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AN ABSTRACT OF THE THESIS OF

Wael Ahmad Salem for Master of Engineering
Major: Mechanical Engineering

Title: Analysis of a Mobile Robot with an Angular Swivel Steering Mechanism with
Applications to Step Climbing

The use of wheeled mobile robots in human environments is increasing rapidly. Many
robots that are capable of navigating rough terrains have been proposed in literature. How-
ever, these have complex methods of actuation and are difficult to build. In this paper, we
present the swivel car: a simple mobile platform with an active angular swivel steering
mechanism that provides it with the ability to navigate through human environments. In
particular, this robot demonstrates step climbing capabilities that prove to be useful in
human environments. To study these capabilities, we create various kinematic and dy-
namic models. These models are used as a basis for comparison with other mobile robots
of similar dimensions to determine the effectiveness of its climbing capabilities. These
models are obtained by making simplifying assumptions to reduce the complexity of the
mobile robot.
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CHAPTER I

INTRODUCTION

Most mobile platforms, such as differential-driven robots [1] and car-like robots

[2], possess limited or no step climbing capabilities unless a mechanism that facilitates

step climbing is appended [3]. Vehicles with no, or limited, climbing capabilities are

referred to as classical vehicles. While navigating rough terrains or human environments,

a wheeled robot is bound to encounter a step and, if the step height is greater than the

wheel radius, the robot is forced to find a different path to reach its destination.

Recomputing the path will require complex path planning and navigation algorithms,

and sometimes an alternative path might not exist. It would be much easier if the robot

was able to climb over the obstacle.

1. Related Work

To avoid complex path planning and navigation algorithms, numerous mobile

robots with step climbing capabilities have been proposed in literature [3, 4, 6]. These

robots are capable of climbing steps of heights larger than the wheel radius, but in turn

require complex control algorithms to perform this maneuver. Some of the proposed

designs, such as Hylos [4, 5] and MHT [6, 7], use active wheel-legs to climb steps and

obstacles. These robots are referred to as hybrid robots because they combine the

mobility of the wheel and the climbing capabilities of legs. Such a combination allows

for easy and efficient locomotion in flat terrain, and for leg-like climbing motion in

rough terrain. The hybrid robot MHT demonstrates impressive obstacle scaling

capabilities and can easily navigate through rough terrain. However, to achieve this, the

robot requires fourteen degrees of freedom. Furthermore, due to the complexity of this
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design, complicated control algorithms are needed to scale obstacles and maintain a

stable robot posture at the same time. Fig. 1 shows a wheel-leg taken from Hylos, notice

the complexity and required mechanism to construct and actuate a single one of these

mechanisms.

Figure 1: A wheeled leg from the robot Hylos

The mobile robot Octopus [8], shown in Fig. 2, is an eight wheeled robot with

fifteen degrees of freedom. The robot is 43 cm long, 42 cm wide, 23 cm high, and

weighs 10 kg. As illustrated in Fig. 3, Octopus can use the tactile wheels located at the

end of its forearms to climb steps almost twice as large as its wheel diameter. Though

effective when climbing large obstacles and scaling steps, this mobile robot is

complicated to manufacture and control. It has fifteen degrees of freedom and eight

wheels, which is four wheels and ten degrees of freedom more than our model.

Furthermore, Octopus requires the use of special tactile wheels with embedded infrared

sensors further complicating the design.

The planetary explorer Rocky 7 [9], shown in Fig. 4, employs a rocker-boogie

mechanism to climb obstacles and move through rough terrains. Even though it can

climb obstacles 50 percent larger than its wheel diameter, the robot’s steering capabilities

are somewhat limited. Rocky 7 is unable to rotate without moving either forwards or

backwards. This can be problematic when navigating in tight or small spaces.
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Figure 2: The Octopus Robot with labeled parts

Figure 3: Step climbing process of the Octopus robot

Figure 4: The Rocky 7 rover moving about in rough terrain

MHT is a hybrid mobile robot with twelve degrees of freedom. It was

developed for navigation of rough terrains and obstacle climbing. Each leg is composed

of two joints and a wheel as seen in Fig. 5. The two joints can lift the wheel over

obstacles, and move the robot about rugged terrains similar to a human leg. Unlike the

swivel car, MHT was built for military purposes and reconnaissance. Consequently, it is
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larger and heavier than our proposed model. It weights almost 150 kg, is almost one

meter long and 50 cm wide.

Figure 5: The hybrid robot MHT moving on flat terrain

The mobile robot WheeLeg [13], shown in Fig. 6, is another example of a

hybrid robot. Unlike MHT, WheeLeg was constructed with two pneumatically actuated

legs at the front and two differential driven wheels at the rear. Each leg is pneumatically

actuated with three degrees of freedom and the two rear wheels are independently driven

by two motors. This platform was designed to navigate in rough environments which are

considered difficult for regular wheeled robots but not so hard to require legged motion.

The robot is 111 cm long, 66 cm wide, 40 cm high and weighs almost 25 kg. Due to its

design, the robot can be unstable when climbing obstacles, might face traction problems

if its front legs are not properly actuated and requires a complex control algorithm to

coordinate motion between its legs and wheels when climbing obstacles. Furthermore,

this robot requires almost eight controllers to execute its climbing motion and four

pneumatic on/off valves to control the motion of each leg. Finally, a pneumatic cylinder

is integrated into each leg to achieve the leg-like climbing motion. Using this pneumatic

mechanism, WheeLeg can climb obstacles 30 cm high.

Alternatively, robots with passive joints and mechanisms have been developed

and implemented as a simple solution to the step climbing problem. Developed in EPFL,

shown in Fig. 7, SHRIMP [10] is a six wheel-driven mobile platform weighing almost
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Figure 6: A complete model of the mobile robot WheeLeg

3.1 kg and capable of climbing steps twice as large as its wheel diameter. The body was

developed using parallel suspension architecture, allowing the robot to smoothly

overcome obstacles and navigate rough terrains with minimal motor power. The wheeled

snake robot, Genbu [11, 12], is another example of an active wheel and passive

mechanism robot. This mobile robot, shown in Fig. 8, is composed of several wheeled

modules connected to each other by passive links. The resulting configuration is a snake

robot with high mobility, and an ability to climb steps 10 percent larger than the wheel

diameter.

Figure 7: The six-wheeled mobile robot SHRIMP developed in EPFL
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Figure 8: Genbu climbing over a small step using the passive swivel joint

2. Thesis Contribution

Our goal is to develop a mobile platform with the following properties: a

relatively simple mechanical design, a minimal number of joints and actuators and

capability of reaching large steering angles. In [14] we introduced the swivel car, a

four-wheeled mobile platform with step climbing capabilities. The design is relatively

simple and utilizes only two actuators. Unlike many proposed designs, the swivel car’s

step climbing capabilities do not depend on the wheel diameter but rather on the length

of the wheel shaft. Consequently, it is possible to design a mobile robot with small

wheels but with the ability to climb steps larger than the robot itself. Moreover, the

swivel car combines two distinct designs that of the classical car-like robot, and that of

the wheeled snake robots such as Genbu. Unlike Genbu, the swivel car is designed with

active joints, rather than passive, connecting only two modules. This novel design can

negotiate rough terrains, climb relatively large obstacles and turn without changing its

position. A skeletal design of this mobile base is shown in Fig. 9. The wheel shaft,

labeled A, rotates about the axis of the swivel joint, labeled B. The proposed mobile base

does not only posses excellent steering capabilities, it can use this motion to climb steps

and obstacles.
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Figure 9: A simple model of the swivel car in Webots

The thesis is divided as follows, a thorough kinematic and dynamic analysis of

the car is presented in Section II. In Section III, we compare the step climbing

capabilities of our mobile platform to a car-like robot and other step climbing robots of

similar size. Finally, we devise a step climbing algorithm in Section IV based on the

kinematic and dynamic analysis conducted in Section II.
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CHAPTER II

DESIGN AND ANALYSIS OF THE SWIVEL CAR

In this section, we study the dynamics and kinematics of the swivel car. We first

present a preliminary design for this mobile platform based on the skeletal configuration

shown in Fig. 9. We then analyze the steering capabilities of the platform and the path

followed by the motion of the point of contact with respect to a fixed ordinate frame.

Next we study the dynamics of the steering mechanism to determine the peak torque

requirements of the swivel car, and the energy consumed while steering. This

information is used to determine the total energy consumed while climbing a step of

certain height. Finally, we devise a simplified platform model to study the effects of

actuating the swivel joint on the pose of the swivel car. Using the simplified model, we

create a kinematic model to study the motion of the swivel car in a two dimensional

plane.

A. Preliminary Design

Now, we present a mechanical design for the platform that was introduced in

[14]. The proposed design is comprised of two “T”-shaped bodies joined together at the

base of the “T” as seen in Fig. 10. Each of the “T” bodies connect to a central body via

two concentric shafts. The inner shaft is the drive shaft that turns the wheel via a

differential, shown in Fig. 10, while the outer shaft rotates the entire “T” shaped body.

Rotating the entire ‘T”-shaped body raises one of the wheels above the ground plane,

thus allowing for step climbing. The angle about which the “T” column rotates is

referred to as the twist(swivel) angle, and is represented by θ2 throughout this thesis.

Accordingly, the central body houses steering and driving actuators as depicted

8



Figure 10: Proposed design of the swivel car

in Fig. 11. The large gear labeled “Steering Gear” is used to move the large steering

shaft by rotating the smaller gear located at the sides. The over gear labeled the “Driving

Gear” delivers power to the differential shown in Fig. 12, which in turn delivers the

power to the wheels. All the other components of the mobile platform, such as batteries,

controllers, and electronics, could be housed on or inside the central body. Actuation of

the swivel joint is achieved by rotating the steering shaft. In order to actuate the wheels

and swivel angle simultaneously, the driving shaft is housed inside the hollow steering

shafts as presented in Fig. 13. Both shafts are actuated directly from the central body,

and can be moved together or independently.

Figure 11: Proposed design for the internal body of the swivel car

9



Figure 12: A section view of the differential housing showing the differential, the shafts
used to move the wheels, and bearing that support the shafts.

Figure 13: Section view of the swivel car design

Compared to other mobile platforms, this design is relatively easy to operate.

Using two actuators, it is possible to drive all four wheels and the swivel joint. However,

this design does not leave much room to mount sensors and other attachments.

B. Kinematic Analysis

We now proceed to model and study the kinematic behavior of the swivel car

when the twist joint, θ2, is actuated. Using this analysis, we determine the steering

capabilities of the swivel car, the motion of the steering wheel relative to a fixed frame

10



and the platform’s step climbing capabilities. We begin by analyzing the kinematics of

this platform by modeling the swivel car as robotic linkage with two revolute joints, θ1

and θ2, as shown in Fig. 14. The ground frame, O0 is placed at the center of the rear

wheel axis with its z0 axis pointing along the axis of the rear wheels. The parameters (l,

r, φ , h) are the dimensions of the robot. This simplification allows us to determine the

platform’s steering capabilities through simple kinematics transformations, as well as the

motion of its steering wheel with respect to a fixed frame. This analysis is performed for

different configurations of the swivel car, which are achieved by varying the parameter φ

from −π

2 +
π

12 to π

2 −
π

12 . Throughout this analysis, we notice a significant change in the

platform’s kinematic behavior once φ changes sign from negative to positive. Fig. 15

shows the difference between the two aforementioned configurations. Notice when φ is

negative, the shaft of the “T” column actually penetrates the ground. This means a new

design is required for a negative value of this parameter.

φ

x

y

z

0

0

0

z 1 x 1

x 2

z 2,3

x 3

O0

O1

O2

O3

C

H0 θ2

θ1r

h

l

Figure 14: The simplified robotic model of the swivel car used to determine the DH
parameters of the proposed mobile base.
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φ>0

(a) Swivel car configuration for φ>0

φ<0
(b) Swivel car configuration for φ<0

Figure 15: The change in the swivel car configuration for a position φ ,(a), and a negative
φ , (b).

1. DH Parameters and End-Effector Position

The swivel car can be modeled as a robotic link with two revolute joints placed

at O0 and O1 as shown in Fig. 14 and 16. These two joints rotate about the z0 and z1 axis

respectively as depicted in Fig. 16. Starting from the fixed origin, O0, we derive the DH

(Denavite-Hartenberg)[15] parameters shown in Table 1. These parameters are used to

establish a relationship between the initial O0 frame and the position of the end actuator

frame, O3. Consequently, we can represent the position of O3 and the orientation of its

axes in according to the ground frame, O0 and its respective axes, (x0 ,y0, z0). The

position of O3 along with the orientation of its axes are written in terms of the design

parameters (l, r, h, φ ) and the two variable angles, θ1 and θ2. Where, θ1 is the lift angle,

θ2 is the swivel angle, h is the wheel shaft length, r is radius of the wheels, and l is the

length of each “T” column as illustrated in Fig. 16.

Table 1: DH parameters for the first design

Joint θ d a α

1 θ1 +
φ

2 −
π

2 0 l sinφ −π

2
2 θ2 l + l cosφ 0 −π

2
3 θ3 h 0 0

Utilizing the DH parameters shown in Table 1, the position of the center of the

steering wheel, O3 and the formulation of the axis of the steering wheel, z3, in the initial
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Figure 16: Skeletal representation of the swivel car along with the labeled frames and
axes.

frame, O0 can be written as,

O3 =


2l cosθ1 cos φ

2 −hsinθ2 sin(θ1 +
φ

2 )

2l sinθ1 cos φ

2 +hsinθ2 cos(θ1 +
φ

2 )

−hcosθ2

 , (1)

and,

z3 =


−sinθ2 sin(θ1 +

φ

2 )

sinθ1 cos φ

2

−cosθ2

 . (2)

The terms (1) and (2) are of particular importance to the upcoming analysis as they

represent the position of the center of the steering wheel in ground plane, and the

orientation of the steering wheel in the ground frame respectively. These terms will be

used to determine the motion of the steering wheel in the XZ plane and the steering

capabilities of the proposed mobile base.
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2. Lift Constraint

For the robot above to behave similarly to a regular mobile platform, the

steering wheel must always remain in contact with the ground. To achieve this, we

determine a relationship between the swivel angle, θ2, and the lift angle, θ1, such that the

steering wheel, Cw, does not penetrate the ground. This relationship is determine by

finding the formulation of the angle γ , shown in Fig. 17 in terms of θ1 and then in terms

of θ2. These two formulations are then equated to each other to determine the

relationship between θ2 and θ1 to keep the steering wheel in contact with the ground. As

p

c

q
m

γ
z3→

z0→

x0
→

y
0
→

O0
→

γ

l
→

n

Figure 17: The steering wheel configuration and the direction of its steering axis with
respect to the O0 frame.

shown in Fig. 17, the vector z3 makes an angle γ with the vertical line mn. The cosine of

γ can be calculated by using the definition of the dot product. The dot product of j and z3

is,

j.z3 =‖
(

0 1 0

)
‖ . ‖ z3 ‖ cosγ (3)

Since both j and z3 are unit vectors (3) becomes,

cosγ = cos(θ1 +
φ

2
)sinθ2. (4)
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Now we proceed to determine a relationship between the height of the steering wheel

center and γ . With γ known, we can then solve for the new height of the center of the

front wheel which is represented by vector Cn shown in Fig. 17. Considering triangle

Cpn (shown in Fig. 17), we have

sinγ =
Cn
Cp
⇔
√

1− cos2 γ =
Cn
r

(5)

Using (5) we solve for the change in height of the wheel center from its initial location,

Cm.

Cm = mn−Cn = r− r
√

1− cos2 γ (6)

Substituting the values of cosγ obtained in (4) into (6), and then equating (6) to

the second element of the location of the end effector shown in (1), we get the

relationship previously mentioned at the beginning of this part.

r− r

√
1− cos2 (θ1 +

φ

2
)sin2

θ2 = 2l sinθ1 cos
φ

2
+hsinθ2 cos(θ1 +

φ

2
). (7)

The above equation can be solved analytically to determine the change in θ1, as a

function of the swivel angle, θ2. This solution will be referred to as the lift constraint

throughout the remainder of this thesis. Fig. 18 (a) shows the variation of the lift angel,

θ1, versus the swivel angle θ2 for the positive values of φ , whereas Fig. 18 (b) illustrates

the value of θ1 versus the variation in θ2 for the negative values of φ . When θ2 is

actuated in either the clockwise or counter-clockwise direction, the car rotates about its

back wheel axis, z0. Consequently, the lift constraint produces a symmetric function

when θ2 varies from −π

2 to π

2 . Note that when φ is negative, the relationship between θ1

and θ2 does not vary greatly for different values of φ . Furthermore, when φ is positive

the steering wheel moves towards the back wheel axis z0, whereas the opposite occurs

for a negative φ as shown in Fig. 19a and 19b respectively

15



0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Θ2

Θ
1

¯ Φ

(a) Lift angle, θ1 versus the swivel angle, θ2
for φ=( π

12 , π

6 , π

4 , π

3 , 5π

12 ).

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

Θ2

Θ 1

¯Φ

(b) Lift angle, θ1 versus the swivel angle, θ2
for φ=(− π

12 , −π
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Figure 18: The effects of varying φ on the lift constraint. The figure to the left depicts
this variation for positive values of φ , whereas the figure on the right depicts this

relationship for a negative φ

(a) The location of the steering wheel, C,
becomes closer to the rear wheel axis as the

swivel joint is actuate for φ > 0.

(b) The location of the steering wheel, C,
becomes further from the rear wheel axis

when φ < 0

Figure 19: The effects of changing the sign of φ on the motion of the front steering
wheel.

3. Point of Contact Analysis

Now we solve for the point of contact, p, of the steering wheel, Cw, with respect

to the XZ ground plane. Using the kinematics previously developed, one can solve for

the location of the point p starting from the location of the steering wheel, Cw, and the

axis of rotation, z3, which were determined in (1) and (2). By referring to Fig. 17, we

start by translating along the y0 axis by a distance of r sinγ , and then along the vector Op

by a distance of r cosγ . The vector Op is calculated by projecting the unit vector, z3, on

the XZ plane. A unit vector along Op can be calculated by taking the cross product of

16



the vectors j and v, and then rotating this vector about the y0 axis by an angle of −π

2 .

Finally, the resulting vector is normalized. Consequently, the position of the contact

point can be written as,

p =C+ r sinγj+ r cosγ
Op
‖Op ‖

, (8)

where,

Op = j× z3. (9)

Substituting (9) into (8) results in the following formulation for p,

p =C+ r sinγj+ r cosγRj,−π

2

j× z3
‖ j× z3 ‖

, (10)

where Rj,− π

2
is a rotation about the y0 axis by an angle of π

2 in the clock-wise direction.

Substituting (5) and (6) into (10) allows us to solve for the location of p for different

values of θ2. This equation is solved to obtain the graphs shown in Fig. 20a and 20b.

These two graphs illustrate path followed by the point of contact ,p, for several values of

the parameter φ with respect to the O0 frame located at the back of the swivel car. The

path followed by p is further illustrated by the multiple frames shown in Fig. 20. The

swivel angle, θ2, was varied from 0 to π

2 for φ = 5π

12 .

2.5 3.0 3.5 4.0 4.5

-1.0

-0.5

0.0

0.5

1.0

x0

z
0

¯Φ

(a) Path followed by the point of contact in the XZ
plane for φ=( π

12 ,
π

6 ,
π

4 ,
π

3 ,
5π

12 )

2.5 3.0 3.5 4.0 4.5
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0.0

0.5

1.0

x0

z
0

wΦ

(b) Path followed by the point of contact in the XZ
plane for φ=(− π

12 ,−
π

6 ,−
π

4 ,−
π

3 ,−
5π

12 )
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Figure 20: Four frames illustrating the path of p in the XZ plane as θ2 varies from 0 to π

2
for l=20 cm, h=10 cm, φ = π

6 and r=0.33 cm

Examining Fig. 20a and 20,we notice that for the positive values of φ the path

followed by p changes drastically from one value of φ to another. On the other hand, for

negative values of φ the path followed by p does not greatly vary when the parameter φ

is varied.

4. Steering Capabilities

In this part of Section II, we study the steering capabilities of the mobile

platform using the model kinematics derived above. In short, we aim to derive a

relationship between the swivel angle, θ2, and the steering angle, θ . Similar to a bicycle

or a car, the steering angle of the swivel car can be determined by calculating the angle

between the projections of the front and back wheel axis on the ground plane, XZ. The

point at which these two projections intersect forms the center of instantaneous rotation.

In our case, it is sufficient to determine the angle between the vector i and the vector l,

both of which are shown in Fig. 17. The vector l can is obtained by calculating the cross

18



product of j and z3, where j is the unit vector along the y0 axis shown in Fig. 16.

l = z3× j =


cosθ2

0

−sinθ2 sin(θ1 +
φ

2 )

 . (11)

We now compute the cosine of the steering angle, θ , by calculating the dot product of

the vectors i and v,

i.v =‖ i ‖‖ l ‖ cosθ . (12)

After substituting the values of l and i into (12), the cosine of the steering angle can be

written as,

cosθ =
cosθ2√

cos2θ2 + sin2
θ2 sin2 (θ 2

1 +
φ

2 )
. (13)

Plugging in the solution of (6) into (13) allows us to solve for the value of the steering

angle in terms of the swivel angle, θ2. Fig. 21a and 21b show the variation of the

steering angle versus the change in θ2 for different values of φ .
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(a) Steering angle vs. the swivel angle for
different values of φ=( π

12 ,
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6 ,
π

4 ,
π

3 ,
5π
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(b) Steering angle, θ1 versus the swivel
angle, θ2 for φ=− π

12 , −π

6 , −π

4 , −π

3 , − 5π

12
as solved for the second configuration.

Figure 21: Steering angle versus the change in the twist angle, θ2, for different values of
the design parameter φ

Comparing Fig. 21a and 21b, we notice that the swivel car posses better
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steering capabilities for a negative value of φ rather than a positive one. For example the

steering angles for φ = π

3 and φ =−π

3 are respectively 0.5 rad. and 0.75 rad. From the

figures, we can further deduce the effects of the parameter φ on the steering angle. When

φ is negative, the steering angle does not significantly vary from one configuration to the

other. However, for positive values of φ , we notice a significant variation from one value

to the next.

It should be noted when the swivel joint is actuated in the clockwise direction,

the mobile base steers in the clockwise direction for a positive value of φ . On the other

hand, the swivel car steers in the counter-clockwise direction for a negative value φ . This

difference in steering capabilities is further illustrated in Fig. 22a and 22b. Fig. 22a

depicts the steering angle and point of steering for φ > 0. Fig. 22b illustrates these terms

for φ < 0. As can be seen in Fig. 21, the proposed mobile base possesses excellent

(a) Steering angle and radius for φ > 0 (b) Steering angle and radius for φ < 0

Figure 22: Change in the steering kinematics of the mobile base for a positive(left) and
negative(right) value of φ

steering capabilities. It is capable of achieving a steering angle of π

2 meaning it can

rotate about its own axis without changing in position on the ground plane.
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5. Step Climbing Kinematics of the swivel car

In this part of Section II, we analyze the step climbing capabilities of the swivel

car by extending the kinematic analysis conducted in B.. For simplification, we assume

the swivel car can climb steps by lifting the base of one of its front wheels above a

desired height. As such, to determine the maximum scalable step of the swivel car it is

sufficient to determine the height of the lowest point on the lifted front wheel, PL. We

first start by finding the location of any point, Pr, that lies on the circumference of the

lifted wheel. This is done by implementing the following four transformations about the

O3 frame shown in Fig. 16,

1. Rotation about the z3 axis by an angle of π−φ

2 so that the new x-axis is parallel to

the y0 axis shown in Fig. 16.

2. Translation about the z3 axis by a distance of 2h.

3. Translation about the new z-axis by a distance r.

A sketch detailing the location of an arbitrary point, Pr, and the lowest point, PL, with

respect to the lifted wheel is shown in Fig. 23. The angle θ3 refers to the angular position

of an arbitrary point lying on the circumference of the lifted wheel, and the angle θ3sol is

the angle at which Pr is closest to the ground plane, XZ i.e. it is the angle at which PL is

located with respect to the x-axis of the lifted wheel. Solving for the transformations

above one can obtain the height, yr of the any arbitrary, Pr, lying on the circumference of

the lifted wheel, where

yr = (l + l cosφ+r cos(
1
2
(φ −2θ3)))sin(θ1−

φ

2
)+ cos(θ1−

φ

2
)(−hsinθ2 + l sinφ

+ r cosθ2 sin(
1
2
(φ −2θ3))). (14)

Fig. 24 shows the variation in height of Pr with respect to the change in theta3 for

different values of θ2. Upon close examination, we notice that the lowest position for Pr
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Figure 23: Sketch of the wheel showing the location of Pr and PL with respect to an
inertial frame O0

occurs when the derivative of (14) with respect to theta3 is equal to zero as shown below,

∂yp

∂θ3
= 0. (15)

Solving (15) results in the following formulation of theta3,

θ3sol =−arccos
(

sinθ1 + sin(θ1−φ)√
cos2 θ2 cos2 (θ1 +

φ

2 )+ sin2 (θ1 +
φ

2 )

+2cosθ2 cos(θ1− φ

2 )sin φ

2√
cos2 θ2 cos2 (θ1 +

φ

2 )+ sin2 (θ1 +
φ

2 )

)
(16)

Consequently, we determine the lowest possible location for pr by substituting θ3sol

determined in (16) into (14). Fig. 25 shows the height of the lowest point on the lifted

wheel with respect to the swivel angle for the dimensions shown in Table 2. Note that,

the chosen dimensions are similar in height, length, and mass distribution to the car-like

robot proposed and tested in [2]. Furthermore, Fig. 26 and 27 show the height of the

lowest point on the lifted wheel for different values of φ and h respectively. Finally, we
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Table 2: Simulation parameters

Parameter Value Label
ms 21 Kg Mass of Robot
Is 0.84 kgm2 Inertia of Robot
l 25 cm Length of “T” Column
h 15 cm Wheel Shaft Length
φ

π

3 Angle Between “T” Columns
r 7.5 m Wheel Radius

Kp 19 Proportional Gain
Kd 5.5 Derivative Gain
KI 11.45 Integral Gain

1 2 3 4 5 6
ΩH rad L

- 5

0

5
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15

20

yH cm L

Π � 2

Π � 5

0

Θ 3

Figure 24: Height variation of the random point Pr about the circumference of the lifted
wheel for different values of θ2
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Figure 25: The height of the lowest point, Pl , as a function of the swivel angle, θ2

study the effects of changing the parameters l and r on the robots climbing capabilities.

Fig. 28 and 29 depict the maximum scalable step for different values of l and r. Upon
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Figure 26: Change of step climbing capabilities as φ varies
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Figure 27: The effect of changing the wheel shaft length ,h, on the maximum scalable
step

examining these figures, we notice that there is no change in the robot’s climbing

capabilities when these two parameters are varied.

According to Fig. 25, the swivel car is capable of climbing obstacles equal in

height to the wheel diameter. However, upon further investigation, we notice the step

climbing capabilities are independent of the wheel diameter, rather they are dependent

on the the wheel shaft length, h, and the angle φ , both of which are robot geometric

parameters. Figs. 26 and 27 show the variation of the swivel car’s step climbing

capabilities with the change of φ and h, respectively. However, as we will see in the next

part, an increase in h is followed by a proportional increase in the required torque to lift
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Figure 28: The effect of changing the length of “T” column, l on the maximum scalable
step.
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Figure 29: The effect of changing the wheel radius, r, on the maximum scalable step.

the wheel. This limits the maximum shaft length and step climbing capabilities.

C. Dynamics of the Steering Mechanism

In this part of Section II, we start by analyzing the dynamics of actuating the

swivel joint to achieve steering. Through this analysis, we determine the torque

requirements to achieve steering as well as the energy expended during steering. Next,

we extend this dynamics analysis to calculate the peak torque requirement for climbing a

step along with the total expended energy during step climbing.
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1. Dynamic Analysis of the Steering Mechanism

Now, we create a simplified dynamic representation of the swivel car to model

the step climbing energy costs by modeling the steering mechanism. Through these

simulations, we determine the total expended energy while climbing a step, and the peak

torque requirement at the swivel joint for both steering and step climbing. The results of

this simulation are compared to examples from literature to assess the performance of

the swivel car as a step climbing robot. To simplify the system, we first assume the entire

mass of the car is concentrated at the point-mass, Cm (shown in Fig. 16). Furthermore,

during the actuation of the swivel joint, we assume this point mass rotates about the fixed

axis z0 with an angle θ1 as shown in Fig. 16. To model the system, we use the

Lagrange-Euler formulation [17], where the system’s kinetic energy, Ts, and potential

energy ,Vs, are respectively given by

Ts =
Isθ̇1

2

2
, (17)

Vs = msg∆H. (18)

Here, ms is the mass of the car, Is is the inertia of the swivel car about the rear wheel

axis, z0, and ∆H is the change in height of the center of mass. Thus, the Lagrangian is

Ls = Ts−Vs. (19)

Substituting (17) and (18) into (19) yields,

Ls =
Isθ̇1

2

2
−msg∆H, (20)

with,

∆H = Ho−Hi, (21)
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where Ho is the initial height of point Cm, and Hi is the current height of Cm which varies

with θ1. Ho, can be determined using the following equation,

Ho = l sin(
π

2
− φ

2
). (22)

The height of Cm versus the swivel angle, θ2, can be obtained by performing a translation

along the z-axis of O1 shown in Fig. 16 by l cosφ , and can be written as,

Hi = l cosφ sin(θ1 +
φ

2
)− l cos(θ1 +

φ

2
)sinφ . (23)

Substituting (23) and (22) into (20) results in the following formulation for Ls

Ls =
Isθ̇1

2

2
−msg(l sin(

π

2
− φ

2
)− cosφ sin(θ1 +

φ

2
)− l cos(θ1 +

φ

2
)sinφ . (24)

As shown in [14], the angle θ1 can be written in terms of the swivel angle θ2, this means

(24) can also be written as a function of the controlled variable θ2. Finally, using the

Euler-Lagrange formulation, we compute the equations of motion to get

∂

∂ t
∂Ls

∂ θ̇2
− ∂Ls

∂θ2
= τs. (25)

An external torque, τ , is used to control the angular position of the swivel joint by

implementing a PID controller of the form,

τs = Kp(θ2d−θ2)+KDθ̇2 +KI

∫ t

0
(θ2d−θ2)dt, (26)

where θ2d is the desired value of the swivel angle, and (KP, KI , KD) are the PID gains

used for angular position control of the swivel joint.
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Figure 30: The swivel car climbing an obstacle by actuating the swivel joint, which also
acts as its steering mechanism

2. Cost of Climbing a Step

The step climbing process can be divided into three parts. In the first part the

vehicle lifts one of its front wheels above the step, and in the second part the robot

moves forwards until the base of its lifted wheel is just above the step. Finally, the swivel

car lifts the rest of its body above the step as illustrated in Fig. 30. The model derived in

(25) was solved in Mathematica for the dimensions shown in Table 2. For verification, a

model of the swivel car was also created in Dymola using the Multibody Library [18].

For comparison purposes with the results of [2], we will simulate the swivel car as it

climbs a 12mm step. This is done by actuating the swivel angle to 0.12 rad (6.6o). At

this angle, the base of the lifted wheel lies just above the step. The results of these

simulations are shown in Fig. 31 which shows the torque applied at the swivel joint for

lifting one wheel (blue), and for lifting the rest of the car (red), and represents the energy

consumption versus time for lifting the wheel (blue), and for lifting the rest of the car

(red). Examining the results of the simulation in Fig. 31, the peak torque applied at the

swivel joint is 8 Nm. which is 20 percent greater than the results present in literature for
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Figure 31: A graph showing the expended energy during a step climbing process, along
with the peak torque as the swivel angle changes

a car-like robot of the same build [2], and the expended energy is 3 J versus 3.2 J for the

car-like robot.

3. Dependency of Peak Torque on h

We now investigate the effects of varying the parameter h on the peak torque

required at the twist joint. The study was conducted for multiple values of this parameter

and can be seen in Fig. 32. The figure depicts a linear relationship between the increase

in the wheel shaft length, h, and the peak torque required at the twist joint. The

conducted analysis serves to verify our previous statements concerning the effects of

increasing the length of the wheel shaft on the dynamics of the proposed mobile base.
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Figure 32: A plot depicting the change peak torque at the swivel joint to climb a step
versus the increase in h.

D. Platform Model with Nonholonomic Constraints

In this part of Section II, we investigate the dynamic effects of actuating the

swivel joint on the position and orientation of the swivel car. In previous sections, the

model of the swivel car was constrained such that no rotation occurs about the y0 axis,

and no change of position occurs in the XZ plane. However, multibody simulations

conducted in Dymola indicate that these two assumptions are not correct. In fact, as the

steering of the platform is actuated, our simulations indicate that the rear wheel axle does

not remain stationary.

1. Nonholonomic Constraints

Before we analyze the platform dynamics of the swivel car, we briefly explain

the theory behind nonholonomic constraints. The motion of a regular wheel, such as the

one shown in Fig. 33, is constrained such that:

1. The wheel does not slip in the lateral direction along C0 (no skidding).

2. The wheel does not slip along V0 while revolving about its axis(no slipping),

meaning the wheel’s linear velocity is equal to its angular velocity multiplied by

the radius of the wheel.
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These two constraints are referred to as nonholonomic constraints, and are at the basis of

the modeling wheeled mobile platforms.

C

V

0

0

Wheel

x

y

Figure 33: A single wheel as seen from above with its nonholonomic constraints.

No Slip Condition The wheel does not slip along C0, consequently the

projection of the wheel’s velocity in this direction is equal to zero. Mathematically, this

relationship can be written as

C0 = r0v0, (27)

where r0 is the unit vector along C0, and v0 is the linear velocity of the wheel. To impose

this relationship, we assume the wheel is capable of exerting a reaction force along C0 to

counteract any external force. This force, F0, prevents the wheel from moving in the

lateral direction along C0 by canceling out any external forces applied along C0. To

compensate for a wide variety of forces, F0 is written in terms of a Lagrange multiplier,

λ0. Therefore, the nonholonomic reaction force for a single wheel is,

F0 = λ0r0. (28)
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2. Platform Model

For a better understanding of the car’s steering dynamics, we create another

simplified two dimensional model of the swivel car to capture the effect of steering on

the actual position and orientation of the platform. We do this by projecting the motion

of the robot onto the XZ plane. From the kinematic analysis, while analyzing the

steering capability of the swivel steering car, we noted the motion of the contact point

between the steering wheel and the ground. In fact, since the rear wheel axis was

stationary, it was evident that the motion of the contact point violates the sideways

skidding constraint of the steering wheel. In this section, we enforce the non-skidding

constraint on all the wheels including the steering wheel. Thus, we allow the rear axle to

move and change orientation accordingly. In other words all nonholonomic constraints

[19] are always respected. In particular this means the wheels of the robot do not skid in

the lateral direction along C1 or C2 as illustrated in Fig. 34. The simplified model can

reproduce the effects of actuating the swivel joint on the position and orientation of the

platform by simulating the motion of the steering wheel. This is done by replacing the

out-of-plane swivel joint by three planar joints in the simplified model. Two prismatic

joints, u and v, are used to trace the path followed by the wheel in the XZ plane, whereas

a rotational joint, α , acts as the steering angle and rotates about the normal axis to the

XZ plane. Finally, we assume the majority of the robot’s mass is concentrated in p1,

while the remainder of the mass is equally distributed about the four wheels. Fig. 34

shows a free body diagram of the simplified model, along with the placement of masses

and the location of the actuators. The system’s equations of motion are determined using

the Euler-Lagrange formulation. The configuration of the simplified model comprises of

six generalized coordinates, q = {x,z,θ ,u,v,α}. Note that the actuated degrees of

freedom, u, v, and α , are a function of the swivel angle θ2 as dictated by the kinematic

analysis. We begin with the computation of the equations of motion by first determining
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the location of the centers of mass, p = (pa, pb, p1, pc, pd) with,

pa =

x

z

 , (29)

pb = pa +

−2hsinθ

2hcosθ

 , (30)

p1 = pa +

l cosθ −hsinθ

l sinθ +hcosθ

 , (31)

pd = p1 +

(h+ v)sinθ +(l +u)cosθ

(l +u)sinθ − (h+ v)cosθ

 , (32)

pc = p1 +

−(h+ v)sinθ +(l +u)cosθ

(l +u)sinθ +(h+ v)cosθ

 . (33)

Taking the derivative of p with respect to time yields the velocity of these five points

v = (va, vb, v1, vc, vd). The position of the contact point of the steering wheel in the XZ

x

α

h

2l Sin

p
a

p
1 p

d

p
cp

b

θ C2

C1

u

v

φ

z

Figure 34: Simplified swivel car model with nonholonomic constraints modeled as a 2D
planar mechanism
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plane can be written as,

xp = 2l cos
φ

2
+u, (34)

zp = v, (35)

where xp and zp are the paths followed by the point of contact as represented in a body

coordinate frame attached to the middle of the rear axle. To capture the kinematics of the

angular swivel steering, an inverse dynamic controller ,Q [20], is applied to the

generalized coordinates (u, v, α) as a function of the swivel angle θ2. With

Q = q̈+2ζ ω(q̇p− q̇)+ω
2(qp−q), (36)

where qp = (0, 0, 0, up, vp, αp) is the vector of the controlled coordinates, ω = (0, 0, 0,

ωu, ωv, ωα) and ζ = (0, 0, 0, ζu, ζv, ζα) are the respective gains and damping of the

inverse dynamic controller. The Lagrangian is given by

L =
mw

2
(vavT

a + vbvT
b + vcvT

c + vdvT
d )+

mb

2
v1vT

1 + Iw1(2θ̇
2)+

Icar

2
θ̇

2 + Iw2αα̇
2. (37)

To obtain the equations of motion we follow the Euler-Lagrange formulation to arrive at,

d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= Q+ fg, (38)

where fg is the set of forces due to the nonholonomic constraints of the wheels and can

be written as,

fg = F1
∂ pa

∂q
+F2

∂ pb

∂q
, (39)

with,

F1 =

cos(θ − π

2 )

sin(θ − π

2 )

λ1 +

cos(θ − π

2 )

sin(θ − π

2 )

λ2, (40)
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and,

F2 =

cos(θ +α− π

2 )

sin(θ +α− π

2 )

λ1 +

cos(θ +α− π

2 )

sin(θ +α− π

2 )

λ2, (41)

where λ1 and λ2 are the Lagrange multipliers. The vector of generalized coordinates, q

is,

q =



x

y

φi

αi

u

v


(42)

The nonholonomic constraints also can be written as,

va

cos(θ − π

2 )

sin(θ − π

2 )

= 0, (43)

and,

vd

cos(θ +α− π

2 )

sin(θ +α− π

2 )

= 0 (44)

Combining the six equations from (38) with (43) and (44) results in a system of

eight equations and eight unknowns. Starting with zero initial conditions, these

equations can be numerically integrated to solve for the configuration q and the

Lagrange multiplier λ1 and λ2.

We begin by solving (34) and (35) for u and v to obtain the result seen in Fig.

35 for the dimensions shown in Table 2. The plots in Fig 35 show the required value for

u and v so that the point of contact of the steering wheel with the ground traces the same

path as the wheel of the swivel car. The input to the revolute joint, α , is the steering

angle shown in Fig. 35. To create a time dependency, we assume the swivel angle moves

35



0.5 1.0 1.5
Θ2 H radL

- 2

0

2

4

6

8

10

Α H radL
v H cmL
u H cmL

Figure 35: Changes in the input for u, v, and α versus the variation of the swivel joint

at a constant speed of 0.05 rad.s−1. The set of equations obtained from (38) are solved

using Mathematica, from t = 0, to t = 31.5, at which the swivel angle reaches π

2 . Fig.

36a, 36b, and 36c display how well the actuated joints, u, v, and α , follow the input

using the inverse dynamic controller. Upon examining these figures, we can see how

robust the inverse dynamic controller is at following a variable input, this means our

system behaves similarly to the complete model. The effect of actuating the swivel joint

on the x, z, and θ coordinates is shown in Fig 38. Furthermore, Fig. 37 shows the change

in orientation and position of the simplified model as seen in Mathematica. Fig, 37a

represents the swivel car at initial conditions. Whereas, Fig. 37d depicts the change in

orientation and position of the swivel car when θ2 reaches a value of π

2 .

In agreement with our Dymola simulation, the car moves mostly backwards by

0.02 meters and the orientation changes by 0.2 radians in the clockwise direction. A

similar motion was observed for MHT robot, where the mobile robot would slightly

deviate from its current orientation when a single wheel is lifted at the beginning of the

step climbing process.
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(a) Input to u (red), and the path
followed by u (blue).
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(b) Input to v (red), and the path
followed by v (blue).
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(c) Input to α (red), and the path followed by α (blue)

Figure 36: Input to each joint along with the output.
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Figure 37: Change in pose of the swivel car starting from initial position, (a), and the
final position of the swivel car when θ2 reaches π

2 , (d).
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Figure 38: The effect of actuating the swivel joint on the position ,x and y, and the
orientation θ

3. Effects of Varying Model Parameters

Now we investigate the effects of changing the model parameters on the

dynamics of the simplified mechanism. We first investigate the effects of varying h on

the dynamics of the simplified model. The simulation is first conducted for a wheel shaft

length of 15cm, and 20cm, next we simulate our model for φ = π

6 , π

4 , and 5π

12 . Finally, we

run the simulation for l = 30cm and 40cm. By conducting all these simulations we aim

to study the dynamics for different configurations of the swivel car. Table 3 illustrates

the effects of varying the aforementioned parameters on the effects of actuating the twist

joint. We notice than an increase in h is followed by increase in position and orientation

change. However, an increase in φ decreases the effects of actuating the twist joint on

the position and orientation of the mobile base. Finally, increasing l decreases the effects

of actuating the twist joint on the pose of the robot.

Table 3: Effects of changing the design parameters on the robot’s motion

Parameter l h φ

Change in Parameter ↑ ↑ ↑
Effect of Twist Joint on Position ↓ ↑ ↓
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E. Planar Motion Kinematics

In this part of section II, we drive the planar equations of motion for the

proposed mobile robot by modeling it as a tricycle with an offset steering wheel. The

model allows us to determine the angular and linear velocity of the mobile robot with

respect to a ground frame given the angular velocity if the platform’s wheels, and the

value of the steering angle. These derivations can be used to implement closed loop

motion and path planning in future work concerning the swivel car. Using the simplified

h

l

h

l

h

l

z

x

α

θ

ψ

θ r

f

0

0

1

1

2

2

com

φcar

a

b

Figure 39: The simplified planar model of the swivel car resembles that of a tricycle with
a variable offset steering wheel.

model implemented in the platform dynamics, we derive the kinematic equations of

motion of the swivel car to determine the position and orientation given the steering

angle and the rotation of the wheels. The simplified kinematic model is similar to that of

a tricycle, but with an offset steering wheel as shown in Fig. 39. The system posses five

generalized coordinates qt = (x y φ θr θ f ψ a b). Similar to a regular tricycle [21], the

vector qt can be reduced to qt = (x y θr ψ a b). The angular velocities of the rear wheel

axis, the rear wheel and the from steering wheel are

ωc = φ̇k, (45)
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ωr = φ̇cark+ θ̇rl0, (46)

ω f = φ̇cark+ θ̇ f l2 + ψ̇k, (47)

where ωc is the angular velocity of the car in the XZ plane with respect to a fixed origin,

ωr is the angular velocity of the rear wheel with respect to the ground frame XZ, and ω f

is the angular velocity of the front wheel with respect to the XZ plane. With vectors

l0 =

−sinφcar

cosφcar

 , (48)

h0 =

cosφcar

sinφcar

 , (49)

l2 =

−sinφcar +ψ

cosφcar +ψ

 , (50)

h2 =

cos(φcar +ψ)

sin(φcar +ψ)

 , (51)

l1 =

−sin(φcar +αcom)

cos(φcar +αcom)

 , (52)

h1 =

cos(φcar +αcom)

sin(φcar +αcom)

 , (53)

with,

αcom = arctan
b
a

(54)

The position of the rear wheel of the car, the front wheel, and the front wheel with

respect to the rear wheel can be written as

Cr = Pr + rk, (55)
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C f = Pf + rk, (56)

C f =Cr + ch1. (57)

Deriving the above three equations with time yields

Ċ f = rθ̇ f h2, (58)

Ċr = rθ̇rh0, (59)

θ̇ f h2 = θ̇rh0 + cφ̇carl1 +h1 f (a,b, ȧ, ḃ), (60)

with

c =
√

a2 +b2, (61)

f (a,b, ȧ, ḃ) =
aȧ+bḃ√
a2 +b2

. (62)

Multiplying the third equation with l f and l and solving for φ̇ yields,

φ̇car =
rθ̇r sinφcar + f (a,b, ȧ, ḃ)sin(ψ−αcar)

ccos(ψ−αcar)
, (63)

φ̇car =
rθ̇ f sinφcar− f (a,b, ȧ, ḃ)sin(ψ−αcar)

ccosαcar
. (64)

The two formulations, (64) and (63), represent the equation of the angular velocity of the

robot in the XZ plane given the rear and front wheel velocity respectively. Due to the no

slip condition placed at the robot’s wheels, it is possible to determine the angular

velocity of any wheel given the angular velocity of a single wheel. This means the

angular velocity of the robot, φ̇ , can be written either in terms of the rear wheel angular

velocity, θr, or the front wheel angular velocity, θ f only.

The wheeled robot’s motion is constraint such that both the front steering wheel

and the rear driving wheels do not slip. These two constraint can be modeled

mathematically by projecting the linear velocity of each wheel on both the x and z
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direction, and equating these two values to zero [22, 23]. Mathematically, these two

constraints can be written as,

ẋsinφcar + ẏcosφcar = 0, (65)

and,

−ẋsin(φcar +ψ)+ ẏcos(φcar +ψ)+
√

a2 +b2φ̇car cos(ψ−αcom) = 0. (66)

Solving these two equations and substituting for the value of φ derived in (64) , the

mobile robot’s velocity in the x and y direction can be written as,

ẋ = rθ̇r cosφcar, (67)

and,

ẏ = rθ̇r sinφcar (68)

Note that (67) and (68) are similar to the equations of a car-like robot, however due to

the kinematics of the swivel car, some compensation is required to account for the

dynamic effects of actuating the swivel car. The equations shown above are non

integrable equations. However they can be solved by implementing a finite time

difference as shown below,

xt+1 = ∆tẋ+ xt (69)

yt+1 = ∆tẏ+ yt (70)

φt+1 = ∆tφ̇ +φt (71)

Solving (69), (70) and (71) for a constant steering angle of π

6 , a constant angular

velocity of 0.1 rad.s−1 for the rear wheel, and a constant time step of 0.1 seconds, we

get the plot shown in Fig. 40.
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Figure 40: The path followed by solving the equations of motion (67) and (68).

F. Parameter Study

In this part of chapter II, we study the effects of varying the design parameters

on the effectiveness of the proposed mobile base. In what follows, we study the

advantages and disadvantage of varying each parameter. Furthermore, we investigate

possible relationships and constraints between the design parameters. So far, the

proposed mobile base may face these two problems;

1. The car might tip over due to its high center of gravity.

2. The steering wheel might touch the rear wheels.

In what follows, we propose some simple rules-of-thumb to prevent the two problems

mentioned above, then we proceed to discuss the advantages and disadvantages of

varying each parameter.
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1. Rules of Thumb for Parameter Selection

We begin by solving the first problem. The robot is prone to tipping over if its

center of, Cm moves behind the rear wheel axis as shown in Fig. 41. Mathematically, this

relationship can be expressed as,
φ

2
+θ1 <

π

2
(72)

To avoid the problem of tipping over, the value of θ1 must never exceed π−φ

2 for all

applications.

lφCm

Robot at initial positionRobot at Final position

φ____2
φ____2 +θ1

Figure 41: A simple representation of the swivel at its initial position and at the position
just before the mobile base tips over

The second problem results when the length of the wheel shaft axis is too large,

when φ is too large, or when the length of the “T” column l is small. As a result the front

steering wheel might touch the rear wheels and cause the car to stall. Meaning the

projection of the length of the wheel shaft, h, on the ground plane must always be less

the projection of the car’s length on the ground plane. Referring to Fig. 42, the

projection of both these lines of the ground plane, lp and hp are,

lp = 2l cos
φ

2
cosθ1, (73)
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and

hp = hsin
π

2
−φ (74)

Combing (73) and (74) yields the relationship shown below,

hp = hsin
π

2
−φ < lp = 2l cos

φ

2
cosθ1. (75)

lφ
Cm

π-φ2θ1l cos 2l hp p
Figure 42: A simple representation of the swivel car along with its steering shaft at a

twist angle of π

2

2. Effects of Varying The Design Parameters

Changing the value of a design parameter can greatly effects the kinematics and

dynamics of the swivel car. This was demonstrated in previous sections, for h and φ in

particular, but not fully studied. In what follows, we briefly discuss the effects of

changing the robot’s design parameters, l, h and φ .

a. The Angle φ

Changing φ effects the car’s steering capabilities and the peak torque required

at the twist joint to steer. An increase in φ increases steering capabilities as shown in Fig.

21a. Furthermore, increasing φ decreases the torque required to steer the car. However,
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increasing φ decreases the mobile robot’s climbing capabilities. Moreover, if h is large

enough, increasing φ can cause the front steering wheel to touch the rear wheel axis.

b. Steering Wheel Shaft Length

Increasing h improves the swivel car’s climbing capabilities. However this

change increases the risk of tipping over, the risk of the front wheels stalling with the

rear wheels while steering, the torque required at the twist joint, and the effects of

actuating the twist joint on the position of the car.

c. “T” Column Length

For a small value of l, the swivel car is at risk of tipping over due to its relatively

small length. However, increasing l can decrease the effects of actuating the twist joint

on the position and orientation of the swivel car with respect to the ground plane.
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CHAPTER III

STEP CLIMBING ALGORITHM

In Section III, we propose two simple step climbing procedures for the swivel

car based on the car’s kinematics and dynamics. The first step climbing procedure was

developed for a positive value of φ , whereas the second process only works when φ is

negative. The need for two procedures stems from the difference in kinematic behavior

of the mobile platform when the parameter, φ changes sign as shown in Section II. The

aim of both procedures is to lift the front wheels of the swivel car above a certain step.

When this occurs, we can assume the mobile platform has overcome the step [2].

A. For a Positive φ

In this part of Section III, we propose a step climbing procedure for a swivel car

configuration with positive φ . For this analysis to work, we assume that the following

parameters are known: the distance from the robot to the step, d, the height of the step,

hs, and the orientation of the step with respect to the swivel car, θi.

In our proposed step climbing technique, the swivel steering platform will

traverse a series of motions, namely, arcs and straight lines [22], to place the bottom of

the lifted wheel on top of the obstacle as shown in Fig. 43. We have to take into account

the dynamics of the platform, since during the actuation of the swivel angle, i.e.,

steering, the platform changes position and orientation.

To find the distance, d, we first determine the value of the steering radius, R,

shown in Fig. 44

R =
2l cosφ

tanα
, (76)
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Figure 43: The swivel car positioning itself to climb a step

where α is the steering angle. Through trigonometry, the steering radius for the front of

the robot R′ is,

R′ =
R

cosα
. (77)

Substituting (76) into (77) yields,

R′ =
2l cosφ

sinα
. (78)

The steering radius of the lifted wheel, R2, is,

R2 = R′+h− v. (79)

Plugging (78) into (79) yields,

R2 =
2l cosφ

sinα
+h− v (80)

Since, d′ and d′′ are chords within circles of radii R′ and R′′, they can be written

48



as

d′ = 2R′ sin
δθi

2
, (81)

and

d′′ = 2R2 sin
δθi

2
, (82)

where δθi is the arc angle shown in 44 and can be written as,

δθi = θi− γ, (83)

where γ is the orientation of the step with respect to the swivel car at the end of the step

climbing process.

Utilizing the Sine law for the triangle with sides d and d′′ the following

relationship can be obtained,

d2 =
d′′ sinγ

sin(π−θi)
. (84)

Finally, substituting (82) into (84) yields,

d = 2R2 sin
δθi

2
tanγ +(h− v)cos(

π

2
−α) (85)

Upon close examination, we notice that (85) is dependent only on the twist

angle, θ2, which in turn depends on the height of the faced obstacle. The required twist

angle to scale a step was previously determined in chapter II and can be used in this

climbing algorithm. Hence, our step climbing technique can be summarized as follows:

given the step height, hi, and the direction of the lifted wheel with respect to the step, γ ,

we first solve for the swivel angle θ2. Then, solve for the distance, d, and the orientation

of the platform with respect to the obstacle, θi. The solved values for d and using (85)

guarantee that as the robot drives forward, the lifted wheel clears the obstacle and

touches its top with an orientation γ . The climbing algorithm was implemented using the

software Webots for validation as shown in Fig. 45.
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Figure 44: Variables taken into account during the step climbing process

Figure 45: Implementation of the step climbing procedure

B. For a Negative φ

For a negative value of φ , it is possible to create a semi-active step climbing

process based on the kinematics of the proposed mobile base, and its mechanical

configuration. The mobile platform approaches the step at a certain angle, θi, until its

front wheel is in contact with the step. Once the front wheel hits the step, the car uses its

inertia, driving torque, and the torque at the swivel joint to lift its front wheel above the
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step. This method decreases the peak torque at the swivel joint to lift the front wheel and

eliminates the need for complex calculations. This procedure was labeled semi-active

because, with a large enough driving torque at the wheels, it is possible to lift one wheel

above an obstacles without exerting any torque at the swivel joint. Fig. 46 illustrates the

point at which the force is applied and the resulting torque which is induced about the

twist joint.

x

z

y

Fw

CF

ΤS

Figure 46: A skeletal diagram representing the forces and torques about the swivel joint
when the front wheel in in contact with a step.

Due to the proposed design of the swivel car, a force applied at a single wheel

creates a torque at the wheel shaft, h, about its respective “T” column. However, the sign

of φ changes the direction in which the “T” column rotates. When φ is negative, the

resulting torque helps lift the wheel which is in contact with the obstacle. On the other

hand, when φ is positive the resulting torque pushes the wheel down. Fig. 46 depicts the

point of application of this force, and the axis about which torque is generated.

1. Force Analysis for Procedure

We begin by presenting a simple force analysis to determine the torque

produced when the front wheel is in contact with an obstacle. The cars driving torque,

τD, at the wheels creates a forward driving force, Fw. When a wheel is in contact with an

obstacle, the resulting reaction force is equal to the driving force, Fw. This reaction force
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is projected along the base of the “T” column, and the FNT direction as shown in Fig. 47.

The force, Fw can be calculated from the driving torque as,

x
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F

F

F

w

T

NT

0
0

0

φ
2

τD

Figure 47: A free body diagram showing the forces acting on the swivel car.

Fs = τDr, (86)

where r is the radius of the wheel. Using simple trigonometry, Fw is then decomposed

into two perpendicular forces, FT , and FT N . Where FT is the projection of Fw along the

base of the “T” column as shown in Fig. 47. Considering the right triangle ABC, FT and

FT N can be written as

FT = Fw cos
φ

2
, (87)

and,

FT = Fw sin
φ

2
. (88)

The torque about the “T” column resulting from the force, FT N , can be determined as,

τS = hFNT , (89)

where h is the wheel shaft length shown in Fig. 16. Examining (88), we notice that for a

positive φ , the resulting torque, τS, pushes the front wheel in contact with the step

towards the ground. However, when φ is negative, the resulting force normal to the “T”

column is upwards, consequently the generated torque, τS, pushes the front wheel

upwards. Fig. 46 depicts a skeletal model of the swivel car with the direction of the
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reaction force, and the location of the torque resulting from this force.

We solve (89) for different values of h and r to determine the effects of

changing the cars parameters on the value of τS given the driving torque, τD. Fig. 48 and

49 display the variation of the torque for different values of h and r the moment when the

front wheel is in contact with the step.

Increasing h
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Figure 48: Driving torque, τD, versus induced torque, τS for h = (1,2,3,4,5)
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Figure 49: Driving torque, τD, versus induced torque, τS for h = (0.5,0.7,0.9,1.1,1.3)

So far we presented the magnitude of the assisting torque that is generated at the

swivel joint when the front wheel is in contact with the step. In reality, this value

changes as the swivel angle changes, and becomes zero when the front wheel reaches the

top position, i.e. θ2 is π

2 . For this analysis we must take into account two variables that

effect the torque produced at the joint. The first variable is the distance from the point of

application of FS, to the swivel joint. As the swivel joint is actuated, this distance

decreases and as a result, the assisting torque also decreases. the second variable is the

change in orientation of the wheel shaft, h. As the swivel joint is actuated, the projection

of h on the XZ plane changes orientation. This means a smaller amount of force can be

utilized to help actuate the swivel joint.
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αc = θ − π

2
(90)

hp = hsin(φ −θ1)cosθ2 (91)

Implementing (91), we can determine the effect of actuating the swivel joint, θ2

on the assisting torque, τS. Fig. 50 and 50 depict this relationship for different values of

the parameters, h and r. We notice that increasing r actually decreases the value of the

assisting torque. However, increasing h actually increases the value of τS. Furthermore,

upon examining these two figures, we notice an increase in the assisting torque s θ2

increases.

Increasing h
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Figure 50: Induced torque, τS, vs. the change in the swivel angle, θ2 for
h = (0.5,0.7,0.9,1.1,1.3)
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Figure 51: Induced torque, τS, vs. the change in the swivel angle, θ2, for
h = (0.5,0.7,0.9,1.1,1.3)

The values of τS shown in Fig. 50 and 51 are relatively small compared to the

peak torque requirements determined in Section II. However, it should be noted that we

overestimated the weight of the swivel car for comparison with some experiments
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conducted in literature. Hence, if we assume the car weighs almost 10 kg, and the length

of the wheel shaft, h, is around 5 cm, an assisting torque starting at 2.5 Nm can be

helpful when climbing a step.

2. Kinematic Analysis of the Step Climbing Process

When climbing a step using this method, care should be taken to prevent the

steering wheel CS from touching the step as it can prevent the mobile platform from

overcoming the step. When φ is negative, this issue becomes problematic since the

steering wheel moves away from the rear wheel axis and towards the step when the

swivel joint is actuated. This was previously demonstrated in Section II when analyzing

the path of the point of contact, p.

This problem can be prevented by controlling the approach angle, αAP (shown

in Fig. 52), and preventing it from dropping below a certain value. The minimum value

is determined by calculating the angle formed by the face of the step, PL1, and the

surface, PL2, perpendicular to the XZ plane, and containing the two point, CF and Pl .

Where CF is the furthest point from the reference frame, O0, on the steering wheel

measured along the x0 direction. And Pl , is the lowest point lying on the circumference

of the lifted wheel. Fig. 53 depicts the planes and points mentioned above and their

respective position with respect to the swivel car.

2	l	cos 	φ

step
αS

Figure 52: Approach angle αAP
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C F
PL1

PL2

Figure 53: Skeletal representation of the swivel car showing the intersection of the step’s
surface with the plane formed by the two points, CF and Pl .

The position of Pl ,XPL and ZPL, in the XZ plane can be written as,

XPL =
1
4

(
4l cos(θ1−

φ

2
)+2hcos(θ1−θ2−

φ

2
)−2hcos(θ1 +θ2−

φ

2
)

+4l cos(θ1 +
φ

2
)+2r cos(θ1−θ3−)+ r cos(θ1−θ2−θ3)

+ r cos(θ1 +θ2−θ3)+2r cos(θ1 +θ3−φ)

− r cos(θ1−θ2 +θ3−φ)− r cos(θ1 +θ2 +θ3−φ)

)
, (92)

and,

ZPL =hcosθ2 + r(−cos
φ

2
sinθ2 sinθ3 + cosθ3 sinθ2 sin

φ

2
) (93)

Substituting the solution derived in (16) into (92) and (93) yields the position of PL in the

XZ plane for different values of θ2. Fig. 54 depicts the path followed by PL in the XZ

plane starting at θ2 = 0 till θ2 =
π

2 . The red dot in this figure is the initial position of PL

when θ2 = 0.

The position of CF in the XZ is determined in a similar fashion to that of PL.
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Figure 54: Change in position of PL in the XZ plane when θ2 varies from 0 to π

2

Starting from the O3 reference frame shown in Fig. 16, we perform the following

transformation:

1. Rotation about the z3 axis by an angle of φ

2 .

2. Rotation about the z3 axis by an arbitrary angle θ3.

3. Translate about the new x-axis by a distance r.

By performing the transformations above, we obtain the coordinates of an arbitrary

point, PR2 about the circumference of the steering wheel, D. The position of this point in

the XZ plane can be written as,

XP2 =
1
4
(
4l cos(θ1−

φ

2
)−2hcos(θ1−θ2−

φ

2
)+2hcos(θ1 +θ2−

φ

2
)+4l cos(θ1 +

φ

2
)

+2r cos(θ1)+ r cos(θ1−θ2)+ r cos(θ1 +θ2)+2r cos(θ1−φ)

− r cos(θ1−θ2−φ)− r cos(θ1 +θ2−φ)
)
, (94)

and,

ZP2 =−hcosθ2− r sinθ2 sin(θ3−
φ

2
). (95)
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To determine the position of point CF , we derive (95) with respect to θ3 and

equate the resulting equation to zero,

∂XP2

θ3
= 0. (96)

Solving (96) we get,

θ3sol2 =−arccos
(

sin
φ

2
)

(97)

Substituting (97) into (94) and (95) yields the position of CF in original

coordinate frame, O0. Fig. 55 displays the change in position of CF in the XZ plane for

different values of θ2.

Start Point

3.9 4.0 4.1 4.2 4.3
X0

-1.0

-0.8

-0.6

-0.4

-0.2

Z0

Figure 55: Change in position of CF in the XZ plane when θ2 varies from 0 to π

2

The change in position of both Pl and CF with respect to the initial ordinate

frame, O0, is illustrated in Fig. 56. These two points form an angle, αS, with the

projection of PL1 on the XZ plane.

The angle, αS, formed by the face of the step and projection of the line PlCF on

the XZ, can be calculate by using the definition of the dot product. We begin by
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Figure 56: Change in position of Pl and CF in the XZ plane with respect to the origin O0.

calculating the unit vector,veclPL along the line PlCF .

lPL =


XPL−XCF√

(XPL−XCF )
2+(ZPL−ZCF )

2

ZPL−ZCF√
(XPL−XCF )

2+(ZPL−ZCF )
2

 (98)

The projection of PL1 on the XZ plane is a line parallel to the z0 axis,

consequently the unit vector along this line,lPL1 can be written as,

lPL1 =

0

1

 . (99)

Using the definition of the dot product and substituting (98) and (99) into this

definition, we calculate the value of the approach angle, αS,

αS = arccos
lPL1.lPL

‖ lPL ‖ . ‖ lPL1 ‖
. (100)
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Equation (100) is solved for the dimensions shown in Table 2, with θ2 being varying

from 0 to π

2 . Plots depicting the needed approach angle ,αS, vs. the swivel angle and the

height of the step are shown in Fig. 57 and 57. Fig. 57 depicts the minimum approach

angle needed to climb a step while preventing the steering wheel from making contact

with the face of the step, PL1. Moreover, Fig. 58 displays the minimum required

approach angle to prevent interference from the steering wheel given the height of the

step.

0.5 1.0 1.5
Θ2HradL

20

40

60

80

ΑSHdegL

Figure 57: Minimum value required for the approach angle to overcome a step without
interference from the steering wheel.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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40
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80

ΑSHdegL

Figure 58: Minimum value required for the approach angle to overcome a step of certain
height, without interference from the steering wheel.

When φ is negative, the swivel car can use the driving torque to overcome steps

in a semi active manner. However to do so, the swivel car must approach a step at a

specified angle to prevent the steering wheel from touching the face of the step.
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CHAPTER IV

COMPARISON TO OTHER MOBILE PLATFORMS

In this section, we compare the step climbing capabilities of the swivel car to

other mobile robots of similar dimensions. First we begin by comparing the climbing

capabilities of our proposed design to a car-like robot. Afterwards, we compare the

swivel to other mobile robots designed to climb steps and obstacles.

A. Normal Vehicles

We now analyze the step climbing dynamics of a car-like robot using the

Euler-Lagrange formulation. This is done to determine the peak torque requirement and

the expended energy to lift the base of its front wheel above the step. A normal vehicle,

such as a car, is unable to climb steps higher than half its wheel diameter [2]. However,

with an actuator large enough some mobile vehicles can climb steps slightly smaller than

half the wheel diameter. This procedure can be modeled as a slider-crank mechanism

with an offset slider [2, 24] as seen in Fig. 59, however instead of applying torque at the

base of the crank, the torque is applied at the crank pinion [2, 25]. To further simplify the

system, we assume the entire mass of the car,mb is located at the center of gravity, Ccar.

The system is modeled using the Euler-Lagrange formulations with generalized

coordinate vector q = (x y θw αb ). The kinetic energy and potential energy of the system

are

T = 0.5mb(v2
x + v2

y)+0.5Icmα̇
2
b , (101)

and

V = mbg(Rw sinθw− cx sinαb + cy cosαb). (102)
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Figure 59: The crank-slider mechanism used to model the climbing process of a car-like
robot

The two velocities of the center of mass,Ccar, vx and vy can be written as

vx = (−cy cosαb + cx sinαb)α̇b−Rw sinθwθ̇w, (103)

and

vy =−cx cosαbα̇−cy sinαbα̇b +Rw cosθwθ̇w. (104)

Substituting (103) and (104) into (101) and (102) we get

T =
Icmα̇2

b
2

+
mb

2

(
(−cx cosαbα̇b− cy sinαbα̇b +Rw cosθwθ̇w)

2

+(−cy cosαbα̇b + cx sinαbα̇b−Rw sinθwθ̇w)
2
)

(105)

and

V = gmb(cy cosαb− cx sinαb +Rw sinθw), (106)

where mb is the mass of the car and Icm is the inertia of the center of mass about the rear

wheel. The Lagrangian is

L = T −V. (107)
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Table 4: Simulation parameters for car-like robot

Parameter Value Label
mb 21 Kg Car Mass
Icm 1.96 Kg.m2 Inertia of Ccar about rear wheel axis
cx 0.215 m Position of Ccar in x-direction
cy 0.25 m Position of Ccar in y-direction
b 0.43 m Length of the car body

Rw 0.075 m Wheel Radius
hstep 16 mm Height of the step
Kp 7.6 Proportional Gain

Like any crank-slider, any change in the angle αb is followed by a change in the crank

angle, θw. This constraint can be written as,

αb = arcsin
(Rw sinθw−Rw +hstep)

b
. (108)

By substituting the value of vx, vy, and α , it is possible to write the Lagrangian in terms

of one variable, θw, and its derivatives, θ̇w and θ̈w. The resulting Euler-Lagrange

equation is
d
dt

(
∂L
∂ q̇

)
− ∂L

∂q
= Kp(θg−θw), (109)

where Kp is a proportional gain, θg is the goal angle (usually π

2 , and θ is the current

angle. The term Kp(θg−θw) is used to control the position of the angle θw by

controlling the torque, τw, applied about point B. The system is solved in Mathematica

using the parameters of Table 4. The energy expended is

E =
∫ t

0
θ̇wτwdt, (110)

where τw is the torque at the crank pin, and θ̇w is the angular velocity of the crank. To

verify the results achieved in Mathematica, another simulation was conducted in Dymola

using the multibody library. Both simulations gave the same result. Referring to Fig. 60

and 61, the peak torque required to climb a step 12mm high is 6.5 Nm, and the energy

expended during the climbing process is 3.2 J. Compared to the dynamic simulations
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Figure 60: Torque variation with time of the step climbing process

Figure 61: Energy consumption of the step climbing process vs. time

conducted in Section II, the swivel car requires a higher peak torque to climb a step of

similar height. Furthermore, both mobile vehicles expend the similar amounts of energy

while climbing a step. On the other hand, the swivel car posses superior step climbing

capabilities as it can climb steps larger than the diameter of its wheels. Moreover, the

swivel car posses better steering capabilities than a regular car-like robot. Whereas a

car-like robot is unable to achieve a steering angle of π

2 mainly due to the use of

Ackerman steering, the swivel car is capable of rotating about its own axis.

B. Other Mobile Robots with Climbing Capabilities

In the final part of this section, we compare the step climbing capabilities of the

swivel car with some of the other mobile platforms mentioned in the introduction. For

simplicity, comparison is based on the maximum scalable step given the size of the
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wheels for each platform. Unlike the car-like robot which cannot climb steps higher than

half its wheel diameter, the swivel car is shown to climb steps almost as high as its

wheels. Consequently, when compared to a car-like robot of the same dimensions, the

swivel car possesses superior step climbing capabilities, but requires a larger actuator to

climb steps. However, when compared to Genbu and SHRIMP, a swivel car of similar

dimensions can climb steps 20 percent larger than its wheel diameter versus 10 percent

for Genbu and 200 percent for SHRIMP. Even though out proposed mobile base is better

than Genbu, it is not as good as SHRIMP which can climb larger steps and does not

require a controlled procedure to climb steps. For a swivel car with dimensions similar to

Rocky 7, the former can climb an obstacle almost twice as high as its wheel diameter,

whereas Rocky 7 can climb obstacles 50 percent greater than its wheel diameter. On

another note, the swivel car posses superior steering capabilities compared to Rocky 7,

which cannot steer about a central axis, and hence must change position in order to

change its orientation. While the mobile robot MHT posses excellent climbing

capabilities, it requires a control algorithm to retain its posture while climbing steps to

avoid tipping over. Furthermore, MHT requires the actuation of twelve joint to perform

such motion. On the other hand, the swivel car requires no posture control while

climbing a step , is relatively simple to build, and requires the actuation of two joint to

climb steps.

Even though our proposed design does not require a complicated control

process to climb steps, its needs a rather complicated climbing algorithm which takes

into account its platform dynamics and its position with respect to a step.
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CHAPTER V

CONCLUSION

In this thesis, we developed kinematic and dynamic models for the steering

mechanism of the angular swivel steering platform. We also performed several

simulations to validate the steering capability of the platform as well as its energy costs.

The performance of the proposed platform was comparable to other step climbing

platforms.

Moreover, we captured the effect of the steering action on the position and

orientation of the platform by developing a simplified planar model. This planar model

in turn allows us to propose a simple step climbing technique. Using this information,

we developed a kinematic model to study the robot’s planar motion. Due to its design,

the robots planar motion is similar to that of a regular cart-like robot (tricycle robot).

This allows us to create a simplified model to study in motion about the ground plane.

Finally, we devised a number of step climbing algorithms based on the

mechanical design of the robot. These step climbing procedure can be used as a basis to

create more complicated step climbing processes which integrate motion and navigation

control.
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