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The main goal of this research is to predict the behavior of T-stub connections 

associated with deep beams, including column deformations, which meet the 

prequalification requirements for moment resisting frames (MRF).  The results of 

experimental tests and finite element (FE) simulations are used to develop a stiffness 

model that predicts the behavior of bolted thick built-up T-stub connections including 

column flange deformation, and accounting for primary and secondary prying effect.  The 

model incorporates the overall T-stub and column flange deformations of key component 

elements, and includes nonlinear material behavior of bolts and base material, and accounts 

for pretension of fasteners and contact interaction.  The stiffness model consists of linear 

and nonlinear springs which model deformations from tension bolt elongation, slip-

bearing, bending of T-stub flange, elongation of the T-stem, column flange deformation, 

and accounts for primary and secondary prying forces.  The behavioral characteristics of 

the T-stub/column flange system are examined including strength, stiffness, deformation, 

and energy dissipation.  A proposed strength model that predicts the capacity of the 

column flange for the failure mode of full plastification at the flange-to-web connection of 

the column (K-zone) followed by interior tension bolt fracture is developed.  Furthermore, 

closed form expressions that are based on stiffness modeling techniques are developed to 

predict the energy dissipation capacity of the T-stub/column flange system with and 

without continuity plates.  Comparison of the models predictions with experimental and FE 

data shows that the proposed models accurately predict the connection and the column 

flange load-deformation response.  This research provides guidelines for engineers to 

account for the additional forces induced in the tension bolts and for the maximum 

rotational capacity demand in the connection which are required for seismic analysis and 

design. 
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CHAPTER I 

INTRODUCTION & LITERATURE REVIEW 

 

A. Introduction 

T-stub connections are considered to be one of the stiffest types of connections, as 

shown in Fig. 1 and may be described as rigid connections.  Characterizing the behavior of 

T-stub connections requires complete knowledge about its strength, stiffness, and ductility. 

 

 

Fig. 1 – Moment rotation characteristics of typical connections (AISC Specs 2005). 

 

Previous research work on the behavior of T-stub connections dealt with 

estimating the strength, stiffness, and deformation using experimental investigation [1–6], 

finite element simulations (FE) [2,3,6–9], and stiffness and strength modeling [8,10–16] 

including primary prying effect and assuming rigid column flange. 
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The accuracy of the above analytical models was demonstrated to be acceptable by 

comparing the results predicted with experimental results.  Continuity plates in columns 

are often used in connections to stiffen the column flange and web in order to resist large 

forces transmitted by the beam flange.  It was reported that column flange bending 

displacements were relatively small compared to those of T-stub flange when continuity 

plates were provided.  Also, the column flange deformation was considered negligible 

when column flange thickness is larger than that of T-stub flange [8].  However, for thick 

flange T-stub connections that are connected to a thinner column flange, the deformation 

from the column side is significant when continuity plates are not provided.  In such cases, 

the column flange is subjected to bending, and may undergo significant deformations.  

This behavioral characteristic of the column flange causes the secondary prying 

phenomenon as shown in Fig. 2(a).  Secondary prying refers to the additional forces 

introduced in the tension bolts due to bending of the column flange [8].  Fig. 2(b) shows a 

typical design sketch for a built-up T-stub connection associated with deep girders. 
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16, 7/8" A490-X
8, 1 1/8" A490

W24x76

W14x257

5, 1" A490-X

¾” Continuity plates 4 places

 

Fig. 2 – (a) Top view of the T-stub/column flange system, (b) Design sketch for a typical 

built-up T-stub connection associated with W24x76 beam. 

 

(a) 

(b) 
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Investigation of the secondary prying effect in thick built-up T-stub connections 

has been developed to predict only its strength and did not account for its stiffness and 

ductility [8].  Therefore, a stiffness model of the T-stub/column flange system that takes 

into account the effect of secondary prying is needed to predict the force-deformation 

response.  The existing T-stem model available in the literature [11-12,15] is based on 

broad assumptions regarding the stress concentrations around the shear bolts and does not 

account for the contribution of the stresses outside the bolt gage area when dealing with 

thick built-up T-stubs where wide stems are supplied.  Therefore, a modification of 

existing models is needed to accurately predict the response of wide T-stems associated 

with deep girders. 

In this research, a proposed model based on stiffness approach is developed to 

predict the built-up T-stub response including the column flange deformation with and 

without continuity plates.  With its simplicity in application when compared to other 

numerical methods (i.e. FE analysis), the proposed model is capable of accounting for 

primary and secondary prying; and allows the prediction of tension bolt elongation, 

bending deformation of the T-stub flange, bearing deformation of the T-stem, and column 

flange deformation with and without continuity plates.  These ultimate deformation 

predictions can be used to calculate the maximum rotational capacity of thick T-stub 

connection including column flange.  Furthermore, a column flange strength model that 

predicts the capacity of full plastification at the flange-to-web connection of the column 

(K-zone) followed by interior tension bolt fracture is developed.  Also, closed form 

equations are proposed to predict the energy dissipation of thick flange T-stub 
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connections/column flange system including the secondary prying effect.  In addition to 

the above contributions, this research also provides a simplified and rational method for 

theoretically predicting the strength, stiffness, and ductility of T-stub connections 

including column flange bending and its effect on the connection behavior.  The stiffness 

models developed in this research were validated against the results of an experimental 

program carried out earlier by Hantouche et al. [2]. 

 

B. Literature review 

Several researchers have attempted to characterize the behavior of T-stub 

connections without considering the contribution from the column flange. 

 

1. Hu et al. (2011) slip and bearing model 

Hu et al. [11] proposed a stiffness model to characterize the behavior of the slip 

and bearing mechanism in T-stub connections.  Slip limits the stresses transformed from 

the shear bolts to the plates and contribute to significant energy dissipation.  Slip arises 

from the direct shear forces on the slip planes that are originated from the axial tensile 

force on the connection.  Once the slip force exceeds the slip resistance, slip will occur 

between the two surfaces in contact.  Hu et al. [11] proposed the following equation to 

predict the slip resistance: 

slip sc b s scP 1.13 h T n n                                                                                                           (1) 

where μ is the friction coefficient depending on the surfaces in contact, hsc is the 

coefficient for the standard bolt holes, Tb is the minimum pretension force in the bolt as 
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specified by AISC Specs, ns is the number of shear planes, and nsb is the number of shear 

bolts. 

The slip plateau corresponds to the construction clearance, Δc.  In their model, Hu et al. 

[11] assumed that the slip occurs with some resistance, and thus the slip stiffness, Ki,slip, 

was defined as 1% of the initial stiffness, where the initial stiffness corresponds to the pre-

slip stiffness.  The initial stiffness can be calculated as proposed by Hu et al. [11] by 

determining the slip load from eq. (1) above and the pre-slip displacement, Δp.  The pre-

slip displacement was defined as 0.2 mm, where the value of 0.2 was used as 

recommended by Rex and Esterling.  Thus, the initial stiffness can be calculated as 

follows: 

slip

i ,slip

p

P
K


                                                                                                                          (2) 

After, the slip occurs, the shear bolts starts to bear against the plates (beam flange and T-

stem), and the stiffness picks up again.  Hu et al. [11] proposed the following equation to 

predict the bearing stiffness, Ke,bearing: 

e,bearing brK K                                                                                                                       (3) 

where Kbr corresponds to the bolt bearing stiffness and can be computed as follows 

as proposed by Hu et al. [11]: 

0.8

br y w bK 120F t d                                                                                                                (4) 

 where Fy corresponds to the yield stress of the base material, tw corresponds to the 

thickness of the plate on which the bolts are bearing, and db correspond to the bolt 

diameter. 
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2. Swanson and Leon (2001) T-stem model 

Swanson and Leon [15] proposed a bilinear stiffness model to predict the behavior 

of the T-stem.  The model consists on defining 4 parameters corresponding to the initial T-

stem stiffness, Ke,stem, the tangent stiffness of the T-stem, Kp,stem, the yield load, Fy,stem, and 

the ultimate deformation of the T-stem, Δu,stem.  To compute the initial stiffness of the T-

stem a tapered beam model was assumed.  The width of the end of the tapered beam model 

was set equal to the flange width of the connected beam, and the angle of inclination of the 

tapered edges relative to the axis of the beam was limited to a value no greater than 30˚ 

based on a research conducted by Whitmore (1952).  Material excluded by this angle was 

not considered to contribute to the stiffness of the T-stem.  The stresses were assumed to 

be distributed uniformly along the length of the tapered length of the T-stem.  Thus, the 

elastic stiffness proposed by Swanson and Leon [15] can be calculated as follows: 

 
2

sb s

e,stem

s
sb s

sb s

4L t E tan
K

g
2L tan g ln

2L tan g







 

  
 

                                                                        (5) 

where Lsb is the distance from the first pair of shear bolts to the last pair, ts is the 

thickness of the T-stem, E is the elastic modulus of elasticity of the T-stem, θ is the 

effective angle, and gs is the gauge between two rows of shear bolts. 

The plastic stiffness definition proposed by Swanson and Leon [15] was based on 

the assumption that the steel material between the last two bolt holes (nearest to the T-

flange) starts to strain-harden before the rest of the cross section.  Thus, the plastic stiffness 

can be calculated as follows: 
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 s h,eff s s

p ,stem

b

g d t E
K

3d


                                                                                                      (6) 

where dh,eff is the effective bolt hole diameter, db is the bolt diameter, and Es is the 

tangent modulus of elasticity of the base material. 

The yield load of the T-stem proposed by Swanson and Leon [15] was based on the 

assumption that the stress distribution in the T-stem cross section is uniform.  Although 

this assumption does not reflect the true complexity of the stress distribution in the T-stem, 

it gave good results when compared to experimental results.  The yield load can be 

calculated as follows: 

 y ,stem y eff h,eff sP F W 2d t                                                                                                    (7) 

The ultimate deformation of the T-stem as defined by Swanson and Leon [15] was 

based on the assumption that the initial fracture in the T-stem initiates in the material 

between the last two bolt rows.  Thus, the ultimate deformation can be defined as the sum 

of the plastic deformation in the material in this region and the elastic deformation of the 

rest of the material of the T-stem.  The following equation defines the ultimate deformation 

as proposed by Swanson and Leon [15]: 

y ,stem

u ,stem fract h,eff

e,stem

P
d

K
                                                                                                      (8) 

where εfract corresponds to the strain at fracture of the steel. 
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3. Hantouche et al. (2013) T-flange model 

Hantouche et al. [10] developed a model to predict the behavior of built-up thick-

flange in T-stub connections with Complete Joint Penetration (CJP) and fillet welds.  The 

model is based on a combination of finite element and stiffness modeling approach that 

includes deformation of key components. The model also accounts for the nonlinear 

behavior of the base material (using a rotational spring) and the tension bolts (using a multi 

linear force-deformation curve to model their behavior).  In addition, the model 

incorporates the pretension of the tension bolts and the contact between the T-flange and 

column flange (prying).  The model predicts partial yielding at the K-zone of the T-flange 

followed by tension bolt fracture.  The model also predicts the contact force between the T-

flange and the column flange, the onset of yielding of the T-flange and the partial yielding 

penetration into the flange thickness as the external tensile load on the connection 

increases. 
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CHAPTER II 

COMPONENT FINITE ELEMENT MODELING 
 

FE analyses are conducted to better understand the behavior of the column flange 

and to provide data for validation of the proposed column flange model.  The FE models 

include the column, the T-stub, part of the beam flange, and the tension and shear bolts.  

All components are modeled as three dimensional (3D) solid elements available within the 

software package ABAQUS [17].  The FE analyses conducted consider geometric and 

material nonlinearity, pretensioning of bolts, and contact interactions between element 

surfaces. 

 

A. Three-dimensional solid (3D) FE model components modeling 

In the FE models, continuum three-dimensional 20 nodes reduced integration 

element are used (C3D20-R) for all components as shown in Fig. 3.  The model includes 

the column, T-stem, T-flange, 8 tension bolts, 18 shear bolts, and a plate representing the 

beam flange.  The welds are not explicitly modeled but rather the tie constraint option 

between the welded surfaces is used in ABAQUS.  The tie constraint option in ABAQUS 

allows the fusing of the two surfaces that are in contact even if the mesh on both surfaces 

is different.  The interactions between the different parts are modeled using the finite 

sliding with a coefficient of friction of 0.25. 
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Fig. 3 – Discretization of the model assembly using C3D20-R elements. 

 

B. Material properties 

The Von Mises yield criterion is used in this research to define the onset of 

yielding.  A bilinear stress-strain model with isotropic hardening is used to model the 

behavior of the bolts and the base material.  For the bolt material, the yield and ultimate 

stress are taken as 117.53 kips (811 MPa) and 126.50 ksi (872 MPa), respectively.  In 

addition, the yield and ultimate strain are taken as 0.00405 and 0.03084, respectively.  

Note that the values of the stress and strain are selected based on tensile coupon tests 

conducted on structural steel specimens [2].  In the FE models the bolts ‘threads are not 

modeled but instead the gross area is used.  For the base material, A572 Gr. 50 steel is 

used.  According to the 2006 AISC seismic design manual [18], the values of the minimum 

specified tensile yield and ultimate stress can be increases by 10%.  Thus, the values for 

the yield and ultimate tensile stress, corresponding to A572 Gr. 50 steel, used in this 
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research are 55.00 ksi (385 MPa) and 71.50 ksi (500 MPa), respectively.  The yield strain 

used for the base material is 0.00189, and the plastic strain is 0.09827 (50 εy).  For all parts, 

Young’s modulus is assumed as 29000 ksi (203000 MPa) and poisson’s ratio is taken as 

0.30. 

 

C. Boundary conditions 

Boundary conditions are applied to the model throughout the analysis as shown in 

Fig. 4.  In the pretension step, the nodes on the top surface of the shear and tension bolts’ 

heads in addition the nodes on the surface of the T-flange are restrained against translation.  

This is done to ensure contact between the bolts and plates during the analysis.  The top 

and bottom cross section of the column are also restrained against any translation and 

rotation.  In the loading step, all boundary conditions applied to the bolts and the T-flange 

are deactivated.  The boundary conditions on the top and bottom cross section of the 

column are kept activated. 
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Fig. 4 – Boundary conditions applied on the model. 
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D. Loading 

The loads are applied on the model in two steps.  During the pretension step, the 

loads are pretentioned by applying a temperature change to the restrained bolt shank 

equivalent to the minimum specified pretension force in the AISC specifications.  The 

temperature change required for the corresponding bolt diameter is obtained as follows: 

0

b

B
T

EA
 


                                                                                                                         

(9) 

where B0 (kips or kN) is the minimum bolt pretension force as specified in the 

ANSI/AISC 360-10, A (in
2
 or cm

2
) is the nominal gross area of the bolt, α (in./in.˚C) is the 

coefficient of thermal expansion, and E (ksi or MPa) is the Young’s modulus of elasticity.  

By applying a negative temperature change the bolts’ head and nut will come into contact 

with the T-stub and column flange.  During the loading step, a tensile axial load is applied 

to the structure by applying a surface traction force to the beam flange as shown in Fig. 4.  

The Newton-Raphson method is used in the analysis. 
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CHAPTER III 

STIFFNESS MODELING 
 

In this research, the mechanisms that influence the behavior of thick built up T-

stub connection are accounted for.  These include tension bolt elongation, bending of T-

stub flange, elongation of the T-stem, relative slip of the T-stub, bearing deformation of the 

T-stem, and column flange deformation including primary and secondary prying effect.  

Modeling the T-stub behavior is complex because all of these mechanisms interact with 

one another and hence simple strength checks cannot provide the necessary stiffness, 

ductility, and energy dissipation information that is required for seismic design. 

 

A. Proposed T-stem stiffness model 

Modeling the behavior of the T-stem is complex due to the non-uniform 

distribution of stresses along its cross section and its length, the interaction between the T-

stem and the shear bolts, and the friction forces between the beam flange and the T-stem.  

The bilinear stiffness model developed by Swanson and Leon [15] showed disagreement 

when comparing with experimental and the FE results [2, 8].  This disagreement is due to 

the fact that the model does not account for the contribution of the stresses whenever 

yielding occurs along the full cross-section area.  FE studies carried out in this research on 

thick built-up T-stubs, for thickness of the T-stem ranging from ½ in. (1-1/4 cm) to 2 in. (5 

cm), showed that the main contribution of the deformation along the length of the T-stem 

is a function of the thickness of the T-stem as shown in Figs. 5(a) and 5(b).  From the FE 
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results, the following equation is developed for describing the relationship between the 

effective T-stem length contributing to the deformation and the thickness of the T-stem 

with a linear fit of  R
2
 = 0.99: 

-0.5661 1.3615 ( )

0.2228 1.3615 ( )

L t US unitsssb

t SI unitssLst

 
 

 
                                                                                    (10) 

where Lsb(in. or cm) is the effective T-stem length contributing to the deformation, 

Lst (in. or cm) is the total length of the T-stem, and ts(in. or cm) is the thickness of the T-

stem. 

Note that the above equations are derived based on a regression analysis including 5 data 

points that cover the range of stem thickness between ½ in. (1-1/4 cm) to 2 in. (5 cm).  

Grade 50 steel was assumed when deriving the above equations. 

Eq. (10) was incorporated into the stiffness model developed in this research for 

predicting the behavior of the T-stem. 

 

 

Fig. 5 – (a) von Mises stress contours along the cross section and length of the T-stem for a 

1 in. thick T-stem, (b) von Mises stress contours along the cross section and length of the 

T-stem for a 1-1/2 in. thick T-stem. 

 

(a) (b) 
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1. Elastic stiffness 

In this research, unlike the model developed by Swanson and Leon [15] where 

only part of the cross-section of the T-stem was considered effective, the total stem cross-

section was assumed to contribute to its stiffness, ductility and strength.  This assumption 

is consistent with the FE results performed in this research where the von Mises stresses 

were found to propagate to the outer edges of the T-stem and along the full cross-section as 

shown in Figs. 5(a) and 5(b).  During the elastic range, the load is assumed to be uniformly 

distributed along the width of the T-stem, and therefore the elastic stiffness of the T-stem, 

Ke,stem, can be written as follows: 

,

W t Estem s
Ke stem

L
sb



                                                                                                             

 (11) 

where Wstem(in. or cm) is the width of the T-stem, and E (ksi or MPa) is the elastic 

modulus of the base material. 

 

2. Yield load 

The yield load, Py,stem, is calculated by multiplying the cross section net area by the 

material yield stress as given by the equation below: 

 2,P F W d ty stem y stem sh
                                                                                                    (12) 

where Fy (ksi or MPa) is the yield stress of the base material and dh (in. or cm) is 

the hole diameter. 

Note that when deriving the above relationship, the T-stem is assumed to be subjected only 

to axial load, and that its behavior can be represented by a bar element. 
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3. Plastic stiffness 

The plastic stiffness is calculated based on the assumption that the material, 

extending from the first to the n
th

 row of bolts and around the bolt holes (Figs. 5(a) and 

5(b)), starts to strain-harden before the remaining part of the cross section which is mainly 

dependent on the thickness of the T-stem, ts.  The plastic T-stem stiffness, Kp,stem, can be 

written as follows: 

 0.5

,

L g d t Ee s s sh
K p stem

L
sb

 
                                                                                              (13) 

where Le (in. or cm) is defined as the edge distance, and the factor 0.5 is a constant 

representing the contribution of stresses outside the gage distance where the value was 

obtained from FE investigation, gs (in. or cm) is the vertical gage distance between 

successive rows of shear bolts, and Es (ksi or MPa) is the tangent modulus of elasticity. 

 

4. Ultimate Load 

The ultimate load of the T-stem, Pu,stem, was calculated by assuming a uniform 

stress distribution along the cross section of the T-stem in accordance with Hu et al. [11] 

and Swanson and Leon [15].  The ultimate load was calculated by multiplying the net cross 

sectional area by the material ultimate stress.  The following equation is used to calculate 

the ultimate load at failure: 

 2, ,
P F W d tu stem u stem sh eff

                                                                                                 (14) 

where Fu (ksi or MPa) is the ultimate stress of the material. 

 



19 

 

5. Results 

The accuracy of the proposed stiffness model of the T-stem described above is 

validated by comparing the model predictions against experimental results generated by 

Hantouche et al. [2] and the predictions of other existing models available in the literature 

[11-12, 15].  This is shown in the total force-deformation response of a ¾ in. (1.9 cm) thick 

T-stem depicted in Fig. 6(a).  It can be seen from the results presented in Fig. 6(a) that the 

proposed stiffness model predicts experimental results considerably better than existing 

models (Swanson and Leon [15]).  The stiffness T-stem model predicted an ultimate load 

capacity in the T-stem of 278 kips (1234 kN) and ultimate deformation capacity of 0.6 in. 

(1.48 cm) which are only 1% and 5% different from the experimentally measured ultimate 

load and deformation capacities of 281 kips (1250 kN) and 0.62 in. (1.55 cm), respectively. 

In addition, the proposed stiffness model is compared to the total-force 

deformation response of a 1 ¼ in. (3.2 cm) thick T-stem as shown in Fig. 6(b).  It can be 

seen that the proposed model can predict with good agreement the ultimate deformation 

and ultimate load of the T-stem.  The stiffness T-stem model predicted an ultimate load 

capacity in the T-stem of 375 kips (1668 kN) and ultimate deformation capacity of 0.0542 

in. (0.13 cm) which are only 4.5% and 3.5% different from the experimentally measured 

ultimate load and deformation capacities of 391 kips (1739 kN) and 0.0524 in. (0.13 cm), 

respectively. 
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Fig. 6 – (a) Proposed T-stem stiffness model versus experimental and FE results (3/4 in. 

stem thickness) [2], (b) Comparison of the experimental results with the proposed modified 

T-stem model (TMCL-02). 

 

The proposed stiffness is also compared to the FE results performed by Hantouche 

et al. (2012) [8] for thick built-up T-stub associated with deep girders (W24x76 and 

W30x108) and the results are presented in Figs. 7(a) and 7(b).  It can be seen that the 
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proposed stiffness model can predict with reasonable agreement the initial stiffness of the 

T-stem.  Note that for those cases yielding of the T-stem did not occur before failure of the 

connection. 

 

 

 

Fig. 7- Comparison of the finite element results with the proposed modified T-stem model 

associated with, (a) W24x76 beam, (b) W30x108 beam. 
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B. Thick flange T-stub/tension bolt stiffness model 

In this research, the existing stiffness model developed by Hantouche et al. [10] is 

used to determine the force-deformation response for thick flange T-stub connections.  The 

model is composed of a bolt model and a flange model, and is able to predict partial 

yielding of the flange at the K-zone followed by bolt fracture.  The model uses geometrical 

and mechanical properties consistent with previous stiffness models that are based on 

incremental analysis [12-15].  Nonlinear material behavior is accounted for in this 

formulation.  A multi-linear force-deformation model is used for the bolts to idealize the 

behavior obtained from tensile test conducted for the bolts [10].  The partial yielding in the 

thick T-flange is accounted for by incorporating a nonlinear torsion spring at the K-zone.  

The bolt model incorporates a variable bolt stiffness that captures the changing behavior of 

the bolts as a function of the load that they are subjected to. 

 

1. Results 

The performance of the stiffness model for a thick built-up T-stub flange was 

validated by comparing the model prediction with experimental and FE results.  The model 

[10] was found to accurately predict the force-deformation response taking into account 

bolt pretensionning, partial yielding of the flange, and contact phenomena as shown in Fig. 

8. 
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Fig. 8 – Existing T-flange stiffness model versus experimental and FE results [10]. 

 

C. Slip and bearing stiffness model 

The existing stiffness model developed by Hu et al. [11] is used to reproduce the 

force-deformation response of the slip and bearing mechanism.  The model combines the 

bearing deformation of the T-stem, and the relative slip between the T-stem and the beam 

flange.  The model predicts first deformation from the T-stem until the applied load 

reaches the slip load.  At the onset of the slip load, relative slip between the beam flange 

and the T-stem occurs leading to a significant loss of stiffness.  As the load increases 

beyond the slip load the shear bolts start to bear against the beam flange and thus the 

stiffness increases again.  Loading continues until yielding of the T-stem.  Finally, at a 

certain load level beyond yielding, net section fracture of the T-stem occurs. 
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1. Results 

The slip and bearing stiffness model is validated by comparison with FE results 

performed by Hantouche et al. [8] for thick built-up T-stub connections associated with 

W30x108 beam as shown in Fig. 9.  It is shown that the model accurately predicts the 

force-deformation curve for the slip and bearing.  Note that the slight difference in the slip 

plateau between the existing model and the FE results is due to stress concentrations that 

occurred around the bolt holes in the FE analysis which are not considered in the existing 

model.  In other words, due to the holes, the region around the bolt holes will feel much 

higher stresses which will results in additional deformations around the bolt hole.  This 

complex distribution of the stresses is captured by the FE model but is not considered by 

the stiffness model since it is assumed that the stresses in the T-stem are uniform on the 

cross section of the T-stem. 

 

 

Fig. 9 – Existing slip and bearing stiffness model versus FE results for built-up T-stubs 

associated with W30x108 beams. 
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D. Column flange stiffness model 

1. Excluding continuity plates effect 

In moment resisting frames, thick-flange T-stub connections are needed with deep 

girders to resist the large moment expected.  This may lead to a connection in which the T-

stub flange is thicker than the column flange.  In such cases, the column flange is subjected 

to bending, and may undergo significant deformations.  This behavioral characteristic of 

the column flange causes the secondary prying phenomenon.  A stiffness model for 

predicting the strength, stiffness, and ductility of column flange with and without 

continuity plates considering the effect of secondary prying is needed for seismic design.  

The following proposed stiffness model is based on the results obtained from the FE and 

experimental results. 

 

a. Bolt stiffness 

The bolt stiffness model proposed by Hantouche et al. [10] and Swanson and Leon 

[15] with some modification is used to incorporate the change in stiffness of the tension 

bolts throughout the loading history of the column flange.  The model is composed of four 

linear segments.  The first segment models the bolt in the pretension step, the second 

segment models the bolt in the elastic range, the third segment models the bolt after first 

yielding has been reached and the fourth segment models the bolt in the plastic range.  The 

stiffness in the elastic is computed based on the assumption that the bolt can be simulated 

by an axial spring.  The stiffnesses of the other segments were taken as ratios of the elastic 

stiffness based on a series of experiments data performed by Hantouche et al. (2012) [2].  
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The stiffness of the bolt in the pretension step was considered as 5 times the elastic 

stiffness assuming that the bolt is rigid when subjected to compression.  The following 

relationships are used to describe the bolt stiffness: 

Bolt Force (kip or kN)                Bolt Stiffness (kip/in. or kN/cm) 

0 0B B 
 

5
,1

K K
b b

                                                                       (15) 

0.950B B Bn 
 ,2

K K
b b

                                                                       (16) 

0.95B B Bn n 
 

0.1
,3

K K
b b

                                                                   (17) 

B B Bn fracture
 

   
0.03

,4
K K

b b
                                                                  (18) 

where B (kips or kN) is the current force in the tension bolt, B0 (kips or kN) is the 

minimum pretension force per bolt as specified by ANSI/AISC 360 [19], Bn (kips or kN) is 

the tensile capacity of the bolt, Bfracture (kips or kN) is the fracture load of the bolt, and Kb 

(kips/in. or kN/cm) is the stiffness of the bolt in the elastic range. 

 

b. Elastic-plastic column flange model 

A model that uses geometrical and mechanical properties consistent with previous 

stiffness models that are based on incremental analysis is presented.  The model predicts 

the response of the column flange as yielding starts and the plastic zone penetrates through 

its thickness.  Nonlinear material behavior and shear deformation are accounted for in the 

formulation. 

The column flange response is modeled analytically on the basis of a beam 

representation for the flange, a multi-linear spring for the bolts, and accounting for the 

contact phenomenon that occurs between the T-stub flange (assumed rigid) and the column 
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flange.  The model considers the limit states of fully plastic hinges forming near the K-

zone and at the bolt line.  The secondary prying force at the tip of the flange was simulated 

using pin supports.  Fig. 10 shows the column flange model proposed to characterize its 

force-deformation behavior. 

 

 

Fig. 10 – Complete column flange geometry. 

 

The system is loaded by applying a vertical force at point A (K-zone).  The change 

of the reaction load at point C (column flange tip) at every load increment is the prying 

gradient, and the reaction load at failure of the bolts is the secondary prying force.  The 

ratio of the applied force, T, at point A (K-zone) to the displacement, Δ, of point A (K-

zone) is the stiffness of the column flange.  The location of the linear spring is assumed to 

occur at a distance of half bolt diameter (db/2) away from the bolt centerline as shown in 

Fig. 10. 

Several failure modes of the column flange are possible.  Fig. 11 shows the 

decision tree of the possible column flange states considered in this research.  Note that the 

subscripts used for the stiffness term in the decision tree correspond to the state of the 

A C C 
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column flange at the K-zone and bolt line and to the state of the tension bolts.  For 

example, keee,kk, represents the stiffness of the column flange when it is still in its elastic 

range with both tension bolts in the k
th 

stiffness state.  Whereas the term, kpee,kk, represents 

the stiffness of the column flange when plastification has occurred at the K-zone and both 

tension bolts are in the k
th

 stiffness state. 

 

 

Fig. 11 – Decision tree for half column flange. 

 

According to the detailed FE investigation performed by Hantouche et al. [2,8], 

full plastification of the column flange occurred only at the K-zone, and both the bolt lines 

were still in their elastic range when interior tension bolt fracture occurred for all the tested 

cases.  Note that the stiffness terms corresponding to the state of full plastification of the 

bolt lines were not derived since they are not applicable for the cases studied in this 

research. 
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The following series of equations represent the stiffness, Keee,kk, the change in the 

interior and the exterior bolt force ΔBint and ΔBext respectively, the change in the moment at 

the K-zone, ΔMK-zone, and the prying gradient, ΔQ, terms for different column flange limit 

states: 

i. Elastic column flange limit state 
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ii. Plastic hinge formation at K-zone of the column flange limit state 
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where ΔT (kips or kN) is the change in the applied load, a (in. or cm) is the length 

of a column flange measured from the inside edge of the exterior bolt line to the outside 

edge of the column flange, b (in. or cm) is the gage distance between the tension bolts, c 

(in. or cm) is the length of the column flange measured from the inside edge of the interior 

bolt to the location of occurrence of the plastic hinge at the K-zone of the column flange, 

γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11, γ12, γ13, γ14, γ15 and γ16 are constants used in the 

calculation of the column flange stiffness, A (in
2
 or cm

2
) is the cross sectional area, fs is the 

shape factor used in computing the shear deformations, G (ksi or MPa) is the shear 

modulus of elasticity, I (in
4
 or cm

4
) is the second moment of inertia of a cross section, Kb1,k 

(kips/in. or kN/cm) represents the stiffness of the interior bolt in the k
th

 range, and Kb2,k 

(kips/in. or kN/cm) represents the stiffness of the exterior bolt in the k
th

 range.  Note that 

from the FE investigation performed by Hantouche et al. [2, 8], it was determined that the 

plastic hinge forms at a distance of ¼ in. away from the middle of the column web. 

The stiffness terms were derived to be applied in an incremental computer 

automated iterative solution as shown in Fig. 12.  At the beginning of the loading step, the 

flange is still in its elastic state.  An engineer would start by determining the elastic 

stiffness of the flange keee,kk.  Next, several checks need to be made to determine which 

limit state will be reached first.  The possible limit states are: (1) full plastification of the 

K-zone, (2) yielding of the interior bolt, (3) yielding of the exterior bolt, and (4) separation 

of the column flange and T-stub flange.  Then, the prying gradient, the moment at the K-
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zone and the forces in the interior and exterior bolts corresponding to the current load step 

are computed.  Finally, incremental displacement corresponding to the current load step is 

calculated, and the new stiffness is determined and the process is repeated again until the 

bolt force reaches Bfracture.  The entire procedure is illustrated in Fig. 12. 
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Fig. 12 – Flowchart of the incremental stiffness column flange model. 
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After determining the amount of secondary prying using the stiffness model 

above, the tension bolt diameter is recomputed to account for the additional force 

introduced to the bolts due to secondary prying effect.  This is done by increasing the 

applied load by the amount of secondary prying and thus the new bolt diameter can be 

computed.  Note that limit states (3) and (4) were not included in the analysis since the FE 

results shows that those limit states are not possible for the cases studied. 

 

c. Model performance 

The performance of the column flange model was assessed by comparing the 

model predictions with the FE analysis results generated by Hantouche et al. [8] for thick 

built-up T-stubs associated with deep girders.  The FE results were validated against 

experimental results performed by Hantouche et al. [2] and are deemed valid for 

comparison with the stiffness model results.  Note that the cases considered in this analysis 

cover all the range of deep girders according to the current design practice. 

Figs. 13(a) and 13(b) show a comparison of the proposed stiffness model versus 

the FE results for thick built-up T-stubs associated with W24x76 and W30x108 beams, 

respectively.  The proposed stiffness model predicts interior tension bolt fracture after full 

plastification of the column flange K-zone for both W24x76 and W30x108 beams at an 

applied load of 755 kips (3358 kN) and 787 kips (3500 kN), respectively.  This is around 

1% and 6% less than the failure load predicted by the FE which are 765 kips (3403 kN) 

and 838 kips (3727 kN), respectively.  The ultimate deformation predicted by the proposed 

model is 0.15 in. (0.36 cm) and 0.14 in. (0.35 cm) for W24x76 and W30x108 beams, 
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respectively.  This is around 11% and 14% less than the ultimate deformation predicted by 

the FE models which are 0.16 in. (0.41 cm) and 0.15 in. (0.38 cm), respectively.  This 

difference can be due to the fact that the column flange was modeled as a beam in the 

proposed column flange stiffness model which results in additional bending in the bolts 

predicted by the column flange model, and thus predicts the failure of the tension bolts at a 

lower load, and therefore resulting in a stiffer behavior.  Furthermore, when applying the 

proposed column flange stiffness model the parameter, p, corresponding to the tributary 

area per bolt, was assumed to be equal to half of the breadth of the T-flange which does not 

reflect the complexity of the stress distribution in the column flange which propagates 

through the height of the column flange as the load increases. 
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Fig. 13 – Comparison of the FE results with the proposed column flange stiffness model: 

(a) associated with W24x76 beam with tcf/tTf = 0.60, (b) associated with W30x108 beam 

with tcf/tTf = 0.67 

 

The proposed stiffness model predicts full plastification of the column flange K-

zone followed by yielding of the interior tension bolts.  Loading continues until yielding of 

the exterior bolts occurs.  Finally, at a certain load level the interior tension bolts fracture. 

Fig. 14 shows a comparison of the results obtained by the column flange model 

and the FE analysis for a W24x76 girder having a ratio of column flange thickness to T-

stub flange thickness tcf/tTf equal to 0.90.  The proposed model predicts failure of the 

interior tension bolts at an applied load of 658 kips (2927 kN) which conforms to the FE 

results.  This is around 5% less than the failure load predicted by the FE analysis which is 

698 kips (3103 kN).  In addition, the model predicts a deformation at failure of 0.06 in. 

(0.15 cm).  It can be clearly seen that the deformation predicted by the column flange 

model is negligible compared to the deformation that occurs in the column flange for the 
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case where tcf/tTf is less than 1 which conforms to the study performed by Hantouche et al. 

[8]. 

 

 

Fig. 14 – Comparison of the FE results with the proposed column flange stiffness model 

associated with W24x76 beam with tcf/tTf = 0.90. 

 

2. Including continuity plates effect 

Continuity plates are usually provided in steel connections to stiffen the column 

flange and web which results in a reduction in the overall ductility of the connection.  

Several experimental programs [5, 24-26] have been conducted on bolted T-stub 

connections including continuity plates to study the behavior of the system under 

monotonic and cyclic loading.  The results of these studies show no significant 

deformation from the column flange side.  In addition, according to the detailed FE 

investigation performed by Hantouche et al. [8] on bolted thick built-up T-stub 

connections, it was shown that for the cases where continuity plates are provided, the 
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deformation from the column flange is negligible and therefore secondary prying effect is 

not significant.  The cases investigated in the study above included deep beams with depth 

ranging from 24 in. (60 cm) till 36 in. (90 cm), having tcf/tTf ranging from 0.60 to 1.33.  In 

order to account for the additional stiffness in the column flange due to the continuity 

plates, a relationship was developed to relate the elastic stiffness of the force-deformation 

curve of the column flange with and without continuity plates as a function of tcf/tTf.  The 

study included 4 cases with tcf/tTf ranging between 0.60 and 1.20.  The following 

relationship has been obtained with an R
2
=0.94: 

1.5 0.7, ,

t
cf

K Kcp eee eee kk
t
Tf

 

  
  

  
  

                                                                                          (44) 

where Kcp,eee (kips/in or kN/cm) is the elastic stiffness of the column flange 

including continuity plates, tcf (in. or cm) is the thickness of the column flange, and tTf (in. 

or cm) is the thickness of the T-stub flange. 

 

E. Total assembly 

After each of the different deformation mechanisms has been computed, the total 

force-deformation curve of the connection is obtained by assembling the contribution from 

individual components at common incremental loads.  Linear interpolation is used to make 

sure that all load points from all the component stiffness models are included in the total 

force-deformation curve.  Fig. 15 shows a comparison of the total force-deformation curve 

obtained from the stiffness model and the FE analysis results for thick built-up T-stubs 

associated with W24x76 girders with a ratio tcf/tTf equal to 0.67. 
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Fig. 15 – Total connection deformation associated with W24x76 beam including column 

flange deformation. 

 

The proposed stiffness model predicts the force-deformation response of the T-

stub/column flange system with excellent agreement when compared with FE results.  In 

addition, the model predicts an ultimate capacity of the connection of 755 kips (3358 kN) 

which is around 1% lower than the actual capacity predicted by the FE analysis which is 

765 kips (3403 kN).  The model also predicts an ultimate deformation of 0.36 in. (0.91 cm) 

which is around 2% lower than the actual deformation predicted by the FE analysis which 

is 0.37 in. (0.94 cm). 

 

F. Model limitations 

The proposed stiffness model is based on rational mechanistic assumptions and 

experimental and FE results.  Simplifications and assumptions were made to reduce the 

complexity level of the problem.  Therefore, some limitations exist: 
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 The proposed T-stem model only applies to thick built-up T-stubs associated with 

deep girders ranging from W24 to W36 depth. 

 The column flange model is very sensitive to the material properties of the tension 

bolts, thus accurate knowledge of the material properties being used is preferable 

when using the proposed column flange model to predict the force-deformation 

curve. 

 When using the column flange model, the tributary area per tension bolt was 

assumed to be located around the tension bolt holes due to stress concentrations 

around the holes.  Although this assumption does not reflect the true complexity of 

the stress distribution in the column flange, however, acceptable results were 

achieved. 
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CHAPTER IV 

COLUMN FLANGE STRENGTH MODEL 
 

The possible failure modes of the column flange are: (1) formation of a plastic 

hinge at the K-zone followed by fracture of the interior tension bolts, (2) formation of a 

plastic hinge at the 1
st
 bolt line followed by fracture of the interior tension bolts, (3) full 

plastification of the column flange, and (4) pure tension bolt fracture.  The FE analysis 

performed by Hantouche et al. [8] thick built-up T-stub connections showed that when the 

ratio tcf/tTf ranges between 0.6 and 1, failure mode (1) occurs.  A strength model that 

predicts the capacity of the column flange including secondary prying effect when failure 

mode (1) occurs is developed.  Fig. 10 shows the state of the column flange at failure when 

failure mode (1) occurs.  Moment equilibrium of the column flange results in the 

expression below: 

   1 2T a b c B c B b c MK zonen n                                                                                     (45) 

whereB1n (kips or kN) is the tensile capacity of the exterior tension bolt, and B2n 

(kips or kN) is the tensile capacity of the interior tension bolt. 

At failure of the interior bolts, the moment at the K-zone, MK-zone, is equal to the 

plastic moment capacity of the column flange, Mp, and can be written as follows: 

2

4

t p
cf

M Fp y

 
 
 
 

                                                                                                                 (46) 

Equations (45) and (46) yield the ultimate capacity of the column flange. 
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                                                                                   (47) 

The performance of the column flange strength model was validated by comparing 

the model predictions with the FE analysis results performed by Hantouche et al. [8] for 

thick built-up T-stubs associated with W24x76 and W30x108 girders having a ratio, tcf/tTf, 

of 0.60 and 0.67, respectively.  The proposed strength model predicts an ultimate capacity 

of the column flange for W24x76 and W30x108 beams of 752.60 kips (3348 kN) and 967 

kips (4301 kN), respectively.  This is around 2% less and 13% higher than the ultimate 

capacity predicted by the FE model.  Note that the proposed strength model will be further 

validated in the future against experimental results. 
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CHAPTER V 

ENERGY DISSIPATION 
 

A. Energy dissipation T-stub/column flange system: A closed-form model 

1. Energy dissipation from the T-stub 

Energy dissipation is defined as the area under the outer hysteresis loop in a cyclic 

test.  The prediction of the energy dissipation of a connection is important as it enables the 

designers to predict the overall connection ductility and thus leads to an appropriate design 

where the rotation demand is adequate with the rotation capacity [3].  Many research 

studies have been conducted on bolted T-stub connections under cyclic loading aiming at 

identifying the geometric and mechanical parameters affecting the behavior of T-stub 

connections under cyclic loading [12,20-21, 27].  In addition, Piluso and Rizzano [3] 

proposed a model to predict the force-deformation curve of the T-stub connection under 

cyclic loading knowing its geometrical and mechanical properties.  The model predicts the 

behavior of the connection under cyclic loading once rules for strength and stiffness 

degradation are established and the monotonic behavior of the connection have been 

derived.  According to the experimental results obtained by Hantouche et al. [2], thick 

built-up T-stub connections have similar behavior under monotonic and cyclic loading.  

This was validated by computing the values for the stiffness degradation, which is defined 

as the change in the initial stiffness of the force-deformation curve under cyclic loading 

between the first and the last cycle, the failure modes for different specimens under 

monotonic and cyclic loading and the ultimate capacity of the connection under monotonic 
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and cyclic loading.  Table 1 summarizes these values.  Note that for some of the cases 

considered in this research, the values for the stiffness degradation could not be calculated, 

because of some noise in the cyclic data, and thus were not reported. 

 

Table 1 -Comparison of the monotonic and cyclic results 

 

It can be seen that for most studied cases the failure mode is identical under 

monotonic and cyclic tests.  In addition, the ultimate capacity of the connection is identical 

under monotonic and cyclic load.  From the results, it can be seen that the stiffness after 

the last cycle is almost equal to the initial stiffness, and therefore the stiffness degradation 

for the case of thick built-up T-stub connections can be neglected as shown in Figs. 16(a) 

Specimen 

Stiffness 

Degradation 

after the 

Last Cycle 

Ultimate 

Capacity 

Under 

Monotonic 

Load 

Failure 

Mode Under 

Monotonic 

Load 

Ultimate 

Capacity 

Under 

Monotonic 

Load 

Failure 

Mode 

Under 

Monotonic  

Load 

TMCS-01/ 

TCCS-01 
3.6 % 

280.7 kips 

(1250 kN) 

Net Section 

Fracture 

281.4 kips 

(1252 kN) 

Net Section 

Fracture 

TMCS-02/ 

TCCS-02 
17.0 % 

281.8 kips 

1254 (kN) 

Net Section 

Fracture 

285.5 kips 

(1270 kN) 

Net Section 

Fracture 

TMFS-01/ 

TCFS-01 
7.0 % 

282.6 kips 

(1258 kN) 

Net Section 

Fracture 

280.0 kips 

(1246 kN) 

Net Section 

Fracture 

TMFS-02/ 

TCFS-02 
8.9 % 

277.9 kips 

(1237 kN) 

Net Section 

Fracture 

280.1 kips 

(1247 kN) 

Net Section 

Fracture 

TMFS-03/ 

TCFS-03 
10.3 % 

263.3 kips 

(1172 kN) 

Net Section 

Fracture 

271.0 kips 

(1206 kN) 

Net Section 

Fracture 

TMFS-04/ 

TCFS-04 
3.9 % 

264.2 kips 

(1176 kN) 

Net Section 

Fracture 

267.6 kips 

(1191 kN) 

Net Section 

Fracture 

TMFL-03/ 

TCFL-03 
9.4 % 

394.6 kips 

(1756 kN) 

Tension Bolt 

Fracture 
- 

Tension 

Bolt 

Fracture 
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and 16(b).  Finally, based on the experimental results performed by Hantouche et al [2], no 

sudden slip was observed under cyclic loading. 

 

 

 

Fig. 16 – Comparison of the monotonic and cyclic load/deformation curve for thick built-

up T-stub connections: (a) with T-stem thickness of 3/4 in. (TMCS-02/TCCS-02) [22-23], 

(b) with T-stem thickness of 1-1/4 in. (TMFL-03/TCFL-03) [22-23]. 
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From the FE investigation and experimental results performed by Hantouche et al. 

[2,8], two failure modes were associated with thick built-up T-stub connections associated 

with deep girders: (1) T-stem fracture, and (2) tension bolt fracture.  Based on these failure 

modes, eight scenarios were identified depending on: (1) the limit state of the T-flange and 

T-stem at failure of the connection, and (2) the occurrence of the relative slip between the 

beam flange and the T-stem.  The following equations are used to predict the T-stub energy 

dissipation capacity, ED, depending on the governing yielding mechanisms and the failure 

modes of the connection: 

Case 1 

22
1 1 ,

1
2 2, e,

PP y flangeu
E

D
K Ke stem flange

                                                                                             (48) 

Case 2 

22
1 1 ,

1 2
2 2, e,

PP y flangeu
E

D
K Ke stem flange

                                                                                        (49) 

Case 3 

 
22

1 1 1, ,2 2
, 1

2 2 2, , e,

PPy stem y flange
E P Pu y stemD

K K Ke stem p stem flange

                                               (50) 

Case 4 

 
22

1 1 1, ,2 2
, 1 2

2 2 2, , e,

PPy stem y flange
E P Pu y stemD

K K Ke stem p stem flange

                                                  (51) 

Case 5 

 
1 1 12 2

, , , e,
2 2 2,

E K P P P K Pe stem y stem u y stem uflangeD
K p stem

                                                   (52) 
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Case 6 

 
1 1 12 2

, , , 2e,
2 2 2,

E K P P P K Pe stem y stem u y stem uflangeD
K p stem

                                        (53) 

Case 7 

 
22

1 1 1, ,2 2
, 3

2 2 2, , e,

PPy stem y flange
E P Pu y stemD

K K Ke stem p stem flange

                                                      (54) 

Case 8 

 
22

1 1 1, ,2 2
, 2 3

2 2 2, , e,

PPy stem y flange
E P Pu y stemD

K K Ke stem p stem flange

                                                  (55) 

  
2 2 2 2 2

1

1
4 3

t F t F ty y y yTf Tf Tf
F Ly u y
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 
  

 
   

  
     

                                                       (56) 

   
21 1 2

0.04 0.04, ,2
2 2

P P K P P P K Pe stem u e stemslip slip slip slip slip slip
K

bearing

       
  
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        (57) 
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 
  

 
   

  
     

                                                      (58) 

where Pu (kips or kN) is the ultimate load of the T-stub, Py,flange (kips or kN) is the 

yield load of the T-flange, tTf (in. or cm) is the thickness of the T-flange, θu (rad/in. or 

rad/cm) is the rotation of the flange at which bolt fracture occurs, θc (rad/in. or rad/cm) is 

the rotation of the flange at which stem fracture occurs, θy (rad/in. or rad/cm) rotation of 

the flange at which partial yielding of the T-flange occurs, εy is the strain at yielding of the 

steel, Pslip (kips or kN) is the load that causes relative slip between the beam flange and the 

T-stem, Δslip (in. or cm) is the relative slip between the beam flange and the T-stem which 
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is equal to the hole clearance, L (in. or cm) is the moment arm for the T-flange, stiffness 

model, Ke,flange (kips/in. or kN/cm) is the initial stiffness of the T-flange stiffness model, 

Kbearing (kips/in. or kN/cm) is the bearing stiffness of  the slip and bearing stiffness model, 

and λ1, λ2, and λ3are constants used for the calculation of the energy dissipation capacity of 

the T-stub. 

The prediction of the energy dissipation capacity, ED, of thick built-up T-stub 

connections associated with deep girders requires the following steps: 

(1) Prediction of the T-stem force-deformation curve using the proposed stiffness 

model in section 2.1; 

(2) Prediction of the T-flange force-deformation curve using the flange partial yielding 

stiffness model developed by Hantouche et al. [10]; 

(3) Prediction of the slip and bearing force-deformation curve using Hu et al. [11] 

stiffness model; 

(4) Assembly of the monotonic force-deformation curve using the above component 

stiffness models; 

(5) Identifying the T-stem and T-flange state at failure of the connection; 

(6) Computation of the energy dissipation capacity of the T-stub using the Eqs. (48) to 

(58); 

The performance of the energy dissipation model was validated by comparing the 

model predictions with the energy dissipation capacity values predicted from the 

experimental results [2] having T-stem thickness of ¾ in. (1.90 cm) and 1-1/4 in. (3.13 

cm).  The model accurately predicts the energy dissipation capacity of the thick built-up T-
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stubs.  The model predicts a value of 67 kips-in. (746 kN-cm) for thick built-up T-stubs 

with T-stem thickness of 1-1/4 in. (3.13 cm) which is around 12% lower than the value 

obtained from the experimental results which is 77 kips-in. (854 kN-cm).  The model also 

predicts an energy dissipation capacity of 146 kips-in. (1622 kN-cm) for thick-built-up T-

stubs with T-stem thickness of ¾ in. (1.90 cm) that is around 1% higher than the value 

obtained from experimental results which is 145 kips-in. (1611 kN-cm). 

 

2. Energy dissipation from the column flange side without continuity plates 

After identifying the major parameters that impact the energy dissipation which 

was found to be tcf /tTf, cases were selected and modeled using ABAQUS.  For cases where 

tcf /tTf  is larger than 0.76 or when continuity plates are supplied, the contribution of the 

column flange side to the total energy dissipation of the T-stub/column flange system is 

considered negligible [8]. 

The results obtained showed that for cases where tcf /tTf ranges between 0.60 to 

0.76, the energy dissipation capacity from the column flange without continuity plates 

ranges between 66% and 54% of the total energy dissipated, respectively.  The results 

showed that the column flange side has a significant contribution to the overall energy 

dissipation capacity of the connection. 
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CHAPTER VI 

CONCLUSIONS 

From the FE and experimental results, as well as the models developed in this 

research, several conclusions can be draw: 

 In designing thick flange T-stub connections associated with deep girders, all 

yielding mechanisms and failure modes are needed to be identified including 

secondary prying phenomenon which is considered a potential failure mode in 

connections studied in this research. 

 A proposed stiffness model that predicts the force-deformation curve of thick T-

stub/column flange system with and without continuity plates including secondary 

prying effect is developed. 

 Also, a proposed strength model that predicts the capacity of the column flange for 

the failure mode of full plastification at the K-zone followed by interior bolt 

fracture is developed.  The proposed stiffness and strength models show excellent 

agreement when comparing with experimental and FE results. 

 Closed form expressions that predict the energy dissipation capacity of the 

connection with and without continuity plates were developed and showed 

excellent agreement when comparing with experimental results.  The results show 

that the column flange contributes significantly to the overall ductility of the 

connection. 
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 This research provides engineers guidelines to design for the additional load 

induced in the tension bolts and for the maximum rotational capacity demand of the 

connection which are required in seismic analysis and design. 

 This research also provides guidelines to detail connections without continuity 

plates (if other requirements were satisfied) which result in gaining additional 

ductility while satisfying the strength requirements. 

 One of the main advantages of the proposed stiffness model is that, in addition to 

its accuracy, it requires much less computational effort than that required using FE 

analysis, and can be used as well in more advanced modeling applications for 

seismic analysis and design.  The proposed column flange stiffness model can be 

easily implemented using any simple computer programming language. 

Several areas o interest that are complimentary to this research work and that has 

not been investigated in this research can be done in the future.  Thus, the following 

recommendations are suggested: 

 Conduct an experimental program on thick built-up T-stubs including column 

flange deformation to further validate the proposed column flange model in this 

research. 

 Use the results of the experimental program suggested above, along with the 

existing FE results, to develop strength models for the column for all possible 

failure modes. 

 Develop stiffness models to characterize the behavior of the panel shear zone and 

the beam and include them in the overall behavior of the T-stub connection. 
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 Develop a complete cyclic stiffness model to characterize the unloading and 

reloading branches of the T-stub/column system behavior.  
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APPENDIX 
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I. SOURCE CODE 

function [  ] = CF( 

Ke1,Ke2,Ke3,Ke4,Ke5,Ke6,Ke7,Fy,p,tf,Bn,Bfract,B0,E,I,K1,K2,a,b,c,fs,G,A ) 

%CF Summary of this function goes here 

%   Detailed explanation goes here 

 

%Bint: Current Force in the Interior Bolt 

%Bfract: Fracture Force of the Bolt 

%DeltaT: Incremental Applied Load 

%Q: Prying Force (Interior and Exterior Bolt) 

%Bext: Current Force in the Exterior Bolt 

%fs: Shape Factor for Shear Deformation 

%G: Shear Modulus of Elasticity 

%Mkzone: Current Moment at the K-zone 

%Kiii: Corresponds to the Stiffness of the System with Respect to the State 

%of the Bolt and the k-zone 

%Mpbline: Plastic Moment at the Bolt Line 

%Mpkzone: Plastic Moment at the Kzone 

%Bn: Nominal Tensile Strength of the Bolt 

%Mks: State of the K-zone 

%B1s: State of the Interior Bolt 

%B2s: State of the Exterior Bolt 

 

%Define the Different Stiffness States for each Bolt 

k1 = [0.1*K1 0.01*K1 0.01*K1]; 

k2 = [0.1*K2 0.01*K2 0.01*K2]; 

 

%Calculate the Limit States 

Mpkzone = 1.1*Fy*p*tf^2/4; 

 

%Mpbline = 1.1*(1-dh/p)*Fy*p*tf^2/4; 

BY1 = 0.95*Bn; 

BY2 = Bn; 

BY3 = Bfract; 

 

%Set the Initial State for Moment K-zone, Interior Bolt and Exterior Bolt 

B1s = 1; 

B2s = 1; 

Mks = 1; 

 

%Set the First Incremental Load Value and Initialize Total Load Vector T 

T = 0; 

DeltaT = 5; 
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%Initialize the Displacement Vector 

D = 0; 

Delta = []; 

 

%Initialize the Load Vector  

Load = 0; 

 

%Initialize the Moment at the Kzone 

Mkzone = 0; 

 

%Set the Force in the Bolts to be Equal to the Pretension Force 

Binterior = 0; 

Bexterior = 0; 

 

update = 0; 

 

i = 1; 

j = 0; 

l = 0; 

 

%Calculate Constants Z,X and V 

    Z = 1/(1/K1-0.5*a*(b+c)^2/(E*I)); 

    X = 1/K2+b^3*Z*a*c^2/(E*I*6*2*E*I)-(a+b)*c^2/(2*E*I)-

(a+b)*(b+c)^2*a*c^2*Z/(4*E*I*E*I)-(fs/(G*A))*b*a*c^2*Z/(2*E*I); 

    V = ((a+b)^3/(6*E*I)-

a^3*Z*b^3/(36*(E*I)^2)+a*(a+b+c)^2*Z*b^3/(12*(E*I)^2)+(fs/(G*A))*a*Z*b^3/(6*E*I)

-(a+b)*(a+b+c)^2/(2*E*I)+(a+b)*(b+c)^2*a^3*Z/(12*(E*I)^2)-

(a+b)*(b+c)^2*a*(a+b+c)^2*Z/(4*(E*I)^2)-(fs/(G*A))*(a*Z/(E*I))*(a+b)*(b+c)^2*0.5-

(fs/(G*A))*(a+b)+(fs*a^3*b*Z)/(G*A*6*E*I)-(fs*b*Z*a*(a+b+c)^2)/(G*A*2*E*I)-

(fs/(G*A))^2*b*a*Z); 

 

%Calculate the Prying Force Q (Q=Qint+Qext) (kips) 

DeltaQ = DeltaT/(a^3*Z/(6*E*I)-a*(a+b+c)^2*Z/(2*E*I)+V*Z*(a*c^2)/(2*E*I*X)-

fs*a*Z/(G*A)-1+V/X); 

 

%Calculate the Force in the Interior and Exterior Bolt     

DeltaBinterior = V*DeltaQ/X; 

 

DeltaBexterior = (DeltaQ*a^3/(6*E*I)-

0.5*DeltaQ*a*(a+b+c)^2/(E*I)+0.5*DeltaBinterior*a*c^2/(E*I)-

(fs/(G*A))*DeltaQ*a)*Z; 

 

%Calculate the Moment at the K-zone 
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DeltaMkzone = DeltaT*(b+c)-DeltaBinterior*b-DeltaQ*a; 

 

%Set the Termination Condition to be the Interior Bolt Fracture 

while(Binterior<Bfract) 

 

%Calculate T that Causes Yielding of the Kzone 

 

ifMks == 1 

Tk = 1000; 

    Z = 1/(1/K1-0.5*a*(b+c)^2/(E*I)); 

    X = 1/K2+b^3*Z*a*c^2/(E*I*6*2*E*I)-(a+b)*c^2/(2*E*I)-

(a+b)*(b+c)^2*a*c^2*Z/(4*E*I*E*I)-(fs/(G*A))*b*a*c^2*Z/(2*E*I); 

    V = ((a+b)^3/(6*E*I)-

a^3*Z*b^3/(36*(E*I)^2)+a*(a+b+c)^2*Z*b^3/(12*(E*I)^2)+(fs/(G*A))*a*Z*b^3/(6*E*I)

-(a+b)*(a+b+c)^2/(2*E*I)+(a+b)*(b+c)^2*a^3*Z/(12*(E*I)^2)-

(a+b)*(b+c)^2*a*(a+b+c)^2*Z/(4*(E*I)^2)-(fs/(G*A))*(a*Z/(E*I))*(a+b)*(b+c)^2*0.5-

(fs/(G*A))*(a+b)+(fs*a^3*b*Z)/(G*A*6*E*I)-(fs*b*Z*a*(a+b+c)^2)/(G*A*2*E*I)-

(fs/(G*A))^2*b*a*Z); 

DeltaMkzone = 1000; 

 

while((DeltaMkzone-((2/3)*Mpkzone-Mkzone))>0.001) 

if(DeltaMkzone<((2/3)*Mpkzone-Mkzone)) 

            Tk = Tk*1.0001; 

elseif(DeltaMkzone>((2/3)*Mpkzone-Mkzone)) 

            Tk = Tk*0.9999; 

end 

 

DeltaQ = Tk/(a^3*Z/(6*E*I)-a*(a+b+c)^2*Z/(2*E*I)+V*Z*(a*c^2)/(2*E*I*X)-

fs*a*Z/(G*A)-1+V/X); 

 

DeltaBinterior = V*DeltaQ/X; 

 

DeltaBexterior = (DeltaQ*a^3/(6*E*I)-

0.5*DeltaQ*a*(a+b+c)^2/(E*I)+0.5*DeltaBinterior*a*c^2/(E*I)-

(fs/(G*A))*DeltaQ*a)*Z; 

 

DeltaMkzone = Tk*(b+c)-DeltaBinterior*b-DeltaQ*a; 

end 

 

%Note that the equations below should be adjusted to include for partial yielding     

elseifMks == 2 

Tk = 1000; 

    Z = 1/(1/K1-0.5*a*(b+c)^2/(E*I)); 
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    X = 1/K2+b^3*Z*a*c^2/(E*I*6*2*E*I)-(a+b)*c^2/(2*E*I)-

(a+b)*(b+c)^2*a*c^2*Z/(4*E*I*E*I)-(fs/(G*A))*b*a*c^2*Z/(2*E*I); 

    V = ((a+b)^3/(6*E*I)-

a^3*Z*b^3/(36*(E*I)^2)+a*(a+b+c)^2*Z*b^3/(12*(E*I)^2)+(fs/(G*A))*a*Z*b^3/(6*E*I)

-(a+b)*(a+b+c)^2/(2*E*I)+(a+b)*(b+c)^2*a^3*Z/(12*(E*I)^2)-

(a+b)*(b+c)^2*a*(a+b+c)^2*Z/(4*(E*I)^2)-(fs/(G*A))*(a*Z/(E*I))*(a+b)*(b+c)^2*0.5-

(fs/(G*A))*(a+b)+(fs*a^3*b*Z)/(G*A*6*E*I)-(fs*b*Z*a*(a+b+c)^2)/(G*A*2*E*I)-

(fs/(G*A))^2*b*a*Z); 

DeltaMkzone = 1000; 

 

while(DeltaMkzone-(Mpkzone-Mkzone)>0.001) 

if(DeltaMkzone<(Mpkzone-Mkzone)) 

            Tk = Tk*1.0001; 

elseif(DeltaMkzone>(Mpkzone-Mkzone)) 

            Tk = Tk*0.9999; 

end 

 

DeltaQ = Tk/(a^3*Z/(6*E*I)-a*(a+b+c)^2*Z/(2*E*I)+V*Z*(a*c^2)/(2*E*I*X)-

fs*a*Z/(G*A)-1+V/X); 

 

DeltaBinterior = V*DeltaQ/X; 

 

DeltaBexterior = (DeltaQ*a^3/(6*E*I)-

0.5*DeltaQ*a*(a+b+c)^2/(E*I)+0.5*DeltaBinterior*a*c^2/(E*I)-

(fs/(G*A))*DeltaQ*a)*Z; 

 

DeltaMkzone = Tk*(b+c)-DeltaBinterior*b-DeltaQ*a; 

end 

end 

 

%Set the Limit State of the Interior Bolt 

if B1s == 1 

    B1Limit = BY1; 

elseif B1s == 2 

    B1Limit = BY2; 

elseif B1s == 3; 

    B1Limit = BY3; 

end 

 

%Calculate T that Causes Yielding of the Interior Bolt 

ifMks == 1 | Mks == 2 

    TB1 = 1000; 

    Z = 1/(1/K1-0.5*a*(b+c)^2/(E*I)); 
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    X = 1/K2+b^3*Z*a*c^2/(E*I*6*2*E*I)-(a+b)*c^2/(2*E*I)-

(a+b)*(b+c)^2*a*c^2*Z/(4*E*I*E*I)-(fs/(G*A))*b*a*c^2*Z/(2*E*I); 

    V = ((a+b)^3/(6*E*I)-

a^3*Z*b^3/(36*(E*I)^2)+a*(a+b+c)^2*Z*b^3/(12*(E*I)^2)+(fs/(G*A))*a*Z*b^3/(6*E*I)

-(a+b)*(a+b+c)^2/(2*E*I)+(a+b)*(b+c)^2*a^3*Z/(12*(E*I)^2)-

(a+b)*(b+c)^2*a*(a+b+c)^2*Z/(4*(E*I)^2)-(fs/(G*A))*(a*Z/(E*I))*(a+b)*(b+c)^2*0.5-

(fs/(G*A))*(a+b)+(fs*a^3*b*Z)/(G*A*6*E*I)-(fs*b*Z*a*(a+b+c)^2)/(G*A*2*E*I)-

(fs/(G*A))^2*b*a*Z); 

DeltaBinterior = 1000; 

 

while(DeltaBinterior-(B1Limit-Binterior)>0.001) 

if(DeltaBinterior<(B1Limit-Binterior)) 

            TB1 = TB1*1.001; 

elseif(DeltaBinterior>(B1Limit-Binterior)) 

            TB1 = TB1*0.999; 

end 

 

DeltaQ = TB1/(a^3*Z/(6*E*I)-a*(a+b+c)^2*Z/(2*E*I)+V*Z*(a*c^2)/(2*E*I*X)-

fs*a*Z/(G*A)-1+V/X); 

 

DeltaBinterior = V*DeltaQ/X; 

end 

else 

TB1 = 1000; 

    R = (a+b)/(K1*a)-b^3/(6*E*I)+(fs*b)/(G*A); 

    S = -a/(b*K2*R)-(a+b)^3/(6*E*I*R)+a^2*(a+b)/(6*E*I*R)-2; 

DeltaBinterior = 1000; 

 

while(DeltaBinterior-(B1Limit-Binterior)>0.001) 

if(DeltaBinterior<(B1Limit-Binterior)) 

            TB1 = TB1*1.0001; 

elseif(DeltaBinterior>(B1Limit-Binterior)) 

            TB1 = TB1*0.9999; 

end 

 

DeltaQ = TB1*(1-(b+c)/(b*K2*R)-(b+c)/b)*(1/S); 

 

DeltaBinterior = TB1*(b+c)/b-DeltaQ*a/b; 

end 

end 

 

%Set the Limit State of the Exterior Bolt 

if B2s == 1 

    B2Limit = BY1; 
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elseif B2s == 2 

    B2Limit = BY2; 

elseif B2s == 3; 

    B2Limit = BY3; 

end 

 

%Calculate T that Causes Yielding of the Exterior Bolt 

ifMks == 1 | Mks == 2 

    TB2 = 1000; 

DeltaBexterior = 1000; 

 

while(DeltaBexterior-(B2Limit-Bexterior)>0.001) 

if(DeltaBexterior<(B2Limit-Bexterior)) 

            TB2 = TB2*1.0001; 

elseif(DeltaBexterior>(B2Limit-Bexterior)) 

            TB2 = TB2*0.9999; 

end 

 

DeltaQ = TB2/(a^3*Z/(6*E*I)-a*(a+b+c)^2*Z/(2*E*I)+V*Z*(a*c^2)/(2*E*I*X)-

fs*a*Z/(G*A)-1+V/X); 

 

DeltaBinterior = V*DeltaQ/X; 

 

DeltaBexterior = (DeltaQ*a^3/(6*E*I)-

0.5*DeltaQ*a*(a+b+c)^2/(E*I)+0.5*DeltaBinterior*a*c^2/(E*I)-

(fs/(G*A))*DeltaQ*a)*Z; 

end 

else 

    TB2 = 1000; 

    R = (a+b)/(K1*a)-b^3/(6*E*I)+(fs*b)/(G*A); 

    S = -a/(b*K2*R)-(a+b)^3/(6*E*I*R)+a^2*(a+b)/(6*E*I*R)-2; 

DeltaBexterior = 1000; 

 

while(DeltaBexterior-(B2Limit-Bexterior)>0.001) 

if(DeltaBexterior<(B2Limit-Bexterior)) 

            TB2 = TB2*1.0001; 

elseif(DeltaBexterior>(B2Limit-Bexterior)) 

            TB2 = TB2*0.99999; 

end 

 

DeltaQ = TB2*(1-(b+c)/(b*K2*R)-(b+c)/b)*(1/S); 

 

DeltaBinterior = TB2*(b+c)/b-DeltaQ*a/b; 
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DeltaBexterior = (DeltaBinterior/K2-DeltaQ*(a+b)^3/(6*E*I)-

fs*DeltaQ*(a+b)/(G*A)+DeltaQ*a^2*(a+b)/(6*E*I)+fs*DeltaQ*(a+b)/(G*A))/R; 

end 

end 

 

%Determine the Value of the Stiffness at the Current State 

%Case of 1.5 in. thick column flange 

ifMks == 1 & B1s == 1 & B2s == 1 

        K = Ke1; 

elseifMks == 2 & B1s == 1 & B2s == 1 

        K = Ke2; 

elseifMks>= 3 & B1s == 1 & B2s == 1 

        K = Ke3; 

elseifMks>= 3 & B1s == 2 & B2s == 1 

        K = Ke4; 

elseifMks>= 3 & B1s == 3 & B2s == 1 

        K = Ke5; 

elseifMks>= 3 & B1s == 3 & B2s == 2 

        K = Ke6; 

elseifMks>= 3 & B1s == 3 & B2s == 3 

        K = Ke7;     

end 

 

% %Case of 2.25 in. thick column flange 

%     if Mks == 1 & B1s == 1 & B2s == 1 

%         K = Ke1; 

%     elseifMks == 1 & B1s == 2 & B2s == 1 

%         K = Ke2; 

%     elseifMks == 2 & B1s == 2 & B2s == 1 

%         K = Ke3; 

%     elseifMks == 2 & B1s == 3 & B2s == 1 

%         K = Ke4; 

%     elseifMks == 2 & B1s == 3 & B2s == 2 

%         K = Ke5; 

%     elseifMks == 3 & B1s == 3 & B2s == 2 

%         K = Ke6; 

%     elseifMks == 3 & B1s == 3 & B2s == 3 

%         K = Ke7;     

%     end 

 

%Update the Status of Each Limit State 

ifTk<TB1 &Tk<TB2 &Mks == 1 

DeltaT = Tk; 

elseif Tk<TB1 & Tk<TB2 & Mks == 2 
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        DeltaT = Tk; 

elseif TB1<Tk & TB1<TB2 

        DeltaT = TB1; 

elseif TB2<Tk & TB2<TB1 

DeltaT = TB2; 

end 

 

%Calculate the Displacement 

DeltaD = (DeltaT)/K; 

 

D = D+DeltaD; 

 

Delta = [Delta D]; 

 

%Update the Load Vector 

    Load = [Load (Load(i)+DeltaT)]; 

 

i = i+1; 

 

ifMks == 1 | Mks == 2 

%Recompute Constants Used in the Model for the Current Load Step 

    Z = 1/(1/K1-0.5*a*(b+c)^2/(E*I)); 

    X = 1/K2+b^3*Z*a*c^2/(E*I*6*2*E*I)-(a+b)*c^2/(2*E*I)-

(a+b)*(b+c)^2*a*c^2*Z/(4*E*I*E*I)-(fs/(G*A))*b*a*c^2*Z/(2*E*I); 

    V = ((a+b)^3/(6*E*I)-

a^3*Z*b^3/(36*(E*I)^2)+a*(a+b+c)^2*Z*b^3/(12*(E*I)^2)+(fs/(G*A))*a*Z*b^3/(6*E*I)

-(a+b)*(a+b+c)^2/(2*E*I)+(a+b)*(b+c)^2*a^3*Z/(12*(E*I)^2)-

(a+b)*(b+c)^2*a*(a+b+c)^2*Z/(4*(E*I)^2)-(fs/(G*A))*(a*Z/(E*I))*(a+b)*(b+c)^2*0.5-

(fs/(G*A))*(a+b)+(fs*a^3*b*Z)/(G*A*6*E*I)-(fs*b*Z*a*(a+b+c)^2)/(G*A*2*E*I)-

(fs/(G*A))^2*b*a*Z); 

 

%Calculate the Prying Force Q (Q=Qint+Qext) (kips) 

DeltaQ = (DeltaT)/(a^3*Z/(6*E*I)-a*(a+b+c)^2*Z/(2*E*I)+V*Z*(a*c^2)/(2*E*I*X)-

fs*a*Z/(G*A)-1+V/X); 

 

%Calculate the Force in the Interior and Exterior Bolt     

DeltaBinterior = V*DeltaQ/X; 

DeltaBexterior = (DeltaQ*a^3/(6*E*I)-

0.5*DeltaQ*a*(a+b+c)^2/(E*I)+0.5*DeltaBinterior*a*c^2/(E*I)-

(fs/(G*A))*DeltaQ*a)*Z; 

 

%Calculate the Moment at the K-zone 

DeltaMkzone = (DeltaT)*(b+c)-DeltaBinterior*b-DeltaQ*a; 
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%Update the Value of the Force in the Bolts and the Moment at the Kzone 

Binterior = DeltaBinterior+Binterior; 

    Bexterior = DeltaBexterior+Bexterior; 

Mkzone = Mkzone+DeltaMkzone; 

 

else 

%Recompute Constants Used in the Model for the Current Load Step 

    R = (a+b)/(K1*a)-b^3/(6*E*I)+(fs*b)/(G*A); 

    S = -a/(b*K2*R)-(a+b)^3/(6*E*I*R)+a^2*(a+b)/(6*E*I*R)-2; 

 

%Calculate the Prying Force Q (Q=Qint+Qext) (kips) 

DeltaQ = (DeltaT)*(1-(b+c)/(b*K2*R)-(b+c)/b)*(1/S); 

 

%Calculate the Force in the Interior and Exterior Bolt 

DeltaBinterior = (DeltaT)*(b+c)/b-DeltaQ*a/b; 

 

    DeltaBexterior = (DeltaBinterior/K2-DeltaQ*(a+b)^3/(6*E*I)-

fs*DeltaQ*(a+b)/(G*A)+DeltaQ*a^2*(a+b)/(6*E*I)+fs*DeltaQ*(a+b)/(G*A))/R; 

 

%Update the Value of the Force in the Bolts and the Moment at the Kzone 

Binterior = DeltaBinterior+Binterior; 

    Bexterior = DeltaBexterior+Bexterior; 

 

end 

 

%Update the Status of Each Limit State 

ifTk<TB1 &Tk<TB2 &Mks == 1 

Mks = Mks+1; 

elseifTk<TB1 &Tk<TB2 &Mks == 2 

Mks = Mks+1; 

Tk = 100000; 

elseif TB1<Tk& TB1<TB2 

        B1s = B1s+1; 

        j = j+1; 

        K2 = k2(j); 

elseif TB2<Tk& TB2<TB1 

        B2s = B2s+1; 

        l = l+1; 

        K1 = k1(l); 

end 

 

%Increase the Load Step 

DeltaT = 20; 
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end 

Delta 

4*Load 

end 
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