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Many software testing and fault localization techniques rely on analyzing execution profiles 
which comprise runtime coverage information such as statements, branches, definition-use 
pairs, etc. Coverage information could be used to evaluate the quality of testing, perform 
test suite minimization, devise distance metrics to compare test cases, and help pinpoint the 
faulty code by contrasting the execution profiles of passing and failing tests. This 
dissertation aims at proposing and evaluating new types of execution profiles to 
complement existing ones especially in the cases where the runtime scenario being 
considered is too complex to be modeled by traditional profiles. Specifically, the proposed 
approaches model the runtime behavior via complex structures that involve state 
information, combinations of structural elements, and sequence data. In this regard, we first 
introduce the concept of dependence chains to assist in automated fault localization. 
Dependence chains capture, in addition to statement coverage, the underlying data- and 
control-dependence information as well as predicates describing the values of the relevant 
variables. We also propose using combinations of simple program elements, as opposed to 
individual ones, for an online intrusion detection system. Similarly, we present a 
mechanism for regression testing that allows users to define test requirements 
characterizing specific behaviors to be covered at runtime instead of choosing from a pool 
of pre-defined and generic program elements. Such test requirements are automatically 
migrated across versions and are built using three types of constructs: structural elements, 
first-order logic predicates specifying the state of select program variables, and sequence 
information. 
In addition to proposing new types of execution profiles, we explore several ways to 
improve the effectiveness of coverage-based software analysis techniques. In particular, we 
present an approach that aims at identifying coincidentally-correct test cases which are 
shown to impair the effectiveness of coverage-based fault localization. We also address the 
issue of mitigating the impact of high dimensionality that’s present in most types of 
execution profiles. 
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All of the proposed techniques were implemented for the java platform and the task of 
execution profiling was achieved by instrumenting at the bytecode level. Besides, the 
evaluation involved several case studies as well as empirical analysis using real subject 
programs with sizable test suites; these included known benchmarks, utility programs, and 
web servers. The results we obtained indicate that modeling program behavior via complex 
structures, including those that incorporate state information, is effective at capturing 
runtime scenarios that might go untested using traditional execution profiles. Overall, our 
proposed techniques were shown to have a positive impact on fault localization, regression 
testing, and intrusion detection. 
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CHAPTER I 

INTRODUCTION 

 

Dynamic software analysis encompasses a wide range of tasks that aim at ensuring 

the reliability of a software product. Characterizing software behavior is a valuable task in 

testing as it allows quantifying the quality of a test suite, comparing test cases, as well as 

pinpointing the faulty code when failures are observed. The general approach is to 

instrument the given program, run it on a given test suite, and collect execution profiles for 

each test case. Afterward, all the aforementioned analyses could be performed by 

considering the execution profiles induced by each test case. Many approaches were 

proposed where each uses a particular aspect of execution as a basis for profiling. In most 

of the cases, profiling is done to keep track of program elements being executed such as 

statements, branches, def-use pairs, method calls, information flows, etc. This dissertation 

aims at proposing and evaluating new types of execution profiles to complement existing 

ones especially in the cases where the bug/scenario at hand is too complex to be modeled 

by traditional profiles. Specifically, the proposed approaches model the runtime behavior 

via complex structures that involve state profiling, dependence information, combinations 

of structural elements, and sequence data.  

 

A. Background 

State profiling is simply the task of recording the values assigned to the program 

variables at runtime. The idea of leveraging the values of variables has been first proposed 
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by Xie and Notkin in  [1]. They collected value spectra and computed their differences to 

assist regression testing; their focus was on global variables and function parameters. In  [2], 

Xie et al explored representing the state of objects and determining the equivalence 

between them. The purpose was to identify redundant unit tests from automatically 

generated test suites. In  [3], Francis and Podgurski presented an empirical study of the 

effectiveness of test case filtering techniques using object-state profiling. Their profiles 

contained a count of how many times each possible object-state occurred during the 

execution of the program. They compared their results to structural profiling techniques, 

but their observations were not decisive. Parnin and Orso  [4] argue that understanding the 

root causes of failures might not be achieved simply be inspecting the suspicious 

statement(s) provided by state-of-the-art fault localization techniques. Instead, extra 

activities including the inspection of program state are needed. Daikon  [5] discovers certain 

invariants concerning selected variables. Such invariants are in the form of boolean 

formulae and are generated based on the values assumed by these variables in a set of runs. 

In this work we propose using state profiling, in addition to other types of runtime 

information, to enhance software analysis. In the remaining sections we briefly describe the 

major areas of research that would benefit from our proposed approaches and summarize 

our contribution in that regard. 

 

B. Coverage-based Fault Localization 

Coverage-based fault localization techniques aim at locating faulty code by first 

identifying the executing program elements that correlate the most with failure. It often 
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happens that the correlation measure of such elements is not high enough to successfully 

guide the developer to the fault. This shortcoming is likely due to the fact that the covered 

program elements are simple (e.g., statements, branches, or def-use pairs), and thus, cannot 

characterize most defects that are typically non trivial.  

In chapter 2, we present a technique that identifies short dependence chains that 

are highly correlated with failure  [6], which we term failure-correlated dependence chains. 

In addition to considering data and control dependences, we augment each chain by 

computing a set of predicates involving the source values and target values of its edges. 

This supplementary state information can potentially help identify failure-correlated chains 

that are shorter in length and can better assist in locating the faulty code. 

Also, in chapter 3 we tackle the issue of coincidental correctness which impairs the 

accuracy of coverage-based fault localization  [7]. A coincidentally correct test case is a one 

that exercises the fault and yet produces a correct output. Coincidental correctness is shown 

to be prevalent and it’s a safety reducing factor in automated fault localization techniques 

because it leads to underestimating the suspiciousness of faulty program elements. 

 

C. Intrusion Detection 

Intrusion detection systems, or IDSs, are categorized into two basic design 

approaches: anomaly-based and signature-based. The first operates by collecting 

information on normal or safe behavior and identifies attacks that vary from this expected 

set, while the second examines incoming executions for patterns of attacks that match its 

collection of attack signatures. While anomaly-based intrusion detection mechanisms can 
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detect previously un-encountered attacks, they might suffer from a high rate of false 

positives. On the other hand, signature-based approaches, although potentially exhibiting 

less false positives, are unable to detect attacks not in their collection of attack signatures 

and thus can result in a higher rate of false negatives. Chapter 4 investigates a signature-

based technique to application-based intrusion detection  [8]. The proposed technique 

generates signatures in the form of combinations of structural elements comprising method 

calls, method call pairs, basic blocks, basic block edges, and def-use pairs. 

 

D. Regression Testing 

The goal of regression testing is to ensure that the behavior of existing code, 

believed correct by previous testing, is not altered by new program changes. We argue that 

the primary focus of regression testing should be on code associated with: a) earlier bug 

fixes; and b) particular application scenarios considered to be important by the tester. 

Existing coverage criteria do not enable such focus. For example, 100% branch coverage 

does not guarantee that a given bug fix is exercised or a given application scenario is tested. 

Therefore, there is a need for a new and complementary coverage criterion in which the 

user can define a test requirement characterizing a given behavior to be covered as opposed 

to choosing from a pool of pre-defined and generic program elements. We propose this new 

methodology and call it UCov  [9], a user-defined coverage criterion wherein a test 

requirement is an execution pattern of program elements and predicates describing the 

program state. Our proposed criterion is not meant to replace existing criteria, but to 

complement them as it focuses the testing on important code patterns that could go untested 
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otherwise. UCov supports test case intent verification. For example, following a bug fix, the 

testing team may augment the regression suite with the test case that revealed the bug. 

However, this test case might become obsolete due to code modifications not related to the 

bug. But if an execution pattern characterizing the bug was defined by the user, UCov 

would determine that test case intent verification failed. This methodology is presented in 

chapter 5. 

 

E. Dimensionality Reduction 

Execution profiles form the basis of many dynamic program analysis techniques 

developed to solve problems in fields such as test suite minimization and program 

comprehension. A typical profile comprises information that approximates the execution 

path of a program, specifically, the frequency of occurrence of program elements that are 

structural in nature, such as statements, branches, and def-use pairs. One major limitation is 

the high dimensionality present in most types of profiles, which is likely to diminish the 

effectiveness of several techniques based on them. Chapter 6 addresses this problem by 

presenting an approach that performs a lossless reduction on execution profiles  [10]. It also 

shows how state-based comparison of test cases  [11] could benefit from such reduction 

mechanism. 
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CHAPTER II 

FAULT LOCALIZATION USING DEPENDENCE CHAINS 

 

Coverage-based fault localization techniques generally entail two main steps. First, 

they identify the executing program elements that correlate most with failure. Second, 

starting from these elements, which are not necessarily the causes of the failure, they try to 

locate the faulty code following some examination strategy. It often happens that in the first 

step the correlation measure of the identified elements is not high enough to successfully 

guide the developer to the fault. This shortcoming is likely due to the fact that the program 

elements covered are simple, and therefore, cannot characterize most defects that are 

typically more complex. This calls for covering program elements whose complexity 

matches the complexity of the defect under consideration. Noting that a less complex 

element cannot characterize the defect to begin with; whereas an excessively complex 

element is likely to subsume the defect and successfully characterize it, but might lead to 

erroneously tagging too many elements as suspicious. Our ultimate goal then is to arrive at 

a program element that characterizes as closely as possible the defect at hand. In this 

chapter we present the notion of dependence chains  [6], whose intermediate nodes 

represent (statement, variable) pairs and edges denote data or control dependence. We aim 

at identifying short dependence chains that are highly correlated with failure, which we 

term failure-correlated dependence chains. For more effective fault localization, both the 

number and length of these failure-correlated chains should be minimal. In addition to 

considering data and control dependences, we augment each chain by computing a set of 
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predicates involving the source values and target values of its edges. This supplementary 

state information can potentially help identify failure-correlated chains that are shorter in 

length and can better assist in locating the faulty code. It should be noted that our goal here 

is not to directly locate faults, but to identify failure-correlated program elements (namely, 

dependence chains) that could subsequently lead to the fault following a given examination 

strategy. 

The rest of the chapter is organized as follows. Section A surveys related work. 

Section B describes the suspiciousness metric used and provides an example that motivates 

our work. Section C describes our technique and algorithms. Finally, Section D describes 

our experimental work and presents our results.  

 

A. Related Work 

As previously mentioned, coverage-based fault localization techniques generally 

entail identifying failure-correlated program elements followed by locating the faulty code 

using some examination strategy. Our focus in this work is on the former only, that is, what 

program elements are better to use. 

Jones et al.  [12] presented a technique that uses visualization to assist with 

locating faults.  They implemented their technique in a tool called Tarantula.  The 

technique uses color to visually map the participation of each program statement in the 

outcome of the execution of the program with a test suite, consisting of both passing and 

failing test cases.  To provide the visual mapping, the program statements are colored using 

a continuous spectrum from red to yellow to green: the greater the percentage of failing test 
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cases that execute a statement, the more red the statement should appear. A statement s1 is 

considered more suspicious (more red) than statement s2 if M(s1) > M(s2) where 

)(%)(%

)(%
)(

spasssfail

sfail
sM

+
=  

In the above equation, which determines the suspiciousness or color of statement s, %fail(s) 

is the ratio of the number of failing runs that executed s to the total number of failing runs, 

and %pass(s) is the ratio of the number of passing runs that executed s to the total number 

of passing runs. 

Denmat et al.   [13] studied the limitations of the technique presented by Jones et 

al.   [12].  They argued that for it to be effective, the following three requirements must hold: 

1) a defect is due to a single faulty statement, 2) statements are independent of each other, 

and 3) executing a faulty statement leads most of the time to a failure.  Clearly, the 

aforementioned requirements are not likely to be fulfilled when dealing with complex 

programs involving non-trivial defects. Renieris and Reiss   [14] described a technique that 

produces a report of the “suspicious” parts of a program by analyzing the spectra 

differences between the faulty run and the correct run that most resembles it.  The 

experiments they conducted used basic block coverage spectra whereas the technique 

proposed here involves much more complex spectra based on dependence chains. 

Dallmeier et al.   [15] presented a tool for Java programs that locates likely failure-causing 

classes by comparing method call sequences of passing and failing runs. Clause and 

Orso  [16] presented a technique for debugging failures that occur while the software runs 

on user platforms.  Their technique allows for recording, replaying, and minimizing user 

executions.  The resulting minimized execution can then be used to debug the defect(s) 
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leading to the observed failure. Santelices et al.  [17] presented a Tarantula-based technique 

in which a statement is assigned the maximum or average of the following three scores: 

score computed using statement coverage, branch coverage, and def-use coverage. 

 

B. Suspiciousness Metric and Motivation 

Let E denote the type of the program element to cover, and e an instance of E. In 

our experiments, presented in Section D, we employ the following suspiciousness metric 

that we define for statements and dependence chains: 

ME(e) = F − P     where 

e = a dependence chain of some given length or a statement 

F = f / fT 

P = p / pT 

f = number of failing runs that executed e 

fT = total number of failing runs 

p = number of passing runs that executed e 

pT = total number of passing runs 

ME ranges from -1.0 to 1.0 and the goal of our work is to be able to identify a small set of 

chains with an ME value of 1.0 based on which the faulty code will be located. We opted to 

use the above metric as opposed to other metrics already proposed in the literature (e.g., 

Tarantula), due to its simplicity and intuitiveness. For example, if F = 0.1 and P = 0.0, ME 

would be 0.1 (indicating a mild suspiciousness), whereas the Tarantula metric described 

above would be 1.0 (indicating a strong suspiciousness), which overstates the 



10 

 

suspiciousness of the given program element. Next we present our motivating example, and 

in order to make our discussion more comprehensive we will assume that an examination 

strategy is used following the computation of the suspiciousness metrics. We will adopt the 

strategy presented by Jones and Harrold  [18] and used in Tarantula  [12]. The strategy 

assumes that all statements are ranked and expects the developer to examine statements 

from the top of the ranking scale then down until a faulty statement is found. That is, all 

executed statements in a program are ranked in terms of their likelihood of being faulty by 

comparing the chains induced by the failing runs to the ones induced in the passing runs.  

The ranking of the statements associated with a given chain is determined by contrasting 

the percentage of failing runs to the percentage of passing runs that induced it. The 

statements associated with a chain are the sources and targets of its edges. 

As a motivating example for covering chains (borrowed from  [19]), consider the 

Java method shown in Table 1 where statement 5 is faulty; the + operator should have been 

a - .  Note how when (x[i] < 0)  both the faulty and correct statements assign the same 

value to y  except when x[i]  is equal to -1 .  Therefore, the failure is triggered only in the 

case when one or more elements of x[]  are equal to  -1 .  Table 1 also shows the 

following: a) Six test cases each comprising three elements of x[] , two of the test cases 

trigger a failure and the other four do not. b) The statement coverage information for each 

test case: a check mark indicates that the statement at the given row was executed at least 

once using the test case at the given column. c) The values of the suspiciousness metric 

computed based on statement coverage as opposed to chain coverage, i.e., in ME(e) e is a 

statement. 
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Table 1. Java code and statement coverage information for the motivating example 

/* Statement 5 is faulty. The correct statement is: 

   y = -x[i] - 1/x[i]; */ 

 

  public static void foo(int [] x) 

  {  

Passing Test Cases Failing Test Cases 
 

 

ME 1,
 2

, -
3 

0,
 1

, -
2 

-2
, -

3,
 -

4 

-5
, -

30
0,

 1
 

-3
, -

1,
 -

10
0 

10
0,

 1
, -

1 

1   int y; int z; � � � � � � 0.0 

2   for (int i = 0; i < x.length; i++){  � � � � � � 0.0 

3 y = 0;  � � � � � � 0.0 

4 if (x[i] < 0) { � � � � � � 0.0 

5   y = -x[i] + 1/x[i];  � � � � � � 0.0 

6 } else if (x[i] > 0) { � �  �  � -0.25  

7   y = x[i] - 1/x[i];   � �  �  � -0.25  

 }        

8 if (y == 0) { � � � � � � 0.0 

9     z = ...  � �  � � � 0.25 

        } else {        

10     z = ...  � � � � � � 0.0 

        } 

    } 

11} 

      

 

 

 

As shown, all failing and all passing runs executed the faulty statement (statement 

5) leading to an ME value of 0.0, which is clearly not high. In addition, several other 

statements share the same ME value and one even has a higher ME value of 0.25.  Clearly, 

for this example, a ranking scheme based on statement coverage would not be of much help 

for the developer in locating the fault. 
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Table 2 shows how using dependence chains of length 1 is no more effective than 

statement coverage. In this case a chain is either a direct control dependence or a def-use. 

As shown, the chains involving the faulty statement are the direct control dependence cd(4, 

5) and the def-use du(y, 5, 8), which are not ranked the highest given that 7 out of 11 chains 

are equally or higher ranked. In addition, no chain of length one is highly correlated with 

failure, which calls for trying a more complex program element. 

 

Table 2. Coverage information for chains of length 1 

cd(src, trgt) 

du(var, src, trgt) 

Passing Test Cases Failing Test Cases  

ME 1,2,-3  0,1,-2 -2,-3,-4  -5,-300,1  -3,-1,-100  100,1,-1 

cd(2,3) � � � � � � 0.0 

cd(2,4) � � � � � � 0.0 

cd(2,8) � � � � � � 0.0 

cd(4,5) � � � � � � 0.0 

cd(4,6) � �  �  � -0.25 

cd(8,9) � �  � � � 0.25 

cd(8,10) � � � � � � 0.0 

cd(6,7)  � �  �  � -0.25 

du(y,5,8) � � � � � � 0.0 

du(y,7,8) � �  �  � -0.25 

du(y,3,8)   �     -0.25 

 

 

Table 3 shows how using dependence chains of length 2 is effective at locating the 

faulty statement. The chain comprising du(y,5,8)�cd(8,9) covers the faulty statement and 

is highly correlated with failure. In this case, the developer would only need to examine 
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three statements to locate the faulty code, namely, statements 5, 8 and 9. In this case, a 

single chain exhibited a very high correlation with failure, which suggests that trying a 

more complex program element is not needed. 

 

Table 3. Coverage information for chains of length 2 

cd(src, trgt) 

du(var, src, trgt) 

Passing Test Cases Failing Test Cases  

ME 1,2,-3  0,1,-2  -2,-3,-4  -5,-300,1  -3,-1,-100  100,1,-1  

cd(2,3) �du(y,3,8)  �     -0.25 

cd(2,4) �cd(4,5) � � � � � � 0.0 

cd(2,4) �cd(4,6)  � �  �  � -0.25 

cd(2,8) �cd(8,9) � �  � � � 0.25 

cd(2,8) �cd(8,10)  � � � � � � 0.0 

cd(4,5) �du(y,5,8) � � � � � � 0.0 

cd(4,6) �cd(6,7) � �  �  � -0.25 

cd(6,7) �du(y,7,8)  � �  �  � -0.25 

du(y,5,8) �cd(8,9)     � � 1.0 

du(y,5,8) �cd(8,10)  � � � � � � 0.0 

du(y,7,8) �cd(8,9)  � �  �  � -0.25 

du(y,7,8) �cd(8,10)  � �  �  � -0.25 

du(y,3,8) �cd(8,9)   �     -0.25 

 

 

 

C. Technique Description 

Here we provide some basic definitions, present our algorithm, then describe our 

implementation. 
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1. Background Definitions 

Definition 1 - A node is a pair (s, v) where s is a statement, v is a variable such that 

v is defined (assigned a value) at s. A node represents the source or the target of a direct 

data or control dependence. In the case when s is a conditional, v is irrelevant and the node 

is called a predicate node. For a node n, we denote by st(n) the statement associated with n, 

and by var(n) the variable associated with n. 

 Definition 2 - The direct dependences induced at node m are described by the pair 

({ n1, n2, ..., nk} , m), denoted by d,  that satisfies the following: 

a) The ni’s are nodes. 

b) One of the following is true: 

• k = 1, n1 is a predicate node, and st(m) is control dependent on st(n1). 

• st(m) uses the values of var(n1), var(n2), ..., var(nk) that were last defined at 

st(n1), st(n2), ..., st(nk), respectively. 

We also denote by sources(d) the set {n1, n2, ..., nk}, by target(d) the node m, and by time(d) 

the timestamp indicating when d was exercised. 

 Definition 3 - A chain is a sequence of nodes (n1, n2, ..., nk) where k ≥ 2 and ∃ a set 

of dependences {d1, d2, ..., dk-1} that satisfies the following: 

a) ∀ 1 ≤ i ≤ k-2, time(di) < time(di+1) 

b) ∀ 1 ≤ i ≤ k-1, ni ∈ sources(di) and ni+1 = target(di) 
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c) ∄ any dependence d satisfying both of the following: 

• d ∉ {d1, d2, ..., dk-1} 

• ∃ 2 ≤ i ≤ k such that ni-1 ∉ sources(d) and ni = target(d) and time(d) > 

time(di-1) and time(d) <= time(dk-1) 

           In other words, there exists no dependence that broke the chain. 

 Definition 4 - Given a chain c = (n1, n2, ..., nk), we denote by tail(c) the node nk and 

define length(c) to be k-1. ∀ 1 ≤ i ≤ k-1, ni is said to be the predecessor of ni+1. 

 Definition 5 - A chain e = (n1, n2, ..., nk) is said to be an extension of another chain c 

= (m1, m2, ..., mp) iff k > p and ∀ 1 ≤ i ≤ p, mi = ni. 

 Definition 6 - A chain c is said to be maximal in a set of chains S if and only if no 

extension of c is contained in S. 

 

2. Algorithm 

 The basic high level steps of our algorithm (which is shown in Figure 1) are: 

a) Specify E to represent statements, recall that E is the type of the program element 

to cover.  
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Figure 1. Algorithm for computing dependence chains 

 

Input:  
1) Sequence of direct dependences exercised under a particular test case (d1, d2, ..., dn) sorted 
according to their increasing timestamp  
2) A max length Lmax 
 
Output:  
Set of maximal chains whose length is ≤ Lmax 

 

1. output = ∅; 

2. unfinished = ∅; 
3. for i=1 to n 
 { 

4.  chainsToBeAdded = ∅; 
5.  for j=1 to d i .sources.size() { 
6.   chainsToBeAdded.add( 
7.   new chain(d i .sources[j], d i .target)); 
  } 
  
8.  for k=1 to unfinished.size() { 
9.   Chain ch = unfinished.get(k); 
10.   if (d i .hasPredicateSource()==false &&  
11.    ch.tail.isPredicate()==false && 
12.    ch.tail.equals(d i .target) && 

13.    ch.tail.predecessor ∉ d i .sources) 
   { 
14.    output.add(ch); 
   } 

15.   else if (ch.tail ∈ d.sources) 
   { 
16.    Chain extended = ch.extend(d.target); 
17.    if (length(extended) == L max) 
18.     output.add(extended); 
    else 
19.     chainsToBeAdded.add(extended); 
   } 
  } 
  
20.  unfinished.add(chainsToBeAdded); 
 } 
 
21. for k=1 to unfinished.size() { 
22.  Chain ch = unfinished.get(k); 
23.  if(ch.wasExtended() == false) 
24.   output.add(ch); 
 } 
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b) Compute the suspiciousness metric ME(e) for all executing statements. This step 

involves executing a test suite on the subject program in order to collect execution 

profiles describing the frequency of occurrences of each statement. 

c) Exit if the highest encountered score was 1.0. In this case, covering chains cannot 

improve on covering statements. 

d) Specify E to represent dependence chains of length one, i.e., an instance e of E is a 

chain c such that length(c) = 1. 

e) Compute the suspiciousness metric ME(e) for all executing chains. This step is 

similar to step b. 

f) Exit if the highest encountered score was 1.0. That is, the algorithm succeeded in 

identifying at least one chain that entirely correlates with failure. 

g) Increase the complexity of E. This is done by alternating between: a) augmenting 

the covered dependence chain with a set of predicates involving the source values 

and target values of its edges, and b) increasing the length of the chain by one. 

That is, the sequence of covered program elements looks as follows: 1) 

statements, 2) chains of length one, 3) chains of length one augmented with 

predicates, 4) chains of length two, 5) chains of length two augmented with 

predicates, and so on. 

h) Exit if the complexity of E renders profile collection infeasible, otherwise go to 

step e. In our experiments we exit our algorithm when profile collection for a 
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given chain length exceeds 24 hours. Here the algorithm is considered to have 

partially succeeded if it was able to improve on statement coverage. 

 The algorithm maintains two lists of chains: output and unfinished. The output list 

contains exercised chains that can’t be extended anymore either because they reached the 

maximum length Lmax or because they were killed by a subsequent dependence (i.e. the tail 

is no longer dependent on the head). The unfinished list contains exercised chains that 

didn’t reach Lmax yet and whose tail is still dependent on the head. For each direct 

dependences pair d of the sequence, lines 5-7 generate a list of chains of length one each 

corresponding to one of the sources of d.  Eventually, these will be added to the unfinished 

list on line 20. Lines 10-14 check for any unfinished chain that was broken by d and moves 

it to the output list. Lines 15-19 identify the unfinished chains that can be extended by d, 

creates an extended copy of each, and adds the extended chains to the unfinished list unless 

their length is equal to Lmax in which case they get moved to the output list. After all 

dependences are processed, lines 21-24 move the unfinished chains that weren’t extended 

to the output list. 

 Step 7 of our algorithm involves augmenting the covered dependence chain with a set 

of predicates in order to arrive at a more complex chain that is more likely to characterize 

complex defects. In defining these predicates we consider four types of variables, namely, 

boolean, scalar, string, and object reference. We also categorize these predicates into those 

describing the source value (source predicates), those describing the target value (target 

predicates), and those describing the relationship between the source and target values 

(relationship predicates). The latter type is considered only when both variables are of the 
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same type. Note that the predicates, listed below, are computed for each edge of a given 

chain: 

i. Source predicates 

• source == True, source == False; applicable when the source is a boolean 

• source > 0, source == 0, source < 0; applicable when the source is a scalar 

• source == null, source != null ; applicable when the source is a string or an 

object reference 

ii.  Target predicates (similar to above) 

iii.  Relationship predicates 

• source > target, source == target, source < target; applicable when the 

source and target are scalars 

• source == target, source != target; applicable when the source and target 

are booleans, strings, or references 

 

3. Implementation 

In our implementation we targeted the Java platform. The challenging part of our 

implementation is execution profiling, i.e, developing a profiler capable of capturing the 

occurrences of dependence chains of some given length, and their associated value 

predicates. 
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Our tool consists of two main components: the Instrumenter and the Profiler. The 

preliminary step in applying the tool is to instrument the target byte code class files using 

the Instrumenter, which was implemented using the Byte Code Engineering Library, 

BCEL  [156].  The Instrumenter inserts a number of method calls to the Profiler at given 

points of interest. At runtime, the instrumented application invokes the Profiler, passing it 

information that enables it to track the occurrence of direct data and control dependences as 

well as the values taken by their sources and targets. This basic functionality of the Profiler 

could be extended using plugin components. For this work, we wrote two plugins. The first 

takes as input the direct dependences as they occur and a specified chain length, and 

records the induced dependence chains, i.e., this plugin implements the algorithm presented 

in Figure 1. The second plugin takes as input the values of the sources and targets of the 

direct dependences, and computes the predicates described previously. 

 

D. Experimental Work 

Our experiments mainly aim at validating whether applying our technique on a 

program with a single defect would successfully identify a small set of failure-correlated 

dependence chains. The ultimate goal, of course, is to locate the faulty code starting from 

this set, but this work does not address this task. This section first describes our subject 

programs then tries to empirically answer our research question. 
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1. Subject Programs 

Our experiments involved 18 seeded versions that are part of the Siemens test 

suite  [157], namely, 8 tot_info versions, 4 replace versions, and 6 tcas versions. These 

programs were manually converted to Java as part of previous work  [61]. It should be noted 

that due to constraints on our computing resources, we had to reduce the test suite sizes of 

several of our programs in order to complete the profile collection process. The reduction 

was conducted by randomly selecting 10% of the failing tests, 10% of the passing tests that 

exercise the faulty code, and 10% of the passing tests that do not exercise the faulty code. 

Also, we only used this small subset of the Siemens programs because we excluded 

programs that: 1) contained faulty code that is potentially hard to manage in our 

experimental setup (e.g., deleted code, constant mutations, faults that span several 

statements, faults related to array sizes), and/or 2) yielded high suspiciousness scores when 

statement coverage is used. Recall from our algorithm in Section C.2 that when statement 

coverage performs well, using chains must not be used (see step c). 

 

2. Results 

 Table 4 presents the results of our experiments for all the seeded versions we used. 

For each version they show: 

1) The results computed using statement coverage: 

a. Maxs: the maximum ME score attained by a statement 

b. Faults: the ME score of the faulty code 
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2) The results computed using chain coverage. Note that we only show the results with 

respect to the best encountered configuration. i.e. the simplest configuration among 

those which led to a maximum suspiciousness score (the full set of results could be 

found in  [6]) 

a. Pred: whether the dependence chains were augmented with predicates 

b. L: length of the dependence chains 

c. N: number of induced chains 

d. Maxc: the maximum ME score attained by a chain 

e. Faultc: the maximum ME score attained by a chain traversing the faulty code 

Our main concern in this work is to explore the use of dependence chains to identify 

program elements that are highly suspicious. Table 4 shows that:  

1) In 17 versions (except for tcas_v24), the maximum ME score attained by covering 

chains is greater than the maximum ME score attained by covering statements; and 

this applies to chains that are relatively short (≤ 3 in most cases).  

2) In 9 versions, a maximum score of 1.0 is attained. Not attaining a score of 1.0 

means: a) we ran out of resources, or b) the defect cannot be characterized by a 

dependence chain (as it seems to be the case with some of the tcas versions), or c) 

the test suite contained coincidentally correct tests, the subject of the next chapter. 

3) In 8 versions, augmenting the chains with predicates improved the maximum score. 
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4) In 15 versions, the most suspicious chain had a length greater than one and/or was 

augmented with predicates, which means that our technique is more effective than 

the combined coverage of def-uses and direct control dependences. 

5) Faultc is greater than Faults in all 18 versions including tot_info_v9, replace_v23, 

and tcas_v24 (note that Table 4 only shows the configuration that led to a maximum 

value of Maxc). This is an indication that, when it comes to locating the fault, chain 

coverage is likely to perform better than statement coverage. 

 To summarize, our technique is effective at identifying short dependence chains that 

are highly correlated with failure, and augmenting chains with predicates seems to enhance 

the effectiveness of our technique. This improved effectiveness was observed in 17 out of 

18 versions. 

Table 4. Results for tot_info, replace, and tcas 

  Statement Coverage Chain Coverage (best configuration) 
  Maxs Faults Pred L N Maxc Faultc 

to
t_

in
fo

 

v4 0.48 0.47 Yes 4 71716 0.7 0.58 
v5 0.81 0.33 No 2 3003 1 0.67 
v7 0.83 0.28 Yes 1 1104 1 1 
v9 0.87 0.34 No 1 857 1 0.34 
v13 0.72 0.28 Yes 1 1111 1 1 
v16 0.8 0.1 No 2 3029 0.95 0.17 
v18 0.84 0.14 Yes 1 1105 1 1 
v20 0.4 0.09 Yes 1 1134 0.67 0.67 

re
pl

ac
e

 v9 0.64 0.6 No 2 2163 1 0.71 
v10 0.64 0.59 Yes 4 75389 0.92 0.84 
v11 0.64 0.64 No 2 2216 1 0.74 
v23 0.71 0.47 Yes 1 545 1 0.47 

tc
as

 

v9 0.77 0.46 No 2 283 0.79 0.7 
v20 0.71 0.46 No 1 150 0.75 0.7 
v21 0.78 0.48 Yes 1 229 0.82 0.69 
v22 0.74 0.48 No 2 276 0.91 0.74 
v24 0.74 0.48 No 1 148 0.74 0.48 
v34 0.3 0.15 No 2 297 1 1 
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CHAPTER III 

MITIGATING THE IMPACT OF COINCIDENTAL 
CORRECTENESS ON FAULT LOCALIZATION 

 

The PIE (Propagation-Infection-Execution) model presented in  [20] emphasizes 

that the execution of a defect is not a sufficient condition for failure, and that the 

propagation of the infectious state to the output is also required. This is also reiterated in 

the RIP (Reachability-Infection-Propagation) model described in  [21]. It is argued in both 

models that for failure to be observed the following three conditions must be met: CR = the 

defect was executed or reached; CI = the program has transitioned into an infectious state; 

and CP = the infection has propagated to the output. Coincidental correctness (CC) arises 

when the program produces the correct output while condition CR is met but not CP. We 

recognize two forms of coincidental correctness, weak and strong. In weak CC, CR is met, 

whereas CI might or might not be met; while in strong CC, both CR and CI are met   [61]. 

Hence, a test case that satisfies the strong form of CC also satisfies its weak form.  

Coverage-based fault localization (CBFL) techniques seek to: 1) identify failure-

correlated program elements using test suites in which tests are tagged as failing or passing, 

i.e., elements that are induced by all (or most) failing runs and not induced by any (or most) 

passing runs; and 2) locate the faulty code using some examination strategy  [12] [19]. 

In  [73] we showed that coincidental correctness is prevalent, and demonstrated 

that it is a safety reducing factor for a Tarantula style CBFL   [12] [18]. That is, when 

coincidentally correct tests are present, the defect will likely be ranked as less suspicious 

than when they are not present. Several other researchers have also studied and pointed out 
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the prevalence of coincidental correctness and/or its degrading effect on fault 

localization  [25] [102] [122] [125]. All of this motivated us to investigate techniques to 

cleanse test suites from coincidentally correct tests in order to enhance CBFL. This chapter 

presents the work published in  [7] and  [73] which aims at cleansing tests suites from CC 

tests in order to enhance the CBFL process of identifying failure-correlated program 

elements. 

The remainder of this chapter is organized as follows.  Section A motivates the 

work by showing how CC has a safety reducing effect on CBFL. Sections B describes our 

two proposed techniques. Section C presents our empirical study and discusses the 

findings. Finally, Section D surveys work related to coincidental correctness. 

 

A. Motivation 

CBFL techniques generally entail two phases: Ph1) identifying failure-correlated 

program elements using some suspiciousness metric M; and Ph2) locating the faulty code 

using some examination strategy. Typically, the techniques differ in both M and the 

examination strategy; and the performance of a given technique is attributed to both phases. 

This work does not make any attempts to improve Ph2, but instead focuses on identifying 

CC tests and consequently improving Ph1. 

We now demonstrate how weak coincidental correctness has a safety reducing 

effect on CBFL. Specifically, we show that the presence of CC tests leads to M values that 

underestimate the suspiciousness of faulty program elements, and thus identifying or 

removing CC tests from tests suites improves Ph1. We carry this out in the context of 



26 

 

widely used suspiciousness metrics  [101] [102], namely, Jaccard  [106], Tarantula  [12], 

AMPLE  [15], and Ochiai  [101] [102]. These metrics use the following components: 

e = faulty program element 

a11(e) = # of failing runs that executed e  

a01(e) = # of failing runs that did not execute e 

a10(e) = # of passing runs that executed e 

a00(e) = # of passing runs that did not execute e 

 
The Jaccard metric is defined as follows: ���� = ������������ + �	���� +	��	��� 
 

Assume that n tests executed e but did not induce a failure, i.e., the test suite contains n CC 

tests. In this case, the value of M(e) is misleading and to arrive at a more faithful value we 

should subtract n from a10(e), the new value would become: 

�′��� = ������������ + �	���� +	��	��� − 	� 

 

It is clear that M’ (e) ≥ M(e), i.e., not accounting for n would underestimate the 

suspiciousness of e. 

The main Tarantula suspiciousness metric is defined as follows: 

���� = ������ + ����				 
 

where 

fT = total # of failing runs = a11(e) + a01(e) 
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pT = total # of passing runs = a10(e) + a00(e) 

F(e) = a11(e) / fT  

P(e) = a10(e) / pT 

 

In case of n CC tests, the more accurate metric would then be 

�′��� = ������ + �′���			 
where P’(e) = (a10(e)−n) / (pT − n). It could be easily shown that M’(e) ≥ M(e). To verify, 

M’(e) ≥ M(e) ⇒ 1/M’(e) ≤ 1/M(e) ⇒  P’(e)/F(e) ≤ P(e)/F(e) ⇒ P’(e)/P(e) ≤ 1,  which 

holds since a10(e) ≤ pT. 

The AMPLE metric is: 

M(e) =  | F(e) – P(e) | 

A more accurate value would be M’(e) = | F(e) – P’(e) | where P’(e) = (a10(e)−n) / (pT − n). 

Here also, P’(e) ≤ P(e), and consequently M’(e) ≥ M(e). 

Finally, the Ochiai metric is defined as follows: 

���� = �������������� + �	����� × ������� +	��	���� 
To arrive at a more faithful suspiciousness value we should subtract n from a10(e) leading 

to 

�′��� = �������������� + �	����� × ������� +	��	��� − �� 
which is clearly larger than M(e).  
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It should be noted that in our empirical study (Section C) we adopt the Ochiai metric since 

it was shown to outperform the other metrics  [99].  

To summarize, we have shown above that cleansing test suites from CC would 

improve Ph1 by assigning the faulty code higher (or equal) suspiciousness values. The 

scope of this work is to devise techniques that achieve this purpose.   

 

B. Cleansing Techniques 

Figure 2 depicts a test suite T with its various components. It comprises a set of 

passing tests TP and a set of failing tests TF, where TP might be composed of a subset of 

coincidentally correct tests TCC and another subset of true passing tests TtrueP. As noted 

earlier, TCC refers to either weak or strong coincidentally correct tests, depending on the 

context. Our aim is to identify TCC given TF and TP so that the tests in TCC would be 

discarded from T in order to enhance the safety of CBFL. A passing test identified by our 

techniques as a potential CC test will be called a cct; and the set of identified cct’s, our 

estimate of TCC, will be called TCC’. We present two techniques to achieve our goal, 

namely, Tech-I and Tech-II. Both techniques are based on analyzing execution profiles, 

which we describe next. 
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Figure 2. A test suite with its various components 

 

1. Basic Concepts 

a. Execution Profiles 

The execution profiles we consider consist of the following three types of program 

elements: 

• Basic blocks (BB): For every basic block B such that B is executed in at least one test, a 

BB profile contains a flag indicating whether B is executed in the current test. 

• Basic-block edges (BBE):  For every pair of basic blocks B1 and B2 such that there is a 

branch from B1 to B2 in at least one test, a BBE profile contains a flag indicating 

whether this branch is taken in the current test. 

• Def-use pairs (DUP): For every pair consisting of a variable definition D(x) and a use 

U(x) such that D(x) dynamically reaches U(x) in at least one test, a DUP profile 

contains a flag indicating whether D(x) dynamically reaches U(x) in the current test. 
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• Combined BB, BBE and DUP (ALL): Combines profiling information of BB, BBE and 

DUP. ALL profiles are likely to characterize the behavior of the target application 

better than each of the other types considered individually. 

Our experiments in Section C involve both Java and C programs. We generate 

ALL execution profiles for the Java subjects using a tool that was developed in  [67]. 

Whereas we generate (only) BB execution profiles for the C subjects using gcov  [155]. 

 

b. Definition of cce  

Given a program element e, we denote by F(e) the ratio of failing test cases 

executing e, and by P(e) the ratio of passing test cases executing e. Each test case ti is 

associated with a characteristic function fi defined as follows: 

����� = �1	if	�	is	exercised	by	"�0	otherwise																					 
Given a test suite T that exercises elements e1, e2, …, en, a test case ti in T is 

represented by the feature vector  (� = )������			����*�			…			����,�-. Both of our techniques 

assume that: 1) there exists a set of elements, which we call cce’s, that correlate with 

coincidental correctness, and 2) a good candidate for a cce is any program element that 

occurs in all failing runs and in a non-zero but not excessively large percentage of passing 

runs.  

 

2. Tech-I  

Tech-I conjectures that coincidentally correct tests are similar to failing tests in 

terms of their execution profiles; and hence are expected to automatically cluster together. 
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Our approach is to use cluster analysis  [64] [123], and specifically k-means clustering, to 

partition the whole test suite into two clusters, pick the cluster containing the majority of 

failing tests and label all passing tests within it as cct’s. We use the Euclidean metric as a 

distance measure and discard elements that are not cce’s. In fact, since Tech-I considers an 

element e to be a cce iff F(e)=1 and 0 < P(e) < 1, it follows that all failing runs would 

collapse to the same point in the clustering process. The distance between two tests ti and tj 

is defined as follows: 

.�"� , "0� = 	1 2 �����3� −	�0��3��*,
34�56	�7	8	995

 

The two initial means consist of the common failing point and the most distant 

passing test.  

 

3. Tech-II 

Tech-I partitions the whole test suite into two clusters, expecting that one will 

mainly contain true passing tests, and the other failing and CC tests. On the other hand, 

Tech-II  partitions only the passing tests into two clusters, expecting that one of the clusters 

will be comprised of only (or mostly) CC tests. Tech-II  is an improvement of the cleansing 

technique presented in  [73], which considers an element e to be a cce iff F(e)=1 and 0 < 

P(e) ≤ θ where θ is a non-zero threshold specified by the user. It assigns each cce a weight 

equal to its Tarantula suspiciousness score and clusters the passing tests into two groups 

according to the cce’s they induce. The cluster associated with the larger average cce weight 

is selected as the one containing the CC tests. We recognize three main limitations in that 
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approach that Tech-II tries to address. First, the user is required to specify a value for θ, 

which restricts the automation of the technique. Second, and most importantly, we found 

that there is no unique value of θ that works best for all considered applications. Finally, the 

experiments we conducted exhibited a high rate of false positives and in some cases, a high 

rate of false negatives. To overcome these limitations, we modeled the cce’s as a fuzzy set. 

Fuzzy set theory  [128] was developed to model the vagueness/subjectivity associated with 

certain concepts when designing intelligent systems (e.g. “high” temperature, “normal” 

speed, etc). Contrary to classical set theory, membership in a fuzzy set can be partial and is 

associated with a function that maps the elements considered into the interval [0, 1]. The 

membership value represents the degree of compatibility with the property defining the 

fuzzy set. An element with membership value of 1 is a complete member of the fuzzy set 

whereas an element with membership value of 0 is not a member at all. In our context, 

there will be no strict boundary between cce’s and non-cce’s; the transition will be gradual. 

Figure 3 shows function µ that defines such a fuzzy set. Our choice is guided by the 

empirical study we conducted in  [61] and by our intention to use a generically shaped 

function. The value 56% represents the average of weak CC’s per test suite among the 148 

subject programs we used in that study. Therefore, a cce would be given a (full) 

membership of 1 if it is exercised by 56% of the passing runs. Moreover, since an element 

executed by no passing runs can’t be a cce we set µ(0%)=0. Similarly, we set µ(100%)=0 

because an element exercised by all passing runs cannot be a cce as well. 
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Figure 3. The fuzzy set of cce’s 

 

As such, CCE will be a fuzzy set defined by the following membership function: 

�::;�e� = < 0	if	�e� = 1										>���e��	otherwise 

Given a set of passing test cases S that induces n program elements, we quantify the 

likelihood of S to contain CC tests using the following metric: 

?�@�A��B��C� = ∑ ∑ ����3� × �::;��3�,34�EF∈H |C|  

Relevance(S1) > Relevance(S2) means that compared to S2, the tests in S1 induce program 

elements that cumulatively are more likely to be cce’s. 

Tech-II iteratively uses k-means to split the passing tests into two clusters and selects the 

cluster having a higher relevance value as the one containing the cct’s. It stops when the 

relevance of the selected cluster drops below 75% of the relevance of the one chosen 

initially. The used distance metric incorporates the CCE membership values as follows: 
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.�"�, "0� = 12J�::;��3� × �����3� −	�0��3��K*,
34�  

At each iteration, the initial means are chosen as the two test cases separated by the largest 

measured distance. What follows is the pseudocode for Tech-II: 

1.  TCC’  ← ∅ 
2.  TP’  ← T P 
3.  (cluster1, cluster2) ← Kmeans(T P’ , 2) 
4.  R0 ← max(relevance(cluster1), relevance(cluster2)) 
5.  R ← R 0 
6.  While R/R 0 >= 0.75 
7.  selected ← SelectClusterWithMaxRelevance(cluster1,cluster2)  
8.  TCC’  ← T CC’  ∪ selected 
9.  TP’   ← T P’  – selected 
10.  (cluster1, cluster2) ← Kmeans(T P’ , 2) 
11. R ← max(relevance(cluster1), relevance(cluster2))  
 

Line 1 initializes our estimate of the coincidentally correct tests, TCC’, to the empty set. 

Line 2 initializes the set of passing tests that need to be analyzed, TP’, to TP. Lines 3 and 4 

create two clusters out of TP’, compute their respective relevance then store their maximum 

in R0 to be used in Line 6 as part of the stopping criterion. Lines 7 through 9 select the 

cluster with the higher relevance, add its associated tests to TCC’, and subtract them from 

TP’. Lines 10 and 11 create two clusters out of the now reduced TP’, compute their 

respective relevance, and stores their maximum in R. Line 6 implements the stopping 

criterion, i.e., the loop exists when R drops below (0.75 * R0). 
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C. Empirical Evaluation 

1. Evaluation Metrics 

 In order to empirically evaluate the effectiveness of our techniques we compute 

metrics to quantify the generated false negatives and false positives. We also compute two 

metrics FaultScore and MaxScore that will help assess the potential impact of our CC 

cleansing techniques on the safety of CBFL techniques. 

 

a. Measure of generated false negatives and false positives 

N = 	 |O:: 	– 	OBB′||O::|  

The FN measure above assesses whether or not we are successfully identifying all of the 

coincidentally correct tests. TCC is the set of (true) coincidentally correct tests determined 

using the oracles, and TCC’  is the estimate of TCC computed using our techniques. In the 

example of Figure 4 the value of FN is 2/5. 

� =	 |�OQ − O::� 	∩ 	OBB′||OQ − O::|  

The FP measure assesses whether we are erroneously categorizing tests as coincidentally 

correct. In Figure 4, the value of FP is 1/12. 
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Figure 4. TCC’ estimate resulting in two false negatives and one false positive 

 

b. FaultScore and MaxScore 

Using the Ochiai suspiciousness metric, FaultScore is the value assigned to the 

fault, and MaxScore is the maximum observed value assigned to any program element. 

These metrics are used as follows: 

a)  MaxScore can be used to decide whether or not to apply our CC cleansing approach to 

a given test suite T. Assuming that the used profile types are suitable enough to 

characterize the fault at hand, a MaxScore value that is strictly less than 1.0 implies 

that T contains coincidentally correct tests, and therefore, our approach is likely to be 

beneficial. Note that a MaxScore of 1.0 does not always mean that no coincidentally 

correct tests exist, since it is possible that elements unrelated to the defective code 

would have an M(e) = 1.0.  

b) In our experiments we will gauge the change of FaultScore from when T is used to 

when T−TCC’ is used. An increased value of FaultScore is an indication that our 
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cleansing techniques will lead to an improved safety of the CBFL techniques. Also, it 

is desirable that, after cleansing, FaultScore is 1.0 or at least close to 1.0. 

Finally, as stated before, the scope of this work is to devise techniques for cleansing test 

suites from CC as this would improve the safety of CBFL; therefore, our experiments will 

not involve CBFL precision related tasks such as examination strategies. 

 

2. Subject Programs 

Our empirical study involved the following 15 subject programs: 

1) All seven of the Siemens programs  [157] that were converted from C to Java as part 

of previous work  [61]. 

2) Release 1, 3, and 5 of NanoXML  [157] 

3) The JTidy HTML and XML syntax checker and pretty printer release 3.0  [158] 

4) Space, an interpreter for an array definition language  [157] 

5) Three Unix utilities: the stream editor sed, the lexical analyzer generator flex, and 

the file compression/decompression tool gzip. All three were downloaded with their 

test suites from  [157] 

Table 5 provides more information about these subject programs and associated versions. 

Note how Space, JTidy, sed, flex, and gzip are relatively large and some contain real 

faults  [105]. Our experiments involved BB and ALL execution profiles for the Java 

programs and only BB for the C programs. For the C programs, we used the gcov tool  [155] 

to generate the profiles and we had to discard all versions that caused compile errors with 

the gcc version we used (v4.3.4). We also discarded all test cases that caused segmentation 
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faults (in the C programs) and those which caused exceptions being thrown (in the Java 

programs). Among the resulting versions/test suites, we additionally discarded the ones 

containing no failures, those with very few passing runs, and those for which no proper 

fault oracle could be used (e.g. constant mutation in header file). Table 5 summarizes the 

versions’ information by showing for each subject program the original number of versions 

available (All), the number used in our evaluation (Used), the number of versions that 

exhibited no CCs (noCCs), and the number exhibiting no true passing tests (noTrueP). 

Thus, there are 363 original versions, from which only 142 are used. Also, 37 out of the 

142 exhibited either no CCs or no true passing tests, and had to be evaluated separately. 

 

Table 5. Subject programs 

Program #Versions Platform LOC Profiling 

Type 

Fault Type 

All Used noCCs noTrueP 

print_tokens 7 4 1 0 Java 536 BB - ALL  Seeded 

print_tokens2 10 8 2 0 Java 387 BB - ALL  Seeded 

Replace 32 6 0 0 Java 554 BB - ALL  Seeded 

Schedule 9 4 0 0 Java 425 BB - ALL  Seeded 

schedule2 10 8 0 0 Java 766 BB - ALL  seeded 

Tcas 41 19 0 0 Java 136 BB - ALL  Seeded 

tot_info 23 17 1 0 Java 494 BB - ALL  Seeded 

NanoXML r1 5 3 0 0 Java 4,334 BB - ALL  Real 

NanoXML r3 5 5 2 0 Java 7,185 BB - ALL  Real  

NanoXML r5 6 4 0 0 Java 7,646 BB - ALL  Real 

JTidy 5 1 0 0 Java 9,153 BB - ALL  Real 

Space 38 27 3 1 C 6,445 BB Real 

Gzip 59 5 4 0 C 9,251 BB seeded 

Sed 32 10 3 0 C 11,699 BB Real-seeded 

Flex 81 21 15 5 C 15,895 BB seeded 
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3. Results 

Table 6 provides the following information about the 105 versions exhibiting 

failures, CCs, and true passing tests: a) test suite size, b) number of failing tests, c) number 

of weak CC tests, and d) FaultScore values computed using the original test suite, after 

applying Tech-I, and after applying Tech-II respectively. Note that since the test suites of 

Space and JTidy are relatively large (13,525 and 16,694 respectively), we opted to 

randomly select a smaller subset of 1000 test cases while preserving the same ratio of 

failing/CC/true passing. Also note that the fault types ranged between added/deleted code, 

altered conditionals, wrong assignment statements, wrong function arguments, missing 

conditionals, and others. 

 

Table 6. Versions used and results 

Program |T| |TF| |TCC| FaultScore 

org. Tech-I Tech-II 

print_tokens_v2 4070 48 1546 0.17 1.00 0.74 

print_tokens_v5 4070 150 1250 0.33 0.63 1.00 

print_tokens_v7 4070 28 357 0.27 1.00 1.00 

print_tokens2_v1 4055 240 2841 0.28 1.00 0.78 

print_tokens2_v3 4055 33 726 0.21 1.00 0.45 

print_tokens2_v4 4055 332 1099 0.48 1.00 1.00 

print_tokens2_v7 4055 207 1222 0.38 1.00 1.00 

print_tokens2_v8 4055 256 3247 0.27 1.00 0.56 

print_tokens2_v9 4055 56 1373 0.20 1.00 1.00 

replace_v2 2843 11 1325 0.09 1.00 1.00 

replace_v7 2843 54 765 0.26 1.00 1.00 

replace_v8 2843 212 607 0.51 1.00 0.95 

replace_v16 2843 54 765 0.26 1.00 1.00 

replace_v28 2843 18 801 0.15 0.20 0.20 

replace_v30 2843 469 350 0.76 1.00 0.95 

schedule_v2 2650 210 1382 0.36 1.00 1.00 

schedule_v3 2650 159 1199 0.34 1.00 1.00 

schedule_v4 2650 294 1481 0.41 1.00 1.00 

schedule_v8 2650 31 1311 0.15 1.00 1.00 
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schedule2_v1 2710 65 1802 0.19 1.00 0.94 

schedule2_v2 2710 31 2636 0.11 0.51 0.26 

schedule2_v3 2710 34 2633 0.11 0.52 0.26 

schedule2_v4 2710 2 2578 0.03 1.00 0.09 

schedule2_v5 2710 32 2628 0.11 0.52 0.22 

schedule2_v6 2710 7 2573 0.05 1.00 1.00 

schedule2_v7 2710 31 2636 0.11 0.51 0.26 

schedule2_v10 2710 46 2614 0.13 0.59 0.30 

tcas_v1 1597 131 345 0.52 1.00 1.00 

tcas_v2 1597 67 808 0.28 1.00 1.00 

tcas_v5 1597 10 1557 0.08 1.00 0.13 

tcas_v6 1597 12 584 0.14 1.00 1.00 

tcas_v7 1597 36 1531 0.15 1.00 0.22 

tcas_v9 1597 7 868 0.09 1.00 1.00 

tcas_v16 1597 70 1497 0.21 0.30 0.30 

tcas_v17 1597 35 1532 0.15 1.00 0.22 

tcas_v18 1597 29 1538 0.14 1.00 0.20 

tcas_v19 1597 19 1548 0.11 1.00 0.16 

tcas_v20 1597 18 857 0.14 1.00 1.00 

tcas_v22 1597 11 864 0.11 1.00 1.00 

tcas_v24 1597 7 868 0.09 1.00 1.00 

tcas_v25 1597 3 396 0.09 1.00 1.00 

tcas_v26 1597 11 1556 0.08 0.13 0.13 

tcas_v27 1597 10 1557 0.08 1.00 0.13 

tcas_v29 1597 18 857 0.14 1.00 1.00 

tcas_v37 1597 92 464 0.41 1.00 1.00 

tcas_v39 1597 3 396 0.09 1.00 1.00 

tot_info_v2 1052 10 953 0.10 0.85 0.34 

tot_info_v3 1052 3 1046 0.05 1.00 0.12 

tot_info_v4 1052 33 635 0.22 1.00 1.00 

tot_info_v5 1052 29 739 0.19 1.00 1.00 

tot_info_v7 1052 123 674 0.39 1.00 1.00 

tot_info_v8 1052 199 29 0.93 1.00 1.00 

tot_info_v9 1052 37 731 0.22 1.00 1.00 

tot_info_v11 1052 199 29 0.93 1.00 1.00 

tot_info_v12 1052 33 696 0.21 1.00 1.00 

tot_info_v13 1052 128 669 0.40 1.00 1.00 

tot_info_v14 1052 2 1047 0.04 1.00 0.10 

tot_info_v15 1052 199 29 0.93 1.00 1.00 

tot_info_v16 1052 170 793 0.42 0.96 0.71 

tot_info_v17 1052 44 624 0.26 1.00 1.00 

tot_info_v22 1052 23 843 0.16 1.00 0.36 

tot_info_v23 1052 71 597 0.33 1.00 1.00 

nano1_v1 169 27 137 0.41 0.74 0.55 

nano1_v3 169 45 12 0.89 1.00 1.00 

nano1_v5 169 29 113 0.45 1.00 0.84 

nano3_v1 141 10 54 0.40 0.95 0.85 

nano3_v3 141 10 123 0.27 0.88 0.38 

nano3_v4 141 4 3 0.76 1.00 1.00 

nano5_v2 141 30 40 0.65 1.00 0.97 

nano5_v4 141 40 48 0.67 1.00 1.00 

nano5_v5 141 30 40 0.65 1.00 0.97 

nano5_v6 141 30 103 0.47 0.73 0.63 

jtidy_v1 1000 10 863 0.11 1.00 0.24 

space_v3 1000 47 908 0.22 1.00 0.26 
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space_v5 1000 291 10 0.98 1.00 1.00 

space_v6 1000 935 10 0.99 1.00 1.00 

space_v7 1000 11 18 0.62 1.00 1.00 

space_v8 1000 10 13 0.66 1.00 1.00 

space_v9 1000 305 128 0.84 1.00 1.00 

space_v10 1000 87 59 0.77 1.00 1.00 

space_v11 1000 69 95 0.65 1.00 1.00 

space_v12 1000 10 10 0.71 1.00 1.00 

space_v13 1000 56 10 0.92 1.00 1.00 

space_v14 1000 129 631 0.41 1.00 1.00 

space_v15 1000 254 413 0.62 1.00 1.00 

space_v16 1000 36 10 0.88 1.00 1.00 

space_v17 1000 14 502 0.16 1.00 1.00 

space_v18 1000 10 10 0.71 1.00 1.00 

space_v19 1000 90 10 0.95 1.00 1.00 

space_v20 1000 15 10 0.77 1.00 1.00 

space_v21 1000 15 10 0.77 1.00 1.00 

space_v23 1000 20 23 0.68 1.00 1.00 

space_v24 1000 52 229 0.43 1.00 1.00 

space_v28 1000 490 302 0.79 0.95 0.98 

space_v31 1000 119 54 0.83 1.00 0.88 

space_v33 1000 7 20 0.51 1.00 1.00 

flex4_v6 532 148 96 0.78 1.00 1.00 

gzip5_v1 195 6 2 0.87 1.00 1.00 

sed2_v1 212 38 6 0.93 1.00 1.00 

sed2_v2 212 12 6 0.82 1.00 1.00 

sed2_v3 212 6 77 0.27 1.00 1.00 

sed3_v1 213 3 12 0.45 1.00 1.00 

sed3_v3 213 13 2 0.93 1.00 1.00 

sed3_v4 213 29 4 0.94 0.98 1.00 

sed4_v3 213 1 1 0.71 1.00 1.00 

 

 

Figures 5 and 6 involve all of the 105 Java and C versions listed in Table 6. They 

show the results of our techniques computed using BB execution profiles. Whereas Figures 

7 and 8 show the results involving only 73 Java versions using ALL execution profiles. The 

results associated with the remaining 37 versions that exhibited no CCs or no true passing 

tests are presented later in this section. 

The plot in Figure 5 shows the results of applying Tech-I to identify weak CC 

tests, namely, FN, FP, and (FN+FP). For clarity, the horizontal axis shows the versions 



42 

 

identifiers sorted in ascending order based on their respective values of (FN+FP). The 

following could be observed:  

a. 18 versions did not exhibit any false negatives or false positives, i.e., FN and FP are 

both 0 

b. 14 other versions exhibited a low FN+FP of less than 20%  

c. The remaining versions exhibited a relatively high FN+FP mostly due to FP 

d. With the exception of versions 103, 104, and 105 (and versions 1-18) a high FP was 

counteracted with a low FN, and vice-versa  

Also, not shown in the figure, the average FN is 3% and the average FP is 45% 

 

 

Figure 5. CC cleansing results using Tech-I (BB) 

 

Figure 6 is the counterpart of Figure 5 using Tech-II. We make the following observations:  

a. 15 versions (14.3%) exhibited an FN+FP of 0% 

b. 21 other versions exhibited a low FN+FP of less than 20% 
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c. The remaining versions exhibited a relatively high FN+FP due to either FP or FN 

d. With the exception of versions 52, 57, 72, 100-105 (and versions 1-15), and 

similarly to Tech-I, a high FP was counteracted with a low FN, and vice-versa 

e. The average FN and FP are 9% and 30%, respectively 

 

 

Figure 6. CC cleansing results using Tech-II (BB) 

 

 

In summary, Tech-I is the better performer in terms of its low rate of false 

negatives, whereas Tech-II is better in terms of its lower rate of false positives. But when 

taking both FN and FP into consideration, the average of FN+FP is 47% for Tech-I and 

39% for Tech-II, making Tech-II the better overall performer.  

Figures 7 and 8 present the results for the 73 java versions when ALL profiling is 

applied. The same general conclusions can be made in this scenario. Specifically, Tech-I 

tends to outperform Tech-II in terms of false negatives while the contrary holds in terms of 

false positives and the aggregate of false alarms. Tech-I results in 3% FN and 39% FP on 
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average with 18 versions having a value of FN+FP equal to 0. On the other hand, Tech-II 

results in 12% FN and 19% FP on average with 11 versions (15%) having a value of 

FN+FP equal to 0. It’s worth mentioning that the results for individual versions are almost 

the same when compared to the BB profiling scenario. Concerning Tech-I, the results 

remained exactly the same for 53 versions, were slightly different for 12 others, and varied 

with no particular pattern in the remaining 8 versions (i.e. didn’t result in lower/higher 

FP/FN all the time). For Tech-II, the results remained the same for 46 versions, were 

slightly different for 19 others, and also varied with no particular pattern for the remaining 

ones. 

 

 

Figure 7. CC cleansing results using Tech-I (ALL)  
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Figure 8. CC cleansing results using Tech-II (ALL) 

 

 

 Furthermore, we intended to apply our techniques for extreme cases in which no weak 

CC or no true passing runs are present in the test suite being considered. We used 31 

versions with no CC’s and 6 others with no true passing runs. In the former case, Tech-I 

resulted in an average of false positives equal to 70% whereas Tech-II averaged 60%. 

Obviously, no false negatives would be expected as there are no CC’s to begin with. 

Concerning the versions with no true passing tests, the average rate of false negatives 

resulting from Tech-I and Tech-II are 21% and 24% respectively. Similarly, one wouldn’t 

expect any false positives in such versions. 

 

4. Analysis 

Columns 6, 7, and 8 in Table 6 show the value of FaultScore (using BB profiling) 

in each of the following scenarios, respectively: 1) before applying any of the cleansing 
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techniques, 2) after applying Tech-I, and 3) after applying Tech-II. The average 

improvement in FaultScore was 0.52 when applying Tech-I and 0.39 when applying Tech-

II . Applying Tech-I led to improving FaultScore values for all 105 versions. Among these, 

the value of FaultScore reached a (maximum) value of 1 for 88 versions. Similarly, 

applying Tech-II led to improving FaultScore for all 105 versions and achieving a value of 

1 for 67 of them. 

The results of ALL profiling were very similar. The values of FaultScore after 

applying Tech-I (resp. Tech-II) were the same as those presented in column 7 (resp. column 

8) except for 8 applications (resp. 10 applications). The average improvement was 0.53 for 

Tech-I and 0.38 for Tech-II. Again, the value of FaultScore improved for all 105 versions 

using both techniques. Furthermore, a FaultScore of 1 was obtained for 87 versions using 

Tech-I and 66 versions using Tech-II. These results suggest that our techniques are likely to 

benefit CBFL. Note that the reason that Tech-I appears superior in this context is probably 

due to the fact that it yields a lower rate of false negatives. 

Concerning the suitability of MaxScore as an indicator of the presence of CC’s, we 

first considered the 31 versions exhibiting no CC’s, and computed their associated 

MaxScore using T; they turned out to be all equal to 1. Also, considering the 111 versions 

that did contain CC’s, only 18 had a MaxScore of 1. This suggests that a MaxScore of 1 is 

somewhat a good predictor that T does not contain CC’s, in which case cleansing is not 

needed. 

Our final conclusion concerns the impact of the profiling type on cleansing 

efficiency. In relation to the discussions of Figures 7 and 8, among the 73 versions for 
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which both BB and ALL profiling was used, Tech-I gave almost the same results for the vast 

majority of them (89% of the versions) and didn’t follow a particular trend for the 

remaining ones. These observations apply to Tech-II as well and therefore it can be 

concluded that the profiling type does not matter. Another observation that supports this 

claim is that MaxScore (before cleansing) exhibited the same values using BB and ALL 

profiling for all 73 Java versions.  

 

D. Related Work 

A coverage refinement approach is presented in  [125] to reduce the influence of 

coincidental correctness on fault localization. The work introduces a concept called context-

pattern, which is unique for each fault type and describes the program behavior before and 

after the faulty code. Coverage results for all statements are refined with the context-pattern 

following a context-pattern matching. The paper lists context patterns for specific types of 

fault such as: missing function calls and missing assignments. It also presents results of 

experiments that showed that coincidental correctness is a common problem and harmful 

for coverage-based fault localization. 

In the work presented in  [120], which is based on  [110], the authors described 

coincidental correctness as a problem that occurs whenever the weak mutation hypothesis 

(WMH) is not holding. WMH states that whenever a fault was executed and its effect is 

detectable at the fault location then the output will be affected. The work was primarily an 

empirical study to identify how often WMH holds. On the other hand, the work in  [20] 

focused on identifying points in the tested code that are likely to develop the type of 
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undetected errors that lead to coincidental correctness. The PIE analysis presented in the 

paper investigates three factors related to faulty elements in the tested program: fault 

execution, creation of faulty states (infection), and failure propagation to the output. Fault 

execution analysis can be done by studying the probability of execution of certain locations 

in the code based on a predefined set of inputs. Infection can be analyzed based on a pre-

estimation for a fault behavior. Finally, the propagation of fault can be studied by injecting 

failure states and then studying their propagation estimate. 
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CHAPTER IV 

ONLINE INTRUSION DETECTION USING PROFILE-BASED 
SIGNATURES 

 

 

Intrusions or attacks, particularly in the context of an application, make use of a 

vulnerability within the application in order to induce unsafe behavior; the input used to 

take advantage of this vulnerability is referred to as an exploit. Consequently, signatures 

corresponding to such attacks can be partitioned into exploit-based and vulnerability-based 

signatures; the former are derived from the inputs inducing the intrusion, whereas the latter 

are constructed using the vulnerability itself. Relying solely on exploit-based signatures in 

an IDS allows it to become viable to polymorphic attacks - attacks that differ syntactically 

but semantically trigger the same vulnerability  [40]. As such, we opt to devise an intrusion 

detection approach that leverages signatures that are in part vulnerability-based, 

specifically, these signatures do not characterize the vulnerabilities themselves, but instead 

they characterize program events that correlate with (and not necessarily cause) the 

exploitation of program vulnerabilities. 

We rely on program execution profiling information to define attack signatures, 

which we term profile-based signatures. In this work, execution profiles comprise method 

calls, method call pairs, basic blocks, branches and definition-use pairs. This approach is 

inspired by the idea that exploits induced by a certain vulnerability are likely to exhibit 

similar traits or patterns of execution, so by mining out the collection of events gathered 

during the occurrence of attacks, we would be able to characterize the events or program 
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conditions that correlate with vulnerabilities, and hence devise corresponding signatures. 

As a result, these signatures can be deployed within an intrusion detection system to 

capture future exploits, by checking if any incoming executions induce the events they 

describe. Note that since the identified profile-based signatures correlate with a given 

exploit, there exists a potential of using them to understand, locate, and fix the associated 

vulnerability  [12] [19], but this is not the concern of this work. Instead, our concern is to 

prevent a system from being attacked in cases when one is aware that attacks due to a 

certain vulnerability occurred, and the task of understanding, locating, and fixing that 

vulnerability is underway. It is not uncommon that such task might take a very long time or 

might be even abandoned altogether due to the risk of modifying the code. 

It is not often the case that an attack is induced by the execution of a single 

program element (e.g., the execution of a single statement or a single branch), but by the 

execution of a combination of such elements. Consider, for example, the following code 

fragment: 

 s1. x = 2; 

 s2. y = -2; 

   

 s3. if (…) 

 s4.   x += 10; 

   

 s5. if (…) 

 s6.   y = y * -2; 

 

 s7. y = y + -2*x; 

 s8. z = x * y; 
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 s9. if (z >= 0)  // should be if (z > 0) 

 s10.  access granted 

 s11. else 

 s12.  access denied 

 

The intrusion occurs only when z  is equal to 0 at s9 , which is the site of the 

“vulnerability”  in this case, allowing access when it should be denied. This action can only 

take place if the definition-use pairs DUP(s1,s7), DUP(s6,s7) and branches Branch(s3,s5), 

Branch(s5,s6) execute in a program run. Any single element of these on its own is not 

enough to induce the erroneous behavior, but a certain combination of them can allow for 

the exploitation of the vulnerability, and thereby an intrusion. For instance, detecting the 

execution of the branch Branch(s3,s5) and the def-use pair DUP(s6,s7), or alternatively the 

def-use pair DUP(s1,s7) and the branch Branch(s5,s6), should alert to an attack. Note that 

any one of these combinations is a sufficient and necessary condition for the occurrence of 

the intrusion, and thus any of them can be utilized as a signature in the detection system. 

The main phases of our proposed solution are elaborated on in the subsequent 

sections. In summary, the following tasks are applied on the vulnerable subject application: 

Task1. Creating a training set that adequately characterizes the usage pattern of the 

application and includes both normal tests and attack tests. 

Task2. Executing the training set and collecting the execution profiles. 

Task3. Generating the profile-based signatures that mostly correlate with the attacks. 

Since a brute-force enumeration of all possible combinations is not a feasible 
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solution, this task uses a genetic algorithm to identify the combinations of program 

elements that correlate with the attacks that occurred within the training set. 

Task4. Incorporating the generated signature(s) into the intrusion detection system. 

 The remainder of the chapter is organized as follows. We begin explaining the phases 

of our implementation in Section A with execution profiling, followed by signature 

generation in Section B, and signature matching in Section C. The empirical evaluation and 

analysis of obtained results is given in Section D. Finally, in Section E we comparatively 

discuss related work. 

 

A. Execution Profiling 

Each test in our training set, whether it represents an attack or a normal behavior, 

will have a profile generated for it containing information about the occurrence of the 

following program elements: 

1) Method calls (MC): For every method M that is executed in at least one test, an MC 

profile entry indicates whether M is called in the current test 

2) Method call pairs (MCP): For every combination of methods M1 and M2 such that M1 

calls M2 in at least one test, an MCP profile entry indicates whether M1 calls M2 in the 

current test 

3) Basic blocks (BB): For every basic block B such that B is executed in at least one test, a 

BB profile entry indicates whether B is executed in the current test 
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4) Basic-block edges or branches (BBE):  For every pair of basic blocks B1 and B2 such 

that there is a branch from B1 to B2 in at least one test, a BBE profile entry indicates 

whether this branch is taken in the current test 

5) Def-use pairs (DUP): For every pair consisting of a variable definition D(x) and a use 

U(x) such that D(x) dynamically reaches U(x) in at least one test, a DUP profile entry 

indicates whether D(x) dynamically reaches U(x) in the current test 

In most cases, a combination of these elements should be enough to characterize the 

behavior of the profiled application and should allow some form of distinction between safe 

and malicious program runs. It is this distinction that we aim to leverage. Finally, it should 

be noted that the profiling tool that we use in this work targets the Java platform and has 

been developed in prior work  [60] [63] [65] [67]. 

 

B. Signature Generation 

The goal of our work is to generate signatures that are representative of attack 

patterns, and comprised of combinations of program elements of multiple types. Obviously, 

such combinations must be of relatively minimal-size, to allow for tolerable runtime 

overhead (during the matching process), and have executed in as many exploits and as few 

safe runs as possible, so as to ensure acceptable rates of false positives and false negatives. 

Generating these signatures using the brute-force algorithm would entail considering all 

possible combinations of profiled elements, i.e. an exponential number of combinations 

with respect to the size of the profiles, which is not a viable solution. Therefore, an 

approximation algorithm is the rational alternative, and in our case, we use a genetic 
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algorithm. Genetic algorithms are global search heuristics used to solve combinatorial 

optimization and learning problems  [55]. In general, a genetic algorithm solves a given 

problem by operating on a population of candidate solutions, evaluating their quality, then 

applying a form of transformation over generations or iterations to improve the quality of 

these solutions, and ultimately evolving to a single solution - or set of solutions - that fits 

certain criteria.  

In what follows we discuss the design of the genetic algorithm as used for the 

purpose of generating attack-inducing signatures. Note that we generate one signature per 

vulnerability, even though one signature characterizing multiple vulnerabilities could also 

be generated using our algorithm.  

Chromosome Representation. In our implementation, a chromosome has to 

represent a combination of multi-type elements, so a bit string notation would be suitable to 

indicate which profiled elements are included in each combination instance. The size of 

each bit string is equal to the total number of execution elements gathered during the 

profiling phase; a bit set to 1 implies that the corresponding element is included in this 

particular combination. Therefore, by varying the positions of 1s and 0s in a bit string, a 

new combination of program elements is created, and the number of 1s in the bit string 

corresponds to the size of the combination. An example of chromosome representation in 

the context of our problem is given in Figure 9. The circled 1-bit indicates that the 

corresponding method call element is included in the combination; the 0-bit implies that the 

corresponding DU-pair element is not included. 
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Figure 9. Chromosome Representation 

 

  Fitness Function. Once an individual chromosome is created, its fitness is 

evaluated to determine how good this combination solution is in identifying exploits. For 

this purpose, we employ a fitness function that relies on the number of safe and unsafe test 

cases in the training set which contain this combination. In particular, the fitness function is 

a numeric measure of the quality of the solution that indicates the execution frequency of a 

combination in malicious test cases relative to safe test cases as is shown in this equation: 

�S"��TT�BUVWXWTWX�� = %Z�T���	VZ�T − %T���	VZ�T 
where %unsafe runs is the number of malicious test cases containing the combination over 

the total number of malicious test cases, and likewise for %safe runs. Ultimately, the aim is 

to end up with a solution whose fitness is equal to 1, i.e. a combination (or set of 

combinations) that occurred in all exploits but not in any safe run. This would guarantee the 

elimination of false negatives and false positives from the training set, but not necessarily 

from all yet unseen tests, of course. 

 Population Generation. The population is a set of chromosomes signifying a 

collection of candidate solutions, which will evolve into the final solution. We begin with 

the initiating-chromosome from which the entire population is spawned. The initiating-

chromosome is constructed as a function of the intersection of the execution profiles of all 
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unsafe test runs in the training set. The resulting program elements are the ones of interest 

since they occurred in all attacks associated with the given vulnerability. The population is 

then formed, one combination bit string at a time, by taking a random subset of the 

initiating-chromosome. The subset selection is done in a probabilistically-randomized 

manner: for each element of the initiating-chromosome, the chosen probability determines 

if it is to be included in the combination or not. The value of this probability governs the 

size of the resulting combination relative to the size of the initiating-chromosome, so we 

tend to use rather small probabilities to satisfy our requirement for minimal-sized 

combinations. To further illustrate the population generation mechanism, Figure 10 

presents a sample of three individual chromosomes derived from the initiating-

chromosome. The initiating-chromosome representing the intersection of exploit profiles is 

shown in 10-(a) whereas the resulting population chromosomes are shown in 10-(b); the 0-

bit circled in red indicates that the element did not execute in all unsafe test case, placing a 

0-bit in all individuals. The 1-bits in the initiating-chromosome are probabilistically 

assigned as 1s or 0s in the population chromosomes. 

 

 

Figure 10. Initial Population Generation 
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 Transformation Operator. We employ fitness-based crossover  [77], its basic 

functioning resembles that of genetic heredity, where a new chromosome is produced as a 

result of combining two parent chromosomes and passing down properties from each onto 

the new child, always favoring the parent with the higher fitness. The intended result is for 

the constructed child to have as good or better fitness than its parents. The adopted genetic 

algorithm is a steady-state one, implying that the transformation is applied across 

generations, in each generation creating a single new child which replaces another 

individual in the population. To diversify the child generation process, a child chromosome 

is either the result of a crossover or a completely random setting similar to that introduced 

in the population generation phase; however, crossover is applied at a much higher rate to 

maintain the property of inheritance. To conduct the crossover, two parent combinations are 

randomly selected from the population then the child generated is a combination containing 

program elements from both parents, behaving similarly to the idea of inheriting traits from 

one's parents. Nevertheless, to ensure improvement of the child's fitness, more elements 

should be taken from the parent combination with higher fitness. On the bit string level, 

each bit in the child chromosome is set to be equal to the same-indexed-bit in one of its 

parents, always favoring the better-fitted one. This is accomplished by assigning the 

probability factor of adopting the bit value from the parent with better fitness to be higher 

than that of the lower-fitness parent. 

  Acceptance Criterion. The fitness function is a measure of the quality of a certain 

solution or combination, but to actually determine when a solution is deemed fit enough to 

be considered, a certain threshold for the fitness value must be set. In our case, we evaluate 
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the fitness of a chromosome to determine whether it is fit enough to include in the general 

population once it is created. However, we don’t require such threshold to be high. In fact, 

small values are desirable as they ensure the formation of a population to start with as well 

as achieving more diversity among the candidate solutions. 

 Stopping Criterion. The last step to determine when the generational evolution should 

stop, indicating that an adequate solution to the problem has been attained. This happens 

when one of the following conditions is met: 1) a solution with fitness equals to 1.0 is 

encountered, which means that there is no room for improvement anymore; or 2) a 

maximum number of generations is reached. It is worth mentioning that we keep track of 

the best encountered solution (resulting from a crossover or random generation) throughout 

the entire process. This guarantees that we end up having the best alternative in case no 

solution with fitness of 1.0 was found. 

 

C. Signature Matching 

The back-end of our proposed IDS involves execution profiling followed by 

signature generation; signature matching constitutes its front-end. First, it should be 

pointed out that signature generation is carried out for each individual vulnerability, i.e., 

given an application with multiple vulnerabilities, multiple independent signatures are 

generated, and their resulting XML representations are merged into a single definition file 

to be passed to the signature matching subsystem. Hereafter, a signature generated for an 

individual vulnerability will be referred to simply as signature, and the collection of 

signatures for all vulnerabilities in the application will be referred to as signature-set. 
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 Given the signature-set definition file, the signature matching subsystem parses it 

at startup and maintains a description of the program elements characterizing the signatures 

in order to: 1) dynamically instrument the target application, 2) perform signature 

matching, and 3) alert in case of intrusions. This subsystem checks if all the program 

elements (MC, MCP, BB, BBE, DUP) constituting a given signature in the signature-set 

occur in a single execution of the application. To enable this type of surveillance, 

instrumentation is required. Instrumentation is the injection of instructions at the Java 

bytecode-level of an application. In this instance, instrumentation is meant to detect when 

the elements identified as part of a signature are in fact encountered. Therefore, two 

modules are designed to construct the signature matching subsystem, and will be discussed 

next: 1) the instrumentation module, and 2) the matching module. 

 

1. Instrumentation Module 

In order to achieve acceptable online performance we choose to apply selective 

and dynamic instrumentation to enable the required application monitoring. Selective 

instrumentation is desirable as only the elements specified by the signatures (and some 

related ones) need to be analyzed  [69]. The advantage of dynamic instrumentation is that it 

does not require stopping and restarting the deployed application any time a new signature 

is to be registered within the matching system, which is not the case with static 

instrumentation. 

In implementing our module we use the java.lang.instrument package, which 

enables dynamic instrumentation and can be used in conjunction with the bytecode 
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manipulation library BCEL  [156], which provides functionality to inject bytecode 

instructions. This package allows instrumentation by way of Java agents, which are 

pluggable libraries that run embedded in the Java Virtual Machine (JVM) and intercept the 

class-loading process. The agents are run in tandem with the target application and are 

programmed to carry out the instrumentation. The implemented agent (1) reads in the XML 

formatted signature-set definition file, (2) parses it to determine what particular elements 

are involved in each of the signatures, then (3) instruments the classes (at load time) to 

insert the necessary bytecode instructions. The inserted instructions which consist of calls 

to methods within the matching module vary according to the type of elements in a given 

signature; therefore, calls are inserted at the following locations: 

1) For MC elements: at the entry statement of the method specified by the signature 

2) For MCP elements: at the entry and exit of all methods in the application as this is 

needed in order to track the application’s dynamic call stack. Given a signature 

specified as MCP(f1, f2), it is not sufficient to simply check whether functions f1 and 

f2 were entered, but the matching module should check the top of the call stack at the 

entry of f2 to make sure that f1 was actually the caller 

3) For BB elements: at the entry statement of the basic block specified by the signature 

4) For BBE elements: at the entry statement of all BBs in the method containing the BBE 

specified by the signature. A BBE entails a source BB and a target BB both of which 

belonging to the same method. Instrumenting the source and target of the BBE is not 

sufficient as it is not always the case that the target will execute right after the source.  
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5) For DUP elements: at the definition and use statements specified by the signature, and 

also at all other statements that define the involved variable. 

As it is apparent from the above, the efficiency of online signature matching is dictated not 

only by the number of elements constituting the signatures in the signature-set, but also by 

the type of these elements. Clearly, the cost of monitoring MCs and BBs is lower than of 

MCPs, BBEs and DUPs. For this reason, it is beneficial to first try to identify signatures 

containing only MCs and BBs, and in case none are found, then try to identify signatures 

containing the other types of elements. In fact, this scheme is adopted in our work, as 

described in Section D.2. 

 

2. Matching Module 

The matching module maintains a flag for each of the signatures in the signature-

set, as well as a set of flags for each of the elements within the given signature. If all the 

elements constituting a particular signature have executed and had their flags set, then the 

flag pertaining to that signature is set as well, and a message alerts to the detection of an 

intrusion. Consider the following two scenarios where the element under inspection is a 

DUP(s1, s2) involving a local variable. In the first: a) the definition site s1 is executed 

leading the matching module to set a flag indicating the execution of the definition, and b) 

the use site s2 is executed while the definition flag is still set. In the second: a) the 

definition site s1 is executed leading the module to set a flag indicating the execution of the 

definition, b) the variable was redefined leading the matching module to reset the definition 

flag, and c) the use site s2 is executed while the definition flag is not set as a result of b). In 
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the first scenario, the module will indicate that DUP(s1, s2) has matched, whereas in the 

second it will not. 

 

D. Empirical Evaluation 

 

1. Subject Programs and Test Suites 

 Our study involves seven applications, three having a security focus, namely, Tomcat 

3.0, Tomcat 3.2.1, and Jigsaw 2.0.5, and four that do not, i.e., print_tokens2, JTidy, 

schedule, and tot_info. The latter applications are used to demonstrate the applicability of 

the approach to online failure detection; noting that most existing work on online failure 

detection  [39] [43] is based on anomaly detection. For simplicity, we will refer to the 

defects and failures in print_tokens2, JTidy, schedule, and tot_info as vulnerabilities and 

attacks, respectively.  

 Apache Tomcat 3.0 is an open-source Servlet/JSP container having four 

vulnerabilities: JSP source disclosure (vul-1), directory listing disclosure (vul-2), and JSP 

engine denial of service (vul-3 and vul-4). The test suite consists of 658 requests, 460 of 

which are safe, while the rest are attack-inducing. Note that in this program, as well as in 

the others, the number of malicious requests is far less than that of safe ones within the test 

suite, which is analogous to a real-life situation. The safe requests included 193 Servlet 

requests, 150 JSP requests, and 117 HTML/text requests. Whereas the unsafe requests 

included 150 requests exploiting vul-1, 38 requests exploiting vul-2, 6 requests for vul-3, 

and 4 requests for vul-4. 
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 Apache Tomcat 3.2.1 contains three vulnerabilities: vul-1 exhibits JSP source code 

disclosure, and vul-2 and vul-3 exhibit JSP engine denial of service. The test suite consists 

of 497 requests, with only 24 unsafe tests. The safe requests include 283 Servlet requests, 

69 JSP requests, and 121 HTML/text requests. The unsafe requests comprise 18 requests 

exploiting vul-1, 2 requests exploiting vul-2, and 4 requests for vul-3. 

 Jigsaw 2.0.5 is also an open-source web server and Servlet container containing four 

vulnerabilities: denial of service (vul-1), path disclosure (vul-2), directory listing disclosure 

(vul-3) and illegal file access (vul-4). The test suite contains 490 normal requests and 40 

exploits. The safe requests include 193 Servlet requests, 191 JSP requests, and 106 normal 

HTML/text requests. The unsafe requests include 1 request exploiting vul-1, 2 requests 

exploiting vul-2, 4 requests for vul-3, and 33 requests for vul-4. 

 JTidy 3.0 is an HTML syntax checker and pretty printer. Its test suite comprises 1000 

files (each containing 280 lines on average). Some of the tests were downloaded from the 

Google Groups (groups.google.com) using a web crawler and the others were part of the 

XML Conformance Test Suite. Of these, 192 were XML files and the rest were HTML 

files.  JTidy failed on 180 of these test cases distributed as follows: 1) 83 exercised vul-1; 2) 

2 exercised vul-2; 3) 95 exercised vul-3. 

 print_tokens2 is a lexical analyzer developed as part of the Siemens benchmark  [89]. 

We constructed a multiple-fault version using some of the original bugs. The test suite 

contains 1801 passing tests and 548 failing ones distributed among 7 vulnerabilities as 

follows: 1) 205 exercised vul-1; 2) 146 exercised vul-2; 3) 19 exercised vul-3; 4) 20 

exercised vul-4; 5) 96 exercised vul-5; 6) 33 exercised vul-6; and 7) 29 exercised vul-7. 
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 schedule is a priority scheduler also from the Siemens suite. The multiple-fault 

version we used involved 981 passing tests and 1314 failing tests. Among the failing runs, 

1070 exercised vul-1, 30 exercised vul-2, and 214 exercised vul-3. 

 tot_info is another Siemens program, which computes information measures. We set 

up a multiple-fault version of it that includes 6 vulnerabilities. The test suite consists of 791 

passing runs and 148 failing runs: 1) 20 exercised vul-1; 2) 19 exercised vul-2; 3) 37 

exercised vul-3; 4) 1 exercised vul-4; 5) 3 exercised vul-5; and 6) 68 exercised vul-6. 

 

2. Experimental Setup 

 We evaluate the effectiveness of the system in detecting attacks by measuring the rate 

of false positives and false negatives exhibited. We also consider the overhead imposed 

during its online deployment. For this purpose, we conduct experiments on our subject 

programs and compute the relevant metrics. Each subject program has an associated test 

suite T that, for the sake of our study, we consider to be an adequate representation of its 

input space. For each program we apply the following steps: 

1) Identify the safe and unsafe test cases in T  

2) Generate the execution profiles for the tests in T 

3) For each vulnerability perform the following 

a. Construct a training set T’ that is a subset of T, which includes both safe and unsafe 

runs. We opt to vary the size of T’ in order to assess its effect on the accuracy of our 

approach, especially when only a fraction of the possible exploits is presented 

during the learning process.  Specifically, we choose |T’|/|T| to take on the values 
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5%, 10%, 20%, through 90%, respectively. Also, in our experiments we explore 

two modes for constructing T’, clustering and random, described later in this 

section. 

b. Apply the genetic algorithm to generate a signature associated with the vulnerability 

comprising combinations of program elements. And as mentioned previously, we 

will first try to generate signatures containing only MCs and BBs, and in case none 

are found, then we will try to generate signatures containing the other types of 

elements. Specifically, signature generation will be orderly conducted using the 

following types of elements until a high fitness signature is found:  {MCs, BBs}, 

{ MCs, BBs, DUPs}, {MCs, BBs, DUPs, MCPs}, {MCs, BBs, DUPs, MCPs, BBEs} 

4) Save the resulting signature-set in an XML definition file 

5) Activate the signature matching subsystem using the signature-set and rerun the 

application using T  

6) Determine the number of false positives and false negatives detected 

7) Measure the slowdown as the time ratio of running the test suite with and without 

activating the matching system 

The random mode for constructing the training set is conducted by simply randomly 

selecting tests from T to form T’, whereas the clustering mode proceeds as follows: test 

cases in T are automatically clustered based on the similarity of their execution profiles 

comprising MCs, MCPs, BBs, BBEs, and DUPs. Then T’ is built by randomly selecting, if 

possible, two tests from each cluster, one safe test and one unsafe test associated with the 

given vulnerability. This process is repeated over all clusters until the desired percentage of 
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safe/unsafe tests is reached. The goal here is for T’ to cover, as much as possible, the 

behaviors induced by T. A similar approach was used for the purpose of test suite 

minimization in  [67]. Note that the size of T’ is dictated by the chosen number of clusters 

and by our decision to ensure that at least two unsafe test case from the given vulnerability 

is included. 

 Obviously, these two modes are not applicable in practice since T is unknown. We 

investigate them strictly to validate our assumption that the training set must adequately 

characterize the usage pattern of the application, as we hypothesize that T’ built using 

clustering should characterize T better then when built using random. And thus, we expect 

our results to turn out better using clustering. 

 Finally, due to the non-determinism introduced by the selection of the training sets 

and the use of the genetic algorithm, the results presented in the following sub-section are 

reported by averaging the results from five iterations of our approach. 

 

3. Results 

 We measure the number of false alarms produced when a certain signature-set is 

deployed. False alarms include false negatives induced by undetected exploits and false 

positives resulting from incorrect labeling of safe executions. By monitoring the output of 

our IDS, we can determine which test cases are flagged as attacks when the IDS issues an 

alert. Then, this collection of “attacks”  is compared with the actual set of exploits given 

initially: a missing request is tagged as a false negative, and any safe request in the 
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“attacks” collection is counted as a false positive. The percentage of false alarms is 

computed as follows: 

%	�@T�	N�[�"SA�T = �#	W�	��@T�@]	�@�[[�.	�^_@WS"T�/�OW"�@	#	W�	�^_@WS"T� 
%	�@T�	�WTS"SA�T = �#	W�	��@T�@]	�@�[[�.	T���	VZ�T�/�OW"�@	#	W�	T���	VZ�T� 
 The amount of overhead induced is measured by running T on the application prior to 

instrumentation and then again after the IDS is activated, and in both cases recording the 

execution times. The slowdown is thus calculated as: 

%	C@Wa.Wa� = �OSX�	aS"U	bcC	– OSX�	aS"UWZ"	bcC�/�OSX�	aS"UWZ"	bcC� 
In addition to the above three entities, we compute the following: 

1) Average Signature Length (ASL): average length (number of program elements) of 

the generated individual signatures in the signature-set 

2) Elements Types (Types): types of the elements constituting the signatures in the 

signature-set (involved in all five iterations) 

3) Best Possible Fitness using Training Set (BPFT’): fitness of the intersecting elements 

amongst the failing runs in T’. If BPFT’ < 1.0, our approach will not yield good 

results. This metric could be computed prior to deployment; therefore, a user will be 

aware of the potential risk of incoming false alarms in case its value is less than 1.0. 

4) Best Possible Fitness using Full Test Suite (BPFT): fitness of the intersecting 

elements amongst the failing runs in T. If BPFT < 1.0, our approach will not yield 

good results. Note that this number cannot be computed in practice as T is not known; 

we are computing it strictly for analysis purposes. 
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 Table 7 consists of selected entries corresponding to the cases when our approach 

performed best in terms of both low rates of false alarms and small sizes of the training 

sets. The 7 rows denoted as All correspond to when all vulnerabilities in a given application 

are considered (the whole signature-set), the other 30 correspond to when individual 

vulnerabilities are considered. The table presents the number of exploits/failures, then for 

both modes of building the training set, it shows the best observed result. We make the 

following observations regarding the clustering mode: 

1) Our approach performed very well except for vul-3 in jigsaw, vul-2 in schedule, and 

vul-2 and vul-3 in tot_info. That is, for 26 out 30 cases, it exhibited no false alarms 

given small training sets. Note that out of the 26 successful cases, 19 involved training 

sets of size 5%, 3 of size 10%, 2 of size 20%, and 2 of size 30%. Also, the average 

signature length varied from 1.0 to 4.2 with an average of 2.14; and except for 6 cases, 

the signatures involved MCs and/or BBs only. This implies that the genetic algorithm 

was capable, in most cases, to identify small, simple and effective signatures from 

relatively small training sets. 

2) The values of BPFT and BPFT’ is 1 for all entries except vul-2 in schedule, and vul-2 

and vul-3 in tot_info, which explains why our approach performed poorly for these 

cases. This shortcoming is due to the fact that given the used profile types there were 

no combinations of elements that highly correlate with the exploits at hand. Also, given 

that the values of BPFT’ are known to be less than 1.0 prior to deployment; a user of 

our approach could take precautionary measures to deal with the potential incoming 

false alarms. 
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3) As expected, when our approach does not perform well on one or more individual 

vulnerabilities it also performs poorly on the combined vulnerabilities, as exhibited in 

the All entries.  

4) In regard to the slowdown induced by our matching system, it was not insignificant but 

not hindering as it varied from 46% to 102%. Specifically, the slowdown was 74.2%, 

65.5%, 92.7%, 47%, 102%, 46%, and 60%, for Tomcat 3.0, Tomcat 3.2.1, Jigsaw 

2.0.5, print_tokens2, JTidy, schedule, and tot_info, respectively. Note that these 

numbers correspond to when the whole signature-set is considered (i.e., All). 

5) Considering vul-3 in jigsaw, it is the rate of false negatives that is excessively high and 

not the rate of false positives. This means that when forming the training sets, the 

selected unsafe tests are not adequately characterizing the malicious usage pattern of 

the application. Also, as shown in Table 7, random performed unexpectedly better than 

clustering. Therefore, the poor performance here is due to an inadequate training set. 

Note that only 4 unsafe tests are present in T which is likely the reason behind this 

behavior. 

6) In Section D.2 we expected that clustering would yield better results than random. 

Table 7 supports that in general except for the case of vul-3 in jigsaw. 

To summarize, our approach worked very well for 26 out of the 30 vulnerabilities but failed 

for the remaining 4. That is, in 86.67% of the cases it produced no false alarms using 

training sets of size 30% or less. Note that the average rates of false negatives and false 

positives were 0.43% and 1.03%, respectively. 
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Table 7. Selected data from all applications 

   

# 

Fail  

 

Clustering 

 

Random 

|T’|/|T| %FP %FN ASL Types |T’|/|T| %FP %FN ASL Types 

T
om

ca
t 

3.
0 vul-1 150 5% 0% 0% 2.0 BB 5% 0% 0% 1.0 BB 

vul-2 38 5% 0% 0% 1.0 BB 10% 0% 0% 1.0 BB 

vul-3 6 30% 0% 0% 3.6 MC-BB 30% 0% 0% 4.0 MC-BB 

vul-4 4 10% 0% 0% 3.6 MC-BB 5% 0% 0% 3.6 MC-BB 

All 198 30% 0% 0% - - 30% 0% 0% - - 

T
om

ca
t vul-1 18 5% 0% 0% 2.8 MC-BB 5% 0% 0% 1.0 BB 

vul-2 2 5% 0% 0% 2.6 MC-BB 30% 0% 0% 3.0 MC-BB 

vul-3 4 5% 0% 0% 3.8 MC-BB 20% 0% 0% 3.6 MC-BB 

All 24 5% 0% 0% - - 30% 0% 0% - - 

Ji
gs

aw
 

vul-1 1 5% 0% 0% 3.2 MC-BB 5% 0% 0% 4.0 MC-BB 

vul-2 2 5% 0% 0% 3.2 MC-BB 5% 0% 0% 3.2 MC-BB 

vul-3 4 10% 0% 10% 3.4 MC-BB 5% 0.08% 0% 1.8 MC-BB 

vul-4 33 5% 0% 0% 2.0 BB 5% 0% 0% 2.4 MC-BB 

All 40 60% 0% 0% - - 5% 0.08% 0% - - 

JT
id

y 

vul-1 83 30% 0% 0% 2.0 BB 40% 0% 0% 3.8 MC-BB 

vul-2 2 5% 0% 0% 2.6 MC-BB 5% 0% 0% 2.4 BB 

vul-3 95 10% 0% 0% 3.4 MC-BB 10% 0.02% 0% 3.0 MC-BB 

All 180 30% 0% 0% - - 40% 0% 0% - - 

pr
in

t_
to

ke
n

s2
 

vul-1 205 5% 0% 0% 1.0 BB 5% 0% 0% 1.0 BB 

vul-2 146 5% 0% 0% 1.0 BBE 5% 0% 0% 1.0 BBE 

vul-3 19 5% 0% 0% 2.0 MC-BB 10% 0% 0% 2.0 MC-BB 

vul-4 20 20% 0% 0% 2.0 MC-BB 60% 0% 0% 2.0 MC-BB 

vul-5 96 5% 0% 0% 1.0 BB 30% 0% 0% 1.0 BB 

vul-6 33 20% 0% 0% 2.0 MC-BB 20% 0% 0% 2.0 MC-BB 

vul-7 29 10% 0% 0% 1.0 MC 20% 0% 0% 1.0 MC 

All 548 5% 0% 0% - - 5% 0% 0% - - 

S
ch

ed
ul

e
 vul-1 1070 5% 0% 0% 1.0 BB 20% 0% 0% 1.0 BB 

vul-2 30 40% 5.5% 4.7% 4.2 MC-BB-DUP 100% 8.1% 0% 5.2 MC-BB-DUP 

vul-3 214 5% 0% 0% 2.0 BB 10% 0% 0% 2.6 BB 
All 1314 40% 5.5% 0.11% - - 80% 7.2% 0.05% - - 

to
t_

in
fo

 

vul-1 20 5% 0% 0% 1.0 DUP 30% 0% 0% 1.0 DUP 

vul-2 19 50% 14.4% 0% 1.6 BB 50% 14.4% 0% 2.0 BB 

vul-3 37 20% 2.78% 0% 2.2 BB-BBE 60% 2.78% 0% 3.0 BB-BBE 

vul-4 1 5% 0% 0% 1.0 BB 5% 0% 0% 2.2 MC-BB 
vul-5 3 5% 0% 0% 1.0 DUP 10% 0% 6.67% 1.2 MC-DUP 
vul-6 68 5% 0% 0% 1.0 DUP 10% 0% 0% 1.8 MC-DUP 
All 148 20% 10.2% 1.2% - - 60% 14.1% 0% - - 
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4. Profiling and Cost Analysis 

 Table 8 shows the number of profiling elements recorded for each of the seven 

applications, categorized by element type. For example, as a result of executing the Tomcat 

3.0 test suite, a total of 26,137 distinct program elements were tracked and recorded of 

which 1,083 were MCs, 1,640 were MCPs, 7,130 were BBs, 7,533 were BBEs, and 8,751 

were DUPs. Typically, these numbers differ based on the type and structure of the 

application, and are indicative of the size of the bit strings operated on in the genetic 

algorithm. 

Table 8. Number of program elements per application 

 Tomcat 3.0 Tomcat 3.2.1 Jigsaw print_tokens2 JTidy schedule tot_info 

Total  26137 24438 29895 891 22110 1047 1276 
MCs 1083 1030 1216 22 325 24 18 

MCPs 1640 1637 2155 30 693 37 23 
BBs 7130 6485 7553 278 4853 238 271 

BBEs 7533 6777 7978 310 5604 280 315 
DUPs 8751 8509 10993 251 10635 468 649 

 

Cost of Task1: since the training set is formed by simply augmenting the existing 

application’s test suite by the observed attacks, the cost of creating it was insignificant in 

our study. 

Cost of Task2: the cost of collecting the test suites profiles for Tomcat 3.0, Tomcat 3.2.1, 

Jigsaw 2.0.5, print_tokens2, JTidy, schedule, and tot_info was 13 minutes, 1.1 minutes, 3.6 

minutes, 83 minutes, 271 minutes, 57 minutes, and 30 minutes, respectively. Noting that 

profiling the safe runs of a given test suite is required to be performed only once (for the 
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lifetime of the version of the application), whereas the attack runs must be profiled right 

after they get discovered in the field.  

Cost of Task3: the signature generation process took, on average, less than one second for 

26 vulnerabilities. But took considerably more for vul-2 in schedule (63 sec), vul-2 in 

tot_info (30 sec), vul-3 in tot_info (20 sec), and vul-2 in print_tokens2 (4 sec). 

Cost of Task4: as stated in the previous section incorporating the generated signatures in the 

IDS induced a showdown that varied from 46% to 102%. 

 

E. Related Work 

 In  [58] Martin et al. presented PQL (Program Query Language), a language that 

allows developers to specify code patterns that characterize given vulnerabilities. The user-

provided code patterns are then used to generate a static matcher and a dynamic matcher. 

Aspect-oriented programming is used to instrument the application in order to generate 

execution traces to be analyzed by the dynamic matcher. This approach resembles our 

proposed solution as it also monitors executing events, but differs in the following:  

1. It requires the user to examine the application code and manually specify the 

code patterns (i.e., signatures) to be matched, which is demanding on the part of 

the user and prone to error. In our solution, on the other hand, the signatures are 

automatically discovered 

2. The use of aspect-oriented programming limits the expressiveness and 

complexity of the user-defined patterns  [71]. The patterns discovered by our 

technique are complex as they encompass combinations of profiling elements 
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In  [27] Lorenzoli et al. presented a technique that identifies failure contexts and prevents 

future occurrences of the failures they describe. An outline of the technique follows: 

1. The user manually specifies oracles, in the form of JML assertions, which 

address specific fault types 

2. Static data-flow analysis is used to automatically identify the program points 

that potentially affect the oracles 

3. The program points are monitored during training to augment the oracles with 

dynamically generated properties (using Daikon  [5]) 

4. The user specified oracles and automatically generated properties are then used 

for failure detection and failure analysis 

The methodology of our approach is fundamentally different than what Lorenzoli et al. 

proposed, and more importantly our approach has two main advantages: a) it does not 

require the user to define oracles; and b) it is oblivious to fault type. 

Exploit-based pattern matching techniques analyze incoming input to extract a 

pattern to be matched against attack sequences stored in the detection system's database. 

The pattern could be a sequence of bytes, or a combination of entities, e.g., Kim and 

Karp  [51] used patterns involving the IP protocol number, the destination port number, and 

the sequence of bytes. This methodology falls short at detecting variants of a given exploit, 

which made some researchers shift their focus towards vulnerability-based pattern 

matching  [40] [41]. Our proposed pattern matching technique is neither exploit-based nor 

vulnerability-based, but is more similar to the latter than to the former since our generated 

signatures characterize the program behavior induced by the vulnerability. 
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Brumley et al.  [40] introduced the concept of a vulnerability signature which is a 

representation for the set of inputs that satisfy a specified vulnerability condition. Given a 

new detected exploit for an unknown vulnerability, and the tuple (P, T, x, c) where P is the 

program, x is the exploit string, c is a vulnerability condition satisfied by x (e.g., “heap 

overflow at a specific line number”), and T is the execution trace of P on x. The aim is to 

generate a vulnerability signature that will match future malicious inputs x′ by examining 

them without running P. Our technique is more advantageous as it does not require any 

information about the vulnerability, whereas their technique hinges on detailed information, 

namely, the vulnerability condition and location. 

 In  [70] Newsome and Song proposed the use of dynamic taint analysis for the 

automatic generation of exploit-based signatures. They implemented TaintCheck, a tool 

that enables the user to mark (taint) untrusted inputs to be tracked via dynamic data-flow 

analysis, in order to detect whether it is used to carry out an attack. TaintCheck allows the 

detection of attacks that cause sensitive program values to be overwritten with the 

attacker’s data, i.e., overwrite attacks. Following the detection of an attack, the tool 

provides information that could be used to automatically generate signatures to be deployed 

for attack filtering. Our proposed technique has the following advantages: 1) it is more 

general as it is not limited to overwrite attacks; 2) it does not require the user to pinpoint 

the inputs to be tainted; and 3) it is noted in  [70] that TaintCheck slowed down the target 

application between 1.5 to 40 times, the overhead imposed by our implementation is much 

lower as it varied from 46% to 102%. 
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CHAPTER V 

USER-DEFINED COVERAGE CRITERION FOR TEST CASE 
INTENT VERIFICATION 

 

 

In practice, program correctness is mainly affirmed through testing, i.e., by 

checking that the program produces the expected output. Regression testing is an essential 

part of the maintenance phase of software development; its goal is to ensure that the 

behavior of existing code, believed correct by previous testing, is not altered by new 

program changes. Since exhaustive testing is not feasible, testers rely on coverage criteria 

to guide their test selection and to provide a stopping rule for testing. 

We argue that the primary focus of regression testing should be on code associated 

with: a) earlier bug fixes; and b) particular application scenarios considered to be important 

by the developer or tester. Existing coverage criteria do not enable such focus, e.g., 100% 

branch coverage does not guarantee that a given bug fix is exercised or a given application 

scenario is tested. Therefore, there is a need for a new and complementary coverage 

criterion in which the user can define a test requirement characterizing a given behavior to 

be covered as opposed to choosing from a pool of pre-defined and generic program 

elements. We propose this new methodology and call it UCov, a user-defined coverage 

criterion  [9] wherein a test requirement  [21] is an execution pattern of program elements 

and predicates. Our proposed criterion is not meant to replace existing criteria but to 

complement them as it focuses the testing on important code patterns that could go untested 

otherwise.  
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 UCov supports test case intent verification. For example, following a bug fix, the 

testing team may augment the regression test suite with the test case that revealed the bug. 

Evidently, this new test case induces an execution pattern associated with the bug; 

however, it might become obsolete due to code modifications not related to the bug. But 

our coverage criterion, based on a user defined execution pattern (a test requirement) 

characterizing the bug and coupled with the test case, would: 

a) Detect whether the test requirement was satisfied or not. 

b) Determine whether test case intent verification passed or failed. 

c) Deem the test suite deficient in case test intent verification failed. Thus, suggesting 

that a new test case that satisfy the requirement needs to be (manually) generated. 

Current coverage criteria limit the user to choosing from a set of program elements that 

vary in the level of granularity and complexity. Those include statements, branches, logic 

expressions  [82], def-uses  [24], information flow pairs  [63], slice pairs  [60], and paths  [84]. 

At first, it might appear that what we are proposing is simply to cover more complex test 

requirements comprised of some patterns or combinations of existing program elements. 

But in fact, the main goal and contribution of our methodology is to cover behaviors as 

opposed to generic structural program elements, and to couple tests with intents to be 

verified and preserved. Noting that, to our knowledge, neither of these concepts has been 

previously proposed, and as Sections B and D demonstrate, they fill in an important gap 

lacking in existing coverage criteria. 

We implemented our methodology for the Java platform in a tool that provides the 

following:  
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a) An Eclipse plugin to enable users to easily define test requirements. 

b) The ability of cross referencing the test requirements across subsequent versions of 

a given program, which is a non-trivial task due to the code differences between 

versions. 

c) The ability to determine whether the test requirements are satisfied, which entails 

instrumenting the System Under Test (SUT) at the byte code level. 

We applied UCov onto two real life case studies; the first case study involves a bug fix, and 

the second is a scenario of significance to program requirements.  

The main advantages of UCov to the software maintenance process are described below: 

a) Bug resurrection happens when faulty code that was fixed, gets introduced again. 

Typically this might happen due to the uncoordinated access of a file in a source 

control system by more than one developer. UCov ensures the coverage of the test 

requirement associated with the bug fix and thus uncovers the resurrecting bug. 

Without UCov, resurrecting bugs might escape typical structural-coverage-based 

testing. 

b) A Bug fix could become faulty due to other code changes (i.e., a bug was introduced 

in the bug fix). Here also, UCov can detect that the test requirement associated with 

the bug fix is not satisfied, which calls for revisiting the bug fix and test suite. 

c) In UCov, a test case t that was coupled with a bug fix, a feature, or some scenario of 

interest to the tester/developer, is intended to verify an expected (correct) behavior 

of the application. But if t becomes obsolete, that expected behavior would go 

unverified, which will be detected by UCov. 
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d) Understandably, even full coverage achieved by existing structural coverage criteria 

does not establish that all (or any) of the scenarios of a given algorithm are tested. 

To generalize item c); in UCov, each scenario could be coupled with a test case, 

thus relying on UCov to ensure coverage of the scenarios. This enables validation 

testing whose aim is to exercise the functionality of the SUT. 

The remainder of this chapter is organized as follows.  Section A provides definitions and 

notation for specifying test requirements. Section B walks through a motivating example. 

Section C describes the main components of UCov. Section D presents our real life case 

studies. Finally, related work is surveyed in Section E. 

 

A. Definitions and Notations 

This section provides definitions for entities relevant to UCov, and notation for 

specifying test requirements. 

Definition 1 - A program element is a basic programming unit such as a statement, a 

branch, or a definition-use pair. 

Definition 2 - A test requirement is an execution pattern that a test case must satisfy or 

cover.  

Definition 3 - A basic test requirement (btr) is a test requirement involving only a set of 

program elements and a logical expression that describes their execution. For example, 

basic test requirement [(s1 ∨ b1) ∧ (¬dup1)]btr, which involves the set of program elements 

{ s1, b1, dup1}, is considered to be satisfied if: a) statement s1 or branch b1 did execute, and, 
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b) definition-use pair dup1 did not execute. Note that the logical operators supported by 

UCov are, negation (¬), conjunction (∧), and disjunction (∨). 

Definition 4 - A conditional test requirement (ctr) is a test requirement comprising a 

test requirement tr, and a predicate p specifying a state of some program variables. For a 

conditional test requirement to be satisfied, tr should be satisfied, and p should evaluate to 

true immediately before. For example, the conditional test requirement [[s1 ∧ b1]btr, x > 

y]ctr requires that statement s1 and branch b1 be executed and, when that happens, x be 

strictly greater than y. 

Definition 5 - A sequential test requirement (str) is a test requirement composed of a 

sequence of at least two test requirements that must be satisfied one after the other. For 

example, the sequential test requirement [<[b1]btr, [b2]btr, [b3 ∨ s1]btr>]str requires that 

branches b1 and b2 be sequentially executed, followed by b3 or s1. 

Definition 6 - A repeated test requirement (rtr ) is a test requirement comprising a test 

requirement tr, and a range indicating the number of times it should be repeated. For 

example, the repeated test requirement [[s1 ∧ b1]btr, 5, 1000]rtr requires that statement s1 

and branch b1 be executed at least 5 times and at most 1000 times. In case one or both of 

the bounds do not matter, a “don’t care” symbol could be specified, e.g., [[s1]btr, 100, _ ]rtr 

requires that statement s1 be executed at least 100 times. 
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B. Motivation 

Typically, algorithms are presented while stressing the prime scenarios they 

support, which we believe should all be tested for quality assurance. Noting that even full 

coverage achieved by existing structural coverage criteria does not establish that all (or 

any) of the scenarios of an algorithm are tested, we advocate our user-defined coverage 

criterion as an effective solution to this task. Intuitively, each documented scenario (or 

case) associated with the algorithm describes at least one execution pattern that should be 

coupled with designated test cases. We illustrate the usage of UCov in testing the algorithm 

for deleting a node in a binary search tree.  

The algorithm shown in Figure 11 is presented in  [87] and considers four cases concerning 

the node z to be deleted:  

Case1 If z has no children, then it is replaced by NIL. 

Case2 If z has only one child, then it is replaced by that child. 

Case3 If z has two children, then it is replaced by its successor, which is the 

leftmost node in the sub-tree rooted at the right child of z. In this case, the 

successor of z (say y) has no right child. That is, y would be a leaf and thus 

deleting z would be achieved by replacing the contents of z by those of y and 

replacing y with NIL. 

Case4 Similarly to Case3, z has two children, and is replaced by its successor. 

However, here y has a right child, and the contents of z are replaced by those 

of y but instead of replacing y with NIL, it is replaced by its right child.  
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Figure 11. Pseudo-code for deleting a node in a BST 

 

Figure 12 depicts a test suite T comprising the four test cases t1, t2, t3, and t4. Table 

9 details the individual and cumulative statement and branch coverage information for each 

of the test cases. As shown, T achieves 100% statement coverage and 100% branch 

coverage. 

The execution patterns associated with each of the algorithm’s scenarios are also 

shown at the bottom of Table 9, along with T’s coverage information. Test cases t1 and t2 

cover the execution patterns (test requirements) of Case1 and Case2, respectively. And 

both t3 and t4 cover the execution pattern of Case3. Therefore, Case4 is left untested, i.e., 

none of the tests cover test requirement [<[s3]btr, [s6]btr, [s8]btr>]str. 

BST-DELETE(T, z) 
Input: Binary Search Tree (T), pointer to the node to be deleted (z) 
Output: Binary Search Tree (T’) obtained from T by deleting z 
 
1. if  left[z] = NIL or right[z] = NIL 
2.  then  y ← z 
3. else  y ← TREE-SUCCESSOR(z) 
 
4. if  left[y] ≠ NIL 
5.  then  x ← left[y] 
6. else  x ← right[y] 
 
7. if  x ≠ NIL 
8.  then  p[x] ← p[y] 
 
9. if  p[y] = NIL 
10.  then  root[T] ← x 
11. else  if  y = left[p[y]] 
12.  then  left[p[y]] ← x 
13. else  right[p[y]] ← x 
 
14. if  y ≠ z 
15.  then  key[z] ← key[y] 
16.   copy y’s satellite data into z 
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Figure 12. Test suite T = {t1, t2, t3, t4} 

 

Table 9. Coverage information for test suite T 

  t1 t2 t3 t4 { t1, t2, t3, t4} 

S
ta

te
m

e
n

ts
 

 

S1 � � � � � 

S2 � � � � � 

S3 � � � � � 

S4 � � � � � 

S5 � � � � � 

S6 � � � � � 

S7 � � � � � 

S8 � � � � � 

S9 � � � � � 

S10 � � � � � 

S11 � � � � � 

S12 � � � � � 

S13 � � � � � 

S14 � � � � � 

S15 � � � � � 

S16 � � � � � 

B
r
a

n
c

h
e

s
 

S1→S2 � � � � � 

S1→S3 � � � � � 

S4→S5 � � � � � 

S4→S6 � � � � � 

S7→S8 � � � � � 

S7→S9 � � � � � 

S9→S10 � � � � � 

S9→S11 � � � � � 

S11→S12 � � � � � 

S11→S13 � � � � � 

S14→S15 � � � � � 

S14→END � � � � � 

Prime 

Scenarios 
Execution Patterns (TR)  

Case1 [<[s2]btr, [s6]btr, [[s7]btr, x==NIL]ctr>]str � � � � � 

Case2 [<[s2]btr, [s8]btr>]str � � � � � 

Case3 [<[s3]btr, [s6]btr, [[s7]btr, x==NIL]ctr>]str � � � � � 

Case4 [<[s3]btr, [s6]btr, [s8]btr>]str � � � � � 

 

6 

t4 

z 

5 

1 8 

t1 

z 

5 

t2 

z 

5 

1 

t3 

z 

5 

1 8 
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This example demonstrates how applying our coverage criterion would deem test suite 

T deficient despite the fact that it satisfied full statement and branch coverage. In order to 

test all four scenarios using UCov, the user would: 1) specify their four respective test 

requirements shown at the bottom of Table 9; and 2) for each test requirement, design at 

least one test case that satisfies it. 

 

C. Methodology and Implementation 

UCov entails three main tasks and associated components that we describe next. 

 

1. Specifying Test Requirements 

We first designed and built a programming interface that enables the user to 

specify test requirements of the types we described in Section A. Note that our 

implementation expects the program elements to be specified at the Java bytecode level. 

Since such interface is only adequate for users who are also developers, we used a graphical 

Eclipse plugin that hides its complexity. The output of the plugin is compilable code that 

specifies the user-defined test requirements using calls to the programming interface. 

Figures 13-15 present the class diagrams of the programming interface. A set TR 

of user-defined test requirements comprises a list of basic test requirements (btr's), 

conditional test requirements (ctr's), sequential test requirements (str's), and  repeated test 

requirements (rtr 's). Figure 13 shows that: 1) the str's, and rtr 's are made up of any of the 

four types of test requirements; and 2) the ctr's are made up of any of the four types of test 

requirements in addition to a predicate. Figure 14 shows that a btr is composed of the 
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conjunction, disjunction, and negation of primitive btr's, which in turn are made up of 

statements, def-use pairs, and branches. Finally, Figure 15 shows that a predicate is made 

up of the conjunction, disjunction, and negation of primitive predicates or clauses. 

To illustrate the use of UCov's programming interface, the test requirement [[s4]btr, 

result==true]ctr associated with function reset shown in Figure 16 would be specified as 

shown in Figure 17. 

 

 

 

Figure 13. Class Diagram of the programming interface 
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Figure 14. Class Diagram associated with btr class 

 

 

 

 

Figure 15. Class Diagram associated with Predicate class 
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Figure 16. Function to control the shutdown system in a reactor 

 

 

 
Figure 17. Specifying conditional test requirement example 

 

 

2. Migrating Test Requirements across Versions 

The test requirements considered in UCov are built from statements, branches, 

def-uses, and predicates. Since branches and def-uses are constructed from statements, and 

predicates are constructed from program variables, the task of migrating test requirements 

across versions boils down to cross referencing statements and variables across versions. 

a. Statement Mapping 

As our implementation targets the Java platform, we opt to match bytecode 

statements across versions using a technique inspired from the notion of Abstract Syntax 

boolean reset() 

{ 

s1: boolean result = false;  

s2: if (override || valveClosed)  

s3:  result = true; 

s4: return result;  

} 

Statement s1 = new Statement("Reactor", "reset", "()Z", 19); 
btr btr1 = new Primitive_btr(s1); 
Variable var1 = new Variable("Local", "result", "Reactor", "reset", "()Z"); 
Predicate pred1 = new Primitive_Predicate("Equal",  var1, new Boolean(true)); 
ctr ctr1 = new ctr(btr1, pred1); 
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Tress  [22] [85] [94] [97]. Given a bytecode statement s defined relative to the start of a 

method M in a particular version of the software being considered, our technique identifies 

the counterpart of s relative to the start of M in a subsequent version by analyzing what we 

call the bytecode dependence tree (BDT) of M in both versions. 

The BDT of a particular function is constructed statically from its list of bytecode 

instructions {s1, s2, …, sn} as follows: 

• The tree has n+1 nodes: a root node labeled “start” and n descendant nodes each of 

which corresponds to one of the bytecode instructions. 

• A node n is the parent of another node n’ if one of the following holds: 

o n and n’ respectively correspond to bytecode instructions si and sj such that 

si consumes a value (from the JVM's operand stack) that was produced by sj. 

This captures the direct data dependence relationship described in  [65]. 

o n is either the “start” node or a node corresponding to a conditional 

instruction and n’ represents a non-producer instruction in the direct scope 

of n. This captures the direct control dependence relationship described 

in  [65]. 

• Siblings are ordered according to their relative positions in the bytecode instruction 

list. 

Figure 18 illustrates the above by showing a snippet of Java code, the corresponding 

bytecode instructions, and the resulting BDT. The nodes of the BDT are annotated with the 

offsets of the corresponding bytecode instructions. 
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Figure 18. (a) Sample method foo, (b) Bytecode list of foo, (c) BDT of foo 

 

 

When trying to match a test requirement tr against a subsequent version, every 

statement s in tr is mapped. We first check if the code of the method corresponding to s 

(say M) has changed between the two versions. If so, we construct the BDT of M with 

respect to the original version (say B) and that corresponding to the subsequent version (say 

B’). Then, we determine the node in B’ that is structurally most similar to s in B using an 

iterative algorithm as follows: 

1. We start with a set of potential candidates. These are the nodes in B’ whose 

corresponding bytecode instruction opcode is equal to that of s. 

2. We repeatedly eliminate the candidates which fail a similarity test of 

increasing precision. The order we follow is: level-1 descendants, level-1 

ancestors, level-2 descendants, level-2 ancestors, level-3 descendants etc. 
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That is, in the first iteration, we eliminate all the candidates whose children 

(i.e. level-1 descendants) in B’ are not similar to the children of s in B. In 

the second iteration, we eliminate (from the remaining candidates) those 

whose parents (i.e. level-1 ancestors) in B’ aren’t similar to the parent of s 

in B, and so on. And if more than one candidate still remain; we consider 

the siblings of s. 

3. The algorithm successfully stops when only one highly similar candidate 

remains.  

4. If at some iteration the set of candidates becomes empty, we restore the 

results of the previous iteration and require the intervention of the user to 

resolve the ambiguity. We also require user intervention in case we 

reached the final iteration with several candidates. However, both 

scenarios are unlikely to occur.  

 To demonstrate our mapping mechanism, we consider an “updated” version of the 

method foo of Figure 18. In the new version, shown in Figure 19 with its corresponding 

bytecode and BDT, foo is modified by adding a statement that computes the sum of x and y. 

In addition, variable m is renamed to min (to be revisited). We will denote the BDT of 

Figure 18 by B and that of Figure 19 by B’. Also, we will identify every node using its 

offset relative to the corresponding BDT, (for example B-11 refers to node 11 in B). In what 

follows, we show how our algorithm maps B-19 to B’-29, i.e., “m = y” in B to “min = y” in 

B’. We start with the set of all potential candidates; these are the nodes in B’ associated 

with an istore instruction, the type of instruction B-19 is associated with. Therefore, the 
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initial set of candidates consists of B’-19, B’-22, and B’-29. In the first iteration, B’-19 is 

eliminated because its child differs from that of B-19. Alternatively, B’-22 and B’-29 are 

kept as they pass this first similarity test. In the second iteration, these two candidates 

undergo the second similarity test which compares their parents with that of B-19. As a 

result, B’-22 is eliminated and B’-29 is left as the only candidate. As such, the algorithm 

terminates by mapping B-19 to B’-29. 

 

 

Figure 19. Updated version of foo 

 

b. Variable Mapping 

Our cross referencing technique accounts for variable matching as well. The need 

for this kind of matching arises when the name of a variable involved in a test requirement 
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is changed in the subsequent version. We leverage the statement mapping mechanism 

described above as a basis for variable mapping as follows:  

1. For each variable v to be mapped, we identify the set of bytecode statements 

referencing it in the original version, say S={s1, s2, …, sk}. 

2. Then, we perform statement mapping to get the set S’={ s1’ , s2’ , …, sk’ } relevant 

to the subsequent version.  

3. For each si’ , we identify the variable it references and then we consider the 

counterpart of v to be the variable referenced by all statements in S’.  

4. As described in step 3, a “perfect” match occurs when all the statements in S’ 

reference the same variable. But if this was not the case, user intervention will 

be required in order to update the test requirement.  

As an example of variable mapping, consider method foo and its updated version shown in 

Figures 18 and 19, respectively. The fact that variable m was renamed to min (and it is 

involved in a test requirement) necessitates applying the variable mapping algorithm 

described above. We first identify the nodes that reference m in B, which are B-12 and B-

19. Applying the statement mapping procedure, we map B-12 to B’-22 and B-19 to B’-29. 

Then, we determine the variable(s) referenced by B’-22 and B’-29. In this case, both nodes 

reference variable min, meaning that the algorithm was successful at perfectly matching m 

and min. 
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3. Checking the Coverage of Test Requirements 

Our approach for checking the coverage of test requirements is to some extent 

similar to what we adopted in  [8], which was described in chapter 4, for the purpose of 

matching attack signatures. The approach entails two steps: instrumentation and matching, 

both of which are done at run-time. For a given program P associated with a set of user-

defined test requirements UTR, the instrumentation module applies dynamic 

instrumentation at class load time on P to enable the online matching of the test 

requirements specified in UTR. The instrumentation is done by inserting method calls to the 

matching module at specific locations in P. These locations include: 

1. Every statement specified in UTR. Note that, in case UTR was specified in a 

previous version, statements are mapped according to the approach discussed 

in Section C.2. 

2. The entry statement of each method specified in UTR. 

3. Every basic block (BB) leader in the method containing a branch specified in 

UTR.  

4. The definition and use statements of each def-use pair (DUP) specified in UTR 

as well as all statements that define the variable involved. 

The matching module, on the other hand, keeps track of all the btr’s specified in UTR as 

independent test requirements or as part of more complex ones. For every such btr, the 

matching module also maintains a timestamp and a counter indicating the last time and the 

number of times it got executed, respectively. In case UTR contains ctr’s, the matching 

module would keep track of the “current” values of all involved variables. The matching 
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module is triggered in two cases: 1) state update notification; and 2) structural notification. 

The first occurs when a variable relevant to UTR gets updated. In this case, the value of the 

corresponding variable is simply updated. The second case occurs when a btr referenced by 

UTR gets executed by the program. Here, the matcher updates the timestamp and the 

counter of the corresponding btr and checks all relevant test requirements. 

 

D. Case Studies 

1. Testing a Bug Fix 

This case study involves two versions of NanoXML, an XML parser comprising 

7,646 lines of code. The two versions were downloaded along with their test suites from the 

SIR repository  [157] and they correspond to versions 1 and 3 in SIR. Hereafter, we will 

refer to these versions as NanoXML_v1 and NanoXML_v3. 

A typical NanoXML test case involves running a java test program that takes in a 

certain XML file as input and applies some NanoXML functionalities on it. Specifically, the 

test program in our case study is Parser1_vw_v1.java and the input file is testvw_29.xml 

shown in Figures 20 and 21, respectively. Basically, The program parses the input file 

using the parse() method defined in StdXMLParser.java in the NanoXML package and 

outputs the result.  

This test case reveals one of the bugs in NanoXML_v1 which is fixed in 

NanoXML_v3, namely, a while replaced by an if  in method elementAttributesProcessed in 

NonValidator.java, shown in Figure 22. Figure 23 contrasts the faulty output against the 

expected output. 
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Figure 20. Test program Parser1_vw_v1.java 

 

 

 

 

Figure 22. Faulty code in NonValidator.java 

 

 

public class  Parser1_vw_v1 
{ 
    public static void  main( String  args[]) throws  Exception  
    {    
        if  (args. length  == 0) { 
            System.err.println( "Usage: java Parser1_vw_v0 file.xml" ); 
            Runtime .getRuntime().exit( 1); 
        } 
        String  filename = args[ 0]; 
        IXMLParser parser = XMLParserFactory.createDefaultXMLParser(); 
        IXMLReader reader = StdXMLReader.fileReader(filename); 
    
        parser.setReader(reader); 
     
        XMLElement xml = (XMLElement) parser.parse(); 
        ( new XMLWriter( System .out)).write(xml); 
    } 
} 

public void  elementAttributesProcessed( String      name, 
                                       String  nsPrefix, 
                                       String  nsSystemId, 
                                       Properties  extraAttributes) 
{ 

Properties  props = ( Properties ) this .currentElements.pop(); //s1  
Enumeration  _enum = props.keys();      //s2  
if  (_enum.hasMoreElements()) //s3 -- should be while(_enum.hasMoreElements())  
{ 

String  key = ( String ) _enum.nextElement();   //s4  
extraAttributes.put(key, props.get(key));   //s5  

} 
} 

<!DOCTYPE FOO [ 
    <!ENTITY  % extParamEntity SYSTEM "E:\Nanoxml\inputs\nano1\i nclude.ent" > 
    <!ENTITY value  "%extParamEntity;" > 
    <!ELEMENT FOO (#PCDATA) > 
    <!ATTLIST  FOO  
        x CDATA #REQUIRED 
        y CDATA #FIXED "fixedValue" 
        z CDATA "defaultValue" > 
]> 
 
<FOO x =' 1' > 
<VAZ>vaz </VAZ> &value ; </FOO> 

Figure 21. Input file testvw_29.xml 
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<FOO x="1" 

z="defaultValue"> 

    <VAZ>vaz</VAZ> 

    INCLUDE 

</FOO>           a) 

<FOO x="1" z="defaultValue" 

y="fixedValue"> 

    <VAZ>vaz</VAZ> 

    INCLUDE 

</FOO>                  b) 

Figure 23. (a) Faulty output; and (b) Expected output 

 

Note that the bug fix would be exercised in NanoXML_v3 only if the while loop 

iterates twice or more. This behavior could be captured in UCov by the repeated test 

requirement [[s4]btr, 2, _ ]rtr, or the sequence test requirement [<[s4]btr, [s4]btr>]str, and 

possibly others.  

UCov revealed that when executed in NanoXML_v3, the test case 

{Parser1_vw_v1.java, testvw_29.xml} did not actually exercise the bug fix (i.e., our user-

defined test requirement was not covered), but instead resulted in an exception being 

thrown. Thus, in this real life case study, UCov alerted us that the test case associated with 

the bug fix became obsolete and that an alternate test case needs to be created. 

To further investigate this case study, we manually tracked down the code change 

which rendered that test case obsolete and found out that it is related to the use of a 

different constructor of the URL class in method openStream in StdXMLReader.java. 

Noting that if the new constructor is replaced by the original one, [[s4]btr, 2, _ ]rtr and 

[<[s4]btr, [s4]btr>]str would then be covered. The original code and the modified one are 

shown in Figure 24. 
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public  Reader  openStream( String  publicID, 
                         String  systemID) 
     throws  MalformedURLException , 
            FileNotFoundException , 
            IOException  
{ 
    systemID = “file:” + systemID; 
    URL url = new URL(systemID); 
    . . . 

(a) 

public  Reader  openStream( String  publicID, 
                         String  systemID) 
     throws  MalformedURLException , 
            FileNotFoundException , 
            IOException  
{ 
    URL url = new URL( this .currentSystemID, systemID); 
    . . . 

(b) 

 

Figure 24. Code change that renders test case {Parser1_vw_v1.java, testvw_29.xml} obsolete. 

(a) NanoXML_v1; and (b) NanoXML_v3 

 

 

2. Testing Scenarios of an Algorithm 

This case study targets the situation where a specific behavior needs to be tested. 

The application being considered is tot_info, one of the seven Siemens programs  [89] that 

are widely used in the literature. More specifically, we inspect function InfoTbl that 

computes Kullback's information measure of a contingency table according to the following 

formula  [92]: 

22^�0 log�^�0� −2^� log�^�� −2 0̂ log� 0̂� + N@W[N9
04� 	f

�4�
9

04�
f

�4�  

where r and c are respectively the number of rows and columns in the contingency table, xij 

is the value of the entry at row i and column j, xi is the sum of row i, xj is the sum of column 

j, and N is the sum of all entries in the table. 
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InfoTbl determines the information measure of a contingency table T by computing the four 

components of the formula above according to the pseudocode shown in Table 10. The 

algorithm starts by checking if T has at least two rows and two columns; if not, it returns -3 

indicating that the table is too small. Lines 5-15 loop over the rows of T, compute the sum 

of each row and store it in array xi . At the same time, the sum N of all entries in the table 

is computed. If a negative entry is encountered during this process, the algorithm returns 

the “error” value -2. It also returns -1 if the total sum isn’t strictly positive (lines 16-18). 

Similarly, the column sums are computed and stored in array xj  (lines 19-25). The rest of 

the code computes each of the four components of the Kullback formula and aggregates the 

result in variable info  as indicated in the table. 

We distinguish three conditional checks in the code that prevent the algorithm from 

computing log(0). Those are the ones at lines 28, 32, and 38. The first checks if the sum of 

the ith row is different than zero, the second checks if T[i,j] is different than zero, and the 

third checks if the sum of the jth column is different than zero. We argue that an important 

scenario to be covered is one in which the contingency table satisfies the following four 

conditions: 

1) Is valid, i.e., has at least 2 rows and 2 columns, doesn’t have negative entries, and 

isn’t all zeros. 

2) Has at least one row whose sum is zero. 

3) Has at least one column whose sum is zero.  

4) Has a strictly positive information measure so that a simple contingency table such 

as g0 00 1h with zero information measure would not be considered as a candidate. 
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We deem this scenario important because each of the three conditional checks on lines 28, 

32, and 38 would evaluate both to true and false within the same test case. Applying UCov, 

the following test requirement, denoted by P, captures the scenario at hand: 

P ≡[<[[s13]btr, sum==0]ctr, [[s24]btr, sum==0]ctr, [[s42]btr, info>0]ctr>]str 

For example, test cases based on the contingency table i0 0 00 2 30 1 1l satisfy P and thus are 

deemed important. 

To verify whether tot_info’s original (full) test suite, which was downloaded from 

SIR  [157], covers P, we created a modified version of tot_info in which we hard-coded 

some monitoring instructions that trigger a notification in case P is exercised. After running 

the modified version under the full test suite, we found out that no test case covers P. 

This real life case study shows that some scenarios that might be deemed important can go 

untested if not represented by non-generic test requirements such as those supported by 

UCov. 

 

 

 

 

 

 

 

 



99 

 

Table 10. Information Measure Algorithm 

 

 

 

 

 

Input: Contingency table T, # rows r, # columns c 
Output: -3 if r ≤1 or c ≤1, -2 if T contains a negative entry, -1 if T is al l zeros, 
Kullback measure of T otherwise 
 
1. if r ≤1 OR c ≤1 
2. return -3 
3. end if 
4. N = 0 
5. for i=1 to r 
6. sum = 0 
7. for j=1 to c 
8.  if T[i,j] < 0 
9.   return -2 
10.  end if 
11.  sum += T[i,j] 
12. end for 
13. xi[i] = sum 
14. N += sum 
15. end for 
16. if N ≤0 
17. return -1 
18. end if 
19. for j=1 to c 
20. sum = 0 
21. for i=1 to r 
22.  sum += T[i,j]  
23. end for 
24. xj[j] = sum 
25. end for 
26. info = N ×log(N) /*** 4th component of Kullback’s formula *** / 
27. for i=1 to r 
28. if xi[i]>0 
29.  info -= xi[i] ×log(xi[i]) /*** 2nd component ***/ 
30.  end if 
31. for j=1 to c 
32.  if T[i,j]>0 
33.   info += T[i,j] ×log(T[i,j])/*** 1st component ***/ 
34.  end if 
35. end for 
36. end for 
37. for j=1 to c 
38. if xj[j]>0 
39.  info -= xj[j] ×log(xj[j]) /*** 3rd component ***/ 
40. end if 
41. end for 
42. return info 

 

 

Computing row sums 

and 

total sum 

 

Computing column sums 
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E. Related Work 

Over the years, researchers have proposed numerous coverage criteria many of 

which are discussed or listed in  [21]. The fundamentals of data flow testing and def-use 

coverage were presented in  [93] [95]. Data flow testing was contrasted against control flow 

and branch testing in  [23] and  [89]. Coverage of logical expressions is treated in  [82] 

and  [90]. Test case selection and prioritization is discussed in  [153], and surveyed in  [31]. 

However, none of the above proposed techniques is capable of verifying or preserving the 

intent of test cases. 

Several techniques surveyed and compared in  [109] aim at linking faults to test 

cases, and at ranking test cases based on their relevance to detected faults based on 

coverage metrics. These techniques employ statistical metrics and target fault localization. 

UCov differs in that it aims at establishing and maintaining the link between the fault, the 

test case, and the bug fix.  

User defined coverage for hardware designs was introduced in  [88] as a 

methodology to annotate hardware logic written in VHDL or Verilog with coverage events. 

The method is not intended to preserve the intent of specific test cases and is limited to 

hardware designs. SystemVerilog  [86] supports a functional coverage specification 

language that introduces concepts like cover points, cover expressions, cover groups, and 

cross cover. Those coverage specifications are limited to hardware designs, are not related 

to specific test cases, and require knowledge of the whole design. 

DSD-Crasher  [98] aims at finding bugs by dynamically extracting invariants that 

describe the intended behavior of the program, excluding unwanted values from the domain 



101 

 

of the program, exploring execution paths of the program that cover the invariants, and then 

generating test cases that cover the extracted paths. The work does not maintain the link 

between the detected invariants, the extracted paths, and the test cases. UCov can make use 

of the techniques proposed in DSD-Crasher to automatically extract execution paths and 

link them to existing test cases after the approval of the user. 
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CHAPTER VI 

LOSSLESS REDUCTION OF EXECUTION PROFILES  

 

 

Execution profiles are pivotal to several dynamic program analysis techniques 

such as test suite minimization and prioritization  [67], fault localization  [12], and 

application-based intrusion detection  [64]. The number of elements that a typical execution 

profile contains is usually in the order of thousands or more, amongst which a considerable 

proportion are redundant. 

A well-known approach to reduce the high dimensionality and redundancy in 

execution profiles is to use Principal Component Analysis (PCA)  [83] [142] [145]. PCA 

reduces the dimensionality of a data set (possibly involving correlated variables) to a new 

set involving uncorrelated variables. The generated uncorrelated variables are called 

principal components (PCs). The obtained set has the PCs ordered by the fraction of the 

total information/variation each retains. That is, the first PC captures as much of the 

variability present in the data set as possible, the second PC also captures as much of the 

variability but under the constraint of being uncorrelated with the previous (first) PC, and 

similarly for the subsequent PCs. After applying PCA, only the first few PCs are retained 

and the remaining ones ignored. Note that PCA transforms the original data to a new 

coordinate system. Therefore, it is not possible to recover the non-redundant profiling 

elements from the retained PCs, which renders many software analysis techniques 
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inapplicable. For example, in coverage based fault localization  [6] [12] [19], identifying 

failure-correlated PCs will not lead to the failure-correlated program elements, which are 

normally needed to locate the fault. The approach we are proposing does not suffer from 

this limitation as it preserves the original coordinate system. 

In this chapter we present an evolutionary approach for reducing redundancy in 

execution profiles associated with a given test suite  [10]. It uses a genetic algorithm to find 

a minimal subset of profiling elements that safely represent the original set. The advantage 

of such approach isn’t limited to reducing the cost of program analyses that utilize the 

execution profiles directly. There are situations where a limited number of variables or 

statements need to be identified for tracking and monitoring. One example is online 

intrusion and failure detection  [8], another is state-based comparison of test cases  [11].We 

evaluated our approach by applying it on eight sets of execution profiles and measuring its 

impact on clustering and test suite minimization. The results showed marginal deterioration 

in either analyses even though the reduction rate ranged from 94% to 99%.  

The rest of this chapter is organized as follows. Section A presents an example 

that motivates our approach. Section B describes our approach. Section C describes our 

experimental studies and results. Finally, Section D presents a state-based comparison 

technique and shows how it can benefit from the proposed reduction mechanism. 

 

A. Motivating Example 

First we show an example demonstrating how redundancy reduction is performed 

by identifying sets of single profiling elements that exhibit the same pattern of occurrence 



104 

 

in all the test cases. Then we demonstrate how further lossless reduction could be 

performed by considering subsets of the profiling elements, the subject of this work. 

Table 11 shows the execution profiles for five test cases with respect to seven 

programming elements; e.g., statements and/or branches. For example, the first row 

indicates that test case t1 executes the elements e1, e3, e4, e6, and e7. We refer to this 

representation as the Execution Matrix. 

 

Table 11. Sample Execution Profiles 

 e1 e2 e3 e4 e5 e6 e7 

t1 1 0 1 1 0 1 1 

t2 0 1 0 1 1 1 0 

t3 0 1 0 0 1 0 0 

t4 0 1 0 1 1 1 0 

t5 1 0 1 0 1 0 1 

 

It can be noticed that e1, e3, and e7 exhibit the same pattern of occurrence in all 

five test cases; similarly, e4 and e6. Therefore, {e1, e3, e7} could be replaced by e1, and {e4, 

e6} by e4, to yield reduced execution profiles comprising only 4 elements, namely, {e1, e2, 

e4, e5}. We refer to this type of reduction as Basic Redundancy Removal. 

However, this subset still contains some redundancy. Specifically, knowing the 

execution status of subset {e1, e4} in any test case, we can infer the execution status of the 

remaining profiling elements. Table 12 summarizes this relationship. For example, it 

indicates that every test case that exercises e4 but not e1 exercises both of e2 and e5. 

Following this observation, the execution profiles in Table 11 could be reduced down to 

only two elements, e1 and e4. 
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Table 12. {e2,e5} are inferred from {e1,e4} 

{ e1,e4} { e2,e5} 

01 11 

11 00 

00 11 

10 01 

 

As demonstrated in the above example, given a set of execution profiles, our aim 

is to devise a method for determining a minimal subset of elements whose execution status 

implies the execution status of the remaining ones. In an ideal situation our algorithm 

should consider every subset (combination) of elements. But given their large count, such a 

brute force approach is infeasible, which calls for the use of an approximation algorithm, 

e.g., a genetic algorithm. 

 

B. Proposed Approach 

Assuming the set of profiling elements being considered is E, the problem of 

determining the most representative subset in terms of execution status translates to the task 

of finding a subset S that results in the minimum conditional entropy n�C̅/C� where 

C̅ = p − C. This is equivalent to finding a subset S having a maximal value for 
|qr�H�||qr�;�| 

where DV(S) (resp. DV(E)) is the set of distinct values assumed by S (resp. E). Of course, E 

is one such subset but we are interested in those who size is minimal. Note that the values 

of a given subset of elements can be regarded as the concatenation of its corresponding bits 

in the Execution Matrix. Given the size of the search space at hand (2|;|), we opt to use a 



106 

 

heuristic approach to search for potential representative subsets. Specifically, we use a 

genetic algorithm where each candidate solution is represented by a vector of bits 

(chromosome) whose size is equal to the total number of elements. A value of 1 means that 

the corresponding element is included in the solution and a value of 0 indicates otherwise. 

The fitness of a particular solution/subset S is quantified as �S"��TT�C� = |qr�H�||qr�;�|. The 

pseudocode shown in Figure 25 describes our technique which takes an execution matrix M 

associated with a set of profiling elements E as input and determines a (likely small) subset 

of E with fitness equal to 1. As a pre-processing step, we perform basic redundancy 

removal to arrive at a reduced matrix M’  and element set E’, which is useful to reduce the 

search space. The genetic algorithm first creates an initial population by randomly 

generating small subsets of E’. After that, it repeatedly applies crossover and mutation to 

produce new solutions. Every time a superior solution emerges, it replaces a less fit one in 

the population. This iterative process is terminated in two cases: 1) a solution having a 

fitness of 1 is encountered or 2) the maximum number of iterations is exhausted. In case the 

GA terminates without arriving at a fitness of 1, we augment the best encountered solution 

by adding one element at a time in a greedy fashion so as to reach the maximum fitness. 

One might argue that such step could be done starting from an empty solution or a totally 

random one. However, such approach has two disadvantages. First, it’s very costly if the 

starting solution has low fitness. Second, as the size factor isn’t enforced, this approach 

wouldn’t likely yield small solutions. Next we detail the steps of our algorithm. 

Line 1: Basic redundancy removal is applied on M and E. That is, E is partitioned 

into E1, E2, …, En where each Ei contains elements of E having equivalent columns in M. 
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E’ is formed by choosing one element from each Ei and M’  is derived from M by removing 

the columns corresponding to the elements in E-E’. 

Lines 2-3: Some variables are initialized; e.g., result  is used to keep track of 

the best encountered solution. 

Line 4: The initial population is built by generating random subsets of E’ whose 

sizes are close to @W[*|c(�p�|. Such choice is guided by the fact that the size of the 

smallest possible representative subset having a fitness of 1 cannot be smaller than this 

threshold. This step is an important factor to converge subsequently to a relatively small 

solution. The size of the initial population, which is maintained in subsequent iterations, is 

equal to POP_SIZE. 
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Figure 25. Genetic Algorithm for Lossless Reduction 
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 Line 5: The algorithm loops MAX_ITERATIONS times unless a solution with fitness 

1.0 is encountered. 

 Line 6: Within each iteration, the algorithm selects two parent chromosomes using the 

roulette wheel methodology, which randomly selects one chromosome at a time based on 

its relative fitness with respect to the population. i.e., solutions with higher fitness values 

are more likely to be selected. 

 Line 7: The selected parent chromosomes undergo single-point crossover to create a 

child chromosome as follows. First, each of them is split at the same random position. 

Then, a new (child) chromosome is created by concatenating the first part of the first parent 

with the second part of the second parent.  

 Line 8: The child chromosome undergoes mutation, where each bit is randomly 

flipped with a probability equal to MUT_PROB. 

 Line 9: The child chromosome replaces the less fit parent if the fitness of the former 

is higher than that of the latter. 

 Lines 10-12: The result is constantly updated by comparing it to the best solution 

obtained in every subsequent generation. 

 Lines 16-18: If the solution returned by the GA (say SGA) doesn’t have a fitness of 

1.0., we augment it by adding one element at a time from E’-SGA until the fitness becomes 

1.0. Each time we add the element that results in the maximum increase in fitness. 

Concerning the parameters of the GA, we used a value of 1000 for MAX_ITERATIONS, 

0.05 for MUT_PROB, and 100 for POP_SIZE. 



110 

 

C. Experimental Study 

1. Methodology 

We evaluated our reduction technique by examining its impact on two common 

types of analysis that make use of execution profiles: clustering and test suite minimization. 

The main criterion was to check whether reducing the profiling elements using the 

proposed approach has a negative impact on the quality of the results. Cluster analysis has 

been used in several areas of dynamic software analysis and was applied onto execution 

profiles comprising program elements that varied from statements to slice pairs  [60] and 

paths  [144]. In this work we will adopt a straightforward clustering approach that uses k-

means with Euclidean distance measures. Test cases would be represented as binary vectors 

where the ith bit is set to 1 (resp. 0) if the corresponding profiling element is exercised by it 

(resp. not exercised). On the other hand, test suite minimization techniques aim at finding a 

minimal subset that covers the same elements as the original suite. A typical approach is to 

select one test at a time in a greedy manner so as to maximize the number of covered 

elements. We will refer to this approach by GTSM (Greedy Test Suite Minimization). 

 

2. Subject Programs and Profiling Types 

Our experiments involved 5 Java applications (tot_info, schedule, schedule2, 

replace, and print_tokens2) and 3 programs written in C (space, flex2, and sed3). We 

downloaded all 8 applications from the SIR repository  [157] and seeded each of them with 

2 to 5 faults (also included in the SIR packages). After augmenting each application with 

oracles and executing the associated test suite, we were able to label each test case as 
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passing or failing. Failing test cases were further labeled according to the fault triggered. 

As a result, for each application we had NF+1 class labels where NF denotes the number of 

faults. Note that we discarded all failing tests that triggered more than one bug. 

We used the tool developed in  [67] to instrument the Java programs where the 

generated execution profiles consisted of basic blocks, branches, method calls, method call 

pairs, and def-use pairs. Concerning the C programs, we generated execution profiles 

consisting solely of statements using the GCOV tool  [155]. 

3. Metrics 

For each subject program, we applied k-means clustering and GTSM before and 

after reduction. The quality of clustering was quantified using Rand Index  [146] and F-

measure  [32], both of which evaluate the similarly between the clustering obtained by a 

given algorithm (k-means in our case) to the “perfect” clustering where elements belonging 

to the same (resp. different) class are placed in the same (resp. different) cluster. 

Concerning GTSM, we assessed its quality in either scenario by counting the number of 

class labels retained in the minimized suite. As such, the value of this metric ranges 

between 1 and the total number of class labels, with higher values indicating better 

performance. 

 

4. Results 

Table 13 shows the results we obtained for the 8 subject programs. Columns 2, 3, 

and 4 respectively correspond to the number of profiling elements before reduction, those 

after reduction, and the resulting reduction rate. Column 5 compares the F-measure for the 
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k-means clustering when applied on the original element set as opposed to the reduced one. 

Similarly, column 6 contrasts the Rand index for both cases. The last column enumerates 

the total number of class labels, those retained by applying GTSM on the original profiles, 

and those retained by applying it on the reduced ones. Note that all the experiments 

involving non-determinism (i.e. genetic algorithm and/or k-means) were repeated 10 times 

and the results were averaged accordingly (values in columns 3 and 7 were rounded to the 

nearest integer). The main conclusion that can be drawn is that our reduction mechanism 

has no significant negative impact on either analysis despite the fact that the reduction rate 

ranged between 94% and 99%. More specifically, the F-measure and the Rand index were 

nearly the same for all programs except flex2 where the difference in the F-measure was 

higher than the average. A possible explanation might be the extent of reduction that 

reached 99%. Concerning GTSM, for three of the programs (tot_info, schedule2, and 

space), the number of labels captured by the minimized suite didn’t change after reduction. 

For the other four (schedule, replace, print_tokens2, and sed3), fault coverage was reduced 

by 1 after reduction. As for flex2, the coverage was reduced by 2. Again, the last result 

might also be attributed to the high reduction rate. 

It’s worth mentioning that the original (unreduced) data turned out to be unsuitable 

for clustering and minimization in the first place. This is evident from the generally low 

values of F-measure and Rand index as well as the fact that in 6 out of the 8 programs 

GTSM missed at least one fault. However, our goal wasn’t to discuss the quality of 

clustering or GTSM but rather to show that applying our reduction technique doesn’t 

deteriorate such analyses. 
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Table 13. Results 

Program # Elements 
# Elements 

Post -Reduction 

% 
Reduction 

F-measure 

orig/GA 

Rand 

orig/GA 

# Labels 

All/orig/GA 

tot_info 1269 45 96% 0.23/0.22 0.46/0.45 6/4/4 
schedule 1043 63 94% 0.09/0.08 0.28/0.28 4/3/2 
schedule2 1288 61 95% 0.07/0.07 0.06/0.06 4/3/3 
Replace 901 39 96% 0.19/0.2 0.08/0.08 3/2/1 

print_tokens2 879 48 95% 0.25/0.24 0.3/0.3 5/4/3 
Space 3164 142 96% 0.07/0.07 0.1/0.1 6/5/5 
flex2 2914 31 99% 0.2/0.15 0.46/0.45 4/4/2 
sed3 1328 37 97% 0.3/0.29 0.35/0.35 4/4/3 

 

D. Benefits for State-based Comparison of Test Cases 

We presented in  [11] three metrics to quantify the dissimilarity between state-

based execution profiles. In what follows we present the proposed approach and explain 

how it’s likely to benefit from the lossless reduction mechanism investigated in this 

chapter. 

State profiling requires the ability to capture the values taken by the program 

variables at some points during execution.  For this purpose, using the Byte Code 

Engineering Library (BCEL)  [156], we built a tool capable of capturing the values assigned 

to variables in a Java program. By default, this is done at every definition of each program 

variable. But the tool is made configurable to enable the user to select which variables to 

monitor and when to capture their values. Limiting the number of variables and the 

sampling rate is crucial for practicality reasons, given that realistic programs contain a large 

number of variables (unbounded in some cases) and are possibly long running. 

At first hand, monitoring the inputs and outputs seems intuitive, but it might not be 

as beneficial as monitoring some internal variables that are more likely to characterize the 



114 

 

defect. Therefore, in situations where the user of our tool is familiar with the code (possibly 

the developer), internal variables deemed critical to the implementation should be selected 

for monitoring. However, when such option is not available, we can benefit from the 

lossless reduction mechanism presented previously as follows: 1) use reduction to identify 

a minimal subset of structural elements, 2) identify the variables associated with such 

elements, and 3) monitor the values of the variables identified in step 2). 

Once the variables to be monitored are selected, the tool could capture their values 

following every definition (assignment). But the user can choose other sampling times, e.g., 

at the exit of specific functions, or at the execution of specific statements. 

 

1. Dissimilarity Metrics  

Execution profiles are typically compared in pairs to build a dissimilarity matrix 

that contains the dissimilarity metrics values between all profiles. In this work we adopt 

and evaluate the dissimilarity metrics described below. Note that (xi) and (yi) correspond to 

the sequences of values assumed by the same monitored variable in both profiles   
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Chi-Square Goodness of Fit:  
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For all the metrics, when comparing two profiles of unequal lengths we prolonged 

the size of the shorter profile by duplicating its last value. Also, in order to compare the 

shapes of the functions represented by the profiles as opposed to comparing exact values, 

we normalized each profile to range between 0 and 1. 

 

2. Results  

In order to evaluate the proposed dissimilarity metrics, we conducted experiments 

using 10 versions of 4 programs from the Siemens benchmark (print_tokens, print_tokens2, 

schedule, and tot_info). For each seeded version and each metric type we computed the 

metrics values between all pairs of distinct tests that satisfy the following: 1) both tests are 

passing, denoted as category PP; and 2) one test is passing and the other is failing, denoted 

as category PF. We then computed and compared the average metrics values for each of the 
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2 categories. It should be noted that in our experiments the profiles comprised the values 

assigned at every definition of a single variable that we considered critical to the 

implementation. The values are captured within a specific function, possibly at more than 

one location. We found that in 8 out of 10 cases, using all three metrics, passing tests were 

on average most dissimilar from failing tests. We also observed that the Euclidean and the 

Chi-Square metrics agreed on all cases. These results clearly demonstrate that state-based 

comparison is promising. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

 

 

A. Thesis Contributions 

We investigated several approaches to overcome the limitations of certain 

software analysis techniques that rely on analyzing execution profiles. We proposed 

modeling the runtime behavior of software via complex structures that involve state 

profiling, dependence information, combinations of structural elements, and sequence data. 

Our work involved various areas such as fault localization, regression testing, and intrusion 

detection. 

In chapter 2 we proposed a fault localization technique based on identifying short 

dependence chains that are highly correlated with failure. In addition to considering data 

and control dependences, we augment each chain by computing a set of predicates 

involving the source values and target values of its edges. We used 18 versions of the 

Siemens test suite to evaluate the effectiveness of our technique in comparison to when 

statement coverage is used. Our results were promising as the technique successfully 

identified more correlated chains in 17 out of 18 versions. 

In chapter 3 we showed that coincidental correctness is prevalent and 

demonstrated that it is a safety reducing factor for coverage-based fault localization. We 

then proposed two techniques for cleansing test suites from coincidental correctness to 

enhance the safety of CBFL, given that the test cases have already been classified as failing 
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or passing. We evaluated the effectiveness of our techniques by empirically quantifying 

their accuracy in identifying CC tests. The results were promising, e.g., the better 

performing technique, using 105 test suites and basic-block coverage, exhibited 9% false 

negatives and 30% false positives on average, and no false negatives nor false positives in 

14.3% of the test suites.  Using 73 test suites and ALL coverage (combined basic-block, 

basic-block-edges, and def-use pairs), the numbers were 12%, 19%, and 15%, respectively. 

This work also allowed us to conclude that our techniques are likely to benefit coverage-

based fault localization since applying them always led to a higher suspiciousness score for 

the fault. 

In chapter 4 we proposed an approach to application-based intrusion detection 

relying on profile-based signatures. Our technique starts by collecting exercised program 

elements, including method calls, method call pairs, basic blocks, basic block edges, and 

definition-use pairs. The actual construction of the needed signature is a learning process, 

implemented via a genetic algorithm, which generates from a training set of executions the 

combinations of elements that lead to unsafe executions. These combinations form the 

signature, which is fed to a matching system that monitors the application by way of 

dynamic selective instrumentation and alerts to intrusions when a match is detected. Our 

experiments involved seven Java applications containing 30 vulnerabilities/defects. The 

results showed that our approach worked very well for 26 vulnerabilities/defects (86.67%) 

and the overhead imposed by the system is somewhat acceptable as it varied from 46% to 

102%. The exhibited average rates of false negatives and false positives were 0.43% and 

1.03%, respectively. 
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Chapter 5 presented UCov, a methodology and tool support for precise test case 

intent verification in regression test suites. UCov complements existing coverage criteria by 

focusing the testing on important code patterns or behaviors that could go untested 

otherwise. That is, UCov allows the tester to specify user-defined test requirements to be 

covered. Such requirements incorporate structural elements, predicates describing the state 

of select program variables, and sequence information. 

Chapter 6 presented a lossless reduction mechanism intended to mitigate the 

impact of high dimensionality present in most types of execution profiles. We evaluated 

this approach by applying it on eight sets of execution profiles, and our results showed a 

reduction rate from 94% to 99% without significant deterioration in the quality of 

clustering and test suite minimization. We also showed how state-based comparison of test 

cases could benefit from such reduction mechanism. 

 

B. Future Work 

We plan to refine UCov by extending the set of predicates that could be used for 

specifying test requirements. The current version allows for first-order logic predicates 

only, which is not enough to describe all the states that might be of interest to the user. 

Also, we intend to investigate test case intent preservation. That is, in case of a failed test 

intent verification, automated test case generation will be performed whose aim is to satisfy 

the user-defined test requirement and thus preserve the intent of the test case. 

Concerning intrusion detection, we will explore using test case generation tools to 

automatically create new inputs. This might further improve the performance of the IDS 
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because the latter is dependent on the quality of the training sets. We believe that 3 out of 

the 4 cases in which our approach performed poorly, are preventable and can be addressed 

in future work. In these cases, signatures that characterize the exploits could not be found 

because we only relied on structural program elements to build our execution profiles. To 

remedy this shortcoming, we plan to incorporate state information in the process of 

signature generation by augmenting statements or other structural elements with simple 

predicates. This type of augmented profiles could also be investigated in the context of 

identifying coincidentally correct test cases.  

We also intend to leverage state profiling for automatic classification of test cases 

and test suite minimization. We envision a supervised learning mechanism that utilizes a 

neural network to carry out the classification task. The values of select internal variables at 

specific events, such as the execution of certain statements, would be used as input to the 

neural network. As for test suite minimization, we will explore a greedy approach that 

determines a minimal set of test cases whose “state” coverage is equivalent to the original 

test suite.    
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