
AMERICAN UNIVERSITY OF BEIRUT

Morphology-Based Entity and Relational Entity
Information Extraction Framework for Arabic

by

AMEEN ALI JABER

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master in Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
January 2014

AMERICAN UNIVERSITY OF BEIRUT

THESIS RELEASE FORM

I, AMEEN ALI JABER

2 authorize the American University of Beirut to supply copies of my thesis
to libraries or individuals upon request.

2 do not authorize the American University of Beirut to supply copies of my
thesis to libraries or individuals for a period of two years starting with the
date of the thesis deposit.

Signature

Date

To my parents – Ali and Ibtisam

Acknowledgments

Õ
�
æ

k�

��QË @ 	á
�
Ô

�
g��QË @ é� <Ë @ Õ

�
æ
�
��.�

�
AÒ

�
Ê«� ú

	
G
�

�
X 	P

�
H.

�P É
��
¯

�
ð

“And say: My Lord increase me in knowledge.”
(Qur’an, Ta-Ha 20:114)

Accordingly, I’m heartily thankful to God for His overwhelming blessings
in planting the seeds of patience and knowledge within my thriving self to reap
this awe-inspiring success.

Words cannot express my solemn appreciation to my family; my father,
my mother, my sisters, my brothers, and my fiancé. Your sincere prayers and
kind support boosted my ambitions and made this dream come true.

My special appreciation goes to my advisor, Prof. Fadi Zaraket, without
whom this achievement would have never been the same. Thank you for being
a great mentor and a caring inspirational figure; your priceless advice helped me
tackle most of the difficulties with ease and joy.

Finally, I would like to thank all my friends and colleagues for coloring my
days at AUB and engraving lovely memories to be remembered forever. Thank
you all.

vi

An Abstract of the Thesis of

Ameen Ali Jaber for Masters of Engineering
Major: Electrical and Computer Engineering

Title: Morphology-Based Entity and Relational Entity Information Extraction
Framework for Arabic

Natural Language Processing is concerned with automating the under-
standing of natural language. Morphological analysis is key to Arabic natural
language processing due to the morphological richness of Arabic. Researchers
proposed and evaluated knowledge-based and empirical techniques to extract en-
tities and relations from text. Knowledge-based techniques require advanced lin-
guistic and programming expertise. Empirical techniques require large training
and reference corpora to learn and evaluate computational models respectively.

In this work, we present a morphology-based entity and relational en-
tity information extraction framework for Arabic text. The framework provides
a user-friendly interface where the user defines tag types and associates them
with regular expressions defined over Boolean formulae. Boolean formulae are
terms, negations of terms, and disjunctions of terms where terms are matches
to Arabic morphological features. The framework introduces a semantic feature
that relates words based on synonymity. The framework allows the user to asso-
ciate an action with each regular sub-expression and to define semantic relations.
The framework uses an in-house Arabic morphological analyzer to compute mor-
phological matches, computes regular expression matches, and then builds the
relations across matches. We evaluated our work with several case studies and
compared with existing application-specific techniques.

vii

Contents

Contents viii

1 Introduction 1

2 Preliminaries 6
2.1 Morphological features . 6
2.2 Finite state transducers . 7
2.3 Morphological analyzer . 8
2.4 Classes, labels, and tag types . 11

3 Motivation 12

4 Overview 17

5 MERF 21
5.1 Synk . 21
5.2 Morphology-based atomic terms (MAT) 23
5.3 Morphology-based Boolean formula (MBF) 24
5.4 Morphology-based regular expression (MRE) 25
5.5 Computational actions . 26
5.6 Tag type . 28
5.7 MBF evaluation . 28
5.8 MRE and action simulation . 28
5.9 Semantic relations . 30

6 Implementation 32
6.1 Data Model . 32

6.1.1 Tag file . 32
6.1.2 Tag type file . 33

6.2 Data structures . 34
6.2.1 Arabic document . 35
6.2.2 MBF tag types . 35
6.2.3 MRE tag types . 35
6.2.4 MBF tags . 36

viii

6.2.5 MRE tags . 36

6.3 MBF simulation . 37

6.4 MRE simulation . 37

6.4.1 NFA generation . 37

6.4.2 NFA simulation . 38

6.5 Code action execution . 38

6.5.1 Action file generation . 38

6.5.2 Action file execution . 39

6.6 MERF interface . 39

6.6.1 Tree and graph visualization 40

6.7 Open source tool . 40

7 MERF GUI 41

7.1 Tag type Boolean formula editor 42

7.2 MERF MBF match visualization 43

7.3 Tag type regular expression editor 44

7.4 MERF MRE match visualization 45

7.5 Semantic relation editor . 46

7.6 Code action editor . 47

7.7 Analysis . 48

8 Case Studies 49

8.1 Narrator chain . 50

8.2 Number normalization . 52

8.3 Temporal entity extraction . 54

9 Related Work 56

9.1 Information extraction . 56

9.2 WordNet . 57

9.3 Tagging . 58

10 Conclusion 60

10.1 Future work . 60

List of Figures 61

List of Tables 63

Bibliography 64

Appendices 69

ix

A 70
A.1 Economic analysis . 70
A.2 Prayer times . 71
A.3 Football results . 72
A.4 Geographical information . 72
A.5 Official notifications . 74
A.6 Professions information . 76
A.7 Money . 77
A.8 Crop information . 77

x

Chapter 1

Introduction

Computational Linguistics (CL) is concerned with building accurate linguistic
computational models. Natural Language Processing (NLP) is concerned with
automating the understanding of natural language. CL and NLP tasks range
from simple tasks such as spell checking and typo-error correction to more com-
plex tasks including text summarization, named entity recognition (NER), cross-
document analysis, machine translation, and entity-relational information extrac-
tion [1, 2]. These tasks take as input digital text documents from sources includ-
ing literature, books, news, business reports, chat messages, and emails. Some
documents are originally typed in digital format such as emails. Other documents
are automatically digitized using techniques such as optical character recognition
(OCR) and automatic speech recognition [3, 4].

Entities are elements of text that are of interest to an NLP task. Rela-
tional entities are elements of text that connect entities. Annotations (referred
to as tags in the sequel) relate a chunk of text to a label (a tag type) denoting a
semantic value such as an entity or a relational entity.

In this work, we address entity and relational entity extraction from
Arabic text using morphological analysis. For example, given the text in Fig-
ure 1.1(a), we would like to extract entities and relations that form the graph
in Figure 1.1(b). The text in Figure 1.1(a) contains directions to Dubai Mall
taken from the mall website 1. The framed words in the text are target entities
referring to names of people, names of places, relative position, and numerical
terms. From those entities, we extract the graph shown in Figure 1.1(b) where
vertices express entities, and edges represent the relations between those entities.
This task is accomplished in four phases that include morphological analysis, en-
tity extraction based on morphological features, relation construction, and entity
cross-reference.

1 http://www.thedubaimall.com/ar/

1

http://www.thedubaimall.com/ar/

�
I

	
K

@ð

u1

Èð

B@

p2

©£A
�
®
�
JË @ 	áÓ

r1

H. Q
�
®ËAK.

n1

�
é

	
®J
Ê

	
g

p1

h. QK.
	

¡kC
�
K B

@ ÉJ
j

�
��ÖÏ @ 	áÓ

u2

úÍð

B@

�
è�QÖÏ @ è

	
Yë

�
I

	
KA¿

	
à@

ð ú

��
æk

n3

, YK
@ 	P

n2

qJ

�

�Ë@

p3

¨PA
�

�

r2

ú

	
¯ ½

�
KPAJ
� Xñ

�
®
�
K

p7

ú
	

æJ. ÖÏ @ @
	
Yë 	áÓ

r4
�
éK. Q

�
®Ó úÎ«

p6

ÈñÓ

p5

�ú

G
.
X ©

�
®K

p4

;
�

�K
Q¢Ë@ @
	
Yë

r3

AîD

	
¯ ½Ê�

�
� ú

�
æË @

. ÕË AªË @ ú

	
¯ Èñ£

B@ Yª

�
K
 ø

	
YË@

mn ālmsth. yl ↩alā tlāh. z. brǧ h
˘

lyfh bālqrb mn āltqāt. ↪ āl↩awl w↩ant tqwd
syārtk fy šār↪ āľsyh

˘
zāyd, h. tā w↩in kānt hd

¯
h ālmrh āl↩awlā ālty tslk

fyhā hd
¯

ā ālt.ryq; yq↪ dby mwl ↪lā mqrbh mn hd
¯

ā ālmbnā āld
¯

y yu↪d
āl↩at.wl fy āl↪̄alm.

It is impossible not to notice
n1

Khalifa
p1

Tower
r1

next to the
u1

first
p2

intersection while you are driving
r2
on

n2

Sheikh
n3

Zayed
p3

Road ,

even if this was
u2

the first time that you take this
p4

road ;
p5

Dubai
p6

Mall is located
r4

near this
p7

building , which is the longest in the
world.

ÈñÓ ú

G
.
X

Dubai Mall

ú
	

æJ. ÖÏ @

the building

�
éK. Q

�
®Ó

near

�
é

	
®J
Ê

	
g h. QK.

Khalifa tower

Èð

B@ ©£A

�
®
�
JË @

intersection 1

H. Q
�
®ËAK.

next to

úÎ«

prep

@
	

Yë 	áÓ

from this

�
éK. Q

�
®Ó

near

isA

H. Q
�
®ËAK.

next to
	áÓ

from

e2

r

e1 r

o2

o1

e1

e2

o2

r

r

(a) Text with directions (b) Formula, matches, and entity-relation graph

Figure 1.1: Text, formula, and match MERF example

Morphological analysis

The Arabic language is morphologically rich. Short vowels, also known as diacrit-
ics, are almost always omitted in Arabic text and inferred by human readers [5].

For example, the word Y�

@↩sd 2 can be interpreted as Y

�
�

@↩sad ‘‘lion’’ with a

fatha on the letter �s or
�
Y

�
�

@↩sodd (I block) with a damma on the letter �s

and shadda on the letter Xd . Consequently, morphological analysis is key to
Arabic CL and NLP even for simple tasks such as tokenization and stemming[6].
Tokenization requires morphological analysis in Arabic because a subset of the
Arabic letters are non-connecting letters and do not require a space after them

to provide a visual separation from the next letter. For example, in the sentence

�
é�PYÖÏ @ úÍ@

YËñË@ I. ë

	
Xd
¯

hb ālwld↩ilā ālmdrsh (the kid went to the school) the letter

ø is non-connecting and the two words úÍ@

and YËñË@ are visually separable, yet
there is no space character between them.

Given an Arabic word delimited by white space and punctuation, a mor-
phological analyzer returns the internal structure of the word. The word structure
is composed of several morphemes including affixes (prefixes and suffixes), and
stems [6]. The analyzer returns a set of morphological solution vectors with fea-
tures such as prefix, stem, suffix, and part of speech (POS), gloss, and category

tags. For example, for the word 	
àñ J. ª Ê J
 �

	
¯fsyl↪bwn , the analyzer may return

�J
�
	
¯fsy as a prefix morpheme with the POS tag fa/CONJ+sa/FUT+ya/IV3MD and

with gloss tag and + will + they (both), I. ª Ël↪b as a stem with POS tag

2In this document, we use the default ArabTeX transliteration style ZDMG.

2

loEab/VERB IMPERFECT and with gloss tag ‘‘play’’, and 	
àñ �wn as a suffix

with POS tag uwna/IVSUFF SUBJ:MP MOOD:I and with gloss tag [MASC.PL.].

Knowledge-based entity extraction

Researchers proposed and evaluated empirical and knowledge-based techniques
to extract entities and relations from text. Knowledge-based techniques target a
task based on solid linguistic or structural grounds [7]. Knowledge-based tech-
niques such as [8, 9] propose local grammars with morphological stemming to
perform NER. The work in [10] presents a method for extracting entities, events,
and relations amongst them from Arabic text using a hierarchy of manually built
finite state machines driven by morphological features and graph transformation
algorithms. Such techniques require advanced linguistic and programming exper-
tise. Our method provides a user-friendly interface that enables an average user
to define target entities and relations.

Empirical entity extraction

Supervised and unsupervised empirical techniques employ machine learning tech-
niques to automatically extract entities without the need to manually encode the
requisite knowledge [7]. Supervised learning techniques require training text that
is annotated with correct tags to learn a computational model. Supervised and
unsupervised techniques require reference text that is annotated with correct
tags to evaluate the accuracy of the technique in terms of metrics such as pre-
cision and recall [11, 12, 13]. The work in [14] presents a language independent
approach for NER extraction using support vector machines. The work in [15]
integrates a semi-supervised bootstrapping pattern recognition technique, and a
supervised classifier based on conditional random fields to solve NER problems.
Our method enables the user to incrementally create complex annotations for
Arabic text based on automatic extraction of morphological tags through a user
friendly interactive interface.

MERF

In this work, we present a morphology-based entity and relational information
extraction framework for Arabic text (MERF). MERF provides a user-friendly
interface where the user defines tag types and associates them with MERF formu-
lae that are regular expressions over MERF Boolean formulae. Boolean formulae
are terms, negations of terms, and disjunctions of terms. Terms are matches to
Arabic morphological features including prefix, stem, suffix, POS tags, gloss tags,

3

and semantic categories. In addition to the morphological features, MERF in-
troduces Synk as a feature that relates two words w1 and w2 iff w1 is a synonym
of w2 or w1 is a Synk−1 with one of the synonyms of w2. Consider the example

shown in Figure 1.2. Given the Arabic words ÐAª£t. ↪̄am , É¿

@↩kl , and I. ª

�
K

@↩t↪b and

their glosses {food}, {food, eat, make tired}, and {make tired, bother, drink}
respectively. We can relate ÐAª£t. ↪̄am to É¿

@↩kl based on the gloss intersection

food. Moreover, we can relate ÐAª£t. ↪̄am to “I. ª
�
K

@↩t↪b ” since É¿

@↩kl and I. ª

�
K

@↩t↪b

have the gloss intersection make tired.

ÐAª£t. ↪̄am É¿

@↩akl I. ª

�
K

@↩at↪bfood

eat

make
tired

bother

drink

Figure 1.2: Syn2(ÐAª£t. ↪̄am)

MERF regular expressions support operators such as concatenation,
zero or one, zero or more, one or more, up to M , and logical conjunction and
disjunction operations. MERF editor allows the user to associate an action with
each MERF sub-expression. The user specifies the action with C++ code and
uses the MERF API to access information related to the matches such as text,
position, length, morphological features, and numerical values.

MERF takes an Arabic text, a set of user-defined MERF Boolean for-
mulae, and a set of user-defined MERF regular expressions. MERF computes
the morphological solutions of the words in the input text then computes matches
to the Boolean formulae. MERF then generates a non-deterministic finite state
automata (NDFSA) for each expression and simulates it with the sequence of
Boolean formulae matches to compute the regular expression matches. MERF
generates, complies, links, and executes the actions of the corresponding regular
expressions as shared object libraries. Finally, MERF constructs the semantic
relations and cross-reference between entities. MERF also provides visualiza-
tion tools to present the matches, and estimate their accuracy with respect to
reference tags.

MERF has the following advantages:

Advantage 1. MERF provides a novel and intuitive visual interface to build
Boolean formulae over morphological features, build regular expressions
over the resulting Boolean formulae, and thereafter compute automatic
tags.

4

Advantage 2. Up to our knowledge, MERF is the first morphology-based frame-
work for Arabic entity and relational entity extraction.

Advantage 3. MERF provides the user with the ability to rapidly create an-
notated Arabic text corpora with sophisticated morphology-based tags.

In MERF, we make the following contributions:

Contribution 1. MERF enables the user to define semantic relations and au-
tomatically construct matches of these relations.

Contribution 2. MERF enables the user to associate code actions with sub-
expressions with API access to match features including text, position,
length, numerical value, and morphological features.

Contribution 3. MERF enables the user to tag words based on a synonymic
relation using the Synk feature.

Related work

Researchers proposed systems for automatic information extraction based on
user specifications. CPSL is a common pattern specification language for finite-
state grammar [16]. It defines three sections for declaration, rule definition, and
macros. MERF is an extension to CPSL with action execution and relation
construction. The work in [17] presents SystemT, a system based on an alge-
braic Approach to Declarative information extraction (IE). It uses a declarative
rule language and an optimizer. TEXTMARKER is a rule-based IE system de-
signed to extract structured data from text [18]. The work in [19] presents a
user-driven relational model targeting entity-relation extraction. In this model,
the user enters a natural language query. QARAB is a question answering system
supporting the Arabic language [20]. It takes Arabic natural language query and
attempts to provide short answers for it. We discuss related work and compare
to it in details in Chapter 9.

5

Chapter 2

Preliminaries

In this Chapter we define and discuss terms important to our method such as
morphological features, finite state transducers, morphological Analyzer, classes,
labels, and tag types.

2.1 Morphological features

Arabic is a morphologically rich language. Due to the rich Arabic morphology, a
single Arabic word might replace a complete sentence in English. For example,

the word éÊ
�
¿

�

A
�
K
ya↩akulh stands for the English statement “he/it is eating him/it”.

Form-based morphological analysis decomposes an Arabic word into sev-
eral morphemes [21]. A morpheme is the smallest linguistic unit that has a mean-
ing and fulfills a grammatical function. A morpheme can be a stem, or an affix.
Each morpheme is associated with other morphological features including POS,
gloss, lemma, and category tags.

A stem can be a templatic or non-templatic stem. Templetic stems are

formed from roots using templetic morphemes such as I.
�
KA¿kātb (writer) which is

formed from I.
�
J»ktb (write). Non-templatic stems tend to be foreign names such

as 	á¢
	
J

�
�@ðwāšnt.n (Washington). A root is a sequence of three, four, or rarely five

letters which signifies some abstract meaning. We denote the set of all stems by
the symbol S.

An affix can be a prefix, a suffix, or an infix. Prefixes attach before the
stem and a word can have multiple prefixes. We denote the set of all prefixes

6

by the symbol P . Suffixes attach after the stem and a word can have multiple
suffixes. We denote the set of all suffixes by the symbol X .

The part-of-speech tag, referred to as POS, assigns a morpho-syntactic
tag for a morpheme. Sample POS tags are NOUN and VERB PERFECT. We denote
the set of all glosses by the symbol POS .

The gloss is a brief notation of the semantic meaning of a morpheme in
English. A word might have multiple glosses attached to it as it could stand for
multiple meanings. We denote the set of all glosses by the symbol GLOSS .

The lemma is a conventionalized choice of one of the word forms to stand
for the set of all words with one same core meaning. For example, the words

�
I�
K.byt (house), �

I�
J. ÊËllbyt (for the house), and �
HñJ
K.bywt (houses) are represented

by the masculine singular form noun �
I�
K.byt .

The category is a user defined tag that includes several morphemes of
one kind. For example, the user can define a temporal category to include the

prefix �s (will) and the time unit
�
é«A�sā↪h (hour). We denote the set of all

categories by the symbol CAT .

Consider the following word éÊ
�
¿

�

A
�
K
ya↩akulh as a complete example. The

word is composed of the three morphemes �ø

ya , É
�
¿

�

@↩akul , and èh . Each mor-

pheme is associated with morphological features as shown in Table 2.1. The IV3MS
POS tag indicates a third person masculine singular subject pronoun attached
to a verb, and the IVSUFF DO:3MS POS tag indicates a third person masculine
singular pronoun attached as an object to an action verb. The VERB IMPERFECT

tag indicates an imperfect verb. The notation for the gloss and POS tags is taken
from the Buckwalter morphological analyzer [22].

Table 2.1: Sample solution vector for the text éÊ
�
¿

�

A
�
K
ya↩akulh .

Prefix Stem Suffix

Data �ø

ya É
�
¿

�

@↩akul èh

POS IV3MS+ VERB IMPERFECT IVSUFF DO:3MS
Gloss he/it eat/consume him/it

2.2 Finite state transducers

A finite state transducer (FST) is a finite state machine with an input and an
output tape. FSTs differ from finite state automata (FSA) in that they have
an output tape while FSAs have accept states instead. Formally, an FST is
a tuple M = (S, S0, σ, Γ, δ) where S is the set of states, S0 ⊂ S is the set
of initial states, σ is the input alphabet, Γ is the output alphabet, and δ ⊆

7

S × (σ × {ε}) × (Γ × {ε}) × S is the transition relation. FSTs have been used
extensively in text mining applications where the input is the text and the output
is the delimiters of a chunk of text with an associated class [23]. FSTs are
attractive in NLP tasks due to their efficiency and ease of use.

2.3 Morphological analyzer

An Arabic morphological analyzer takes a word in Arabic and returns a set of
morphological solutions. Each solution splits the word into its morphemes and
associates each morpheme with corresponding tags. Multiple solutions can be
the result of multiple valid segmentations of the word into morphemes, or the
multiple possible tags associated with a morpheme.

MERF is integrated with Sarf, an in-house open source Arabic morpho-
logical analyzer based on finite state transducers [24]. The contribution of Sarf
over previous work is that it considers the Arabic affixes as agglutinative, i.e.
composed of one or more morphemes. Hence, it introduces fusional compatibility
rules for affix-affix concatenations. This contribution results in a lexicon which
is smaller in size, has less redundancy, and resolves a number of inconsistencies.
Figure 2.1 shows the finite state machine of Sarf. Boxes denote legal affixes and
stems, and circles denote regular nodes. The edges are transitions and the la-
bels correspond to the input letters. ε represents an empty string and is the
source of non-determinism. The transitions between the prefix P , stem S, and
suffix X sub-machines are non-deterministic to compute all valid morphological
analyses.

ø

È

...

...

...
@

�

�

ð

@

ε

H.

H.

�

¨

...

...
...

È

@

¨

... ...

è

Ð

@

ð

	
à

...

...

...

...

@

ε

ε

(b) (c)(a)

ε S XP

Figure 2.1: FSM of Sarf

We use Sarf to extract the morphological features of words present in

8

a text. Sarf takes an Arabic word as input and returns a set of morphological
solutions. Each solution splits the word into its morphemes and associates each
morpheme with corresponding tags. We refer to the morphemes and associated
tags as features. These features are be used to tag each input word with one
or more tags. Sarf processes a word wi in a text and returns the relevant solu-
tion vectors. Multiple solutions are the result of multiple valid segmentations of
the word into morphemes, or the multiple possible tags associated with a mor-
pheme. Also, a word might have multiple solution vectors as it can have multiple
interpretations and meanings. An example is shown in Table 2.2 below:

Table 2.2: Word with different interpretations

Y
�
Ë
�
ðwalad child/son

�
Y

��
Ë
�
ðwalada generate

�
YË�

�
ðwulida be born

An output solution vector of Sarf for a word wi contains the following
information:

• wi: The word that is analyzed.

• wi-index: The index of the word wi in the text.

• pref: A prefix of wi. Note that an input word might have multiple prefixes.

• pref-length: The length of the prefix represented by number of characters.

• pref-gloss: A brief notation of the meaning of the prefix.

• pref-pos: The part of speech of the prefix.

• pref-data: The prefix diacritized.

• stem: The stem of wi.

• stem-index: The index of the stem in the text.

• stem-length: The length of the stem.

• stem-gloss: A brief notation of the meaning of the stem.

• stem-pos: The part of speech of the stem.

• stem-data: The stem diacritized.

9

Table 2.3: Sample solution vector

wi éÊ¿

AK
y↩aklh

wi − index 10

pref ø

y

pref-length 1
pref-gloss he/it

pref-pos IV3MS+

pref-data �ø

ya

stem É¿

@↩akl

stem-index 11
stem-length 3

stem-gloss eat/consume
stem-pos VERB IMPERFECT

stem-data É
�
¿

�

@↩akul

suf èh

suf-index 14
suf-length 1

suf-gloss him/it
suf-pos IVSUFF DO:3MS

suf-data èh

• stem-ac: A list of the abstract categories relevant to this stem. For example,
“Country” is an abstract category for “Lebanon”.

• suf: A suffix of wi. Note that an input word might have multiple suffixes.

• suf-index: The index of the suffix in the text.

• suf-length: The length of the suffix.

• suf-gloss: A brief notation of the meaning of the suffix.

• suf-pos: The part of speech of the suffix.

• suf-data: The suffix diacritized.

A sample solution vector is shown in Table 2.3 below:
By the end of the morphological analysis stage, Sarf returns a sequence

of solution vectors. These vectors contain all the possible morphological analyses
of the words in the input text.

10

2.4 Classes, labels, and tag types

A class is a semantic decision that the NLP of CL task tries to make. Parts of
text that belong to the desired class are all assigned the same class label. For
example, temporal unit is a label of a class that encompasses explicit temporal

information in the sentence related to time such as
�
é

�
® J

�
¯Xdqyqh (minute) and

�
é«A�sā↪h (hour).

The user may wish to define a simple class as an abstract category that
contains a set of morphemes. For more sophisticated classes, the user can use
the visual interface in MERF to define the class through Boolean formulae with
morphology-based atomic terms. The annotation of text with the labels of the
classes can later be used in CL and NLP tasks for learning, testing, and valida-
tion.

11

Chapter 3

Motivation

We motivate MERF with an example that extracts directions from a sample
Arabic text. Consider the text in Figure 3.1(a) taken from the website of Dubai
Mall describing the directions to reach the Mall 1. Figure 3.1(b) presents an
English translation of the Arabic text and Figure 3.1(c) presents a transliteration.
The text contains details that are not interesting to the direction extraction task.
Interesting entities, such as names, places, relative directions, and numerical
terms are highlighted in the text. For example, row 1 in the table shown in
Figure 3.1(d) lists the matches of names of persons as n1, n2, and n3. We are
also interested in presenting the directions in a relational diagram as shown in
Figure 3.1(g).

In the following, we demonstrate how to do that using MERF. In the
process the user interacts with the MERF interface to specify Boolean formulae,
regular expressions, and semantic relations. MERF will automatically extract
formulae matches using an in- house Arabic morphological analyzer (Sarf), ex-
tract regular expression matches, and construct the semantic relations.

Boolean formulae definition

Using MERF, the user specifies the N , P , R, and U tag types with Boolean
formulae based on morphological features. As described in the table in Fig-
ure 3.1(d), the user denotes names of persons with formula N and specifies it
with a constraint requiring the category feature in the morphological solution
to be name of person. Similarly, the user specifies formula P with a name of

place category. The user specifies formula R to denote relative positions and

requires the stem feature to belong to a selected list of stems containing ú

	
¯fy and

H. Q
�
¯qrb . U denotes numerical terms and is specified by a disjunction of con-

1http://www.thedubaimall.com/ar/.

12

http://www.thedubaimall.com/ar/

�
I

	
K

@ð

u1

Èð

B@

p2

©£A
�
®
�
JË @ 	áÓ

r1

H. Q
�
®ËAK.

n1

�
é

	
®J
Ê

	
g

p1

h. QK.
	

¡kC
�
K B

@ ÉJ
j

�
��ÖÏ @ 	áÓ

u2

úÍð

B@

�
è�QÖÏ @ è

	
Yë

�
I

	
KA¿

	
à@

ð ú

��
æk

n3

, YK
@ 	P

n2

qJ

�

�Ë@

p3

¨PA
�

�

r2

ú

	
¯ ½

�
KPAJ
� Xñ

�
®
�
K

p7

ú
	

æJ. ÖÏ @ @
	
Yë 	áÓ

r4
�
éK. Q

�
®Ó úÎ«

p6

ÈñÓ

p5

�ú

G
.
X ©

�
®K

p4

;
�

�K
Q¢Ë@ @
	
Yë

r3

AîD

	
¯ ½Ê�

�
� ú

�
æË @

. ÕË AªË @ ú

	
¯ Èñ£

B@ Yª

�
K
 ø

	
YË@

It is impossible not to notice
n1

Khalifa
p1

Tower
r1

next to the
u1

first
p2

intersection while you are driving
r2
on

n2

Sheikh
n3

Zayed
p3

Road ,

even if this was
u2

the first time that you take this
p4

road ;
p5

Dubai
p6

Mall is located
r4

near this
p7

building , which is the longest in the
world.

(a) Text with directions (b) English translation

mn ālmsth. yl ↩alā tlāh. z. brǧ h
˘

lyfh bālqrb mn āltqāt. ↪ āl↩awl w↩ant tqwd
syārtk fy šār↪ āľsyh

˘
zāyd, h. tā w↩in kānt hd

¯
h ālmrh āl↩awlā ālty tslk

fyhā hd
¯

ā ālt.ryq; yq↪ dby mwl ↪lā mqrbh mn hd
¯

ā ālmbnā āld
¯

y yu↪d
āl↩at.wl fy āl↪̄alm.

MBF description formula matches
N name of person category = Name of Person n1, n2, n3

P name of place category = Name of P lace p1, p2, ..., p7
R relative position stem ∈ {H. Q

�
¯,ú

	
¯,. . . } r1, r2, r3, r4

U numerical term stem ∈ {Èð

@,ú

	
GA

�
K,. . . } u1, u2

(c) Arabic text transliteration (d) Tag types with Boolean formulae

Expression = (P |N) + O? R O∧2 (P |N |U)+

(e) Regular expression

()

r1=H. Q
�
®ËAK.

p2=©£A
�
®
�
JË @

ˆ2

	áÓ

u1=Èð

B@ n1=

�
é

	
®J
Ê

	
g p1=h. QK.

+

||

+

||

match 1

()

p7=ú
	

æJ. ÖÏ @ r4=
�
éK. Q

�
®Ó

ˆ2

@
	
Yë 	áÓ

p5=ú

G
.
Xp6=ÈñÓ

úÎ«

+

|

?

|

+

|

match 2

ÈñÓ ú

G
.
X

Dubai Mall

ú
	

æJ. ÖÏ @

the building

�
éK. Q

�
®Ó

near

�
é

	
®J
Ê

	
g h. QK.

Khalifa tower

Èð

B@ ©£A

�
®
�
JË @

intersection 1

H. Q
�
®ËAK.

next to

úÎ«

prep

@
	

Yë 	áÓ

from this

�
éK. Q

�
®Ó

near

isA

H. Q
�
®ËAK.

next to
	áÓ

from

e2

r

e1 r

o2

o1

e1

e2

o2

r

r

(f) MRE match trees (g) Entity-relation graph

Figure 3.1: Text, formula, and match MERF example

13

straints requiring the stem feature to belong to a set of stems such as Èð

@↩wl

(first), ú

	
GA

�
Kt
¯

āny (second), �
I ËA

�
Kt
¯

ālt
¯

(third), . . . , © �A
�
Ktās↪ (ninth), and Qå

�
�A «↪̄ašr

(tenth).

Morphology-based Boolean formulae matches

The existence of a morphological analyzer is crucial to the Boolean formulae

match extraction. Stemming is required in the case of H. Q
�
®ËAK.bālqrb in order to

detect the relative position tag match based on H. Q
�
¯qrb . Thus, MERF calls an

in-house morphological analyzer [24] and computes matches of the tag types N ,
P , R, and U . We refer to all other words in the text that do not match a user
defined tag type as null words and we denote them by O. The resulting matches
are illustrated with boxes and superscripts in Figure 3.1(a) and are also listed in
the fourth column of the table in Figure 3.1(b). So words with superscripts n1,
n2, and n3 are matches of tag type N . Words with superscripts p1, p2, . . . , p7 are
matches of tag type P . Words with superscripts r1, r2, r3, and r4 are matches of
tag type R. Words with superscripts u1, and u2 are matches of tag type U .

Regular expression definition

The user now interacts with the regular expression editor to specify the direction
entities and relations. Intuitively, the directions are names of places (P) related
to each other with positional propositions (R). A place name can be a tabulated
place name, a street named after a person (N), or a numbered street (U). The
text containing the directions might also include words that are not necessary to
indicate directions (O) but are necessary to complete the sentence.

The user tries several sequences of the above entities in the editor and
checks their matches in the visualizer. Finally, the user is satisfied with an ex-
pression such as (P |N)+ O? R O∧2 (P |N |U)+ as shown in Figure 3.1(e) where
|,+, ?, and ∧k denote disjunction, one or more, zero or one, and up to k matches,
respectively. The expression specifies a sequence of places or names of persons,
optionally followed by a null word, followed by one relative position, followed by
up to two possible null words, followed by one or more match of name of place,

14

name of person, or numerical term. O and ∧2 are used in the expression to allow
for flexible matches.

The user writes the expression by experimenting with the visualizer and
the expression editor which does not require knowledge and expertise in regular
expressions.

Regular expression matches

MERF computes the matches of the expression in the text. The match trees in

Figure 3.1(f) illustrate two of them. The first match tree refers to the text h. QK.

Èð

B@ ©£A

�
®

�
JË @ 	áÓ H. Q

�
®ËAK.

�
é

	
®J
Ê

	
gbrǧ h

˘
lyfh bālqrb mn āltqāt. ↪ āl-↩wl (Khalifa Tower

next to the first intersection). The second match tree refers to the text ÈñÓ ú

G
.
X

ú
	

æJ. ÖÏ @ @
	
Yë 	áÓ

�
éK. Q

�
®Ó úÎ«dby mwl ↪lā mqrbh mn hd

¯
ā ālmbnā (Dubai Mall is located

near this building).

The nodes of the trees are entities and the edges and internal nodes
are text, morphology-based, and word distance based relational entities. The
sequence and structure gives us the text of a parent node from the children nodes.
The same sequence can also give us the interesting (matching) morphological
features. The word distance is defined and abstracted by the matches of the
regular expression operators (internal nodes).

Semantic relations

The user now uses the semantic relation editor to declare semantic relations that
relate parts of the matches of the expression with each other. The aim of the
semantic relations to be defined is to construct the entity-relation graph shown in
Figure 3.1(g). Intuitively, the user wants to create relations between place, name,
and numerical entities. A relation between two entities can be a prepositional

entity occurring between them. For example, the entities ÈñÓ ú

G
.
Xdby mwl (Dubai

Mall) and ú
	

æJ. ÖÏ @ālmbnā (the building) are related by the preposition
�
éK. Q

�
®Ómqrbh

(near) as shown in Figure 3.1(g).

Let e1, o1, r, o2, and e2 be the (P |N)+,O?,R,O ∧ 2, and (P |N |U)+ parts
of the expression, respectively. The user selected (P |N)+ to be an entity after

15

noticing in the visualizer that it happens to capture non-separated sequences of
place and name entities denoting a single entity such as Khalifa tower.

The declaration of the relation Relation(e1,e2,r) creates the edge la-
beled with next to between intersection 1 and Khalifa tower nodes in match
1, and the edge labeled with near between the Dubai Mall and the building

nodes in match 2. Those relations will be constructed if e1, e2, and r exist as
match entities.

The relation Relation(r,e1,o1) creates the edge labeled with prep be-
tween the Dubai Mall and near nodes in match 2. This relation will be con-
structed if r, e1, and o1 exist as match entities.

The relation Relation(r,e2,o2) creates the edge labeled with from be-
tween the intersection 1 and next to nodes in match 1, and the edge labeled
with from this between the near and the building nodes in match 2. This
relation will be constructed if r, e2, and o2 exist as match entities.

Cross-reference

After constructing the semantic relations, the user is interested to relate the
entities across relations to each other. The user aims in this step to relate entities
that point to the same concept or thing. In the directions task, the user aims to
relate the entities referring to the same place.

MERF provides the isA relation as a default cross-reference relation.
This relation relates two entities if they are directly synonymous or one entity
is a synonym of a synonym of the other entity. As shown in Figure 3.1(g), the
cross-reference relation creates the edge between the Khalifa Tower and the The

building nodes.

16

Chapter 4

Overview

Arabic Text
Morphological

Analyzer
(Sarf)

Solutions

Boolean Formula
Simulator

Synk

Detector

Tags

Regular Expression
SimulatorTag ChunksRelation Extraction

& Action Execution

Data Structure
Expressing
Entities &
Relations

Difference and
Statistical
Analysis

Morphology-based
Regular Expression

Morphology-based
boolean Formulae

Relation/Action
Definition

Visualization
Annotator

GUI for Boolean
formulae Definition

GUI for regular
expression and

Action Definition

Reference
tag chunks

Figure 4.1: MERF flow diagram.

Figure 4.1 shows the flow diagram of MERF. An ellipse node repre-
sents input and output data and a box node represents a process inside MERF.
The Arabic text and reference tag chunks are input data to MERF. Solutions,
morphology-based Boolean formulae, tags, morphology-based regular expression,
tag chunks, relation and action definition, and data structure expressing entities
and relations are input and output data of processes. Morphological analyzer
(Sarf), Synk detector, GUI for Boolean formulae definition, visualization annota-
tor, GUI for regular expression and action definition, Boolean formula simulator,
regular expression simulator, relation extraction and action execution, and dif-
ference and statistical analyzer are MERF processes.

17

Morphological analyzer (Sarf)

Using the interface of MERF, the user specifies an input Arabic text document.
The user aims to extract entities and relations from this text. MERF analyzes
the text using an in-house Arabic morphological anaylzer [24] and computes mor-
phological solutions for each word in the Arabic text. A word might have more
than one solution due to multiple segmentations or multiple tags associated with
each word. Sarf’s morphological solution vector contains the different morphemes
(stem and affixes), POS and gloss tags, and categories. These morphological fea-
tures will be used in a later stage for tag type matching. We present a brief
description of Sarf in Chapter 2.

Synk detector

Synk detector is a Boolean function that takes as input two words and returns
whether they are related in terms of synonymity in K steps. So given the words w1

and w2, w1 is a synonym of word w2 or w1 is a Synk−1 with one of the synonyms
of w2. This unit is used by MERF to evaluate the Boolean formulae that contain
this semantic feature. We introduce this feature in detail in Chapter 5.

Boolean formula simulator

The user interacts with MERF through a user-friendly interface to specify tag
types with Boolean formulae. Each tag type contains description, visualiza-
tion legend, and a morphology-based Boolean formula. The visualization leg-
end includes foreground color, background color, font size, and font weight. The
Boolean formulae are built by the user using fixed values for morphological fea-
tures subject to disjunction and negation operations. MERF passes the morpho-
logical solutions and the user-defined tag types to the Boolean formula simulator.
The simulator interacts with the Synk detector, computes the tag type matches,
and produces a tag set for each word. A word might have multiple tags as its mor-
phological solutions could match multiple Boolean formulae. Each tag contains
information about the matching word and the relevant tag type name. Word
information include word index relative to the text, character position, and text.
We formally define the MBF and explain its simulation in Chapter 5.

Regular expression simulator

The user interacts with MERF through a user-friendly interface to specify tag
types with Morphology-based regular expressions. Each tag type contains de-
scription, legend for visualization, and a morphology-based regular expression.

18

The regular expressions are based on user-defined tag types with Boolean for-
mulae subject to operations such as disjunction, conjunction, zero or more, zero
or one, and one or more. MERF then passes the sequence of tag sets and the
user-defined tag types with morphology-based regular expressions to the regu-
lar expression simulator. The simulator computes tag chunks; i.e. sequences of
words, whose tag sets match the expressions. Each tag chunk contains informa-
tion about the matching sequence of words and the tag type with the matching
regular expression. We formally define the MRE and explain its simulation in
Chapter 5.

Relation extraction and action execution

MERF enables the user to associate code actions to sub-expressions in the reg-
ular expression. In the code actions, MERF provides the user with an API
access to match information. The information includes text, position, length,
and morphological features.

The user declares the semantic relations using MERF’s relation editor.
Each relation is defined by two entities and a relational entity representing the
edge. The user specifies the entities and relational entities to be the matches of
sub-expressions of the regular expressions.

MERF then executes the user-defined actions corresponding to each
sub-expression match in a tag chunk. It also evaluates the semantic relation
declarations against the tag chunks to compute the semantic relations. Finally,
MERF uses a cross-reference relation such as the isA relation to create relations
across tag chunks. The output of this process is a user-defined data structure that
expresses entities and relations among them. We formally define the semantic
relation and explain its construction in Chapter 5.

Visualization annotator

MERF presents the resulting tags to the user incrementally in the form of text
annotated with style and color legends, match trees, and graphs. The annotation
can be edited by the user in a user-friendly interface. Match trees present the
match text associated with the relevant tags and regular expression structure.
The graphs are the result of the semantic relations defined by the user. We
present MERF’s interface in Chapter 7.

Difference and statistical analysis

MERF provides statistical analysis tools that help compare sets of tags to refer-
ence tags and compute standard accuracy measures. MERF provides criteria for

19

comparison including exact match and intersection. This comparison tool can be
used to edit the automatically generated annotations. MERF provides the user
with an interactive interface to build the reference tags. We explain the analysis
unit and its interface in Chapter 7.

20

Chapter 5

MERF

MERF takes a sequence of Arabic words T = 〈t1, t2, . . . , tM〉 as input text, a set
of tag types T each with its Boolean or sequential formulae. MERF is integrated
with Sarf, an open source Arabic morphological analyzer based on finite state
transducers [24]. MERF uses Sarf to compute a set of morphological solutions
M(ti) = {m1,m2, . . . ,mN} for each word ti, 1 ≤ i ≤M .

Recall from Chapter 2 that P , S, X , POS , GLOSS , and CAT denote
the set of prefixes, stems, suffixes, POS tags, gloss tags, and abstract category
tags respectively. Each morphological solution m is of the form 〈p, s, x, P,G,C〉
where p ∈ P , s ∈ S, x ∈ X , P ∈ POS , G ∈ GLOSS , and C ∈ CAT .

In what follows we formally present MERF and its components.

5.1 Synk

Let E and A be the sets of all English and Arabic words respectively. Let G ⊂
E be the set of English glosses. Let L ⊂ A be the set of Arabic words in a given
lexicon. Let S ⊂ L be the set of stems in the given Arabic lexicon. We define the
following functions.
Let function α: S → 2G, map input Arabic Lexicon stems to subsets of related
English glosses; e.g. gs = α(s) ⊂2G.
Let function γ: L → 2S, map input Arabic Lexicon words to subsets of relevant
Arabic stems; e.g. sl = γ(l) ⊂2S.

Given an Arabic word w∈L, we define Sy(w) to be the set of Arabic
words directly related to w under gloss map.
Sy(w) = {u | u ∈ S ∧ ∃s ∈ γ(w) ∧ α(u) ∩ α(s) 6= φ}

Example:1
Consider the following example:

L = {l1,l2,l3,l4,l5,l6}
S = {l1,l2,l3,l4}

21

E = {e1,e2,e3,e4,e5,e6,e7}
G = {e1,e2,e3,e4}
α = {(l1,{e1,e2}),(l2,{e2}),(l3,{e2,e3}),(l4,{e3,e4})}
γ = {(l1,{l1}),(l2,{l2}),(l3,{l3}),(l4,{l4}),(l5,{l1,l2}),(l6,{l4})}

Given an Arabic word w = l5, the stems of w are given by:
γ(w) = {l1,l2}.

Table 5.1: Detailed example of computing Sy(l5)
s α(s) α(l1) ∩ α(s) α(l2) ∩ α(s)
l1 e1,e2 e1,e2 e2
l2 e2 e2 e2
l3 e2,e3 e2 e2
l4 e3,e4 ∅ ∅

After computing the stems of the input word w, we compute α of its
stems as shown in Table 5.1 above where:
α(l1) = {e1,e2} ;gloss map of l1, and
α(l2) = {e2} ;gloss map of l2.

The next step is to compute α for each s ∈ S. Then, we get the intersection
between α(s) and α(l5i), where l5i ∈ γ(l5), as shown in the last two columns of
Table 5.1. if the intersection set is not empty, add s to Sy(w).

For s = l3, α(l3) = {e2,e3}. Since α(l3) ∩ α(l1) = {e2}, l3 is included in
Sy(w).

For s = l4, α(l4) = {e3,e4}. Since the intersection set α(l4) ∩ α(l5i) = ∅,
l4 is not included in Sy(w). Finally, Sy(w) = {l1,l2,l3}.

We define Syi(w) to denote stems related to w using gloss map of order
i recursively.
Sy1(w) = Sy(w).
Syi+1(w) = {u | u ∈ S ∧ ∃s ∈ Syi(w) ∧ α(u) ∩ α(s) 6= φ}.

Table 5.2: Example of computing Sy2(l5)
s α(s) α(l3) ∩ α(s)
l1 e1,e2 e2
l2 e2 e2
l3 e2,e3 e2,e3
l4 e3,e4 e3

Example:2
Table 5.2 shows that Sy2(l5) adds l4 to the set of words related to l5, since

(α(l3) ∩ α(l4)) 6= ∅. Hence, Sy2(l5) = {l1,l2,l3,l4}.

22

We define Synk(w) to be the union of Syi(w) for i=1 . . . k.

Formally, Synk(w) =
k⋃

i=1

Syi(w).

ÐAª£t. ↪̄am É¿

@↩akl I. ª

�
K

@↩at↪bfood

eat

make
tired

bother

drink

Figure 5.1: Syn2(ÐAª£t. ↪̄am)

Consider the example shown in Figure 5.1. The example presents the

Arabic words ÐAª£t. ↪̄am , É¿

@↩kl , and I. ª

�
K

@↩t↪b with the glosses {food}, {food, eat,

make tired}, and {make tired, bother, drink} respectively. In Sy(ÐAª£t. ↪̄am), we

relate ÐAª£t. ↪̄am to É¿

@↩kl through the gloss intersection food. In Sy(É¿

@↩kl), we

relate É¿

@↩kl to I. ª

�
K

@↩t↪b through the gloss intersection make tired. Hence, we

relate ÐAª£t. ↪̄am to I. ª
�
K

@↩t↪b in Sy2(ÐAª£t. ↪̄am).

Syn2(ÐAª£t. ↪̄am) =
2⋃

i=1

Syi(ÐAª£t. ↪̄am) = 〈É¿

@↩kl , I. ª

�
K

@↩t↪b 〉.

5.2 Morphology-based atomic terms (MAT)

Let O = {isA, contains} be the set of atomic term predicates, and let F =
{P ,S,X ,POS ,GLOSS ,CAT} be the set of morphological features.

A MAT a(w) in a Boolean tag type formula takes a word w and a constant
value of a morphological features CF as input and is of the form.

a(w) := ∃m ∈M(w).m = 〈p, s, x, P,G,C〉.r ◦ CF

where ◦ ∈ O, r ∈ {p, s, x, P,G,C}, ∃A ∈ F .r ∈ A,CF ∈ A.

23

Informally, a MAT indicates that a solution vector exists where a feature
from the solution contains or exactly matches a constant value for the feature
specified by the user.

Another form of an MAT is based on the Synk feature. It takes a word
w, a constant stem value CS and a constant integer k and checks whether a stem
of w belongs to Synk(CS). Formally,

a(w) := ∃s ∈ γ(w).s ∈ Synk(CS)

where k ∈ {1, . . . , 7}

• t1: ∃m ∈ M(w) such that
m.P contains VERB

• t2: ∃m ∈ M(w) such that
m.C isA PROPER NAME

• t3: ∃m ∈ M(w) such that
m.P contains POSS PRON

• Underline marks words with mul-
tiple tags

t3

ú

G
.
Q«

t1

A
	
K

@

t1

É
�
m.
��

.t2
	

­Ë

@

	
àñ�Ô

	
g

t3

ú

�
æ

�
¯A¢�.

t1

Õ
�
P̄ð

.
�
éJ

	
K AÖ

�
ß

t3

ú

ÍA

	
®£

@ð

.
t1
	

­J
�

t1

YªK.

t1

ú

�
G

AJ
�

t3

Ñêª�A
�
Kð

.
?

t1

I.
	

�
	
ª

�
K

t1

Éê
	
¯

Figure 5.2: Morphology-based atomic term examples

Consider the example shown in Figure 5.2. We define three morphology-
based atomic terms t1, t2, and t3. t1 checks if there is a morphological solution
that belongs to the set of morphological solutions of the word w such that the
POS tag contains VERB. Similarly, t2 checks if the category tag is a proper name,
and t3 checks if the POS tag contains possessive pronoun.

The matches of these MATs are shown in the text. Matches of t1 are
colored in red, matches of t2 are colored in blue, and matches of t3 are colored in
brown. Words that are underlined are tagged with more than one MAT.

5.3 Morphology-based Boolean formula (MBF)

The MERF Boolean formula is of the following form.

• a is an MBF where a is an MAT.

• ¬f is an MBF where f is an MAT. This is interpreted as the negation
(complement) of words matching f .

24

• f ∨g where f and g are MBF. This is interpreted as the disjunction (union)
of words matching f with the words matching g.

• t1 : ∃m ∈ M(w) such that
m.P contains VERB

• t2 : ∃m ∈ M(w) such that
m.C isA PROPER NAME

• t3 : ∃m ∈ M(w) such that
m.P contains POSS PRON

• Examples:

– F1: ¬t1
– F2: t2 or t3

F2

ú

G
.
Q« A

	
K

@ É

�
m.
��

.F2

	
­Ë

@

F1

	
àñ�Ô

	
g

F2

ú

�
æ

�
¯A¢�. Õ

�
P̄ð

.
F1

�
éJ

	
K AÖ

�
ß

F2

ú

ÍA

	
®£

@ð

.
	

­J
� YªK. ú

�
G

AJ
�

F2

Ñêª�A
�
Kð

.
? I.

	
�

	
ª

�
K Éê

	
¯

Figure 5.3: Morphology-based Boolean formula examples

Consider the example shown in Figure 5.3. We use the same text and
MATs defined previously in Figure 5.2. We define the two Boolean formulae
F1, andF2. F1 is the negation of t1 and targets the words that don’t have a
morphological solution with a POS tag that contains verb. F2 is a disjunction
between t2 and t3 and targets the words that have a category that is a proper
name or POS tag that contains possessive pronoun.

The matches of these MBFs are shown in the text. Matches of F1 are
colored in red and matches of F2 are colored in blue. The underlined words are
matches of both formulae.

5.4 Morphology-based regular expression (MRE)

The MERF sequential formula is of the following form.

• m is an MRE where m is an MBF.

• fg is an MRE where f and g is an MRE. This is interpreted as the sequence
MRE f followed by MRE g.

• f∗ is an MRE where f is an MRE. This operation refers to the Kleene star
interpreted as zero or more occurrences of MRE f .

• f+ is an MRE where f is an MRE. This operation is interpreted as one or
more occurrences of MRE f .

25

• fˆx is an MRE where f is an MRE and x ∈ N∗. This is interpreted as zero
or more occurrences of MRE f up to x.

• f? is an MRE where f is an MRE. This is interpreted as zero or one
occurrence of MRE f .

• f&g is an MRE where f is an MRE and g is an MRE. This is interpreted
as the occurrence of MRE f and MRE g.

• f |g is an MRE where f is an MRE and g is an MRE. This is interpreted
as the occurrence of MRE f or MRE g.

• MATs:

– t1 : ∃m ∈ M(w) such that
m.P contains VERB

– t2 : ∃m ∈ M(w) such that
m.C isA PROPER NAME

– t3 : ∃m ∈ M(w) such that
m.P contains POSS PRON

• MBFs:

– F1: ¬t1
– F2: t2 or t3

• MRE:

– E1: F1&F2

.E1

ú

G
.
Q« A

	
K

@ É

�
m.
��

.
	

­Ë

@

	
àñ�Ô

	
g

E1

ú

�
æ

�
¯A¢�. Õ

�
P̄ð

.
�
éJ

	
K AÖ

�
ß

E1

ú

ÍA

	
®£

@ð

.
	

­J
� YªK. ú

�
G

AJ
�

E1

Ñêª�A
�
Kð

.
? I.

	
�

	
ª

�
K Éê

	
¯

Figure 5.4: Morphology-based regular expression example

Consider the example shown in Figure 5.4. We use the same text, MATs,
and MBFs defined previously in Figure 5.3. We define the regular expression E1.
E1 is a conjunction between F1 and F2 and targets text chunks (one word in this
expression) that match F1 and F2. In other words, it targets words that don’t
have a POS tag that contains a verb and either the category is a proper name or
part of speech tag is a possessive pronoun. The matches of E1 are shown in the
text and colored in red.

5.5 Computational actions

MERF allows the user to specify computational actions to be executed when a
match for a sub-expression is found. These actions can be used by the user to

26

cout << $s2.text;

isHundred = true;

if(current == 0) {

currentH=$s2.number;

}

else {

if(!isKey) {

currentH= current * $s2.number;

current = 0;

}

else {

currentH = $s2.number;

}

}

isKey = false;

Figure 5.5: Sample code for an on-match action

store the results in separate files to use later, perform statistical analysis, and
apply algorithms such as the number normalization task explained in Chapter 8.

The computational actions are C++ snippets of code that may contain
MERF API calls. The MERF API calls allow the code to access solution fea-
tures referring to sub-expression matches. The features include text, position
in text, length of word (count of characters), the equivalent numerical value if
applicable, and morphological features.

Each MRE is associated with two computational actions. Once all matches
are computed, MERF computes the sequence of actions as follows. The pre-
match action of a match m of a sub-expression e gets executed. The sub-
expression e may include other smaller sub-expressions with their own actions.
MERF executes those actions. Then, MERF executes the on-match action of
m.

In addition the user can also specify code headers to associate the ex-
pressions with proprietary code such as declaring global variables and including
user libraries.

Consider the sample code action shown in Figure 5.5. This code action
is taken from the number normalization case study which we explain in detail
in Chapter 8. The variables isHundred, isKey, current, and currentH are global
variables declared by the user. The use of cout requires the user to include the
iostream library. As shown by the example, the user can access the word features
by using the key character $ followed by the sub-expression name and target word
feature. In this example, the user prints the sub-expression text and processes

27

its numerical value.

As for the morphological features, the user accesses them using the com-
mand $sub expression name.matches. The API returns a vector of solutions
where each solution contains the stem, arrays of affixes (prefixes and suffixes),
stem gloss, arrays for affix glosses, stem POS, and arrays for affix POSs.

5.6 Tag type

The set of tag types T contains tuples of the form 〈l, f, d〉 where l is a text label
with a descriptive name of the tag type, f is a MERF MBF or MRE, and d is
a visualization legend. The visualization legend describes how the tags should
be displayed to the user and contains information such as the foreground and
background color, the font size, weight, and style.

5.7 MBF evaluation

For each word ti ∈ T , MERF computes a Boolean value ({true, false}) for all
atomic terms. Then MERF computes Boolean values for all Boolean formulae.
Then MERF computes the set of tags Ri ⊆ T ×T such that (ti, tt j) ∈ Ri if and
only if the Boolean formula Fj associated with tag type tt j is true for ti.

The MBF evaluation results in a sequence of tag sets 〈R0, R1, . . . , Rn−1〉
where Ri is the tag set for word ti ∈ T, 0 ≤ i < n. If a word to doesn’t have any
tag type match, it is tagged by a default tag type called O, referred to as NONE.
We refer to these words as null words.

5.8 MRE and action simulation

For each MRE, MERF generates its equivalent non-deterministic finite au-
tomaton (NFA) in the typical manner [25]. Each MRE operation has its equiv-
alent representation in an NFA. As for the upto operation (fˆx), which is not
directly supported in [25], we can expand it into a standard regular expression
form, for example f 5 is equivalent to f?|ff |fff |ffff |fffff .

MERF simulates the generated NFA over the sequence of tag sets gen-
erated in the MBF evaluation stage. A simulation match m is a vector of the
form 〈rk, rk+1, . . . , rj〉 where rk ∈ Rk, rj ∈ Rj, 0 ≤ k < j < n. This tag match
corresponds to the text sequence 〈tk, tk+1, . . . , tj〉 where tk, tj ∈ T .

If the simulation has a match 〈rm, rm+1, . . . , rn〉 where 0 ≤ m ≤ n, the
next simulation starts at Rn+1. This disallows overlap of matches for the same
MRE.

28

In case the NFA simulation has no match, the next simulation starts at
Rm+1. If we have more than one match starting at Rk where 0 ≤ k ≤ n, MERF
currently returns the longest one.

MERF maintains a function φ ⊂ Q× Φ, where Q is the set of states in
the NFA and Φ is the set of sub-expressions in the MRE. So (q, f) ∈ φ iff state
q ∈ Q was generated by MERF to correspond to sub-expression f ∈ Φ. MERF
uses φ to compute a match tree with respect to the MRE regular expression. It
also uses φ and the match sequence to compute the sequence of computational
actions of an MRE match.

Expression = (P |N) + O? R O∧2 (P |N |U)+

q8 q13

q10

q11

q9

q12

q7 q14ε
ε

ε

ε

ε

ε

ε

εε

ε

P

N

.

()

p7=ú
	

æJ. ÖÏ @ r4=
�
éK. Q

�
®Ó

ˆ2

@
	

Yë 	áÓ

p5=ú

G
.
Xp6=ÈñÓ

úÎ«

+

|

?

|

+

|

match 2

(a) Part of equivalent NFA (b) Sample match tree

Figure 5.6: MERF expression, NFA, and match example

Figure 5.6 illustrates the MRE simulation process. We consider the di-
rection extraction task discussed in Chapter 3. The user defines the MRE shown
at the top of Figure 5.6. The MRE simulation unit generates the equivalent NFA
of the regular expression. Part of the NFA is shown in Figure 5.6(a). States
q7, q8, . . . , q14 represent NFA states and the edges are transitions based on input
labels. P and N are labels referring to MBF tag type names and ε is an empty
string. ε is the source of non-determinism in the simulation.

MERF simulates the NFA with the MBF-based tag type matches and
calculates MRE matches. Figure 5.6(b) shows a sample match of the MRE. Leaf
nodes are matching MBF tags represented in the Figure with their original text,

and internal nodes represent matches to MRE operations. ú

G
.
Xdby and ÈñÓmwl

are sample leaf nodes referring to name of place tags (P). +, |, and ? are internal
nodes referring to MRE one or more, disjunction, and zero or one operations,
respectively.

29

5.9 Semantic relations

A Semantic relation is a directed labeled binary relation of the form 〈e1, e2, r〉

• e1: identifier associated with an MRE sub-expression denoting the source

• e2: identifier associated with an MRE sub-expression denoting the destina-
tion

• r: identifier associated with an MRE sub-expression or a user-defined con-
stant, denoting the label of the relation between e1 and e2.

We refer to a tuple of the form 〈e1, e2, r as a relational entity.

Moreover, MERF defines the cross-reference relation between two enti-
ties e1 and e2 as:

cr(e1, e2) := e1.text ∈ Syn2(e2.text)

• Annotated Expression

–
e1

(P |N)+
o1

O?
r

R
o2

O∧2
e2

(P |N |U)+

• User defined semantic relations

– 〈e1, e2, r〉

– 〈r, e1, o1〉

– 〈r, e2, o2〉
ÈñÓ ú

G
.
X

Dubai Mall

ú
	

æJ. ÖÏ @

the building

�
éK. Q

�
®Ó

near

�
é

	
®J
Ê

	
g h. QK.

Khalifa tower

Èð

B@ ©£A

�
®

�
JË @

intersection 1

H. Q
�
®ËAK.

next to

úÎ«

prep

@
	

Yë 	áÓ

from this

�
éK. Q

�
®Ó

near

isA

H. Q
�
®ËAK.

next to
	áÓ

from

e2

r

e1 r

o2

o1

e1

e2

o2

r

r

Figure 5.7: Semantic relation example

Consider the example shown in Figure 5.7. We illustrate the semantic
relation and cross-reference construction using the match trees in Figure 3.1(f).
MERF assigns the notations e1, e2, o1, o2, and r to (P |N)+, (P |N |U)+, O?, O∧2,
and R, respectively, as shown in the top of Figure 5.7. We use these notations to
define the semantic relations. Hence, we define the relations 〈e1, e2, r〉, 〈r, e1, o1〉,
and 〈r, e2, o2〉.

30

The matches of e1, e2, o1, o2, and r from the match tree in Figure 5.6

are ÈñÓ ú

G
.
Xdby mwl (Dubai Mall), ú

	
æJ. ÖÏ @ālmbnā (the building), úÎ«↪lā (prep), 	áÓ

@
	
Yëmn hd

¯
ā (from this), and

�
éK. Q

�
®Ómqrbh (near), respectively. MERF constructs

the semantic relation matches and builds the entity-relation graph shown in the
lower part of Figure 5.7.

Similarly, we construct the relations of the match 	áÓ H. Q
�
®ËAK.

�
é

	
®J
Ê

	
g h. QK.

Èð

B@ ©£A

�
®

�
JË @brǧ h

˘
lyfh bālqrb mn āltqāt. ↪ āl-↩-wl . The matches of e1, e2, o2, and r

are
�
é

	
®J
Ê

	
g h. QK.brǧ h

˘
lyfh (Khalifa tower), Èð

B@ ©£A

�
®

�
JË @āltqāt. ↪ āl-↩-wl (intersection

1), 	á Ómn (from), and H. Q
�
® ËA K.bālqrb (next to), respectively. MERF doesn’t

construct the relation 〈r, e1, o1〉 since o1 has no match. Therefore, we get the
entity-relation graph shown in the upper part of Figure 5.7.

After constructing the semantic relations, MERF constructs the cross-
reference relations between the extracted entities. MERF uses the Synk feature
of second order to find cross relations (Syn2). The graph in Figure 5.7 shows the

cross-reference relation constructed between
�
é

	
®J
Ê

	
g h. QK.brǧ h

˘
lyfh (Khalifa tower)

of the first match with ú
	

æJ. ÖÏ @ālmbnā (the building) of the second match. The edge
is labeled with isA.

31

Chapter 6

Implementation

In this Chapter, we describe the different implementation aspects of MERF. We
cover the data model used to store the MBF and MRE based tag types, the MBF
and MRE tags, and the generated actions. We explain the data structures used to
hold the data from the files including MBF and MRE tag types, MBF and MRE
matches, code action, and relations. Then, we describe the simulation of the
MBFs and MREs to compute the matches, the construction of relations matches,
and the execution of actions. We also describe how the interface is written with
Qt and how the match tree and entity-relation graphs are visualized.

6.1 Data Model

MERF saves the tag types and the tags in a user friendly format using the
JavaScript Object Notation (JSON) data-interchange format [26]. The JSON
interface is built on two structures. The first structure is a collection of name
and value pairs. An instance of the structure is referred to as an object. The
second structure defines ordered lists of values as arrays. The name in a name
value pair is an identifier string and the value can be a string, a number, a Boolean
(true or false), an object, or an array.

6.1.1 Tag file

The tag file keeps the paths of the separate text and tag type files. It also contains
a list of tags with their tag type identifiers as well as their position in text in
terms of number of characters from the beginning of text, length of the tag, and
word index. In addition to the previous features, the MRE matches contain an
object representing the match tree with the identifier “match”.

A sample tag file is shown in Figure 6.1. The tag file includes the tag type
file pointer(TagTypeFile), text file pointer (file), the list of MBF tags (TagArray),
the list of MRE tags (simulationTags), and textchecksum which is used to ensure

32

{ "TagArray":

[{"length": 3,"pos": 152,"source": 1,"type": "P","wordIndex": 29},...],

"simulationTags":

[{"formula": "direction","length": 33,"match": {...},"pos": 22,"source": 1},...],

"TagTypeFile":"directions.stt.json",

"file":"directions.txt",

"textchecksum":211

}

Figure 6.1: Tag file format

that the text is not corrupt. An MBF tag is defined by its position in the text
(pos), length of the tag (length), tag type (type), word index (wordIndex), and
the source of the tag (source). A simulation tag, referring to an MRE match, is
defined by the formula (MRE), length, position and the match tree (match).

6.1.2 Tag type file

The tag type file contains two objects referring to MBF and MRE based tag
types. Each object has an array value containing the user-defined tag types.
Each tag type is stored as an object and contains the name, description, formula
or expression, and the visualization legends.

{ "TagTypeSet":

[{"Description":"numerical term",

"Features":[{"Negation": "",

"Relation": "isA",

"Stem-Gloss": "first"},

...

],

"Tag": "U",

"background_color": "grey",

"bold": false,

"font": 12,

"foreground_color": "orangered",

"italic": false,

"underline": false

},...

],

"MSFs": [{

"name": "direction","description": "",

"MSF": {... {"MBF": "U","actions": "",

"init": "","name": "s7",

"parent": "s13","type": "mbf"}

...

},

"Relations": [...

{ "entity1": "s9","e1Label": "text",

"entity2": "s14","e2Label": "text",

"edge": "s3","edgeLabel": "text",

"name": "r1"}

...],

"bgcolor": "#9acd32","fgcolor": "#f0f8ff",

"includes": "","members": "",

"delimiter": true

}]

}

Figure 6.2: Tag type file format

Figure 6.2 shows a sample tag type file. The file includes a list of de-
fined MBF tag types (TagTypeSet). Each tag type is defined by the fields name

33

(Tag), description, morphological features (Features), foreground color, back-
ground color, bold, italic, underline, font size (font), and id. The morphological
features are stored in an array of objects where each object refers to an MAT. An
MAT object contains the fields negation, relation (isA or contains), and feature
name and value pair.

The file also includes a list of defined MRE tag types and refers to them
with the notation Morphology-based Sequential Formulae (MSFs); the tool name
of MRE. Each tag type is defined by the fields name, description, expression,
semantic relations (Relations), code action information (includes and members),
delimiter, and foreground and background color. The includes and members
contain the libraries and global variables added to the actions by the user respec-
tively.

The expression is a tree of objects and arrays whose depends on the
definition of the user. For example, a sequence of sub-expressions is expressed as
an array of objects. A sample MBF added to the expression is shown in the Figure
defined by the name (MBF), pre-match actions (init), on-match actions (actions),
unique name assigned by MERF (name), name of parent expression (parent),
and expression type (type) which is specified based on operation applied. The
delimiter entry specifies whether the simulation should stop on a full stop or any
punctuation mark.

Relations are saved in an array where each relation is defined by its name,
the first entity (entity1) and its label (e1Label), second entity (entity2) and its
label (e2Label), and the edge and its label (edgeLabel).

The user-defined actions (pre-match and on-match) written into a cpp
output file. The file includes the libraries included, global members declared,
pre-match and on-match functions, and the function calls. A sample of the
generated file is shown in Figure 6.3. The Figure shows a sample on-match
function for a sub-expression named s2 (s2 Match). The function takes an integer
as a parameter. The integer refers to the numerical value of the match of s2

(s2 number). The second function named number actions contains the list of
function calls. A sample call of the s2 Match is shown with the parameter value
200.

6.2 Data structures

In this section, we explain the data structures we used to store the text, MBF-
based tag types, MRE-based tag types, relations, MBF matches, MRE match
trees, and relations constructed.

34

extern "C" void s2_onMatch(int s2_number) {

isHundred = true;

if(current == 0) {

currentH=s2_number;

}

else {

if(!isKey) {

currentH= current * s2_number;

current = 0;

}

else {

currentH = s2_number;

}

}

isKey = false;

}

extern "C" void number_actions() {

s5_preMatch();

s4_preMatch();

s2_preMatch();

s2_onMatch(200);

s4_onMatch();

s4_preMatch();

s3_preMatch();

s0_preMatch();

s0_onMatch(9);

.

.

.

}

Figure 6.3: sample generated actions file

6.2.1 Arabic document

MERF supports Arabic documents with UTF-8 encoding only. The input Arabic
text is saved as a string. We process the text to build a word position to word
index hash, a set of words that end by punctuation, and a set of words that end
with full stop. The two sets are used in MRE simulation.

6.2.2 MBF tag types

We store the MBF tag types in a vector of TagType class. Each tag type contains
strings to store the name, description, foreground color, and background color.
Boolean variables are used to track the bold and italic properties. The Boolean
formula is stored as a vector of quadruples where each quadruple contains the
feature, feature value, negation option, and predicate (isA or contains).

6.2.3 MRE tag types

The MRE tag types are stored in a vector of MSFormula class. The regular
expression is stored in a tree structure where each node refers to a sub-expression.
Each sub-expression is represented by a class derived from a base class called
MSF. MSF defines the common attributes of all sub-expressions including name,
pre-match code actions, and on-match code actions. It also contains the common
functions required to be implemented by all derived classes.

An MRE tag type is stored in a class called MSFormula. This class
contains strings for description of the tag type, foreground color, background
color, included libraries by user, and action global variables. It also contains a
vector of MSF pointers referring to a sequence of sub-expressions. MSFormula
contains a formula that maps the name of each sub-expression to a pointer of the
relevant structure instance.

35

The expressions with the operations zero or one (?), zero or more (∗), one
or more (+), and zero up to x (fˆx) are stored in a class called UNARYF. This class
holds the operation and an MSF pointer referring to the sub-expression subject
to the operation. The expressions with the disjnuction (|) or conjunction (&)
operations are stored in a class called BINARYF. This class holds the operation
along with two MSF pointers referring to the two sub-expressions subject to
conjunction or disjunction. The sequential expression is stored in a class called
SequentialF. It contains a vector of MSF pointers referring to a sequence of
sub-expressions. An MBF-based sub-expression is stored in a class called MBF

which contains the name of the MBF tag type. All the classes introduced above
are derived from the base class MSF.

Moreover, the MRE tag type stores the relevant semantic relations de-
fined by the user. The relations are stored in a vector and each relation is rep-
resented by a class Relation. This class holds MSF pointers that refer to the
three entity sub-expressions, and strings to identify the name of the relation and
the labels of the three entities.

6.2.4 MBF tags

The MBF tags are stored in a multi-hash based on wordindex. We use a multi-
hash because a single word can have multiple tags as stated before. Each tag is
represented in an instance of the Tag class. This class holds a pointer to the tag
type, and integers for word index, position, and length. It also contains a flag to
differentiate the automatic tag from a user one.

6.2.5 MRE tags

We store the MRE tag type matches in a vector of Match class. In order to
preserve the relation between the expression and the match tags, we use similar
classes to store the match in a tree structure as well. Hence, we define the
classes KeyM, UnaryM, BinaryM, and SequentialM referring to MBF, UNARYF,
BINARYF, and SequentialF matches, respectively. All those classes inherit from
base class Match.

The base class contains common data including pointer to relevant MSF,
operation if present, and a flag to differentiate the automatic tag from a user one.
KeyM holds the matching word, tag name (key), position, and length. UnaryM
contains a vector of Match pointers and an integer to the limit in UPTO operation
if applicable. BinaryM contains two Match pointers. Both pointers are required
in the conjunction case, but only one is used in the disjunction. The SequentialM
class holds a vector of Match pointers.

36

6.3 MBF simulation

The Arabic morphological analyzer, Sarf, provides a pure virtual function called
on match. This function is triggered by the analyzer for every morphological
solution computed for an input word. Through this function, we can access the
morphological features of the solution including the stem, affixs, POS and gloss
tags, and categories.

We derive the class SarfTag from Stemmer, the main class of Sarf, and
implement the on match function. For each solution found, we iterate over the
MBFs and check whether the solution matches any of the MATs defined by the
user. In case there is a match, we add a tag to the multi-hash referring to the
word index. The tag contains a pointer to the tag type that refers to the matching
MBF.

In order to minimize the computational cost of the Synk feature, we
compute the sets prior to the tag computation process. For each CS (constant
stem) and k (order) pair, we compute the set of Arabic stems that are synonyms of
the stem CS of order k. When we find a Synk based MAT in the tag computation
process, we detect a match if a solution stem belongs to the relevant set.

6.4 MRE simulation

In this Section, we describe how we generate the NFA equivalent to the MRE.
Then we describe how we simulate the NFA and construct the match trees.

6.4.1 NFA generation

In order to simulate the regular expression, we first generate the equivalent non-
deterministic finite automata (NFA). We represent the generated NFA with the
NFA class which contains strings representing start and accept states, a multi-
map for transitions, and a map from NFA state to relevant MSF. The state
name is represented by a string of the form q0, q1, . . . The transition multi-hash
takes a concatenation of current state and label (epsilon or tag type name). It
the transition exists, the hash returns one or more transition states. A sample
transition input is q1|NONE and a sample value would be q2 if the transition
exists. The MSF map is used to track the source sub-expression of each state and
whether the state was generated with a pre-match or on-match property. This
information is important in the simulation of the NFA, and computation of the
match tree. Thus, the map takes the state name as input and returns a pair of
MSF pointer and string indicating the pre-match or on-match property.

Figure 6.4 shows a sample NFA generated for a zero or more expression
(∗). The dotted block represents the sub-expression subject to the zero or more
operation. qi is the start state of this expression and qj is the end state. The

37

qi qjqm qn

sk|pre sk|on
ε ε

ε

ε

Figure 6.4: Star expression NFA

map entry of the start state is sk concatenated with pre. sk is the name of the
stared expression and pre refers to pre-match. Similarly, on in the qj entry refers
to on-match.

6.4.2 NFA simulation

We simulate the generated NFA in a recursive function. The function takes as
parameters a pointer to the NFA, current state, and current word index and
returns a Match instance. At each stage, we check for possible transitions from
current state based on empty strings (ε) or MBF tags. Note that we can get
the tags for current word index using the multi-hash used to store the MBF tag
based on word index.

When we reach the accept state, we build the match tree backwards. At
each stage, we check if the current state refers to a sub-expression pre-match or
on-match property. On an on-match property, we generate the relevant match
node compatible with the sub-expression type (Subsection 6.2.5) and add it as
a child node to returned Match structure. In case of a pre-match property, we
return the parent node of the Match structure.

6.5 Code action execution

In this Section, we describe how we generate the code action file and then compile,
link, and run it.

6.5.1 Action file generation

In order to execute the user-defined code actions, we first generate a C++ file.
This file contains the includes, global declared variables, pre-match and on-match
functions, and the sequence of function calls.

The libraries and global variables are directly inserted at the beginning
of the file as entered by the user. Then, we generate the pre-match and on-match
functions referring to each sub-expression in the MRE tree. In case the user uses
the feature access API, we process the feature API and pass the relevant variable

38

as a parameter to the function. For example, $s0.number allows the user to access
the numerical value of the match of the sub-expression s0. This call is processed
and transformed into the form s0 number, and it is added as an integer parameter
of the calling function.

After the MRE simulation stage, we traverse the match trees and gener-
ate the sequence of pre-match and on-match calls. The function calls are listed in
a function named after the MRE tag type name such as number actions() {...}.
At each node in a match tree, we generate the pre-match call of the current node,
call the generation method of children Match, then generate the on-match call of
the current node.

6.5.2 Action file execution

In order to execute the generated C++ file, we use shared object libraries and
dynamic loading. The shared object library allows us to compile, load, and run
the action file at run-time using dynamic linking loader system functions. The
process requires us to create the shared library, load it, then use it by calling the
target functions.

We create the library using a system call of the form:
/usr/bin/g++ -fPIC -shared cppFile -o cppFile Path lib MREName.so.
The cppFile is the name of the action file generated, cppFile Path is the path of
the action file, and lib MRENAME.so is the name of the output shared library.

We load the library using the dlopen function provided by the dynamic
library. The function takes the library name as input and returns a library
pointer. As previously noted, the function calls are listed in a single function. In
order to call this function, we use dlsym which is a content extraction function.
This function takes the library pointer and the name of the target method as
parameters.

6.6 MERF interface

We implemented MERF and its GUI as a C++ desktop application with the
Qt GUI toolkit. The MERF GUI uses standard intuitive tagging facilities such
as the application menus, the context menus, the mouse selection mechanism,
and the drag and drop mechanism to perform tagging and editing operation.
The MERF GUI allows the user to create, manipulate, and analyze a tagging
project.

In order to provide a user-friendly interface, we use QDockWidget in
MERF main window. This class provides the concept of dock widgets which can
be moved into new areas and removed by the user. The main window contains
4 widgets referring to text visualization, tag list, tag description, and match tree
and entity-relation graph. The main window displays the text with rich colors in

39

a text browser pane. A companion pane shows a list of all the tags. A secondary
companion pane shows details about the selected tag. A tabbed widget visualizes
the match tree and entity-relation graph.

As for the MBF and MRE tag type editors, we use grids to organize the
layout. The MBF and MRE are represented using the tree widget provided by
Qt. We use combo box, label, edit text, and push button classes provided by Qt
to add the other objects in the editor.

6.6.1 Tree and graph visualization

We use graphics scene and graphics view in order to visualize the match tree
and entity-relation graph. The graphics scene provides a surface to manage 2D
graphical items such as lines, text, and shapes. The graphics view provides a
widget to display the content of the graphics scene. Our visualization method
is based on an example provided by Qt showing how to implement nodes, and
edges between nodes in a graph 1. However, Qt doesn’t calculate the layout
automatically but requires the user to position the elements.

In order to generate the tree or graph layout, we use the graphviz library.
This library provides a variety of software for drawing attributed graphs and
computes the layout using a set of common graph layout algorithms such as
dot. First, we define our match tree or entity-relation graph using this library.
We use commands such as agopen to create a graph, agsafeset to set graph
attributes, agnode to create a graph node, and agedge to create a graph edge.
After creating the graph, we compute a layout using the dot layout engine. This
task is performed by calling the method gvLayoutJobs. We use the generated
coordinates of the nodes in the graphviz graph to position the nodes in MERF’s
main window graphics scene.

6.7 Open source tool

MERF is an open source tool present on google code under atmine repository
(https://code.google.com/p/atmine/). In addition to MERF, the repository
contains entity extraction tasks developed by our research group. People are
welcome to download and use the tools. We appreciate any feedback that we get
and we try to improve the tools accordingly.

1http://qt-project.org/doc/qt-4.8/graphicsview-elasticnodes.html

40

https://code.google.com/p/atmine/
http://qt-project.org/doc/qt-4.8/graphicsview-elasticnodes.html

Chapter 7

MERF GUI

In this Chapter, we present the user friendly interface of MERF. We show how
to build the direction extraction task shown in Chapter 3. The task requires the
user to define Boolean formulae, define regular expression, declare the semantic
relations, and call MERF’s simulators.

MERF provides a user friendly interface to specify the atomic terms,
the MERF Boolean formulae, the MERF regular expressions, the tag types,
and the legends. The MERF GUI also allows the user to modify and correct the
resulting tag set R. The MERF GUI allows the user also to compute accuracy
results that compare different tag sets. The accuracy results serve well as inter
annotation agreement results when the tag sets come from two human annotators,
or as evaluation results when comparing MERF output with reference tag sets.

Figure 7.1: Initial main window of MERF

The snapshot in Figure 7.1 shows the MERF GUI. MERF’s GUI al-
lows the user to create, manipulate, and analyze a project. The File menu is
used to create, close, or open an existing project. The Tags menu enables the
user to manually define and edit general purpose tag types with no formulae or
expressions. The user can define and edit the MBF and MRE based tag types
and trigger the relevant automatic morphology-based simulators from the Tag-

41

types menu. The user performs comparison and analysis of two tag sets using
the Analyse menu. View menu enables the user to switch between visualizing
the MBF-based tag type matches or MRE-based tag type matches. To start our
direction extraction project, we create a new project.

7.1 Tag type Boolean formula editor

Figure 7.2: MERF tag type Boolean formula editor.

The morphology-based tag type editor shown in Figure 7.2 allows the
user to write a tag type Boolean formula in a user friendly manner. The user
first specifies atomic terms by selecting a feature from F . The pattern filters the
feature values. MERF editor provides the user with a combo box to specify the
predicate of the match. The predicate can be an isA predicate requiring an exact
match of the morphological feature value, or a contains predicate requiring a
substring match.

Then the user can add and remove the selected feature values to the
atomic terms under the tag type name using the push buttons. The feature
column has a check box that allows negating the term. The Relation column
has a context sensitive menu that can switch the operation between the values in
O = {isA, contains}. Multiple feature/value pairs can be included in a single tag
type definition with a disjunction semantics. The right pane shows a description
of the tag type and a set of legend descriptors. When the stem or gloss features
are selected, the user has the option to use the Synk feature. The user selects
the check box in the lower left of the editor and sets the order in the spin box.

42

In the direction extraction task example, the user specifies four MBF-
based tag types with labels N , P , R, and U with descriptions names of person,
name of place, relative position, and numerical term, respectively. For each MBF,
the user selects the morphological features, specifies the constant value CF , and
adds it to the Boolean formula editor. The user also assigns legend descriptors
to each defined tag type.

Figure 7.2 shows the definition of the numerical term (U) MBF. The MBF
is based on an MBF formula that inspects the gloss tag of the stem of the word
and checks whether it is first, second, . . . , or tenth. The user selects the legend
descriptors by setting the foreground color to lightskyblue, background color
to lightgoldenrodyellow, font size to 12, normal font weight, and unitalicized.

7.2 MERF MBF match visualization

After defining the MBFs of the direction extraction task, we call the MBF sim-
ulator from the Tagtypes menu. The snapshot in Figure 7.3 shows the MERF
GUI with the tag type color sensitive text view, the tag list view, and the tag de-
scription view. The color-sensitive text view shows the text with visualization of
the MBF tag type matches. The tag list view shows all the tag matches that are
automatically or manually applied to the text. The tag description view presents
the details of the tag along with the relevant tag type information.

Figure 7.3: MERF main window with MBF match annotated text, tag descrip-
tions, tag type legend properties, and manual tag edition menus.

The context sensitive menus in Figure 7.3 allow the user to tag a selected
word or chunk differently or to entirely remove the tag. MERF GUI also allows

43

manual tag types that are not based on morphological features. These tags
enable the users to build their own reference corpora without help from the
morphological analyzer.

7.3 Tag type regular expression editor

Figure 7.4: MERF tag type regular expression editor.

After interacting with the tool and getting satisfied with the results, the
user moves to specify the regular expressions. The morphology-based tag type
editor shown in Figure 7.4 allows the user to define a tag type regular expression
in a user friendly manner. The user first adds the required MBFs to the formula
under the tag type name by selecting a label from T under MBFs. The Boolean
formula of a highlighted tag type is shown in the table on the lower left pane.
Each selected MBF is associated with an automatic name. The regular expression
tree features the name, MBF, and operation for each sub-expression.

NONE is a special tag type with no Boolean formula. It tags all the words
that are not tagged with any of the morphology-based Boolean tag types. NONE

is defined by default and can be used to introduce flexibility and noise tolerance
into the formula. We previously defined this tag type in Chapter ?? and referred
to it by O (other). Moreover, a defined MRE is directly added to the MBF list
enabling substitution and recursion in formula definition.

The regular expression editor enables the user to apply operations to the
selected expressions. To do so, the user selects one or two expressions then selects
an operation from the ones shown in the lower left of the view. The operations
include disjunction, conjunction, zero or one, sequence, zero or more, one or more,

44

and zero up to some constant integer specified by the user. The right pane shows
a description of the tag type and a set of legend descriptors.

(P |N) + O? R O∧2 (P |N |U)+

In the direction task, we aim to build the expression shown above. Thus we start
by adding the MBFs P , N , NONE, R, NONE, P , N , and U . We apply the
required operations incrementally to build the final expression. For example, we
apply the disjunction (|) operation to the first P and N added, then we apply
the one or more (+) operation to the resulting sub-expression. We proceed as
such to build the regular expression shown in Figure 7.4. Similar to the MBF tag
type editor, the user specifies a set of legend descriptors for each MRE tag type.

7.4 MERF MRE match visualization

After defining the MRE of the direction extraction task, we call the MRE sim-
ulator from the Tagtypes menu. The snapshot in Figure 7.5 shows the MERF
GUI with the tag type color sensitive text view, the tag list view, the tag de-
scription view, and the match tree view. The color-sensitive text view shows the
text with visualization of the MRE tag type matches. The tag list view shows all
the tag matches that are automatically or manually applied to the text. The tag
description view presents the details of the tag along with the relevant tag type
information. The match tree is visualized when the user selects a tag from tag
list.

Figure 7.5: MERF main window with match tree view

45

Figure 7.5 shows the match tree of the direction task regular expression

match ú
	

æJ. ÖÏ @ @
	
Yë 	áÓ

�
éK. Q

�
®Ó úÎ« ÈñÓ ú

G
.
Xdby mwl ↪lā mqrbh mn hd

¯
ā ālmbnā (Dubai

Mall is located near this building). Leaf nodes show the match text, internal
nodes show the operations, and edge labels shows the MBF tag type name.

7.5 Semantic relation editor

After the user is satisfied with the MRE matches, the user moves to define
the semantic relations and the code actions. The semantic relation editor of
MERF shown in Figure 7.6 allows the user to define relations in a user-friendly
manner. The relation is defined by the tuple 〈e1, e2, r〉, where e1 and e2 are enti-
ties and r is the relational entity. The editor provides the user with the regular
expression tree shown in the left pane to ease the relation construction. The user
first adds a relation, then assigns the values for the entities and relational entity
(edge). For each element in the tuple, the user specifies the sub-expression match
and relevant label. The label can be a match text, position, length, or numerical
value, or user-defined label.

Figure 7.6: MERF relation editor

Recall the semantic relations we defined in the direction extraction task;
namely relations 〈e1, e2, r〉, 〈r, e1, o1〉, and 〈r, e2, o2〉. Figure 7.6 shows the dec-
laration of the first relation where s9, s14, and s3 correspond to e1, e2, and r,
respectively. We choose the text of the sub-expression match to be the entity
node and relational entity edge labels. Similarly, we define the other relations
〈s3, s9, s10〉, and 〈s3, s14, s11〉 corresponding to 〈r, e1, o1〉, and 〈r, e2, o2〉, respec-
tively.

After specifying the semantic relations, we call the semantic relation
constructor. The snapshot in Figure 7.7 shows the MERF GUI with the entity-
relation graph. The entity-relation graph is visualized when the user selects an
MRE match tag from the tag list. Figure 7.7 shows the entity-relation graph of
the match shown in Figure 7.5. The interactive graph view enables the user to
move the nodes.

46

Figure 7.7: MERF main window with entity-relation view

7.6 Code action editor

Figure 7.8: MERF MRE action editor

In order to add computational actions to an MRE sub-expression, the
user selects to edit the actions in the MRE tag type editor. The view shown in
Figure 7.8 allows the user to specify the actions in a user friendly manner. MERF
provides the user with an API to access the sub-expression match features easily
and define the pre-match actions. The match features include the text, position,
length, and numerical value if applicable, and morphological features for MBF
matches. MERF also enables the user to add C++ declarations and library
includes.

47

7.7 Analysis

In addition to automatic and manual tagging, MERF allows comparing tag sets
and tag types applied to the same input text. The MERF comparator takes as
input two tag sets R1 and R2 and two tag type sets T1 and T2. It produces a
difference view for the tag types and a difference view for the tag sets. The tag
type difference view shows the common tag types T1∩T2, the tag types in T1 and
not in T2, and the tag types in T2 and not in T1.

Figure 7.9: MERF comparison and accuracy results view.

Similarly, the tag set difference view shows R1 ∩ R2, R1/R2 and R2/R1.
The tag set difference view, as shown in Figure 7.9 also shows the precision,
recall and F-measure between the two sets. The metrics can be computed based
on several predicates. The “Intersection” predicate returns true if a tag from R1

intersects in text T with a tag in R2. The “Exact” predicate returns true if a tag
from R1 exactly matches a tag in R2. The “A includes B” predicate returns true
if a tag from R1 contains a tag from R2. Finally, the “B includes A” predicate
returns true if a tag from R2 contains a tag from R1.

In the difference view panes, the user can select a difference tag and
accept it, or reject it to build a corrected corpora.

48

Chapter 8

Case Studies

In order to evaluate MERF, we developed a set of twelve case studies with an
information extraction task for each. We compare the results of MERF with
existing application specific techniques for three of the case studies. We discuss
the three case studies and the manually encoded techniques used in them in the
following. We discuss the rest of the case studies in Appendix A.

We consider the narrator chain, number normalization, and temporal
entity extraction tasks that were addressed in ANGE [27], NUMNORM, and
ATEEMA [28], respectively. We compare the results of MERF with the results
from the entity extraction tasks and we report the time required to implement
the application, the runtime to extract the target entities, the accuracy (recall
and precision) of the output tags, and the ease of composition as a complexity
metric (lines of code).

Recall refers to the fraction of the entities correctly detected against the
total number of entities available. Precision refers to the fraction of correctly
detected entities against the total number of extracted entities. Intuitively, the
precision measure denotes whether the system generated false positives.

We used newspaper articles to evaluate number normalization, and tem-
poral entity extraction, and a hadith book to evaluate narrator chain extraction.
For the temporal and number normalization cases, we evaluated the techniques
against text chosen arbitrary from issues of the Lebanese Assafir newspaper1 and
the Lebanese Al-Akhbar newspaper2. For the narrator chain case, we evaluate
the techniques against part of a hadith book (Musnad Ahmad). We present our
results in Table 8.1.

1available online at http://www.assafir.com.
2available online at http://www.al-akhbar.com.

49

http://www.assafir.com
http://www.al-akhbar.com

Table 8.1: MERF against manually-coded applications: Time, accuracy, and
ease of composition

Task Build Time Run Time(s)
Accuracy

Ease of Composition
Recall Precision

Narrator Chain
ANGE 1-2 month 1.79 1 1 3000+ lines of code
framework 3 hours 7.24 1 0.93 8 MBFs and 4 MREs

Number Normalization
NUMNORM 1 week 0.32 0.91 0.93 500 lines of code
framework 1 hour 1.53 0.91 0.90 3 MBFs/1 MRE/57 lines

Temporal Entity
ATEEMA 1-2 month 2.53 0.88 0.89 1000+ lines of code
framework 3 hours 3.14 0.91 0.81 3 MBFs and 2 MREs

8.1 Narrator chain

In this application, our target is to detect the narrator chains. A narrator chain is
a sequence of narrators referencing each other. A sample narrator chain is shown
in Table 8.2. The chain includes proper nouns (names) and connectors expressing
paternal relations and referencing. This chain is usually found in hadith books
and is referred to as sanad. ANGE uses Arabic morphological analysis, finite
state machines, and graph transformations to extract named entities and relations
including the narrator chains [27]. Accordingly, we design the following MERF
MBFs and MRE to extract the narrator chains.

First, we define the MBF-based tag types. PN stands for “proper noun”
and is defined by the abstract category Name of Person. FAM stands for “family
connector” and it is defined by the stem gloss “son”. The MBF TOLD is used
to detect the referencing between the narrators and is defined the disjunction

formula of the stems �
HYgh. dt

¯
, 	á«↪n , ©ÖÞ�sm↪ , Q�.

	
g

@↩h
˘

br , and

AJ.

	
K

@↩nb-↩ . Also, we

define the MBF MEAN to tag the stem ú

	
æ«↪ny which exists sometimes as part

of a name such as Y
�
Òm× 	áK. @ ú

	
æªK
 Õæ�A«↪̄as.m y↪ny ābn mh. mmd (Asim meaning son

of mohammad). BLESS, GOD, UPONHIM, and GREET MBFs are defined by

the stems ú
�
Î�s. llā , é

�
<Ë @āl-lāh , ú

Î«↪ly , and Õ

�
Î�sllm , respectively. These MBFs

are used to detect the text segment Õ
�
Î�ð éJ
Ê« é

�
<Ë @ ú

�
Î�s. llā āl-lāh ↪lyh wsllm (peace

be upon him) which refers to prophet Mohammad. We use NONE to introduce
flexibility to the expression.

We illustrate the MREs defined to detect a narrator chain. The expres-

50

sion name is defined as one or more PN with optional MEAN.

1 name : PN ((MEAN)? PN)*;

nar, stands for narrator, is defined as name followed by zero or more
sequences of FAM followed by name with optional NONE for flexibility.

1 nar : name ((NONE)^3 FAM (NONE)^3 name)*;

The expression pbuh stands for “peace be upon him” and is defined by
the sequence of BLESS, GOD, UPONHIM, and GREET.

1 pbuh : BLESS GOD UPONHIM GREET;

We define nchain, denoting narrator chain, as TOLD followed by nar
repeated one or more times, followed by an optional sequence of up to eight PN,
FAM, or NONE tags followed by a match of the pbuh expression. This optional
part is used to detect a possible chain of the narrators to prophet Mohammad.

1 nchain : (TOLD nar)+ ((((PN)|(FAM))|(NONE))^8 pbuh)?

Table 8.2: Narrator chain example
¨A

�
®ª

�
®Ë@ālq↪qā↪ 	áK.bn

�
èPAÔ«↪mārh 	á«↪n QK
Qk. ǧryr A

	
J
�
KYgh. dt

¯
nā YJ
ª�s↪yd 	áK.bn

�
éJ. �

�
J
�
¯qtybh A

	
J
�
KYgh. dt

¯
nā

PN FAM PN TOLD PN TOLD PN FAM PN TOLD

name name name name name

nar nar nar

nchain

Table 8.2 shows an example match for the nchain regular expression.
The first row in the table is the input Arabic text. In the second row, each
word is tagged with MBFs based on its morphological features. The names are
extract using the name MRE. Then, the narrators are detected using the nar
expression. Last, the nchain match is detected as a combination of narrators
(nar) and referencing (TOLD).

We evaluated the narrator chain extraction in ANGE and MERF using
part of a hadith book (Musnad Ahmad) that we obtained from online sources.
We report time to implement the model, runtime to extract the narrator chains,
accuracy (recall and precision), and ease of composition (lines of code) as our
evaluation metrics for both techniques. The first row in Table 8.1 shows the
evaluation metrics for both manual coded work in ANGE and MERF. The build
time metric presents a great advantage for MERF where the implementation of
the model requires hours in comparison to one to two month for manually coded
approach. This advantage for MERF also appears in the ease of composition
metric where more than 3000 lines of code are required in ANGE compared to

51

eight MBFs and 4 MREs using a user-friendly GUI. However, ANGE has a lower
runtime with 1.79 seconds compared to 7.24 seconds for MERF. The recall in
both techniques is 100% which means that all the narrator chains present in the
text were detected. MERF scored 93% for precision while ANGE showed 100%
precision. This value means that ANGE’s matches were all correct while MERF
had some incorrect matches for narrator chains. A sample mismatch in MERF

was ÈA�ñË@ 	á«↪n ālws. āl where ÈA�ñË@ālws. āl was wrongly detected as a PN. The
precision can be increased by filtering the name matches.

8.2 Number normalization

In this application, we are interested in number normalization in Arabic text.
Our target is to extract text chunks that express numbers and normalize them.
Number normalization is the process of converting numbers in text into real

numbers. For example the normalization of
	

­Ë@
	
àðQå

�
�«↪̌srwn alf (twenty thou-

sand) would be 20,000. We implemented a manually coded application for num-
ber normalization called NUMNORM. We also implemented the same application
using MERF and compared the results.

NUMNORM reads an Arabic text as input, extracts the text chunks
with numerical information, and normalizes them. NUMNORM uses the in-
house morphological analyzer, Sarf, to identify the words referring to numbers.
Sarf provides a Number category that tags all words with numerical information.
In the normalization algorithm, NUMNORM identifies three different categories
for numbers; each with different behavior in normalization. The categories are:

• DT, denoting digits and tens

• H, denoting hundred

• TMB, denoting thousand, million, and billion

NUMNORM retrieves the number referring to a word through a fixed
map. This map takes the word gloss as input and returns the matching number
if found. For example, the map returns 100 for the input gloss hundred. As for

the normalization of more than one word, such as Qå
�
� «

�
é ª K. P

@ð

	á�

	
® Ë

@↩lfyn w-

↩rb↪h ↪̌sr (2014), the normalization algorithm used for each category is shown in

52

if(isHundred) {

if(current != 0) {

previous += current;

}

current = currentH * matchNumber;

currentH = 0;

isHundred = false;

isKey = true;

}

else {

if(current == 0) {

current = matchNumber;

isKey = true;

}

else {

if(!isKey) {

isKey = true;

current = current * matchNumber;

}

else {

previous += current;

current = matchNumber;

}

}

}

TMB Algorithm

if(isHundred) {

currentH += matchNumber;

}

else {

if(current == 0) {

current = matchNumber;

}

else {

if(isKey) {

previous += current;

current = matchNumber;

}

else {

current += matchNumber;

}

}

}

isKey = false;

DT Algorithm

isHundred = true;

if(current == 0) {

currentH = matchNumber;

}

else {

if(!isKey) {

currentH= current * matchNumber;

current = 0;

}

else {

currentH = matchNumber;

}

}

isKey = false;

H Algorithm

Figure 8.1: NUMNORM algorithm for TMB, DT, and H.

Figure 8.1. The algorithm uses Boolean variables and three integer variables.
The three integer variables are previous, current, and currentH for hundred. The
main steps in the algorithm are as follows. Hundred is multiplied to previous
digit if found, else saved. Digits and tens are added to previous hundred if found,
else added to current. TMB match is multiplied by the previous hundred or DT
if found, else saved in current.

Using MERF, we designed a morphology-based regular expression to
detect the numerical chunks in the text. Based on the previously introduced
algorithm, we added actions to this MRE to normalize each match. First, we
defined the MBFs DT, H, and TMB. The MBF DT denotes digits and tens, and
is defined by a disjunction formula of the stem glosses one, two, . . . , ten, twenty,
. . . , and ninety. The MBF H is defined by the stem gloss hundred. The MBF
TMB is defined by a disjunction formula of the stem glosses thousand, million,
and billion.

The number MRE is defined as one or more matches of DT, TMB, or H.
The actions associated with each MBF are shown in Figure 8.1.

1 number : (((DT)|(TMB))|(H))+;

We evaluated NUMNORM and MERF against an article chosen arbi-
trarily from the economical section of Assafir newspaper 25/12/2013 issues. We
report the build time, runtime, accuracy, and ease of composition as our evalu-
ation metrics for NUMNORM and MERF. The second row in Table 8.1 shows
the metrics for both techniques. Using MERF to perform normalization takes
1 hour while NUMNORM implementation required one to two month. NUM-
NORM takes 0.32 seconds to perform the task while the MERF model needs

53

1.53 seconds. As for ease of composition, MERF requires the construction of 3
MBFs and 1 MRE with code actions of 57 lines while NUMNORM requires more
than 500 lines of code. Both techniques have the same recall (91%) which means
that both detected the same correct number of matches. However, NUMNORM
has a higher precision (93%) than MERF (90%) which means that NUMNORM
has less false matches.

8.3 Temporal entity extraction

In this case study, we are interested in extracting temporal entities. Temporal
entities are text chunks that express or infer temporal information. Some of these

entities represent absolute time and dates such as 2010 H.

�
@ 	áÓ �ÓA

	
mÌ'@ālh

˘
āms

mn ↩̄ab 2010 . Others represent relative time such as ÐAK

@

�
é�Ô

	
g YªK.b↪d h

˘
msh ↩ayām

and others represent quantities such as AÓñK
 1414 ywmā . ATEEMA presents a
temporal entity detection technique for the Arabic language using morphological
analysis and a finite state transducer [28]. Hence, we design our expressions and
compare the tag results with ATEEMA.

The MBFs defined for this purpose are introduced in Table 8.3. The
Details and Examples columns show the type of the atomic terms included in
each MBF. TIME defines explicit temporal words. NUM denotes numerals and
includes digits or words referring to numbers. As for TIMEPREP, it denotes
temporal prepositions which precedes or follows a time expression.

Table 8.3: Temporal MBFs
MBF Details Examples

TIME

unit
�
é
�
®J

�
¯Xdqyqh (minute)

relative Y
	
«ġd (tomorrow)

range ©JK. Prbā↪ (spring)

nominal Yg@āh. d (Sunday)

events øQj. ëhǧrā

NUM
digit 33 (3)

word 	á�
	
K AÖ

�
ßt
¯

mānān (eighty)

range �
HAJ

	
J�

	
K AÖ

�
ßt
¯

mānynyāt (eighties)

TIMEPREP

point ú

	
¯fy (in)

relative ÉJ.
�
¯qbl (before)

approximate ñm�
	
'nh. w (about)

range ÈC
	

gh
˘

lāl (during)

The MERF MREs constructed are shown below. The expression mts,
stands for maybe time start, and detects words which are either tagged by
NUM or TIMEPREP. The expression definitetime is defined by zero or more

54

sequence of mts and two optional NONE, TIME, then a zero or more sequence
of optional two NONE followed by mts or TIME.

1 mts : NUM | TIMEPREP;

2 definitetime : (mts (NONE)^2)* TIME ((NONE)^2 (mts)|(TIME))*;

Table 8.4: Temporal entity example
�

H@ñ
	
J�Ë@ālsnwāt I. ª�

@↩s. ↪b 	áÓmn �Ô

	
gðwh

˘
ms

	
¬Aj. «↪̌gāf QîD

�
�

@↩̌shr

�
éªK. P

@↩rb↪h YªK.b↪d

TIME NONE NONE NUM NONE TIME NUM TIMEPREP

mts mts mts

definitetime

Table 8.4 shows a sample temporal entity match. The Arabic words are
tagged by the relevant MBFs if matching any. In case there was no match, a
word is tagged by NONE. Then, matches of the defined expressions are detected
as shown in the table.

We evaluated ATEEMA and MERF against articles chosen arbitrarily
from the political section of Al-Akhbar 17/6/2011 and 27/12/2013 issues and
sports section of Al-Akhbar 24/12/2013 issue. We report the build time, run-
time, accuracy, and ease of composition as our evaluation metrics for ATEEMA
and MERF. The third row in Table 8.1 shows the metrics for both techniques.
The time metric shows an advantage of MERF over ATEEMA with three hours
compared to one to two month. The same advantage for MERF approach ap-
pears in the ease of composition. ATEEMA contains more than one thousand
lines of code while MERF the definition of three MBFs and two MREs. How-
ever, ATEEMA has a lower runtime with 2.53 seconds compared to 3.14 seconds
for MERF. MERF shows higher recall (91%) compared to ATEEMA (88%)
which means that MERF detected more temporal entities than ATEEMA. How-
ever, ATEEMA presents higher precision (89%) than MERF (81%). This indi-
cates than the MRE in MERF is underfitting which leads to incorrect temporal

matches. An incorrect temporal match that MERF detects is Y
�
®«↪qd which has

has the two meanings contract and decade.

55

Chapter 9

Related Work

9.1 Information extraction

The work in [16] presents a common pattern specification language called CPSL.
CPSL grammar consists of three parts. The declaration part specifies the name of
the grammar and the annotations to be used. The rule definition part defines the
patterns and relevant actions. The third part is concerned with defining macros
which are pure text substitution. Each macro consists of pattern part and rule
part same as a rule definition. The target of CPSL is to specify IE rules in a
relatively system-independent way. The grammar we propose in MERF is an
extension to CPSL with support for code action execution and semantic relation
construction.

SystemT is a system based on an algebraic Approach to Declarative infor-
mation extraction (IE)[17]. It uses declarative rule language, Annotation Query
Language (AQL), and an optimizer to generate high performance execution plans
for the rules. The AQL query is translated into an algebraic expression and an
optimizer selects an execution plan. The target of this system is to overcome the
expressivity and performance limitations of CPSL. MERF overcomes the limi-
tations described by SystemT. Simulating multiple tags for each word overcomes
the lossy sequencing caused by random annotation dropping. MERF introduces
the conjunction operation in the MRE to overcome the expressivity limitations of
expressing rules with overlapping annotations. MERF has the advantage of pro-
viding a user-friendly interactive interface, code action execution, and semantic
relations construction.

The work in [18] presents a semi-automatic approach for structured data
acquisition using TEXTMARKER, a rule-based IE system. This system takes
user-specified simple rules that consider features of the text. This work requires
the manual work of a domain specialist in order to construct the rules. MERF
provides a user-friendly interface for the user who is not expected to be an expert.
Moreover, MERF extracts semantic relations based on user defined relations.

56

The work in [19] presents a user-driven relational model targeting entity-
relation extraction. In this model, the user enters a natural language query. An
NLP engine parses the query and extracts possible entities and relations of which
a query model is generated. This tool extracts entities and relations automatically
based on the user natural language query while MERF require the user to define
the target entities and relations and provides cross-reference relations based on
an isA relation. MERF provides the user with code actions with API access to
match features.

QARAB is a question answering system supporting Arabic [20]. It takes
an Arabic natural language query and attempts to provide short answers for it.
QARAB tackles the problem using traditional information retrieval techniques
and a sophisticated NLP approach. A question is classified based on a set of
known question types. However, QARAB is limited to a set of predefined tag
types as compared with MERF. It also lacks support for relational entity extrac-
tion.

9.2 WordNet

WordNet is a lexical reference system that mimics human lexical memory in-
spired by psycholinguistic theories. The Synk feature in our framework is in-
spired by this system. The WordNet lexicon is composed of five categories:
nouns, verbs, adjectives, adverbs, and function words; each category with its
distinct organization to better represent the psychological complexity of lexical
knowledge [29, 30, 31].

By convention, a word associates a lexicalized concept with an utterance,
plays a syntactic role in a sentence. Word form, i.e. sequence of alphabet sym-
bols that represent the word, denotes the utterance. The word meaning denotes
the lexicalized concept. Researchers addressed the representation of the word
meaning in the absence of a psychological theory.

Lexical semantics considers the word meaning representation through
definitions. The constructive theory states that a definition must contain suf-
ficient information to support accurate construction of a word meaning. The
differential theory only requires the distinction between different concepts us-
ing some symbols. WordNet adopted the differential theory to represent the
word meanings over the constructive theory to avoid its constraints. Therefore,
different word meanings are represented by sets of word forms. For instance,
{board,plank} and {board,committee} are two word meanings referring to two
different senses of the word board. This set of word forms representing a unique
meaning is referred to as “synset”.

Sematic relations refer to relations between word meanings/synsets. Lex-
ical relations refer to relations between word forms. The organization of the
categories in WordNet are based on those two types of relations. Some of the

57

relations are:

Synonymy Two expressions are synonymous in a context C if the truth value
doesn’t change upon the substitution of one for the other in that context. For
example, “plank” and “board” are synonyms since they are substitutable in the
context referring to a piece of wood for some specific purpose. This definition
of synonymity necessitates the partition of WordNet into different categories.
Words from different categories can’t be joined into a single synset since they are
not interchangeable.

Antonymy The antonym of a word X can sometimes be not-X, however this is
not always the case. This relation is defined between word forms not meanings.
We can’t consider synsets A and B to be antonyms even if a word x in A is
the antonym of y in B. Antonymy provides the central organizing principle for
adjectives and adverbs in WordNet. For example, “rise” is the antonym of “fall”.

Hyponymy (ISA) A meaning represented by synset X={x,x’,...} is said to be
a hyponym of meaning Y={y,y’,...} if we accept sentences constructed as “An
x is a y”. We refer to Y as the superordinate of X, and hyponyms of Y as
coordinate terms. For example, “tree” and “flower” are hyponyms of “plant”.
Also, they represent coordinate terms since they share the same superordinate
Y. This relation is transitive and asymmetrical and with a single superordinate
generates a hierarchical semantic structure.

Meronymy (HASA) Meronymy is a semantic part-whole relation. Synset
X={x,x’,...} is a meronym of synset Y={y,y’,...} if we accept sentences con-
structed as “y has an x” or “x is part of y”. For example, apple is a meronym of
an apple tree.

Morphological Relations WordNet had to deal with inflectional morphology
in order for the system to be of any practical use. Given the word “trees”, Word-
Net should recognize it as “tree” in plural form. However, WordNet doesn’t deal
with derivational morphology but considers its addition to be a great contribution
to the lexical system.

9.3 Tagging

The work in [32] presents a collaborative effort towards morphological and syn-
tactic annotation of the Quran. The task is held through online supervised col-
laboration using a multi-stage approach that includes automatic POS tagging,
manual verification, and online supervised collaborative proofreading. Moreover,

58

the work in [33] presents a framework for interlingual annotation of parallel text
corpora with multi-level representations. This corpora is important for NLP
tasks including text summarization, information retrieval, and machine transla-
tion. An overview of annotation tools and their Arabic-English word alignment
issues concludes with a set of rules and guidelines needed in an Arabic annotation
alignment tool [34]. The work in [35] presents the integration of the Standard
Arabic Morphological Analyzer (SAMA) into the annotation workflow of the
Arabic Treebank. Such tasks motivated us to build MERF, a morphology-based
open source annotation tool for the Arabic language.

MMAX2 is a manual multi-level linguistic annotation tool with an XML
based data model [36]. It enables the user to create, browse, visualize, and query
annotations and may be able to resolve coreference tags. BRAT is a multi-lingual
user friendly manual web-based annotator that allows the construction of entity
and relation annotation corpora [37]. BRAT provides an API for automated
annotators to provide annotations. WordFreak is similar to BRAT. It supports
Arabic text and can be extended through a plug-in architecture to integrate with
NLP and CL tasks. The plug-in API may enable the use of automatic annotators
along with customized visualization and annotation specifications [38]. AGTK is
a toolkit for the development of text and speech annotation tools [39]. It provides
import APIs from other data and graphical user interface (GUI) components. The
work in [40] presents the extension of TrEd, a customizable general purpose tree
editor, with the Arabic MorphoTrees annotation. The MorphoTrees present the
morphological analyses in a hierarchical organization based on common features.

MERF differs from MMAX2, BRAT, WordFreak, AGTK, and TrEd in
that it allows the user to specify sophisticated tag types using Boolean formulae
of Arabic morphological features. These are key in CL and NLP for Arabic text.
Fassieh is a commercial Arabic text annotation tool that enables the production
of large Arabic text corpora [41]. The tool supports Arabic text factorizations
including morphological analysis, POS tagging, full phonetic transcription, and
lexical semantics analysis in an automatic mode. Fassieh is not directly accessible
to the research community and requires commercial licensing. MERF is open
source and differs in that it allows the user to build tag types using Boolean
formulae of several atomic terms and define regular expressions based on the
Boolean formulae.

Task specific annotation tools such as [42] uses enunciation semantic
maps to automatically annotate directly reported Arabic and French speech.
AraTation is another task specific tool for semantic annotation of Arabic news us-
ing web ontology based semantic maps [43]. We differ in that MERF is general,
and not task specific, and it uses morphology-based features as atomic terms.

59

Chapter 10

Conclusion

In this work, we presented a morphology-based entity and relational entity infor-
mation extraction framework for Arabic text; MERF. MERF provides a user-
friendly interface where the user defines tag types and associates them with regu-
lar expressions defined over Boolean formulae. The Boolean formulae are terms,
negations of terms, and disjunctions of terms where terms are matches to Arabic
morphological features. In addition to the morphological features, MERF intro-
duces Synk; a semantic feature that relates words based on synonymity. The edi-
tor allows the user to associate code actions with each regular sub-expression and
to define semantic relations between sub-expressions. MERF uses an in house
Arabic morphological analyzer to compute morphological matches. MERF then
computes regular expression matches, and then builds the relations. We eval-
uated our work with several case studies comparing the results with existing
application-specific techniques. The results show good accuracy for MERF com-
pared to manually-coded techniques.

10.1 Future work

As future work, we plan the following.

• Currently, the MERF supports one built in cross-reference predicate based
on the Syn2 feature. In the future, MERF will support user defined cross-
reference predicates.

• In the future, we will provide cross-document analysis in MERF to support
applications similar to [27].

60

List of Figures

1.1 Text, formula, and match MERF example 2

1.2 Syn2(ÐAª£t. ↪̄am) . 4

2.1 FSM of Sarf . 8

3.1 Text, formula, and match MERF example 13

4.1 MERF flow diagram. 17

5.1 Syn2(ÐAª£t. ↪̄am) . 23

5.2 Morphology-based atomic term examples 24

5.3 Morphology-based Boolean formula examples 25

5.4 Morphology-based regular expression example 26

5.5 Sample code for an on-match action 27

5.6 MERF expression, NFA, and match example 29

5.7 Semantic relation example . 30

6.1 Tag file format . 33

6.2 Tag type file format . 33

6.3 sample generated actions file . 35

6.4 Star expression NFA . 38

7.1 Initial main window of MERF 41

7.2 MERF tag type Boolean formula editor. 42

7.3 MERF main window with MBF match annotated text, tag de-
scriptions, tag type legend properties, and manual tag edition menus. 43

7.4 MERF tag type regular expression editor. 44

61

7.5 MERF main window with match tree view 45
7.6 MERF relation editor . 46
7.7 MERF main window with entity-relation view 47
7.8 MERF MRE action editor . 47
7.9 MERF comparison and accuracy results view. 48

8.1 NUMNORM algorithm for TMB, DT, and H. 53

62

List of Tables

2.1 Sample solution vector for the text éÊ
�
¿

�

A
�
K
ya↩akulh 7

2.2 Word with different interpretations 9
2.3 Sample solution vector . 10

5.1 Detailed example of computing Sy(l5) 22
5.2 Example of computing Sy2(l5) . 22

8.1 MERF against manually-coded applications: Time, accuracy, and
ease of composition . 50

8.2 Narrator chain example . 51
8.3 Temporal MBFs . 54
8.4 Temporal entity example . 55

A.1 Economic Analysis Example . 71
A.2 Salat Example . 71
A.3 Football Result Example . 73
A.4 Geographical Information Example 74
A.5 Notification Example . 75
A.6 Professions Example . 76
A.7 Money Example . 77
A.8 Crop Info Example . 78

63

Bibliography

[1] S. Linckels and C. Meinel, “Natural language processing,” in E-Librarian
Service, pp. 61–79, Springer, 2011.

[2] S. Ferilli, “Natural language processing,” in Automatic Digital Document
Processing and Management, pp. 199–222, Springer, 2011.

[3] V. Märgner and H. El Abed, Guide to OCR for arabic scripts. Springer,
2012.

[4] A. M. Rashwan, M. A. Rashwan, A. Abdel-Hameed, S. Abdou, and A. H.
Khalil, “A robust omnifont open-vocabulary arabic ocr system using pseudo-
2d-hmm,” in IS&T/SPIE Electronic Imaging, pp. 829707–829707, Interna-
tional Society for Optics and Photonics, 2012.

[5] N. Habash and F. Sadat, “Arabic preprocessing schemes for statistical
machine translation,” in Human Language Technology Conference of the
NAACL, NAACL-Short ’06, pp. 49–52, 2006.

[6] I. A. Al-Sughaiyer and I. A. Al-Kharashi, “Arabic morphological analysis
techniques: A comprehensive survey,” Journal of the American Society for
Information Science and Technology, vol. 55, no. 3, pp. 189–213, 2003.

[7] A. Soudi, G. Neumann, and A. van den Bosch, Arabic computational mor-
phology: knowledge-based and empirical methods. Springer, 2007.

[8] W. Zaghouani, B. Pouliquen, M. Ebrahim, and R. Steinberger, “Adapting
a resource-light highly multilingual named entity recognition system to ara-
bic,” in Proceedings of the Seventh conference on International Language
Resources and Evaluation (LREC10), pp. 563–567, 2010.

[9] H. Traboulsi, “Arabic named entity extraction: A local grammar-based
approach,” in Computer Science and Information Technology, 2009. IM-
CSIT’09. International Multiconference on, pp. 139–143, IEEE, 2009.

64

[10] J. Makhlouta, F. A. Zaraket, and H. Harkous, “Arabic entity graph ex-
traction using morphology, finite state machines, and graph transforma-
tions,” in Computational Linguistics and Intelligent Text Processing, CI-
CLing, pp. 297–310, 2012.

[11] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large
annotated corpus of english: The penn treebank,” Computational linguistics,
vol. 19, no. 2, pp. 313–330, 1993.

[12] M. Maamouri, A. Bies, T. Buckwalter, and W. Mekki, “The penn arabic
treebank: Building a large-scale annotated arabic corpus,” in NEMLAR
Conference on Arabic Language Resources and Tools, pp. 102–109, 2004.

[13] N. Xue, F. Xia, F.-D. Chiou, and M. Palmer, “The penn chinese treebank:
Phrase structure annotation of a large corpus,” Natural Language Engineer-
ing, vol. 11, no. 2, p. 207, 2005.

[14] A. Ekbal and S. Bandyopadhyay, “Named entity recognition using support
vector machine: A language independent approach,” International Journal
of Electrical, Computer, and Systems Engineering, vol. 4, no. 2, pp. 155–170,
2010.

[15] S. AbdelRahman, M. Elarnaoty, M. Magdy, and A. Fahmy, “Integrated ma-
chine learning techniques for arabic named entity recognition,” IJCSI, vol. 7,
pp. 27–36, 2010.

[16] D. E. Appelt and B. Onyshkevych, “The common pattern specification lan-
guage,” in Proceedings of a workshop on held at Baltimore, Maryland: Oc-
tober 13-15, 1998, pp. 23–30, Association for Computational Linguistics,
1998.

[17] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. R. Reiss, and
S. Vaithyanathan, “Systemt: an algebraic approach to declarative informa-
tion extraction,” in Proceedings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 128–137, Association for Computa-
tional Linguistics, 2010.

[18] M. Atzmueller, P. Kluegl, and F. Puppe, “Rule-based information extraction
for structured data acquisition using textmarker,” in Proceedings of LWA,
Citeseer, 2008.

[19] J. Urbain, “User-driven relational models for entity-relation search and ex-
traction,” in Proceedings of the 1st Joint International Workshop on Entity-
Oriented and Semantic Search, p. 5, ACM, 2012.

65

[20] B. Hammo, H. Abu-Salem, and S. Lytinen, “Qarab: A question answer-
ing system to support the arabic language,” in Proceedings of the ACL-02
workshop on Computational approaches to semitic languages, pp. 1–11, As-
sociation for Computational Linguistics, 2002.

[21] N. Y. Habash, “Introduction to arabic natural language processing,” Syn-
thesis Lectures on Human Language Technologies, vol. 3, no. 1, pp. 1–187,
2010.

[22] T. Buckwalter, “Buckwalter Arabic morphological analyzer version 1.0,”
tech. rep., LDC catalog number LDC2002L49, 2002.

[23] K. R. Beesley, “Finite-state morphological analysis and generation of arabic
at xerox research: Status and plans in 2001,” in ACL Workshop on Arabic
Language Processing: Status and Perspective, vol. 1, pp. 1–8, 2001.

[24] F. Zaraket and J. Makhlouta, “Arabic morphological analyzer with agglu-
tinative affix morphemes and fusional concatenation rules,” in Proceedings
of COLING 2012: Demonstration Papers, (Mumbai, India), pp. 517–526,
December 2012.

[25] M. Sipser, Introduction to the Theory of Computation, vol. 2. Thomson
Course Technology Boston, 2006.

[26] D. Nolan and D. T. Lang, “Javascript object notation,” in XML and Web
Technologies for Data Sciences with R, pp. 227–253, Springer, 2014.

[27] F. A. Zaraket and J. Makhlouta, “Arabic cross-document NLP for the hadith
and biography literature,” in Florida Artificial Intelligence Research Society
Conference (FLAIRS), (Marco Island, Florida), May 2012.

[28] F. A. Zaraket and J. Makhlouta, “Arabic temporal entity extraction using
morphological analysis,” International Journal of Computational Linguistics
and Applications (IJCLA), vol. 3, pp. 121–136, 2012.

[29] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller, “Introduction
to wordnet: An on-line lexical database*,” International journal of lexicog-
raphy, vol. 3, no. 4, pp. 235–244, 1990.

[30] G. Miller, “Nouns in wordnet: a lexical inheritance system,” International
journal of Lexicography, vol. 3, no. 4, pp. 245–264, 1990.

[31] D. Gross and K. Miller, “Adjectives in wordnet,” International Journal of
Lexicography, vol. 3, no. 4, pp. 265–277, 1990.

66

[32] K. Dukes, E. Atwell, and N. Habash, “Supervised collaboration for syntactic
annotation of quranic Arabic,” Language Resources and Evaluation, pp. 1–
30, 2011.

[33] B. J. Dorr, R. J. Passonneau, D. Farwell, R. Green, N. Habash, S. Helmreich,
E. Hovy, L. Levin, K. J. Miller, T. Mitamura, et al., “Interlingual annotation
of parallel text corpora: a new framework for annotation and evaluation,”
Natural Language Engineering, vol. 16, no. 3, p. 197, 2010.

[34] H. A. Kholidy and N. Chatterjee, “Towards developing an Arabic word align-
ment annotation tool with some Arabic alignment guidelines,” in Intelligent
Systems Design and Applications (ISDA), 2010 10th International Confer-
ence on, pp. 778–783, IEEE, 2010.

[35] S. Kulick, A. Bies, and M. Maamouri, “Consistent and flexible integration of
morphological annotation in the arabic treebank,” Language Resources and
Evaluation (LREC), 2010.

[36] C. Müller and M. Strube, “Multi-level annotation of linguistic data with
MMAX2,” Corpus technology and language pedagogy: New resources, new
tools, new methods, vol. 3, pp. 197–214, 2006.

[37] P. Stenetorp, S. Pyysalo, G. Topic, T. Ohta, S. Ananiadou, and J. Tsu-
jii, “Brat: a web-based tool for nlp-assisted text annotation,” EACL 2012,
p. 102, 2012.

[38] T. Morton and J. LaCivita, “Wordfreak: an open tool for linguistic annota-
tion,” in Proceedings of the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics on Human Language
Technology: Demonstrations-Volume 4, pp. 17–18, Association for Compu-
tational Linguistics, 2003.

[39] K. Maeda and S. Strassel, “Annotation tools for large-scale corpus devel-
opment: Using agtk at the linguistic data consortium,” in Proceedings of
the Fourth International Conference on Language Resources and Evaluation,
2004.

[40] O. Smrz and P. Pajas, “Morphotrees of arabic and their annotation in the
tred environment,” in Proceedings of the NEMLAR International Conference
on Arabic Language Resources and Tools, pp. 38–41, 2004.

[41] M. Attia, M. Rashwan, and M. Al-Badrashiny, “Fassieh¯, a semi-automatic
visual interactive tool for morphological, pos-tags, phonetic, and semantic
annotation of Arabic text corpora,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. 17, no. 5, pp. 916–925, 2009.

67

[42] M. Alrahabi, A. H. Ibrahim, and J.-P. Desclés, “Semantic annotation of
reported information in Arabic,” FLAIRS 2006, Floride, 11-13 Mai, 2006.

[43] L. M. B. Saleh and H. S. Al-Khalifa, “AraTation: an Arabic semantic an-
notation tool,” in Proceedings of the 11th International Conference on In-
formation Integration and Web-based Applications & Services, pp. 447–451,
ACM, 2009.

68

Appendices

69

Appendix A

In this appendix, we present a list of case studies. For each, we design an extrac-
tion model using MERF. We also provide a sample match on an Arabic text for
each case.

A.1 Economic analysis

In this example, we will define a task that detects the economic information in
an Arabic text. This information includes the variation in the price of different
commodities such as gold, oil, dollar, etc.

First, we define the MBFs for variation and the names of the commodities
as follows:

• CHANGE : stems include {©
	
®

�
KP@

(increase), 	

�
	
®

	
m�

	
' @

(decrease), 	
¡

	
¯Ag (main-

tain)}.

• COMM : stems include {I. ë
	
X (gold),PBðX (dollar),¡

	
®

	
K (oil),

�
é

�	
�

	
¯ (silver),

...}.

The MRE defined to extract economic information is shown below. CHANGE
tags words related to change in prices. COMM denotes commodity and it tags
commodities. econinfo finds matches for CHANGE followed by COMM with
tolerance up to two NONE tags.

1 econinfo : CHANGE NONE^2 COMM;

70

A sample match for the MRE is shown in Table A.1. The MBF matches
are shown in the second row in the table. Then, econinfo matches are detected
in rows three and four.

Table A.1: Economic Analysis Example

I. ë
	
YË@ Qª� ©

	
®
�
KP@ð é

�
KAK
ñ

�
J�Ó úÎ«

�
é
�
J

	
K A

	
JJ.

�
Ë @

�
�ñ�Ë@ ú

	
¯ PBðYË@

	
¡

	
¯Ag

COMM NONE CHANGE NONE NONE NONE NONE NONE COMM CHANGE

econinfo econinfo

A.2 Prayer times

Salat times refer to times when Muslims perform their prayers. The term is used
to refer to the five daily prayers. In this example, we will design the task to
detect the prayer times.

The MBFs DB, SR, NOON, AN, SS, and ISHA denote daybreak, sunrise,
noon, afternoon, sunset, and isha, respectively. These MBFs are defined by the

stems Qm.

	
¯ ,

�
�ðQå

�
� , Qê

	
£ , Qå�« , H. Q

	
ªÓ or H. ðQ

	
« , ZA

�
�« respectively.

The MRE to detect the prayer times is shown below. The MBF NUM
denotes numbers and it detects the numbers. time is defined as two NUM de-
limited by a colon. prayer is a prayer key word followed by time. An optional
NONE tag is added for error tolerance.

1 time : NUM NUM;

2 prayer : (DB | SR | NOON | AN | SS | ISHA) NONE? time;

Table A.2 shows a sample match for the prayer case. Same as the previous
examples, we first find the MBF matches for the Arabic words. Then, we find
the matches for the MRE taking into consideration the dependency of an MRE
on another such as prayer on time.

Table A.2: Salat Example

17 : 33
�
é«A�Ë@ H. Q

	
ªÖÏ @

�
èC� . . . 05 : 18 Qj.

	
®Ë @

NUM NUM NONE SS NONE NUM NUM DB

time time

prayer prayer

71

A.3 Football results

In this example, we extract information from Arabic articles that reports the
football results. We write an MRE to detect the teams playing against each
other along with the result of the games. For that purpose, we need to identify
the names of the teams. We also have to identify Arabic words that express win,
loss, and tie results.

Based on the previous explanation of the information to be extracted,
we define the MBFs:

• NUM : Tags digits.

• GOAL : Tags the stems
	

¬Yë (one goal), 	á�

	
¯Yë (two goals), and

	
¬@Yë

@

(three or more goals).

• FC : Tags the names of the football clubs. For simplicity, we will assume

that the names are of one word only. Some of the club names are
�
é

	
KñÊ

�
�QK.

(Barcelona), A
	
Kñ�A�ð

@ (Osasuna), and ú

æ�Ê

�
�

�
� (Chelsea) . . .

• WLT : Denotes “win, lose, or tie”. This MBF is defined by a disjunction
fromula between the glosses win, tie, lose, victory, loss, seizure, and seize.

We define the MRE to detect the football results as shown below. We
have two MREs for the team detection. In caseone, WLT is detected first followed
by the names of the teams (FC). In secondcase, the first team name is detected,
then WLT followed by the name of the second team. We insert NONE between
the basic tags to enhance the detection and make it error tolerable. result is
defined as caseone or casetwo followed by the score. The score can be detected

as two consecutive NUM tags such as 5-1 . Another form for the score is an

optional NUM followed by GOAL such as 	á�

	
¯Yë (two goals) or

	
¬@Yë

@

�
é
�
KC

�
K (three

goals).

1 caseone : WLT NONE^2 FC NONE^5 FC;

2 casetwo : FC NONE^5 WLT NONE^5 FC;

3 score : (NUM? GOAL) | (NUM NUM);

4 result : (caseone | casetwo) NONE^2 score;

Table A.3 shows an example match for the football case. The result
match is a casetwo match followed by two consecutive NUM tokens.

A.4 Geographical information

In this example, we will extract geographic information from Arabic text. This
information includes the borders of countries from different directions. Thus, we

72

Table A.3: Football Result Example

1 - 5 A
	
Kñ�A�ð

@ úÎ« è 	Pñ

	
®K. ú

	
G AJ.�B

@ ø

PðYË@ I. �

�
KQ

�
�Ë é

�
KP@Y�

�
é
	
KñÊ

�
�QK.

	P
�	Q«

NUM NUM FC NONE WLT NONE NONE NONE NONE FC NONE

score casetwo

result

need to identify the names of countries and places, directions, and key words that
detect a relation between the position and the place.

Based on studying the target information, we define the following MBFs:

• POSITION : This MBF detects key words for directions. It is defined by

the stems ÈAÖÞ
�
�, H. ñ

	
Jk. ,

�
�Qå

�
�, and H. Q

	
«.

• SC : This MBF denotes sea and continent. It is defined by the stems Qm�'
.

(sea) and
�
èPA

�
¯(continent).

• PNAME : This MBF denotes place name. It is defined by the names of the
countries, continents, and seas. These can be detected using the abstract
category feature Name of Place. For enhanced detection, we include words

such as 	
�J
K.

@(white) to detect 	

�J
K.

B@ QjJ. Ë @(Mediterranean Sea). This is

achieved by an MRE of SC followed by PNAME which will be illustrated
in the example later.

• KEY : This token detects words that relate a position to a place. It is

defined by the stems
�
Yg(delimit), É£(be viewed), and ©

�
¯(take place).

The MREs to extract the geographic information is shown below. place
is defined by an optional SC followed by PNAME. geoinfo, denotes geographic
information, detects a KEY tag followed by caseone or casetwo. caseone detects
one or more place tags followed by one or more POSITION tags. As for casetwo,
it detects the reverse of caseone. We always introduce NONE for error tolerance
and undesired information.

1 place : SC? PNAME;

2 caseone : place+ NONE^4 POSITION+;

73

3 casetwo : POSITION+ NONE^4 place+;

4 geoinfo : KEY (NONE^2 (caseone | casetwo))+;

Table A.4 shows a sample match for the MREs introduced before. place
has two matches where SC wasn’t present in one of them. Also, we have two
matches of geoinfo. One match contains a caseone match while the other contains
a casetwo match.

Table A.4: Geographical Information Example
	

�J
K.

B@ QjJ. Ë @ úÎ« H. Q

	
ªË @ 	áÓ

�
É¢

�
�ð

�
�Qå

�
�Ë @ð ÈAÒ

�
�Ë@ 	áÓ AK
Pñ� Aë

�
Ym�

�
'

PNAME SC NONE POSITION NONE KEY POSITION POSITION NONE PNAME KEY

place place

casetwo caseone

geoinfo geoinfo

A.5 Official notifications

In this example, we will extract information from official notifications. These
notifications are related to property policy requests by people. Our MRE will
extract the name of the requester, the property number, the section number, and
the region in which the property is present.

Based on the target information, we will define the following MBFs:

• NAME : This MBF detects a proper name. It is defined by the abstract
category “Name of Person”.

• NUM : This MBF detects numbers written in digit format.

• PROP: This MBF name denotes property. It is defined by the stem PA
�
®«.

• SECS, NOUN : In order to detect the section number, we have to detect

the key word stem Õæ�
�
¯ with POS NOUN. Thus, we need the tokens SECS

and NOUN which define the stem and the POS tag respectively.

• REQS, VERBP : The following two MBFs define the stem I. Ê£ and POS

74

tag VERB PERFECT respectively. We need them to define the pattern
required to detect the starting keyword of an official notification.

• REGION : This MBF includes a list of stems representing places in Lebanon.

Sample entries are �
HðQ�
K. and

�
é«P 	QÓ.

The MRE to detect the notification information is shown below. A person
is a sequence of NAME tokens. An optional NONE can be present between the
NAME tags. req is defined by the conjunction between the MBFs REQS and
VERB. Similarly, sec is defined by the conjunction between SECS and NOUN.
property and section are defined by PROP and sec MRE respectively followed by
NUM. propsec is defined by property and optional section separated by optional
two NONE. Similarly, secprop is defined by section followed by property with
two optional NONE. A notification token is a sequence of req person, propsec or
secprop, then REGION. The MBFs are separated by zero or more NONE tags.

1 req : REQS & VERBP;

2 sec : SECS & NOUN;

3 person : NAME (NONE? NAME)+;

4 property : PROP NUM;

5 section : sec NUM;

6 propsec : property NONE^2 section?;

7 secprop : section NONE^2 property;

8 notification : req NONE? person NONE^8

9 (propsec | secprop) NONE^3 REGION;

Table A.5 shows a sample match of the notification MREs explained
above. The first row in the table presents the Arabic text. The second raw shows

the MBF matches of each word. The words I. Ê£ and Õæ�
�
®ÊË are tagged by the

MREs req and sec respectively in row three. The rows four, five, and six show
the other MRE matches detected.

Table A.5: Notification Example
�
é«P 	QÖÏ @

�
é
�
®¢

	
JÓ 439 PA

�
®ªË@ 	áÓ 28 Õæ�

�
®ÊË ½J
ÊÖ

�
ß Y

	
J� 	PñÊJ. Ë @ ú

Î« Q�

	
JÓ I. Ê£

REGION NOUN NUM PROP NONE NUM
SECS
NOUN

NONE NOUN NOUN NAME NAME
REQS
VERBP

sec req

property section person

secprop

notification

75

A.6 Professions information

In this example, our target is to detect the names of people and professions along
with workplace in an Arabic text. Thus, we define MBFs that detect the name
of a person, professions, and workplaces. Below is a detailed list of the defined
MBFs for this problem.

• NAME : Tags the possible names of persons (male and female). It is defined
by the category “Name of Person”.

• PROF : It denotes profession and it is defined by stems such as Pñ
�
J »X

(doctor),
	
XA

�
J�

@(teacher), PA

�
m.
�

	
'(carpenter), ú

æ

	
�A

�
¯(judge) . . .

• WPLACE : This MBF denotes workplace and it is defined by the stems

ù
	
®

�
�

�
��Ó(hospital),

�
é»QÓ(company),

�
é�PYÓ(school),

�
éªÓAg. (university) . . .

The MREs to detect the profession information is shown below. person is
a sequence of NAME. profinfo detects the name of a person and his/her profession

and it can be found in two forms. The first is PROF followed by person such as
ø

XA
	
¯ Pñ

�
J»YË@ (Doctor Fadi). The other form is person followed by an optional

NONE and PROF such as Pñ
�
J»X ø

XA

	
¯ (Fadi is a doctor). profdetails detects the

profession type and workplace. It is defined by profinfo followed by four optional
NONE, then WPLACE.

1 person : NAME (NONE? NAME)*;

2 profinfo : (PROF person) | (person NONE? PROF);

3 profdetails : profinfo NONE^4 WPLACE;

Table A.6 shows a sample match of the profession information MREs
introduced above.

Table A.6: Professions Example

ÈAJ.
�

�

B@

�
é�PYÓ ú

	
¯

�
HAJ

	
�AK
QË @

�
è
�
XAÓ PXA

	
K ø

XA

�
�

	
XA

�
J�

B@ � �PYK

NONE WPLACE NONE NONE NONE NAME NAME PROF NONE

person

profinfo

profdetails

76

A.7 Money

In this example, our aim is to detect Arabic phrases referring to money. Those
phrases contain numbers expressing the amount of money along with the currency.
For this purpose, we define the MBFs shown below.

• NUM : This MBF is defined by the category number. This category includes
words expressing numbers along with digits. Some of the words under this

category are
	

­Ë

@ (thousand),

�
é�Ô

	
g (five), 16 (16) . . .

• CURRENCY : This token includes all the possible currencies. Sample

currencies are
�
èQ�
Ë (Lebanese pound), PBðX (dollar), 	áK
 (yen) . . .

The MREs to detect money phrases is shown below. number MRE is a
sequence of NUM with possible NONE in between them. money MRE is defined
as number followed by CURRENCY.

1 number : NUM (NONE? NUM)*;

2 money : number CURRENCY;

Table A.7 shows a sample match of the money MREs introduced above.

Table A.7: Money Example
�
éËA

�
®J. Ë @

�
Ém× ú

	
¯

�
èQ�
Ë

	
­Ë

@

	
àñ�Ô

	
gð

�
é
��
J�ð

�
é

JÓ ø

XA

�
� ©

	
¯X

NONE NONE NONE CURRENCY NUM NUM NUM NUM NONE NONE

number

Money

A.8 Crop information

In this example, our aim is to extract information related to crop amount and
type from an Arabic text. To do this task, we define MBFs that detect numbers,
units, and different types of crops. Those MBFs are explained in detail below.

• NUM : This MBF is defined by the category number.

• UNIT : This MBF contains the Arabic stems referring to units of mass.

Some of those units are 	á£ (tonne), ñÊJ
» (Kilo) . . .

77

• CROP : This MBF contains the different types of crops. Thus, it is defined

by stems such as H. ñJ.k (grains),
�
èP

	
X (corn), hA

�	
®
�
K (apples) . . .

The MREs designed to detect the crop information is shown below. num-
ber is defined as a sequence of NUM same as in previous examples. amount is
number followed by UNIT which indicates an amount of mass. cropinfo is de-
fined as amount followed by optional three NONE, then CROP which indicates
the type of the crop.

1 number : NUM (NONE? NUM)*;

2 amount : number UNIT;

3 cropinfo : amount NONE^3 CROP;

Table A.8 shows an example match of the crop information pattern ex-
plained above.

Table A.8: Crop Info Example

H. ñJ. m
Ì'@ 	áÓ 	á£

	
àñJ
ÊÓ 19 AJ

	
K @Q»ð

@

�
HP

�
Y�

CROP NONE UNIT NUM NUM NONE NONE

number

amount

cropinfo

78

	Contents
	Introduction
	Preliminaries
	Morphological features
	Finite state transducers
	Morphological analyzer
	Classes, labels, and tag types

	Motivation
	Overview
	MERF
	Synk
	Morphology-based atomic terms (MAT)
	Morphology-based Boolean formula (MBF)
	Morphology-based regular expression (MRE)
	Computational actions
	Tag type
	MBF evaluation
	MRE and action simulation
	Semantic relations

	Implementation
	Data Model
	Tag file
	Tag type file

	Data structures
	Arabic document
	MBF tag types
	MRE tag types
	MBF tags
	MRE tags

	MBF simulation
	MRE simulation
	NFA generation
	NFA simulation

	Code action execution
	Action file generation
	Action file execution

	MERF interface
	Tree and graph visualization

	Open source tool

	MERF GUI
	Tag type Boolean formula editor
	MERF MBF match visualization
	Tag type regular expression editor
	MERF MRE match visualization
	Semantic relation editor
	Code action editor
	Analysis

	Case Studies
	Narrator chain
	Number normalization
	Temporal entity extraction

	Related Work
	Information extraction
	WordNet
	Tagging

	Conclusion
	Future work

	List of Figures
	List of Tables
	Bibliography
	Appendices
	
	Economic analysis
	Prayer times
	Football results
	Geographical information
	Official notifications
	Professions information
	Money
	Crop information

