
1

2

AMERICAN UNIVERSITY OF BEIRUT

MINING FOR SIGNIFICANT EXECUTION PROFILES FOR

SOFTWARE ASSESSMENT

by

JOAN MOUNIR FARJO

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Engineering

to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

May, 2014

 ACKNOWLEDGMENTS

 Although this is considered to be the first page in the thesis, but I am just writing it

at the end. To admit, it is the page that is taking the longest time to complete, since I want

to thank every person who helped me throughout this journey.

 First and foremost, I would like to thank my advisor Dr. Wassim Masri for his

advices all throughout my thesis work and for his support and complete understanding of

what I have been passing through from stress of work and other factors that made my

journey quite cumbersome. As I would like to thank Dr. Fadi Zaraket and Dr. Hazem Hajj

for being part of my thesis committee.

 Many thanks go to Rawad who was always there when I wanted to share with him

my ideas and my assumptions to get some valuable feedbacks. Although some of the

feedbacks were shocking and I had to reevaluate my assumptions, but all turned out to be

helpful in the end.

 To Pierre, my “Ladoudzi”, whom I admit that he shared with me every single

phase of my thesis. While carpooling and being stuck in traffic for almost an hour, he had

to listen to my research updates every single morning. He shared with me my worries and

continuously asked about my results. Thank you for the times you had to wake up quite

early so I could catch a class or a meeting, thank you for your “interpolations” when I used

to wait for long simulations to end.

 To Nadida, my “Twinni”, who was always there supporting me. Thank you for the

numerous times I had to sleep over at your place after long hours of work, thank you for

never getting annoyed when I had to continuously bother you with the server thingy. And

most of all, thank you for the times when I really needed a break and you were there for a

cup of coffee or a “delicious” dinner at Little China.

 To Nayla, Rana, and Lara who were always ready for some times of relaxation and

for their random visits to cheer me up. I would rather prefer to remember the fun time we

spent during our semester breaks, rather than the times we spent at each other`s place

working on our projects and me preparing the famous “soup Maggi” that you all hate.

 Thank you to Mario for the online chat entertainment late at night while I was

working and he was watching one series after the other. Thank you for showing up on

Saturdays and Sundays and going to eat crazy fatty stuff. Thank you to Naoum who was

asking about my progress almost EVERY SINGLE day. Thank you to all my friends whom

I got to know from AUB, thank you to Veloxent for their continuous understanding, thank

you to all my colleagues, and to all my dear JM friends.

 Well friends were part of my journey, but my family is the biggest part of my

journey. They were and will always be my endless support in my life. Thank you Manoura,

Mimiza, Couci, and Janjoun for every single day you had to suffer from my swinging

moods and for your worries while I stayed working late at night. Thank you for

continuously preparing the cupS of Nescafe. But sorry for the numerous times I did not

spend with you, and will definitely make up for this as I will promise you, or I will try to

promise you, that I won`t pursue any additional degree. I know we have passed by the

v

toughest time ever and because of all five of us we are able to stand up and continue our

journey of life, which I only hope it will bring us just health and happiness.

 I want to dedicate a special thank you to Manoura and Mimiza, who always believe

in me, trust every single move I do, and are proud of me.

 Last but not Least, I cannot but thank God for almost everything. Thank you God

for this family and these friends. Thank you God for the energy you always push in me and

for the patience you always give me. Thank you for the tough moments and the joyful ones!

vi

AN ABSTRACT OF THE THESIS OF

Joan Mounir Farjo for Master of Engineering

 Major: Electrical and Computer Engineering

Title: Mining for Significant Execution Profiles for Software Assessment

The interest in applying data mining and statistical techniques to solve software

analysis problems has increased tremendously in recent years. Researchers have presented

numerous techniques that mine and analyze execution profiles to assist software testing,

fault localization, and program comprehension.

 Previous empirical studies have shown that the effectiveness of such techniques is

likely to be impacted by the type of the profiled program elements. This work further

studies the impact of the characteristics of execution profiles by focusing on their size;

noting that a typical profile comprises a large number of elements, in the order of thousands

or higher. Specifically, we devised six reduction techniques and comparatively evaluated

them by measuring the following: 1) reduction rate; 2) information loss; 3) impact on the

quality of cluster analysis, using various metrics; 4) cost of reduction; and 5) impact on two

software analysis techniques, namely, cluster-based test suite minimization and profile-

based online intrusion detection.

 Our results were promising as: a) the average reduction rate ranged from 92% to

98%; b) three techniques were lossless and three were slightly lossy; c) the quality of

cluster analysis was not deteriorated; d) the cost of reduction was not very significant; and

e) reducing execution profiles noticeably benefited the two software analysis techniques in

our experiments.

vii

CONTENTS

ACKNOWLEDGEMENTS ………………………………………………………

 v

ABSTRACT……………………………………………………………………..……...

 vii

LIST OF ILLUSTRATIONS……………………………………………………

 xi

LIST OF TABLES…………………………………………………………………..

 xiv

I. Chapter

II. I. INTRODUCTION………………………………………..…………….

 1

III. II. RELATED WORK……………………………………..…………….

 7

III. REDUCTION TECHNIQUE OVERVIEW……………..……. 9

A. Filter Model…………………………………………………………...… 10

1. Data Variance…..……………………………………………..… 10

2. Fisher Score….………………………………………………..… 11

3. Laplacian Score………………………………………………..... 11

4. RELIEF-F……………………………………………………….. 12

5. SPEC…………………………………………………………..... 13

6. Pearson Correlation……………………………………………... 15

7. Chi-Square…………………………………………………….... 15

8. Gini Index…………………………………………………….… 16

9. Symmetric Uncertainity……………………………………….... 16

B. Wrapper Model.………………………………………………………… 17

1. Sequential Forward Stepwise Selection……………………….... 17

viii

2. Sequential Backward Stepwise Selection……………………..... 18

3. Plus-l-Minus-r Method………………………………………….. 18

4. Sequential Floating Search Method………………………..…… 18

5. Branch and Bound…………………………………………….… 19

6. Genetic Algorithm……………………………………………..... 19

C. Hybrid Model.………………………………………………………...… 21

IV. PROPOSED REDUCTION TECHNIQUES…..…………..…. 22

A. Filter Model …………………………………………………………..… 22

1. SU1……………………………………………………………....

.

 23

2. SU2…………………………………………………………….... 27

B. Wrapper Model...…………………………………………………..…… 29

1. GA1……………………………………………………………...

.

 29

2. GA2……………………………………………………………...

.

 33

C. Hybrid Model…………………………………………………………… 34

V. QUALITY OF REDUCTION ASSESSMENT.……..………. 36

A. Subject Programs and Test Suites.………………………………….…… 36

B. Assessment 1: Reduction Rate.………………………………………..… 39

C. Assessment 2: Information Loss..……………………………………..… 40

D. Assessment 3: Quality of Cluster Analysis……………………………… 44

1. V-Measure………………………………………………...…….. 45

2. F-Measure……………………………………………………..... 46

3. M3-pass-fail…………………………………………………….. 47

4. M3-pass-bug…………………………………………………….. 48

E. Assessment 4: Cost..…………………………………………………….. 51

ix

VI. IMPACT ON SOFTWARE ANALYSIS……….…..….………. 53

A. Tech-I: Cluster-based Test Suite Minimization………………...…….… 53

B. Tech-II: Profile-based Online Intrusion and Failure Detection….…...… 57

VII. CONCLUSION AND FUTURE WORK…..….…..….………. 62

I. INTRODUCTION…………………………………………………………………

….

 1

REFERENCES……………………….………………………………………….. 63

Appendix

I. . APPENDIX A………...………………………………………………....... 67

II. APPENDIX B……………….………...…………………………………. 71

x

ILLUSTRATIONS

Figure

1. Overall Work Flow ... 6

2. Average Of The V-Measure Metric .. 49

3. Average Of The F-Measure Metric ... 50

4. Average Of The M3-Pass-Fail Metric .. 50

5. Average Of The M3-Pass-Bug Metric ... 51

6. V-Measure print_tokens2ALL ... 71

7. F-Measure print_tokens2ALL .. 71

8. M3-Pass-Fail print_tokens2ALL……………………………………………………………………………………………………… 72

9. M3-Pass-Bug print_tokens2ALL……………………………………………………………………………………………………… 72

10. V-Measure tot_infoALL .. 72

11. F-Measure tot_infoALL ... 72

12. M3-Pass-Fail tot_infoALL .. 73

13. M3-Pass-Bug tot_infoALL ... 73

14. V-Measure ScheduleALL .. 73

15. F-Measure SchedulealALL ... 73

16. M3-Pass-Fail ScheduleALL……………………………………. .. 74

17. M3-Pass-Bug ScheduleALL………………………………. ... 74

18. V-Measure SpaceBB .. 74

19. F-Measure SpaceBB ... 74

20. M3-Pass-Fail SpaceBB…………………………… ... 75

xi

21. M3-Pass-Bug SpaceBB ………………………………. .. 75

22. V-Measure Tomcat3.0ALL .. 75

23. F-Measure Tomcat3.0ALL ... 75

24. M3-Pass-Fail Tomcat3.0ALL... 76

25. M3-Pass-Bug Tomcat3.0ALL .. 76

26. V-Measure Tomcat3.2.1ALL ... 76

27. F-Measure Tomcat3.2.1ALL .. 76

28. M3-Pass-Fail Tomcat3.2.1ALL.. 77

29. M3-Pass-Bug Tomcat3.2.1ALL ... 77

30. V-Measure JigsawALL .. 77

31. F-Measure JigsawALL... 77

32. M3-Pass-Fail JigsawALL………………………………. .. 78

33. M3-Pass-Bug JigsawALL………………………………. .. 78

34. V-Measure JTidyALL ... 78

35. F-Measure JTidyALL ... 78

36. M3-Pass-Fail JTidyALL………………………….. ... 79

37. M3-Pass-Bug JTidyALL…………………………. .. 79

38. V-Measure flex2BB .. 79

39. F-Measure flex2BB ... 79

40. M3-Pass-Fail flex2BB………………………………. .. 80

41. M3-Pass-Bug flex2BB………………………………. .. 80

42. V-Measure sed3BB .. 80

 43. F-Measure sed3BB ... 80

44. M3-Pass-Fail sed3BB………………………… .. 81

45. M3-Pass-Bug sed3BB……………………………… .. 81

xii

46. V-Measure JTidySliceP .. 81

47. F-Measure JTidySliceP ... 81

48. M3-Pass-Fail JTidySliceP .. 82

49. M3-Pass-Bug JTidySliceP .. 82

xiii

TABLES

Table

1. Original Execution Profiles .. 2

2. Reduced Execution Profiles .. 3

3. Inferred Execution Profiles ... 3

4. Further Inferred Execution Profiles .. 4

5. Subject Programs .. 38

6. Reduction Rates .. 39

7. Scenario 1 ... 41

8. Scenario 2 ... 42

9. Scenario 3 ... 43

10. Scenario 4 ... 43

11. Information Loss Measures .. 44

12. Cost Of Reduction (In Seconds) ... 52

13. Results For Tech-I ... 55

14. Cost Of Tech-I (In Seconds) ... 56

15. Average Results For Tech-II ... 59

16. JtidySliceP Results For Tech-II .. 60

17. Data Of Print_Tokens2ALL... 67

18. Data Of Tot_InfoALL .. 67

xiv

19. Data Of ScheduleALL .. 67

20. Data Of SpaceBB .. 68

21. Data Of Tomcat3.0ALL ... 68

22. Data Of Tomcat3.2.1ALL .. 68

23. Data Of JigsawALL ... 69

24. Data Of JtidyALL .. 69

25. Data Of Flex2BB .. 69

26. Data Of Sed3BB .. 69

27. Data Of JtidySliceP .. 70

1

CHAPTER I

INTRODUCTION

In recent years, researchers in the dynamic program analysis field have extensively

used data mining and statistical techniques to address various problems. The focus was

mainly on mining and analyzing execution profiles to assist software testing, fault

localization, and program comprehension.

All throughout the chapters; execution profiles, profiling elements, and

features will be used interchangeably.

Since execution profiles are essential to the developed techniques, their

characteristics needed to be studied. Previous empirical studies have shown that the type of

the profiled program elements is likely to impact the effectiveness of the

techniques [1] [23] [34].Hereafter, program elements represent statements, branches, def-

uses, information flow pairs [30], slice pairs [30], paths [3], and possibly other program

constructs that are also of structural nature. In this work, we are concerned with the size of

execution profiles; noting that a typical profile comprises a large number of program

elements, in the order of thousands or higher. According to the curse of dimensionality, an

increase in the size of the execution profiles might diminish the effectiveness of the

techniques at hand. Execution profiles comprising a large number of program elements (or

variables) represent high-dimensional data. Given that a higher dimensionality results in a

larger volume of the data space, the data points become sparse, which has a negative effect

on data mining and statistical techniques. For example, cluster analysis aims at finding

2

groups of data points that are similar, but if all data points are sparse, the analysis is likely

to fail even in the presence of truly similar points. Therefore, reducing the size of execution

profiles is desirable as a preprocessing step to clustering or any other profile-based

technique. As a side note, structural execution profiles are expected to contain a lot of

redundancy mainly due to the transitivity relationships induced by control and data

dependences [22], which suggests that high levels of reduction might be achieved.

A well-established approach that we previously used [8] to reduce the high

dimensionality and redundancy in execution profiles is Principal Component Analysis

(PCA) [11] [42]. But PCA transforms the original data to a new coordinate system, which is

problematic for many software analyses since this might negatively impact the

interpretability of learning models and the extraction of useful intrinsic properties.

The following motivating example demonstrates how a set of execution profiles

comprising 7 features could be represented using only 2 features without any loss of

information. Recall that: a) an execution profile is induced by the execution of a given test

case; and b) a feature represents the execution of some program element such as a

statement, a branch, or a def-use pair. Table 1 shows the values of the features {f1, f2, f3, f4,

f5, f6, f7} for each of the execution profiles {t1, t2, t3, t4, t5}. For example, in the first row, t1

indicates that the features f1, f3, f4, f6, and f7 did execute, whereas f2 and f5 did not. Table 1

represents what we will refer to as execution matrix, hereafter.

Table 1. Original execution profiles

 f1 f2 f3 f4 f5 f6 f7

t1 1 0 1 1 0 1 1

t2 0 1 0 1 1 1 0

t3 0 1 0 0 1 0 0

3

t4 0 1 0 1 1 1 0

t5 1 0 1 0 1 0 1

It can be observed that f1, f3, and f7 exhibit the same pattern of occurrence in all

five profiles; and similarly for f4 and f6. Therefore, {f1, f3, f7} could be replaced by f1, and

{f4, f6} by f4, for example. This yields reduced execution profiles comprising only 4

elements, namely, {f1, f2, f4, f5}, shown in Table 2. We refer to this type of reduction as

Basic Redundancy Removal.

Table 2. Reduced execution profiles

 f1 f2 f4 f5

t1 1 0 1 0

t2 0 1 1 1

t3 0 1 0 1

t4 0 1 1 1

t5 1 0 0 1

However, the resulting profiles still contain some redundancy. Specifically, knowing the

execution status of subset {f1, f4} in any profile, we can infer the execution status of the

remaining program elements. Table 3 summarizes this relationship. For example, the

second row indicates that every test case that exercises f4 but not f1, exercises both of f2

and f5. Following this second observation, the execution profiles in Table 2 can be reduced

down to include only two elements, f1 and f4. For completeness, Table 4 shows how {f2,

f3, f5, f6, f7} could be inferred from {f1, f4}.

Table 3. Inferred execution profiles

{f1, f4} {f2, f5}

t1 11 00

t2, t4 01 11

t3 00 11

4

t5 10 01

Table 4. Further inferred execution profiles

{f1,f4} {f2, f3, f5, f6, f7}

t1 11 01011

t2, t4 01 10110

t3 00 10100

t5 10 01101

As demonstrated in the above example, the dimensionality of execution profiles

could be reduced considerably while preserving the original coordinate system and without

any loss of information.

In this work we focus on reduction techniques that preserve the original coordinate

system to evade the limitations that PCA suffers from. In other words, we will be

concerned with feature selection techniques [41] as opposed to feature extraction

techniques [11]. Specifically, we will investigate selection techniques categorized as: 1)

filter models based on the symmetric uncertainty measure [12]; 2) wrapper models based

on the genetic algorithm [12]; and 3) hybrid models that combine filter and wrapper

models.

We evaluated our techniques using ten subject programs by measuring the

following: 1) reduction rate; 2) information loss; 3) impact on the quality of cluster

analysis, using various metrics; 4) the cost of running the reduction; and 5) impact on two

software analysis techniques, namely, cluster-based test suite minimization (Tech-

I) [5] [6] [34], and profile-based online intrusion and failure detection (Tech-II) [26].

5

Our reduction techniques exhibited: 1) very high rates of reduction with no to very

little loss of information in most cases and insignificant reduction running time cost along

with almost no deterioration of the clustering measures; 2) a major positive impact on the

effectiveness and efficiency of Tech-I, which relates to the curse of dimensionality; and 3)

a major positive impact on the efficiency of Tech-II. This shows that reduction can

potentially improve the efficiency and/or effectiveness of program analyses that use

execution profiles.

The main contributions of this work are the six techniques for reducing execution

profiles, two of which are based on the symmetric uncertainty measure, two on the genetic

algorithm, and two combine both approaches; besides an empirical study evaluating our

reduction techniques, and yet another empirical study demonstrating the value of reduction

in software analysis. The flowchart presented in Figure 1 illustrates the overall work flow.

The rest of the thesis is divided as follows: Chapter 2 surveys related work.

Chapter 3 provides reduction techniques overview. Chapter 4 describes the proposed

reduction techniques. Chapter 5 presents our empirical study that assesses the quality of

reduction. Chapter 6 presents our empirical study that demonstrates the impact of the

reduction methods on two software analysis techniques. Chapter 7 presents conclusions and

future work.

6

Collect Execution Profiles

SU1 SU2 GA1 GA2

Hybrid Model (Union and
Intersection)

Apply Reduction TechniquesApply Reduction Techniques

Assessment 1:Reduction Rate
Assessment 2:Information

Loss
Assessment 3: Quality of Cluster

Analysis
Assessment 4: Cost

Quality of Reduction AssessmentQuality of Reduction Assessment

Tech-I: Cluster-based Test
Suite Minimization

Tech-II: Profile-based Online
Intrusion and Failure

Detection

Impact on Software AnalysisImpact on Software Analysis

Filter ModelFilter Model Wrapper ModelWrapper Model

Figure 1. Overall Work Flow

7

CHAPTER II

RELATED WORK

We are not aware of any body of work that investigates the techniques for the

benefits of reducing execution profiles. However, there exist only two attempts related to

reducing execution profiles.

The first attempt for reducing execution profiles for the purpose of improving

software analysis is described in [8]. In that work, we investigated Principal Component

Analysis (PCA) as a reduction technique and measured its impact on two cluster-based

analysis techniques, one aiming at identifying coincidentally correct tests [24] [25], and the

other at test suite minimization [34]. Our experimental results showed that the impact was

positive on the first, but inconclusive on the second. PCA reduces the dimensionality of a

data set (possibly involving correlated variables) to a new set involving uncorrelated

variables. The generated uncorrelated variables are called principal components (PCs). The

obtained set has the PCs ordered by the fraction of the total information/variation each

retains. That is, the first PC captures as much of the variability present in the data set as

possible, the second PC also captures as much of the variability but under the constraint of

being uncorrelated with the previous (first) PC, and similarly for the subsequent PCs. After

applying PCA, only the first few PCs are retained and the remaining ones ignored. Note

that PCA transforms the original data to a new coordinate system. Therefore, it is not

possible to recover the non-redundant profiling elements from the retained PCs, which

renders many software analysis techniques inapplicable. For example, in coverage based

8

fault localization [1] [15] [28], identifying failure-correlated PCs will not lead to the failure-

correlated program elements, which are normally needed to locate the fault. This and the

fact that our experimental results were inconclusive called for further investigation.

The second attempt for reducing execution profiles is described in [2], in which a

lossless technique that uses a genetic algorithm was presented. Its impact was empirically

evaluated on the quality of clustering and greedy test suite minimization. The results were

very promising as the reduction rate ranged from 94% to 99% with a negligible

deterioration in the quality of clustering and greedy minimization. Following [2], a

considerable negative impact on cluster-based test suite minimization was observed, which

led us to investigate reduction techniques further.

Since very limited work was observed in the software field, we ought to refer to

the data mining literature that contains numerous articles relevant to different reduction

techniques from which our proposed methods emerged.

9

CHAPTER III

REDUCTION TECHNIQUE OVERVIEW

Dimensionality reduction techniques are categorized into two major approaches:

feature extraction and feature selection. Feature extraction techniques project high

dimensionality features onto a new space of lower dimensions; thus leading to a new set of

features. This projection can be a linear projection where the newly projected features have

a linear combination or a non-linear projection. Since this feature transformation might be

problematic for many software analyses, we restrict our investigation to feature selection

algorithms.

Feature selection algorithms [41] do not alter the original representation of the

features, but choose a subset of them according to a certain selection criterion; thus

preserving their semantics. Following the way class label information is used [47], feature

selection algorithms are categorized as:

 Supervised, where the feature relevance is determined by evaluating feature's

correlation with the class

 Unsupervised, where the search for relevant information is guided without class

labels but by exploiting different measures

 Semi-supervised, where small amount of labeled data is used as additional

information to improve the performance of unsupervised feature selection

But this categorization is not relevant to our work since we seek reduction

techniques that do not require the availability of class labels. Another categorization, which

10

is relevant to our work, is based on the adopted selection strategy. According to the latter, a

feature selection algorithm falls into one of three models: filter, wrapper, or hybrid. Next,

we present relevant background concerning these models.

A. Filter Model

Filter models examine the intrinsic properties of the data to evaluate the features

without involving any learning algorithm [13] [44].It is usually cast into a binary selection

of features; specifically, given a set of features, the goal of a filter based feature selection is

to choose a subset from that set that maximizes some criterion. Thus, the important aspects

are the choice of the selection criterion and the selection algorithm that proceeds until a

pre-specified number of features are selected or some threshold is met. It is important to

note that the filter approach does not rely on searching the space of feature subsets; instead

it selects features on the basis of statistical properties. Each feature is ranked according to a

statistical property, with the score reflecting the discriminative power of each feature.

Various measures could serve as the filter model; these include but are not limited

to the following scores: data variance [16] [44], Fisher score [7] [13], Laplacian score [16],

Relief-F score [19] [43], SPEC [46] [47], Pearson correlation [44], Chi-Square [20], Gini

index [39], and information gain [33].

1. Data Variance

Data variance finds features [16] [44] useful for representing data based on the

variance along a dimension that reflects its representative power. However, there is no

11

reason to assume that these features are useful for discriminating between data in different

classes.

2. Fisher Score

Fisher sore [7] [13] tries to find a subset of features, such that the distances

between data points in different classes are as large as possible, while the distances between

data points in the same class are as small as possible. It assigns the highest score to the

features that assign similar values to the samples from the same class and different values

to samples from different classes. The top-k ranked features are selected based on the

largest scores, where the features had been treated independently. The fisher score is

denoted as:

 ()
∑ ()

∑ ()

 (1)

where µr is the mean of the feature Fr, nj is the number of samples in the j-th class, µr, j and

σ
2

r, j are the mean and variance of Fr on class j. It is known that Fisher Score is a special

case of Laplacian Score, with a change in the similarity matrix as will be discussed in the

next point.

3. Laplacian Score

Laplacian Score evaluates the features according to their locality preserving

power, which is modeled by constructing a nearest neighbor graph where the importance of

a feature is thought of as the degree it respects the graph structure [16].A good feature is

depicted by the one where two data points are close to each other if there is an edge

12

between these two points, and thus the feature tends to have small LS. Since features are

evaluated independently, selecting k features can be achieved by greedily picking the top k

features which have the minimal LS values. For the r-th feature , is calculated as

follows:

 ̃

 ̃

 ̃

 ̃

 () ̃

 ()

 [] () []

where fri is the i-th sample of the r-th feature, S is the weight matrix of the graph, and L is

the graph Laplacian matrix. It is noted that LS outperformed data variance and Fisher score

methods.

4. RELIEF-F

RELIEF algorithm selects features that contribute to the separation of samples

from different classes, by estimating features according to how well their values distinguish

among instances that are near each other [19] [43]. For that purpose, RELIEF randomly

samples m instances from the training set and updates the relevance estimation of each

feature based on the difference between the selected instance, the nearest instance of the

same class (nearest hit), and the nearest instance of the opposite class (nearest miss);

estimating the weight of the attribute as follows:

 [] []
 ()

 ()

 (4)

13

where diff (A, R, H/M) is the diff (Attribute, Instance R, nearest hit H/nearest miss M) that

is the difference between the values of an attribute for two instances, and m is number of

instances used for normalization.

RELIEF was extended to search for k-nearest hits and misses and to support multiclass

through estimating the ability of features to separate each pair of classes regardless of

which two classes are closest to each other. Thus, RELIEF-F finds one near miss M(C) for

each different class and averages their contribution for updating estimates W[A]. The

average is weighted with the prior probability of each class as follows:

 [] []
 ()

 ∑

[() (())]

 () (5)

RELIEF is able to deal with data sets of dependent and independent attributes, whereas

RELEIF-F deals with noisy, incomplete, and multi-class data set.

5. SPEC

SPEC (SPECtrum) presents [46] [47] a unified framework for feature selection

based on looking at the algorithm not as with or without class labels but as an effort to

select features consistent with the target concept related to dividing instances into well

separable subsets according to the pairwise instance similarities S, where the features are

evaluated independently. SPEC employs the spectrum of the graph to measure feature

relevance and realizes spectral feature selection according to the structures of the graph

induced from S. The selection of features is done through building the pairwise instance

similarity set S to represent the relationships among instances according to the geometric

structure of the data or the class affiliation, constructing its graph representation, evaluating

14

features using the spectrum of the graph, and ranking the features in terms of feature

relevance that is based on three ranking criteria for measuring feature relevance. The k-

features are selected based on the ranking that is done in ascending order for criteria 1 and

2 (equation 6 and 7) and descending order for the third criterion (equation 8). The three

criteria are as follows:

 () ̂

 () ̂ ∑

 ()

 (6)

 ()
 ̂

 () ̂

 ̂

∑

 ()

∑

 (7)

 () ∑ (() ())

 (8)

where W is the adjacency matrix of the graph, D is the degree matrix of the graph, L = D-W

is the Laplacian matrix, and

 is the normalized Laplacian matrix. As for the

feature notations, is the feature vector of Fr , ̃ (

) is the weighted feature vector

of Fr, and ̂
 ̃

‖ ̃‖
 is the normalized weighted feature vector of Fr. (λj ξj) are the

eigenvalue and eigenvector of with (λ0 =0,

) the trivial eigenpair of the graph

having and where θj is the angle between and ξj. The

eigenvectors of are related to a Fourier basis and extend the usage of to ()

∑ ()

 where () is an increasing function that penalizes high frequency

components, and can be very helpful in a noisy learning environment.

 The three feature ranking functions derive families of supervised and unsupervised

feature selection in a unified manner, where Relief-F is a special case of the first ranking

criterion and LS is a special case of the second ranking criterion. It is noted that SPEC

achieves better accuracy than LS and ReliefF.

15

6. Pearson Correlation

Pearson Correlation is used to assess the correlation between two features

according to the coefficient [44] defined as:

∑ (
)(

)

 (9)

where and are two variables, with their means

 and their standard

deviations

 respectively, and n the data sample size. If the result is 0, then the

two features are independent.

7. Chi-Square

Chi-Square Score is used to discretize the numeric attributes and test for

independence to assess whether the class label is independent of a particular feature [20].

The score for a feature with r different values and C classes is defined as:

 ∑ ∑
()

 (10)

where is the number for samples with the i-th feature value and:

 (11)

where is the number of samples with the i-th value for a specific feature, is the

number of samples in class j, and n is the number of samples. Whenever correlation is

calculated between a feature and a class, it is known as C-correlation; whenever it is

calculated between two features it is known as F-correlation.

16

8. Gini Index

Gini Index is used for quantifying a feature's ability to distinguish between

classes [39]. Gini Index of each feature is calculated independently, and the top k features

with the smallest Gini index are selected. Given C classes, Gini Index of a feature f is:

 () ∑ [(|)]
 (12)

9. Symmetric Uncertainty

Information Gain is characterized by the reduction in the uncertainty of random

variable X due to the knowledge of random variable Y. In other words, it is the measure of

the amount of information that Y contains about X, or a measure of information flow from X

to Y [33]. It is the amount by which the entropy of X decreases reflects additional

information about X provided by Y. The information gain of two random variables X and Y

is defined as:

 (|) () () (|) ∑ ∑ ()
 ()

 () ()
 (13)

Here () is the entropy of X, the measure of the uncertainty of X, and (|) is the

entropy of X knowing Y.

 () ∑ () (()) (14)

 (|) ∑ ()∑ (|) ((|)) (15)

It should be noted that (|) () () () (|); thus, Y says about

X as much as X says about Y.

But information gain is biased towards features with more values. Hence the symmetric

uncertainty is used instead [37] and defined as:

17

 () [
 (|)

 () ()
] (16)

where IG(X|Y) is the information gain of X knowing Y and H(X) and H(Y) are the respective

entropies of X and Y.

B. Wrapper Model

A wrapper model [41] “wraps” the feature selection process around a learning

algorithm. Instead of ranking features independently, it uses the feedback from a learning

algorithm to determine which features to keep. A feature selection algorithm is categorized

as a wrapper model if it is directly related to the performance of a learning model, usually

in terms of its predictive accuracy. Moreover, wrapper models aim at selecting subsets of

variables that together have a good predictive power, as opposed to ranking variables

according to individual predictive power. Common examples for feature subset search

include Sequential Forward Stepwise selection (SFS) [18], Sequential Backward Stepwise

selection (SBS) [18], Plus-l-Minus-r method (LRS) [45], Sequential Floating Search

Method (SFSM) [38], Branch and Bound method [35], and Genetic Algorithm (GA) [4].

1. Sequential Forward Stepwise Selection (SFS)

SFS [18] starts with no features and add them one by one, at each step adding the

one that decreases the error the most or that maximizes an objective function in

combination with the previous feature set, until any further addition does not significantly

decrease the error or maximizes the objective function.

18

2. Sequential Backward Stepwise Selection (SBS)

SBS [18] tries to exclude one redundant feature at a time from the current feature

set. It starts with all the features and removes them one by one, at each step removing the

one that decreases the error the most or that induces the smallest decrease of the objective

function.

3. Plus-l-Minus-r Method (LRS)

Plus-l-Minus-r [45] is a generalization of SFS and SBS that avoids nesting of

feature sets by involving successive augmentation and depletion processes. If L>R, LRS

starts from the empty set and repeatedly adds ‘L’ features and removes ‘R’ features. If

L<R, LRS starts from the full set and repeatedly removes ‘R’ features followed by ‘L’

feature additions.

4. Sequential Floating Search Method (SFSM)

SFSM [38] is the evolution of SBS and SFS and the extension to the LRS

algorithm where flexible values for L and R are determined automatically from the data and

updated dynamically at each step. Having the values of L and R "floating" in order to

approximate the optimal solution as much as possible, the nesting effect that SBS and LRS

suffer from is avoided. The nesting effect states that some features with bad performance

could perform well while combining with other features. Two versions of SFSM exist: The

SFFS (sequential forward floating selection) applies SFS starting from the current feature

set, followed by a series of successive conditional exclusion of the worst feature in the

19

newly updated set provided a further improvement can be made to the previous sets. The

SBFS (sequential backward floating selection) applies SBS starting from the current feature

set, followed by a series of successive conditional inclusions of the most significant feature

from the available features if an improvement can be made to the previous sets. Overall, the

floating methods perform better than their non-floating counterparts, giving near-optimal

results with reasonable execution times.

5. Branch and Bound

The branch and bound algorithm [35] is considered to be an optimal feature

selection method that is known for its computational efficiency. It avoids exhaustively

exploring the entire search space by rejecting many subsets that are guaranteed to be

suboptimal without direct evaluation through the criterion function that satisfies the

monotonicity condition. The monotonicity condition states that whenever the criterion

evaluated for any node is less than a bound, all successors of that node also have criterion

values less than the bound and cannot be the optimum solution. Branch and bound starts

from the full set and removes features using a depth-first strategy when fining the nodes

whose objective function are lower than the current best.

 (|) () (|) (|) () (17)

6. Genetic Algorithm

Genetic algorithm is a stochastic local search algorithm inspired by the Darwinian

evolution theory, which is well known to address complex problems in Search-Based

20

Software Engineering [26] [36]. GA solves a given problem by operating on an initial

population of candidate solutions or chromosomes, evaluating their quality using a fitness

function, applying a form of transformation (selection, crossover, mutation, replacement) to

form new generations and improve the quality of these solutions, and ultimately evolving to

a single solution or set of solutions that fit certain criteria.

The initial population can be chosen randomly or it can be specific to the problem in hand.

 The fitness function is problem dependent, and proper care needs to be taken for

developing adequate fitness functions.

 The selection process is usually based on the roulette wheel procedure to select the

fit parent for the next generation since selecting the more fit parents for generation

will insure that the next generation will have a higher average fitness and thus

serving as a better candidate.

 The crossover procedure is applied to create the offspring. The well-known

crossover technique is the single-point crossover where the two parent

chromosomes are broken at a random position to create the two offspring by

exchanging the broken portions. For example the first child chromosome is the

concatenation of the first part of the first parent with the second part of the second

parent. The aim is to create a new chromosome that carries a mixture of the parents’

characteristics which might lead to better solutions, besides seeking to increase

diversity among population by mixing information from parent individuals.

21

 Mutation is applied on the new chromosome by deforming it through flipping each

of its bits with a certain probability, seeking to maintain genetic diversity and

avoiding being stuck in a local optimum where most of the solutions are similar.

 For the replacement stage, the steady-state replacement approach can be adopted

where the population of solution is modified by replacing the previous solution with

the newly created one where each offspring resulting from a crossover operation

replaces a less fit individual of the population.

 The stopping criteria can be determined by the number of generations, iterations

executed, or when a fitness criterion is met.

C. Hybrid Model

 A hybrid model is meant to combine a filter model and a wrapper model. In other

words, it combines the strength of filters and wrappers while avoiding their drawbacks.

Based on previous work, it typically involves applying a filter model on the original

dataset, then the result is further processed using a wrapper model [4] [17]. The filter model

is usually applied first to define a small space of potentially informative features. The

wrapper model comes next to refine the selection process by optimizing the accuracy.

In [4], a filter approach was used to define multiple feature spaces, where each feature

space was explored through a GA that acted as a wrapper selector. Then, the information

from the different spaces was fused to identify the most relevant features.

In [17] for example, two filter models were used to screen out redundant features, and the

resulted feature subsets were combined for the wrapper method to do final fine tuning.

22

CHAPTER IV

PROPOSED REDUCTION TECHNIQUES

In our work we proposed a filter and a wrapper technique to assess which is able to

perform a safe reduction of execution profiles. Furthermore, a hybrid model was created,

which is the combination of the filter and wrapper model to study its effect. Concerning the

filter model, the symmetric uncertainty measure was adopted for the proposed reduction

technique. As for the wrapper model, the genetic algorithm was used. The following

subsections explain in detail the proposed reduction techniques.

A. Filter Model

In our proposed filter-based reduction technique, we opted to investigate the

information-theoretical approach since it is widely used in the data mining literature. We

decided to use the SU measure since it avoids the bias that information gain incurs.

Furthermore, this measure is symmetric in nature, where SU(X, Y) is same as that of SU(Y,

X), which halves the number of needed computations during analysis. In addition, this

measure gives normalized values in the range [0, 1], ensuring they are comparable, with the

value 1 indicating that knowledge of the value of either X or Y completely predicts the

value of the other and the value 0 indicating that X and Y are independent. For these

reasons, we decided to use the symmetric uncertainty measure. We actually explored two

variants of the SU algorithm, seeking to choose the version that would give the best

assessment, as described next.

23

1. SU1

In the SU1 approach, the symmetric uncertainty measure is used to assess the

relevance of the feature to the class labels along with assessing the redundancy between

features. For the purpose of software analysis, it is not always the case that the class labels

are available; actually, in software testing for example, the goal is to determine these class

labels (i.e., to classify test cases as passing or failing). SU1 overcomes the lack of class

labels by approximating them as follows:

Step1: Using the initial execution matrix of the profiling elements, k-means

clustering is performed while varying k (number of clusters) from 3 to 10. This range is

chosen due to the following assumptions about the subject programs in our study: they

contain multiple faults but not overly a large number of faults since they are small in size

and are stable releases.

Step2: In order to assess the quality of the obtained clusters, we use the Davies-

Bouldin index (DBIndex) as a measure [14], which does not depend on the class label

information, but is based on a ratio of intra-cluster and inter-cluster distances, where a

lower DBIndex implies a better clustering.

 DBIndex:

It is an internal cluster evaluation measure, based on the data that was clustered itself; the

validation of the clustering is based on the quantities and features inherent to the

dataset [14]. DBindex is based on a ratio of within-cluster and between-cluster distances.

∑ (

 ()
)

 (18)

24

where k is number of clusters, ci and cj the centroids of clusters i and j respectively, σi is the

average distance of all elements in cluster i to centroid ci, σj is the average distance of all

elements in cluster j to centroid cj , and d(ci , ci) is the distance between centroids.

From the definition, we can recognize that a lower DBIndex implies a better clustering. A

main drawback of this method is that a good, low value does not imply the best information

retrieval, and hence we will not use this index for evaluating our reduction techniques.

However, this index serves as a good measure of the number of clusters the data could be

ideally classified into, and hence we will use it to get the Class Labels Vector (CLV).

Step3: The number of clusters kbest that exhibits the best (lowest) DBIndex is

identified, i.e., kbest yields the best quality clusters in terms of low intra-cluster distances

and high inter-cluster distances. The kbest clusters are then used to form the kbest class labels,

which is an attempt to associate each test case with its true class label, e.g., passing, failing

due to fault-1, failing due to fault-2, etc.

The resulting class labels are used by SU1 to reduce the execution profiles

according to the pseudo-code below. Hereafter, a Class Labels Vector (CLV) captures the

class labels information. Given k classes and an execution matrix with N execution profiles

(N test cases), a CLV contains a sequence of N integers in the range [1, k] each referring to

a class label.

Input: Execution Matrix M, CLV C, Threshold T

Output: Reduced Matrix M’

1. //SU between feature and class

2. For each feature Fi M

3. Calculate the symmetric uncertainty SU(Fi; C)

4. between the respective feature Fi and the CLV C.

25

5. If SU(Fi; C) != 0

6. Add Fi to M’

7. end

8. end

9. //SU between feature and feature

10. For each feature Fi M’

11. For each feature Fj M’ where j > i

12. If Fi is not removed from M’ && Fj is not removed from M’

13. Calculate the symmetric uncertainty SU(Fi; Fj)

14. between the feature Fi and Fj.

15. If SU(Fi; Fj) >= T

16. If SU(Fi,C) > SU(Fj,C)

17. Remove Fj from M’

18. else

19. Remove Fi from M’

20. end

21. end

22. end

23. end// loop at line 11

24. end// loop at line 10

25. return M’

Lines 2-8: For every feature in the input matrix M, the symmetric uncertainty is calculated

between the feature and C to measure its relevance. A feature that yields a value of zero is

considered completely irrelevant.

Lines 5-7: Features that are irrelevant to C are ignored, and the rest are added to the

reduced matrix M’.

Lines 10-25: Symmetric uncertainty between features is calculated to measure their degree

of redundancy. (Note that two features that yield a value of 1 are considered completely

redundant).

Lines 10-11: This line restricts the calculation of the symmetric uncertainty between

features to those in the reduced matrix M’. Only features with j > i are considered due to the

symmetric nature of the SU, thus incurring less computational cost.

26

Line 12: A check is made to ensure that the two features to be compared for redundancy are

still present in M’, due to the possibility of anyone getting removed at a later stage in the

algorithm.

Line 15: The computed symmetric uncertainty between features is compared relative to a

predefined threshold T. If the value is greater than T, the two features are considered

redundant to some extent where one feature can represent the other.

Line 16: To decide which feature to keep and which to ignore, the feature with more

relevance to C is kept.

Lines 17-19: Hence the feature with a greater SU with C is kept and the other is removed

from M’. The action of removing a feature from M’ explains why the check in Line 12 is

needed.

Line 25: The reduced matrix M’ is returned.

Given test suite T and set of features E, the cost of SU(Fi; Fj) is O(T
2
) since the cost of

IG(X|Y) is O(T
2
) and that of H(X) is O(T). In the worst case, all features are considered and

none has been removed, yielding a runtime cost for SU1 of O(|T|
2
.|E|

2
).

Finally, in the experiments presented in the next two chapters, the value of the threshold T

was varied and it was observed that compared to 0.8, 0.9, 0.95 and 0.97, a T = 0.95

performed best.

27

2. SU2

Having concerns that the approximated classification adopted in SU1 might not be

accurate; in SU2, we omitted the use of class labels altogether. This approach cannot check

for irrelevant features due to the absence of class labels, but will assess the pair-wise

redundancy of a given feature with all the other features, and will also assess how

redundant this feature is to the set of features as a whole. The pseudo-code below shows

how SU2 reduces execution profiles.

Input: Execution Matrix M, Threshold T

Output: Reduced Matrix M

1. //SU between feature and feature

2. For each feature Fi M

3. sum=0, count=0;

4. For each feature Fj M where j != i

5. If Fi is not removed && Fj is not removed from M

6. Calculate the symmetric uncertainty SU(Fi;Fj)

7. between the feature Fi and Fj.

8. If SU(Fi;Fj) == 1

9. Remove Fi from M;

10. break;

11. else

12. count++;

13. sum += SU(Fi;Fj);

14. end

15. end

16. end // loop at line 4

17.

18. If Fi is not removed from M

19. average = sum/count;

20. If average > T

21. remove Fi from M

22. end

23. end

24.end// loop at line 2

25.return M

Line 2: Every feature in the input matrix M is considered.

28

Line 4: Given Fi, every other feature Fj is considered where j != i. Note that in SU1 only

features with j > i are considered, this dissimilar decision is necessitated by Lines 11-14.

Line 5-10: For a given feature Fi, the symmetric uncertainty is calculated with every other

feature. Fi is removed from M if the score = 1, i.e., the feature is completely redundant. A

score of 1 occurs when a feature Fi is the exact copy of feature Fj or is the exact opposite of

feature Fj, e.g., <0, 1, 1> is the opposite of <1, 0, 0>.

Line 11-14: In case of no complete redundancy, sum and count are updated. The

summation of all symmetric uncertainties between Fi and every other feature still present in

M is stored in sum. The number of features currently accounted for is stored in count.

Line 18-23: If Fi is still in M, the average symmetric uncertainty for Fi with all other

features is computed and compared to a threshold T. If the average is greater than T, then Fi

is removed from M as it is considered to be redundant to the entire feature set.

Line 25: The reduced matrix is returned.

It should be noted that the T used in SU1 represents the threshold for the symmetric

uncertainty between two features; whereas in SU2 it represents the threshold for the average

symmetric uncertainty for a given feature with all other features.

Here also, in the experiments, the value of T was varied and it was observed that compared

to 0.1, 0.2, and 0.3, a T = 0.1 performed best. Finally, similar to SU1, SU2 has a runtime cost

of O(|T|
2
.|E|

2
).

29

B. Wrapper Model

In our proposed wrapper-based reduction technique, we opted to adopt the genetic

algorithm for two reasons: a) it is widely used in the data mining literature; and b) it allows

for a methodical way to control the selection process via the use of a fitness function. In our

work, the fitness function will measure the prediction performance of our genetic learning

algorithm, while aiming for a fitness of 1. Next we present the GA based reduction

technique described in [2], then present an enhanced version of it that uses a different

fitness function that leverages program heuristics.

1. GA1

Assuming the set of program elements being considered is E, the problem of

determining the most representative subset in terms of execution status translates to the task

of finding a subset S that results in (̅) = 0, where ̅ and (̅) is the

entropy of ̅ given S, i.e., if the execution state of S is known then the execution state of its

complement ̅ will be known. This is equivalent to finding a subset S such that |DV(S)| =

|DV(E)|, where DV(S) is the set of distinct values assumed by S, and DV(E) the set of

distinct values assumed by E.

 Of course, E is one such subset but we are interested in those whose size is

minimal. Given the size of the search space at hand (| |), we opt to use a heuristic

approach to search for potential representative subsets. Specifically, we use a genetic

algorithm where each candidate solution is represented by a vector of bits (chromosome)

whose size is equal to the total number of elements. A value of 1 means that the

30

corresponding element is included in the solution and a value of 0 indicates otherwise. The

fitness of a particular solution/subset S is quantified as ()
| ()|

| ()|
. The

pseudocode below describes our technique which takes an execution matrix M associated

with a set of program elements E as input and determines a (likely small) subset of E with

fitness equal to 1. As a pre-processing step, we perform basic redundancy removal to arrive

at a reduced matrix M’ and element set E’, which is useful to reduce the search space. The

genetic algorithm first creates an initial population by randomly generating small subsets of

E’. After that, it repeatedly applies crossover and mutation to produce new solutions. Every

time a superior solution emerges, it replaces a less fit one in the population. This iterative

process is terminated in two cases: 1) a solution having a fitness of 1 is encountered or 2)

the maximum number of iterations is exhausted. In case the GA terminates without arriving

at a fitness of 1, we augment the best encountered solution by adding one element at a time

in a greedy fashion so as to reach the maximum fitness. One might argue that such step

could be done starting from an empty solution or a totally random one. However, such

approach has two disadvantages. First, it’s very costly if the starting solution has low

fitness. Second, as the size factor isn’t enforced, this approach wouldn’t likely yield small

solutions. Next we detail the steps of our algorithm.

Input: Execution Matrix M, Profiling Elements E

Parameters: MAX_ITERATIONS //num of GA iterations

 POP_SIZE //population size

 MUT_PROB //probability of mutation

Output: A chromosome representing a subset of E with fitness equal to 1

1. (M’, E’) ← BasicRedundancyRemoval(M, E)

2. nbIterations ← 0

3. result ← null

4. population ← genRandomSubsets(E’,POP_SIZE)

31

5. while [nbIterations < MAX_ITERATIONS] AND

 [fit(result) < 1.0]

6. (p1, p2) ← rouletteWheelSelection(population)

7. child ← crossover(p1, p2)

8. child ← mutation(child, MUT_PROB)

9. replace(population, p1, p2, child)

10. best ← getSolutionWithMaxFitness(population)

11. if fit(best) > fit(result)

12. result ← best

13. end if

14. nbIterations ← nbIterations + 1

15. end while

16. while [fit(result) < 1]

17. result ← result ∪ maxGain(result, E’-result)

18. end while

19. return result

Line 1: Basic redundancy removal is applied on M and E. That is, E is partitioned into E1,

E2, …, En where each Ei contains elements of E having equivalent columns in M. E’ is

formed by choosing one element from each Ei and M’ is derived from M by removing the

columns corresponding to the elements in E-E’.

Lines 2-3: Some variables are initialized; e.g., result is used to keep track of the best

encountered solution.

Line 4: The initial population is built by generating random subsets of E’ whose sizes are

close to | ()|. Such choice is guided by the fact that the size of the smallest possible

representative subset having a fitness of 1 cannot be smaller than this threshold. This step is

an important factor to converge subsequently to a relatively small solution. The size of the

initial population, which is maintained in subsequent iterations, is equal to POP_SIZE.

32

Line 5: The algorithm loops MAX_ITERATIONS times unless a solution with fitness 1.0

is encountered.

Line 6: Within each iteration, the algorithm selects two parent chromosomes using the

roulette wheel methodology, which randomly selects one chromosome at a time based on

its relative fitness with respect to the population. i.e., solutions with higher fitness values

are more likely to be selected.

Line 7: The selected parent chromosomes undergo single-point crossover to create a child

chromosome as follows. First, each of them is split at the same random position. Then, a

new (child) chromosome is created by concatenating the first part of the first parent with

the second part of the second parent.

Line 8: The child chromosome undergoes mutation, where each bit is randomly flipped

with a probability equal to MUT_PROB.

Line 9: The child chromosome replaces the less fit parent if the fitness of the former is

higher than that of the latter.

Lines 10-12: The result is constantly updated by comparing it to the best solution obtained

in every subsequent generation.

Lines 16-18: If the solution returned by the GA (say SGA) doesn’t have a fitness of 1.0.,

we augment it by adding one element at a time from E’-SGA until the fitness becomes 1.0.

Each time we add the element that results in the maximum increase in fitness.

As for the parameters of the GA, we used a value of 1000 for MAX_ITERATIONS, 0.05

for MUT_PROB, and 100 for POP_SIZE. Finally, the runtime cost of GA1 is O(|T|.|E|
2
)

where T is the test suite, and E is the set of features. In the worst case, the columns in the

33

original execution matrix would be pair-wise distinct and the augmentation step (lines 16-

18) would include all elements.

2. GA2

GA2 differs from GA1 by having each candidate solution being assessed based on a

specific program heuristic at different stages of the algorithm. We will first present this

heuristic and then explain how it is incorporated into our algorithm. The heuristic

conjectures that a program element that is not covered by many tests should be considered

more relevant to failure and assigned a higher score, since in typical test suites the number

of failing test cases is much smaller than the number of passing test cases [9]. Given a test

suite T and a program element pei, the score assigned to pei is Score(pei)
 ()

| |
,

where count(pei) is the number of tests covering pei; and if pei never occurred in any of the

test cases then Score (pei) is 0. In GA2, the relevance to failure of a potential solution

(chromosome) is computed according to the following equation:

 ()
∑ ()

 ()
 (19)

In the above, for a program element pei to be considered in the computation, it

should have a bit value of 1 in the candidate solution, and it should have occurred in at least

one test case. Note how to emphasize larger scores, we used an exponential weighing

approach (where 10 was arbitrary chosen). The weight of a solution is used in the following

cases:

 When creating the initial population, only solutions with weights higher than a

given threshold are kept.

34

 When applying crossover and mutation to produce a child solution, the weight of

the new solution is compared to a threshold to decide whether to keep it or not. The

threshold used in this and the previous case was chosen to be 0.3 based on

experimental trials.

 When comparing the fitness of two solutions S1 and S2, the weights of the solutions

are used to break the tie in case fitness(S1) and fitness(S2) were equal. The solution

with the higher weight is kept, i.e., the one that is more relevant to failure.

Note that the runtime cost of GA2 is O(|T|.|E|
2
) similar to that of GA1.

C. Hybrid Model

 As described earlier a hybrid model is meant to combine a filter model and a

wrapper model. Typically, it involves applying a filter model on the original dataset, and

then the result is further processed using a wrapper model [4][17]. In this work, we adopted

a different approach. Since the two models identify significant features following different

and potentially complementary strategies, in our approach we let each model process the

original dataset independently and then join the resulting reduced datasets by either

computing their intersection or their union. During our experiments involving SU1, SU2,

GA1, and GA2 (sections 4 and 5), we identified the better performing filter model and

wrapper model, which turned out to be SU1 and GA2. Based on that finding we devised the

following two hybrid models:

35

 HSU1∩GA2: involves running SU1 and GA2 then computing the intersection of their

respective resulting features. The aim here is to retain the features that have been

classified as indispensable by both models.

 HSU1UGA2: involves running SU1 and GA2 then computing the union of their respective

resulting features. Since each model operates following a different strategy, here we

assume that the respective strategies of SU1 and GA2 are complementary. Note that

after unionizing both sets, the completely redundant features are removed.

36

CHAPTER V

QUALITY OF REDUCTION ASSESSMENT

The assessment of the reduction techniques was performed in terms of the

reduction rate, the information loss measure, the impact on the quality of cluster analysis in

general, and the runtime cost. First, we describe our subject programs before we present the

different assessments.

A. Subject Programs and Test Suites

The subject programs that we used in our experiments are: 1) tot_info, schedule,

print_tokens2, space, flex2, and sed3 from the SIR repository [48] and 2) Tomcat 3.0,

Tomcat 3.2.1, Jigsaw 2.0.5, and JTidy that we used in previous work [26] [31] [34]. Except

for space, flex2, and sed3, which are written in C, all others are Java programs; note that

tot_info, schedule, print_tokens2 are Java programs that we converted from C in previous

work [27]. The features that we considered in this work are program elements of one of

three types, namely, BB, ALL, or SliceP. Where ALL combines BB, BBE, and DUP program

elements, which are all described below along with SliceP:

 BB (basic blocks): For every basic block B such that B is executed in at least one

test case, a BB feature equals to 1 indicates that B is executed in the current test.

 BBE (basic-block edges or branches): For every pair of basic blocks B1 and B2

such that there is a branch from B1 to B2 in at least one test case, a BBE feature

equals to 1 indicates that this branch is taken in the current test.

37

 DUP (def-use pairs): For every pair consisting of a variable definition D(x) and a

use U(x) such that D(x) dynamically reaches U(x) in at least one test case, a DUP

feature equals to 1 indicates that D(x) dynamically reaches U(x) in the current test.

 SliceP (slice pairs): For each pair of statements s1 and s2 such that s1 occurs in a

backward dynamic slice on s2 in at least one test, a SliceP profile contains a count of

how many times s1 occurs in such a slice.

Table 5 lists the subject programs along with their respective test suite sizes,

number of faults, and number of features. Note that the subscript at the end of each program

name indicates the type of feature used in that particular instance. In seven instances we

used execution profiles of type ALL, in three instances we used BB, and in only one

instance, involving JTidy, we used SliceP profiles. This choice was made based on the

following:

 ALL profiles were used in most cases since execution profiles typically comprise

program elements of type BB, BBE, and DUP.

 BB profiles were used for space, sed3, and flex2 due to the lack of availability of

profilers supporting C programs (our in house profilers only support Java

programs).

 SliceP profiles were used only once since these profiles are very costly to collect

and process, e.g., given our computing resources, we were not able to collect and

process more than 475 SliceP profiles for JTidy. Also note that SliceP profiles are

expected to be large in size due to the large number of indirect data and control

38

dependences in programs, which is clearly noticeable when comparing the numbers

of features associated with JTidyALL and JTidySliceP (22,110 vs. 1,431,487).

In order to generate the execution profiles for the Java programs, the programs

were instrumented and profiled using profilers that we developed in previous work [34].

Whereas the three C programs were profiled using GCov to collect statement profiles only

(we assume that the information contained in statement profiles and BB profiles are

equivalent for our purposes).

Table 5. Subject Programs

Programs # of Faults # of Test Cases # of Features

print_tokens2ALL 7 2349 891

tot_infoALL 6 939 1,276

ScheduleALL 3 2295 1,047

SpaceBB (C) 5 2000 3,164

Tomcat3.0ALL 4 658 26,137

Tomcat3.2.1ALL 3 497 24,438

JigsawALL 4 530 29,895

JTidyALL 3 1000 22,110

flex2BB (C) 3 531 2,914

sed3BB (C) 3 195 1,328

JTidySliceP 3 475 1,431,487

Finally, in order to measure the impact of reduction more accurately, the test suites

were modified as follows:

 Failing test cases caused by more than one bug were discarded to eliminate the

confusion of what bug triggered the failure of the test case.

 Test cases that exercised the bug but did not fail were discarded; i.e., coincidental

correctness was mitigated [25]. This was done to eliminate external factors that

might affect our results.

39

Appendix A shows the detail of the modification each subject program had undergone.

B. Assessment 1: Reduction Rates

Given that our execution profiles are structural in nature (as it is typically the

case), they are expected to contain a lot of redundancy mainly due to the transitivity

relationships induced by control and data dependences [22].Table 6 summarizes the

reduction rates (% of features removed) achieved using our techniques. Clearly, the

observed rates are very high, ranging on average from 92.66% to 98.09%. The rate of

reduction of HSU1∩GA2 is highest, and the rates for GA1 and GA2 were measurably higher than

those of SU1 and SU2. Finally, note that the average rate of reduction is 92.73% for the BB

instances, 96.08% for the ALL instances, and 99.67% for SliceP instances. One explanation

for this observation is that SliceP profiles capture program dependences more effectively

than ALL profiles, and thus are more apt for redundancy removal. The same comparison

applies to ALL vs. BB profiles.

Table 6. Reduction Rates

Program SU1 SU2 GA1 GA2 HSU1∩GA2

HSU1UGA2

print_tokens2ALL 89.56% 89.23% 94.50% 94.48% 94.79% 89.25%

tot_infoALL 92.95% 94.12% 96.76% 96.85% 97.21% 92.62%

ScheduleALL 84.24% 90.16% 93.68% 93.60% 93.94% 83.90%

SpaceBB 84.17% 83.25% 97.54% 97.58% 97.72% 84.06%

Tomcat3.0ALL 99.09% 99.22% 99.80% 99.80% 99.83% 99.06%

Tomcat3.2.1ALL 99.33% 99.49% 99.83% 99.84% 99.84% 99.33%

JigsawALL 99.26% 99.21% 99.82% 99.83% 99.85% 99.24%

JTidyALL 93.89% 95.52% 99.46% 99.47% 99.53% 93.83%

flex2BB 93.10% 92.11% 98.93% 98.99% 99.13% 92.99%

sed3BB 85.77% 86.52% 97.29% 97.12% 97.20% 85.75%

40

JTidySliceP 99.27% 99.50% 99.99% 99.99% 99.99% 99.27%

Average 92.78% 93.49% 97.96% 97.96%
98.09% 92.66%

C. Assessment 2: Information Loss

Assessing a reduction technique based on its reduction rate would be misleading if

information loss is not also taken into consideration. We investigated several existing

measures for information loss [21]. However, we opted to devise a new metric, which is

computationally costly but relatively much more accurate. Our metric, which we call

totalLoss, is derived below in term of the following entities:

 combremoved: a combination of values taken by the removed set of features within the

same profiled execution.

 combreduced: a combination of values taken by the reduced/remaining set of features

within the same profiled execution.

 numReducedComb: number of distinct combreduced in the reduced set of features.

 countDistinct(combreduced): number of distinct combremoved that combreduced represents.

 countAll(combreduced): cumulative number of occurrence of all combremoved that

combreduced represents.

 max(combreduced): number of occurrence of the most frequently occurring

combremoved that combreduced represents.

 loss(combreduced): loss associated with combreduced.

loss(combreduced) =

 ()

 ()

 ()
 (20)

41

 ∑ ()

 ()

A totalLoss of 0 implies that the reduction technique is lossless and the larger the totalLoss

the more lossy the technique is.

Next we provide scenarios to better understand the new totalLoss metric. In all scenarios

we assume that there are 32 execution profiles, the original set of features contains five

features {f1, f2, f3, f4, f5}, and the reduced set comprises f1 and f3 only.

Scenario 1 - As shown in Table 7, in this scenario: a) in all 9 test cases when {f1, f3} take on

the values {1, 0}, {f2, f4, f5} take on {1, 1, 1}; b) in all 12 test cases when {f1, f3} take on {0,

1}, {f2, f4, f5} take on {0, 1, 0}; and c) in all 11 test cases when {f1, f3} take on {1, 1}, {f2,

f4, f5} take on {0, 0, 0}.

Table 7. Scenario 1

combreduced

{f1, f3}

combremoved

{f2, f4, f5}

 c1: {1, 0} {1, 1, 1} ×(9)

 c2: {0, 1} {0, 1, 0} ×(12)

 c3: {1, 1} {0, 0, 0} ×(11)

Walking through the steps to compute the value of totalLoss:

numReducedComb = 3, countDistinct(c1) = 1, countDistinct(c2) = 1, countDistinct(c3) =

1, countAll(c1) = 9, countAll(c2) = 12, countAll(c3) = 11, max(c1) = 9, max(c2) = 12,

max(c3) = 11, loss(c1) = 1/1 * 9/9 = 1, loss(c2) = 1/1 * 12/12 = 1, loss(c3) = 1/1 * 11/11 =

1.

42

Thus leading to totalLoss = (3 - 3)/3 = 0, suggesting a lossless reduction. In reality, this

reduction is truly lossless since in all 32 cases, by knowing the values of {f1, f3}, the values

of {f2, f4, f5} will be known; in other words, every distinct combreduced maps to a single

distinct combremoved.

Scenario 2 - The first two rows of Table 8 show the same information as in Scenario1, but

the third row shows that when {f1, f3} take on the values {1, 1}, {f2, f4, f5} take on {0, 0, 0}

one time, {1, 0, 1} 5 times, {1, 1, 0} two times, and {0, 1, 1} three times.

Table 8. Scenario 2

combreduced

{f1, f3}

combremoved

{f2, f4, f5}

 c1: {1, 0} {1, 1, 1} ×(9)

 c2: {0, 1} {0, 1, 0} ×(12)

 c3: {1, 1} {0, 0, 0} ×(1) {1, 0, 1} ×(5) {1, 1, 0} ×(2) {0, 1, 1} ×(3)

The steps to compute the value of totalLoss are:

numReducedComb = 3, countDistinct(c1) = 1, countDistinct(c2) = 1, countDistinct(c3) =

4, countAll(c1) = 9, countAll(c2) = 12, countAll(c3) = 11, max(c1) = 9, max(c2) = 12,

max(c3) = 5, loss(c1) = 1/1 * 9/9 = 1, loss(c2) = 1/1 * 12/12 = 1, loss(c3) = 1/4 * 5/11 =

0.114.

This yields a totalLoss = (3 – 2.114)/3 = 0.296, suggesting a somewhat lossy reduction.

This reduction is actually lossy since when the values of {f1, f3} are known to be {1, 1}, the

values of {f2, f4, f5} cannot be perfectly predicted, since combreduced c3 maps to more than

one distinct combremoved.

43

Scenario 3 – Following similar steps as in Scenario 1 and Scenario 2. This scenario yields:

loss(c1) = 1/1 * 9/9 = 1, loss(c2) = 1/1 * 12/12 = 1, loss(c3) = 1/4 * 8/11 = 0.18, and

totalLoss = (3 – 2.18)/3 = 0.273; suggesting a slightly less lossy reduction than in Scenario

2. This reduction is in fact less lossy since when the values of {f1, f3} are known to be {1,

1}, the values of {f2, f4, f5} can be predicted little more accurately; because in this scenario,

the likelihood that {f2, f4, f5} will take on the values {1, 0, 1} is 8/11 as opposed to 5/11 in

Scenario 2.

Table 9. Scenario 3

combreduced

{f1, f3}

combremoved

{f2, f4, f5}

 c1: {1, 0} {1, 1, 1} ×(9)

 c2: {0, 1} {0, 1, 0} ×(12)

 c3: {1, 1} {0, 0, 0} ×(1) {1, 0, 1} ×(8) {1, 1, 0} ×(1) {0, 1, 1} ×(1)

Scenario 4 – Following similar steps as in the previous scenarios. This scenario yields:

loss(c1) = 1/1 * 9/9 = 1, loss(c2) = 1/1 * 12/12 = 1, loss(c3) = 1/2 * 10/11 = 0.454, and

totalLoss = (3 – 2.454)/3 = 0.181; suggesting a less lossy reduction than in Scenario 3.

Clearly, when {f1, f3} are known to be {1, 1}, predicting {f2, f4, f5} would be more accurate

than in Scenario 3; since the combreduced c3 maps to two distinct combremoved as opposed to

four.

Table 10. Scenario 4

combreduced

{f1, f3}

combremoved

{f2, f4, f5}

 c1: {1, 0} {1, 1, 1} ×(9)

 c2: {0, 1} {0, 1, 0} ×(12)

44

 c3: {1, 1} {0, 0, 0} ×(1) {1, 1, 0} ×(10)

The above scenarios demonstrate that using totalLoss as a measure for information loss

seems sensible. Table 11 shows the totalLoss values for all the techniques using all subject

programs. It can be observed that GA1, GA2 and HSU1UGA2 are lossless, and the rest are

slightly lossy. Recall that GA1 and GA2 are lossless by design, since the fitness functions

they use ensure that the selected subsets of features do represent the remaining features.

Table 11. Information Loss measures

Program SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

print_tokens2ALL 0 0 0 0 0.00378 0

tot_infoALL 0.00305 0.00920 0 0 0.04237 0

ScheduleALL 0 0.04910 0 0 0.00350 0

spaceBB 0 0 0 0 0.00513 0

Tomcat3.0ALL 0 0.00610 0 0 0.11601 0

Tomcat3.2.1ALL 0 0.00833 0 0 0.01686 0

JigsawALL 0.00220 0 0 0 0.08179 0

JTidyALL 0.00146 0.02720 0 0 0.02001 0

flex2BB 0 0 0 0 0.39411 0

sed3BB 0 0 0 0 0.00578 0

JTidySliceP 0 0.02493 0 0 0.12874 0

Average 0.00066 0.01135 0 0 0.07437 0

D. Assessment 3: Quality of Cluster Analysis

We used four metrics to assess the impact of our reduction techniques on the

quality of cluster analysis. First, we briefly describe them; then present and discuss their

computed values. Two of the metrics we used are well known, namely, V-Measure and F-

Measure; the other two, M3-pass-fail and M3-multiple, are our own.

45

1. V-Measure

V-measure [40] is a conditional entropy-based external cluster evaluation measure,

which requires the knowledge of class labels for each data point in advance. It accounts for

the homogeneity and completeness of clusters through their weighted harmonic mean.

()

()
 (22)

For a dataset of N points with a set of classes C={c1,…..,c|C|} and set of clusters

K={k1,…..k|K|}, A is a |C|x|K| contingency matrix representing the clustering solution such

that A = {ack} is the number of data elements that are members of class c and are assigned

by the algorithm to cluster k.

Homogeneity is defined by having all the clusters containing only data points

belonging to a single class. H(C|K)=0 is obtained when each cluster contains only members

of a single class; implying perfect homogeneous clustering. Note that H(C)=0 occurs when

there is only a single class and hence homogeneity is 1.

 {
 ()

 (|)

 ()

 (23)

where:

 (|) ∑ ∑

∑
| |

| |

| |
 (24)

 () ∑
∑

| |

∑
| |

| |
 (25)

As for completeness, it is defined by having all the data points that are members of a given

class to be elements of the same cluster. H(K|C)=0 implies perfect completeness. Note that

H(K)=0 occurs when there is only a single cluster and hence completeness is 1.

46

 {
 ()

 (|)

 ()

 (26)

where:

 (|) ∑ ∑

∑
| |

| |

| |
 (27)

 () ∑
∑

| |

∑
| |

| |
 (28)

Note that the V-Measure values lie in [0, 1], where higher V values imply better clustering.

2. F-Measure

F-Measure is a mapping based external cluster evaluation measure [40], based on

a post-processing step in which each cluster is mapped to a class. Different mapping

schemes can lead to different quality scores for the same clustering.

For a dataset of N points with a set of classes C={c1,…..,c|C|} and set of clusters

K={k1,…..k|K|}, A is a |C|x|K| contingency matrix representing the clustering solution such

that A = {ack} is the number of data elements that are members of class c and are assigned

by the algorithm to cluster k.

 () ∑
| |

 | | () | |

 (29)

 ()
 () ()

 () ()
 (30)

 ()

| |
 and ()

| |
 (31)

A higher value of F-Measure means a better clustering. The main drawback is that

this measure is specific for the cluster-class matching [40]. When calculating the similarity

47

between a hypothesized clustering and a “true” clustering, F-Measure only considers the

contributions from those clusters that are matched to a target class. This is a problem as two

different clustering can result in identical scores.

3. M3-pass-fail:

M3-pass-fail is our own external cluster evaluation metric developed earlier [10]

with a minor modification. It considers the composition of the generated clusters in terms

of failing and passing tests, assessing the extent of isolation of the failures. The first metric

M1 tries to answer the question “Arefailuresisolatedfrompassingtests?”

∑

 (32)

where cluster_score = |F – P|; F =

 P =

. Here f is the number of

failures in the cluster, p the number of passing tests in the cluster, cluster_size the number

of tests in the cluster, and n is the number of clusters. The best case (M1=1.0) occurs when

any given cluster contains all passing or all failing tests. The second metric answers the

question “Arefailuresclusteredtogether?”

 (33)

where NCF is the number of clusters containing failures. The best case (M2=1.0) occurs

when all failures reside in one cluster (which can also contain passing tests). The combined

metric M3 answers the question “Are failures isolated from passing tests and are clustered

together?”by computing the weighted harmonic mean of M1 and M2:

 (
()

) (34)

48

In our evaluation was set to 1, to avoid weighting M1 more than M2 or vice versa.

4. M3-pass-bug:

M3-pass-bug is a modified version of M3-pass-fail where the composition of the

generated clusters is no more considered in terms of failing and passing tests, but in terms

of multiple bugs and passing tests, aiming to assess the extent of isolation of every single

bug rather than the failures as a whole. M1 is kept the same while M2 is modified to answer

the question “Aresimilarbugsclusteredtogether?”

∑

 (35)

where TNB is the total number of bugs, k is the number of clusters, and bug_count is the

number of unique bugs encountered in every cluster. The best case (M2=1.0) occurs when

each bug resides in one cluster (which can also contain passing tests). The combined metric

M3 answers the question “Are failures isolated from passing tests and are the individual

bugsclusteredtogether?”by using the same weighted harmonic formula as M3-pass-fail

with a value of =1.

In this part of the experiments, for each reduction technique and each subject program, we

varied the number of clusters from 3 to 10 when computing the metrics. We performed our

evaluation on small number of clusters so the homogeneity measure won`t be biased and

thus the F-Measure. Moreover, ideally we seek that the clustering technique will cluster all

test cases belonging to the same bug in a single cluster, similarly for the passing test cases.

Since the number of bugs in each program does not exceed 7, so a max of 10 clusters is

49

enough. To add, the assessment takes into consideration cluster number 3 and above since

we already know that we are dealing with multi-faulted programs, hence at least 2 bugs

must exist requiring at least 3 clusters (an additional cluster for the passing runs). Appendix

B presents figures that show the four plots of the metrics for every subject program. Each

plot compares the measure under study with the 5 reduction techniques and the no-

reduction. The measure being assessed is the average measure obtained while varying the

clusters from 3 to 10. Figure 1 presents the average of the V-Measure metric across the 11

subject programs. Similarly, Figure 2 for the F-Measure, Figure 3 for the M3-pass-fail, and

Figure 4 for the M3-pass-bug.

Figure 2. Average of the V-Measure Metric

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

V-Measure

No Reduction SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

50

Figure 3. Average of the F-Measure Metric

Figure 4. Average of the M3-pass-fail Metric

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

F-measure

No Reduction SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

M3-pass-fail

No Reduction SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

51

Figure 5. Average of the M3-pass-bug Metric

From the above four figures, it is not quite decisive which reduction technique has major

positive enhancements on the cluster evaluation metrics. But it is noted that on average all

the reduction techniques did not deteriorate the measures, and had a performance quite

close to that with no reduction.

E. Assessment 4: Cost

Table 12 shows the times in seconds for each of the reduction techniques. Note

that the times shown for HSU1∩GA2 and HSU1UGA2 include the times for SU1, GA2, and the times

for performing the intersection and unionizing of sets. The exhibited times are not very

significant, except for the case of JTidySliceP which involves a very large feature set.

0.43

0.47

0.51

0.55

0.59

0.63

0.67

M3-pass-bug

No Reduction SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

52

Table 12. Cost of Reduction (in seconds)

Program SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

print_tokens2AL

L
15.04 28.95 21.35 23.87 40.33697 39.1061

tot_infoALL
9.53 14.88 8.249 9.78 17.42377 17.4930

ScheduleALL
43.01 67.48 88.78 91.56 134.8099 133.401

spaceBB
299.19 623.01 327.86 383.56 680.0053 679.811

Tomcat3.0ALL
60.52 92.43 44.54 45.93 83.11160 84.1543

Tomcat3.2.1ALL
36.49 45.66 22.22 28.03 43.58441 44.1607

JigsawALL
54.11 88.65 40.77 43.37 73.21207 73.9935

JTidyALL
1679.527 3096.50 2187.66 2191.76 3844.019 3849.31

flex2BB
31.79 65.99 9.78 9.93 36.61719 37.2851

sed3BB
17.01 29.65 4.37 4.42 19.39623 19.9552

JTidySliceP
78733.13 174878.22 16971.1 17338.1 90685.83 90812.8

53

CHAPTER VI

IMPACT ON SOFTWARE ANALYSES

This chapter assesses our reduction techniques by studying the effect on two

techniques: cluster-based test suite minimization and profile-based online intrusion and

failure detection.

A. Tech-I: Cluster-based Test Suite Minimization

Test suite minimization involves selecting a subset of tests T’ from an existing test

suite T in order to reduce the cost of the testing process. An effective minimization

technique would yield a T’ that is manageable in size and that reveals all (or most of) the

defects revealed by T. Coverage based test suite minimization techniques analyze the

execution profiles of a program in order to construct a T’ such that all the profiling

elements covered by T are also covered by T’ [34]. Distribution-based test suite

minimization [34] techniques select test cases based on how their execution profiles are

distributed in the multidimensional profile space. In this experiment, we use a distribution-

based technique comprising the following steps:

 It applies K-means clustering to partition the population into k clusters. The

Squared Euclidean distance measure is used as a dissimilarity metric, the k-initial

centroids are chosen at random from the data set.

 One test is randomly selected from each cluster similar to what is done in [5]. This

one-per-cluster sampling technique economically exercises each program behavior

54

represented by a cluster, and it also favors the selection of unusual executions,

which tend to be placed in isolated clusters.

 The k selected tests represent the tests in the minimized test suite T’. T’ is checked

for the percentage of defects it covers. If 100 percent defect coverage is not

achieved, the number of clusters is increased and the above steps are repeated.

For each program and reduction technique, Table 13 shows |T’| and the percent

decrease in |T’|relative to NoReduction, denoted as %Decrease. For example, the

minimized test suite following SU1 that covers all the bugs in print_tokens2 contains 250

test cases as opposed to 300 when no reduction is performed. In this case reduction had a

positive impact on Tech-I, quantified as a 16.6% decrease in the number of test cases.

Whereas, in the case of Jigsaw, reduction using SU1 had a negative impact on Tech-I, as

indicated by the negative value of %Decrease. We make the following observations based

on the results shown in Table 13:

 In terms of average test suite minimization improvement (%Decreaseavg), HSU1UGA2

performed best at 38%, followed by HSU1∩GA2 at 25.8%, SU1 at 25.6%, SU2 at 21.5%,

GA2 at 9.5%, and then GA1 at -2.9%.

 GA2 is clearly the worst performer as it exhibited the lowest %Decreaseavg and the

largest number of instances where %Decrease is negative.

 In the case of JigsawALL, all reduction techniques except for HSU1UGA2 had a negative

impact on test suite minimization.

55

Table 13. Results for Tech-I

Program No

Reduction

SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

print_tokens2ALL 300 250 250 360 300 250 240

16.6% 16.6% -20% 0% 16.6% 20%

tot_infoALL 920 900 700 902 870 610 700

2.2% 23.9% 1.9% 5.4% 33.7% 23.9%

scheduleALL 80 50 60 74 62 48 46

37.5% 25% 7.5% 22.5% 40% 42.5%

spaceBB 350 200 250 470 330 330 220

42.8% 28.5% -34.2% 5.7% 5.7% 37.1%

Tomcat3.0ALL 150 60 80 100 74 84 52

60% 46.6% 33.3% 50.6% 44% 65.3%

Tomcat3.2.1ALL 100 100 80 120 100 80 78

0% 20% -20% 0% 20% 22%

JigsawALL 250 300 350 310 360 290 240

-20% -40% -24% -44% -16% 4%

JTidyALL 60 40 50 60 60 48 40

33.3% 16.6% 0% 0% 20% 33.3%

flex2BB 90 50 60 90 88 70 42

44.4% 33.3% 0% 2.2% 22.2% 53.3%

sed3BB 90 50 40 78 46 34 30

44.4% 55.5% 13.3% 48.8% 62.2% 66.6%

JTidySliceP 100 80 90 90 86 64 54

20% 10% 10% 14% 36% 46%

%Decreasemax - 60% 55.5% 33.3% 50.6% 62.2% 66.6%

%Decreaseavg - 25.6% 21.5% -2.9% 9.5% 25.8% 38%

%Decreasemin - -20% -40% -34.3% -44% -16% 4%

Next we provide a discussion that might shed some light on why most of the

reduction techniques did not improve Tech-I for Jigsaw but HSU1UGA2 did. Tech-I is based on

the premise that when a given fault is exercised, it induces a set of program elements

(features) that closely characterizes it or correlates with it. Consequently, due to this set, the

corresponding execution profile will be dissimilar from the others. It is possible that for a

given fault(s) in Jigsaw, one subset of the elements of such set was retained by SU1 and its

56

complement retained by GA2, so the full set could not be found unless the features of SU1

and GA2 were unionized, as it is the case in HSU1UGA2.

Finally, the costs in seconds for Tech-I are shown in Table 10. The table also

shows the percent decrease in time relative to NoReduction, denoted as %CostDecrease.

Note how the average %CostDecrease for all six reduction techniques was above 95%. To

summarize, reduction was shown to have a considerable positive impact on both the

effectiveness and efficiency of Tech-I.

Table 14. Cost of Tech-I (in seconds)

Program No

Reduction

SU1 SU2 GA1 GA2 HSU1∩GA2 HSU1UGA2

print_tokens2ALL 580.96 55.26 48.48 34.94 27.79 24.54 50.97

90.4% 91.6% 93.9% 95.2% 95.7% 91.2%

tot_infoALL 648.94 23.20 13.87 14.30 14.50 8.34 17.19

96.4% 97.8% 97.7% 97.7% 98.7% 97.3%

scheduleALL 238.77 21.49 20.21 23.84 18.10 11.98 16.91

90.9% 91.5% 90.0% 92.4% 94.9% 92.9%

spaceBB 1505.70 176.81 211.43 53.40 38.12 36.69 215.63

88.2% 85.9% 96.4% 97.4% 97.5% 85.6%

Tomcat3.0ALL 1323.17 3.95 5.08 2.15 2.67 2.53 3.91

99.7% 99.6% 99.8% 99.7% 99.8% 99.7%

Tomcat3.2.1ALL 564.45 3.02 1.92 1.62 1.82 1.17 2.43

99.4% 99.6% 99.7% 99.6% 99.7% 99.5%

JigsawALL 2040.44 8.70 9.91 4.68 4.60 3.13 9.37

99.5% 99.5% 99.7% 99.7% 99.8% 99.5%

JTidyALL 1000.72 45.56 37.50 4.25 3.89 3.17 48.38

95.4% 96.2% 99.5% 99.6% 99.6% 95.1%

flex2BB 73.91 2.20 3.10 1.57 1.65 1.25 2.34

97.0% 95.7% 97.8% 97.7% 98.3% 96.8%

sed3BB 10.03 1.07 0.87 0.72 0.52 0.53 0.72

89.2% 91.2% 92.7% 94.7% 94.6% 92.8%

JTidySliceP 40472.58000

292.23 263.51 2.43 2.34 1.60 177.44

99.2% 99.3% 99.9% 99.9% 99.9% 99.5%

%CostDecreaseavg - 95.0% 95.3% 97.0% 97.6% 98.1% 95.4%

57

B. Tech-II: Profile-based Online Intrusion and Failure Detection

In [26], the authors proposed an intrusion/failure detection system (IDS) based on

execution profiles. The proposed approach entails generating signatures that correlate with

given attacks or failures, to be matched online during deployment. For each type of

attack/failure, the IDS generates a corresponding signature using a training set containing

both safe (or passing) and unsafe (or failing) tests. Such signature is in the form of a

combination of program elements that highly correlates with the unsafe tests; i.e. it is

executed by a high percentage of attacks (or failures) and a low percentage of safe (or

passing) tests. Assuming that the execution profiles consist of N distinct elements

(features), the search space would consist of 2
N
 combinations, which calls for the use of an

approximation algorithm. Consequently, the IDS uses a genetic algorithm, which we will

denote by IDS_GA, to carry out the search as follows:

 Each combination/solution/chromosome is represented by a bit string whose length is

equal to N. A bit set to 1 (resp. 0) indicates that the corresponding element is

included (resp. not included) in the combination

 The fitness of a combination C is evaluated as %F(C)-%P(C) where %F(C) (resp.

%P(C)) represents the percentage of failures/attacks (resp. safe tests) exercising C

in the training set. As such, the higher the fitness the better the combination is in

terms of characterizing the attack.

 IDS_GA starts with an initial population that is entirely constructed from the

intersection of the profiles of all attacks in the training set. This way, the %F

component of the fitness function would be optimized.

58

 After creating the initial population, IDS_GA produces successive generations using

crossover and replacement

- Crossover: two (parent) combinations are randomly selected from the

population and a child is generated as a combination containing program

elements from both parents. Choosing these elements is done

probabilistically, in a manner that favors the parent with the higher fitness.

After evaluating the fitness of the child, it replaces the parent with the lesser

fitness.

- Replacement: a randomly-generated child replaces a randomly-chosen

parent.

 The algorithm terminates when a solution with a fitness of 1.0 is encountered or

when the maximum number of generations (MAX_GENERATIONS) is reached.

 Throughout the whole process, IDS_GA keeps track of the best encountered

solution, which is returned at the end.

We now quantify the impact of reduction on the performance of Tech-II. Using

the ten subject programs and corresponding 41 vulnerabilities/defects, we repeated the

signature generation process using the reduced execution profiles. Table 15 shows the

averages of the following entities: a) fitness of the resulting combinations; b) search time in

milliseconds; c) size of the resulting combinations; d) percentage of false positives during

online matching; and e) percentage of false negatives during online matching. Also note

that in our experiments: a) we randomly selected training sets that are 10% the size of the

full test suite; and b) to account for the non-determinism in IDS_GA, the values shown in

59

the table are averages computed based on 10 runs. We make the following observations

based on Table 15:

 SU1 is the best performer in terms of Fitness, while HSU1UGA2 is a close second.

 SU1 is the best performer in terms of Time, while HSU1UGA2 is a close second. Also, all

reductions techniques performed better than NoReduction when it comes to Time.

 SU1 is the best performer in terms of %FP, while HSU1UGA2 is a close second.

 All are somewhat comparable in terms of Size. Noting that the size of the generated

combination impacts the online matching efficiency of the IDS.

 All of the reductions techniques performed worse than NoReduction in terms of

%FN. Noting that the performance of HSU1UGA2, SU2, and SU1 was not considerably

worse.

In summary, HSU1UGA2 and SU1 were: a) the better performers amongst the reduction

techniques; b) more efficient than NoReduction; and c) little less effective than

NoReduction due to their slightly higher %FN.

Table 15. Average results for Tech-II

 Fitness Time (ms) Size %FP %FN

NoReduction 0.984 5467.01 3.96 1.87% 9.27%

SU1 0.998 3.20 3.95 0.47% 14.27%

SU2 0.969 12.05 3.85 3.31% 13.76%

GA1 0.937 8.81 3.91 6.37% 17.86%

GA2 0.927 9.64 4.15 7.58% 18.83%

HSU1∩GA2 0.910 9.95 3.88 9.12% 18.34%

HSU1UGA2 0.997 4.12 4.16 0.73% 13.72%

60

Even though the average search times for HSU1UGA2 and SU1are no more than 0.07% of that

of NoReduction, but that time improvement has no significant practical value given that the

average search time for NoReduction is less than six seconds. With this in mind, we

conducted an additional experiment using JTidySliceP designed to likely benefit from the

reduction of execution profiles. Specifically, we deliberately modified the classification of

the profiles in a manner that no fitness of 1 would be found, which prevents IDS_GA from

terminating before iterating MAX_GENERATIONS times. It should be noted that not

finding a combination of fitness 1 is not unlikely, as it can be seen in Table 15. Table 16

shows the results for JTidySliceP for that contrived experiment. As expected, no

combinations with a good fitness were found, and the time for NoReduction is considerable,

as it is hundreds of times larger than that of the rest.

Table 16. JTidySliceP results for Tech-II

 Fitness Time (ms) Size %FP %FN

NoReduction 0.29 2534493.5 6.50 66.25% 28.35%

SU1 0.30 17047.0 3.42 75.31% 18.48%

SU2 0.30 11694.8 3.91 76.79% 17.62%

GA1 0.29 164.0 2.0 68.75% 28.24%

GA2 0.33 164.0 2.0 67.91% 24.53%

HSU1∩GA2 0.21 111.5 1.5 81.67% 16.17%

HSU1UGA2 0.35 16027.6 4.0 72.93% 18.93%

Finally, one can argue that the time saving for generating a signature is insignificant

compared to the time taken to reduce the execution profiles. But it should be noted that in

most cases the reduction needs only to be done once with a given release, whereas the

signature generation must be done every time a new attack is observed throughout the

lifetime of a release. Actually, the reduction needs to be redone only in two cases: 1) when

61

a newly discovered attack/failure covers some program elements that have not been

previously covered; or 2) when the execution matrix resulting from adding the profile of a

newly discovered attack/failure becomes inconsistent with the current reduced set. Note

that the time cost for checking for both cases is negligible in practice.

62

CHAPTER VII

CONCLUSION AND FUTURE WORK

This work studied the impact of the size of execution profiles. It presented several

reduction techniques and comparatively evaluated them by measuring the reduction rate,

information loss, impact on the quality of cluster analysis, cost of reduction, and impact on

two software analysis techniques. The results were promising as the average reduction rate

ranged from 92% to 98%, most techniques were lossless or slightly lossy, the quality of

cluster analysis slightly improved on average, and the cost of reduction was not very

significant. The results also showed that reducing execution profiles can potentially benefit

software analysis in terms of efficiency and/or effectiveness.

Given that with our proposed techniques we were able to achieve very high rates

of reduction and very low rates of information loss with insignificant time cost, our future

work should focus elsewhere on identifying other software analyses that majorly benefit

from such reduction such as state profiling [29], and fault localization [1] [23] [25].

Furthermore, our experiments involved a limited number of subject programs; so further

empirical studies are needed which involve a variety of other subject programs from

different domains and environments.

63

REFERENCES

[1] Abou-Assi R. and Masri W. Identifying Failure-Correlated Dependence Chains. First

International Workshop on Testing and Debugging, TeBug/ICST 2011, Berlin, March

2011.

[2] Abou-Assi R. and Masri W. Lossless Reduction of Execution Profiles using a Genetic

Algorithm. Regression/ICST 2014, Cleveland, April 2014.

[3] Thomas Ball, James R. Larus: Efficient Path Profiling. MICRO 1996: 46-57

[4] Laura Maria Cannas, Nicoletta Dessì, and Barbara Pes. 2011. A hybrid model to favor

the selection of high quality features in high dimensional domains. In Proceedings of

the 12th international conference on Intelligent data engineering and automated

learning (IDEAL'11), Hujun Yin, Wenjia Wang, and Victor Rayward-Smith (Eds.).

Springer-Verlag, Berlin, Heidelberg, 228-235.

[5] W. Dickinson, D. Leon, and A. Podgurski, “Finding Failures by Cluster Analysis of

Execution Profiles,” Proc. 23rd Int’l Conf. Software Eng., pp. 339-348, May 2001.

[6] W. Dickinson, D. Leon, and A. Podgurski, “Pursuing Failure: The Distribution of

Program Failures in a Profile Space,” Proc. 10th European Software Eng. Conf./Ninth

ACM SIGSOFT Symp. Foundations of Software Eng., pp. 246-255, Sept. 2001.

[7] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley & Sons, New

York, 2edition, 2001.

[8] Joan Farjo, Rawad Abou Assi, Wes Masri, and Fadi Zaraket. Does Principal

Component Analysis Improve Cluster-Based Analysis? Regression/ICST 2013,

Luxembourg, March 2013.

[9] Joan Farjo and Wes Masri. Weighted Execution Profiles for Software Testing.

Regression/ICST 2014, Cleveland, April 2014.

[10] Joan Farjo, Wes Masri, and Hazem Hajj. Isolating Failing Test Cases: A Comaprative

Experimental Study of Clustering Technqiues. The 3
rd

 Int`l Conference on

Communications and Information Technology ICCIT 2013, June 2013, Lebanon

[11] Fodor I. K. A survey of dimension reduction techniques. Center for Applied Scientific

Computing, Lawrence Livermore National Laboratory. June 2002.

[12] Guyon,I. and Elisseeff,A. (2003) An introduction to variable and feature selection. J.

Mach Learn Res., 3, 1157–1182.

[13] Quanquan Gu, Zhenhui Li, Jiawei Han, Generalized Fisher Score for Feature Selection,

The 27th Conference on Uncertainty in Artificial Intelligence (UAI), Barcelona,

Spain, 2011

[14] Maria Halkidi , Yannis Batistakis , Michalis Vazirgiannis, On Clustering Validation

Techniques, Journal of Intelligent Information Systems, v.17 n.2-3, p.107-145,

December 2001

http://dl.acm.org/citation.cfm?id=607609&CFID=307567561&CFTOKEN=99664429
http://dl.acm.org/citation.cfm?id=607609&CFID=307567561&CFTOKEN=99664429
http://dl.acm.org/citation.cfm?id=607609&CFID=307567561&CFTOKEN=99664429

64

[15] Jones J., Harrold M. J., and Stasko J. Visualization of Test Information to Assist Fault

Localization. ICSE 2001,467-477.

[16] X. He, D. Cai, and P. Niyogi, “Laplacian Score for Feature Selection,” Proc. Advances

in Neural Information Processing Systems, vol. 18, 2005.

[17] Hui-Huang Hsu; Cheng-Wei Hsieh; Ming-Da Lu, "A Hybrid Feature Selection

Mechanism," Eighth International Conference on Intelligent Systems Design and

Applications, 2008. ISDA '08., vol.2, no., pp.271,276, 26-28 Nov. 2008

[18] G.H. John, R. Kohavi, and K. Peger. Irrelevant feature and the subset selection

problem. In W.W. Cohen and Hirsh H., editors, Machine Learning: Proceedings of the

Eleventh International Conference, pages 121-129, New Brunswick, N.J., 1994.

Rutgers University.

[19] I. Kononenko, “Estimating Attributes: Analysis and Extension of RELIEF,” Proc.

European Conf. Machine Learning (ECML), 1994.

[20] H. Liu and R. Setiono. Chi2: Feature selection and discretization of numeric attributes.

In J.F. Vassilopoulos, editor, Proceedings of the Seventh IEEE International

Conference on Tools with Artificial Intelligence, November 5-8, 1995, pages 388-391,

Herndon, Virginia, 1995. IEEE Computer Society.

[21] Josep M. Mateo-Sanz , Josep Domingo-Ferrer , Francesc Sebé, Probabilistic

Information Loss Measures in Confidentiality Protection of Continuous Microdata,

Data Mining and Knowledge Discovery, v.11 n.2, p.181-193, September 2005

[22] Masri, W. Exploiting the Empirical Characteristics of Program Dependences for

Improved Forward Computation of Dynamic Slice. Empirical Software Engineering

(ESE) (Springer), 2008 13:369-399.

[23] Masri, W. Fault Localization Based on Information Flow Coverage. Software Testing,

Verification and Reliability (STVR) (Wiley), 2010, vol. 20(2), pp. 121-147.

[24] Masri W., Abou-Assi R. Cleansing Test Suites from Coincidental Correctness to

Enhance Fault-Localization. Third International Conference on Software Testing,

Verification and Validation, ICST 2010, Paris, France, April, 2010.

[25] Masri W. and Abou Assi

R. Prevalence of Coincidental Correctness and Mitigation of

its Impact on Fault-Localization. ACM Transactions on Software Engineering and

Methodology (TOSEM). Accepted.

[26] Masri W., Abou Assi

R, and El-Ghali

M. Generating Profile-Based Signatures for

Online Intrusion and Failure Detection. Information and Software Technology (IST)

(Elsevier). Vol. 56, Issue 2, Feb. 2014, pages 238-251.

[27] Masri W., Abou-Assi R., El-Ghali M., and Fatairi N. An Empirical Study of the Factors

that Reduce the Effectiveness of Coverage-based Fault Localization. International

Workshop on Defects in Large Software Systems, DEFECTS, Chicago, IL, 2009.

[28] W. Masri, R. Abou Assi, F. Zaraket, and N. Fatairi. Enhancing Fault Localization via

Multivariate Visualization, Regression/ICST 2012, Montreal, Canada, April 2012.

65

[29] Masri W., Daou J., and Abou-Assi R. and Masri W. State Profiling of Internal

Variables. Regression/ICST 2014, Cleveland, April 2014

[30] Masri W., Halabi H. An algorithm for capturing variables dependences in test suites.

Journal of Systems and Software (JSS) 84(7): 1171-1190 (2011).

[31] Masri, W. and Podgurski, A. Application-Based Anomaly Intrusion Detection with

Dynamic Information Flow Analysis. Computers & Security (Elsevier). Vol. 27 (2008),

pages 176-187.

[32] Masri, W. and Podgurski, A. Algorithms and Tool Support for Dynamic Information

Flow Analysis. Information and Software Technology (IST) (Elsevier). Vol. 51 (Feb.

2009), pages 385-404.

[33] Masri, W. and Podgurski, A. Measuring the Strength of Information Flows in

Programs. ACM Transactions on Software Engineering and Methodology (TOSEM). ,

Vol. 19, No. 2, Article 5, October 2009

[34] Masri W., Podgurski A. and Leon D. An Empirical Study of Test Case Filtering

Techniques Based On Exercising Information Flows. IEEE Transactions on Software

Engineering, July, 2007, vol. 33, number 7, page 454

[35] Narendra, Patrenahalli M.; Fukunaga, K., "A Branch and Bound Algorithm for Feature

Subset Selection," Computers, IEEE Transactions on , vol.C-26, no.9, pp.917,922, Sept.

1977

[36] Michael Negnevitsky. Articial Intelligence: A Guide to Intelligent Systems. Addison-

Wesley, 2005.

[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes

in C. Cambridge University Press, Cambridge,1988

[38] P. Pudil, J. Novovičová, and J. Kittler, “Floating search methods in feature selection,”

Pattern Recognition Letters, Vol. 15, 1994, pp. 1119-1125

[39] Raileanu, L., Stoffel, K.: Theoretical comparison between the Gini index and

information gain criteria. Annals of Mathematics

[40] Andrew Rosenberg, and Julia Hirschberg. Proceedings of the 2007 Joint Conference on

Empirical Methods in Natural Language Processing and Computational Natural

Language Learning EMNLP-cOnll, PAGE 410—420.

[41] Y. Saeys, I. Inza, P. Larranaga, "A review of feature selection techniques in

bioinformatics," Bioinformatics, vol. 23, p. 2507, 2007

[42] Shlens J. A Tutorial on Principal Component Analysis. Center for Neural Science, New

York University. April 22, 2009.

[43] M.R. Sikonja and I. Kononenko, “Theoretical and Empirical Analysis of Relief and

ReliefF,” Machine Learning, vol. 53, pp. 23- 69, 2003.

[44] L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, “Feature Selection via

Dependence Maximization,” J. Machine Learning Research, 2007.

66

[45] Stearns, S.D. (1976). On selecting features for pattern classifiers.Third lnternat. Conf.

on Pattern Recognition, Coronado, CA, 71-75.

[46] Z. Zhao and H. Liu, “Spectral Feature Selection for Supervised and Unsupervised

Learning,” Proc. 24th Int’l Conf. Machine Learning (ICML), 2007.

[47] Zheng Zhao; Lei Wang; Huan Liu; Jieping Ye, "On Similarity Preserving Feature

Selection," IEEE Transactions on Knowledge and Data Engineering, vol.25, no.3,

pp.619,632, March 2013

[48] http://sir.unl.edu

67

APPENDIX A

 Table 17. Data of print_tokens2ALL

of faults 7 # of passing testcases 1801

Initial # of test cases 4055 # of failing_fault1

testcases

205

CC test cases 1706 # of failing_fault2

testcases

146

of test cases after cleanup 2349 # of failing_fault3

testcases

19

% failure 23.32% # of failing_fault4

testcases

20

 # of failing_fault5

testcases

96

 # of failing_fault6

testcases

33

 # of failing_fault7

testcases

29

Table 18. Data of tot_infoALL

of faults 6 # of passing testcases 791

Initial # of test cases 1052 # of failing_fault1

testcases

20

CC test cases 113 # of failing_fault2

testcases

19

of test cases after cleanup 939 # of failing_fault3

testcases

37

% failure 15.76% # of failing_fault4

testcases

1

 # of failing_fault5

testcases

3

 # of failing_fault6

testcases

68

Table 19. Data of ScheduleALL

of faults 3 # of passing testcases 981

Initial # of test cases 2650 # of failing_fault1 1070

68

testcases

CC test cases 355 # of failing_fault2

testcases

30

of test cases after cleanup 2295 # of failing_fault3

testcases

214

% failure 57.25%

Table 20. Data of SpaceBB

of faults 5 # of passing testcases 1900

Initial # of test cases 2000 # of failing_fault1

testcases

27

CC test cases 0 # of failing_fault2

testcases

27

of test cases after cleanup 2000 # of failing_fault3

testcases

11

% failure 5% # of failing_fault4

testcases

9

 # of failing_fault5

testcases

26

Table 21. Data of Tomcat3.0ALL

of faults 4 # of passing testcases 460

Initial # of test cases 658 # of failing_fault1

testcases

150

CC test cases 0 # of failing_fault2

testcases

38

of test cases after cleanup 658 # of failing_fault3

testcases

6

% failure 30.09% # of failing_fault4

testcases

4

Table 22. Data of Tomcat3.2.1ALL

of faults 3 # of passing testcases 473

Initial # of test cases 497 # of failing_fault1

testcases

18

CC test cases 0 # of failing_fault2

testcases

2

of test cases after cleanup 497 # of failing_fault3

testcases

4

69

% failure 4.82%

Table 23. Data of JigsawALL

of faults 4 # of passing testcases 490

Initial # of test cases 530 # of failing_fault1

testcases

1

CC test cases 0 # of failing_fault2

testcases

2

of test cases after cleanup 530 # of failing_fault3

testcases

4

% failure 7.547% # of failing_fault4

testcases

33

Table 24. Data of JTidyALL

of faults 3 # of passing testcases 820

Initial # of test cases 1000 # of failing_fault1

testcases

83

CC test cases 0 # of failing_fault2

testcases

2

of test cases after cleanup 1000 # of failing_fault3

testcases

95

% failure 18%

Table 25. Data of flex2BB

of faults 3 # of passing testcases 376

Initial # of test cases 532 # of failing_fault1

testcases

5

CC test cases 0 # of failing_fault2

testcases

132

of test cases after cleanup 531 # of failing_fault3

testcases

18

% failure 29.19%

Table 26. Data of sed3BB

of faults 3 # of passing testcases 161

Initial # of test cases 213 # of failing_fault1

testcases

3

70

CC test cases 13 # of failing_fault2

testcases

18

of test cases after cleanup 195 # of failing_fault3

testcases

13

% failure 17.43%

Note: Initially sed3 has 4 bugs but due to removing testcases that are caused by more than

one bug, no more test cases existed for a certain bug and hence the analysis was performed

on 3 bugs.

Table 27. Data of JTidySliceP

of faults 3 # of passing testcases 295

Initial # of test cases 475 # of failing_fault1

testcases

83

CC test cases 0 # of failing_fault2

testcases

2

of test cases after cleanup 475 # of failing_fault3

testcases

95

% failure 37.89%

71

APPENDIX B

This Appendix presents for each subject program four plots of the four distinct cluster

evaluation metric described in Chapter 4. Each plot compares the corresponding cluster

evaluation measure with no-reduction against all the 6 reduction techniques. Note that the

metric being assessed in each plot is the average measure obtained while varying the cluster

count from 3 to 10.

Figure 6. V-Measure print_tokens2ALL Figure 7. F-Measure print_tokens2ALL

0

0.05

0.1

0.15

0.2

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

72

Figure 8. M3-pass-fail print_tokens2ALL Figure 9. M3-pass-bug print_tokens2ALL

Figure 10. V-Measure tot_infoALL Figure 11. F-Measure tot_infoALL

0

0.1

0.2

0.3

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.05

0.1

0.15

0.2

0.25

0.3

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

73

Figure 12. M3-pass-fail tot_infoALL Figure 13. M3-pass-bug tot_infoALL

Figure 14. V-Measure ScheduleALL Figure 15. F-Measure ScheduleALL

0

0.1

0.2

0.3

0.4

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

74

Figure 16. M3-pass-fail ScheduleALL Figure 17. M3-pass-bug ScheduleALL

Figure 18. V-Measure SpaceBB Figure 19. F-Measure SpaceBB

0

0.1

0.2

0.3

0.4

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.02

0.04

0.06

0.08

0.1

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

75

Figure 20. M3-pass-fail SpaceBB Figure 21. M3-pass-bug SpaceBB

Figure 22. V-Measure Tomcat3.0ALL Figure 23. F-Measure Tomcat3.0ALL

0

0.1

0.2

0.3

0.4

0.5

0.6

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

1

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

76

Figure 24. M3-pass-fail Tomcat3.0ALL Figure 25. M3-pass-bug Tomcat3.0ALL

Figure 26. V-Measure Tomcat3.2.1ALL Figure 27. F-Measure Tomcat3.2.1ALL

0

0.1

0.2

0.3

0.4

0.5

0.6

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

1

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.05

0.1

0.15

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

77

Figure 28. M3-pass-fail Tomcat3.2.1ALL Figure 29. M3-pass-bug Tomcat3.2.1ALL

Figure 30. V-Measure JigsawALL Figure 31. F-Measure JigsawALL

0

0.2

0.4

0.6

0.8

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

1

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.05

0.1

0.15

0.2

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

78

Figure 32. M3-pass-fail JigsawALL Figure 33. M3-pass-bug JigsawALL

Figure 34. V-Measure JTidyALL Figure 35. F-Measure JTidyALL

0

0.2

0.4

0.6

0.8

1

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

1

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

79

Figure 36. M3-pass-fail JTidyALL Figure 37. M3-pass-bug JTidyALL

Figure 38. V-Measure flex2BB Figure 39. F-Measure flex2BB

0

0.2

0.4

0.6

0.8

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

1

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

80

Figure 40. M3-pass-fail flex2BB Figure 41. M3-pass-bug flex2BB

Figure 42. V-Measure sed3BB Figure 43. F-Measure sed3BB

0

0.1

0.2

0.3

0.4

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.05

0.1

0.15

0.2

0.25

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

81

Figure 44. M3-pass-fail sed3BB Figure 45. M3-pass-bug sed3BB

Figure 46. V-Measure JTidySliceP Figure 47. F-Measure JTidySliceP

0

0.1

0.2

0.3

0.4

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

V-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F-Measure

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

82

Figure 48. M3-pass-fail JTidySliceP Figure 49. M3-pass-bug JTidySliceP

0

0.1

0.2

0.3

0.4

0.5

0.6

M3-pass-fail

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

0

0.2

0.4

0.6

0.8

M3-pass-bug

No Reduction SU1 SU2

GA1 GA2 HSU1∩GA2

HSU1UGA2

83

