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An Abstract of the Thesis of

Joy George Sfeir for Master of Engineering
Major: Mechanical Engineering

Title: Design and Modeling of a Novel Single-Actuator Differentially Driven Robot

In this thesis, we introduce a concept design for a single-actuator differentially
driven robot. The design is based on connecting two variable-diameter wheels
to the same drive shaft. The wheels are designed to have engineered stiffness so
that the diameters of the wheels are varied by shifting the weight of the drive
mechanism from side to side. Hence, as one wheel decreases in diameter and the
other increases, the robot steers in the direction of the wheel with the smaller
diameter. Moreover, we develop the kinetostatic model of the mobile platform,
and show that the system can be simplified and modeled as a vertical rolling disk
having a constant radius with a pendulum acting as the driving force. Then,
the dynamic analysis of the robot is developed and the equations of motion are
derived. Finally, the motion planning problem is studied by applying Dubins
curve, and a comparison is made between the real dubins curve obtained for the
robot and the perfect dubins curve.
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Chapter 1

Introduction

The objective of this chapter is to give a general overview about some important
concepts related to the thesis work. We start by giving an overview about mobile
wheeled pendulum (MWP), differentially driven robots, and variable-diameter
wheels. Then, we investigate some previous work related to the different types of
robots that uses variable-diameter wheels and their designs. Finally, the thesis
contributions and outline are presented.

1.1 Mobile Wheeled Pendulum

The mobile wheeled pendulum (MWP) comprises two coaxial wheels and an in-
termediate body. A feature common to this category, that is not encountered
in other wheeled robots, is that their central body, which plays the role of the
robot platform, can rotate about the wheel axis. This motion should be con-
trolled, thereby leading to a new challenging problem, which is the stabilization
of the central body, aside the classical control problem due to nonholonomy [8].
The interest in MWP was promoted by the US patent of the Ginger and the
Segway Human Transporter projects. Even though it is pitched as a personal
mobility system, the Segway robot has proven to be an effective mobile base that
has served the robotics research community. An example of the Segway robot is
shown in Fig. 1.1a.

Another MWP example is the JOE robot as shown in Fig. 1.1b. The JOE robot
is able to do stationary U-turns due to its configuration with two coaxial wheels,
each of which is coupled to a DC Motor [9]. The control system of this robot
is made up of two decoupled state-space controllers which pilots the motors in
order to maintain the equilibrium of the system.

In 1998, Ostrovskaya and Angeles developed a new class of nonholonomic me-
chanical systems, known as quasiholonomic, which lies between holonomic and
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nonholonomic systems [8]. One example of this class is the Quasimoro robot as
shown in Fig. 1.1c. This robot was developed as a service robot for the motion-
impaired by Salerno and Angeles in 2004.
Nonholonomic systems are, roughly speaking, mechanical systems with constraints
on their velocity that are not derivable from position constraints. They arise, for
instance, in mechanical systems that have rolling contact (for example, the rolling
of wheels without slipping) or certain kinds of sliding contact (such as the slid-
ing of skates). They are a remarkable generalization of classical Lagrangian and
Hamiltonian systems in which one allows position constraints only.

(a) The Segway robot [10]. (b) The JOE robot [9].

(c) Quasimoro, a quasiholonomic mobile
robot [8].

Figure 1.1: Different examples of MWP robots.
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1.2 Differentially Driven Robots

Differential drive is a method for controlling a robot with only two motorized
wheels. Differentially driven robots are one of the most popular types of mo-
bile robots. Their configuration consists of two actuated wheels mounted on a
common shaft, where each wheel can be independently driven either forwards or
backwards. The term ”differential” means that robot turning speed is determined
by the speed difference between both wheels, each on either sides of the robot.
Therefore, changing the relative rate of rotation of the robot’s wheels causes a
change in its direction. To turn the robot left or right, wheels are rotated at dif-
ferent speeds or in different directions. Table 1.1 and Fig. 1.2 give an example for
the direction of the wheels for achieving a particular mobility in a differentially
driven robot.

Table 1.1: The required directions of the left and right wheels for achieving a
particular motion direction in a differentially driven robot.

Motion Left Wheel Right Wheel

Right Turn Counter Clockwise Clockwise

Left Turn Clockwise Counter Clockwise

Forward Clockwise Clockwise

Backward Counter Clockwise Counter Clockwise

Figure 1.2: An example of the mobility direction of a differentially driven robot.

The example shown in Fig. 1.2, is based on using ordinary wheels which have
nonholonomic constraints, meaning that the robot cannot move sideways. But
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there exist another type of wheels called the omni wheels, shown in Fig. 1.3, which
are wheels with small rolling discs around the circumference that are placed at a
certain angle to the rolling direction. These wheels can be controlled differentially
to move the robot in almost any direction by rotating each wheel at exactly the
right velocity, hence making them ideal for holonomic drive systems. One example
of such robot is the kuka robot shown in Fig. 1.4.

(a) A 90 ◦ omni wheel. [11]. (b) A 45 ◦ omni wheel. [12].

Figure 1.3: Two types of omni wheels.

Figure 1.4: The kuka robot. [1].

Overall, the simplicity of the differential drive approach makes it a very common
platform among the robotics community, especially in locomotion systems. Seg-
way robots are one of the best examples [13]. Pioneer, PeopleBot, PowerBot and
PatrolBot mobile robots, shown in Fig. 1.10 are also examples of the differentially
driven robots.
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(a) The Pioneer robot [14]. (b) The PeopleBot robot [15].

(c) The PowerBot robot [16]. (d) The PatrolBot robot [17].

Figure 1.5: Different examples of differentially driven robots.

1.3 Variable-Diameter Wheels

The wheeled robot has been mainly designed with a constant diameter wheels.
The disadvantage of this design is that the robot can not navigate well over ob-
stacles, such as rocky terrain, sharp declines, or areas with low friction. There
exists now an interest for a new type of robot which inherits both advantages
of legged and wheeled robots, namely the high adaptive capabilities of legs and
the high velocity and payload of the wheels. Therefore, a new approach for tack-
ling the drawbacks of the constant diameter wheels has been adopted by using
variable-diameter wheels.
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Variable diameter wheel mobile platform could change wheel size according to
particular conditions that the robot designer implements. There exists many de-
signs and mechanisms for this new type of wheels in the literature depending on
the purpose of use, such as obstacle climbing or driving on rough terrains.
A variable diameter wheel can be controlled in two ways. First, it can be con-
trolled actively, meaning that the wheel is connected directly to an actuator or
controller by for example a set of gears and shaft, that can directly change its
diameter. Secondly, it can be controlled passively, meaning that the wheel is
not connected to an actuator. So in order to change its diameter, the wheel has
to be of a spring-type wheel, hence when a external force is applied, the wheel
will either fold or unfold. An example of a variable diameter wheel that varies
according to the resistant torque is shown in Fig. 1.6.

Figure 1.6: A wheel that has a diameter which varies according to the resistant
torque [2].

1.4 Related Work

In this section, we give an overview of some previous work related to thesis sub-
ject.

The intelligent mobility platform with active spoke system (IMPASS) [18] robot
shown in Fig. 1.7 is, as far as we know, the only robot that uses variable-diameter
wheels for steering. This robot uses a novel method for locomotion which utilizes
rimless wheels with individually actuated spokes, therefore, giving it the ability
to change its effective diameter on both wheels in order to achieve steering. This
form of novel locomotion has the potential to combine the efficiency of a wheeled
robot and the mobility of a legged robot. A highly mobile robot such as IM-
PASS could prove very valuable in applications where the terrain is complex and
dangerous, such as search and rescue, reconnaissance, or anti-terror response.
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Figure 1.7: The IMPASS robot.

Unlike other wheeled vehicles which use Arckerman steering or differential steer-
ing, IMPASS can implement novel turning gaits even though the left and right
hubs rotate with the same angular velocity. A constant radius turn for IMPASS
is accomplished by using a smaller effective wheel radius for the inside hub, and
a larger effective radius for the outside hub, as shown in Fig. 1.8.

Figure 1.8: The IMPASS robot performing a turning maneuver.

The disadvantage of such a design is that the wheels are modeled as a spoked
wheel system which requires an individual motor for each spoke to be actuated,
as shown in Fig. 1.9, and thus leads to degradation in efficiency and more com-
plexity.
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Figure 1.9: The motors used in the IMPASS robot and their locations.

Another type of robot that uses spoked wheels is the Scout robot [19] which has
been developed at the University of Minnesota in partnership with MTS, Honey-
well, and ATC. Several augmentations to the Scout have been made. Each is an
attempt to address a limitation of the standard Scout whether it be locomotion,
sensing, or communication. The actuating wheel scout version 1, as shown in
Fig. 1.10a, created a wheel system that allowed a dynamic range of wheel diame-
ter from 44 mm to 120 mm, enabling operation on a variety of terrain. Fig. 1.10b,
shows the actuating wheel scout version 2 which improved upon the mechanical
design of the first version while restoring the launch form factor by enabling a
range of 39 mm to 120 mm.

(a) The actuating wheel scout ver-
sion 1.

(b) The actuating wheel scout ver-
sion 2.

Figure 1.10: Different versions of the Scout robot [3].

The authors in [20] propose a variable diameter wheel mobile platform which
can meet the requirement of travelling on the complex terrain such as moun-
tain, ditches, paddy field, and dry land. Variable diameter wheel and H-drive
four-wheel drive system was developed, and transmission ratio was identified.
Fig. 1.11 shows a 3D model of the proposed variable diameter wheel.
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Figure 1.11: The two stages of the wheel [4].

In [21], the authors present a novel high adaptability out-door mobile robot with
variable-diameter wheels. The robot is designed for the purpose of climbing obsta-
cles and adapting to different terrain with a self-adapting suspension mechanism,
by using a foldable wheel design a shown in Fig. 1.12. The wheel is based on a
retractable polyhedron structure with a single degree of freedom, controlled by
the rotation of the triangular shaped piece in the center.

Figure 1.12: The Foldable Wheel Robot [5].

The authors in [6] propose an innovative design for a variable-diameter wheel,
shown in Fig. 1.13 with an expendable mechanism for unfolding it. This mecha-
nism combines two sub-mechanisms. One allows the deployment of the rim while
the other one ensures the contact shape adaptation.
The expansion mechanism is actuated by a rotation of each lateral rim part.
Each part is composed of arc-shaped rods which are in contact in the compact
form. In this concept, the expansion of the wheel is obtained by a motion of
elementary rods constrained in the sagittal plan. The expansion of the rim is
based on a three-beam planar mechanism. This mechanism shown in Fig. 1.14
is the elementary mesh that constitute one of two lateral parts of the wheel.
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Figure 1.13: The expendable wheel [6].

Figure 1.14: The expendable wheel robot mechanism [6].

Another robot that uses variable-diameter wheel is the search and rescue robot
developed in [7]. The robot is designed to navigate through wreckage which
consists of narrow spaces and large obstacles. In such environments, the robot
should have a small size to navigate through narrow spaces, and also have the
ability to climb over obstacles. In order to achieve both requirements, the authors
developed a transformable mobile robot that can change its wheels’ diameters for
adapting to various environments as shown in Fig. 1.15.

The mechanism of the variable-diameter wheel is composed of six equally angular-
spaced pantographs which transforms horizontal displacement to vertical dis-
placement. A series of motion of one pantograph mechanism is shown in Fig. 1.16.
In this figure, the length of the mechanism (vertical direction) is increased while
the width between the two disks is decreased. To change the width between the

10



Figure 1.15: The search and rescue robot [7].

two disks, a linear actuator is used which is composed of trapezoidal-screwthread
and DC-motor.

Figure 1.16: The search and rescue robot wheel mechanism.

The designs proposed in [20], [21], [6] and [7] present different types for the
variable-diameter wheel, which are controlled actively by transferring part of the
actuator energy to directly change the diameter. The drawback of this method
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is that it introduces additional complexity and cost to the problem as compared
to a passive control mechanism. Additionally, the wheels are designed to vary in
the same direction and thus require another mechanism for steering.

1.5 Thesis Contribution

In this thesis, we consider the problem of designing a differentially driven robot
with a single actuator. The diameters of the wheels of the proposed concept de-
sign are controlled passively by shifting the actuator’s weight closer to one of the
wheels and causing its diameter to decrease while increasing the diameter of the
other wheel. The main contribution of this thesis is the use of a single actuator
with variable diameter wheels to drive and steer the base. A main advantage of
the proposed concept design is the reduction in cost due to the use of a single
actuator. One possible application for this design would be the Segway robot,
where the steering would be controlled by shifting the driver’s weight from side
to another.
In addition to introducing the concept design for the proposed robot, we will
also present the modeling, kinetostatic and dynamic analysis, which will enable
us to derive the equations of motion of the robot. These results will be used to
study the motion planning problem of the robot and explore both its abilities
and limitations.
All these results and analysis will enable us eventually to gain a better under-
standing of the robot’s properties and characteristics, and determine its practi-
cality and usability.

1.6 Thesis Outline

This thesis is organized as follows. The model design is introduced in Chapter
2, where will we present a detailed description of the robot’s parts and operation
mechanism. In Chapter 3, the kinetostatic analysis is presented, where according
to the obtained results, we will be able to simplify our model. The simplified
model will be used in Chapter 4 where we will present the dynamic analysis
and its corresponding simulations results to obtain the equations of motion. The
derived equations of motion will be used in Chapter 5 to study the motion plan-
ning problem of the robot by applying Dubins curve to obtain the shortest path
between two points. Finally, Chapter 6 provides some concluding remarks and
future work.
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Chapter 2

Model Design

The main purpose of this thesis is to design a differentially-driven robot with
one actuator. In order to achieve this goal, variable-diameter wheels are used
for the steering mechanism. The wheels are connected to the same drive shaft
and therefore they have the same angular velocity. Hence, as one wheel decreases
in diameter and the other increases, the robot steers in the direction of the
wheel with the smaller diameter. The variation of the diameter of the wheels
depends on the distribution of the weight of the drive mechanism. This drive
mechanism acts as a pendulum that can rotate about the drive shaft and it
can also be shifted along its length to either side by using two electromagnetic
clutches that are powered by the same drive motor. The method of changing the
wheels diameters is a passive control mechanism because the diameters are not
directly controlled by the motor. There are two advantages for using a passive
mechanism as compared to an active one. First, it is simpler than the latter where
gears and drive shafts are used to change the wheels diameters. Second, it offers
the possibility of substituting the moving mass by another one. For instance, in
the case of a Segway, one can substitute the weight of the pendulum by that of
a person. A schematic of the model design is shown in Fig. 2.1.

2.1 Model parts

The main parts of the robot are:

1. Shaft: the shaft is a pinion wire (i.e., a very long spur gear) connected at
its ends to the wheels and driven by the motor through a spur gear.

2. Frame: the frame is connected to the shaft by two bearings at an equal
distance from both ends, and it acts as the main support for the carriage.

3. Carriage: the carriage is the main support for the actuator (or motor)
and the clutches. It can slide along the frame when one of the clutches is
activated.

13



Figure 2.1: A mechanical design schematic of the proposed novel robotic platform.

4. Pendulum: the pendulum is a combination of the frame and carriage. It
can rotate around the shaft and the position of its center of mass is affected
by the position of the carriage on the frame.

5. Electric Motor: a simple DC motor which is the only actuator in the system.
The motor is mounted by two gears, a spur gear connected to the shaft and
a bevel gear connected to both clutches as shown in Fig. 2.2.

6. Electromagnetic Clutch: the clutch’s main function is to connect its input
shaft to its output shaft when activated. The input shaft is mounted by
a bevel gear driven by the motor, while the output shaft is mounted by
a sprocket connected to a chain fixed on the frame. When the clutch is
activated, the output shaft will turn in one direction, causing the carriage
to slide along the frame, thus shifting the robot’s center of mass. Each
clutch is used to move the carriage in a different direction. The clutches
are not connected to each other and they cannot be activated at the same
time.

7. Variable-Diameter Wheel: the wheel is mainly composed of four parts as
shown in Fig. 2.3:

• The two wheel rings which are mounted on the shaft where one is fixed
at the edge of the shaft and the other can move freely along the shaft
axis.

• The scissor shaped rods which are attached at their base to the two
rings. Their main function is to convert horizontal motion to verti-
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cal motion or vice versa, which in return will cause a change in the
diameters of the wheels.

• The wheel foot which acts as the contact point between the wheel and
the ground.

• The coil spring which is mounted around the shaft and is attached at
both ends to the two rings. When a force is applied to the spring,
it will either elongate or compress according to its direction, thus,
leading to a decrease or an increase in the wheel’s diameter.

Figure 2.2: A detailed view of the transmission system.

Figure 2.3: A detailed view of the wheel.
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2.2 The operating mechanism

The main drive force of the robot is its pendulum. The motor is a part of the
pendulum and is connected to the shaft by a spur gear. When the motor starts
running, the pendulum will start rotating around the shaft until it reaches a
certain height (i.e., an equilibrium point) where the torque of the motor is equal
to the torque induced by the weight of the pendulum. At this point, the wheels
will start rotating and the pendulum will start falling back until it reaches another
equilibrium point, hence the process starts all over again as shown in Fig 2.4.

τm τm 

M2 

τp 

Figure 2.4: The pendulum drive mechanism.

In order to steer, one clutch is activated, thus connecting the input shaft of the
clutch to its output shaft, which in turn will cause the power to be transferred
from the motor through its bevel gear to the sprocket connected at the output
shaft of the clutch. When the sprocket rotates, it will cause the carriage to move
to one side, hence decreasing the wheel’s diameter.
An overview of the whole system is presented in the Fig. 2.5.
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Turn on
Motor

Spur gear of 
Motor rotates
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Wheels rotate In the
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Bevel gears of both
Clutches rotate

Is one of the
 Clutches activated?

Yes

Sprocket of
Clutch rotates

Carriage moves
To one side

Wheel's radius
decreases

Robot Steers in 
The direction of

 the smaller wheel

No

Robot moves in
A straight line

Figure 2.5: A flow chart describing the method of operation of the robot.
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Chapter 3

Kinetostatic Analysis

In this chapter we give an overview about the kinetostatic modelling followed by
simulation results and analysis.

3.1 Kinetostatic Model

The kinetostatic model of the robot, as shown in Fig. 3.1, consists of two variable-
diameter wheels modeled as two springs that are connected together by a central
shaft. The shaft is mounted by a pendulum which can move along its length
when one of the clutches is activated, thus, leading to a shift in the center of
mass, which causes the variation in the diameters of the wheels. The system has
two centers of mass where the first mass M1 represents the shaft with both wheels
and is located at the center of the shaft, while the second mass M2 represents
the pendulum and is located at distance lp along the pendulum’s axis. The radii
of the wheels are represented by r1 and r2 respectively. The length of the shaft
is denoted by ls, the angle β represents its inclination from the horizontal and d
is the distance of the pendulum from the shaft’s center. The reaction forces on
both wheels are represented by R1 and R2 respectively, while F1 and F2 represent
the forces acting along the direction of the wheels.

It is also important to note, that in our analysis, we consider that the shape of
the wheel is circular with a perimeter equal to the perimeter of the spoked wheel
presented in Chapter 2. Therefore, the effects of the vibrations caused by the
spoked wheel’s shape are not taken into consideration, and hence will be studied
as part of our future work along with other modifications and optimization in
order to improve the proposed concept design.

The system has two inputs. The first input is the angle of the motor |α| = |γ|+|φ|
where γ represents the angle between the pendulum and the vertical axis −zr and
φ is the angular rotation of the shaft or wheels as shown in Figure 3.1b, and the
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(a) A front view of the model showing the forces and
centers of mass.
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(b) An isometric view of the model showing the an-
gles γ and φ.

(c) A top view of the model showing angle θ.

Figure 3.1: The kinetostatic Model.

second input is the position of the pendulum d along the shaft. In order to
control the steering angle θ shown in Figure 3.1c, a relation between (d, γ) and
(r1, r2) must be established, thus leading to a relation between (θ) and (d, γ). To

19



establish the preceding relation, a system of five equations is set to be solved:

tan(β) =
r1 − r2
ls

(3.1)

r0 − r1 =
R1 cos(β)

k
(3.2)

r0 − r2 =
R2 cos(β)

k
(3.3)

R1 +R2 −M1g −M2g = 0 (3.4)

−M1g(r1 sin(β) +
ls
2
cos(β))−M2g(r1 sin(β) + (

ls
2
+ d) cos(β)

− lp cos(γ) sin(β)) +R2(r1 sin(β) + ls cos(β)− r2 sin(β)) = 0 (3.5)

where r0 represents the radius of the wheels when no load is applied (i.e., M1 =
M2 = 0), k is the stiffness of the spring, M1 is the mass of the wheels and shaft and
M2 is the mass of the pendulum. Note that the first three equations are derived
from geometry while the last two are derived from static equilibrium. The resul-
tant r1 and r2 are both functions of (M1,M2, ls, lp, k, r0, d, γ). For a specific robot,
the parameters (M1,M2, ls, lp, k, r0) are all predefined constants, therefore, r1 and
r2 can be solved for as functions of (d, γ) only, i.e., r1 = r1(d, γ) and r2 = r2(d, γ).

3.2 Simulations and Results

In order to study the effect of both (d, γ) on r1 and r2, a set of simulations are
carried out with the parameters values shown in Table 3.1. These values are cho-
sen based on initial estimations made in the proposed design for the dimensions
and masses of the robot’s components. The results of four different simulations
are presented below and the conclusions drawn are given thereafter.

Our first point of interest is to study the effect of d on r1 and r2 with γ = 0. As
we can see from Fig. 3.2, r1 and r2 vary linearly as d is varied from −0.3m to
0.3m.
The motivation for the second simulation is to investigate the effect of γ on r1
and r2 for different values of d. We vary γ between −π/2 to π/2 radians, while
d is varied between −0.3m to 0.3m with an increment of 0.1m. Fig. 3.3 presents
the results for this simulation applied only on r1 (same behavior will be obtained
for r2 due to the symmetry of the system). One can notice that as γ deviates
from 0, r1 slightly increases. Increasing the value of d causes larger variations of
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Table 3.1: Simulation Parameters.

Parameter Value

M1 2 kg

M2 2 kg

ls 0.6 m

k 250 N/m

r0 0.15 m

lp 0.07 m

-0.3 -0.2 -0.1 0.1 0.2 0.3
d HmL
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0.08

0.10

r HmL
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r2

Figure 3.2: The effect of variation of d on r1 and r2 with γ = 0.
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Figure 3.3: The effect of γ on r1 for different values of d.

r1 for the same γ. However, these variations are very small and can be neglected.
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In order to better perceive the effect of γ, another simulation is conducted using
only one value of d = −0.3m as shown in Fig. 3.4. Here we can notice that
the value of r2 varies between 0.1115 m to 0.1129 m, which consists of only 1.2%
variation, thus it is justifiable to consider the effect of γ on r1 and r2 as negligible.

-1.5 -1.0 -0.5 0.5 1.0 1.5
g HradL

0.1116

0.1118

0.1120

0.1122

0.1124

0.1126

0.1128

r2 HmL

d = -0.3

Figure 3.4: The effect of γ on r2 for d = −0.3m.

Finally, in Fig. 3.5, we analyze the effect of γ and d on the height of the center of
mass M2 (i.e., the height of the center of the shaft). γ is varied between −π/2 to
π/2 radians, and d is varied between −0.3m to 0.3m. We notice that the height
varies between 0.07152 m and 0.071575 m, thus changing only by 0.08% and
rendering the effect negligible. Moreover, we can notice that the curves overlap
for the same absolute value of |d| due to the symmetry of the system.
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Figure 3.5: The effect of γ and d on the height of the center of mass M1.

Based on the results obtained from these simulations, the following conclusions
can be drawn:

1. The effect of γ on the variation of r1 and r2 is negligible, thus r1 and r2 are
considered as functions of d only. Moreover, based on Simulation 1 shown
in Fig. 3.2, we conclude that the relation between r1, r2 and d is linear.
Hence, the resulting equations are:

r1 = c1d+ c2
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r2 = −c1d+ c2

To calculate c1 and c2, we apply Hooke’s Law.
For c2, the pendulum is at the center of the shaft where d = 0, so the
centers of mass of M1 and M2 are located at the center, hence the applied
force on both wheels is equal and has a value of M1g+M2g

2
. Therefore c2 is

equal to:

c2 = r0 −
M1g +M2g

2k
Regarding c1, the pendulum will be located at dmax = ls

2
, hence the weight

of the pendulum will be supported by only one wheel. Therefore c1 is equal
to:

c1 = r0 −
(M1g

2
+M2g) cos(β)

k

2. Based on Fig. 3.5, we can deduce that the height of the center of mass M2

is almost constant and has a value equal to:

r =
r1 + r2

2

3. Since γ has no effect on r1 and r2, we can also conclude that γ has no effect
on the steering angle θ (i.e., θ is independent of γ). Therefore, θ can be
calculated in the following way for fixed values of r1 and r2 (i.e., constant
value of d):

R =
ls
2

v1 + v2
v1 − v2

=
ls
2

r1 + r2
r1 − r2

=
ls
2

c2
c1d

S =
φ(t)(r1 + r2)

2
where R is the radius of curvature and S is the distance traveled by the
robot as shown in Fig. 3.6.

Thus, θ(t) is equal to:

θ(t) =
S

R
=
φ(t)(r1 − r2)

ls
= c1dφ(t)

and θ̇(t) will be equal to:
θ̇(t) = c1dφ̇(t)

Therefore, to calculate θ(t) for any moment in time with variable values of
d(t) and φ(t), we have:

θ(t) =

∫ t

0

c1d(t)φ̇(t) dt

Finally, based on these conclusions, we can simplify the system and model it as a
vertical rolling disk having a constant radius r = r1+r2

2
with a pendulum attached

to its center and acting as the driving force.
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Figure 3.6: The trajectory followed by the robot for a constant value of d.

3.3 Parameters Analysis

The previous conclusions were derived according to the design parameters spec-
ified in table 3.1. But changing these parameters can alter the behavior of the
system and render these conclusions invalid. Therefore, we perform some param-
eters analysis to study the effects of changing these parameters.

Our main concern is to study the effect of γ on r1, r2 and the height of center of
mass M1.
The first parameter to be studied is the ratio M1

M2
. This ratio represents the

distribution of the total mass between the pendulum and the body. When the
pendulum is shifted to either side of the robot, if the proportion of its mass is
larger than that of the body, the center of mass of the robot will shift towards
the pendulum’s direction. Hence, the force applied to the wheel on that side will
be greater, and thus the radius of the wheel will decrease.
In Simulation 1 shown in Fig. 3.7, we study the effect of changing γ on r1 for
different values of M1

M2
at d = −0.3. We can notice two things happening as

the ratio M1

M2
decreases (i.e., the weight of the pendulum increases while the

weight of the body decreases). First, the average value of the wheel’s radius will
decrease, and that’s because the center of mass of the robot is shifted towards the
pendulum’s direction. And secondly, the effect of changing γ on r1 increases and
reaches about 2mm for M1

M2
= 1

3
. Therefore, we can conclude that having small

values of the ratio M1

M2
can have a considerable effect on the wheel’s radius.

In Simulation 2 shown in Fig 3.8, we study the effect of changing γ on M1(z) for
different values of M1

M2
at d = −0.3. We can also notice two things happening as

the ratio M1

M2
decreases. First, the average value of M1(z) slightly increases, and

secondly, the effect of changing γ on M1(z) increases. But these effects are very
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Figure 3.7: Simulation 1: The effect of changing γ on r1 for different values of
M1

M2
at d = −0.3.

small and hence can be considered negligible.
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Figure 3.8: Simulation 2: The effect of changing γ on M1(z) for different values
of M1

M2
at d = −0.3.

The second parameter to be studied is the ratio ls
r0

. We have noticed previously
from Fig. 3.3 and Fig. 3.5 that by increasing d, the effect of changing γ also
increases. But in this section, we aim to study the effects of changing the length
of the shaft, for a constant value of d, while changing γ.
In Simulation 3 shown in Fig. 3.9, we study the effect of changing γ on r1 for
different values of ls

r0
at d = −0.3. We can notice two things happening as the

ratio ls
r0

increases. First, the average value of the wheel’s radius will increase,
and that’s because the center of mass of the robot is shifted towards the shaft’s
center. And secondly, the effect of changing γ on r1 decreases from 2mm at ls

r0
= 4

to about 0mm at ls
r0

= 8. Therefore, we can conclude that changing the shaft’s
length can have a considerable effect on the wheel’s radius.
In Simulation 4 shown in Fig. 3.10, we study the effect of changing γ on M1(z) for
different values of ls

r0
at d = −0.3. We can notice that both effects of increasing

the ratio ls
r0

and changing γ are very small, and thus can be considered negligible.
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Figure 3.9: Simulation 3: The effect of changing γ on r1 for different values of ls
r0

at d = −0.3.

æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ æ

à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à à

ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì ì

ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò ò

ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô ô

-1.5 -1.0 -0.5 0.5 1.0 1.5
Γ HradL

0.07153

0.07154

0.07155

0.07156

0.07157

M1HzL HmL
æ

ls
r0

= 4

à

ls
r0

= 5

ì

ls
r0

= 6

ò

ls
r0

= 7

ô

ls
r0

= 8

Figure 3.10: Simulation 4: The effect of changing γ on M1(z) for different values
of ls

r0
at d = −0.3.

The third and final parameter to be studied is the ratio lp
r0

. Here we will study the
effects of changing the length of the pendulum on r1 and M1(z) while changing
γ. This parameter was chosen because by changing the pendulum’s length, its
center of mass will change, hence shifting the whole robot’s center of mass.
In Simulation 5 shown in Fig. 3.11, we study the effect of changing γ on r1 for
different values of lp

r0
at d = −0.3. The results obtained are interesting. We can

notice that for γ = 0, the wheel’s radius increases by about 1mm as lp
r0

increases.
This is due to the fact that as the length of the pendulum is increased, its center
of mass is shifted towards its edge, and because the shaft will be tilted by an angle
β as shown in Fig. 3.1a, the center of mass of the pendulum will be closer to the
center of the robot, thus decreasing the weight applied on the wheel. However,
when γ = π

2
or γ = −π

2
, the pendulum will be in a horizontal position, hence its

center of mass will be at an equal distance from the shaft’s center for all values
of lp, therefore, the value of r1 will stay constant. Based on these observations,
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we can conclude that changing the pendulum’s length can have a considerable
effect on the wheel’s radius.
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Figure 3.11: Simulation 5: The effect of changing γ on r1 for different values of
lp
r0

at d = −0.3.

Finally, in Simulation 6 shown in Fig. 3.12, we study the effect of changing γ on
M1(z) for different values of lp

r0
at d = −0.3. The results obtained are similar in

behavior to simulation 5, but the differences in values are very small and thus
can be considered negligible.
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Figure 3.12: Simulation 6: The effect of changing γ on M1(z) for different values
of lp

r0
at d = −0.3.
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Chapter 4

Dynamic Analysis

In this chapter, we present the dynamic analysis of the robot followed by simu-
lation results.

4.1 Dynamic Model

As a result of the conclusions drawn from the kinetostatic analysis, we model the
robot as a vertical rolling disk with a pendulum, with M1 being the center of
mass of the rolling disk of radius r and M2 the center of mass of the pendulum
of length lp as shown in Fig. 4.1. In addition, θ is the steering angle of the disk
around zr, φ is the angular distance travelled by the disk measured with respect
to the zr axis, and γ is the angle of the pendulum measured with respect to the
−zr axis on the disk.

r

γ

zr

xr

zg

xg

M1

M2

θ

zr

xr

zg

yg

lp

φ

Figure 4.1: The dynamic Model.

One of the adopted methods for deriving the equations of motion is the La-
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grangian mechanics theorem. This method is a reformulation of classical me-
chanics and is mathematically equivalent to the Newtonian approach. It is based
on examining the kinetic and potential energies of a system of objects and the
equations of motion are derived by computing the Euler-Lagrange equations. We
adopt this approach for our design because of the advantage given by the min-
imum number of generalized coordinates that can be chosen by convenience to
exploit symmetries in the system and the ease of incorporating the nonholonomic
constraint forces that are acting on the system. The Lagrangian steps are given
as follows:

1. Defining the generalized coordinates:

q =


x
y
φ
α


with θ(t) =

∫ t
0
c1d(t)φ̇(t) dt. Note that, for our system, only the steering

angle θ and the pendulum angle α are actuated degrees of freedom.

2. Finding the locations of centers of mass:

p1 =

xy
r



p2 =

x+ lp sin(α + φ) cos θ
y + lp sin(α + φ) sin θ
r − lp cos(α + φ)


where γ = α + φ (since φ is negative).

3. Deriving the velocities of the centers of mass:[
v1
v2

]
=

[
ṗ1
ṗ2

]
4. Finding the constraints direction:

k1 =

cos(θ − π
2
)

sin(θ − π
2
)

0



k2 =

cos θ
sin θ

0
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5. Expressing the nonholonomic constraints kinematically:

C1 = k1.v1 = ẋ sin θ − ẏ cos θ = 0

C2 = k2.v2 − rφ̇ = ẋ cos θ + ẏ sin θ − rφ̇ = 0

[
C1

C2

]
= m.q̇ = 0

m =

[
sin θ − cos θ 0 0
cos θ sin θ −r 0

]
6. Calculating the constraints forces in terms of the Lagrange multipliers, λ1

and λ2:

fc = mt.

[
λ1
λ2

]
=


λ1 sin θ + λ2 cos θ
−λ1 cos θ + λ2 sin θ

−rλ2
0


7. Evaluating the generalized forces vector:

τ =
[
0 0 0 τα

]
The value of τα is calculated by controlling the value of α using the inverse
dynamics controller.

τα = α̈d + 2w(α̇d − α̇) + w2(αd − α)

with αd being the desired angle α.

8. Calculating the potential energy:

PE = M1gp1z +M2gp2z

9. Calculating the kinetic energy:

KE =
1

2
M1(v

2
1) +

1

2
M2(v

2
2) +

1

2
J1(θ̇

2) +
1

2
J2(φ̇

2) +
1

2
J3(α̇

2)

where J1 and J2 are the moments of inertia of the disk around θ and φ
respectively, and J3 is the moment of inertia of the pendulum around α.
It is also worthy to mention that the moment of inertia of the pendulum
around θ is not calculated since it has no effect on the robot’s behavior
due to two reasons. First, due to the fact that both wheels are attached
to the same shaft and can only rotate in the same direction, and second,
due to the nonholonomic constraints presented earlier, thus prohibiting any
rotation around the zr axis.
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10. Calculating the Lagrangian:

L = KE − PE

11. Computing the Euler-Lagrange equations of motion

d

dt

∂L

q̇i
− ∂L

qi
= τi

for all i = 1, · · · 4.

4.2 Simulations and Results

This section presents simulation results and analysis for the proposed dynamics
model. The equations of motion are derived from the equations of section 4.1.
The simulation parameters are the same as those given in Table 3.1.

For the first simulation shown in Fig. 4.2a, the initial conditions used are as
follows:

x[0] = y[0] = θ[0] = φ[0] = 0, α[0] = αd[0]

ẋ[0] = ẏ[0] = θ̇[0] = φ̇[0] = α̇[0] = 0

With the following inputs:
d = 0.3, αd = 0.1t

While for the second simulation shown in Fig. 4.2b, the initial conditions used
are as follows:

x[0] = y[0] = φ[0] = 0, θ[0] =
π

4
, α[0] = αd[0]

ẋ[0] = ẏ[0] = θ̇[0] = φ̇[0] = α̇[0] = 0

With the following inputs:
d = 0, αd = 0.1t

The results of Fig. 4.2 show that the robot will turn in a perfect circle for a
constant value of d, and will follow a straight line when d = 0 as it is expected.
The importance of these results is shown when studying the motion planning
problem of the robot, where will we use Dubins Curve [22], which requires the
use of maximum curvature and straight line segments to achieve the shortest path
between two points.
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(a) Simulation 1: A circular path traveled by the
robot.
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(b) Simulation 2: A straight line path traveled by
the robot.

Figure 4.2: The trajectories of the robot for different initial conditions and values
of d.
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Chapter 5

Motion Planning

In this Section, we introduce a method for planning the motion of the robot.
Given that the proposed platform is planar, a time optimal trajectory between
two locations with specified orientations was specified in [22]. It was shown that
between any two configurations, the shortest path in a 2D plane can always be
expressed as a combination of no more than three motion primitives. Each mo-
tion primitive applies a constant action over an interval of time. Furthermore,
the only actions that are needed to traverse the shortest paths are (S,L,R). The S
primitive drives the car straight ahead. The L and R primitives turn as sharply
as possible to the left and right, respectively. Using these symbols, each possible
kind of shortest path can be designated as a sequence of three symbols that cor-
responds to the order in which the primitives are applied. Let such a sequence
be called a word. There is no need to have two consecutive primitives of the
same kind because they can be merged into one. Under this observation, ten
possible words of length three are possible. Dubins showed that only these six
words are possibly optimal: LRL, RLR, LSL, LSR, RSL and RSR. The shortest
path between any two configurations can always be characterized by one of these
words. These are called the Dubins curves. One example is shown in Fig. 5.1.
The two main restrictions that make Dubins curves time optimal are: the robotic

Figure 5.1: Two examples of Dubins curve: the first has a RSL configuration and
the second has a RLR configuration.
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platform must have constant speed and it must have a minimum turning radius.
For systems with such restrictions, the time optimal curve, that is, the shortest
curve connecting two points in a two dimensional plane is a path consisting of
maximum curvature and/or straight line segments i.e., this path will be made by
joining circular arcs of maximum curvature and straight lines [22].
For the proposed platform, there exists a maximum turning angle. This is due
to the fact that none of the wheel diameters can shrink to zero diameter. Thus,
a time optimal path would be a Dubins curve. For the proposed platform to
traverse time optimal trajectories, the transition between arcs with opposite cur-
vatures or arc and straight lines must happen in minimal time, that is, ḋ must
be sufficiently large during the transition.

5.1 Perfect Dubins Curve

For our first attempt, we decided to obtain a perfect dubins curve in order to test
the correctness of our system. In the first simulation shown in Fig. 5.2b, we move
the robot from one point to another by giving it a set of open-loop commands
to follow. In this particular example, the robot must first steer by π/4 radians,
then move in a straight line for 1m and finally steer again by −π/4 radians. In
order to achieve this, we use a step function for the input d(t) as shown in Fig
5.2a. The initial conditions used are:

x[0] = y[0] = θ[0] = φ[0] = 0, α[0] = αd[0]

ẋ[0] = ẏ[0] = θ̇[0] = φ̇[0] = α̇[0] = 0

with the second input αd equal to:

αd = 0.1t

and the maximum radius of curvature is determined by:

Rmax =
ls
2

c2
c1dmax

with:

c1 = r0 −
(M1g

2
+M2g) cos(β)

k

c2 = r0 −
M1g +M2g

2k

We can notice from the result, that the final angle of rotation θ is equal to 0 which
indicates that the obtained path is a perfect Dubins curve. However, this was
achieved using a step function for d(t), which means that the transitions between
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(b) Simulation 3: An ideal Dubins curve trajectory
traveled by the robot.

Figure 5.2: An ideal Dubins curve trajectory with the corresponding step function
d(t).

one constant value of d(t) to another is done instantaneously as shown in Fig.
5.2a. In realistic scenarios and according to our design presented in Chapter 2,
d(t) cannot change instantaneously, and thus the transition from one value to
another will be linear as shown by the dashed lines in Fig. 5.2a. These linear
transitions will affect the robot’s path, which implies that a perfect Dubins curve
cannot be achieved.
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5.2 Real Dubins Curve

In this section, we present the different steps needed to obtain a real dubins curve
for our model followed by simulations results.

5.2.1 Calculating the Function d(t)

In order to obtain a real representation for our system’s dubins curve, the func-
tion d(t) must include the transition phases represented by the dashed lines in
Fig. 5.2a. To obtain the function d(t), we must calculate the slope or the transi-
tion speed ḋ which is proportionally related to the angular velocity of the motor
α̇ by the following equation:

ḋ = α̇
N1

N2

dp3
2

Where N1 and N2 are the number of teeth of gear 1 and gear 2 respectively, and
dp3 is the pitch diameter of gear 3 as shown in Fig. 5.3.

Figure 5.3: The transmission system showing the gears numbers.

If α̇ is constant, than ḋ is constant and d(t) will act as a linear function during
the transition phase as shown previously by the dashed lines in Fig. 5.2a.

5.2.2 Simplified Dynamic Model

In an attempt to obtain the real dubins curve using the new function of d(t),
we faced a mathematical problem for the calculation of θ(t). In our previous
simulations, d(t) was considered as a constant parameter, and hence θ(t) was
calculated using the following equation:

θ(t) = c1dφ(t)
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Whereas, in our new simulations, d(t) can no more be assumed to be a constant
parameter, and hence θ(t) is calculated as follows:

θ(t) =

∫ t

0

c1d(t)φ̇(t) dt

However, no closed form of θ(t) could be obtained and therefore, the system has
no solution in that case.

Therefore, to solve the real dubins curve, we opted to simplify the dynamic model
of our design. In the new model, we consider the rolling disk to be moving in only
one dimension (x-direction). Hence, there is no angle of rotation θ(t), and the
positions of the disk and pendulum are calculated using only angles φ(t) and α(t).
After applying the Lagrangian theorem to our new model, we use the obtained
interpolating function of φ(t) to calculate x(t), y(t) and θ(t) kinematically.
In other words, in our new model, we’re assuming that the dynamics forces will
only affects the forward and backwards motion of our robot, and that the steering
angle is not affected by any forces and thus can be calculated kinematically.
However, this assumption is valid and will not affect any result, and this is due
to the following three reasons:

1. The nonholonomic constraints used will prevent the wheels from slipping
or skidding, thus any centrifugal force when steering will have no effect on
the robot.

2. The wheels are attached to the same shaft, which means that they can
only rotate in the same direction. Therefore, along with the nonholonomic
constraints, it will prevent the moments of inertia of the pendulum and disk
around zr (z axis of the robot) to have any effect on the steering angle.

3. The obtained result of a perfect circular path in Fig. 4.2a proves that the
dynamics forces have no effect on the steering angle or else the path wouldn’t
be a perfect circle.

The new Lagrangian steps are summarized as follows:

1. Defining the generalized coordinates:

q =

[
φ
α

]
2. Finding the locations of centers of mass:

p1 =

rφ(t)
0
r
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p2 =

rφ(t) + lp sin(−φ(t) + α(t))
0

r − lp cos(−φ(t) + α(t))


3. Calculating the potential energy:

PE = M1gp1z +M2gp2z

4. Calculating the kinetic energy:

KE =
1

2
M1(v

2
1) +

1

2
M2(v

2
2) +

1

2
J2(φ̇

2) +
1

2
J3(α̇ + φ̇)2

5. Calculating the Lagrangian:

L = KE − PE

with the other remaining steps being the same as the original model.

After deriving the equations of motion and obtaining the interpolating functions
of φ(t) and φ̇(t), we then calculate θ(t) numerically with the following equation:

θ(t) =

∫ t

0

c1d(t)φ̇(t) dt

And finally we calculate x(t) and y(t) as follows:

x(t) =

∫ t

0

r

2
φ̇(t) cos θ(t) dt

y(t) =

∫ t

0

r

2
φ̇(t) sin θ(t) dt

5.2.3 Simulations and Results

In this section we present the simulations results for the simplified dynamic model
and examine the difference between the real and perfect dubins curves.
The simulation parameters used are the same as those given in Table 3.1.

For the first simulation shown in Fig. 5.5, the set of commands used for the
open-loop dubins curve is:

1. Turn by π
8
rad

2. Move in straight line for 0.5m
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3. Turn by −π
8
rad

The initial conditions used are as follows:

x[0] = y[0] = θ[0] = φ[0] = 0, α[0] = αd[0]

ẋ[0] = ẏ[0] = θ̇[0] = φ̇[0] = α̇[0] = 0

With the following inputs:
αd = 0.1t

and d(t) is represented in Fig. 5.4 with ḋ(t) = 0.15

10 20 30 40 50 60 70
t

-0.3

-0.2

-0.1

0.1

0.2

0.3

d

Figure 5.4: The corresponding function d(t) for the following set of commands:
π
8
rad, 0.5m, −π

8
rad.

0.1 0.2 0.3 0.4 0.5 0.6
x HmL

0.05

0.10

0.15

0.20
y HmL

Figure 5.5: Simulation 1: a comparison showing both the real (top) and perfect
(bottom) dubins curves.

We can clearly notice from Fig. 5.5 that the final position of the robot has shifted
slightly both backwards and upwards when including the phase transitions in
d(t). The difference in the x direction is less than 1.5%, while the difference in
the y direction is about 5%.

For our second simulation shown in Fig. 5.7, we study the effect of increasing the
straight line segment on the final position of the robot. The set of commands
used for the open-loop dubins curve is:
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1. Turn by π
8
rad

2. Move in straight line for 1.5m

3. Turn by −π
8
rad

with the same initial conditions used in Simulation 1, and d(t) is represented in
Fig. 5.6 with ḋ(t) = 0.15

20 40 60 80 100 120
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-0.3

-0.2

-0.1

0.1

0.2

0.3

d

Figure 5.6: The corresponding function d(t) for the following set of commands:
π
8
rad, 1.5m, −π

8
rad.
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Figure 5.7: Simulation 2: a comparison showing both the real (top) and perfect
(bottom) dubins curves.

In this second simulation, we can notice from Fig. 5.7 that the difference in the x
direction is about 1.7%, while the difference in the y direction is about 5%, which
means that the error has remained almost the same compared to Simulation 1.

In our third simulation, we study the effect of increasing the angle of curvature
on the final position of the robot. The set of commands used for the open-loop
dubins curve is:

1. Turn by π
4
rad
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2. Move in straight line for 0.5m

3. Turn by −π
4
rad

with the same initial conditions used in Simulation 1, and d(t) is represented in
Fig. 5.8 with ḋ(t) = 0.15
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-0.1

0.1

0.2

0.3

d

Figure 5.8: The corresponding function d(t) for the following set of commands:
π
4
rad, 0.5m, −π

4
rad.
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Figure 5.9: Simulation 3: a comparison showing both the real (top) and perfect
(bottom) dubins curves.

In the third simulation, we can notice from Fig. 5.9 that the difference in the x
direction is about 1%, while the difference in the y direction is about 2% (com-
pared to simulation 1), which means that the error is about the same for both x
and y directions.

In our fourth simulation, we study the effect of having three curvatures on the
final position of the robot. The set of commands used for the open-loop dubins
curve is:
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1. Turn by π
2
rad

2. Turn by −π
2

rad

3. Turn by π
2
rad

with the same initial conditions used in Simulation 1, and d(t) is represented in
Fig. 5.10 with ḋ(t) = 0.15

50 100 150 200 250
t

-0.3

-0.2

-0.1

0.1

0.2

0.3

d

Figure 5.10: The corresponding function d(t) for the following set of commands:
π
2
rad, −π

2
rad, π

2
rad.

In the fourth simulation, we can notice from Fig. 5.11 that the difference in the x
direction is about 5.5%, while the difference in the y direction is also about 5.5%.
These errors are greater than the ones obtained with the previous configurations.

In our fifth and final simulation, we study the effect of increasing the curvatures
angles on the final position of the robot. The set of commands used for the
open-loop dubins curve is:

1. Turn by π
2
rad

2. Turn by −πrad

3. Turn by πrad

with the same initial conditions used in Simulation 1, and d(t) is represented in
Fig. 5.12 with ḋ(t) = 0.15
In the fifth simulation, we can notice from Fig. 5.13 that the difference in the x
direction is almost 0%, while the difference in the y direction is about 33%.

Overall, we can conclude that the phase transitions of the function d(t), with
a constant value of ḋ(t), will have a varying effect on the final position of the
robot depending on the set of commands used for the open-loop configuration.
Therefore, a mathematical equation should be developed, as part of our future
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Figure 5.11: Simulation 4: a comparison showing both the real (top) and perfect
(bottom) dubins curves.
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Figure 5.12: The corresponding function d(t) for the following set of commands:
π
2
rad, −πrad, πrad.

work, to determine and calculate the error generated by the transitions phases,
which will enable us to devise a closed-loop control strategy to guide the robot
to a predefined final position.
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Figure 5.13: Simulation 5: a comparison showing both the real (top) and perfect
(bottom) dubins curves.
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Chapter 6

Conclusion

In this thesis, we proposed a new design for a mobile wheeled pendulum robot
with variable-diameter wheels connected to the same shaft and controlled by a
single motor to drive and steer the base. The kinetostatic and dynamic analysis
of the robot were studied. The kinetostatic results show that the robot can be
modelled as a vertical rolling disk with a pendulum. Based on this conclusion, the
simplified model is finally used in the dynamic analysis to obtain the equations of
motion that predict the trajectory of the robot. Finally, the derived equations of
motion are used to study the motion planning problem of the robot by applying
Dubins curve.

As part of our future work, we will study the effects of the spoked wheels shape
on the systems dynamics, the motion planning problem of the robot and devise
a closed-loop control strategy to drive the robot from point A to point B using
the shortest path by applying Dubins theorem [22]. Moreover, a prototype of the
robot will be build and tested, and hence experimental results will be used to
optimize and refine the model.
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Appendix A

Abbreviations

IMPASS Intelligent Mobility Platform with Active Spoke System
MWP Mobile Wheeled Pendulum
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Appendix B

Design Drawings
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