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AN ABSTRACT OF THE DISSERTATION OF 

Komal Madaiah Jothi for Doctor of Philosophy 

Major: Electrical and Computer Engineering 

Title: Tuning the Continual Flow Pipeline Architecture 

One of the main factors that impacts performance of general purpose computer 

processors is misses to the data cache. Conventional techniques used in modern 

processors - building wide superscalars and large instruction buffers to hide the latency 

of these misses and keep the processor units busy - are not suitable for present and next 

generation processors that need to cater to high energy efficiency demands.  

Continual Flow Pipeline (CFP) allows a processor core to handle hundreds of 

in-flight instructions without increasing cycle-critical pipeline resources. When a load 

misses the data cache, CFP checkpoints the processor register state and then moves all 

miss-dependent instructions into a low complexity waiting buffer to unblock the 

pipeline. Meanwhile, miss-independent instructions execute normally and update the 

processor state. When the miss data returns, CFP replays the miss-dependent 

instructions from the waiting buffer and then merges the miss dependent and 

independent execution results. 

CFP was initially proposed for cache misses to DRAM.  In that work, the miss-

independent and miss-dependent instructions execute at different times separated by a 

pipeline flush in between, based on the timing of the load miss event and the data arrival 

event. 

In this thesis, we focus on reducing the execution overhead of CFP by avoiding 

the pipeline flush and executing dependent and independent instructions concurrently. 

The goal of these improvements is to gain performance by applying CFP to L1 data 

cache misses that hit the last level on-chip cache.  

However, we see that when CFP is applied to L1 data cache misses, many 

applications or execution phases of applications incur excessive amount of replay and/or 

rollbacks to the checkpoint. This frequently cancels benefits from CFP and reduces 

performance. 

We mitigate this issue by using a novel virtual register renaming substrate, and 

by tuning the replay policies to eliminate excessive replays and rollbacks to the 

checkpoint. We describe these new design optimizations and show, using Spec 2006 

benchmarks and microarchitecture performance and power models of our design, that 

our Tuned-CFP architecture improves performance and energy consumption over 
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previous CFP architectures by ~10% and ~8%, respectively. We also demonstrate that 

our proposed architecture gives better performance return on energy per instruction 

compared to a conventional superscalar as well as previous CFP architectures. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Over the last 20 years, the range of applications that can be run on a computer 

processor have evolved considerably. Some tasks which were considered impractical in 

the past, for example, video conferencing between two parties or streaming high quality 

multimedia, are being done with ease. So with the never ending demands placed by 

upcoming applications on processors, the onus is on computer architects to design better 

performing processors. In the past, the goal of a computer architect was fairly straight 

forward. A processor was designed to run as fast as possible without any compromises. 

These days with the battery life of mobile devices being critical and large budgets 

dedicated to cooling servers, energy consumption is an equally important aspect. 

The need for energy efficient performance has led to the proliferation of multi-

core processors, with the first multicore processor released by IBM in 2001. The energy 

efficiency of multi-core designs comes from building distributed structures as against 

centralized ones, thus avoiding the quadratic costs associated with scaling the 

centralized structures for single-thread performance. For instance, four structures of size 

N consume less energy than one structure of size 4N [38]. Similarly, four structures 

with one port each consume less energy than one structure with four ports, and four 

cores operating at 1GHz consume less energy than one core operating at 4GHz [1]. 

Multi-core processors are efficient either for throughput performance or when there are 

explicitly written parallel programs available to take advantage of multiple execution 
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resources. In addition to parallel applications there are many important single-threaded 

applications already in use which are difficult to parallelize. Future multi-core 

processors should be able to run both parallel and single-threaded applications 

efficiently. No matter how many parallel cores are integrated on a chip, it is the 

performance of single thread programs, i.e. the slowest portion of code, which will 

dominate overall performance according to Amdahl's Law [16]. Hence it is critical to 

obtain single-thread performance using energy efficient methods. 

So in view of these points, computer architects are presented with a new 

challenge: how to provide energy efficient single-thread performance for applications 

that are hard to parallelize, while placing on a single die as many cores as possible for 

high throughput performance. 

One of the main factors that impact processor performance is data cache 

misses. Figure 1 shows the example of an execution sequence of eight instructions A to 

H in an in-order processor. Instructions A and H miss the cache and hence take a long 

time (shown as 150 cycles) to complete. Even though the rest of the instructions are 

independent of the cache miss and can complete soon, the overall execution time is 

dominated by the time needed to service the cache misses. Figure 2 shows the speedup 

of a processor core with perfect cache over a core with practical cache configuration. 

Many memory bound programs like gcc and twolf benefit immensely from not having 

to stall because of cache misses. How can these stalls be avoided? 

Since the introduction of Intel P6 architecture in 1996 [39], the capacity of 

instruction buffers, such as reorder buffers, reservation stations and load and store 

queues [44], and the size of on-chip caches have kept increasing with every new 

generation of out-of-order core. The motivation behind this continuous evolution 
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Figure 1. Execution sequence of an in-order processor when instructions miss the cache 

 

towards larger buffers and caches has been performance of single-thread applications. 

Achieving performance this way has come at the expense of area, power, and 

complexity. At the circuit level, larger L1 data caches and multi-ported, timing critical 

instruction buffers, such as the store queue, the reorder buffer, the register file and the 

reservation stations, have become increasingly difficult to design while maintaining 

high clock rates. Designers have had to increase the degree of pipelining to meet cycle 

time, for example adding pipe stages to the first level data cache and the store queue. 

The critical circuit paths introduced by larger instruction buffers and the 

increased pipelining have led to high complexity in the logic design as well. In fact, 

core complexity has risen so much that adding almost any new performance feature  
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Figure 2. Impact of a perfect cache on performance 

 

requires significant design validation effort. By increasing instruction buffer sizes 

designers have been seeking performance benefits from three different sources: 

1. With larger buffers, the scheduling hardware has a larger pool of instructions 

from which to dynamically identify and schedule independent instructions concurrently, 

thus taking advantage of the wide pipeline and multiple functional units. 

2. Increased instruction level parallelism from larger instruction windows 

reduces the impact on performance of stalls from multi-cycle instructions, e.g. floating 

point, load, multiply, or divide instructions. 

3. Finally, larger buffers allow hardware to find instructions to execute behind 

very long latency instructions, such as loads that miss the data cache, thus reducing the 

impact of cache miss data hazards on performance. 
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For two decades, increasing instruction buffers has provided good performance 

improvement due to the benefits listed above. However, we have reached an end point 

[1]. Current buffer sizes are more than sufficient for code that hits the L1 data cache 

(benefits 1 and 2 above), and way too small for code that misses the L1 data cache 

(benefit 3 above). Load latency to the last level cache on current multicore processors is 

more than 20 clock cycles, and latency of load miss to DRAM, even in the best case of 

on-chip DRAM controller, is significantly more than hundred cycles. It is simply not 

practical to increase instruction buffer sizes to the capacity necessary to handle long 

load latencies to the last level cache or to DRAM. 

Figure 3 shows the percentage of reorder buffer stalls and reservation station 

stalls over total execution time in a typical superscalar processor. From the figure it is 

clear that even with reasonably sized buffers, conventional processors fill up soon and 

quickly run out of instructions to retire in case of the reorder buffer, or execute in case 

of reservation stations and spend a considerable fraction of execution time sitting idle.  

A different design strategy would be to size the instruction buffers to the 

minimum size necessary to handle the common case of L1 data cache hit and use less 

circuit critical and power hungry mechanisms to handle code that misses the L1 data 

cache, assuming such mechanisms exist. In fact, there have been various studies of 

latency-tolerant architectures that target reducing the impact of data cache misses on 

performance, without having to increase instruction buffer sizes 

[7][9][10][17][32][37][46]. These architectures have common characteristics, but vary 

in implementation details. They all tolerate cache miss latencies by managing buffer 

resources in a non-conventional way. Instructions that depend on a cache miss do not 

block the execution pipeline. Instead, they move with any ready source registers into a  
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Figure 3. Reorder buffer stalls and reservation station stalls in conventional processors 

 

buffer outside the execution pipeline, implemented as SRAM FIFO buffer to minimize 

area and power, thus allowing look-ahead execution and pseudo-retirement of 

independent instructions to continue without stalling the pipeline. When the miss data is 

loaded into the cache, the miss dependent instructions are dispatched back from the 

FIFO buffer into the execution pipeline. When the execution of the miss dependent 

instructions completes, results of the independent and dependent instructions are 

merged together and then execution resumes normally until another load instruction 

misses the data cache. Since independent instructions complete and pseudo-retire before 

older instructions that depend on the data cache miss, all these architectures use 

checkpoints [2][3] to recover from branch mis-predictions and exceptions that depend 

on the miss.  
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All previous latency-tolerant architectures either target last level cache misses 

to DRAM [9][10][32][46] or use small in-order cores for high-throughput many-core 

processors [7][17][37]. Unfortunately, in-order architectures provide limited single-

thread performance as compared to out-of-order cores, and latency-tolerant performance 

techniques that target cache misses to DRAM provide less benefit nowadays than on 

previous generations of processors. This is because large on-chip caches and integrated 

on-chip memory controllers, typical on current main stream processors, reduce (but not 

completely eliminate) the overall impact of accesses to DRAM. Still unexploited in 

latency-tolerant out-of-order core proposals are misses to the L1 data cache that hit L2 

and L3 on-chip cache. These misses cause shorter delays than misses to DRAM, but 

they occur a lot more frequently and consequently have as much impact on performance 

as misses to DRAM on many applications. Therefore, new out-of-order cores that can 

handle not only cache misses to DRAM, but cache misses at all levels of the cache 

hierarchy, without having to increase buffer sizes, are needed to increase energy 

efficiency and performance of single-thread applications. 

Continual Flow Pipeline architecture [46] is one such proposal that attempts to 

tolerate long latencies of only last level cache misses that go to DRAM. In that work, 

the miss-independent and miss-dependent instructions execute at different times, based 

on the timing of the load miss event and the data arrival event. Switching between the 

two executions is costly because it involves a pipeline flush, making this proposal 

unsuitable for L1 misses that hit the on-chip cache. To avoid this costly pipeline flush, 

we propose to execute the independent and dependent instructions simultaneously, thus 

making this proposal, which we call Simultaneous-CFP, more suitable for first level 

data cache misses. However, in Simultaneous-CFP, many applications or execution 
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phases of applications incur excessive amount of replay and rollbacks to checkpoints 

because of miss-dependent branches that mis-predict. Excessive replay increases the 

chance of replaying mis-predicted branches and consequently rollbacks to the 

checkpoints. This frequently cancels any desired improvement resulting from S-CFP 

handling of L1 data cache misses and can even cause performance degradation. In order 

to overcome these limitations, we use a novel virtual register renaming substrate 

[24][41] and fine tune the replay policies to mitigate excessive replays and rollbacks to 

the checkpoint. We call this Tuned-CFP processor core architecture. 

 

1.2. Dissertation Contribution 

In this dissertation, we propose a processor core architecture that overcomes 

the limitations of previous latency tolerant processor architectures and make the 

following contributions –  

1. We introduce novel out-of-order execution algorithms that extend Continual 

Flow Pipelines [46] to allow L1 data cache miss independent instructions and dependent 

instructions, widely separated within a single-thread program, to execute simultaneously 

in the core pipeline. This allows our architecture to handle effectively first level cache 

misses that hit the higher level on-chip cache, as well as cache misses to DRAM. We 

call this architecture Simultaneous Continual Flow Pipeline (S-CFP). 

2. To support the Simultaneous-CFP core architecture, we present novel 

algorithms for performing fast register results integration and load-store memory 

ordering while executing simultaneously in the core pipeline non-contiguous miss 

dependent and independent instructions. 
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3. We see that Simultaneous-CFP incurs a lot of circuit activity due to 

excessive replay of load miss dependent instructions. In an attempt to fine tune the 

replay policies, we keep the miss-dependent instructions in the reservation stations as 

long as possible after the miss before they are evicted to the waiting buffer. This 

reduces the number of miss-dependent instructions that are replayed in case of medium 

latency load misses, which are those loads that miss the L1 data cache but hit the L2 

data cache. 

4. We remove the reorder buffer from the replay loop in order to reduce the 

replay latency of miss-dependent instructions that are evicted to the waiting buffer and 

thus reduce the total execution time. For this, we use an order list of instructions in the 

reservation stations to order miss-dependent instructions when they have to move into 

the waiting buffer. 

5. On CFP architectures, all miss-dependent instructions have to be moved into 

the waiting buffer and then replayed, once the load miss is moved into the waiting 

buffer. This is necessary since when the miss load pseudo commits and moves into the 

waiting buffer, it releases its renamed destination register ID (also called tag). This 

breaks the dependence links between the miss load and its dependents, requiring the full 

dependence chain to be replayed and renamed again to re-establish the dependence 

links. In this dissertation, we use virtual register renaming [41], which allows partial 

replay of the miss load and its dependents, thus significantly reducing the number of 

replayed instructions and the total execution time.  

6. On CFP architectures, mis-predicted branches that depend on load misses 

have very high mis-prediction penalty. The reason is that CFP recovers from these mis-

predictions by rolling back execution to a checklepoint taken at the load miss. Reducing 
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the number of replayed instructions reduces the chance of encountering miss-dependent 

branch mis-predictions and their high recovery penalty. This improves performance 

significantly on benchmarks that have many branches that depend on load misses. 

7. Branch instructions that move into the waiting buffer and later found to be 

mis-predicted not only degrade performance but also increase power consumption 

significantly because of the large number of wrong path instructions burning processor 

resources wastefully. This dissertation presents a hardware predictor that is used as a 

branch confidence mechanism to identify miss-dependent branches that are likely to 

mis-predict, and stalls the pipeline when such low confidence branches are moved into 

the waiting buffer. This prediction mechanism reduces execution waste and as a result 

power consumption on benchmarks that have many mis-predicted branches that depend 

on load misses. 

8. Finally, using a microarchitecture performance simulator and architectural 

level power model, it shows that the optimized CFP architecture, which we call Tuned-

CFP, improves execution time and energy consumption by 10% and 8% respectively 

over S-CFP architecture. This dissertation also shows that as the instruction buffer sizes 

are scaled over a wide range, the Tuned-CFP architecture consistently provides better 

performance return on energy per instruction compared to conventional reorder buffer 

superscalar architecture and previous latency tolerant architectures. 
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5. Tuning the Continual Pipeline Architecture with Virtual Register Renaming. 
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1.4 Document Organization 

The rest of the document is organized as follows. Chapter 2 talks about related 

work on latency tolerance for cache misses. Chapter 3 talks about Simultaneous-CFP 

architecture and its limitations, and presents a limit study to measure the upper bound 

on performance when all its limitations are addressed. Chapter 4 talks about Tuned-CFP 

architecture which is built on a virtual register renaming substrate and also fine tunes 

many replay policies of Simultaneous-CFP. Chapter 5 details the memory organization 

of an architecture that supports simultaneous execution of miss-dependent and miss-

independent instructions. Chapter 6 talks about the experimental setup. Chapter 7 

presents experimental results. Chapter 8 makes qualitative comparisons between Tuned-

CFP and earlier latency tolerant proposals. Chapter 9 concludes and talks about the 

scope for future work. 
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CHAPTER 2 

BACKGROUND WORK 

 

The objective of this dissertation is to provide energy efficient load latency 

tolerance for better performance. In this chapter we will talk about the techniques that 

have been proposed in literature and used in practice to provide load latency tolerance 

in processors. The first section will talk about the conventional techniques used in 

commercial processors and explain why future processors cannot employ the same 

techniques to gain performance. The second section will talk about unconventional 

techniques proposed in literature to support large instruction windows without scaling 

cycle critical buffers. The third and fourth sections will talk about two concepts that aid 

the application of CFP to first level misses and keep the processor energy efficient – one 

is simultaneous multithreading that allows miss-dependents and miss-independents to 

execute concurrently; the other is virtual register renaming, an essential substrate on 

which our latency tolerant architecture is built.  

 

2.1 Conventional Mechanisms Used in Commercial Processors 

As mentioned before, commercial processors have been building wider 

machines and larger instruction buffers and on-chip caches to provide performance by 

exposing instruction level parallelism (ILP) and memory level parallelism (MLP) [44]. 

ILP occurs when the processor finds some independent instructions to execute while the 

load miss data is being fetched from the higher level memory. MLP occurs when the 

processor overlaps the memory access latency of independent load misses. Both forms 
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of parallelism are limited to how far the processor can look ahead in the program to 

seek instructions that can be scheduled for execution. The way this works is explained 

with an example below.  

Figure 4(b) shows the working of a conventional out-of-order processor. To 

understanding its working, the execution sequence of an in-order processor is also 

shown above it in Figure 4(a). In Figure 4 there are eight instructions A-H. A and G miss 

the last level cache and hence take a long time to execute, with their latency shown as 

150 cycles. The other instructions are of short latency and can finish quickly. Instruction 

D depends on A as shown by the arrow from A to D. In an in-order processor, there is no 

re-ordering of instructions based on them becoming ready, so the misses serialize and in 

the end the 8 instructions take a long time to finish.  

An out-of-order processor can achieve some performance gains as shown in 

Figure 4(b). When A misses the cache and while its data is being fetched, independent 

instructions B, C, E, F and H are scheduled for execution. The MLP comes from the 

fact that both misses A and G can be overlapped together, so that G does not spend 

additional time waiting for its data. At the same time, some ILP comes from the fact 

that B, C, E, F and H can be executed while A and G wait for their data to arrive. From 

this example, it can be seen that a large out-of-order window benefits performance. 

However the structures that support out-of-order execution are not energy efficient.  

The organization of a conventional reorder buffer based superscalar processor 

will be explained next.  

 

2.1.1 Microarchitecture of a Conventional Superscalar 
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Figure 4. Execution sequence of an out-of-order execution processor 

 

A conventional superscalar architecture and its pipeline are shown in Figure 5. 

This superscalar processor fetches a block of instructions every cycle. The fetch unit 

controls fetching using branch prediction, a branch target buffer (BTB), and a procedure  
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Figure 5. Block diagram and pipeline of a conventional superscalar processor 

 

return address stack (RAS). Fetched instructions are decoded and passed to the rename 

unit, which maps logical registers into a set of physical registers, removing false 

dependencies. Instructions are then placed in the issue queue where they remain until 

they get a chance to execute, i.e. their source operands become available. The 

instructions execute out-of-order based on when their sources become ready and release 

their issue queue entries upon completion. The instructions are retired in program order 

after completing execution, freeing physical registers that are no longer needed. Loads 

and stores are issued to address generation units. Stores are then written into a store 

buffer, speculatively, where they remain until retirement. At retirement, stores update 
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the data cache, but this time non-speculatively in program order. A load is sent with its 

address to the load buffer, store buffer, and the data cache unit. Its data is written back 

from the store buffer or cache to the register file, speculatively, if there is no address 

resolution conflict in the store buffer. If there is an address conflict or the memory 

dependence predictor detects a dependency, the load waits in the load buffer until the 

conflicting address in the store buffer is resolved. If a load is found to have been 

prematurely scheduled, the load does not have to re-fetched, since it a correct 

instruction that has executed with incorrect data. It is simply reissued for execution or 

replayed with correct data. If a branch is found to be mis-predicted, the pipeline is 

flushed and all speculative state following the branch is discarded.  

The main cycle critical structures in a superscalar processor are physical 

registers, issue queue and load store queues. 

 

2.1.2 Problems with Scaling Physical Register File 

In some implementations [39], the reorder buffer [43] is used for the purpose of 

register renaming, so we will discuss the energy efficiency issues of a reorder buffer 

with respect to the physical register file array [43]. Register renaming is a technique  

employed by out-of-order processors where a larger set of physical registers in addition 

to the architectural registers are used to overcome false dependencies between 

instructions that come as an artifact of limited logical registers in the instruction set 

architecture (ISA) [43].  

Assuming each instruction has two source registers and one destination 

register, the register file needs two read ports and one write port for every instruction. 

So, on a 4 wide machine, it needs approximately 8 read ports and 4 write ports. In some 
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implementations this can be reduced to a lower number because some instructions get 

their data from the bypass network and instructions like branches and stores do not need 

the write port as they do not produce results that need to be written to the register file. In 

any case, the complex implementation and power inefficiency of the large number of 

ports needed to support a wide machine and large instruction window makes the register 

file a difficult structure to scale.  

 

2.1.3 Problems with Scaling Issue Queue 

The reservation station (RS) or issue queue holds all the instructions that have 

been renamed but are yet to execute [45]. The working of a reservation station involves 

two actions – 1) finding instructions that can be scheduled for execution. 2) After an 

instruction finishes execution, waking up other instructions which are waiting for the 

result produced by the completing instruction. Scheduling ready instructions is typically 

implemented as a priority encoder. The wakeup logic is implemented as content -

addressable memory (CAM) matching logic where every entry in the reservation station 

matches its source ID with the ID of a completing instruction to find out if its source is 

ready. This CAM logic is associative and as a result, the RS implementation involves a 

lot of dynamic activity and power consumption. At the same time, The RS logic is on 

the critical path and cannot take multiple cycles because dependent instructions need to 

be woken up and scheduled for execution in consecutive clock cycles to ensure good 

performance. For this reason the wakeup logic is usually designed to have minimum 

possible latency. These two reasons make the implementation of large reservation 

stations very difficult. 
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2.1.4 Problems with Scaling Load Store Queue 

In addition to instructions that access registers, the instruction window is also 

made of instructions that access memory. In order to support a large window, 

conventional processors use a load and store queue [43]. With out-of-order execution 

and stores completing out-of-order, it is necessary to make sure that a load reads its data 

from the correct store. Stores write to the cache only in program order for correctness 

reasons. It hurts performance if a load has to wait for every store to update the cache 

and then read its data. Just like register data can be forwarded to its sourcing instruction 

through the bypass network much before the data reaches the register file, there is 

provision for a store to forward data to its dependent load before it reaches the cache. In 

order to achieve this store-to-load forwarding, conventional processors use a store 

queue that holds the address and data of all stores in the instruction window. When a 

load executes, it searches the entire store queue for an older store to the same address. If 

there is a hit, it uses the data from the store queue; otherwise, it uses the data from the 

cache. Typically the store queue and the cache are searched for a matching address in 

parallel to save on time. The store queue is implemented using CAM logic to match the 

store address with that of the load. The latency of this associative match should not be 

worse than that of a cache hit; otherwise the load scheduling logic will become more 

complex. All these reasons make it difficult to build a large store queue to support a 

large instruction window for performance. 

In conventional processors, the store-to-load forwarding is done speculatively. 

With out-of-order execution, a load address may become ready before older stores 

complete. It is very conservative to let a load wait until all stores before it complete, 

which does not help performance. Typically, processors use a memory dependence 
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predictor to decide whether to stall such a load or schedule it [8]. In some cases a load 

may read the data from an incorrect store, leading to a memory ordering violation [8]. In 

order to avoid such memory ordering violations there is a load buffer that holds all the 

loads in the window in program order. Each retiring store checks with this load buffer if 

any load has executed prematurely with incorrect data. If a memory ordering violation 

is detected, corrective action has to be taken, for instance the load will have to be 

replayed with correct data [19]. This matching of the store address with the load buffer 

entries is also an associative search, making it non-scalable like the previously 

discussed structures. 

Sections 2.1.2 to 2.1.4 explain the reasons why scaling the instruction buffers 

to large sizes in order to support a large number of in-flight instructions is neither 

practical nor energy efficient.  

 

2.2 Mechanisms in Literature 

So far it has been established that a large instruction window is needed for 

good single thread performance, but large instruction buffers cannot be used to achieve 

this because of their energy inefficiency. Is there an alternative to simply scaling the 

sizes of instruction buffers for performance?  

Earlier work [29][46] on ILP have shown that in an instruction window 

comprising of both blocked and miss-independent instructions, the blocked instructions 

are far fewer than independent instructions. As shown in Figure 6, beyond a few 

dependent instructions, there are a lot of independent instructions which can be 

scheduled for execution without having to wait for the load miss. The amount of ILP  
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Figure 6. Typical behavior of programs showing ILP behind blocked cache misses 

 

that can be exposed by a typical out-of-order superscalar processor in the event of a last 

level load miss is not even comparable to the amount of ILP that exists in programs. 

For instance, if the window in Figure 6 is of thousands of instructions, a state of the art 

commercial processor which can support an instruction window of ~200 instructions 

will soon run out of instruction buffers and stall much before it can reach the majority 

of independent instructions, thus exposing only limited ILP while dissipating a lot of 

power in the process. There have been several unconventional processor architectures 

proposed in literature which take advantage of such program behavior shown in Figure 

6 and deal with load misses to the cache in a different way. They unblock the load miss 

and its dependent instructions and make them release their pipeline resources until the 

miss data arrives. Since long latency instructions do not hold on to their instruction 

buffers for a long time, pipeline resources are always recycled quickly, so only a 

reasonable number of instruction buffers are sufficient to support a large instruction 

window. These architectures differ from each other in terms of how this large look 

ahead instruction window is made available, which is explained in the next section. 

 

2.2.1 Runahead execution processors  

 A  Runahead execution processor [12][34] exposes MLP in programs in the  
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event of last level cache misses. When a load misses the cache, a Runahead processor 

checkpoints [21] the architectural state and enters Runahead mode. The load miss and 

its dependents pseudo-execute and release their pipeline resources. The miss-

independents also complete execution and retire from the reorder buffer. However, in 

Runahead mode, the retiring instructions do not update the architectural state or cache. 

When the miss returns the processor state is restored from the checkpoint. All the 

instructions, both dependents and independents are re-executed with correct data. The 

only difference is that the execution now is accelerated because the data required by the 

instructions in the current window is brought to the processor core sooner, owing to the 

MLP exposed by Runahead execution. All the speculative work done in the shadow of 

the cache miss is thrown away.  

Figure 7 shows the working of a Runahead processor for the same working 

example from Figure 4.  The darker shaded blocks indicate pseudo-execution of 

instructions while the lighter shaded blocks indicate second wave execution after the 

miss data is returned to the processor. Figure 7 shows that second wave execution is 

much faster and involves fewer stalls compared to first wave execution. The same 

figure also shows that all the instructions are re-executed during the second wave. As 

for the memory state needed to maintain a large window, since Runahead processors do 

not update the cache, memory ordering violations in Runahead mode are not fatal. 

Hence a small load store queue will suffice. 

The advantage of Runahead execution is that it is perfectly implementable with 

negligible hardware overhead needed for the checkpoint. However, notice that 

Runahead chooses to re-execute all the miss-independent instructions redundantly. In 

other words, the key problem with Runahead processor is that it does not have provision  
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Figure 7. Execution sequence of a Runahead processor 

 

to save the results of independent execution and thereby ends up re-executing all the 

non-shaded instructions in Figure 7 after the miss comes back, even though those 

instructions are not related to the miss. Since all the speculative work is thrown away 

there is limited performance improvement from Runahead execution. Moreover, there is 

wastage of energy because all instructions are executed twice, once in Runahead mode 

and again when the miss data is delivered. If Runahead cannot expose any MLP then 

there is no performance benefit, while the energy consumption cannot be avoided. In 

order to overcome this, later work [35][36], adds heuristics to determine phases where 

Runahead execution would not benefit. This is done by maintaining a history of load 

misses that have exposed MLP. If a load that is known to have not given any prefetch 
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benefit misses again, the processor opts not to go into Runahead mode. Another 

heuristic makes note of the number of instructions pseudo-retired in the runahead 

window and makes sure atleast these many instructions retire before Runahead mode is 

entered once again. This heuristic avoids overlapping Runahead episodes. Overall these 

heuristics improve performance and energy by some amount. 

In summary, the Runahead concept is applied to last level misses that typically 

take a long time to return. Potentially a lot of ILP can be exposed in Runahead mode 

while the miss is outstanding. The fact that all this work, including meaningful 

independent execution is thrown away after the miss returns, would be the biggest 

limiting factor of this proposal.  

 

2.2.2 Waiting Instruction Buffer 

The Waiting Instruction Buffer [30] does what Runahead execution processor 

does not - which is execute the miss-independent instructions while the load miss is 

outstanding and not revisit them again after the miss comes back. This is because, 

unlike Runahead processor, Waiting Instruction Buffer (WIB) provides the ability to 

retain the results of independent execution, but at the expense of inordinate amount of 

buffering, as will be explained further.   

Typically in a superscalar processor the issue queue size is lower than the size 

of the instruction window because the reservation stations do not buffer those 

instructions that have completed but are yet to retire. As mentioned before, the issue 

queue is a complex structure made up of CAM logic which is also timing critical. The 

WIB design releases pressure on the issue queue by making long latency cache misses 

release their issue queue entries. The execution of WIB for the same working example  
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Figure 8. Execution sequence of a processor that uses WIB 

 

is shown in Figure 8. As can be seen in the figure, the miss-independents B, C, E, F and 

H do not re-execute when the miss returns; only the load miss and miss-dependent 

instructions A, D and G do, shown by the presence of both dark and light shaded boxes 

alongside these instructions. WIB treats the issue queue as the only critical resource and 

allows miss dependents to retain other pipeline resources like physical registers and 

load store queue entries, simply assuming that a large number of them can be made 

available in future implementations. So in order to support a large instruction window, 

WIB physically buffers the entire window with a multi-level register file and large 

instruction buffers. In WIB, each instruction dependent on a load miss sets a bit vector 

dedicated for each outstanding miss, which allows miss-dependents to be reissued post 
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wakeup without needing the complex broadcast logic of the issue queue. Their waiting 

buffer is organized as a multi-banked structure which allows miss-dependents to be 

reissued in any order as and when the wakeup arrives. Physically buffering the entire 

instruction window also allows instructions dependent on multiple load misses or miss-

dependent misses to be moved in and out of the issue queue multiple times, although at 

the cost of excessive re-execution and energy.  

In summary, WIB is able to exploit large amount of ILP by executing the miss-

independents while the load miss is outstanding and does not re-execute these 

instructions when the miss data returns. However, it achieves this by physically 

buffering the entire instruction window, the implementation of which is impractical.  

 

2.2.3 Continual Flow Pipelines 

Continual Flow Pipelines [46] was the first latency tolerant proposal that 

included scalable solutions for the all the cycle critical pipeline resources including the 

register file, issue queue and load/store queues. This dissertation aims to improve on the 

latency tolerance techniques proposed in conventional CFP.  

When a load miss occurs, CFP makes the load miss and its dependents 

relinquish their critical pipeline resources and wait in a low complexity FIFO buffer 

outside the core pipeline. Repeating the running example, CFP execution would look 

exactly the same as the execution of WIB shown in Figure 8. The primary difference is 

that CFP incorporates a scalable register management algorithm and addresses issues 

with scaling the load and store queue issues in addition to the issue queue.  

 

2.2.3.1 Register Management in CFP 
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CFP alleviates pressure on the register file by replacing conventional ROB-

based register management with Checkpoint Processing and Recovery (CPR) [2][3]. 

CPR operates at the granularity of checkpoints, which are created at the rename stage. 

Instructions are bulk committed one checkpoint at a time and recovery is permitted only 

to checkpoints. CPR takes advantage of this recovery restriction to aggressively reclaim 

physical registers between checkpoints. CPR tracks registers by associating each 

register with a reference count and a count of zero indicates the register is free. A 

register’s reference count is incremented when an instruction that reads or writes the 

register is dispatched to the issue queue and decremented when that instruction executes 

or is squashed.  

 

2.2.3.2 Slice Buffer Management in CFP 

CFP releases pressure on the issue queue by making miss-dependent 

instructions release their issue queue entries, similar to WIB, and moving them outside 

the critical pipeline into a low complexity slice buffer. While CFP’s slice buffer is 

similar to WIB, it has two important differences. First, while WIB physically buffers the 

entire instruction window, CFP buffers only the miss-dependents, which are far fewer in 

number compared to the miss-independents [28][46], as shown in Figure 6. This allows 

CFP to support a large instruction window with a reasonably small slice buffer. Second, 

in CFP miss-dependent instructions capture miss-independent register inputs when they 

move into the slice buffer. This decouples the miss-dependent slice from the rest of the 

program. This decoupling means that miss-dependent instructions can release their input 
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registers as if they had executed, allowing CPR to reclaim them long before they are 

used by the slice buffer instructions.  

The CFP slice buffer is maintained in execution order and instructions are 

allocated slice buffer entries as they come out of the issue queue. After the wakeup, 

CFP re-introduces the instructions from the slice buffer into the pipeline by re-renaming 

and re-dispatching them. Since CFP populates the slice buffer in execution order, the 

slice buffer cannot represent register dependences in terms of logical register names 

(since logical registers may have been overwritten by the miss-independent instructions) 

and hence must use physical register names instead. So CFP uses a physical-to-physical 

register renaming policy to reintroduce slice instructions into the pipeline. In physical-

to-physical renaming, the physical-to-physical map table has as many entries as the 

processor has physical registers. An instructions input registers are renamed by indexing 

this map table with the physical register numbers that it received when it was originally 

renamed. A new destination register is allocated, and entered into the map table at the 

index corresponding to the destination physical register number originally assigned at 

rename.  

 

2.2.3.3 Load and Store Management in CFP 

CFP scales the load and store queues through the use of hierarchy [2]. To 

support a large window of load instructions, CFP uses a conventional fully-associative 

first level load queue along with a large set-associative second level load queue [2]. In 

this hierarchical design, the youngest loads are placed in the fully-associative queue. 

When the fully-associative queue fills up, the oldest load in the queue is relegated to the 

set-associative load queue. 
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CFP also uses hierarchy to manage stores [2]. Similar to the load queue design 

there is a conventional first level store queue and a larger associative second level store 

queue with slower access latency. This is known to work well because store-load pairs 

are usually within a short distance from each other and most of the forwarding occurs 

when a store is still in the first level store queue. This is the main purpose of the first 

level store queue while the second level store queue is used mainly to ensure memory 

ordering. Though hierarchical store queues perform well, the disadvantage with a large 

second level store queue is the area and energy inefficiency of the CAM matching 

circuitry [14]. 

To overcome the dynamic power associated with a large associative 

hierarchical store queue, Gandhi et. al. propose to replace it with a simple FIFO 

structure called the Store-Redo Log (SRL) [14] that records all the stores in the 

instruction window in program order. All completing stores write their data into pre-

allocated locations (assigned at rename) in the SRL whenever they become ready.  

While the miss is pending, miss-independent stores write to the cache 

speculatively and also update the SRL. Miss-independent loads which cannot forward 

data from the small conventional store queue get their data speculatively from the 

cache. When the miss returns, the speculative state in the cache is flushed and the slice 

buffer instructions are reissued for second wave execution. Miss-dependent stores get 

store queue entries to forward data to dependent loads. When miss-dependent stores 

complete, they fill up the holes in the SRL buffer assigned for dependent stores. When 

the slice buffer empties, all the holes in the SRL are filled up by either independent or 

dependent stores. Then all the stores are emptied into the cache in program order from 

SRL.  
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Notice that the miss-independents write to the cache twice, first time for 

forwarding data to independent loads and second time from the SRL in correct program 

order. The advantage of the SRL is that it does not take part in any forwarding and is 

neither a multi-ported nor an associative structure. It is primarily there to ensure store 

updates to the cache take place in program order, while the responsibility of forwarding 

is off-loaded to the small store queue and cache. This allows the SRL design to support 

a large window and yet remain scalable.   

 

2.2.3.4 CFP on In-order Processors  

CFP on in-order cores was first proposed in [37]. This approach is suitable for 

highly energy constrained computing devices but less suitable for the performance 

needs of conventional single-thread applications targeted by the Tuned-CFP multicore 

architecture. 

 

2.2.3.5 Limitations of CFP  

Figure 9(a) shows an execution sequence of instructions from #1 to #300. 

Instruction #2 misses the last level cache and will take a long time to execute. The cache 

miss dependents are shown as dark shaded boxes. All the following blocks represent the 

pipeline resources like reorder buffer entries and load store queue entries. Occupied 

pipeline resources are shown as shaded, while unoccupied resources are shown in white. 

The boxes on the right side show the low complexity slice buffer where load miss 

instructions and their dependents wait until the miss data arrives. The non-CFP ROB 

processor does not have a slice buffer.  
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Figure 9. Execution sequence demonstrating the pipeline flush limitation of conventional-CFP 
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We assume a 64 entry reorder buffer for this example. Figure 9(b) shows that 

the non-CFP ROB processor stalls after instruction #65 is brought into the pipeline 

because #2 cannot proceed forward until the cache miss data returns. Notice that even 

though all non-shaded instructions between #2 and #65 execute in the out-of-order 

processor, they still stay in the pipeline holding onto their resources because #2 is 

blocking them, and as a result the ILP that can be exploited by a non-CFP processor is 

limited. 

Figures 9(c) - 9(i) show the working of a conventional-CFP processor. When 

the load miss instruction #2 is found to be blocking the pipeline, it is moved into the 

slice buffer as shown in Figure 9(c). Figure 9(d) shows that all miss-dependents or 

shaded instructions, including those beyond #64, move into the slice buffer. Though not 

explicitly shown in the figure, the miss-dependents also carry their ready input sources 

from miss-independent execution into the slice buffer. While the miss-dependents move 

into the slice buffer, CFP is able to process a lot more instructions compared to non-

CFP ROB, indicated by the fact that CFP is able to take processing forward up to 

instruction #240 when the wakeup for #2 arrives as shown in the same Figure 9(d).  

After the wakeup arrives, the front end of the conventional-CFP processor is 

stalled; so no more instructions after #240 are brought into the pipeline, indicated by the 

white slots in Figure 9(e). As shown in Figure 9(f), finally when the pipeline is drained, 

the slice instructions can be reintroduced into the pipeline. The shaded instructions are a 

self-contained slice and though separated in the original program as shown in the 

execution sequence of Figure 9(a), they can be executed together as a block in the 

second wave as shown in Figure 9(g).  

When all dependents complete without exceptions or mis-predictions, the  
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results of independent and dependent execution are integrated as shown in Figure 9(h). 

Only after this, the next instruction from the execution sequence #241 gets a chance to 

enter the pipeline, as shown in Figure 9(i). 

As we see from the example, the main disadvantage of conventional-CFP is the 

pipeline flush that separates the execution of independents and dependents leading to a 

lot of unused pipeline slots whenever the dependents are replayed from the slice buffer. 

The impact of this pipeline flush was not very pronounced when conventional-CFP was 

introduced because it was applied to only last level cache misses that went to DRAM. In 

present generation processors, with integrated memory controllers and large on-chip 

caches, applying CFP to only misses that go to DRAM will give less benefit, especially 

on CPU benchmarks. Targeting the other kind of misses, that is first level misses that hit 

higher on-chip caches, is also equally important. Although they do not incur as much 

delay as a miss to DRAM, they occur more frequently and consequently have the same 

impact on performance as a last level cache miss. Moreover, this allows designing 

processor cores with smaller instruction buffers to suit the L1 hit case.  

However, conventional switch-on-event CFP cannot be applied to first level 

misses because the pipeline flush penalty will override the benefits of CFP execution. 

To overcome the limitation of conventional-CFP, in this dissertation, we propose to 

execute the independent and dependent instructions concurrently, similar to a 

simultaneous multithreading (SMT) architecture. We call this simultaneous-CFP (S-

CFP) processor core architecture.  

For the same working example, when the dependents block forward progress, 

like conventional-CFP, they are moved into the slice buffer as shown in Figure 9(c). But 

unlike conventional-CFP, when the wakeup arrives, the pipeline is not drained. The 
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slice instructions are reissued while the independents are active in the pipeline as shown 

in Figure 9(j). Notice that the slice instructions execute as a separate thread, so they can 

be reintroduced into the pipeline, inter-mingled with the independents, as shown by the 

non-contiguous shaded instructions in Figure 9(k). The key impact of concurrent 

execution is that the empty or white slots are completely avoided with this approach. 

Avoiding the pipeline flush overhead allows CFP to be applied on first level misses as 

well for better performance as we will show in the results section.  

 

2.2.4 Kilo Instruction Processors  

Gonzalez et al. [15] proposed using virtual registers to shorten the lifetime of 

physical registers. Refer Section 2.3 for more details on virtual registers.  

Kilo instruction processors [10] also used virtual renaming and ephemeral 

registers to do late allocation of physical registers. KILO scales the register file using a 

combination of virtual registers and reference counting. At rename, logical registers are 

mapped to virtual registers - a namespace larger than the set of physical registers. The 

virtual register name is then re-mapped to a physical register only when it needs a 

physical location – that is when the instruction produces a result after execution. KILO 

reference counts these virtual register names to determine when they can be reclaimed, 

and reclaims the underlying physical register at the same time. For the load or store 

queues, KILO cites various prior proposals, including those used by CFP, and states that 

any would be satisfactory.  

Decoupled KILO-Instruction Processor (D-KIP) [40] improves the register 

management scheme of KILO by using two different processors – a Cache Processor for 

independents and a Memory Processor for dependents. In D-KIP, instructions start in 
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the Cache Processor. The Cache Processor is a conventional out-of-order processor, 

except that miss-dependent instructions are forced out of its ROB after a certain number 

of cycles. As miss-dependent instructions leave the Cache Processor, they are placed 

into a FIFO queue which connects to an in-order Memory Processor. Miss-dependents 

capture their ready register input values as they exit the Cache Processor, so that the 

Memory Processor remains a self-contained slice. D-KIP maintains precise register state 

in the Cache Processor using checkpoints. D-KIP scales the load and store queues using 

hierarchy.   

 

2.2.5 Flea-Flicker 

Flea-Flicker [4][5] executes a program on two in-order back-end pipelines 

coupled by a queue. An advance pipeline executes independent instructions without 

stalling on long latency cache misses while deferring dependent instructions. A backup 

pipeline executes the instructions deferred in the advance pipeline and merges them 

with results stored in the queue from the advance pipeline. Flea-flicker executes 

instructions in an in-order pipeline, saves advanced instructions and results in its queue 

and merges results sequentially during backup pipeline execution. 

 

2.2.6 iCFP and BOLT  

iCFP [17] tolerates cache misses at all levels in the cache hierarchy, but uses an 

in-order pipeline, which is less suitable for the performance needs of conventional 

single-threaded applications.  

BOLT [18] utilizes additional map tables in Simultaneous Multithreading 

architecture to re-rename L2 miss-dependent slice, combined with a program order slice 
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and a unified physical register file that supports aggressive register reclamation. BOLT 

reuse of SMT hardware is to improve energy efficiency and performance.  

 

2.2.7 Sun Microsystems Rock 

Sun Microsystems Rock is a single die multicore processor for high throughput 

computing. Rock uses Simultaneous Speculative Threading [7] to defer dependent 

instructions into a buffer, and executes the deferred instructions from the checkpoint 

after the miss data returns. The deferred instructions execution uses a simultaneous 

hardware thread and merges the results into the scout thread future file. Rock uses an in-

order pipeline, similar to iCFP and is thus less suitable for the performance needs of 

single-threaded applications. 

 

2.3 Simultaneous Multithreading 

Simultaneous multithreading (SMT) [48][49] is a technique that allows 

multiple independent threads to issue multiple instructions each cycle to a superscalar 

processor’s execution units. SMT benefits from multiple instruction issue of current 

superscalars and latency hiding ability of multithreading. SMT allows threads to share 

resources without context switching delays by having all thread register contexts active 

simultaneously. SMT also works around the limited thread instruction parallelism by 

having instructions from multiple independent threads in the scheduling window, 

providing plenty of opportunity to keep the superscalar execution units at full 

utilization. SMT can be implemented as an extension to a superscalar in a 

straightforward manner. Changes necessary to support SMT on a superscalar are: 
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 Multiple program counters and a fetch unit arbitration mechanism. 

 Separate return address stack per thread. 

 Separate retirement, branch mis-prediction, and exception recovery logic for 

each thread. 

 A register alias table for each thread in the rename unit. 

 Larger register file to support logical registers for all threads as well as 

additional registers for renaming. 

 

Because dependencies between instructions are established at the rename stage, 

instructions from different threads can share the instruction buffers, the register file, 

execution units and read/write ports to the cache. The issue logic does not have to keep 

track to which thread an instruction belongs. Execution proceeds in a dataflow manner 

as usual. The primary impact is the enlarged size of the register file, especially for 

instruction sets which have a large number of logical registers. The enlarged register file 

may require an additional cycle in the pipeline to perform the read, and an additional 

cycle to write results, as suggested in [49]. 

Although SMT can be very useful in increasing throughput when running 

multiple programs, it is still limited in some respect. Sharing the cache hierarchy and 

the chip pin bandwidth among multiple programs limits the efficiency of these 

resources in comparison to running a single program. On the other hand, multithreading 

a single program, does not limit cache efficiency to the same degree, especially when 

instructions from the two threads lie very close to each other. Since this dissertation 

targets CFP on first level misses and majority of first level misses hit on-chip caches, 
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the SMT threads comprise of closely lying instructions from the single program and 

usually benefit from constructive cache accesses.  

 

2.4 Architectures with Virtual Register Renaming 

The mechanisms proposed in this dissertation to improve earlier CFP 

architectures benefit immensely from the concept of virtual register renaming. This 

section gives a brief account of prior work done on virtual registers.  

 

2.4.1 Virtual Registers  

The concept of using virtual registers for renaming was first introduced by 

Gonzalez et al [15]. It was used to shorten the lifetime of a physical register in the 

instruction window. After an instruction comes out of the decode stage, it is renamed 

with a virtual register ID, chosen from a free pool of virtual registers. A virtual map 

table indexed by the logical register is used by future instructions to determine their 

sources. A physical register from a free pool is allocated to this instruction only when a 

storage location is required by it, which is when a result is generated by this instruction 

from an execution unit. A second table called physical map table indexed by the virtual 

register is used for translation to physical registers. The virtual register and physical 

register are both freed when the instruction commits. A ROB is used to release the 

virtual and physical registers and to recover from branch mis-predictions and 

exceptions. 

 

2.4.2 Virtual Register Renaming 
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Figure 10. Virtual register renaming architecture block diagram 

 

Sharafeddine and Akkary describe a virtual register renaming (VRR) 

architecture [41] that uses checkpoints which eliminates the use of physical registers 

and reorder buffer. Figure 10 shows the block diagram of VRR architecture. An 

instruction from the decode unit is allocated a virtual ID (VID) from the virtual register 

counter (VR_Count in Figure 10) if there is an available entry in the reservation station. 

This VID stays with the instruction until it completes full execution. Each entry in the 

RS has fields for its source designator, its data value and a valid bit. In the VRR 

architecture, the VID acts as the source designator. Whenever a result is generated by 

the execution unit it broadcasts the result along with its VID on the bus. All the entries 

in the RS compare this VID to that stored in their respective source designator fields 

and upon a match, copy the data to their RS and set the valid bit. Whenever all the 

source operands are valid and an execution unit is available, an instruction is scheduled 

for execution. The instruction takes its VID along with it for execution so that it can 
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broadcast it after completion and consumers waiting for this data can grab it from the 

writeback bus. When an instruction completes, it writes its results to the RF based on 

the condition whether its VID is larger than the VID of the last writer to have updated 

the RF. This ensures sequential updates to the RF without having to use a ROB for the 

same purpose. Also in the VRR architecture, checkpoints are created at select low 

confidence branches (determined based on history) to ensure forward progress. In case 

of an exception or branch mis-prediction, execution rolls back to the previous 

checkpointed state.  

This virtual register renaming architecture [41] forms the substrate over which 

our Tuned-CFP architecture is built.  

 

2.5 Summary 

This chapter explained the work that has been done in the past to deal with 

cache misses to improve single thread performance in processors. Conventional 

processors rely on non-scalable structures to give performance improvement, while the 

non-conventional proposals either provide latency tolerance on in-order processors or 

only target cache misses to DRAM. If latency tolerance needs to be provided for misses 

at all levels of the cache hierarchy, then the proposals from the past are not effective. 

Chapter 3 details the microarchitecture of our proposal that allows miss-dependents and 

miss-independents to execute simultaneously. Chapter 4 details the implementation of a 

processor that uses the virtual register renaming architecture explained in section 2.3 as 

a substrate to provide improved load latency tolerance, both in terms of performance 

and energy.  
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CHAPTER 3 

SIMULTANEOUS-CFP ARCHITECTURE 

 

Continual Flow Pipeline architecture [46] was originally proposed to tolerate 

long latencies of L2 cache misses that go to DRAM. In the original proposal, the miss-

independent and dependent instructions execute at different times, based on the timing 

of the load miss event and the data arrival event. Switching between the two executions 

is costly because it involves a pipeline flush, making this proposal unsuitable for L1 

misses that hit the on-chip cache. Simultaneous-CFP (S-CFP) executes the independent 

and dependent instructions simultaneously to avoid the costly pipeline flush, thus 

making S-CFP more suitable for first level data cache misses.   

 

3.1 Simultaneous-CFP Microarchitecture 

In this section, we describe Simultaneous Continual Flow Pipeline (S-CFP) 

core microarchitecture, and its performance optimizations, simplifications, and 

differences from previous latency tolerant core architectures. 

 

3.1.1. Microarchitecture Overview 

The S-CFP core microarchitecture is based on Intel P6 core architecture [39]. 

Intel P6 architecture executes x86 code after decoding the x86 complex macro-

instructions into RISC-like micro instructions or micro-ops (uops). We use the word 

instructions to mean micro-ops for the rest of this document. Figure 11 shows a block 

diagram of the Simultaneous-CFP core. Unlike previous latency tolerant out-of-order 
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Figure 11. Simultaneous-CFP architecture block diagram 

 

architectures, the S-CFP core executes cache miss dependent and  independent 

instructions concurrently using two different hardware thread contexts. The S-CFP 

hardware is similar to simultaneous multithreading architectures (SMT) [48], except 

that in S-CFP, the two simultaneous threads are constructed dynamically from the same 

program, instead of being two different programs that run simultaneously in the same 

core. In order to support two hardware threads, S-CFP has two register alias tables 

(RAT) for renaming the independent and the dependent thread instructions. S-CFP also 

has two retirement register file contexts (RRF), one for retiring independent instruction 

results and the other for retiring dependent instruction results.  

In S-CFP, execution initially starts using a hardware thread that we call the 

independent thread. When an L1 data cache load miss occurs, a poison bit is set in the 

destination register of the load. Load-dependent instructions in the reservation stations 
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(RS) are then woken up, as if the load completed. Poison bits propagate through 

instruction dependences, and identify all instructions that depend on the load miss and 

their descendants. Wherever register data resides or flows in the core, poison bits extend 

and qualify the data. For this purpose, S-CFP has new poison bits added to the 

reservation stations, writeback buses, bypass network, reorder buffer entries (ROB), 

retirement register file and store queue entries (SQ).  

The miss load and its dependents, identified by the poison bits in the ROB, 

pseudo-retire in program order and move from the ROB into a dependent slice and data 

buffer (SDB) outside the pipeline. Therefore, miss-dependent instructions do not 

consume or occupy precious pipeline resources such as reservation stations or ROB 

entries, while waiting for the load miss data. This frees the pipeline resources for 

independent instructions to execute. Since dependent instructions do not tie pipeline 

resources, the core can look ahead far into the program for independent instructions to 

process.  

Since poisoned instructions are reordered using the ROB before they are 

written into the SDB, the complexity of physical to physical register renaming, 

deadlock avoidance hardware, and rename filter, required in conventional-CFP 

architecture [46], are eliminated in S-CFP. Another advantage of reordering dependent 

instructions before writing them into the SDB, is that it allows implementing the SDB 

using single-ported SRAM, organized as an array of multi-instruction blocks. The width 

of a SDB block can be set to the width of the S-CFP core pipeline to allow writing or 

issuing SDB blocks of instructions, at full pipeline bandwidth.  

Since the SDB needs to store any completed non-poisoned source registers 

with its instructions, S-CFP uses the ROB data array to propagate completed source 
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operands with the poisoned instructions to the SDB. This is achieved with a 

modification of the execution units to make them write back completed source registers 

of poisoned instructions to the ROB. In other words, functional units execute poisoned 

operations as move source to destination operations. A poisoned instruction has at most 

one completed source since S-CFP uses RISC-like uops with at most two source 

registers.  

When the miss-data is fetched into the L1 data cache, the dependent 

instructions wake up and issue again from the SDB into the pipeline using a hardware 

thread that we call dependent thread. The dependent thread executes simultaneously 

with the independent thread until the SDB is drained. Since the dependent and 

independent threads execute simultaneously using different register contexts, it is not 

necessary to flush the pipeline in order to execute the dependent instructions, as in 

previous latency tolerant architectures work. Without a pipeline flush penalty overhead, 

it becomes beneficial to pseudo-retire and defer L1 data cache load misses and their 

dependent instructions, even though many L1 data cache misses hit the last level cache 

and therefore result in shorter stalls than load misses to DRAM. When all dependent 

instructions re-execute and the SDB is drained, the execution results of the dependent 

and independent threads are integrated, with a single-cycle flash copy within the RRF. 

The independent thread continues execution by itself without any interruption or 

pipeline flush.  

Since loads can depend on stores through memory, S-CFP relies on memory 

dependence prediction [8] to propagate poison through memory dependences. Poison 

bits are added to the store queue entries for this purpose. We now describe further 

details of the S-CFP core architecture. 
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3.1.2. Independent Thread Execution and Dependent Thread Construction 

The independent hardware thread is the main execution thread in S-CFP. It is 

responsible for instruction fetch and decode, branch prediction, and memory 

dependence prediction. It also propagates poison bits after a cache miss to identify and 

remove from the pipeline miss-dependent instructions.  

The independent thread executes instructions that are independent of L1 data 

cache misses, and pseudo-retires all instructions, miss independent as well as 

dependent. The retirement process copies the poison bit of each retired instruction into 

the retirement register file (RRF). Poison bits in the RRF are not sticky. At any time, a 

poison bit of a register entry in the RRF can be either true or false, depending on 

whether the last retired writer of this logical register was independent or dependent on 

the load miss.  

When the SDB is empty and a load miss retires and enters the SDB, the 

independent thread retirement register file contains the precise state of the execution up 

to the load miss. S-CFP saves a checkpoint of this RRF for recovery in case of a 

subsequent miss dependent branch mis-prediction or exception.  

Since a poisoned instruction has two source operands, it has at least one 

poisoned source and at most one completed source operand. S-CFP functional units 

write back the completed source registers of poisoned instructions to the ROB, from 

which they are copied to the SDB when the instructions pseudo-retire. Therefore, 

dependent instructions in the SDB form a self-contained program slice or thread that is 

completely independent of the retired miss-independent instructions.  

In case of an independent mis-predicted branch, instructions before the branch 

pseudo retire and the dependents among these instructions enter the SDB. Instructions 
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after the branch are flushed before they pseudo retire, thus no bogus mis-predicted 

instructions ever enter the SDB.  

 

3.1.3. Dependent Thread Execution 

Dependent thread execution starts when load miss data fetch completes and the 

load is woken from the SDB. It continues until the SDB is empty. The dependent thread 

execution uses a separate SMT hardware thread, with its own register alias table (DEP 

RAT), and retirement register file context (RRF). It executes simultaneously with the 

independent thread, with which it shares execution resources, such as, reservation 

stations, functional units, and data cache read and write ports. Dependent loads and 

stores carry with them unique sequence IDs assigned to them when they were originally 

fetched by the independent thread. These sequence IDs allow the load-store ordering 

hardware to identify the order of dependent and independent loads and stores within the 

program. The dependent thread is responsible for committing all stores, independent 

and dependent, in program order to the data cache.  

The SDB is managed as a circular buffer with head and tail pointers. 

Dependent instructions enter the SDB at the tail when they pseudo-retire and deallocate 

from the head after they re-execute and retire. The SDB could contain at any time 

multiple load misses and their dependents, stored in program order. Load miss wakeup 

and reissue from the SDB is done in program order, even though load miss wakeups 

could arrive to the SDB out of order. If a load miss occurs in the dependent thread 

during its execution, the load stalls until the data is fetched into the L1 data cache. In 

other words, dependent instructions do not pseudo retire or enter the SDB more than 

once. As a consequence, pointer chasing code that encounter dependent misses do not 
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fully benefit from S-CFP. However, we have chosen this approach to keep hardware 

simple.  

If a mis-predicted branch or an exception occurs during dependent thread 

execution, S-CFP flushes the SDB and the pipeline, and rolls back execution to the 

checkpoint. Our simulation results, indicate that these flushes do not happen too 

frequently and S-CFP can still achieve significant performance gain in spite of these 

costly but infrequent rollback events.  

 

3.1.4. Checkpoints and Results Integration  

Figure 12 shows the S-CFP retirement register file cell with checkpoint flash 

copy support. We use a flash copy of the RRF for creating checkpoints. In two cycles 

every RRF bit is shifted into a checkpoint latch within the register cell (rightmost latch). 

The register file can be restored from the checkpoint in one cycle by asserting 

RSTR_CLK.  

In addition to a checkpoint latch, the cell contains two context bits, one for the 

independent thread RRF (leftmost latch) and one for the dependent thread RRF (center 

latch). The independent and dependent thread results integration is a special restore 

cycle. At the end of dependent execution and when all instructions in the SDB have re-

issued and retired, the RRF has all the live-out registers, some computed by the  

independent thread and some computed by the dependent thread, as determined by the 

poison bits in the RRF. To integrate these results back into one context, a restore cycle 

is performed from the dependent thread context into the independent thread context. 

However, not all registers are copied. Figure 12 shows that only the poisoned registers 

are copied by using the poison bits to enable the clock of the copy operation. A 2-to-1 
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Figure 12. S-CFP register file cell 

 

multiplexer in the cell restores either the checkpoint bit or the dependent bit during a 

RSTR_CLK cycle. 

 

3.1.5. Memory Ordering and Load, Store Execution 

To maintain proper memory ordering of loads and stores from the independent 

and dependent threads execution, we use small size load and store queues (LSQ), a  

Store Redo Log (SRL) [14] and a store set memory dependence predictor [8]. All stores, 

dependent and independent, are allocated entries (and IDs) in the SRL in program order 

by the independent thread. Every load, dependent or independent, carries the SRL ID of 

the last prior store. The SRL IDs assigned to loads and stores are unique and determine 

   Indep bit Chkpt bit Dep bit 

Read / Write ports  Read / Write ports  

Q D D D Q Q 

CHKPT_CLK  

(P or restore_chkpt) & RSTR_CLK 

&  



 
 
 

48 
 
 
 

the order of memory instructions. The independent thread performs load memory 

dependence prediction, with a store-set predictor [8], to determine the store on which a 

load may depend. The predictor uses SRL IDs in the prediction and writes store poison 

bits in the SRL, thus allowing propagation of poison bits from stores to predicted-

dependent loads. The L1 data cache support and dependent and independent threads 

load and store execution are explained in detail in Chapter 5.  

 

3.1.6. Resource Sharing During Simultaneous Execution 

S-CFP is different from simultaneous multithreading (SMT) in two key 

aspects: 1) the two simultaneous threads belong to the same single-thread program, and 

2) the execution time is dominated by the independent thread, since dependent 

instructions form a small fraction of the overall program. S-CFP resource sharing has to 

favor the dominant independent thread to provide best overall performance.  

The strategy we use for resource sharing is the following. When the SDB has 

instructions to issue, we use a round robin policy to schedule rename cycles between the 

dependent thread and the independent thread. This is one typical policy used in 

simultaneous multithreading architectures. However, we do not partition in S-CFP the 

reorder buffer between the two threads, and simply allow dependent and independent 

instructions to be interleaved in the reorder buffer. This may complicate the retirement 

stage to some degree. However, we believe that this policy is implementable, since 

dependent thread branch mis-predictions and exceptions are not taken at instruction 

granularity. Instead, they are handled by checkpoint rollbacks. 

 

3.2 Limitations of Simultaneous-CFP 
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The problem with S-CFP is that the entire chain of the load miss and its 

dependents needs to be renamed and replayed from the SDB until all miss-independent 

and miss-dependent instructions complete execution and their results are merged. This 

can last for a long distance forward in the program, causing excessive replays and 

rollbacks. We show next in more detail examples that illustrate the drawbacks of S-CFP 

targeted by our optimizations. 

 

3.2.1 Unoptimized S-CFP Execution Examples 

Figures 13(a) and 13(b) show snapshots of the ROB and WB (the term waiting 

buffer can be used interchangeably with slice data buffer) states in S-CFP at different 

execution times. All shaded instructions correspond to either a load miss or a load miss 

dependent, both of which are potential candidates to move into the WB. 

In Figure 13(a), the WB has a load miss X at the head waiting for its wakeup. 

Instruction A misses the first level cache and is marked as a potential candidate to be 

moved into the WB. When A reaches the head of the ROB, there are still free entries 

available in the ROB. Nevertheless, S-CFP eagerly pseudo-retires and moves A into the 

WB. In order to execute when the miss data is fetched, A has to be replayed from the 

WB back into the pipeline to be renamed again and allocated resources for execution. 

Figure 13(b) shows that the load miss hits the L2 data cache and A is woken up 

from the L1 data cache shortly after it enters the WB. However, it is stuck in the WB 

behind instruction X that has missed to DRAM. For a long time afterwards, and until the 

miss data of load X is fetched from DRAM, many of the dependents of A will be 

poisoned and moved into the WB. Therefore, even though A has hit the L2 cache, it is 

replayed with its dependents from the WB as if it has encountered a miss in the L2 data  
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Figure 13. Execution sequence showing S-CFP moving a dependent into WB eagerly 

 

cache and has needed to go all the way to DRAM for the data.  

Figures 14(a)-14(c) show an execution sequence to illustrate a situation in S-

CFP that leads to a rollback to the checkpoint. Similar to the earlier example, the WB 

has a load instruction X that has missed. Instruction A misses the first level cache. In 

this example, F is a branch instruction dependent on A. A is moved into the WB from 

the head of the ROB as shown in Figure 14(a). F also follows A into the waiting buffer, 

even though the wakeup for A arrives while F is still in the ROB/RS, as shown in Figure 

14(b). Both A and F are replayed behind instruction X as shown in Figure 14(c). On 

replay, branch F is found to be mis-predicted and branch mis-prediction recovery has to 

be performed by rolling back execution to the checkpoint, since by then, the sequential 

state in the register file has been corrupted by the out-of-order pseudo-retirement of 

instructions during the cache miss processing. 

Figures 15(a)-15(d) show another execution sequence to illustrate why S-CFP 

needs to replay a load and all its dependents once the load enters the WB.  In this  
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Figure 14. Execution sequence showing a scenario leading to rollback in S-CFP which is avoided in Tuned-CFP 

 

example, A is a load miss and B is dependent on A. The two instructions are separated 

by miss independents shown as dotted lines. The figures show only the miss dependents 

in the pipeline for clarity. The renamed physical source and destination register tags 

(src1, src2 -> dest) are shown alongside the instruction. Also shown below their ROB 

entries are the ROB IDs or physical destination registers of A and B. The waiting buffer, 

initially empty, is also shown in the figures. 

In Figure 15(a), A reaches the head of the ROB. It pseudo-retires and moves 

into the WB, releasing all its pipeline resources including its ROB ID #3, as shown in 

Figure 15(b). When the wakeup for A arrives and it replays, it is allocated a new entry at  

the tail of the ROB as shown in Figure 15(c). Notice that A gets a new ROB ID #24 
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Figure 15. Comparison of full replay in S-CFP and partial replay in Tuned-CFP 

 

when it is reintroduced into the pipeline. 

Because of this new ID, even though B is still in the RS and the ROB while A 

is being replayed, A’s data writeback cannot wakeup B, because B still has the physical 

register destination ID #3 as its source operand. B reaches the ROB head, pseudo-

retires, and moves into the WB. When B is replayed and reintroduced into the pipeline, 

it goes through the rename stage, gets a new ROB ID #28 and receives the correct 

physical source register ID #24, re-establishing its link with A from the dependent RAT, 
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as shown in Figure 15(d). Notice that an ‘x’ is shown for the other source IDs to 

indicate that the IDs of these sources are ‘don’t care’ for illustrating this example. 

 

3.2.2 Tuned-CFP Execution Examples 

As illustrated in the above examples, S-CFP causes excessive replays and 

rollbacks, negatively impacting performance and energy consumption. As a next step in 

this dissertation, we optimize S-CFP execution to overcome the limitations discussed 

above. We call the optimized S-CFP architecture as Tuned-CFP processor, the 

implementation of which is described in Chapter 4. 

Figures 13(c) and 13(d) show the ROB and WB states in the Tuned-CFP 

architecture. Instruction A misses the first level cache and is marked as poisoned. 

However, unlike in S-CFP, it does not release its RS entry until it becomes a blocking 

instruction, just in case the load hits the L2 cache providing the miss data to the CFP 

core shortly. A may reach the head of the ROB before the L2 data cache loads the data, 

but it will still be kept in the RS and ROB by stalling pseudo-retirement as long as there 

are  free entries in the ROB and other instruction buffers for the pipeline to continue 

execution of other instructions without blocking. If the miss data arrives before the 

pipeline blocks, A is woken up from the RS and ROB by clearing its poison bits, as 

shown in Figure 13(d). A and its dependents do not need to go through the replay loop 

at all in this example, saving significant time delay and energy. 

Figures 14(d) and 14(e) show how the rollback situation in S-CFP is avoided 

with the Tuned-CFP architecture. Similar to the previous example, instruction A stays in 

the ROB, even if it reaches the head, as long as it is not blocking execution. A gets its 

wakeup before it moves into the WB, as shown in Figure 14(e). Even though F is a 



 
 
 

54 
 
 
 

miss-dependent and mis-predicted branch, it executes before it pseudo-retires. When it 

reaches the head of the ROB, the ROB flushes the pipeline to clear all the wrong path 

instructions that have been fetched after the branch, and signals to the fetch unit to 

restart fetch and execution from the corrected target.  The costly S-CFP branch recovery 

from the checkpoint has been avoided. 

Figures 15(e)-15(g) illustrate a partial replay in the Tuned-CFP architecture, 

representing the same scenario discussed earlier in Figure 15(a). In Tuned-CFP, virtual 

register IDs that are not associated with any physical locations are used for register 

renaming and in the RS wakeup and scheduling logic. The virtual register IDs of 

instructions A and B are shown under their ROB entries in addition to the renamed 

source and destination virtual register IDs. As before, when A reaches the head of the 

ROB, it pseudo-retires and moves into the WB, as shown in Figure 15(e). However, 

unlike in S-CFP, A releases its RS but carries its virtual register ID #3 along with it into 

the WB, as shown in Figure 15(f). Later on, when it wakes up and replays, A still carries 

with it its original virtual register ID #3, still maintaining its link with its dependent 

instruction B intact. This allows the RS to schedule B without replaying and renaming it 

again, as shown in Figure 15(g). 

Avoiding excessive replays and rollbacks not only saves significant execution 

time by miss dependents but also considerable power consumption. 

 

3.3 Limit Studies to Quantify the Limitations of S-CFP 

To quantify the disadvantages of S-CFP described in Section 3.2, we used ideal 

studies to eliminate each of these disadvantages and to compare the performance against 

a non-optimized S-CFP architecture. 



 
 
 

55 
 
 
 

 

3.3.1 Buffer Full Condition 

As we pointed out earlier in Figure 13, S-CFP does not wait for the buffer full 

(bf) condition before moving a load miss or its dependent instructions into the WB. To 

measure the impact of this issue, we evaluate a model in which a load miss instruction is 

prevented from moving into the WB until it blocks the core execution pipeline. Figure 

16 shows the performance improvement due to this optimization as column bf. 

Note that benchmarks, such as gcc and perl, benefit the most from keeping 

dependent instructions in the ROB/RS until they block the execution pipeline. This is 

because these benchmarks have significant number of L1 cache misses that actually hit 

the L2 and don’t encounter the very long DRAM access latency. Therefore, leaving a 

load miss in the RS for a little longer significantly increases the probability that the load 

miss will receive a wakeup signal before it moves to the WB, thus saving the entire 

miss-dependence chain from being replayed. From Figure 16, the average contribution 

of bf optimization over all benchmarks is 2.7%. This speedup is not very high, mainly 

because the window of opportunity to save unnecessary replay is limited to the time 

between the load miss reaching the ROB head and the time the instruction buffer fills 

up. If the miss data does not come back within this time window, the entire dependence 

chain must be replayed. 

 

3.3.2 Miss-Dependent Branch Mis-predictions 

Miss-dependent branches that are later found to be mis-predicted cause 

performance degradation in CFP architectures because of the following reasons. First, 

execution needs to be rolled back to the checkpoint taken at the load miss to recover 
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Figure 16. Limit studies showing potential speedup from buffer full, Oracle miss-dependent branch predictor, 

minimum replays, individually and combined 

 

from the incorrect speculative updates made to the architectural state. Second, the miss-

dependent branch itself may be resolved much later in time depending on when it 

replays from the in-order WB. Until a miss-dependent mis-predicted branch is resolved, 

S-CFP continues to fetch instructions from the wrong path. This not only wastes 

precious pipeline resources including cycles in the power hungry fetch and decode 

stages, but also exerts additional pressure on the execution pipeline, thus increasing the 

number of instructions that are moved into the waiting buffer and subsequently 

replayed. 

In order to quantify the impact of miss-dependent mis-predicted branches on 

performance, we evaluate an S-CFP model with an Oracle predictor that stalls the 

processor front-end perfectly on a miss-dependent mis-predicted branch. This is the dp 
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model in Figure 16. As can be seen in Figure 16 from the speedup of the dp model, the 

average impact of miss-dependent mis-predicted branches on performance is about 

~5%. This is a moderate performance loss compared to that caused by replaying large 

number of miss-dependent instructions from the WB, as we present in the next section. 

 

3.3.3 Unnecessary Replay Performance Overhead  

In order to measure the negative impact of instruction replays on S-CFP 

performance, we evaluate an ideal model that eliminates unnecessary instruction replay. 

As described earlier in Section 3.2 and Figure 15, unnecessary replays are those caused 

by having to replay instructions that are still in the L1 RS when the miss load has been 

replayed in order to restore the dependence links. This model is called ur in Figure 16. 

From Figure 16, it can be seen that 12% reduction in S-CFP performance 

comes from unnecessary replays. Virtual register renaming is therefore the most 

important optimization to S-CFP. 

 

3.3.4 Combining Limit Studies 

Figure 16 also shows two models (ur + bf) and (ur + bf + dp) that combine 

individual limit studies. As can be seen from these two ideal models, the potential 

performance benefit from multiple optimizations is cumulative. In particular, (ur + bf + 

dp) model, which combines the three optimizations, establishes the performance upper 

bound that can be achieved with a realistic Tuned-CFP machine exhibiting minimum 

possible replay and rollback. Importantly, it is evident from these results the importance 

of eliminating unnecessary replays with virtual register renaming to CFP. In the next 

section, we present simulated performance results for a realistic Tuned-CFP machine. 
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Summarizing Section 3.3, on memory intensive benchmarks, the average 

contribution from each optimization towards improving performance is 4% for bf, 9% 

for dp, 18% for ur and 22% when combined. None of the optimizations require power 

hungry structures and provide sizeable speedup to justify themselves. Since these 

optimizations complement each other very well, combining them to get the best possible 

performance would be the recommended option. The next chapter will talk about how 

these optimizations can be implemented on a CFP processor.  
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CHAPTER 4 

TUNED-CFP ARCHITECTURE 

 

Simultaneous-CFP executes both miss-independent and miss-dependent 

instructions concurrently while targeting L1 data cache misses. Since L1 misses occur 

more frequently, S-CFP ends up replaying a large number of instructions, sometimes 

losing the advantage gained from CFP latency tolerance. In this chapter, we will 

describe the core architecture of CFP with virtual register renaming (Tuned-CFP) that 

mitigates excessive S-CFP replay activity and execution waste. 

 

4.1 Tuned-CFP Microarchitecture 

In this section, we will describe Tuned-CFP core microarchitecture and the 

implementation details of the optimizations discussed in Section 3.2.2.  

 

4.1.1 Microarchitecture Overview 

Figure 17 shows a block diagram of the Tuned-CFP core. Tuned-CFP 

microarchitecture uses Tomasulo’s algorithm and reservation stations to perform data-

driven, out-of-order execution [47]. 

Like other superscalar architectures, Tuned-CFP uses a reorder buffer to 

commit instructions and update register and memory state in program order. However, 

it does not use the reorder buffer for register renaming. Instead, it performs register 

renaming using virtual register IDs (VID) generated by a special counter. These VIDs 

are not mapped to any fixed storage locations in the core, thus can be large in number  
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Figure 17. Block diagram of CFP architecture with virtual register renaming 

 

and allocated to instructions throughout their life time, including miss-dependent 

instructions evicted to the waiting buffers. Since the VIDs are plentiful, Tuned-CFP 

does not run the risk of pipeline stalls resulting from miss-dependent instructions 

holding on to their renamed registers for a long time while waiting for the long latency 

load miss. The VID counter is finite in size and cannot be allowed to overflow in order 

to present allocating the same VIDs to multiple instructions in the pipeline.  Tuned-CFP 

opportunistically resets the VID counter whenever it can, e.g. when the pipeline is 

flushed to recover from a mis-predicted branch. Otherwise, a pipeline stall and drain is 

forced to reset the counter when it overflows. With 10-bit VID counter, our simulations 

show that the impact on performance of forced pipeline stalls to reset the counter is 

negligible. 
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Virtual register renaming gives Tuned-CFP a significant advantage over 

previous CFP architectures by allowing Tuned-CFP to replay only a part of the load 

miss dependence chain.  

 

4.1.2 Miss Independents Execution 

Like previous CFP cores, The Tuned-CFP core is capable of executing cache 

miss-dependent and independent instructions concurrently in the pipeline, supported by 

two retirement register file contexts (RRF), one for retiring miss-independent 

instructions and the other for retiring miss-dependent instructions. 

In Tuned-CFP, execution initially starts using a retirement register file context 

(RRF) that we call the independent retirement register file. When an L1 data cache load 

miss occurs, a poison bit is set in the destination reorder buffer entry of the load. Load-

dependent instructions in the reservation stations (RS) capture the poison bit from the 

common write back data bus. They are then woken up, as if the load completed, and are 

scheduled by the reservation stations control logic for pseudo-execution. Pseudo-

execution of poisoned instructions does not actually use any execution units. However,  

pseudo-execution consumes RS dispatch ports and writeback bus cycles to propagate 

poison bits through instruction dependences and to identify all instructions in the 

reservation stations that depend on the load miss data. After pseudo-execution, miss-

dependent instructions stay in their reservation stations until they wake up for real 

execution when the load miss data arrives, or until they are moved into the waiting 

buffer.  

 

4.1.3 Replay Loop and Miss Dependents Execution 
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Figure 17 shows the reduced replay loop in Tuned-CFP consisting of two 

stages: the reservation stations (RS) and the waiting buffer (WB). The waiting buffer 

basically acts as a second level storage for the reservation stations. With virtual register 

renaming, entries can be freely evicted from the RS to the WB and then loaded back 

again to the RS to be scheduled for execution at a later time. 

In Tuned-CFP, miss-dependent instructions are evicted from the reservation 

stations to the waiting buffer only when their buffer resources are needed to unblock the 

execution pipeline. Therefore, when a miss is processed and its data fetched to the L1 

data cache, the miss-dependent instructions may still be in the reservation stations. In 

this case, when the data is written back, the miss data is captured by all the reservation 

stations that have instructions that depend on the miss. The captured writeback data sets 

the source operand “ready” state bits and clears the poison bits of the dependent 

reservation station entries, making the instructions in these entries ready for scheduling 

and dispatch to execution. 

Evicting miss-dependent instructions to the WB on resource need basis 

significantly reduces the number of replayed instructions, especially in the case of 

medium latency load misses, which are those that miss the L1 data cache but hit the on-

chip L2 cache. 

In case of a load miss to DRAM, it is often the case that the long miss latency 

causes the instruction buffers to fill up and some or all of the in-flight miss-dependent 

instructions to evict to the waiting buffer. When the load miss is serviced, the miss load 

and its dependents are re-inserted from the waiting buffer back to the reservation 

stations where they are scheduled for execution. 
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Notice that even though replayed miss-dependent instructions do not need to be 

renamed again, they sometimes, as in Tomasulo’s algorithm, need to read source 

operands that have already been computed and retired from the ROB to the register file 

(RRF). State bits that track whether the last instructions to write logical registers have 

been retired are stored in a special storage structure. These state bits are checked during 

replay to determine if the operands are ready in the RRF, and to read them and move 

them into the RS with the replayed instructions. 

 

4.1.4 Reservation Stations 

Tuned-CFP uses a centralized array of conventional data-capture reservation 

stations [39]. Each reservation station entry is extended with a poison bit per source 

operand and L1-DCache-miss bit. The L1-DCache-miss bit is set to 1 if the entry 

contains a load instruction that has missed the L1 data cache. We say an instruction is 

poisoned if one of its source poison bits or the L1-DCache-bit is set to 1. A source 

operand of an instruction is poisoned if and only if it is the destination of another 

poisoned instruction. In other words, the poison bits propagate the dependences from L1 

data cache misses to later instructions in the program to identify instructions that may 

encounter long data cache miss delays. These instructions are candidates to move to the 

waiting buffer to avoid pipeline stalls that could occur if any of the reservation stations, 

reorder buffer, load queue, or store queue arrays becomes full. 

The reservation stations array is augmented with a free list and an order list. 

Tuned-CFP uses the free list to track the occupancy of the reservation stations. The 

order list tracks the program order of the reservation stations. The RS order list could be 

implemented as part of the reorder buffer by adding the reservation station ID of each 
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instruction to its allocated reorder buffer entry. It also could be implemented as a special 

array separate from the ROB. 

Four conditions are checked to determine if an instruction should be moved to 

the waiting buffer: 1) the instruction is at the head of the RS order list, 2) the instruction 

is poisoned, 3) one of the RS, reorder buffer, load queue or store queue arrays is full, 

and 4) every source operand of the instruction is either poisoned or ready. The last 

condition ensures that the miss-dependent instructions carry their non-poisoned input 

values with them when they are replayed, since there is no guarantee that these values 

would not be overwritten in the register file by replay time. In addition, each reservation 

station has a state bit that indicates if the instruction in the entry has been replayed once 

before, i.e. it has been moved earlier in time to the waiting buffer and then back to the 

RS array. Each reservation station also contains a load miss identifier, in case it has a 

load instruction that misses the data cache. An implementation could use for this 

purpose the ID of the L1 data cache fill buffer used to handle the load miss. 

 

4.1.5 Waiting Buffer 

The waiting buffer is a wide single ported SRAM array managed as a circular 

buffer using head and tail pointers. Miss-dependent RS entries at the head of the RS 

array moves to the tail of the waiting buffer when any of the instruction buffers fills up 

due to data cache misses. When a data cache miss is completed, Tuned-CFP replays the 

miss-dependent entries by loading them back from the head of the waiting buffer to the 

tail of the RS. Ideally, the width of the two buses connecting the RS and the waiting 

buffer would match the pipeline width. Narrower interconnect can also be used, trading 

some performance for simpler hardware. 
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A key to the efficiency of Tuned-CFP large window design is the fact that the 

waiting buffer has no CAM ports, connections to write back buses for capturing data 

operands or conventional ready/schedule logic. All these functions are handled in the 

RS array after the data cache miss completes and the miss-dependent instructions are 

replayed. Therefore, the waiting buffer array can be designed using non-tagged SRAM 

and made significantly larger than the RS array at much lower area and power cost than 

if the RS array is large enough to hold the full instruction window. 

In order to wake up miss dependents from the waiting buffer and replay them, 

the L1 data cache fill buffer handling a load miss has to receive and save the waiting 

buffer ID of its load miss.  When the miss is completed, Tuned-CFP replays the load 

miss and its dependents in program order, as described earlier, from the head of the 

waiting buffer back into the RS allocate/write stage of the execution pipeline.  

 

4.1.6 Register File and Results Integration 

Tuned-CFP uses the reorder buffer to handle branch mis-predictions and 

exceptions incurred by miss-independent instructions. On the other hand, it uses 

checkpoints to handle branch mis-predictions or exceptions encountered by miss-

dependent instructions. 

Like S-CFP architecture [23], Tuned-CFP has a specialized register file for 

checkpointing register state at the load miss, for later use to handle miss-dependent 

branch mis-predictions and exceptions. The register file also has special logic for 

integrating the results of independent and dependent instructions and to restore precise 

register state after all miss-dependent instructions execute. 
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In addition to the checkpoint bit and the independent RRF context bit, Tuned-

CFP register file cell contains one context bit for the dependent RRF state (rightmost 

latch). The integration of the independent and dependent instruction results is done in 

one restore cycle. At the end of dependent execution, after all instructions in the WB 

have replayed and retired, the RRF has all the live-out registers, some of which 

computed by the independent instructions and some by the dependent instructions. This 

is determined by the poison bits in the RRF. To integrate these results back into one 

context, a restore cycle is performed from the dependent context into the independent 

context. However, not all registers are copied. Only poisoned registers are copied by 

using the poison bits to enable the clock of the copy operation. A 2-to-1 multiplexer in 

the cell restores either the checkpoint bit or the dependent bit during a RSTR_CLK 

cycle. 

 

4.1.7 Load and Store Execution 

To maintain proper memory ordering of loads and stores from the independent 

and dependent instructions execution, Tuned-CFP uses load and store queues (LSQ), a 

Store Redo Log (SRL) [14] and a store-set memory dependence predictor [8]. A 

detailed description of Tuned-CFP Store Redo Log and the speculative L1 data cache is 

presented in Chapter 5. 

 

4.1.8 Miss-Dependent Branch Predictor 

A key reason for CFP performance degradation is dependent branches that go 

into the waiting buffer and are later found to be mis-predicted. Factors contributing to 

this performance degradation include: a large window of wrong path instructions, re-



 
 
 

67 
 
 
 

execution of instructions between the load miss and the mis-predicted branch, and 

delayed resolution of the miss-dependent branch while waiting its turn to come out of 

the WB.  

To address this problem, we use an approach similar to pipeline gating [31], 

except that we apply it only to costly dependent branches. We identify branches that are 

likely to mis-predict and take necessary action when they move into the WB. We have 

observed that in multiple benchmarks there is a strong correlation between the 

dependent mis-predicted branch and its PC value. We use a small hardware predictor of 

32 entries that contains the addresses of previous dependent mis-predicted branches to 

estimate branch confidence. The processor front end is stalled when a branch with low 

confidence is moved into the WB. The front end of the pipeline is unblocked only after 

the load miss data is delivered to the cache and the branch is resolved. Our results in 

section 5.2.2 show that this mechanism reduces excessive replay and rollback 

execution. 

The next chapter will explain the mechanisms used in our CFP architecture to 

manage instructions that access memory.  
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CHAPTER 5 

MEMORY ORDERING MECHANISMS 

 

In this chapter we will explain the mechanisms used in this dissertation to 

ensure correct execution of loads and stores that belong to a large instruction window. 

To maintain proper ordering of memory instructions from the independent and 

dependent threads execution, we use load and store queues (LSQ), a Store Redo Log 

(SRL) [14] and a store-set memory dependence predictor [8]. All stores, dependent and 

independent, are allocated entries (and IDs) in the SRL in program order by the 

independent thread. Every load, dependent or independent, carries the SRL ID of the 

last prior store. The SRL IDs assigned to loads and stores are unique and determine the 

order of memory instructions.  

The independent thread performs load memory dependence prediction, with a 

store-set predictor [8], to determine the store on which a load may depend. The 

predictor uses SRL IDs in the prediction and writes store poison bits in the SRL, thus 

allowing propagation of poison bits from stores to predicted-dependent loads.  

We next describe the architecture needed to support the SRL mechanism and 

speculative cache. The SRL mechanism from [14] is modified in this work to support 

concurrent execution of loads and stores from both independent and dependent threads.  

 

5.1 Architecture Support for Speculative Cache and SRL Mechanism 

This section talks about the L1 data cache support and how speculative load 

and store accesses from dependent and independent threads are handled. 
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5.1.1 L1 Data cache state  

In order to support simultaneous execution of dependent and independent loads 

and stores, a data cache block has 2 new states: Speculative Independent (Spec_Ind) and 

Speculative Dependent (Spec_Dep). A block that is not in one of these two states is 

committed and would be in one of the states defined by the cache coherence protocol, 

e.g. Shared, Exclusive, or Modified in a MESI coherence protocol. Note that the second 

level cache is kept completely non-speculative, eliminating the need to have the special 

state bits there.   

While the processor stays in CFP mode, stores from both the independent and 

dependent threads update the cache blocks, including the corresponding Spec_Ind or 

Spec_Dep bits. It could so happen that the same address might occupy two different 

blocks in the same set, one in Spec_Ind state and the other in Spec_Dep state. The 

independent and dependent state bits have to be matched along with the address tag to 

determine an address hit. The execution example discussed in Section 5.2 will explain 

how such a situation can occur. 

 

5.1.2 Independent thread store execution 

Independent stores from the independent thread are written speculatively into 

the first level cache after they pseudo-retire, setting the Spec_Ind bit of the written 

block. If an independent store hits a dirty block in the L1 data cache, the block is written 

back to the L2 cache before the store writes the block and changes it into Spec_Ind 

state. If an independent store address matches the address of a Spec_Dep block, it is 

handled as a cache miss and another cache block in the set is allocated to the 

independent store. Independent stores are also written in the SRL buffer at the same  
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time they are written into the L1 data cache, as shown in Figure 18(b).  

 

5.1.3 Dependent thread store execution  

When dependent stores from the dependent thread execute, they are written 

into the SRL, but not in the SQ or data cache. After the dependent stores retire, the 

dependent thread writes all stores, dependent and independent, from the SRL into the 

data cache in program order, setting the written cache block to Spec_Dep. If a store hits 

a Spec_Ind cache block, the cache treats the store as a miss and allocates for it a new 

block in Spec_Dep state. Notice that Independent stores are written twice into the data 

cache: 1) speculatively by the independent thread to forward data to independent loads, 

and 2) by the dependent thread, interleaved with dependent stores in program order to 

enforce a final, correct order of memory writes. After the dependent thread executes, 

and the SDB and SRL become empty, Spec_Ind blocks in the cache are bulk flushed, 

and Spec_Dep blocks are bulk committed, leaving in the cache only ordered stores data.  

 

5.1.4 Independent thread load execution  

Independent loads read Spec_Ind or Committed blocks in the L1 cache, 

whichever they happen to hit. Independent stores therefore forward data to their 

descendent independent loads through the data cache, long before they are actually 

committed. This allows S-CFP to de-allocate stores from the reduced store queue 

immediately at pseudo-retirement, keeping the store queue as small as possible. An 

independent load that does not hit a Spec_Ind block but only hits a Spec_Dep block in 

the cache can also forward the data from the cache as explained in Table 1.  This is a 

situation where the SRL has updated the cache and an independent load to the address is 
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issued on its first wave much later. The independent load cannot read the poison bit 

because the SRL entry has been released. This is very similar to a partial replay case 

discussed in Figure 15 except that in this case, memory instructions are involved. 

 

5.1.5 Dependent thread load execution  

Dependent loads are re-issued from the SDB and execute from the data cache 

after all stores ahead of them in the SRL are written to the cache. Synchronizing the 

dependent load execution with the stores ahead of them in the SRL is performed using 

the SRL ID assigned to every load. The load SRL ID identifies the entry in the SRL that 

was assigned to the last prior store. Notice that since dependent loads execution is 

synchronized with older SRL stores, memory dependence mis-predictions of dependent 

loads are irrelevant to execution or performance. A dependent load can only read data 

from a committed block or Spec_Dep block. If the address of a dependent load matches 

the address of a Spec_Ind block, it is treated as a miss. When this load reaches the ROB 

head, the processor is stalled until the miss data is returned.  

 

5.1.6 Recovering from memory dependence mis-predictions 

Since dependent load execution is synchronized relative to prior stores in the 

SRL, only memory dependence mis-predictions of independent loads that actually 

depend on miss-dependent stores will cause memory ordering violations. All 

independent and dependent load addresses are cached in a set-associative address 

buffer. Dependent stores snoop this load address buffer when they are dispatched by the 

dependent thread to the cache. A hit to an independent load address indicates an 

ordering violation. In this case, the pipeline, SDB, SRL, RAT, and all Spec_Dep and  
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Spec_Ind blocks in the cache are bulk flushed. Execution then rolls back to the 

checkpoint. Finally, to enforce memory consistency, the load address buffer snoops 

committed stores from other threads.  

 

5.1.7 Victim Cache 

During CFP mode, if an instruction misses the L1 cache, a block needs to be 

evicted to make way for the incoming block. The only candidates for eviction are non-

speculative blocks which can be written back to the next level cache. As mentioned 

before, speculative bits are limited to the L1 cache and cannot spill over to the next 

level. If there are no non-speculative blocks available in the L1 cache to be evicted, then 

a small associative victim cache is brought to use. A new entry is created for the 

incoming block, if it already does not exist in the victim cache.  

If there is no space left in the victim cache and a speculative store does not find 

a place both in the L1 cache and victim cache then this is a point of no return; the 

processor state needs to be rolled back to the checkpoint. However, the situation is 

different for a speculative load, since it can be serviced by providing the data to the core 

without bringing the block into the L1 cache or victim cache. From our simulations we 

see that an 8 entry fully associative victim cache is enough to support all speculative 

blocks without needing to evict any of them and rollback execution to the checkpoint.   

 

Table 1 summarizes all possible speculative accesses to the cache and how they 

are handled by the cache control logic.  

 

5.2 Working of Speculative Cache with an Execution Sequence 
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Figure 18 shows an example to demonstrate the working of the speculative 

cache and SRL algorithm. The execution sequence is shown in Figure 18(a). The 

instruction numbers are shown in the figure along with the load and store information. 

An L stands for a load and S for a store. Assume that all instructions access the same 

address. The shaded instructions are miss-dependent. Instruction #1 is a load miss, #2 is 

a store that depends on this miss. Assume that the stores and loads are sufficiently far 

away from each other that the store cannot forward its data to a dependent load through 

the store queue.  

The following rows indicate the states of the reorder buffer (ROB), waiting 

buffer (WB), store redo log (SRL) and a two way set associative L1 data cache. The 

additional state bits in the cache are shown just above the label L1 D-Cache as D (for 

speculative Dependent) and I (for speculative Independent). The tag bits in the two 

ways of the cache are shown as T_1 and T_2.  

Figure 18(b) shows the processor state when the miss-dependents have moved 

into the WB. The miss-independents continue to be processed in the ROB. The SRL 

entries for the two stores #2 and #41 are allocated at rename.  

 

Table 1. Summary of speculative accesses to the cache 

Access 

Type 

Condition Action Eviction 

Priority 

Comments 

Spec- 

Indep 

endent 

Store 

Hits Spec- 

Ind block 

 Return hit -  

Hits non-

Spec block 

 Return hit -  

Hits Spec- 

Dep block 

Create new 

block 

1) non-Spec 

block in cache  

2) non-Spec 

block in 

victim buffer 

This speculative store needs a 

place somewhere. If there is no 

space in either cache or victim 

buffer, execution needs to 

rollback to the checkpoint.  

Does not hit 

any block 



 
 
 

74 
 
 
 

Spec- 

Dep  

endent 

Store 

Hits Spec- 

Dep block 

 Return hit -  

Hits non-

Spec block 

 Return hit -  

Hits Spec- 

Ind block 

Create new 

block 

1) non-Spec 

block in cache  

2) non-Spec 

block in 

victim buffer 

This speculative store needs a 

place somewhere. If there is no 

space in either cache or victim 

buffer, execution needs to 

rollback to the checkpoint.  

Does not hit 

any block 

Spec- 

Indep 

endent 

Load 

Hits Spec- 

Ind block 

 Return hit -  

Hits non-

Spec block 

 Return hit -  

Hits Spec- 

Dep block 

only - Does 

not hit Spec- 

Ind block 

Return hit - This is a situation where SRL 

has updated the cache and the 

load comes much later. This is 

the partial replay equivalent for 

memory instructions. 

Does not hit 

any block 

Return miss. 

Poison the 

load. Bring 

the data in 

and create 

new block  

1) non-Spec 

block in cache  

2) non-Spec 

block in 

victim buffer  

If there is no space in both cache 

and victim buffer, the load miss 

can be serviced directly from the 

higher level without bringing the 

block in. 

Spec- 

Dep 

endent 

Load 

Hits Spec- 

Dep block 

 Return hit -  

Hits non-

Spec block 

 Return hit -  

Hits Spec- 

Ind block 

only - does 

not hit Spec-

Dep block 

Return miss. 

Do not 

Poison the 

load because 

this is a miss-

dependent-

miss. Stall 

the processor 

until miss 

data returns. 

Bring the 

data in and 

create new 

block  

1) non-Spec 

block in cache  

2) non-Spec 

block in 

victim buffer 

If there is no space in both cache 

and victim buffer, the load miss 

can be serviced directly from the 

higher level without bringing the 

block in. 

Does not hit 

any block 
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Figure 18. Working of SRL algorithm with an execution sequence 
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Their ready bits currently read “0” because the stores are yet to complete. The cache 

state is ‘don’t care’ currently and the address in question is not present in it.  

When #41 completes execution, it updates its allocated entry in the SRL with 

its data and sets the ready bit. At the same time it updates the cache speculatively and  

sets the Spec_Ind bit as shown in Figure 18(b). Notice that a new block is allocated to 

the store since it does not match a Spec_Ind block.   

Younger speculative loads like #58 match their Spec_Ind bit in addition to the 

tag and forward the data from the cache as shown in Figure 18(c). At some later point in 

time, the wakeup for instruction #1 arrives as shown in Figure 18(d), allowing the 

miss-dependents to be reintroduced into the pipeline.  

On replay, the miss-dependent store #2 completes, writes its data to the SRL 

and updates the ready bit in the SRL as shown in Figure 18(e). However, it does not 

update the cache. In general, the SRL is made up of miss-independent and miss-

dependent stores. The independent stores update the SRL while the miss is outstanding, 

while the dependent stores fill up their SRL entries on replay.  

Now that the head of the SRL is ready, it can update the cache non-

speculatively in program order and also set the Spec_Dep bit as shown in Figure 18(f). 

Notice that again a new block is allocated to this store access from the SRL because it 

does not match a Spec_Dep block. At the same time, load instruction #76 enters the 

pipeline.  

At this point in time, the same address is present in the cache in two versions, 

Spec_Ind and Spec_Dep. They forward their data to the respective loads by matching 

the corresponding bits in addition to the address tag. In other words, the shaded cache 

block forwards to the shaded load while the non-shaded block forwards to the non-
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shaded load, as shown in Figure 18(g). Finally when the waiting buffer and SRL empty 

and speculative updates to the cache are known to be correct, all Spec_Ind blocks are 

bulk invalidated and all Spec_Dep blocks are bulk committed, as shown in Figure 18(h). 

At this point, load instruction #90 can read its data from the cache like a normal cache 

hit.   

 

5.3 Synchronization of Loads and Stores 

After a load has been moved into the WB, all updates made to the cache are 

speculative. Some updates made until the first branch encountered may still be correct, 

but the memory state should always correspond to the checkpoint taken at the load miss. 

For this reason, all updates made to the cache from the load miss onwards are marked as 

speculative. There are usually long execution phases where instructions from the WB 

are reissued for execution in CFP mode. Once the processor enters CFP mode, it comes 

out of CFP mode without needing recovery action only when all the following 

conditions are satisfied - 1) WB empties 2) all instructions that are reissued from the 

WB retire 3) SRL catches up with the ROB. Before these conditions are satisfied, if 

another load misses the cache and moves into the WB, then execution stays in CFP 

mode and waits for the next opportunity to enter normal execution mode.  

The logical register file and the cache represent the architectural state of the 

processor. Both the register file and cache are updated speculatively and when 

speculative updates are found to be incorrect, the register state is recovered from the 

checkpoint, while the processor state is recovered by bulk invalidating all speculative 

blocks. Since in CFP mode, the ROB updates the register state and the SRL updates the 

cache state, completely independent of each other, merging of the independent and 



 
 
 

78 
 
 
 

dependent states and exiting from CFP mode can happen only when the SRL and ROB 

catch up with each other to produce a consistent architectural state. In this work, we 

opportunistically look to merge the states whenever the WB empties. When the WB 

empties and all the miss-dependents complete, we preclude poisoning further load 

misses until the SRL catches up with the ROB state and the checkpoint is advanced. In 

practice, waiting for SRL to catch up with the register state update does not impact 

performance badly because all the stores would have updated the ready bit in the SRL 

by now; the independent stores much before in time,  while the dependent stores by 

virtue of all WB instructions completing execution. So the SRL will update the cache as 

quickly as the bandwidth between the SRL and cache can support, thus providing an 

opportunity to advance the architectural state. 

Another requirement for correctness is the synchronization of dependent loads 

with respect to the store ahead of it. When dependent loads which do not miss the cache 

but are predicted to be dependent, replay from the WB, they cannot directly forward 

their data from the store queue. This is because the small energy efficient store queue 

holds only a subset of all the stores in the instruction window. With this limited 

information, it is not possible to clearly disambiguate the store that will forward to the 

dependent load. For this reason, every load notes down the ID of the store immediately 

ahead of it and the dependent load is replayed only when the SRL state has reached this 

noted store. In other words, every dependent load which does not miss the cache waits 

until all stores before it write to the cache from the SRL before being re-issued. For 

example in Figure 18(f), the dependent load #18 has to wait until all the stores ahead of 

it update the cache. Since #2 is the latest store ahead of it, it forwards the data from #2 

from the cache and not from the store buffer. 
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In addition to the above requirement, stores to the cache also need to be 

synchronized with respect to the loads to make sure loads forward correct data from the 

cache. The synchronization logic has to make sure updates to the cache from the SRL 

only happen after all the dependent loads have read their data from the cache. For 

example, in Figure 18(g), even though store #41 is ready, the SRL update of this store 

has to wait until load #18 has successfully read its data from the shaded Spec_Dep 

block. If #41 is allowed to update the cache without this synchronization, load #18 will 

end up forwarding incorrect data from the cache. To support this synchronization, a 

simple bit vector is used to keep track of all the loads and stores in the instruction 

window, similar to the one suggested in [14]. A dependent load that needs to forward its 

data from a Spec_Dep block in the cache sets a bit in the SRL entry of the store 

immediately ahead of it to indicate to that store to hold its update to the cache. This 

store will then wait until all the load bits in the bit vector are set before it updates the 

cache. 

 

5.4 Memory Ordering Design Choices 

On a cache miss, a block needs to be evicted to make way for the incoming 

block. If all the blocks in the set are speculative and the victim cache is full, the 

processor state needs to be flushed and execution is rolled back to the checkpoint. One 

way to minimize the chances of such costly rollback is to victimize Spec_Ind blocks as 

well and poison Spec_Ind accesses that miss the cache. An overflow bit in the cache can 

be set when a Spec_Ind block is victimized to make sure only addresses belonging to 

this set are poisoned. The idea is that these Spec_Ind blocks would anyway get a second 

chance to execute with correct data when they replay from the WB. These loads could 
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be poisoned normally just like a first wave load miss. However, these loads will need to 

be marked differently to wake them up when they reach the WB head.  

In this case, three kinds of load misses will exist in the WB – 1) a normal load 

miss, 2) a load that is predicted to forward from a poisoned store queue entry and 3) a 

speculative independent load that hits a block with its overflow bit set.  

A normal load miss is re-issued from the WB head only when it is qualified by 

the cache controller wakeup signal. A load that is predicted to forward data from a 

poisoned store queue entry can directly issue from the WB head without a wakeup 

signal because the forwarding store would have been issued before it from the in-order 

WB. The third kind of load miss that hits a block with the overflow bit set can also issue 

when it reaches the WB head because it can be guaranteed that the store ahead of it has 

been re-issued.  

However, note that Spec_Dep blocks cannot be evicted similarly because they 

are given only one chance to execute.  

In this work, in order to keep the design simple and also save additional 

hardware, we choose not to evict speculative independent blocks from the cache. Only 

Spec_Ind load misses to non-speculative blocks are poisoned and moved into the WB.  

The non-speculative blocks occupy the victim cache when evicted from the L1 

cache. But the speculative blocks always have priority over the non-speculative blocks 

when it comes to occupying a slot in the victim cache. A non-speculative block always 

makes way to a speculative block if need be. 
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CHAPTER 6 

EXPERIMENTAL SETUP 

 

We built our Simultaneous-CFP architecture model on the Simplescalar ARM 

ISA simulation infrastructure [51]. CFP benefits applications that suffer high data cache 

miss rates. However, its effectiveness in handling data cache misses is limited by mis-

predicted branches that depend on data cache misses. For this reason, we used all 14 

“C” benchmarks from SPEC 2000 and SPEC 2006 that we succeeded in compiling 

using the Simplescalar cross compiler tool. The benchmarks and their inputs are 

detailed in Table 3.   

These benchmarks do not suffer much on average from data cache misses but 

have high branch mis-prediction rates which make them useful in exposing the 

performance limitations and glass jaws of CFP, thus making them appropriate for 

evaluating the effectiveness of our proposed optimizations. Our choice of ARM ISA is 

arbitrary and does not change the conclusions in the dissertation, since data cache miss 

rates and branch mis-predictions depend mainly on the application characteristics and 

not the ISA.  

After skipping the initialization code and warming up the caches and predictors 

for 40 million instructions, we simulated 200 million instructions from each benchmark, 

consisting of four different samples manually selected from representative execution 

phases to display wide variation in the cache miss rate as well as the branch mis-

prediction rate, both of which significantly impact CFP execution behavior. Results in 

chapter 7 show the average performance of these selected samples for each benchmark. 
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Table 2. Simulated Machine Configuration 

Pipeline Fetch to retire15 stages, rename to retire 8 stages, 4-wide 

Instruction 

buffers 80 ROB, 40 RS, 40 LQ, 30 SQ 

L1 I-Cache 16KB, 8-way, 3 cycles, 64-byte line 

L1 D-Cache 8KB, 2-way, 3 cycles, 64-byte line 

L2 cache Unified, 512KB, 16-way, 32 cycles, 64-byte line 

DRAM latency 

150 cycles L2 to data return with on-chip DRAM 

controller 

Branch predictor 

Combined bimodal and gshare, 4K Meta, 4K bimodal, 64K 

gshare, 4K BTB, 16 entry Return Address Stack 

Hardware data 

prefetcher Stream based (16 streams) 

 

 

For energy analysis, we have obtained measurements from SPICE circuit 

simulations of all baseline superscalar and CFP core functional blocks, using Cadence 

tools and 45nm process technology. We combined these with logic switching activity 

from our Simplescalar simulator, creating an Architectural Level Power Simulator 

(ALPS) [6]. All energy results reported in this dissertation account for total energy, 

which is the sum of dynamic and static (or leakage) energy. Our model assumes 30% of 

energy consumed per instruction to be due to leakage, which is typical of current high 

performance integrated circuits technology. The energy model accounts for the  
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Table 3. Details of benchmarks 

Benchmark Inputs Comments 

equake Ref 

Seismic wave propagation 

simulation, SPEC 2000 

gcc 

166, 200, c-typeck, cp-decl, 

expr, expr2, g23, s04, scilab C compiler 

gobmk 

13x13, nngs, score2, trevorc, 

trevord Artificial intelligence: go 

gzip Input Compression, SPEC 2000 

h264ref 

foreman_baseline, 

foreman_main, sss Video compression 

hmmer nph3, retro Search gene sequence 

lbm ref  Fluid dynamics 

libquantum Ref Physics/ Quantum computing 

mcf Ref Combinatorial optimization 

milc Ref 

Physics/ Quantum 

chromodynamics 

perl checkspam, diffmail, splitmail Programming language 

sjeng Ref Artificial intelligence: chess 

sphinx Ref Speech recognition 

twolf Ref 

Place and route simulator, 

SPEC 2000 
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Figure 19. Single ended read ports 

 

 

Figure 20. Write mechanism – 4 write ports 
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additional-CFP structures area, including 8K bytes of SRAM in the SRL, SDB, two 

thread contexts, checkpoint and result integration support in the RRF. Our estimate for 

the area overhead of CFP adds up to less than 5% of the non-CFP core configuration 

shown in Table 2. We used 6-transistor SRAM cell design with differential sense 

amplifiers for the SRL and SDB circuits and the single-sided register file cell described 

in [20], augmented with checkpoint [22] and results integration circuit. We used 6-

transistor SRAM cell design with differential sense amplifiers for the SRL and WB 

circuits and a single-sided register file cell, augmented with checkpoint and results 

integration circuit. Figures 19 and 20 show the basic register cell circuit with eight read 

ports and four write ports. The cell includes the two contexts. We include logic in 

Figure 19 for reading from ports 0 & 4 in contexts 0 & 1 and show the load on the 

respective ports. In Figure 20 we show one write port connection in both contexts. 

Unless specified otherwise, the average consumed energy per instruction (EPI) 

is reported for each evaluated core relative to the non-CFP baseline configuration. 

Table 2 shows the simulated machine configuration. Since our simulations are 

done with a single core model, we use a two-level cache hierarchy with an L2 cache 

size that is representative of the L2 capacity per core of current multicore processors. 

We selected optimum instruction buffers and L1 data cache sizes for maximum EPI 

efficiency, as described in section 7.3. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

 

This chapter evaluates the performance and energy consumption of the baseline 

non-CFP, Simultaneous-CFP and Tuned-CFP cores. The analysis is split up into four 

sections. The first section establishes the sizes of instruction buffers and data cache for 

optimum energy efficiency. It introduces a metric to represent the energy efficiency of a 

processor core. In the second section the performance of the Tuned-CFP core is 

compared against that of non-CFP core and other latency tolerant cores. The third 

section compares the energy consumed per instruction by non-CFP, S-CFP and Tuned-

CFP cores. The fourth section compares the energy efficiency of the three cores.  

 

7.1 Analysis of Energy Characteristics of Non-CFP Superscalar Cores 

This section presents an analysis of energy efficiency of a conventional 4-wide 

superscalar core that does not implement CFP, as the core instruction buffers and L1 

cache sizes increase. The motivation is to determine appropriate instruction buffer and 

cache sizes by using an intuitive definition of energy efficiency.  First, we define Return 

on Energy (ROE) from an added hardware feature to be the percent increase in 

performance divided by the percent increase in energy per instruction (EPI) resulting 

from the added feature. Using ROE definition, we say that core A is more energy 

efficient than core B if core A return on energy (ROE) is larger than 1. In other words, 

core A is more efficient than core B if A improves performance by a larger percentage 

than the percentage of additional energy it consumes relative to core B. 
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7.1.1 Energy Characteristics of 4-wide Non-CFP Superscalar Core with Ideal Data 

Cache 

The sizes of instruction buffers and the L1 data cache significantly impact 

performance and energy per instruction of superscalar cores. In this section, we 

investigate the performance and ROE of non-CFP superscalar cores as the instruction 

buffers sizes increase. We simulate an ideal data cache to isolate the contribution 

coming from instruction buffers alone. We vary the sizes of instruction buffers, namely 

reorder buffer (ROB), reservation station (RS), load queue (LQ) and store queue (SQ) 

from a 32_16_16_12 configuration to a 192_96_96_72 configuration 

(ROB_RS_LQ_SQ). All other parameters like machine width, pipeline length, branch 

predictors, and instruction cache size remain unchanged and are as shown in Table 2. 

Figure 21 shows the percentage speedup of non-CFP superscalar core with 

ideal L1 data cache for various buffer sizes. All speedups are reported as percentage 

increase in IPC relative to the minimum 32_16_16_12 configuration. Only a 

representative set of benchmarks are shown in the figure for clarity. It is clear from 

Figure 21 that for all benchmarks, speedup initially increases linearly and then saturates 

as the buffers sizes increase.  

Figure 22 shows a plot of the return on energy (ROE) for various 

configurations relative to the minimum 32_16_16_12 machine, and across all 

benchmarks. We identify two configurations of interest in Figure 22. The maximum 

ROE occurs at the 48_24_24_18 configuration for all benchmarks. This peak return on 

energy configuration is the most energy efficient configuration by our definition. A 

second configuration of interest is the one for which most benchmarks have a value of 

ROE around 1. From Figure 22, this is configuration 128_64_64_48. We call this  
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Figure 21. Percent speedup of non-CFP 4-wide superscalar cores of different instruction buffer configurations and 

ideal data cache over minimal configuration core 

 

configuration the point of diminishing return on energy. If the instruction buffers are 

increased beyond this point, the resulting speedup will be smaller than the 

accompanying increase in energy. We next use this configuration to determine an 

optimal L1 data cache configuration.  

 

7.1.2 Selecting the L1 Data Cache Size 

The L1 data cache configuration is critical towards deciding the core power 

consumption. The data cache is typically optimized for lowest possible load hit latency 

with high associativity and aggressive circuit design that uses concurrent read of the  
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Figure 22. ROE of non-CFP core with ideal data cache for different buffer configurations 

 

tags and data from all ways in the indexed set. To find the optimal L1 cache 

configuration experimentally, we use the point of diminishing return buffers 

configuration and vary the L1 data cache size from 4KB to 32KB and associativity from 

1 to 8. Our simulations show that the peak ROE occurs at 2-way, 8KB L1 D-cache 

while the point of diminishing ROE occurs at 4-way 16KB L1 D-cache size. We do not 

show The L1 data cache ROE plots to avoid repetition. 
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Figure 23. ROE of non-CFP core with 8KB L1 D-cache for different buffer configurations 

 

7.1.3 Varying Instruction Buffer Sizes with Optimal L1 Data Cache 

To see how the ROE curves of the non-CFP core behave when simulated with 

a practical cache configuration, we re-do the experiment shown in Figure 22 with the 

peak ROE 8-KB L1 data cache instead of ideal cache. Figure 23 shows the results of 

this experiment. Figure 23 shows that while the peak ROE point stays at the 

48_24_24_18 configuration, the point of diminishing return moves backward from 

128_64_64_48 for an ideal data cache to the 80_40_40_30 configuration. Notice that by 

the time the 96_48_48_36 configuration is reached, the ROE is well below unity for 
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almost all benchmarks. This indicates that increasing the buffer sizes from 

80_40_40_30 to 128_64_64_48 configuration benefits more from the increased ILP due 

to larger instruction window than from increased tolerance to L1 data cache misses.  

This observation validates our hypothesis that a better design strategy for energy 

efficient cores is to size the instruction buffers appropriately for code that hit the L1 

data cache and use CFP to handle data cache misses. 

 

7.2 Evaluating Performance 

This section compares the IPC of Tuned-CFP to that of other latency tolerant 

cores. It also evaluates the IPC from the optimizations discussed in Section 3.2.2.   

 

7.2.1 Comparing Tuned-CFP to Non-CFP Core Architectures 

The above experiments point to three machine configurations suitable for 

different design targets: 

 

1. A peak return on energy machine with 48_24_24_18 buffers and 2-way 8KB L1 

data cache. This is the most energy efficient configuration so we call it EFF. 

2. A unity gain ROE machine that represents the point of diminishing return with 

80_40_40_30 buffers and 4-way 16KB L1 data cache (DIM). 

3. A large machine that compromises on ROE for high performance (HP). This 

configuration uses 192_96_96_72 buffers and 4-way 16KB L1 data cache. This 

is what a designer might choose for best single-thread performance. 
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Figure 24. Percent speedup of Tuned-CFP over non-CFP core for EFF, DIM and HP models 

 

Figure 24 shows the speedup of Tuned-CFP over a similar sized conventional 

non-CFP core for the EFF, DIM and HP machine configurations, when CFP is applied 

to L1 data cache misses. Table 4 shows various relevant execution statistics of Tuned-

CFP. First observation to note is that Tuned-CFP benefits performance mostly on 

benchmarks that frequently miss the data cache, as to be expected. Second, Tuned-CFP, 

with its latency tolerance to first level cache misses, outperforms the non-CFP baseline 

by an average of 3-4% on all the configurations. Even though the average speedup of all 

benchmarks over the non-CFP baseline is modest, Tuned-CFP shows considerable 

performance improvement on benchmarks that frequently miss the data cache, e.g. gcc 

and equake. Earlier CFP work has similarly shown modest performance improvement 
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Table 4. Simulation statistics of Tuned-CFP 

 

Benchmark 

L1 cache load 

misses per 

1000 

instructions 

L2 cache 

load misses 

per 1000 

instructions 

% 

Speedup 

over 

baseline 

% Replayed 

instructions 

Dependent 

branch mis-

predictions per 

1000 

instructions 

eqke 10.9 0.9 9.0 3.2 0.11 

gcc 25.1 0.5 12.4 8.5 0.81 

gobk 24.4 0.4 2.9 5.4 0.80 

gzip 15.5 0.0 1.4 3.5 1.07 

h264 11.1 0.0 1.5 2.5 0.22 

hmm 7.7 0.1 7.1 2.4 0.01 

lbm 2.7 0.0 0.0 0.0 0.00 

libq 0.0 0.0 0.0 0.0 0.00 

mcf 0.1 0.0 0.0 0.1 0.00 

milc 0.0 0.00 0.3 0.0 0.00 

perl 14.4 0.1 5.6 3.7 0.04 

sjng 21.1 0.0 0.0 4.3 0.67 

sphx 3.6 0.0 2.5 0.9 0.04 

twlf 25.8 3.1 4.8 8.6 1.03 

 

on applications like Spec 2006 that do not frequently miss the cache, but significant 

performance benefit  on applications with high cache miss rates, such as server and 

workstations applications [46]. 

 

7.2.2 Tuned-CFP and Simultaneous-CFP Speedup over Conventional-CFP  

In this section we will compare the performance of three latency tolerant cores – 

conventional-CFP, simultaneous-CFP and Tuned-CFP.  All the latency tolerant cores 

are simulated with the machine configuration shown in Table 2 and all the cores apply 

CFP on first level load misses to the data cache.  
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Figure 25. Speedup of Simultaneous-CFP and Tuned-CFP over Conventional-CFP 

 

When first level misses are targeted for CFP, a large number of instructions go 

into the waiting buffer. The load misses in the waiting buffer will be woken up at 

different times based on which cache level has the required data. For example, suppose 

there are two loads in the waiting buffer. The first load hits L2 and wakes up within a 

short time while the second load has to go all the way to DRAM. If instructions from 

the waiting buffer are replayed based on wakeup time, conventional-CFP will have to 

flush the pipeline for each wakeup, which will hurt performance. The other option is to 

wait until all the load miss instructions in the waiting buffer get their wakeup and then 

flush the pipeline only once. This is sometimes too conservative because it increases the 

chances of a checkpoint rollback because the processor state remains speculative for an 

extended period of time. We have experimentally determined the best policy to re-
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introduce the miss-dependents in conventional-CFP is the following - wait until all the 

load misses receive their wakeup or the waiting buffer becomes half-full; after this if the 

waiting buffer continues to get populated, re-introduce the oldest entries from the 

waiting buffer head since there is a good chance that they would have woken up by 

now. Figure 25 shows the speedup of both the CFP architectures proposed in this 

dissertation, i.e. Simultaneous-CFP and Tuned-CFP, over Conventional-CFP. Both S-

CFP and Tuned-CFP benefit in performance over conventional-CFP on most 

benchmarks because L1 misses frequently hit the on-chip cache and wakeup within a 

short time. While both S-CFP and Tuned-CFP execute the dependents and independents 

concurrently, the fact that the pipeline is drained frequently in conventional-CFP is the 

main reason for its degraded performance. This speedup of both S-CFP and Tuned-CFP 

over switch-on-event CFP justifies the need for this concurrent execution model.  

 

7.2.3 Comparing Tuned-CFP to Simultaneous-CFP 

This section compares the performance of Tuned-CFP to S-CFP and also 

isolates the contribution of each optimization scheme applied towards improving overall 

Tuned-CFP performance. 

 

7.2.3.1 Tuned-CFP Speedup over Simultaneous-CFP 

Figure 26 shows the speedup of Tuned-CFP over S-CFP when targeting data 

cache misses at all levels. Tuned-CFP, with its virtual register renaming, short replay 

loop and reduced replay/rollback outperforms S-CFP by an average of 10% when CFP 

algorithm is applied to L1 data cache misses. The maximum improvement occurs on 

gcc (39% speedup), which displays high rate of L1 cache misses as well as high branch  
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Figure 26. Tuned-CFP percent speedup over simultaneous-CFP 

 

mis-prediction rate. The reduced number of replayed instructions in Tuned-CFP is very 

favourable to benchmarks like gcc and perl, since reducing the amount of replay also 

significantly reduces the number of costly miss-dependent branch mis-predictions. Also, 

the long replay loop of S-CFP is a glass jaw that is exposed on benchmarks like gcc. A 

carefully designed replay loop is necessary when designing CFP for general purpose 

processors that target many applications with widely different execution characteristics. 

The variation in the improvement between benchmarks is mainly due to the variation in 

the cache miss rates and branch mis-prediction rates of our simulation samples.  

Notice that the results in this section are reported with a Tuned-CFP core 

having all the optimizations discussed in Section 3. With the intention to highlight the 

benefits from the most architecturally significant optimization (i.e. virtual register 

renaming), Tuned-CFP performance is compared to an S-CFP that has all the 

optimizations except VRR, i.e. buffer full optimization for load misses and stalling the 
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front end based on the miss-dependent branch predictor. For this reason, Tuned-CFP 

speedup over S-CFP in Figure 26 is not as high as the speedup of (ur + bf + dp) model 

over un-optimized S-CFP shown in Figure 16. 

 

7.2.3.2 Tuned-CFP Optimizations 

There are mainly three optimizations featured in Tuned-CFP: 1) partial replay 

of the load miss dependence chain 2) moving miss-dependent instructions into the WB 

only when a resource or buffer becomes full and 3) dependent branch confidence 

predictor. We call these optimizations PR, BF and DP, respectively.  

The contributions of PR and BF optimizations towards the performance benefit 

of Tuned-CFP performance is exactly the same as the benefit from the ideal models ur 

and bf shown in Figure 16. Figure 27 shows percent speedup contributed by the simple 

history based miss-dependent branch predictor (DP) discussed in Section 3.1.7. The 

speedup coming from the Oracle miss-dependent branch predictor (DP_Orc) is also 

shown for comparison.  The (PR + BF + DP) model and the Oracle (PR + BF + 

DP_Orc) model contribute average speedups of 3.7% and 4.2% respectively, showing 

that our small 32-entry dependent branch confidence predictor achieves a speedup 

within 0.5% of the perfect upper bound performance of Oracle model. We observed that 

some benchmarks, like gcc and twolf, have a small number of static branches that 

contribute to a large percentage of dependent branch mis-predictions, making our small 

32-entry hardware predictor very effective. Other benchmarks, like gobmk and gzip, 

display more complex control flow patterns with a larger set of static branches 

contributing to mis-predictions. For these benchmarks, our dependent branch predictor 

is less effective. Section 7.2.7 analyzes performance of the miss-dependent predictor. 
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Figure 27. Percent speedup contribution from miss-dependent branch predictor 

 

 

7.2.4 Performance of Cores with Ideal Branch Predictor 

Branch mis-predictions negatively impact performance of any core because of wasteful 

execution of instructions belonging to the wrong path. Dependent branch mis-

predictions have a bigger impact on performance, not only because of their late 

resolution but also because sometimes data from the wrong path which may not be of 

any use in the near future is brought into the cache. In this section we will compare the 

performance of non-CFP and Tuned-CFP cores with an ideal branch predictor to see 

what can be potentially achieved from latency tolerance alone, without any intervention 

from mis-predictions. Also branch prediction is a widely researched topic and state of 

the art academic and industrial branch predictors can be expected to be more accurate  
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Figure 28. Speedup of Tuned-CFP over conventional non-CFP superscalar when both cores are simulated with a 

perfect branch predictor 

 

than the one used in our simulation model. Table 5 shows the branch predictor statistics 

measured with our simulator. Figure 28 shows the speedup of Tuned-CFP processor 

over non-CFP core when both cores are simulated with a perfect branch predictor.  

Tuned-CFP benefits very well on benchmarks like gcc and twolf which miss the cache 

frequently and also encounter dependent branches that mis-predict more often as shown 

in Table 5, column 7 (poisoned mis-predicted branches per 1000 instructions). 

Benchmarks like equake and gobmk, even though they have fewer dependent mis-

predicted branches compared to gcc and twolf, have more miss-dependent branches that 

go all the way to DRAM, and hence benefit very well when such branches with heavy 

impact are avoided.     
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Table 5. Branch instruction statistics of Tuned-CFP 

Bmk % 

Branches 

over total 

instruc- 

tions 

%Mis-

predicted 

branches 

over total 

branches 

% 

Poisoned 

mis-

predicted 

branches 

over 

total 

poisoned 

branches 

% 

Poisoned 

branches 

over 

total 

branches 

% 

Poisoned 

mis-

predicted 

branches 

over 

total 

mis-

predicted 

branches 

Poisoned 

mis-

predicted 

branches 

per 1000 

insns 

eqke 7.6 11.9 19.1 0.8 1.3 0.1 

gcc 7.2 5.4 9.6 11.4 20.4 0.8 

gobk 9.0 9.0 17.6 3.4 6.6 0.5 

gzip 6.1 7.4 28.3 6.3 23.9 1.1 

h264 5.3 6.4 19.5 2.0 6.3 0.2 

hmm 2.2 0.6 8.1 0.3 4.1 0.0 

lbm 0.6 0.4 0.0 0.1 0.0 0.0 

libq 5.3 0.0 7.1 0.0 28.6 0.0 

mcf 17.0 0.7 3.2 0.0 0.1 0.0 

milc 3.7 3.4 6.7 0.0 0.0 0.0 

perl 14.3 1.0 0.9 3.0 2.6 0.0 

sjng 8.5 10.3 19.4 4.0 7.6 0.7 

sphx 8.7 2.4 6.1 1.5 3.8 0.1 

twlf 8.0 11.1 15.3 8.6 11.9 1.0 

Ave 7.4 5.0 11.5 3.0 8.4 0.3 

 

7.2.5 Performance of Cores with off-chip Memory Controller 

In Section 2.2.3.5, it was mentioned that targeting CFP on only last level cache 

misses gives less performance benefit in current generation processors because of the 

integrated memory controller. Figure 29 shows the speedup of Tuned-CFP core over 

non-CFP core with an off-chip memory controller. From the figure, it can be seen that 

Tuned-CFP achieves an average speedup of 8% over non-CFP core, which is double the 

speedup that is achieved with an integrated memory controller as reported in Figure 24. 

This 8% speedup is also better than the 4% speedup of conventional-CFP on CPU 

benchmarks reported in [46] with similar DRAM latency.   
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Figure 29. Speedup of Tuned-CFP over conventional non-CFP superscalar when both cores are simulated with off-

chip memory controller 

 

7.2.6 Performance of Speculative Cache and SRL  

In order to support a large number of loads and stores in the instruction 

window, we use the modified SRL algorithm as explained in Chapter 5. This section 

evaluates the performance of SRL by comparing it with a large store queue. The large 

store queue is an impractical design because of the issues mentioned in Section 2.1.4 

and is only used to model the behavior of an ideal store queue to establish the upper 

bound for performance and also evaluate how SRL matches up with it.  In all the 

experiments the SRL size and large store queue size is limited to 256 entries as shown 

in Table 2. This size is enough to support all the stores most of the time because the 

instruction window size is also limited to 1024, as explained in Section 4.1.1. If the SRL 

or store queue fills up, the front end is stalled.  
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Figure 30. IPC comparison of SRL, hierarchical STQ and large STQ memory ordering mechanisms 

 

Figure 30 shows the IPC’s of Tuned-CFP core that uses SRL, hierarchical store 

queue [2][3] and a large store queue. On the CPU benchmarks, hierarchical store queue 

performs very close to the large store queue mainly because most of the store-to-load 

forwarding happens between closely lying load-store pairs. SRL under-performs the 

large store queue on some benchmarks like gobmk, gzip and sjeng mainly because of 

two reasons. First the speculative blocks evict non-speculative blocks from the cache, 

leading to more load misses. These load misses result in more replay, rollback and 

execution of instructions from the wrong path. Table 6 shows the increase in replay, 

rollback and wrong path instructions in case of SRL when compared to large STQ. The 

second reason is the synchronization of each dependent load with the store immediately 

ahead of it. A dependent load cannot clearly disambiguate the correct store from which  
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Table 6. Replay, rollback, wrong path and STQ forwarding statistics for SRL mechanism 

Bmk 

Increase in % 

Replay with 

SRL over total 

instructions 

compared to 

Large STQ 

design 

Increase in % 

Rollback with 

SRL over total 

instructions 

compared to 

Large STQ 

design 

Increase in % 

Wrong path 

instructions 

with SRL 

over total 

instructions 

compared to 

Large STQ 

design 

% of Loads 

that forward 

from STQ 

over total 

loads – 

Large Store 

Queue 

Design 

% of Loads that 

forward from 

STQ over total 

loads – Large 

Store Queue 

Design 

eqke 0.72 0.30 0.75 6.98 6.34 

gcc 1.34 0.00 -0.27 18.39 12.53 

gobk 1.72 0.47 3.39 11.19 8.94 

gzip 3.11 0.42 -0.05 13.39 9.77 

h264 1.55 0.18 1.19 11.41 9.48 

hmm 0.58 0.01 0.01 20.71 12.28 

perl 0.48 0.12 0.78 10.13 6.83 

sjng 3.33 1.28 3.25 7.85 5.39 

sphx 1.18 0.10 1.33 21.50 19.91 

twlf 1.14 0.48 2.12 6.91 2.91 

Ave 1.52 0.33 1.25 12.85 9.44 

 

it has to forward the data until all the stores ahead of it have written to the cache. This is 

because the store queue contains only a subset of all the stores in the speculative 

window and it is not possible to safely determine the exact forwarding store from this 

limited set. On the other hand, a dependent load in a large store queue can forward from 

the store queue immediately when the store is ready because all the stores in the 

window are buffered, albeit impractically, making it possible to select the exact store to 

forward the required data.  In some benchmarks like gcc and gzip there is a reduction in 

wrong path instructions in case of SRL mainly because of pipeline stalls due to this 

synchronization. With these limitations, the SRL implementation performs within an 

average 3% of the large store queue.  

Tables 7 and 8 show the statistics for speculative load and store accesses to the 

cache. Notice in some cases, speculative accesses hit non-speculative blocks (col 5, 7).   
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Table 7. Speculative load statistics for SRL mechanism 

Bmk % of Spec-

Indep. 

load 

accesses 

that hit L1 

cache 

 

% of 

Spec-Dep. 

load 

accesses 

that hit L1 

cache  

 Spec-

Indep. 

load hits 

that hit 

Spec-

Indep. 

blocks 

(%) 

Spec-

Indep. 

load hits 

that hit 

non-Spec 

or Spec-

Dep. 

blocks 

(%)  

Spec-Dep. 

Load hits 

that hit 

Spec-Dep. 

blocks 

(%)  

Spec-Dep. 

Load hits 

that hit 

non-Spec 

blocks (%) 

eqke 78.90 81.67 88.69 11.31 98.14 1.86 

gcc 84.50 66.39 74.26 25.74 93.33 6.67 

gobk 86.69 74.19 85.36 14.64 98.02 1.98 

gzip 89.62 64.98 80.41 19.59 98.48 1.52 

hmm 90.59 78.56 85.23 14.77 97.79 2.21 

h264 87.30 73.49 74.05 25.95 93.76 6.24 

perl 83.16 76.50 80.73 19.27 89.18 10.82 

sjng 86.67 73.69 84.20 15.80 97.26 2.74 

sphx 78.51 84.65 73.31 26.69 93.97 6.03 

twlf 86.28 71.72 86.53 13.47 90.71 9.29 

Ave 85.96 72.31 81.62 18.38 94.67 5.33 

 

Table 1 shows the conditions to declare a speculative access as a hit. When a 

speculative access does not hit the cache, it is searched for in the victim cache as 

explained in Section 5.1.7. From our experiments a victim cache of size 8 is enough to 

record all speculative blocks without the need to evict any of them. If at all a speculative 

block needs to be evicted, the processor state is rolled back to the checkpoint. 

 

7.2.7 Performance of Miss-dependent Branch Predictor   

This section presents an example of the correlation that exists between a 

dependent mis-predicted branch and its PC address, a property that is exploited by the 
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Table 8. Speculative store statistics for SRL mechanism 

Bmk 

% of Spec-

Indep. 

store 

accesses 

that hit L1 

cache 

 

% of Spec-

Dep. store 

accesses 

that hit L1 

cache 

Spec-Indep. 

store hits 

that hit 

Spec-Indep. 

blocks (%) 

Spec-

Indep. store 

hits that hit 

non-Spec 

blocks (%) 

Spec-Dep. 

store hits 

that hit 

Spec-Dep. 

blocks (%) 

Spec-Dep. 

store hits 

that hit 

non-Spec 

blocks 

(%) 

eqke 99.24 99.91 73.99 26.01 95.33 4.67 

gcc 99.26 99.94 84.19 15.81 95.51 4.49 

gobk 99.05 99.87 83.18 16.82 96.96 3.04 

gzip 99.69 99.88 77.57 22.43 94.86 5.14 

hmm 99.41 99.96 80.90 19.10 97.16 2.84 

h264 96.27 91.50 83.85 16.15 93.88 6.12 

perl 99.27 99.83 82.38 17.62 95.60 4.40 

sjng 99.33 99.73 75.47 24.53 94.91 5.09 

sphx 99.75 100.00 78.36 21.64 98.46 1.54 

twlf 99.41 99.72 81.82 18.18 88.83 11.17 

Ave 99.12 99.20 80.69 19.31 95.18 4.82 

 

history based predictor discussed in Section 4.1.8. Figure 31 shows four curves for 

benchmark gcc where a particular branch (at a PC address) is plotted on the X-axis and 

different statistics of each branch is plotted on the Y-axis.  

The dotted line at the top of the figure shows the number of times each branch 

gets poisoned and enters the waiting buffer (shown as Into WB). Figure 31 shows the 

branch predictor statistics for branches that enter the waiting buffer between 1000 and 

10000 times and Figure 32 shows the same for branches that enter the waiting buffer 

more than 10000 times. While both the figures show the same information, they have 

been split into two for clarity. The data joined by the triangle markers show the number 

of times that particular branch is found to be mis-predicted after the load miss data 
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Figure 31. Correlation between dependent mis-predicted branch and its PC address for branches replayed between 

1000 and 10000 times 

 

 

 

Figure 32. Correlation between dependent mis-predicted branch and its PC address for branches replayed between 

10000 and 100000 times 
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is delivered to the processor (shown as Mispred). The data series joined by the square 

markers shows the number of times that particular branch entering the waiting buffer is 

predicted to be a problem branch, thereby stalling the front end (shown as Stalled). The 

series joined by the diamond marker shows the number of times the dependent predictor 

is successful in stalling the front end on a dependent mis-predicted branch and saving 

execution waste (shown in True Pos).  

In the figures, since the three curves show similar behavior, it can be said that 

the miss-dependent branch predictor is able to train itself sufficiently well based on the 

branch history. The gap between the diamond curve and the triangle curve is the number 

of times the dependent branch predictor is not able to detect a mis-predicted branch, 

thus ending up in a checkpoint rollback. This gap is narrow for most branch PC 

addresses. In an ideal predictor the diamond curve should coincide with the triangle 

curve. The gap between the square curve and the upper dotted curve is the number of 

times a branch with high confidence is allowed to go through without stalling the front 

end. This is also considerably high for most branches; for instance, branch #17 in Figure 

32 enters the waiting buffer nearly 80000 times but is very rarely found to be mis-

predicted. Finally the gap between the diamond curve and square curve shows the 

number of times the predictor anticipates a mis-prediction but the execution turns out to 

be on the right path. There are a considerable number of false positives and the front 

end is conservatively stalled as a result, but we intentionally bias the predictor to be 

conservative in order to avoid excessive execution waste.  

Figure 33 shows the true positive, true negative, false positive and false 

negative statistics of the dependent branch predictor for branches that enter the waiting 

buffer more than 10000 times. From the figure, for most branch instances, the dark  
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Figure 33. Dependent branch predictor statistics 

 

shaded pattern indicates that the true negatives form the majority, at least for branches 

that do not mis-predict frequently. For branches that mis-predict, the true positives, false 

positives and false negatives occur in almost equal measure. A better predictor should 

attempt to increase the true positives, minimize false positives and completely avoid 

false negatives.  

Future work can focus on building more accurate predictors that look at the 

path history of other branches. Another option is to stall the front-end based on the size 

of the speculative state. If the speculative state is reaching a large size and a not-so-

confident branch is encountered, it is better to stall the front-end in order to avoid 

paying a large rollback penalty. On the other hand, if the speculative state is not very 

large, the risk is not very high, so execution can be allowed to proceed. 
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7.3 Evaluating Energy per Instruction 

This section compares the energy consumed per instruction across the three 

cores. 

 

7.3.1 Energy per Instruction Comparison of Tuned-CFP and non-CFP cores 

Figure 34 shows the total core energy per instruction (EPI) increase of Tuned-

CFP over the non-CFP baseline for all three machine configurations of interest. We 

observe that benchmarks that miss the cache incur an additional increase in EPI that 

depends on the amount of instructions replayed from the waiting buffer. Compare the 

increase in EPI to the speedup observed for the same benchmarks. Some benchmarks 

like gcc, equake and hmmer miss the cache but benefit from CFP speculative execution 

while the cache miss data is being fetched. This point is validated by the large speedup 

observed in these benchmarks at the cost of a small increase in power. 

Some benchmarks like twolf and sjeng also miss the cache but encounter 

frequent dependent branch mis-predictions that offset the performance gain while 

burning power in the process. Finally, benchmark traces like libquantum and milc that 

do not show any benefit from CFP, also do not consume additional power. This is 

because the CFP structures, i.e. the waiting buffer and SRL, observe major switching 

activity only in CFP execution mode. 

 

7.3.2 Energy per Instruction Comparison of S-CFP and Tuned-CFP 

Figure 35 shows the percentage increase in energy per instruction (EPI) of S-

CFP and Tuned-CFP over the non-CFP baseline for each of our simulated benchmarks.  
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Figure 34. Tuned-CFP percent increase in EPI compared to non-CFP EFF, DIM and HP models 

 

 

Figure 35. Energy per instruction % increase of S-CFP and Tuned-CFP over ROB baseline 
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Tuned-CFP is able to achieve this reduction in overall energy because of eliminating 

excessive replayed instructions, rollback instructions and wrong path instructions, as we 

will show in the next section.   

 

7.3.2.1 Reduction in Replayed Instructions 

 Figure 36 shows the percentage of replayed instructions over total instructions 

in both Simultaneous-CFP and Tuned-CFP. With the optimizations explained in Section 

3.2.2 Tuned-CFP is able to reduce the amount of replay by a significant amount. For 

example, the percentage reduction in replay is ~22% in gcc and ~17% in perl. Also 

importantly, Tuned-CFP ends up replaying on and average only 3% of overall 

instructions, which is much lower compared to average 10% replayed instructions in the 

case of S-CFP. This reduction in replay is significant as it reduces the probability of 

replaying a potential mis-predicted branch and having to rollback to a checkpoint.  

 

7.3.2.2 Reduction in Rollback Penalty 

 Figure 37 shows the percentage of rollback penalty over total executed 

instructions in S-CFP and Tuned-CFP. Eliminating the probability of a rollback to the 

checkpoint is very important both from performance and energy efficiency perspectives. 

On a rollback, all instructions between the mis-predicted branch and the checkpoint, 

referred to as rollback instructions, have to be brought into the pipeline again. Rollback 

instructions not only increase the re-execution overhead, but also consume fetch and 

decode resources, which are major contributors to the overall core energy consumption. 

From the figure, it can be seen that Tuned-CFP pays a rollback penalty of 1%, which is 

considerable reduction from S-CFP (5%). This contributes very well to the overall 
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Figure 36. Percentage of replayed instructions over total instructions in S-CFP and Tuned-CFP. 

 

    

 

Figure 37. Reduction in rollback penalty in Tuned-CFP compared to S-CFP 
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Figure 38. Percentage of wrong path instructions over total instructions in conventional non-CFP, Tuned-CFP and S-

CFP cores 

 

Tuned-CFP improvement in  performance and energy over S-CFP.   

 

7.3.2.3 Wrong Path Instructions 

 Figure 38 shows the percentage of instructions from the wrong path over total 

instructions in conventional non-CFP, Tuned-CFP and S-CFP cores. They represent the 

instructions following a mis-predicted branch. Note that while a conventional processor 

stalls the pipeline early in the event of a cache miss, a CFP processor continues 

processing many instructions in the shadow of the miss. While wrong path instructions 

do not have any impact on performance, they have a very high impact on energy. All 

wrong path instructions cost dynamic power because they go through every stage of the  
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Figure 39. Percentage reduction in wrong path instructions in Tuned-CFP core when dependent branch predictor is 

used  

 

pipeline wastefully. The figure shows wrong path instructions following both 

independent and dependent branch mis-predictions. While independent branch mis-

predictions do not cost much because the processor state is recovered with the less  

costly re-order buffer mechanism, dependent branch mis-predictions are a lot costlier, 

especially in CFP processors, because of their late resolution and run-ahead execution.  

From the figure, it can be seen that there is a 10% reduction in wrong path 

instructions compared to S-CFP. This can be mainly attributed to fact that Tuned-CFP is 

able to resolve many branches before they move into the waiting buffer.  The 

percentage of wrong path instructions compared to a conventional non-CFP processor 

of both S-CFP and Tuned-CFP cores is also shown in Figure 38. It can be seen that 
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Tuned-CFP increases the wrong path instructions only marginally. The role of the 

dependent branch predictor is to avoid such wrong path instructions impacting the 

energy consumption of the core. The percentage reduction in wrong path instructions as 

a result of using the dependent branch predictor is shown in Figure 39.  

Table 9 shows average EPI across all simulated benchmarks of various 

functional blocks as well as the total non-CFP baseline, S-CFP and Tuned-CFP cores. 

All the numbers in the table are shown relative to the total EPI of the non-CFP baseline 

core. Tuned-CFP shows ~8% less energy per instruction compared to S-CFP due to 

reduction in replayed instructions execution, rollback and wrong path instructions. 

Finally, notice that Tuned-CFP and the non-CFP baseline consume about the same 

energy per instruction with Tuned-CFP measuring on average just about 2% additional 

energy per instruction over the non-CFP ROB baseline core. 

We summarize this section by saying that it is evident from Figures 24 and 34 

that on many benchmarks the Tuned-CFP speedup is greater than the EPI increase 

indicating that Tuned-CFP gives good performance return on energy invested. 

We next conclude compare the ROE or energy efficiency of Tuned-CFP and 

Simultaneous-CFP to non-CFP superscalar cores for different buffer configurations. 

 

Table 9. S-CFP and Tuned-CFP average increase in energy % relative to non-CFP ROB superscalar 

 L1 

ICac

he 

Deco

de 

RAT RS EU's ROB/ 

RRF 

LSQ L1 

DCac

he 

SRL/ 

WB 

Total 

Base 8.6 18.9 15.5 10.8 13.8 12.9 10.8 8.6 0.00 100.0 

S-CFP 9.2 20.2 16.5 12.3 14.7 15.4 11.5 9.2 1.9 110.9 

Tuned

-CFP 

8.7 19.2 15.7 11.2 14.0 13.2 10.9 8.7 1.1 102.8 
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7.4 Return on Energy Comparison of Tuned-CFP, S-CFP and Non-CFP Cores 

Previous works have argued for CFP as energy efficient, scalable, large 

instruction window architecture. However, there has been no work that quantifies the 

energy efficiency of CFP and compares it with that of conventional non-CFP 

superscalar architecture. 

In this section, we compare the ROE of Tuned-CFP to that of S-CFP and non-

CFP core by sweeping across a range of buffer configurations starting from the best 

efficiency EFF configuration to the best performance HP configuration. The baseline 

relative to which the ROE is computed is the 32_16_16_12 non-CFP configuration. 

Figure 40 shows the average ROE across all the simulated benchmarks for 

Tuned-CFP, S-CFP and non-CFP cores. Tuned-CFP shows better ROE than non-CFP 

and S-CFP machines on all configurations. This clearly demonstrates the importance of 

virtual register renaming and other optimizations featured in the Tuned-CFP 

architecture. 

Notice that the gap between Tuned-CFP ROE and non-CFP ROE is widest for 

maximum energy efficiency configuration (EFF) and tends to reduce with increasing 

buffer sizes as the non-CFP core suffers fewer stalls. With small buffer configurations 

like 48_24_24_18 and 64_32_32_24, the non-CFP core does not have enough resources 

to hide even short latency misses that hit the on-chip L2 cache. Hence the majority of 

cache misses end up stalling the non-CFP core. In this case, Tuned-CFP benefits more 

over the non-CFP core on many benchmarks, particularly when the speculative 

execution does not have to be discarded. When the buffer sizes are increased 

moderately (e.g. 80_40_40_30 configuration), Tuned-CFP still maintains a healthy 

ROE gap between itself and the non-CFP core. On the other hand, when we move over  
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Figure 40. Return on energy of non-CFP baseline, Tuned-CFP and S-CFP cores 

 

to a large machine like 192_96_96_72, the gap between non-CFP and Tuned-CFP 

reduces because there are enough instruction buffers to handle all short latency misses 

that hit the on-chip cache. The slight improvement in Tuned-CFP ROE comes because 

of the inevitable misses that go all the way to DRAM. In this case, even a large machine 

with 192_96_96_72 configuration is not able to keep the pipeline units busy for the 

entire time while the miss remains outstanding. It is important to notice the very poor 

ROE of a large machine for both non-CFP and Tuned-CFP which is at a disappointing 

0.4 value. This shows that increasing the instruction buffer sizes to this extent hurts EPI 

considerably, proving the widely established opinion that traditional methods of 

increasing buffer sizes to get performance are already on a downward ROE slide. 
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Figure 40 also shows that the ROE of S-CFP is worse compared to both Tuned-

CFP and non-CFP cores. The excessive replay and rollbacks in S-CFP not only bring 

down its overall performance but also dissipates excessive energy per instruction in the 

process. 

Finally, Table 10 shows the percentage improvement in ROE of Tuned-CFP 

over the non-CFP core. Tuned-CFP shows up to 11% improvement in ROE for small 

sized cores. The ROE gap starts decreasing for medium sized cores and reaches a 

minimum for the largest buffer configuration. It is interesting to note that even on the 

large machine configuration Tuned-CFP still manages to improve the ROE by 4.8 

percentage points. 

 

Table 10. Tuned-CFP percent improvement in ROE over non-CFP. ROE computed relative to 32_16_16_12 non-CFP 

configuration 

Configuration Non-CFP Core 

ROE 

Tuned-CFP Core 

ROE 

Percent improvement 

in ROE 

48_24_24_18 1.63 1.80 10.4% 

64_32_32_24 1.18 1.32 11.8% 

80_40_40_30 0.97 1.05 8.2% 

96_48_48_36 0.80 0.87 8.7% 

128_64_64_48 0.60 0.64 6.6% 

192_96_96_72 0.41 0.43 4.8% 
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CHAPTER 8 

QUALITATIVE ANALYSIS 

 

This chapter makes qualitative comparisons between the ideas discussed in this 

work and previous work on latency tolerance. First a qualitative comparison between 

SRL and hierarchical store queue mechanisms for memory ordering is presented based 

on results from previous SRL work [14]. Next the performance of Tuned-CFP and data 

prefetching is compared. Finally we conclude this Chapter with a qualitative 

comparison between Tuned-CFP and other latency tolerance proposals in literature.  

 

8.1 Qualitative Energy Efficiency Analysis of SRL Mechanism  

The hierarchical store queue design gives almost the same performance as an 

ideal large store queue design as shown in Figure 30. But the problem with this 

mechanism is that it consumes considerable energy because of the large number of 

comparators needed for the CAM match.  

The SRL structure is much simpler in comparison which does not indulge in 

forwarding action and off-loads this responsibility to the small store queue and L1 

cache. Earlier work [14] has shown the area and power advantage of SRL over 

hierarchical STQ and we summarize the results from [14] in Table 11. As can be seen 

from the table, the energy advantage gained from SRL is much larger compared to the 

average 3% loss in performance shown in Figure 30. Based on these results, it can be 

inferred that the SRL mechanism gives better return on energy compared to the 

hierarchical store queue design.  
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Table 11. Area and power comparison of Hierarchical STQ design and SRL design 

Structure Area Leakage Dynamic 

Hierarchical STQ 1.4 mm
2
 95 mW 440 mW 

SRL 0.35 mm
2
 40 mW 30 mW 

Forwarding Cache 0.45 mm
2
 48 mW 37 mW 

 

 

8.2 Tuned-CFP Performance with Data Prefetch  

A core architect might ask whether CFP would still be useful to performance 

on cores that implement data prefetching hardware [27], and whether the performance 

of CFP justifies its hardware and increased energy cost. 

The answer to the first question is not complicated. CFP should indeed benefit 

cores with data prefetch hardware. This is because CFP benefits any cache misses 

whenever they occur, while data prefetch, being a predictive mechanism, benefits only 

cache misses that are predictable. Any cache misses that are not anticipated by the data 

prefetch hardware will be handled more effectively by a CFP core. 

The question whether the hardware and energy overhead due to CFP can be 

justified on cores with data prefetch hardware is a more complex question to answer and 

requires empirical evaluation. In this work, we have evaluated CFP with an aggressive 

stream-based data prefetcher with 16 stream buffers. Our empirical results show 

negligible speedup (< 0.01%) from data prefetch on our benchmarks suite, mainly 

because the memory access patterns of our benchmark traces do not exhibit frequent 

streams that can be exploited with the stream buffers hardware. We can therefore 

conclude from our results that CFP has clear performance and energy efficiency 
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benefits, at least on our benchmark traces, with or without data prefetch streaming 

buffers hardware.  Previous work [46] that was done on industrial core architecture 

model with data prefetch hardware using an extensive set of application traces, 

including SpecCPU benchmarks and other server, workstation and productivity traces,  

reported significant performance benefit from CFP beyond the data prefetch hardware. 

Our current study reconfirms the previous results on a smaller set of benchmarks.  

 

8.3 Qualitative Comparison of Tuned-CFP with Other Latency Tolerant 

Architectures 

Early proposals for latency tolerant out-of-order cores include the Waiting 

Instruction Buffer (WIB) [30], Virtual ROB [11], Cherry [32], Checkpoint Processing 

and Recovery [2][3], Continual Flow Pipelines [46] and Out of Order Commit 

Processors [9]. None of these however deal with L1 data cache misses or execute miss-

dependent and independent instructions simultaneously. 

 The WIB design [30] releases pressure on the issue queue by making long 

latency cache misses release their issue queue entries. However, in order to support a 

large instruction window WIB physically buffers the entire window with a multi-level 

register file and large instruction buffers. In Tuned-CFP the entire instruction window is 

virtual, with only the miss-dependents, which are far fewer in number, stored in 

physical locations. In WIB, each instruction dependent on a load miss sets a bit vector 

dedicated for each outstanding miss, which allows miss-dependents to be reissued post 

wakeup without needing the complex broadcast logic of the issue queue. Their waiting 

buffer is organized as a multi-banked structure which allows miss-dependents to be re-

issued in any order as and when the wakeup arrives. Physically buffering the entire 
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instruction window also allows instructions dependent on multiple load misses or miss-

dependent misses to be moved in and out of the issue queue multiple times, although at 

the cost of excessive re-execution and energy. In comparison, Tuned-CFP uses an 

energy efficient single ported waiting buffer that reissues only when the load miss at the 

head wakes up. While this idea is simple and energy efficient, it also does not 

compromise on performance mainly because miss-independents continue to be 

processed in the SMT core while the load at the waiting buffer head is waiting for the 

wakeup to arrive.  

Runahead execution increases memory level parallelism on in-order cores [12], 

and on out-of-order cores [34] without having to build large reorder buffers. In 

Runahead execution, the processor state is checkpointed at a load miss to DRAM. 

Execution continues speculatively past the miss for data prefetch benefits. When the 

miss data returns, Runahead execution terminates, the execution pipeline is flushed, and 

execution rolls back to the checkpoint. Except for the prefetch benefit, all work 

performed during runahead mode is discarded. In [35], the Runahead overhead is 

reduced with optimizations targeting short, overlapping and useless runahead periods; 

yet the Runahead execution results are still discarded. In comparison to these, Tuned-

CFP executes ahead of L1 data cache misses and does not waste energy by discarding 

large number of instructions. Some later proposals have evaluated the benefit of not 

throwing away the execution results from Runahead execution [36][50]. 

Flea-Flicker [4][5] and Tuned-CFP differ in their execution and result 

integration methods and their instruction deferral queues. Flea-flicker executes 

instructions in an in-order pipeline, saves advanced instructions and results in its queue 

and merges results sequentially during backup pipeline execution. 
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CFP on in-order cores proposed in [37], iCFP [17] and Sun Microsystems 

ROCK [7] is suitable for highly energy constrained computing devices but less suitable 

for the performance needs of conventional single-thread applications targeted by the 

Tuned-CFP multicore architecture.  

BOLT [18] and Tuned-CFP are similar in that both architectures leverage on 

existing SMT hardware for better performance. But Tuned-CFP has the advantage of 

virtual register renaming over BOLT, with which it is able to mitigate excessive replay 

and rollback activity, providing better performance and energy efficiency. 

Gonzalez et al. [15] proposed using virtual registers to shorten the lifetime of 

physical registers. Kilo instruction processors [10] also used virtual renaming and 

ephemeral registers to do late allocation of physical registers. In contrast to virtual-

physical registers and ephemeral registers, Virtual Register Renaming (VRR) [41] and 

Tuned-CFP do not require physical registers for any allocation of execution results, and 

accomplish renaming with virtual IDs and capture reservation stations. 
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CHAPTER 9 

CONCLUSIONS 

 

This dissertation leverages on existing SMT hardware in commercial 

processors to execute miss-dependent and miss-independent instructions, far away from 

each other in program order, concurrently. This permits the design of a processor core 

that not only tolerates last level cache misses to DRAM but also first level cache misses 

that hit on-chip. Moreover, latency tolerance to first level data cache misses allows 

designing smaller cores with smaller caches for better energy efficiency. In addition to 

the above, this work allows a simpler reorder buffer based core design with less 

implementation overhead compared to conventional CFP architecture [46].   

This work also presents a tuned Continual Flow Pipeline architecture that uses 

virtual register renaming and optimized replay policies to improve performance and 

reduce replay loop circuit activity and checkpoint rollback execution compared to 

previous CFP designs.  

Our Simultaneous-CFP architecture improves performance over conventional-

CFP architecture by ~12% when CFP is applied to L1 misses. Our Tuned-CFP 

architecture further improves performance and power consumption over Simultaneous-

CFP architecture by ~10% and ~8%, respectively. The speculative cache and SRL 

mechanism proposed in this work is able to perform within ~3% of a hierarchical store 

queue design while providing better energy efficiency. Finally, Tuned-CFP gives better 

Return on Energy for small, medium and large buffer configurations compared to 

Simultaneous-CFP and non-CFP superscalar cores.      
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In summary, the ideas presented in this dissertation show that it is possible to 

design a processor core that gives good single-thread performance and yet remains 

energy efficient, thus providing a promising design option for future multi-core 

processors.  

 

9.1 Future Work 

We have attempted to cover most of the aspects of designing a latency tolerant 

processor by providing mechanisms to manage the register file, issue queue and 

memory ordering. We have discussed the branch predictor and memory dependence 

predictor needed for our CFP architecture. With and Architectural Level Power 

Simulator we have been able to measure the increase in power dissipation from replay 

activity and runahead execution.  

The Tuned-CFP architecture proposed in this dissertation works with a reorder 

buffer. The advantage of using a reorder buffer is that on an independent branch mis-

prediction, recovery action is less costly in terms of performance. However as 

previously pointed out [2][3], the ROB enforces serial retirement constraints and could 

be a bottleneck for performance improvement. The effectiveness of Tuned-CFP 

optimizations on a fully checkpointed architecture that uses virtual register renaming, 

similar to [41], would be an interesting study.  

A Tuned-CFP core in a Speculative Multi-threaded processor like Disjoint Out-

of-Order Execution architecture (DOE) [42] would also be an interesting study since a 

Tuned-CFP core provides latency tolerance for cache misses while DOE removes the 

sequential instruction fetch constraint of a conventional processor by processing  
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instructions very far ahead in the program, for instance control independent points of 

branches.  

The hardware implementation of Tuned-CFP core on FPGA would provide an 

opportunity to study the timing and implementation related issues in the design, which 

are not precisely covered in a high-level simulation model. For example, four conditions 

are checked before an instruction is moved into the waiting buffer – 1) the instruction is 

at the head of the order list, 2) the instruction is poisoned, 3) one of the instruction 

buffers is full and 4) every source operand of the instruction is poisoned or ready. It will 

be interesting to see if all these conditions can be checked in one clock cycle. It also 

gives a chance to run a wider range of applications in real-time and for longer durations.  

Miss-dependent branch mis-predictions are a major cause for concern in CFP 

architectures because the processor state is rolled back to the checkpoint, discarding all 

the speculative work done so far. We attempt to reduce the impact of miss-dependent 

branch mis-predictions by using a history based scheme to identify potential branches 

that can lead to a rollback and stall the pipeline when such branches are encountered. 

This static predictor is not able to capture complex control flow patterns in some 

benchmarks, which explains the difference between it and an Oracle predictor. Branch 

prediction is a widely researched area and better techniques to predict the behavior of 

miss-dependent branches will improve both performance and energy immensely.   
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