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Hub-and-spoke is a network architecture with several applications in a number of 

industries. This type of networks allows the flow of information, people, and products 

from origin to destination points through central nodes known as hubs. The 

consolidation of flow at central locations leads to significant reduction in cost due to the 

economies of scale. Although in practice, several types of commodities flow over such 

networks, the majority of models in the literature consider single commodity type 

networks. Dealing with a single commodity is a limitation for such networks, as it is 

impossible to model multiple types of flow and it does not allow to model multiple 

source and destination pairs which is primordial in all sorts of fields. In this research, 

we present an optimization model for multicommodity hub-and-spoke network design. 

We present computational testing on a set of instances randomly generated with the 

Mulgen generator, in addition to a real case network inspired by the French rail 

network. The results show that small to medium-size networks can be solved within a 

reasonable computational time. Furthermore, since the major drawback of hub-and-

spoke networks is congestion on hubs, we present an extension to the model that 

includes congestion costs, in order to mitigate the effect of congestion in the network. 

Since the resulting optimization problem is non-linear, we then present a cutting plane 

approach based on a piecewise linear approximation as a solution approach. 
 
Keywords: Hub-and-spoke networks, multicommodity, congestion, integer program-

ming, non-linear optimization. 
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CHAPTER I

INTRODUCTION

A. Hub-and-spoke Networks

Over the last few decades, innovation in industries such as telecommunication, technol-

ogy, logistics, and transportation has been at its best. Significant research has been de-

voted to improving the service level while decreasing the total costs. For instance, in

industries such as logistics, postal deliveries, and airline companies, the transportation

costs are the primordial focus. Thus, hub-and-spoke networks witnessed a lot of attention

in these fields since they offer an efficient way to utilize resources at lower costs.

A hub-and-spoke network is a special kind of network examining the demand flows be-

tween different origins and destinations. The hub represents the central point, while the

spokes are all the nodes surrounding the hub and linked to it. These networks aim to

minimize the aggregate costs as well as to maximize the service level. Routing the flows

through intermediate nodes, i.e. the hubs, before attaining their destinations is the main

characteristic of a hub-and-spoke network (Figure I.1). The difficulty comes from iden-

tifying the nodes that should be designated as hubs and the implicated routing. After

assigning the hubs, the spokes are linked to them to allow the flow of commodities in the

network. As shown in Figure I.1, two types of hub-and-spoke networks exist. The first

one (a) being a single allocation network where spokes can only be allocated to one hub

and (b) being a multiple allocation network where a spoke might be allocated to multiple

hubs.

The progress made in the hub-and-spoke networks has been acknowledged as an ex-

tremely primordial innovation in the industry. Hubs serve as centers that handle the
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Figure I.1: (a) Single Allocation Network; (b) Multiple Allocations Network

complicated processes such as consolidating and sorting packages before transshipping

them to their final destinations. Thus, instead of repeating the same procedures at ev-

ery node, they are limited to one central node; the hub. Furthermore, it is assumed that

inter-hub connections have a lower price per unit than hub-to-spoke connections due to

the economies of scale. This reduction in the number of connections leads to not only

a simplified network structure but also to a better performance and an improved use of

the resources. The main advantage of implementing such models is the reduction of the

aggregate costs; transportation costs, labor costs, holding costs, among others.

Due to the hub-and-spoke network’s efficient features, those models are used widely in

several industries. They are found mostly in transportation networks [32] as well as in

telecommunication networks [28]. In addition, hub-and-spoke models are applied in ur-

ban traffic networks [35], trucking systems [43], postal networks [17], express delivery

service networks [25], among other industries. The transportation industry, for instance,

includes air, rail and road transportation.

In the air transportation industry, hubs typically correspond to central airports where

flights are directed through and spokes are the paths taken by the airplanes out of the

hub airport [6]. Figure I.2 is an example of a hub-and-spoke network implemented by

Delta Airlines across North of America. As shown in this figure, Delta Airlines has sev-

eral hubs such as Minneapolis, Detroit, Atlanta, Salt Lake City. In the rail industry, a

hub corresponds to a central train station at major cities. Figure I.3 represents a rail

map of Europe where, for example, Madrid, Paris, Frankfurt represent hubs. In the road

transportation industry, such as bus transportation, hubs typically represent a central bus

station at major cities. Moreover, they are exploited in the urban traffic networks where

2
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Figure I.2: Delta Airlines Route Map across North of America

the hub denotes a transit stop for several routes [35]. In the trucking networks and sys-

tems, the hub represents simply a center facility or a warehouse [43]. In the postal service

networks, the hub is the central post office that will receive, sort and transmit mail [17].

In the express delivery service networks, the hub is a center for sorting and switching the

operations [25]. Figure I.4 is an example of a map for the bus routes in North of Amer-

ica. In the telecommunication industry, the same concept of hub-and-spoke is applied but

with different aims; it can be a central website or a central router, for example. Figure I.5

exemplifies the hub-and-spoke structure worldwide.

In addition to that, constructing hub-and-spoke networks is extremely costy. Table 1

illustrates typical costs for rail networks [13]. These costs are extremely variable. As

shown in Table 1, they might vary from $9 million to $250 million per km. This brings

us to the conclusion that it is critical to identify the optimal design of a hub-and-spoke

3



Figure I.3: Europe Rail Map

network, mainly due to the high costs and the long-term commitment. The models that

are presented in this thesis are steps in that direction.

4



Figure I.4: Bus Map of North of America

Figure I.5: Worldwide Internet Network
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Table 1: Railway Construction Costs

Railway Date Type of System Cost per km Distance

Madrid-Albacete 2010 High Speed Line 9.57 million 304 km
Seoul-Gimpo 2010 Airport Line 98.1 million 20.4 km

Yichang-Wanzhou 2011 Main Line 9.1 million 377 km
Haikou-Sanya 2010 High Speed Line 10 million 308 km
Copenhagen 2011 New Metro Line 247.5 million 16 km

B. Multicommodity Networks

Hub-and-spoke networks deal with the demand flow from origin to destination. The ma-

jority of research on hub-and-spoke networks deals with a single commodity type net-

work, while in reality multiple commodities are transported, hence it becomes necessary

to model multicommodity hub-and-spoke networks.

Multicommodity networks handle a set of K commodities that should be shipped from a

source (origin) to a sink (destination). Each commodity has a particular quantity that must

be shipped through the network to ultimately reach its final destination. The advantage

of a multicommodity network is that it applies to real-life activities where multiple types

of products flow through a certain network. In addition, routing multicommodities is not

trivial since these commodities interact by competing for the actual arc capacity, when

they flow on the same arcs [1].

Multicommodity networks are more practical than single-commodity networks. They are

mostly exploited in telecommunication where multiple types of data need to be trans-

ferred through the network. Logistics companies implement multicommodity networks

to be able to deliver all the different goods to their final destinations. In traffic engineer-

ing, the aim is to minimize the maximal linkage usage in the network to supply as much

traffic as possible. In addition to that, modeling multiple sources and destinations of flow

is equivalent to having multicommodities. This is primordial in airlines networks, rail

networks or even bus networks.

However, the majority of research on multicommodity networks focuses on point-by-

6



point networks. Thus, these networks do not exploit economies of scale as hub-and-spoke

networks do. Building a model consisting of hub-and-spoke and multicommodity net-

works would allow us to benefit from the advantages of both networks.

The contributions of this thesis are:

• A hub-and-spoke network design model that takes into account multicommodity

flows.

• A model that allows an arbitrary number of hubs between pairs of spokes.

• A model that explicitely accounts for the cost of congestion.

• A cutting plane solution approach for the presented model, based on a piecewise

linear approximation.

The rest of this document is divided as follows. Chapter 2 introduces some literature

review on hub-and-spoke networks as well as multicommodity networks. Chapter 3

presents a detailed mathematical formulation of the model. Chapter 4 illustrates the lin-

earization of congestion before adding it to our model. Chapter 5 shows the computational

results of our model. Finally, Chapter 6 concludes.
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CHAPTER II

LITERATURE REVIEW

A. Hub-and-Spoke Extensions

Hub-and-spoke networks are extensively studied in the literature. Goldman [21] intro-

duced the network hub location problem and O’kelly [38] was the first to formulate a

hub-and-spoke mathematical model by studying passenger airline networks. O’Kelly [37]

defined the hub-and-spoke network design to be “a complex mixture of locational analysis

and spatial interaction theory.” Hub capacities, hub facility locations, hub assignments,

hub interlinkages as well as routes for origin-destination demand flows, are construed

through a properly designed hub-and-spoke network. O’Kelly’s [38] formulation repre-

sents the single allocation p-hub median problem which is the most fundamental model

for hub-and-spoke networks. In a graph consisting of nodes and edges, each node sends

and receives some data to/from the other nodes of the graph. The problem lies in choos-

ing p of the given nodes to act as hubs with the remaining nodes connected to one of the

chosen hubs.

Since then, research on hub-and-spoke networks has been divided into two categories.

Some extended the existing models by including new features, while others designed

methods in order to produce more efficient solutions. Campbell [7] improved the model

presented by O’kelly [38] by allowing multiple allocations in the hub-and-spoke prob-

lem and studied the location and allocation to distribute a uniform demand with trans-

shipments. Aykin [2] incorporated capacities to hubs. In addition, Kara and Tansel [24]

presented the p-hub central problem, a model that aims to minimize the maximum hub ori-

gin/hub destination. Kara and Tansel [25] also focused on minimizing the arrival time of

the items in the cargo in addition to developing a model that correctly calculates those ar-

rival times. Other extensions include direct shipments [3] and modeling the non-linearity

8



of economies of scale [39]. Liu et al. [31] created a new hybrid model for hub-and-spoke

networks in truck delivery. This model constitutes a new method implemented along with

the traditional hub-and-spoke model where vehicle routing will be performed through the

two delivery modes. More recently, Campbell et al. [9] formulated new models based

on hub arc location instead of hub facility location. It consists of creating new optimal

solutions while paying attention to spatial patterns.

B. Hub-and-Spoke Solution Methods

Two different solution approaches were presented by O’kelly [38]. The first assigns the

closest hub to every non-hub demand node while the second assigns the closest or the

second closest hub to every demand node. Klincewicz [26] presented a new heuristic

for the p-hub location problem that consists of having a primordial set of hubs, then au-

tomatically substituting other nodes for that set, based on local improvement measures.

The exchange heuristic terminates once a local optima (i.e. an optimal solution having a

neighboring set of candidate solutions) is found. Klincewicz [27] presented new heuristics

for the same type of problems, based on tabu search as well as on a greedy randomized

adaptive search procedure (GRASP). These heuristics differ from the previous ones since

they examine several local optima in order to find better solutions. Concerning the p-hub

median location problem, two greedy-interchange heuristics were formulated by Camp-

bell [8]. The starting point of these heuristics is the solution of the multiple allocation

p-hub median problem. The thought behind this idea is that multiple allocation problems

are easier to solve due to the greater freedom in allocation allowed. A subgradient based

Lagrangian heuristic for the single allocation p-hub problem was developed by Pirkul and

Schilling [40]. This method yields solutions of very high quality, as well as a reasonable

computational time. Liu et al. [31] discussed a new hybrid model for hub-and-spoke net-

works in the truck delivery sector. Their method consists of a two-step solution heuristic.

9



First, it treats the model as a pure hub-and-spoke network and as a node-to-node network,

and solves the networks respectively. Then, the starting point for the hybrid network is

considered to be a better solution than the previous step. Topcuoglu et al. [44] adapted a

new solution method based on Genetic Algorithm (GA). Its purpose is reaching the op-

timal solution of the uncapacitated single assignment hub location problem. In this GA

based heuristic, a chromosome string is constructed from a binary hub array and a binary

hub-node assign array.

Elhedhli and Wu [16] presented a Lagrangian heuristic for the hub-and-spoke system with

capacity selection and congestion. To solve this problem with this heuristic, Elhedhli and

Wu [16] decomposed it into an easy subproblem and a more difficult non-linear subprob-

lem. Gelareh and Nickel [18] presented the hub location model for public transport. They

proposed to solve the problem with two different approaches; the first one is based on

Benders decomposition for exact solutions for large size instances and the second one is

based on a greedy neighborhood search to also solve large size instances.

C. Multicommodity Network Flow Applications

Multicommodity network flows are used widely, particularly in telecommunication and

transportation networks. In the literature, one can find two types of networks; the lin-

ear multicommodity network flow and the non-linear multicommodity network flow. The

first network has linear costs assigned to the flow of each commodity on each edge, while

the second network consists of assigning a non-linear objective function to the edge flow.

The linear multicommodity network flow problems are challenging because of their sizes,

while the non-linear problems are difficult to deal with mainly due to the non-linearity of

the objective function.

Many researchers used the multicommodity network flow in different applications. Clarke

and Surkis [12] used a multicommodity network flow to model a solution for the school
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racial desegregation problem. White and Bomberault [45] described an application of

the multicommodity network flow analysis in the empty freight car allocation industry.

It consists of planning short-range car movements to allocate empty freight cars in rail-

ways. Moreover, Rao [41] applied a multicommodity network model to a warehousing

problem with cash-liquidity constraints. Furthermore, Zangwill [46] worked with a back-

logging and a multi-echelon model of a dynamic economic lot size production system

and presented two models; a single product model with backlogging and a multi-echelon

model. Both models aim to find a production schedule that minimizes inventory costs

as well as the aggregate production. Zangwill [46] used dynamic programming to reach

an optimal solution for both models. Bellmore et al. [5] dealt with a multicommodity

minimal cost flow problem. Their aim was to achieve a prescribed schedule of deliveries

with feasible flows corresponding to a feasible shipping schedule, by considering optimal

routing for fuel tankers. Bellmore et al. [5] solved the multicommodity problem using a

branch-and-bound enumerative scheme in conjunction with a decomposed linear program

with network sub-problems. Geoffrion and Graves [19] described an algorithm based on

Benders decomposition to solve the problem of multicommodity distribution system de-

sign. Moreover, Christofides and Beasley [11] developed a tree search algorithm and

presented two lower bounds for this kind of problem while Beasley [4] developed an al-

gorithm for solving large capacitated warehouse location problems. He presented a lower

bound for the capacitated warehouse location problem based upon lagrangian relaxation

of a mixed-integer formulation of the problem. Klincewicz and Luss [29] created a La-

grangian relaxation heuristic algorithm for the capacitated facility location problem with

single-source constraints and without a branch-and-bound procedure [10]. Meanwhile,

Guignard [23] presented an approach to strengthen the separable Lagrangian relaxation

of simple plant location using Benders inequalities generated during a Lagrangian dual

ascent procedure. Cao and Uebe [10] also dealt with container terminal problems. They

presented an algorithm to solve the capacitated multicommodity p-median transportation

problem. Their idea is based on re-stacking some old containers to provide the necessary
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space for the newly arriving containers. Hence, the aim of this algorithm is to minimize

the aggregate costs, consisting of searching for and loading a new container, while main-

taining some primordial conditions (such as available capacity in a storage row). Cao and

Uebe [10] proposed a heuristic based on a branch-and-bound algorithm as well as La-

grangian relaxation combined with subgradient optimization for supplying lower bounds.

As mentioned earlier, the non-linear multicommodity networks are challenging because

of the non-linear objective function. Goffin et al. [20] proposed a decomposition method

to solve such complex problems. This method relies on decomposing the master problem

into several subproblems which are formulated as a short path algorithm and solved using

Dijkstra’s d-heap algorithm. Moreover, McBride and Mamer [34] worked with the undi-

rected multicommodity flow problem that is mostly found while solving traffic-scheduling

problems such as railroad and communication networks. They formulated this problem

as a piecewise linear optimization problem where large instances were solved within an

acceptable time. Larsson and Yuan [30] proposed a fast and convergent lower-bounding

procedure that is based on an augmented Lagrangian reformulation of the multicommod-

ity network flow. This algorithm is tested with instances having over 3,600 nodes, 14,000

edges and 80,000 commodities.

In the following chapter, we present a new cost minimization mixed integer problem for

the multicommodity hub-and-spoke network design problem.
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CHAPTER III

PROBLEM FORMULATION

A. Introduction

In this chapter, we present a mixed integer programming formulation for the multicom-

modity hub-and-spoke (MCHS) design problem.

B. Assumptions

As highlighted in the literature review, the majority of research is focused on hub-and-

spoke models and on multicommodity models, separately. Thus, to benefit from the ad-

vantages of both models, we propose the “hub-and-spoke and multicommodity network

flow” model. Three main assumptions are considered in our model. The first assumption

states that using an inter-hub connection has a lower price per unit than using a spoke con-

nection. Thus, it benefits from a discount factor (0<α <1) [18]. With this discount factor

α , it is cheaper to take the flow spoke-hub-spoke than spoke-spoke. We also assume that

direct connections between spokes are not allowed. Finally, the triangle inequality (the

sum of the lengths of any two sides of a given triangle is greater than the length of the

third side) holds in the cost structure and costs are proportional to the distance [18].
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C. Hub-and-Spoke and Multicommodity Network Flow

1. Parameters

The indices and parameters used in our model are the following:

N: set of all the nodes.

E: set of all the edges.

K: set of all the commodities.

(i, j): all the edges, (i, j) ∈ E.

qc
i j: capacity of the cheap link between the nodes (i, j).

qe
i j: capacity of the expensive link between the nodes (i, j).

cc,k
i j : shipping cost on the cheap link between the nodes (i, j) for commodity k.

ce,k
i j : shipping cost on the expensive link between the nodes (i, j) for commodity k.

f c
i j: fixed cost incurred if the cheap link between nodes (i, j) is used in the network.

f e
i j: fixed cost incurred if the expensive link between nodes (i, j) is used in the network.

hi: fixed cost for establishing a hub facility at node i.

wk: amount shipped from an origin node O to a destination node D.

2. Decision Variables

uc,k
i j : amount of flow on edge (i, j) through the cheap link for commodity k.

ue,k
i j : amount of flow on edge (i, j) through the expensive link for commodity k.

yc
i j =


1 if the cheap link is used between nodes (i, j).

0 otherwise.

ye
i j =


1 if the expensive link is used between nodes (i, j).

0 otherwise.
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zi =


1 if node i is a hub.

0 otherwise.

3. Problem Formulation

The problem formulation is as follows:

min ∑
k∈K

∑
(i, j)∈E

(cc,k
i j uc,k

i j + ce,k
i j ue,k

i j )+ ∑
(i, j)∈E

( f c
i, jy

c
i, j + f e

i, jy
e
i, j)+ ∑

i∈N
hizi (1)

s.t. ∑
j∈N+

(uc,k
i j +ue,k

i j )− ∑
j∈N−

(uc,k
i j +ue,k

i j ) =


wk if i = O(k)

−wk if i = D(k)

0 otherwise

∀i ∈ N, ∀k ∈ K, (2)

∑
k∈K

uc,k
i j ≤ qc

i jy
c
i j, ∀(i, j) ∈ E (3)

∑
k∈K

ue,k
i j ≤ qe

i jy
e
i j, ∀(i, j) ∈ E (4)

yc
i j ≤

zi + z j

2
, ∀(i, j) ∈ E (5)

yc
i j + ye

i j ≤ (zi + z j), ∀(i, j) ∈ E (6)

∑
k∈K

∑
i∈N

(uc,k
i j +ue,k

i j )≤C j, ∀ j ∈ N (7)

∑
i∈N

(uc,k
i j +ue,k

i j )−wk j ≤Mz j, ∀ j ∈ N,∀k ∈ K (8)

uc,k
i j ,u

e,k
i j ≥ 0, ∀(i, j) ∈ E (9)

yc
i j,y

e
i j ∈ {0,1}, ∀(i, j) ∈ E (10)

zi ∈ {0,1}, ∀i ∈ N (11)

The objective function minimizes the total cost of the network. It has three components.
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• The first component ∑k∈K ∑(i, j)∈E(c
c,k
i j uc,k

i j +ce,k
i j ue,k

i j ) represents the cost of shipping

through both links, the cheap and expensive ones.

• The second component ∑(i, j)∈E( f c
i, jy

c
i, j + f e

i, jy
e
i, j) is the fixed cost incurred if using

the links on the network.

• The final component ∑i∈N hizi stands for the fixed cost for establishing a hub facil-

ity.

The following constraints are imposed:

• Constraint (2) deals with the conservation of flows between the origin node and the

destination node. If the amount of flow wk is positive, then the flow is entering the

node. However, if the amount of flow wk is negative, then the flow is leaving the

node.

• Constraints (3) and (4) ensure that the capacities of the cheap and expensive links,

respectively, are not exceeded.

• Constraint (5) allows the cheap link to be used between two nodes, if and only if,

both nodes are hubs.

• Constraint (6) ensures that to be able to send flow from one node to the other, one

of them should be a hub.

• Constraint (7) makes sure that the total flow through the cheap and expensive links

into hub j does not exceed the hub capacity C j.

• Constraint (8) forces the assumption that in-transit flow is not allowed through

spoke nodes.

16



• Constraint (9) guarantees the positivity of the variables u while constraints (10) and

(11) are binary conditions on variables y and z, respectively.
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CHAPTER IV

CONGESTION

A. Congestion Effects

Congestion is a very serious issue that delays daily activities. Traffic congestion is the

most common form of congestion that occurs in our daily lives. The effects that traffic

congestion has on businesses today is noticeable in more than just travel time and travel

costs. They affect the size of the business market, vehicle and personal deployment,

business relocation, delivery scheduling and intermodal connections. Longer hours spent

on the road affect the retailers and distributors, the latter being obliged to keep a high

amount of inventory in their warehouses in order to avoid lost sales. Furthermore, con-

gestion delays can notably reduce the ability to manage the flow and inventory required

in businesses that have rapid inventory turnover. This results in potential lost sales in

addition to the costs of managing inventory and receiving emergency, unplanned, or late

night/early morning shipments. The effect of congestion is clearly visible on intermodal

connections such as train stations, airports and marine ports. In these stations, traffic con-

gestion isn’t the only problem; other types such as loading/unloading congestion are also

problematic. First off, in traffic congestion, the increased traffic is causing the trains to

miss their scheduled time of arrival to a station which counts as wasted operation cost

and causes companies to reschedule their operations. In order to avoid this issue in train

stations, some companies use a broadened schedule time, but this doesn’t solve the extra

cost generated by vehicles and drivers. As for airports, firms are considering diverting

their air freights to more distant ones which are less crowded. For their part, some marine

ports are trying to extend their working hours, and providing reservation systems to even

out arrivals. On the other hand, due to the limited size of the intermodal stations and

number of cranes available, delays happen in loading and unloading materials.
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In a survey conducted by “The Associated General Contractors of America” [36] study-

ing 1,200 construction contractors, 53% said that traffic congestion caused frequent to

significant impact on their operations. Up to 40% said that it caused occasional impacts,

while 64% reported that congestion is causing a loss of at least one day of productivity

per worker annually.

Therefore, congestion, having numerous effects on production and productivity, is an ex-

tremely serious problem that must be handled carefully.

B. Congestion in the Literature

As stated earlier, hubs are the nodes that get affected by congestion [33]. Grove and

O’Kelly [22] were the first to introduce the congestion problem in a hub-and-spoke net-

work. They showed how the amount of flow at hubs leads to scheduled delays for airlines.

Kara and Tansel [25] shed light on the scheduled delays at hub airports. The aim of their

paper was to recognize the major factors affecting congestion in such networks. One

method to avoid congestion was introduced by Aykin [2] with his capacitated hub loca-

tion mode. He proposed to add capacity constraints when designing the network which

would regulate congestion. However, the method of Aykin [2] was not too efficient since

it did not show the concession between hub capacity and hub flow. In the research of

Serra et al. [42], the hub-and-spoke network was modeled as an M/D/c queuing network,

where the capacity constraints are set based on the probability of the waiting customers.

In addition, Elhedhli and Hu [15] were the first to deal with congestion cost by introduc-

ing it in the objective function of the designed network.

In this thesis, we adopt an identical approach to Elhedhli and Hu [15] to model congestion

in the proposed multicommodity hub-and-spoke network design problem.
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C. Modeling Congestion

1. Congestion Function

The objective (1) is to minimize the transportation costs while ignoring all other costs.

Hence, in such a model, cheaper hubs are overused while the more expensive ones are

neglected. This increase in the demand flow of some hubs leads to a dramatic congestion

which causes a significant increase in operational costs. Elhedhli and Hu [15] presented

the economical effect of congestion as a power-law function of the hub flow u and as

the difference between the capacity of the hub node and the flow at that hub node. It is

represented by the fractional function g(u):

g(u) =
u

C−u
(12)

Where C is the capacity of the node.

Figure IV.1 represents a plot of the congestion rate at one node, denoted g(u), versus the

flow u at that node and a determined capacity C of 100.

2. Congestion Costs

Considering a cost of congestion T0, the total congestion cost g(u j) for all hubs j is the

following:

T0 ∑
j∈N

(
∑k∈K ∑i∈N uk,c

i j +uk,e
i j

C j−∑k∈K ∑i∈N uk,c
i j +uk,e

i j

) (13)

Where C j represents the maximum capacity allowed at hub j.
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Figure IV.1: Congestion flow rate graph

Similar to Elhedhli and Hu [15], we propose adding the above equation to the objective

function (1) to include the cost of congestion in the proposed model.

The new objective function will become:

min ∑
k∈K

∑
(i, j)∈E

(cc,k
i j uc,k

i j + ce,k
i j ue,k

i j )+ ∑
(i, j)∈E

( f c
i, jy

c
i, j + f e

i, jy
e
i, j)+ ∑

i∈N
hizi

+T0 ∑
j∈N

(
∑k∈K ∑i∈N uk,c

i j +uk,e
i j

C j−∑k∈K ∑i∈N uk,c
i j +uk,e

i j

) (14)

The new objective function is not linear. Hence next we propose an approach to solve the

resulting non-linear problem and finally evaluate the impact of congestion on hub-and-

spoke network design.
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D. Linearization of Congestion

As stated earlier, the new objective function is non-linear due to the added congestion

term. However, solving non-linear problems is typically difficult in optimization solvers.

Hence, the typical approach to tackle such problems relies on linearization techniques.

In this section, we will discuss how to transform a non-linear problem into a linear one

using a piecewise linear approximation approach.

The non-linear congestion term is the following:

f (u) =
∑k∈K ∑i∈N(u

c,k
i j +ue,k

i j )

C j−∑k∈K ∑i∈N(u
c,k
i j +ue,k

i j )
∀ j ∈ N (15)

As shown in Figure IV.2, the continuous and concave function f (u) can be approximated

arbitrarily closely with a finite set of piecewise linear functions that are tangent to f (u).

It can be represented by the following equation:

f (u)≈ max
∀u∈R

( f ′(u)(u−u)+ f (u)) (16)

Hence, taking equation (16) as a reference, our congestion function (15) for every node j

can be approximated by the following equation:

f j(u)≈ max
∀u∈R

(∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2
(∑

k∈K
(uc,k

i j +ue,k
i j )− ∑

k∈K
(uc,k

i j +ue,k
i j ))

+ ∑
i∈N

(uc,k
i j +ue,k

i j )

C j−∑k∈K(u
c,k
i j +ue,k

i j )
) (17)
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Figure IV.2: Linear Approximation of an example
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E. Model Formulation

Adding the congestion costs to problem (1)-(11), the resulting model is as follows:

min ∑
k∈K

∑
(i, j)∈E

(cc,k
i j uc,k

i j + ce,k
i j ue,k

i j )+ ∑
(i, j)∈E

( f c
i, jy

c
i, j + f e

i, jy
e
i, j)+ ∑

i∈N
hizi +T0 ∑

j∈N
θ j (18)

s.t. ∑
j∈N+

(uc,k
i j +ue,k

i j )− ∑
j∈N−

(uc,k
i j +ue,k

i j ) =


wk if i = O(k)

−wk if i = D(k)

0 otherwise

∀i ∈ N, ∀k ∈ K,

(19)

∑
k∈K

uc,k
i j ≤ qc

i jy
c
i j, ∀(i, j) ∈ E (20)

∑
k∈K

ue,k
i j ≤ qe

i jy
e
i j, ∀(i, j) ∈ E (21)

yc
i j ≤

zi + z j

2
, ∀(i, j) ∈ E (22)

yc
i j + ye

i j ≤ (zi + z j), ∀(i, j) ∈ E (23)

θ j ≈ max
∀u∈R

(∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2 ∑

k∈K
(uc,k

i j +ue,k
i j )+ ∑

i∈N

(uc,k
i j +ue,k

i j )

C j−∑k∈K(u
c,k
i j +ue,k

i j )

−∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2 ∑

k∈K
(uc,k

i j +ue,k
i j )), ∀ j ∈ N (24)

∑
k∈K

∑
i∈N

(uc,k
i j +ue,k

i j )≤C j, ∀ j ∈ N (25)

∑
i∈N

(uc,k
i j +ue,k

i j )−wk j ≤Mz j, ∀ j ∈ N,∀k ∈ K (26)

uc,k
i j ,u

e,k
i j ≥ 0, ∀(i, j) ∈ E (27)

yc
i j,y

e
i j ∈ {0,1}, ∀(i, j) ∈ E (28)

zi ∈ {0,1}, ∀i ∈ N (29)

θ j ≥ 0, ∀ j ∈ N (30)
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Since the objective function is a minimization, constraint (24) can be replaced by an

inequality, of the form

θ j ≥ ∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2 ∑

k∈K
(uc,k

i j +ue,k
i j )+ ∑

i∈N

(uc,k
i j +ue,k

i j )

C j−∑k∈K(u
c,k
i j +ue,k

i j )

−∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2 ∑

k∈K
(uc,k

i j +ue,k
i j ), ∀u ∈ R,∀ j ∈ N (31)
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Hence, the resulting model is:

min ∑
k∈K

∑
(i, j)∈E

(cc,k
i j uc,k

i j + ce,k
i j ue,k

i j )+ ∑
(i, j)∈E

( f c
i, jy

c
i, j + f e

i, jy
e
i, j)+ ∑

i∈N
hizi +T0 ∑

j
θ j (32)

s.t. ∑
j∈N+

(uc,k
i j +ue,k

i j )− ∑
j∈N−

(uc,k
i j +ue,k

i j ) =


wk if i = O(k)

−wk if i = D(k)

0 otherwise

∀i ∈ N, ∀k ∈ K,

(33)

∑
k∈K

uc,k
i j ≤ qc

i jy
c
i j, ∀(i, j) ∈ E (34)

∑
k∈K

ue,k
i j ≤ qe

i jy
e
i j, ∀(i, j) ∈ E (35)

yc
i j ≤

zi + z j

2
, ∀(i, j) ∈ E (36)

yc
i j + ye

i j ≤ (zi + z j), ∀(i, j) ∈ E (37)

θ j ≥ ∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2 ∑

k∈K
(uc,k

i j +ue,k
i j )+ ∑

i∈N

(uc,k
i j +ue,k

i j )

C j−∑k∈K(u
c,k
i j +ue,k

i j )

−∑
i∈N

C j

(C j−∑k∈K(u
c,k
i j +ue,k

i j ))
2 ∑

k∈K
(uc,k

i j +ue,k
i j ), ∀u ∈ R,∀ j ∈ N (38)

∑
k∈K

∑
i∈N

(uc,k
i j +ue,k

i j )≤C j, ∀ j ∈ N (39)

∑
i∈N

(uc,k
i j +ue,k

i j )−wk j ≤Mz j, ∀ j ∈ N,∀k ∈ K (40)

uc,k
i j ,u

e,k
i j ≥ 0, ∀(i, j) ∈ E (41)

yc
i j,y

e
i j ∈ {0,1}, ∀(i, j) ∈ E (42)

zi ∈ {0,1}, ∀i ∈ N (43)

θ j ≥ 0, ∀ j ∈ N (44)
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F. Cutting Plane Approach

The set of points u ∈ R, at which f (u) is approximated, is not known beforehand. How-

ever, they are generated with a cutting plane approach. The cutting plane approach aims

at solving the problem iteratively, where each iteration generates a solution that is not

necessarily optimal.

Since the set R is not known, this approach starts with an empty set /0, where constraint

(38) is ignored. Thus, the optimal solution for the relaxed problem, which is a minimiza-

tion, results in a lower bound [LB]. Given this solution, the actual congestion is computed

according to equation (14) and hence a feasible solution is then obtained which provides

an upper bound [UB]. Furthermore, given the optimal solution of the relaxation, a tan-

gential approximation is obtained and a new constraint of the form (31) is added to the

problem which is then resolved. Optimality is reached once the [LB] and the [UB] are

within a desired gap ε . Here, the two bounds act as a stopping criteria for this iterative

algorithm.

27



CHAPTER V

COMPUTATIONAL RESULTS

In this chapter, we propose three different experiments to illustrate the performance of our

proposed model.

A. Small networks to illustrate the difference in optimal routes when congestion is in-

cluded.

B. Randomly generated instances by the Mulgen generator [14] to illustrate the compu-

tational performance of our model.

C. A real network based on an example inspired by the French railroad map.

CPLEX 12 is used as an optimization solver with default settings and a CPU time limit of

10,000 seconds is set.

A. Sample Networks

In this section, we present two sample examples. The first network consists of 10 nodes,

20 edges and 2 commodities. Figure V.1 shows the network topology in addition to the

flow of the two commodities. Figure V.2 represents the optimal routing throughout the 10

nodes while taking into account the congestion costs in the network. However, Figure V.3

represents the optimal routing through the 10 nodes but without taking into account the

congestion costs (congestion costs = 0). In Figure V.2, nodes 1, 3, 4, and 8 are chosen as

the hubs while nodes 2, 5, 7, and 10 are the spokes. However, in Figure V.3, nodes 3, 4,

and 8 are chosen as hubs, while nodes 1, 2, 5, 7, and 10 are the spokes.
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Figure V.1: Network of 10 nodes, 20 edges, 2 commodities

Table 2 as well as Figure V.4 show the congestion on the 10 nodes for both figures. When

congestion costs are taken into account, nodes are less congested. For example, as shown

in Table 2, node 3 had a congestion of 1.049. When congestion costs were added to the

objective function, congestion on node 3 dropped to 0.63. The same effect is observed on

node 4 where it dropped from 0.497 to 0.26 and on node 8 where it dropped from 1.109

to 0.67.

Figure V.5 represents a larger network with 10 nodes, 46 edges and 3 commodities. Fig-

ure V.6 shows the optimal routing solution for this network with congestion costs. Nodes

1, 2, 6, 7, 8, and 10 represent the hubs for the network while nodes 3, 4, 5, and 9 are the

spokes. On the other hand, Figure V.7 represents the optimal route when congestion costs

are 0. Nodes 1, 6, 7, 8, 9, and 10 are the hubs whereas nodes 3, 4, and 5 are the spokes

for this network.
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Figure V.2: Solution of the network in Figure V.1 with congestion costs

Table 3 and Figure V.8 illustrate the difference between congestion on all nodes with and

without congestion costs taken into account. As mentioned earlier, congestion costs affect

nodes by decreasing their congestion. For example, congestion on node 6 dropped from

0.845 to 0.58, on node 10 it dropped from 3.25 to 3.10 and on node 7 from 0.966 to 0.952.
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Figure V.3: Solution of the network in Figure V.1 without congestion costs

Figure V.4: Comparison of congested nodes for the 10 nodes, 20 edges and 2
commodities network
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Table 2: Comparison of congested nodes for the 10 nodes, 20 edges and 2 commodities
network

Nodes With Congestion Costs Without Congestion Costs

1 0 0
2 0.52 0.52
3 0.63 1.049
4 0.26 0.497
5 0.16 0.16
6 0 0
7 0 0
8 0.67 1.109
9 0 0

10 0.14 0.142

Figure V.5: Network of 10 nodes, 46 edges, 3 commodities
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Figure V.6: Solution of the network in Figure V.5 with congestion costs

Table 3: Comparison of congested nodes for the 10 nodes, 46 edges and 3 commodities
network

Nodes With Congestion Costs Without Congestion Costs

1 0.149 0.149
2 0.096 0
3 0.206 0.206
4 0.213 0.213
5 0.492 0.49
6 0.58 0.845
7 0.952 0.966
8 0.402 0.407
9 0 0.007

10 3.10 3.25
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Figure V.7: Solution of the network of Figure V.5 without congestion costs

Figure V.8: Comparison of congested nodes for the 10 nodes, 46 edges and 3
commodities network
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B. Computational Performance

We tested the proposed MCHS network using instances that are generated randomly with

the Mulgen generator [14]. Several sets of instances were created with varying numbers

of nodes (30, 40, and 50), edge density (10% to 90%), and commodities (3, 5, 7, and 10).

The number of edges for our directed graph is as follows:

E = N ∗ (N−1) (45)

Where E is the number of edges and N is the number of nodes.

We note that for each network size, 5 instances were generated randomly and average

results were reported.

Table 4 represents the results of all the instances generated with 30 nodes and varying %

density and commodities. It shows the difference between taking congestion costs into

account in the objective function and disregarding them. It is important to notice that the

% gap is not zero for all the instances which means that not all of them reached optimality

within our time limit (10,000 seconds).

Table 4 states that the CPU time increases as the number of commodities increases. In

addition, as shown in Table 4 and Figures V.9, V.10, V.11, and V.12, solving networks with

30 nodes while taking congestion costs into account demands more computational time

than disregarding these costs. For example, for 30 nodes, 90% density and 7 commodities,

the % gap differs from 0% to 7.87% while the average CPU time differs from 6,261.9

seconds to 10,000 seconds.

Table 5 illustrates the change in CPU time and % gap, as the % density and the number

of commodities vary for 40-node networks, when including or disregarding congestion

costs. Similarly, Table 5 and Figures V.13, V.14, V.15, and V.16 show that it is harder to

solve networks when congestion costs are included in the objective function. When they
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Table 4: Results of networks with 30 nodes, varying % density and commodities

Nodes % density Commodities

% gap
without

Congestion
Costs

% gap
with

Congestion
Costs

Avg CPU
time

without
Congestion

Costs

Avg CPU
time
with

Congestion
Costs

30 20% 3 0 0 18.02 32.52
30 30% 3 0 0 64.28 132.25
30 40% 3 0 0 123.86 170.82
30 50% 3 0 0 139.64 248.88
30 60% 3 0 0 164.99 207.09
30 70% 3 0 0 97.76 282.85
30 80% 3 0 0 252.04 368.07
30 90% 3 0 0 173.18 483.55

30 20% 5 0 0 78.01 145.72
30 30% 5 0 0 141.77 245.55
30 40% 5 0 0 575.75 1066.55
30 50% 5 0 0 1115.58 1686.44
30 60% 5 0 0 1259.69 2787.48
30 70% 5 0 0 698.02 1027.92
30 80% 5 0 0 935.92 1802.11
30 90% 5 0 0 1449.87 3413.53

30 20% 7 0 0 241.39 418.71
30 30% 7 0 0 806.35 1714.26
30 40% 7 0 0 2163.14 4592.29
30 50% 7 0 0 4462.19 8980.27
30 60% 7 0 0 5124.83 9399.67
30 70% 7 0 0 4849.37 8782.68
30 80% 7 0 0 3240.47 6613.76
30 90% 7 0 7 6261.90 10000.3

30 20% 10 0 0 1780.47 3753.36
30 30% 10 0 6 7025.61 10000.3
30 40% 10 0 0 8470.75 9857.89
30 50% 10 0 12 8158.02 10000.3
30 60% 10 15 18 10000.1 10000.4
30 70% 10 17 22 10000 10000.2
30 80% 10 21 26 10000.1 10000.7
30 90% 10 0 24 8755.92 10000.4

are included, networks with 10 commodities and 20%-90% density do not reach optimal-

ity within the time limits of 10,000 seconds (Table 5). However, when these costs are

disregarded, networks with 10 commodities and 30%-90% density do not reach optimal-

ity.This is also illustrated in Figure V.16 where the curves reach saturation.
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Figure V.9: CPU time vs. Edge Density for 30 nodes and 3 commodities networks

Figure V.10: CPU time vs. Edge Density for 30 nodes and 5 commodities networks

Table 6 shows the relationship between congestion costs and CPU time for 50-node net-

works with varying edge % density and commodities. It is important to note first that for

50-node networks, 5 commodities is the maximum number of commodities reaching op-

timality within our time limit. Table 6 as well as Figures V.17 and V.18 prove that dealing

with congestion costs needs more computational time. Figure V.18 shows that the curve

where congestion costs are included reaches saturation from 30 to 80% density.

The computational results show that the Multicommodity Hub-and-Spoke network design

is computationally very challenging even for the state of the optimization solver.
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Figure V.11: CPU time vs. Edge Density for 30 nodes and 7 commodities networks

Figure V.12: CPU time vs. Edge Density for 30 nodes and 10 commodities networks
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Figure V.13: CPU time vs. Edge Density for 40 nodes and 3 commodities networks

Figure V.14: CPU time vs. Edge Density for 40 nodes and 5 commodities networks

Figure V.15: CPU time vs. Edge Density for 40 nodes and 7 commodities networks
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Table 5: Results of networks with 40 nodes, varying % density and commodities

Nodes % density Commodities

% gap
without

Congestion
Costs

% gap
with

Congestion
Costs

Avg CPU
time

without
Congestion

Costs

Avg CPU
time
with

Congestion
Costs

40 10% 3 0 0 62.77 82.21
40 20% 3 0 0 126.29 666.06
40 30% 3 0 0 512.10 933.16
40 40% 3 0 0 512.12 724.99
40 50% 3 0 0 702.02 2040.40
40 60% 3 0 0 295.63 2619.85
40 70% 3 0 0 830.71 3087.54
40 80% 3 0 0 750.98 1544.63
40 90% 3 0 0 1222.57 1608.79

40 10% 5 0 0 184.37 186.66
40 20% 5 0 0 1098.95 2927.92
40 30% 5 0 0 1531.75 4301.87
40 40% 5 0 0 2314.7 5334.37
40 50% 5 0 0 3764.04 7490.91
40 60% 5 0 0 4238.89 5076.33
40 70% 5 0 0 2948.35 6045.43
40 80% 5 0 0 4302.55 6984.12
40 90% 5 0 0 5016.87 8932.11

40 10% 7 0 0 300 587
40 20% 7 0 0 3186.38 6983.08
40 30% 7 0 0 6563.74 9411.85
40 40% 7 0 0 7600 9060.45
40 50% 7 0 0 8751.71 9181.05
40 60% 7 0 0 7123.57 7929.16
40 70% 7 0 0 8200 9701.26
40 80% 7 0 0 9060.98 9071.98
40 90% 7 0 0 9263.32 9400.9

40 10% 10 0 0 979.64 1131.25
40 20% 10 0 5 9340.91 10000.4
40 30% 10 15 8 10003.8 10008.3
40 40% 10 28 21 10000.5 10005.3
40 50% 10 33 33 10003.3 10006.3
40 60% 10 30 39 10000.0 10000.3
40 70% 10 28 37 10002.6 10005.8
40 80% 10 39 45 10000.5 10000.6
40 90% 10 32 47 10000.1 10000.2
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Figure V.16: CPU time vs. Edge Density for 40 nodes and 10 commodities networks

Table 6: Results of networks with 50 nodes, varying % density and commodities

Nodes % density Commodities

% gap
without

Congestion
Costs

% gap
with

Congestion
Costs

Avg CPU
time

without
Congestion

Costs

Avg CPU
time
with

Congestion
Costs

50 10% 3 0 0 162.35 1500
50 20% 3 0 0 631.99 1750.97
50 30% 3 0 0 1842.24 4549.98
50 40% 3 0 0 4371.92 5055.56
50 50% 3 0 0 2220.50 5629.54
50 60% 3 0 0 1709.36 5722.62
50 70% 3 0 0 1959.88 7736.54
50 80% 3 0 6 3473.86 10003.4

50 10% 5 0 0 487.48 1988.46
50 20% 5 0 0 2877.21 8404.80
50 30% 5 0 5 5759.06 10001.3
50 40% 5 0 9 7388.33 10008.2
50 50% 5 0 6 8459.41 10000.4
50 60% 5 0 10 7610.30 10004.1
50 70% 5 0 7 7893.57 10001.1
50 80% 5 0 28 8505.48 10001.4
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Figure V.17: CPU time vs. Edge Density for 50 nodes and 3 commodities networks

Figure V.18: CPU time vs. Edge Density for 50 nodes and 5 commodities networks
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C. French Rail Network

In this section we consider an example based on the French rail network. Figure V.19

illustrates the existing French railroad map. We constructed an example for this rail net-

work, by adding potential routes between cities. The newly constructed network is shown

in Figure V.20. This figure has 88 nodes (i.e. 88 cities) and 394 edges.

To model the flow of traffic across the network, we consider two origins of flows; one in

the North (Paris) and one in the South (Montpellier). Even if more accurate designs might

be obtained when more origins of flow are considered, however, we were bound by the

computational time. This lead to the consideration of only two origins of flow.

This network was run with our proposed model while including congestion costs. Figure

V.21 shows the optimal route for the French network for people whose origins are Paris

or Montpellier.

We obtained different routes than Figure V.19. The main differences are shown, for ex-

ample, when going from Paris to Tours. In Figure V.19, this is possible through two

different routes: Paris-Orleans-Tours or through a direct route (Paris-Tours). However,

according to the optimal solution obtained by our proposed model, there is only one

optimal route for people going from Paris to Tours and it is by passing by Le Mans.

Another example would be the route from Paris to Dole. Figure V.19 states that the

route is Paris-Dijon-Dole. However, Figure V.21 shows that the only way to get to

Dole is through this particular route: Paris-Reims-Saint Diziers-Dijon-Dole. This reaf-

firms the main aim of hub-and-spoke networks which is getting the optimal route at

the lowest costs, however, not through direct routes. To further prove our point, let’s

take for example people leaving Montpellier and headed to Clermont Ferrand. Figure

V.19 would take them to Nimes, to Ales and finally to Clermont Ferrand. However, our

built network would take them through the following route: Montpellier-Nimes-Arles-

Avignon-Orange-Montelimar-Valence-Grenoble-Lyon-Lapalisse-Clermont Ferrand. This
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is a longer route, however, it is surely a cheaper one. In addition, this real-life appli-

cation proves that dealing with multiple origin-destination pairs needs the modelling of

multicommodities, where every origin-destination pair is considered a commodity.

Figure V.19: France Railroad Map
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Figure V.20: Modified France Railroad Map
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Figure V.21: Solution of the France Railroad Map
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CHAPTER VI

CONCLUSION

Hub-and-spoke networks present a lot of advantages, mainly related to the consolidation

of flow resulting in cost reduction due to economies of scale. However, having to deal with

one type of products does not mesh well with real-life applications. Thus, it is primordial

to seek a model that accomplishes the flow of several commodities in a hub-and-spoke

network. This thesis aimed at proposing such a model.

We developed a mixed integer problem combining multicommodity within the hub-and-

spoke network. Knowing that congestion plays a primordial role in hub-and-spoke net-

works, we presented an extension to the model that includes congestion costs to lessen

their effect on the network. We then conducted computational testing using instances gen-

erated randomly with the Mulgen generator. In addition, we presented a real case network

inspired by the French rail network. It was noticeable that including congestion costs in

the model made it more challenging to solve. It required a longer computational time.

Nevertheless, with 3 hours of CPU time, a maximum of 50 nodes and 5 commodities can

be solved to optimality.
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