D reconstruction from uncalibrated images is also possible but the

problem is more challenging. Refer to [18] for a technique that uses uncalibrated images

for reconstruction. Moreover, correspondences between projected points and points

viewed by the camera should be established. Once the calibration parameters and the

correspondences are known, one can use the principle of triangulation to reconstruct the

3D scene. This principle is outlined next.

Consider a point P1 being projected as shown in Fig. 7. The projection of that

point into the 3D space is then being projected onto the camera at point P2. Since point

correspondences have been already established, the coordinates of point P2 are known.

The 3D coordinates of the object point where the projecting point has been reflected on

10



Figure 7: The triangulation principle

the image sensor Pw is to be computed. We limit our study to linear systems i.e, the

calibration matrices do not include the lens distortion term. For the projector, we have

w1


xP1

yP1

1

= K1



xPw

yPw

zPw

1


and for the camera, we have

w2


xP2

yP2

1

= K2



xPw

yPw

zPw

1


where K1 and K2 are the calibration matrices containing the intrinsic and extrinsic

parameters for the projector and camera respectively. The values of w1 and w2 are first

replaced using the third entry of each set of equations. Re-arranging to solve for xPw , yPw ,
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and zPw , we obtain a system of 4 equations with 3 unknowns that can be solved using

least square minimization. Note the direct relation between the coordinates of the 3D

point and those of the 2D points. Any error in the correspondences between the points in

the pattern and those projected on the camera plane leads to error in the 3D

reconstruction.

D. Kinect Sensor

RGB-D cameras, among which we choose the Microsoft Kinect, capture both

color and depth information. The Kinect sensor, shown in Fig. 8, is based on the

technology developed by PrimeSense [1] and uses structured lighting techniques to

calculate depth. This is done by projecting a speckle pattern via an infrared projector and

then capturing it via an infrared receiver. The pattern is shown in Fig. 9. In order to

match the dots (speckles), window search and region growing are performed. Since the

pattern is unique, corresponding points in the emitted and received pattern can be

detected, and depth measurement can be done via triangulation. Moreover, the Kinect

combines with structured light depth from focus. The depth from focus principle is

based on the idea that objects become more blurry further away. This means that the size

of the speckle dot increases with distance. The Kinect also uses an astigmatic lens with

different focal length in the x and y direction so that projected circles become ellipses

whose orientations depend on depth.

Figure 8: The Kinect Sensor

The advantages of using IR patterns include the ability to operate in low light

conditions, on textureless objects, and on repeated scene textures. Nevertheless, IR

12



Figure 9: Kinect Pattern

projection does not work outside and uses more energy than stereo image capturing.

Moreover, the range limitations arise due to the capturing sensor. Fig. 10 shows why

close objects cannot be detected by the Kinect. As can be seen, light becomes too blurry

at close distances which renders the speckle detection impossible.

Figure 10: Kinect pattern projection on close objects

The depth frame captured by the Kinect is of size 640x480 points that

correspond to a 640x480 image captured via a regular camera. The sensor thus provides

a dense depth point cloud at 30 frames per second. The high resolution and frame rate

come at a cost; the Kinect has a limited range (up to 4-5 meters), the depth estimate is

not very accurate (more than 1% error), and the field of view is much less than that of

specialized laser range finders (60° for the Kinect as opposed to 180° or even 360° for

lasers). Fig. 11 shows RGB and depth frames obtained from the RGB-D camera. These

13



represent the sensor data to be used throughout the whole project.

Figure 11: (Left) Color image captured by the Kinect. (Right) Depth image obtained.
White and black pixels do not have depth information due to distance or occlusion.

E. Iterative Closest Point Algorithm (ICP)

The iterative Closest Point algorithm is used to register two point clouds by

minimizing the difference between the two sets of points. Applications of ICP include

reconstruction of surfaces from multiple scan and robot localization. The basic ICP

algorithm is described in [6, 12, 42, 2]. The process consists of a source point that needs

to be transformed to match a reference or target point cloud. The algorithm iteratively

revises the transformation (translation and rotation) in order to minimize the distance

between the two clouds. The basic outline of the ICP algorithm is as follows:

• For each point in the source point cloud, find the corresponding closest point in the

other set

• Calculate the transformation that minimizes the error in distances between the

matched points

• Apply the transformation found in the previous set to the source
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• Iterate until stopping criteria is met (usually when error drops below a threshold,

or the error variation between the iterations is minimal).

ICP have been proven to converge monotonically to a local minimum with

respect to the mean squared error distance objective function [6]. Closest point

association has two variants: point-to-point and point-to-plane. The latter usually have a

better performance [34]. Variants of the ICP algorithm have differences in:

• Selecting the sample points from each of the point sets

• Matching the points in the source point cloud to the points in the reference point

cloud (point-to-point or point-to-plane)

• Applying weights to the correspondences according to a given criteria

• Rejecting a certain number of the matched points (especially in cases that involve

motion)

• Assigning an error metric to the current transform

• Minimizing the error metric with respect to the transformation

Fig. 12 shows the point to plane distance that should be minimized using the

ICP. si represents the coordinates of the source point while d j represents the coordinates

of the destination point, and ni is the unit normal to the destination surface. The

following two sets are then given: S = {si}Ns
i=1 and D = {d j}Nd

j=1. Note that every element

si or di is a 3x1 array that contains the coordinates of a certain point.

The objective function that we need to minimize is then

∑
i

(
(M.si−di).ni

)2
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Figure 12: Point-to-plane distance - ICP

where M is the 4x4 transformation matrix representing the rotation and translation. The

above function can also be written as a function of the rotation and translation as

∑
i

(
(R.si + t−di).ni

)2

where R is a 3x3 rotation matrix representing a rotation about any axis in 3D space and t

is a 3x1 translation matrix representing any translation in 3D. Note that the alternative to

the above equation is the point to point distance where the normal component is omitted

i.e, the distance is stated as

∑
i
(M.si−di)

2

ICP in Corridors This paragraph presents an example for the ICP algorithm usage as

well as one of its limitations. Consider a robot moving in a corridor while scanning the

area. For simplicity, the problem is considered in 2D (as in the case of 2D laser

scanning), but can be extended to 3D with similar analysis. Two cases are considered: In

the first case, the environment involves corners, while in the second, the scan does not

contain any corner. The first case is represented in Fig. 13 where a robot moves between

positions 1 and 2. In the first position, the robot scans the area for depth points, which

are represented in red, and in the second, the depth points are represented in green. The
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ICP process starts with the two point sets shown in Fig. 14 and matches the closest

points, then iterate to minimize the distances between the two sets. Clearly, the

minimum distance is that represented at the right of Fig. 14.

Figure 13: (left to right) The area scanned shown in black, depth captured by robot at
position 1, and depth captured by robot at position 2.

Figure 14: ICP solution for robot motion estimation in corridor with corners.

Now consider the case where the depth points do not include any corners as in

Fig. 15. This occurs mainly due to the limitation in the sensor range, where the other end

of the area lies beyond that range. The scans from the robot at the two positions are also

shown in Fig. 15. Now, inputting the two sets into the ICP algorithm starts as in Fig. 16.

Since the situation involves motion and the scanned areas are not identical, a portion of

the point matches between the two sets has to be dropped. Nevertheless, the

minimization problem has multiple solutions as shown in Fig. 16. The ICP process

succeeded in finding the rotation of the robot but could not retrieve the translation.
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Figure 15: (left to right) The area scanned shown in black, depth captured by robot at
position 1, and depth captured by robot at position 2.

Figure 16: ICP solution for robot motion estimation in corridor without corners.

F. Image Feature Detection and Matching

A feature is an "interesting" part of an image for description. Image features

can be isolated points, continuous curves, or connected regions. A good feature should

be consistent over several images of the same scene, invariant to transformations, and

insensitive to noise. Image features can be edges, corners/interest points, blobs/regions

of interest, or ridges. Common applications of features are image alignment (e.g.,

panoramic mosaics), object recognition, 3D reconstrution, and motion tracking. Image

feature detection and matching is usually the starting point of many computer vision

algorithms. Many techniques have been developed for feature description, such as Canny

edge detector [11], Harris corners [21], Shi and Tomasi [36], SURF [4], and SIFT [31].

Fig. 17 shows an example of SIFT feature matching between two hallway
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images.

Figure 17: SIFT feature matching between two hallway images.

G. Simultaneous Localization and Mapping (SLAM)

The term SLAM is as stated an acronym for Simultaneous Localization and

Mapping. It was originally introduced by Durrant-Whyte and Leonard [29] as SMAL but

was later changed to SLAM. SLAM is a technique used by robots or autonomous

vehicles to build up a map of the surrounding environment or to update a given map,

while at the same time locating itself in the map. SLAM cam be sought as a chicken and

egg problem: An accurate map is required for an accurate pose estimation whilst at the

same time the motion estimation is needed to build the map. SLAM uses statistical

techniques such as Kalman filters, particle filters (also known as the Monte Carlo

methods) and scan matching of range data. These techniques provide an estimation of

the posterior probability function for the both the robot pose and the map parameters.

Apart from regular SLAM methods, RGB-D SLAM refers to the technique used for

registering point clouds from RGB-D sensors such as the Kinect or stereo cameras.

Registration of point clouds is equivalent to estimating the motion and building the map

represented by these point clouds.

Common RGB-D SLAM methods start by feature detection and matching

between frames. Feature matches whose depth data is known are then used for motion
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estimation. Failure of such algorithms happen when matches are insufficient or

erroneous. For example, consider the hallway images in Fig. 17. Pixels whose depth

data is known are shown in Fig. 18. Although one can easily detect that the robot moved

in the original images, the motion is not detectable in these images, which makes motion

estimation a tedious problem. Applying SIFT detection and matching to these images

results in erroneous matches as seen in Fig. 19. Two problems are faced: the number of

matches is low, and matches are incorrect due to the repeating tiles on the floor.

Therefore, regular RGB-D SLAM techniques fail in such environments.

Figure 18: Kinect reliable depth data: Black pixels correspond to areas with unknown
depth.

Figure 19: SIFT matches for pixels with known depth

A survey on related work is shown next.
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CHAPTER III

LITERATURE REVIEW

The problem addressed in this thesis can be divided into two parts: depth

enhancement for depth sensors such as the MS Kinect, and RGB-D SLAM. Related

work usually tackles each problem independently.

A. Depth Enhancement Techniques for RGB-D Sensors

This work addresses the problem of correcting unreliable depth values and

inferring unknown ones in RGB-D data of piecewise planar scenes. In data of this kind,

large groups of contiguous pixels have either unreliable or unknown depth values. The

most related work in the literature that address a similar problem (depth enhancement)

can be categorized as: (1) hole-filling (depth inpainting) methods or (2) depth

upsampling methods.

Methods of category (1) address the problem of inferring the depth of pixels

that are not assigned depth values. Such pixels tend to be projections of parts of surfaces

that are IR absorbing, reflective, or too close to the RGB-D sensor. These pixels are

small in number and tend not to cluster in the same portion of a depth image. Most

hole-filling methods interpolate (or propagate) unknown depths from depths in pixel

neighborhoods. To this end, joint bilateral filtering has been extensively used to fill holes

in depth images, especially due to its relatively small computational burden [27, 10].

Moreover, colorization techniques are also used to fill in unknown depth [30], as done in

compiling the popular NYUv2 dataset [37]. In [14], the problem is formulated as a

continuous Markov Random Field (MRF), where the latent variables are the depth values

of all pixels, the unary (data) term is dependent on the known depth values, and the
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binary term encourages similar looking pixels in a local neighborhood to have similar

depth values. In [13], a foreground depth model is assumed to be available and depth

layers are inferred using a discrete MRF. Many other methods of this category exist (e.g.,

[41]); however, they all suffer from the same drawback that makes them infeasible and

inappropriate for the depth correction and completion problem in this thesis. Hole-filling

(depth inpainting) methods assume that there is a strong correlation between depth

discontinuities and image edges and that pixels with similar appearance have similar 3D

geometry. In general, this assumption is a useful cue for interpolation but it does not

always hold, especially in cases where large portions of the depth image need to be

filled, which is the scope of this thesis.

Methods of category (2) address the problem of generating a high resolution

depth image from a low-resolution depth image and (usually) a registered high resolution

RGB image. The low-resolution depth image is usually assumed to be complete and

comprising of reliable depth values. Since a plethora of such methods abound in the

literature, we mention a representative few here. In fact, joint bilateral filtering and MRF

labeling are common techniques employed by methods of this category [33, 27, 14].

Similar to the problem of hole-filling, local assumptions of depth smoothness (except at

color discontinuity) are made to propagate depth values from the low resolution image to

a local neighborhood of unknown values in the higher resolution image. These

assumptions break down in the case of large contiguous holes, which makes upsampling

methods unsuitable for the problem addressed in this thesis.

All previous methods apply local priors to depth values in RGB-D data, but they

tend not to take into account the global 3D structure of the scene for unreliable depth

correction and unknown depth completion. These methods do not ensure that the

processed depth maps they produce lead to a 3D point cloud that has a compatible 3D

structure (i.e., its structure does not lead to any 3D contradictions or impossibilities).

Assuming a piecewise planar scene allows us to regularize the completion and correction
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process globally as well as locally. This regularization disallows certain depth

assignments that lead to a 3D structure that is not compatible or does not respect the

planar assumption.

B. Current RGB-D SLAM Methods

The problem of RGB-D SLAM and building a 3D map has been tackled

extensively in the literature. We here restrict our attention to systems that use RGB-D

cameras [24, 32, 16, 25, 3]. We differentiate three types of techniques. Methods of the

first type only use depth information to estimate motion while the color information is

only used for visualization purposes. In the second type of methods, only color

information (RGB without the depth) is used for motion prediction. This is usually

referred to the in the literature as monocular SLAM. The depth information is then used

to build a dense 3D reconstruction of the environment. The third type combines both

depth and color information to predict motion and build the map.

When depth data is used for frame alignment, the ICP algorithm [6] and its

many variants are commonly used. Variants of the ICP algorithm that minimize point to

plane distances instead of point to point distances have shown an improvement in frame

registration. This version of ICP is used to register two RGB-D frames in [32], where the

ICP algorithm is used to track the sensor motion and then accumulate observations in the

environment model. Localization is refined after several observations to ensure

consistency. The limitation of using the ICP algorithm for tracking lies in the need for

3D geometric gradients, which are necessary for successful registration. Therefore,

earlier RGB-D SLAM methods work well in structured rooms with corners, edges, and

other 3D features but fail when scanning a straight wall even if visual features exist.

Tracking and mapping using RGB-D cameras can be split into two separate

problems. Tracking can be done using the RGB data only, similar to using a monocular
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camera, while mapping is performed using the depth data. Motion detection between

two RGB frames relies on tracking features from frame to frame, so the process is

known to be feature-based. Popularly used features include SIFT [31], SURF [4], and

FAST descriptors based on random trees [9]. When features are tracked, projective

geometry is used to define spatial information for the features. Alignment is then done

by minimizing a matching cost between matched points. This is done after removing

outliers using RANSAC [17]. Such methods fail in environments that lack a sufficient

number of visual features.

Using either color (features) or depth (appearance) from RGB-D cameras

forgoes valuable data that can be useful for motion estimation. Performing monocular

SLAM while using RGB-D cameras does not take advantage of the depth data;

monocular SLAM re-estimates depth, up to a scale, for a certain number of feature

points and registers these points only. Thus, it does not provide a motion estimation that

best registers all the depth points of two frames. Therefore, recent methods have

proposed to jointly optimize visual features and ICP. Henry et al. [24] proposed a full 3D

mapping system that combines visual and depth information into a single joint

optimization problem. This method minimizes an error function containing both the

distance between tracked visual features and point-to-plane error of the ICP algorithm.

Furthermore, other SLAM approaches [15, 3, 25] rely on feature matching and 3D cues,

but do not attempt to correct/extend depth in order to incorporate more feature points

into the motion estimation process. In this thesis, we see merit in combining depth

correction/extension with the traditional problem of RGB-D SLAM.
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CHAPTER IV

3D AWARE CORRECTION AND COMPLETION OF

DEPTH MAPS IN PEICEWISE PLANAR SCENES

This section describes the depth enhancement technique needed for the

proposed RGB-D SLAM method. Fig. 20 shows an overview of the overall system.

In this work, two images consecutively generated by an RGB-D sensor (MS

Kinect) are taken as input, where both RGB and depth sensors are assumed to be

calibrated, so their intrinsic and extrinsic parameters are estimated beforehand. Denote

the RGB and depth images as Ic ∈ RM×N and Id ∈ RM×N respectively. In the rest of the

thesis, we denote Id as the raw depth image, since it contains the unprocessed depth

values that are directly measured by the sensor. Note that we do not limit the Kinect

input to the reliable range (4 or 5 meters), but use all data provided by the Kinect sensor

as raw input.

Refer to Fig. 21 for an example of a sample depth image taken in an indoor

office scene. Clearly, not all the pixels in Id have known depth values. These pixels are

shown in black. They arise due to several reasons, including limitations in the depth

sensor (e.g., IR signal decay with square distance for the Kinect or inability to measure

near objects at depths less than 80cm), IR absorbing or reflective surfaces, etc. In fact,

many methods that process RGB-D image pairs from the Kinect either record images

where the scene is at a maximum reliable distance drel (usually taken to be 3-4.5 meters)

from the sensor or discard all pixels whose raw depth values exceed drel . These pixels

are deemed to have unreliable depth values. Discarding unreliable pixels limits the range

and impedes the generality of these methods. This issue is more significant when general

indoor scenes are considered, e.g. in open areas, office spaces, reasonably sized rooms,
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Figure 20: Overview of the proposed method. The input includes two Kinect frames
with color and depth information. We perform feature matching and check if the number
of features is sufficient. In cases where we have a low number of image features, we
correct and complete the depth data, then perform RGB-D SLAM using the enhanced
data. More features can be added by performing plane matching, which uses the first
motion estimation.

museums, etc. In these cases, much of the scene is at a distance larger than the maximum

reliable depth value drel . We show empirical evidence of this in Fig. 22, where we plot

the average percentage of pixels discarded because they were deemed unreliable

(drel = 4.5 meters) for a typical recording of a walk-through inside an office/lab

environment. Discarding this large number of pixels in each depth image limits any

subsequent processing or learning modules, including RGB-D semantic labeling and

scene understanding methods. Interestingly, many of these unreliable pixels are

projections of 3D scene points belonging to objects (e.g. floor, ceiling, walls, cabinets,

etc.) that have extensions within the reliable range of depth pixels. Conceivably, it is of

significant benefit to study how reliable depth values can be used to judge and even

enhance unreliable depth values, when a particular prior model is assumed on the 3D

scene. In fact, this could also be used to complete (or extend) the depth values beyond

the raw measurements of the sensor (i.e. infer depth at pixels with unknown raw depth

values). This thesis studies this problem for 3D planar scenes and proposes a novel

framework that makes use of appearance and 3D cues from both Ic and Id images to

enhance and complete the raw depth. Planar scenes are valid descriptions of many

indoor scenes containing man-made objects, e.g. building interiors, offices, homes,

museums, etc. This scene prior has been used in the literature in the context of stereo
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vision [20], semantic labelling [28], and scene understanding [26].

Figure 21: (left) Kinect RGB image. (right) Depth image. Black pixels do not have
depth data.

Figure 22: Histogram of the percentage of pixels discarded in a typical office/lab
environment

A. Depth Measurement Noise:

The noise in Kinect depth measurements increases as the distance from the

sensor to the object increases. For this reason, previous studies have omitted depth data

at distances larger than 4 or 5 meters due to their unreliability. In this work, we try to

maximize the number of features for which the depth data is available, so we try to make

use of most of the data available from the Kinect. The accuracy of the depth data at all

distances should be studied to assess its usage in any application. We provide empirical

evidence for noise in depth measurements made by a typical Kinect sensor (refer to Fig.
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23). Here, we plot the variance of the measured noise as a function of distance. This is

done by fixing the Kinect as it images a single inclined plane (the floor). Multiple

measurements are then taken for the same scene. Depth values at the same pixel in the

depth image are then compared. Note that the noise is in the axial direction and noise at

boundaries is not taken into account. A second degree ploynomial is fitted through the

data, and the resulting axial noise can be modeled as

σd(z) = 2.481e−6z2−0.0025z+1.228

Figure 23: Plot of the standard deviation of the depth measurement as a function of
distance to the sensor.

If each raw depth value at pixel p is considered a random variable, then this plot

describes and quantifies its randomness as the distance to the sensor varies. In this work,

we use a simple Gaussian error model to describe a depth value at p:

d(p)∼N (Id(p),σd(Id(p))). Equivalently, we model the depth random variable with a

Gaussian distribution centered at the sensor’s raw measurement and with a standard

deviation that varies quadratically with depth. While Fig. 23 provides the value of

σd(Id(p))) for discrete values of depth, interpolation can be used to determine the error

variance at arbitrary depths. Clearly, this error model oversimplifies the underlying
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imaging process, which is significantly affected by sensor limitations (e.g. the

degradation of the IR signal with distance) and the scene itself (e.g. the orientation of a

scene with respect to the image plane). However, we will see in the next section that this

model lends itself useful in adaptively and robustly pre-processing the raw depth values.

B. Pre-Processing

Given a calibrated RGB-D sensor (Kinect), we aim to analyze its output data by

looking at the whole range of depth values available. Applications that use devices like

the Kinect disregard data outside a given range, due to unreliable nature of the sensor at

these depths. To better understand the nature of these errors, we imaged a plane at 16

different depths using a Kinect, with 20 images taking at every location, totaling 320

frames. The distance of the plane to the sensor was varied from 1.2 meters to 10.2 meters

in steps of 0.6 meters. Since the sensor is calibrated, we can estimate the 3D points of

every depth image; we use these points to fit a plane and compute residual errors defined

as the euclidean distance from each point to the best fit plane obtained. We want to look

at the variation in measurement of the sensor as a function of depth, to do so, we

compute a standard deviation of mean error at every plane location, and observe how this

value changes as depth increases. Fig. 24 plots the change of standard deviation versus

depth, it also shows a plot of a quadratic fit that best represents these values as a function

of depth.

To better understand the effect of depth variations native to the sensor, Fig. 25

shows a depth image along with its corresponding 3D point cloud reconstruction. It is

important to notice that, although it is not quite visible in the depth frame, the 3D point

cloud representation of the scene is significantly distorted, particularly as depth

increases. For example, note how the wall and ceiling points loose their natural shape.

This is a direct consequence of the unreliable measurements made by the sensor at far
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Figure 24: (left) Fitting error from depth data at different distances from sensor. Points
of equal color are mean errors from different frames at same sensor distance; we notice
the large variation or error as depth increases. (right) Standard deviation of error as a

function of depth.

points.

Figure 25: (left-to-right) RGB image, depth image, and the corresponding 3D view.
Notice the high level of noise as shown in the 3D image.

1. Adaptive Depth Smoothing:

To reduce the effect of these 3D distortions, the projected 3D points are

smoothed using the joint bilateral filter below. This filter makes use of both the depth

image Id and RGB image Ic, as in [13]. We do not use this filtering method (that is

unaware of the underlying 3D scene) to fill in unknown depth values in Id .

Îd(p) =
1
k ∑

q∈Ω

Id(q)F(p,q)G(Id(p),Id(q))H(Ic(p),Ic(q))
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In this filter, the smoothed depth at pixel p is a positive weighted sum of the raw

depth values in the neighborhood Ω around p. Each weight is a product of three

similarity measures between p and its neighbor q: within-image spatial closeness

(defined by F), similarity in raw depth (defined by G), and similarity in appearance

(defined by H). Similar to other methods, we take these three functions to be Gaussian.

Using the previous sensor noise model, we model G(Id(p),Id(q)) as a Gaussian function

N (Id(p)− Id(q),σd(Id(p))), where the standard deviation is depth dependent and

obtained from the plot in Fig. 24. The advantage of such an approach is to make the

bilateral filter adaptive to varying depths, which specifically allows for more suitable

smoothing at large depths. Fig. 26 compares results of applying a joint-bilateral filter

with and without depth-adaptive sigma values. In the latter case, we use the same

Gaussian parameters for all pixels at all known depths. Note how the smoothing is less

effective at large depths when the adaptive option is disabled.

Figure 26: The result of the adaptive depth smoothing. The initial frame is shown to the
left and the smoothed one to the right.

2. Adaptive and Robust Plane Fitting:

After depth-adaptive smoothing, we aim to detect and fit 3D planes through the

3D projections of pixels in Îd with known depth. Similar to other methods, we use

RANSAC for robust plane fitting; however, the criterion for a pixel to be an inlier to a

fitted plane model (e.g., having the distance of its 3D projection to the plane be less than
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Figure 27: (Top) A 3D view of a frame before smoothing. Notice the discontinuities in
depth, especially at large distances. (Bottom) The smoothed depth data. As can be seen,
the discontinuities were removed but the final result is not the correct representation of
the 3D world.

a threshold) should incorporate the noise in the sensor’s depth measurements. Here, we

note that we start the RANSAC process at pixels with smoothed depth less than drel

before involving the farther pixels. We model the actual depth d(p) at pixel p

probabilistically as a Gaussian centered around the depth value Îd(p) with a

depth-varying standard deviation σd(Îd(p)). Since the depth camera is calibrated, the 3D

point corresponding to p is computed as

x(p) = d(p)K−1p̃ = d(p)t(p)

where p̃ is p in homogenous coordinates and K is the camera matrix. It is easily shown

that x(p) is a Gaussian random variable (centered around the observed 3D projection

Îd(p)t(p)). Similarly, the distance D(x(p)|(n,n0)) between x(p) and a 3D plane

parameterized by a unit normal n (pointing towards x(p)) and offset n0 also has a

Gaussian distribution. In particular, we have

D(x(p)|(n,n0))∼N (µD,σ
2
D)
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where

µD = Îd(p)nT t(p)+n0

and

σ
2
D = σ

2
d (Îd(p))‖n◦ t(p)‖2

2

and ◦ is the Hadamard product. As expected, the variance of D(x(p)|(n,n0)) increases

with depth and varies with the relative orientation of the plane with the camera plane. By

representing this distance probabilistically, we replace the usual RANSAC inlier

condition D(x(p)|(n,n0))≤ a with p(D(x(p)|(n,n0))≤ a)≥ θ . The latter probability

can be computed straightforwardly using the cdf of a Gaussian. In this work, we take

a = 2cm and θ = 0.8. Also, normals of the observed 3D projections Îd(p)t(p) can be

used to refine the inliers. As a result, using our probabilistic rule allows a plane model

(n,n0) that is fit with 3D projections from reliable pixels (i.e., their depth values are less

than drel) to extend into farther pixels with less reliable depth values. This extension

would not be possible and plane fragmentation would ensue, if the usual RANSAC inlier

condition is used instead. Once the proposed RANSAC fitting method converges to a set

of 3D plane equations and corresponding pixel inliers, we project the 3D projections of

the inliers unto their respective planes and update Îd to reflect this projection. This

point-to-plane projection changes the depth values acquired by the sensor and, in most

cases, corrects their values when a piecewise planar scene is assumed. If a fitted plane

exists such that the vast majority of projected points lie in the halfspace designated by its

normal and the principal angle between its normal and the normal of the image plane is

negative (clockwise), then this fitted plane is designated as the floor. A similar rule

designates the ceiling plane if it exists.
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C. Depth Completion as an MRF

As a result of pre-processing (adaptive smoothing and robust plane fitting), the

raw depth image Id is transformed into Îd and each pixel in Îd with a known depth value

is given a label corresponding to the label of the fitted plane it belongs to. We denote the

resulting label image as L0 ∈ {0,1, . . . , l}M×N , where the 0 label designates pixels of

unknown depth, 1 the floor (if it exists), and 2 the ceiling (if it exists). In this section, we

describe how the initial label image L0 is relabelled through an iterative process that

makes use of appearance and 3D cues from Ic and Îd . We denote the label image at

iteration k as Lk. As we will see, a consequence of this process is the iterative

extension/completion of each plane label and the constriction of the 0 label. In other

words, pixels with unknown depth values (labelled 0) can be assigned a plane label, if

deemed likely from an appearance and 3D reasoning point of view. We formulate the

iterative relabeling process as an iterative interactive graph cuts problem, where regional

(unary) and boundary (binary) terms are exploited to relabel all pixels in the image while

enforcing the labels of pixels that already have plane labels.

1. Determining Background Pixels:

Clearly, not all pixels in Îd are projections of 3D points that belong to the l

fitted planes. Due to sensor limitations and scene structure, other planes might exist in

the 3D scene but they are not imaged at all. To allow pixels not to belong to the l fitted

planes, we construct a background label, denoted as (l +1). Since no depth information

exists for background pixels, we label them according to how their projection rays (3D

rays connecting the pixels to the camera’s optical center) relate to the fitted 3D planes, as

follows. A pixel is given an (l +1) label if (i) it cannot belong to any of the l fitted

planes (i.e., its projection ray does not intersect any of the planes) or if (ii) the

intersection between its projection ray and each plane j is at least dmax far from the
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closest known 3D point of plane j. In our experiments, we take dmax = 1 meter.

Condition (ii) assumes that the farther away a point is from the observed points of all

fitted planes, the more likely it belongs to the background label. Background pixels are

labeled as (l +1) and added to L0. Fig. 28 shows an example of pixels labelled as

background in a sample depth frame after plane fitting.

Figure 28: (Left-to-right) RGB image to be processed, initial labels, and ixels initially
labeled as background.

2. Discriminative Appearance Model:

After determining a set of background pixels, we discriminatively model the

appearance of each label (i.e., pixels corresponding to 3D points belonging to the same

fitted plane). All labelled pixels in the image are represented using a set of low-level

image features that describe a pixel’s color (local color histogram), neighborhood

structure (HOG features), and texture information (LBP features). Using PCA,

dimensionality reduction is performed to maintain 90% variance in the labelled data. A

discriminative appearance model is formed by training a multi-class RBF SVM classifier

on all labelled pixels. This model is a vector scoring function h(z) ∈ Rl+1, where hi(z) is

the SVM score of labelling feature vector z as i, for all i ∈L such that

L = {1, . . . , l +1}.
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3. Vanishing Lines:

Apart from appearance, other cues exist that shed light on the 3D structure of

the scene. A widely used cue is the existence of vanishing line segments. This cue has

been extensively used in scene recognition and understanding from single RGB images,

especially in indoor piecewise planar environments [23]. In an image, vanishing points

are usually extracted through a process of clustering line segments that vanish to the

same point. However, in our case, we can explicitly compute certain vanishing points

without any need for clustering or line detection. In planar scenes, plane segments tend

to be perpendicular to each other, thus, many parallel 3D lines in the scene (belonging to

the same or different planes) tend to be perpendicular to another plane in the scene.

Therefore, we can easily estimate the vanishing point of 3D parallel lines that are

perpendicular to fitted plane i by simply constructing at least two such lines (parallel to

the normal of plane i) and projecting them unto the RGB image Ic. We denote these

vanishing points as V1 = {vi}l
i=1, where vi is the vanishing point of parallel 3D lines that

are perpendicular to plane i. To generate other possible vanishing points, we use a

method similar to [5] to obtain another set of vanishing points V2 that is disjoint from V1.

We maintain a record of the clustered line segments that vanish to points in V1 and V2.

Obviously, the process of extracting line segments and clustering vanishing points in V2

is prone to error, but it provides an additional 3D cue that can be harnessed in the

relabeling process.

4. MRF Formulation

Given the label image L0, we now aim to label all pixels in Îd , especially those

with unknown depth values. We model this labelling problem with a discrete Markov

Random Field (MRF), where L = {1, . . . , l+1} is the set of discrete labels, P is the set

of all pixels, and E is the set of all connections defining local neighborhoods around
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Figure 29: Vanishing lines in a corridor. Segments of the same color vanish at the same
point

each pixel. In our experiments, we consider an 8-connected neighborhood. We seek a

labeling f∗ that minimizes the energy in Eq (1).

E(f) = ∑
p∈P

U(fp|p)+λ ∑
(p,q)∈E

B(p,q) (1)

Here, U(fp|p) defines the unary (or data) term, which quantifies the cost

required to assign pixel p to label fp ∈L . Alone, this term treats pixels in Îd

independently, so a binary (or smoothness) term B(p,q) is added for regularization, with

tradeoff coefficient λ . This term quantifies the cost of assigning neighboring pixels p

and q to different labels, i.e., fp 6= fq. This energy can be minimized efficiently by α−β

expansion iterations of graph cuts [8]. Since some pixels in Îd are already assigned to

fitted planes with non-background labels, we use a version of graph cuts (popularly

known as interactive graph cuts) to guarantee that the labels of these pixels, after

optimization, remain the same. This is sometimes referred to in the literature as
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enforcing hard constraints.

Unary (data) Term: Although the optimization technique (interactive graph cut) is

well-known and has been used for various labelling problems in the past, the quality of

the final labeling is mainly determined by how appropriate and informative the unary and

binary terms are for labelling. In our case, the unary term is inversely proportional to the

likelihood of a pixel belonging to a fitted plane. This term compares the appearance of a

pixel to the discriminative appearance model of each plane and prevents label

assignments that are incompatible in 3D under the piecewise planar assumption. In

general, we set U(i|p) =−hi(z(p)) for each pixel p ∈P and each label i ∈L . This

assumes that points belonging to the same plane in a planar scene look similar, which is

usually a valid assumption. In what follows, we use 3D cues (from both Îd and Îc) to

regularize the labelling further.

To enforce the hard constraints, we follow a similar strategy as in [8], where

U(i|p) = K� 0 for each i ∈L \{l+1} and p such that L0(p) = j 6= i. This large cost K

prevents a pixel that is already labelled in L0 to switch labels. This enforcement is done

for all labels except background because the manner in which we selected background

pixels might have lead to incorrect labels. Moreover, we set U(i|p) = K for any pixel p

whose projection ray does not intersect plane i. Making use of the piecewise planar

assumption, we enforce that all intersections between projection rays and planes occur

above the floor plane (if it exists) and below the ceiling plane (if it exists). This prohibits

label assignments that lead to 3D points, which tunnel into the floor or pierce the ceiling.

For these pixels, we set U(1|p) = K and/or U(2|p) = K. Lastly, the unary term should

not lead to label assignments that are contradictory in 3D. As such, we set U(i|p) = K

for any pixel p, which belongs to a line segment that vanishes to vi ∈ V1. This

discourages p from belonging to a fitted plane, if it lies on a line perpendicular to that

plane. In this case, the points belonging to the intersection of two perpendicular planes

will be assigned to only one of the two planes and not both.
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Binary (smoothness) Term: To allow for interactions between neighboring pixels in

the labelling process, we define a binary term B(p,q), which encourages label

smoothness among pixel neighbors that have similar appearance and/or that are likely to

belong to the same plane in 3D. In general, we set B(p,q) = exp(−∆c(p,q)Σ−1
c ∆c(p,q)),

where ∆c(p,q) = Ic(p)− Ic(q). The covariance matrix Σc is estimated from Ic.

Moreover, we make use of vanishing points to discourage pixels lying on the same

vanishing line segment to belong to different planes. So, we set B(p,q) = K when pixels

p and q belong to the same line segment that vanishes to a point in V1∪V2. In our

experiments and as suggested in [8], we set K = 1+maxp∈P ∑q:(p,q)∈E B(p,q).

5. Iterative Solution:

Once all unary and binary terms are computed for all pixels and labels, we solve

the labeling problem using graph cuts [8]. Upon convergence, we use the final labeling

f∗ to determine the depth value of each pixel with label f∗p ∈ {1, . . . , l}. This is done by

intersecting the projection ray of p with fitted plane f∗p. The depth of a pixel labeled as

background (i.e., f∗p = l +1) remains unknown. Effectively, the original label image L0

has been relabelled to produce a modified version L1. Many pixels that had unknown

depth values in L0 have been assigned depth values in L1, which allow for conformity to

appearance models of existing planes and non-contradictory 3D layouts in piecewise

planar scenes. In fact, the relabeling process can be rerun with L1 replacing L0.

Obviously, the plane equations can be refined, the appearance model for each label needs

to be retrained, and the unary and binary terms should reflect the changes in hard

constraints. The resulting iterative relabeling process reaches convergence at iteration k

when the change in label image δ (Lk,Lk−1) is negligible. As such, our proposed

approach corrects (through robust plane fitting and projection) and completes (through

appearance and 3D aware relabeling) raw depth values recorded by an RGB-D sensor in

a piecewise planar scene. In Fig. 30, we show how the end-to-end approach applies to a
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sample RGB-D pair of images.

Figure 30: End-to-end process: We start with an RGB-D image pair. After segmenting
planes, labels, and background label, we get a initial set of labels. The initial labels are

fed to the Graph Cut solver. The final output is a complete set of labels, which are
converted to new depth values. We can observe how the depth range is extended from the

original 3D point cloud to the final result of our correction/completion process.
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CHAPTER V

RGB-D SLAM IN FEATURE-POOR PLANAR

ENVIRONMENTS

After enhancing the input depth data, we use it for SLAM. The proposed SLAM

method comprises of two steps: an estimation step and a correction step. Note that the

modification of the input is two fold. First, the input depth data for reliable and

unreliable depth data is now corrected to improve the accuracy of the SLAM method.

Second, 3D points previously discarded for not having depth data can now be utilized.

In the first step, we use a modified version of the RGB-D mapping of Henry

[24] to find the optimized relative transformation that best aligns two consecutive

frames. Since added data can be erroneous, outliers are removed using RANSAC while

inlier contribution to the transformation relies on the score of the depth point added. The

solution suggested by [24] is summarized in Eq (2).

T∗ =argmin
T

[
α

(
1
|Af | ∑

i∈Af

wi|T( f i
s)− f i

t |2
)

+(1−α)

(
1
|Ad| ∑

j∈Ad

w j|(T(p j
s)− p j

t ).n
j
t |2
)] (2)

In the estimation step, we drop the second term which is regarded as the ICP

term. In the ICP process, points that are closest to each other are matched and the

registration minimizes the distances between them. When the frames needed to be

registered are not the same (as in our case due to motion), the ICP method requires to

reduce a certain percentage of matching points. Since the estimation of the percentage of
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points to be dropped needs motion approximation, we choose to drop the second term.

Setting a constant percentage of points to drop is applicable in cases where the sensor

motion does not change abruptly, but we aim at considering the more general case.

Moreover, in areas such as corridors, minimal 3D variations exist, so the ICP solution

has multiple local minima. Minimizing the first term is done via an adaptive RANSAC

that incorporates sensor noise in selecting the inliers. RANSAC alignment first finds

visual feature matches between two frames. Here, we use SIFT features but our

proposed algorithm can be used with any other feature, especially since most feature

detectors perform poorly in texture-less environments. RANSAC repeatedly samples

three pairs of matches between two consecutive frames, finds the best transformation

using Horn’s method, and then evaluates the transformation. The evaluation is done by

counting the number of inliers, i.e., the number of features correctly matched after the

transformation. Inliers are chosen according to a threshold criterion that takes into

account the sensor noise at all distances. After finding the transformation that yields the

highest number of inliers, all inliers are used to find the optimal transformation. Not all

inliers contribute equally to the final transformation.

wg =
MRFscore−minMRFscore

maxMRFscore−minMRFscore

MRF scores are used to determine the weights as shown above. MRF scores of added

feature points are only considered. If the number of inliers is higher than a threshold, we

skip the correction step, and the transformation obtained is the one used for motion

estimation.

When the number of feature points is not high enough, we turn our attention to

using the planes previously found. In order to find matching planes between two frames,

planes found in the first frame are shifted using the estimated motion into the second

frame. Similar planes are then detected and marked as matched planes. Matching points

and planes are then used to find the optimal transformation as in [39].
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CHAPTER VI

EXPERIMENTAL RESULTS

In this section, we will evaluate the effectiveness of our method in

enhanceing/correcting and completing depth measurements obtained by a Kinect

RGB-D sensor. For a quantitative comparison between the depth maps generated by our

method and the raw depth maps obtained from the sensor, we generate a large-scale 3D

point cloud of a typical indoor scene, which we will use to generate ground truth depth

maps. Moreover, we show that our method can be useful in applications that make use of

RGB-D data, including SLAM for self-tracking and depth upsampling from higher

resolution RGB.

A. Dataset Compilation

To create the ground truth set, we scanned a large indoor area using 2 Kinect

sensors mounted on a moving platform. The devices were pointed at different fields of

view to avoid possible interference of their light patterns. The relative movement of the

platform was constrained to a fixed translation along a predefined direction

perpendicular to the floor normal, and a rotation of ±90◦ around the floor normal; such

restrictions make the registration between frames trivial. A total of 700 frames were

recorded, corresponding to 220 meters of stretch inside a typical office space.

Depth frames can be converted to 3D data using the calibration parameters of

the sensors. In order to ensure data accuracy, we select the depth values on each frame

that lie within the 800 mm to 4000 mm reliable range of the sensor. The final point cloud

size was of around 63 million points. Fig. 31 shows 2 different views of the final

reconstruction, with colored data embedded.
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Figure 31: Different views of the large 3D reconstructed dataset. The total physical area
covered is 220 meters, which yielded a point cloud of around 63 million points.

To complete the set, we need to create ground truth depth frames at each of the

700 locations, this is achieved by positioning the 3D points at the local frame coordinate

system, and back-projecting them to the image frame using the camera intrinsic

parameters; note that the back-projection process will create several 3D candidates for

each pixel, but given the scene to camera visibility constraints, the ambiguity is solved

by selecting the point closest to the image frame. The depth value at each pixel is the Z

coordinate of the projected 3D point. Fig. 32 presents a triplet of color, raw depth, and
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ground truth depth corresponding frames.

Figure 32: Left to right: RGB, raw depth, and ground truth depth. We notice the large
amount of points missing in the raw depth image, due to the sensorâĂŹs inability to
process large dark areas and reflective surfaces. The ground truth depth frame shows a
complete version of the view by back-projecting the large 3D point cloud aligned to this
frameâĂŹs view.

B. Quantitative Comparison

Using the ground truth set, we can test the accuracy of our approach and

compare it to the raw data provided by the Kinect. We test our technique on 106

randomly chosen frames from the ground truth set. The result of our application is a new

set of depth frames that improve the raw Kinect data in 2 ways, first by correcting depth

values, particularly at large depths, and second by increasing the number of available

depth pixels. In order to test for the first hypothesis, we compare the enhanced and raw

depth with the ground truth 3D points. The comparison is done by converting the depth

values of the enhanced and raw frame into 3D points, and calculating euclidean distances

between closest points of these frames and the 3D point cloud of the scene. In order to

do this computation in an efficient manner, we build a K-D tree for the ground truth point

cloud once, and query the tree using the 3D points of each frame. Fig. 33 shows a plot of

errors for both the raw depth data of the RGB-D sensor and our approach. Since the

ground truth data was taken from raw depth values below 4 m, we expect the error in this

range to be less in the raw depth frame of the sensor, but for depth value outside the

reliable range of the Kinect (as pictured in Fig. 32), our approach improves the accuracy
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of the measured data by an average of 0.5 m.

Figure 33: Comparison of raw depth values and depth values generated by our method
respect to the ground truth for a large-scale piecewise planar scene. The left plot shows
the errors at pixels of depth below 4 meters. Since the ground truth at depth lower than 4
meters was taken from the raw depth image, we expect the error to be zero in the blue
curve. However, the power of our method is evident in the right plot where we show
significantly lower error at depth values larger than 4 meters. This improvement comes
from a combination of correction and completion of the raw depth.

Since our approach not only corrects but also extends the depth range of the

sensor data; and thus increasing the number of depth pixels available, it is important to

look at the average pixel increase as an additional measure of performance. Fig. 34

shows a plot of percentage pixel increase per frame, calculated as the percentage of

pixels added by the our correction/completion with respect to the original raw data

available. The mean increase by applying our correction/completion method is around

40000 pixels, with standard deviation of around 20000 pixels. It should be noted at this

point that although an increase is present in more than 80% of the cases, the amount of

increase always depends on the scene being processed, thus resulting in high standard

deviation values.
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Figure 34: Percentage of depth values added to a single image. The proposed method is
adding an average of 50% of depth pixels, and sometimes as much as 80%.

1. Result on NYU Dataset [37]

In addition to testing our proposed method on the set we compiled, we also

make use of images from the popular NYUv2 dataset [37]. We choose images of

piecewise planar environments (such as corridors or hallways) and apply our method on

the raw depth images. We compare our corrected and completed depth map to that

generated by the hole-filling (colorization) method used in [37]. We show two examples

in Fig. 35, where we render 3D views of the raw depth data and the enhanced depth

obtained by both techniques. Since the colorization technique is unaware of the 3D

structure of the scene, depth points that were added by this method were not constrained

to belong to any plane, leading to significant errors.
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Figure 35: Left to right: 3D renderings of the raw depth, depth after applying the
colorization method in [30], depth from the proposed method. Notice the noise in the
depth data added by the colorization method. On the other hand, our method provides
3D aware depth correction and completion and a more realistic rendering.

C. RGB-D SLAM

In order to evaluate the effectiveness of our method, we make use of two

corridor datasets. The first dataset is constituted of a 25 meters corridor with around 7

million depth points (increased to 10 million upon completion). For the first dataset, we

show a qualitative result and compare it to using well-known RGB-D SLAM methods.

The second dataset includes ground truth, so quantitative analysis is also performed. The

second dataset has around 10 million points increased to about 15 million upon

completion.

We first perform RANSAC alignment on the original depth frames and also on

the corrected/extended depth produced by the method in Section C.. We compare the

number of inlier points found in each case, as shown in Table 1. Clearly, our proposed

method succeeded in increasing the number of inlier features significantly. This is due to

the high number of depth points that were added but were previously discarded due to

range limitation, reflection, or steep inclination. Moreover, adding the plane matchings

to the pool of feature points that need to be registered serve as an addition of features.

The average number of matching planes in our experiments was 3 (floor and side walls).
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Alone, these planes were not enough for a proper registration as in [39] as they belong to

the degeneracy case (Normals of these planes do not span the whole 3D world).

Table 1: Average number of inlier feature matches

before enhancement after enhancement
Dataset 1 3.47 41.36
Dataset 2 8.62 19.53

In Fig.36 and Fig. 38, we consider the first dataset. We show results of applying

regular RANSAC based RGB-D SLAM method on this scene, as compared to applying

our own SLAM approach using depth correction and extension. One can easily spot the

drift when not enough feature points are detected. Moreover, the correction and

extension provided a more complete 3D reconstruction by adding more 3D points while

still maintaining the structure of the scene.

Figure 36: (left) SLAM results using the original depth information provided by the
Kinect, (right) SLAM results using our proposed method

Fig. 37 shows a 3D view of the reconstruction of the whole loop of a corridor upon

applying the proposed RGB-D SLAM method.

Fig. 39 shows the SLAM results for the second dataset. Not only did the

proposed technique decrease the drift, but it also added a significant number of 3D

points. The ceiling did not appear in the original reconstruction as it was more than 4

meters away. Since our method uses all Kinect raw measurements, we managed to fit a

plane through the filtered data and reconstruct part of the ceiling too.
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Figure 37: Dataset 2 whole loop results

Figure 38: Another view of Fig. 36

Figure 39: Dataset 2 results: (left) SLAM results using the original depth information,
(right) SLAM results using our proposed method

Quantitative Comparison In order to perform a quantitative comparison, we apply our

method on a dataset whose ground truth is known. The dataset was compiled by fixing

the Kinect on a mobile platform which was moved throughout the hallway while

maintaining the same motion. We compare our results to the ground truth data by

measuring two errors: the drift in the sensor motion and that of the 3D point locations.

The error in 3D point locations is computed as the distance between the predicted 3D
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point location and the true location. The predicted point location is calculated after

movements of 2 meters throughout the hallway. Results are shown in Fig. 40. The

average error in point locations is 440 mm when using the raw depth and 183 when using

the corrected depth data. For the translation, the average drift is 53 mm for using raw

data and 17.4 mm when using the corrected ones. Fig. 40 shows the difference in

trajectory between the two methods. These results clearly validate the effectiveness of

using the corrected/extended depth data generated by our approach.

Figure 40: (left) Cumulative SLAM error when using raw (in red) and
corrected/extended (in blue) depth data. Errors of our method average less than the
errors incurred by using raw depth. (right) The ground truth trajectory (red), raw-depth
SLAM trajectory (blue), our trajectory (black).

D. Depth Upsampling

Given that our 3D data is now represented as a combination of planar structures,

it is easy to upsample the depth frame by looking at a high-resolution RGB image

calibrated with the RGB-D sensor. Using the camera parameters of the high-resolution

device, we can shoot rays that go from the center of projection, and through the image

pixels. These rays may intersect one, many, or none of the planes available in our 3D set.

We look at the set of intersections of the current ray and select the one with the smallest

distance to the corresponding plane points, given that this distance is smaller than a
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threshold T = 10 mm. To test this application, we calibrated added a webcam that

provides images at 1024x1280 resolution to the RGB-D system. The results is a higher

resolution depth image that represents the same depth data as the corrected/extended

frame. Fig. 41 shows the corresponding 3D reconstructions of the 2 frames. The

upsampled point cloud provides similar scene information with a larger point set.

Figure 41: (Left) 3D points from completed depth with low resolution RGB image.
(Right) 3D points from completed depth with high resolution RGB image
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CHAPTER VII

CONCLUSION AND FUTURE WORK

In this thesis, a novel method was presented to use the complete set of depth

values provided by an RGB-D sensor to better represent indoor piecewise planar

environments and to improve the performance of RGB-D SLAM. By properly analyzing

the sensor error at large depth, the given depth data was corrected, and planar labels were

segmented from the scene. By applying the proposed method on a new large-scale

ground truth data set, the new framework provides more accurate depth maps, having a

larger number of pixels than those recorded by the RGB-D sensor. A new RGB-D

SLAM method which makes use of the enhanced depth maps and plane features is also

proposed. SLAM results on two datasets show a significant improvement to previous

methods.

Future work include the addition of depth data for objects repeating in the scene

based on their appearance. Moreover, detecting planar objects using edge detection

techniques, which can make use of the high sensor noise at edges, can also increase the

number of depth points in the scene.
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