

AMERICAN UNIVERSITY OF BEIRUT

MODELING SOFTWARE BEHAVIOR VIA STATE PROFILING

by
RAWAD IMAD ABOU ASS

A dissertation
submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering
of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
April 2014

AMERICAN UNIVERSITY OF BEIRUT

MODELING SOFTWARE BEHAVIOR VIA STATE PROFILING

by
RAWAD IMAD ABOU ASSI
Approved by:
Dr. A ayssi, Professor Chair of Committee
Electrical and Computer Engineering
Y o % A /
Dr. Wassim #asri, Associate Professor Advisor

Electrical and Computer Engincering

A
Df.“Ali El-Hajj, Professor Member of Committee

Electrical and Computer Engineering

(
MRGAGN -

[ﬁ\bl-lédar Harmanani, Professor Member of Committee

L¢banes

¢ American University

’ Zantout, Associate Professor Member of Committee
Beirut Arab University

Date of dissertation defense: April 28, 2014

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Student Name:

Last First ddie

(O Master’s Thesis O Mast®roject (O Doctoral bastation

[] 1authorize the American University of Beitat (a) reproduce hard or electronic
copies of my thesis, dissertation, or project;iicjude such copies in the archives and
digital repositories of the University; and (c) nadkeely available such copies to third
parties for research or educational purposes.

| | Iauthorize the American University of Beirtitee years after the date of
submitting my thesis, dissertation, or project;to: (a) reproduce hard or electronic copies
of it; (b) include such copies in the archives digital repositories of the University; and
(c) make freely available such copies to thirdipartor research or educational purposes.

Signature Date

ACKNOWLEDGMENTS

I’'m forever grateful to my family and everybody avtoved and supported me in
the times when | didn’t have any contribution wegrti writing acknowledgements.

| deeply thank my advisor and friend Dr. Wassinskiléor his consistent support.
Ever since | met him eight years ago, I've regariiet as an ethical person and a
respectable scholar. This dissertation wouldn’'tehldeen possible without his commitment,
patience, and understanding.

My appreciation goes to Dr. Ayman Kayssi, Dr. BliHajj, Dr. Haidar
Harmanani, and Dr. Rached Zantout for participatmigpe committee and for being
always responsive. I'm also thankful to Dr. Fadigat who provided valuable input
concerning the topic of test case intent verifmati

AN ABSTRACT OF THE DISSERTATION OF

Rawad Imad Abou Assi for Doctor of Philosophy
Maijor: Electrical and Computer Engineering

Title: Modeling Software Behavior via State Prafdi

Many software testing and fault localization tecjud@s rely on analyzing execution profiles
which comprise runtime coverage information sucktatements, branches, definition-use
pairs, etc. Coverage information could be used/&tuate the quality of testing, perform
test suite minimization, devise distance metricsaimpare test cases, and help pinpoint the
faulty code by contrasting the execution profilépassing and failing tests. This
dissertation aims at proposing and evaluating ryped of execution profiles to
complement existing ones especially in the casesewvie runtime scenario being
considered is too complex to be modeled by traagtigrofiles. Specifically, the proposed
approaches model the runtime behavior via comglextsires that involve state
information, combinations of structural elementsj aequence data. In this regard, we first
introduce the concept of dependence chains totassistomated fault localization.
Dependence chains capture, in addition to statenwmrage, the underlying data- and
control-dependence information as well as predscdéscribing the values of the relevant
variables. We also propose using combinationsmopka program elements, as opposed to
individual ones, for an online intrusion detectgystem. Similarly, we present a
mechanism for regression testing that allows ugedefine test requirements
characterizing specific behaviors to be coverediatime instead of choosing from a pool
of pre-defined and generic program elements. Sesttréquirements are automatically
migrated across versions and are built using ttyges of constructs: structural elements,
first-order logic predicates specifying the stdtsalect program variables, and sequence
information.

In addition to proposing new types of executionfipgs, we explore several ways to
improve the effectiveness of coverage-based soétanalysis techniques. In particular, we
present an approach that aims at identifying cdierdially-correct test cases which are
shown to impair the effectiveness of coverage-b&salti localization. We also address the
issue of mitigating the impact of high dimensiotyalhat’s present in most types of
execution profiles.

Vi

All of the proposed techniques were implementedHerjava platform and the task of
execution profiling was achieved by instrumentihghe bytecode level. Besides, the
evaluation involved several case studies as wedhgsirical analysis using real subject
programs with sizable test suites; these includexvk benchmarks, utility programs, and
web servers. The results we obtained indicatenttvateling program behavior via complex
structures, including those that incorporate stdtgmation, is effective at capturing
runtime scenarios that might go untested usingtioael execution profiles. Overall, our

proposed techniques were shown to have a positigadt on fault localization, regression
testing, and intrusion detection.

vii

CONTENTS

ACKNOWLEDGEMENTS. ..o, V..

ABSTRACT ...ttt e, vi

Chapter

[. INTRODUCTION.......ciiiitiiieeeeeeee et
A, BaCKGrOUNG ... 1
B. Coverage-based Fault Localization..............ccccevvviiiiiiiiiiiiiiieiieeeeeee e 2
C. INtruSION DELECHIONceeiiiiii s ettt e e e e e e e et e e e e e e e e e st s e e e eeeeeeanens 3
D. REQIreSSION TESHNG . .uuuiuuiuiruirnss e eeeeeeaeeaaeaeaeaeaeeeaeeteteeeeeteaetaeaaeeasaaaaaseaaaeas 4
E. Dimensionality REAUCLION o s 5

FAULT LOCALIZATION USING DEPENDENCE CHAINS.6

RelAtEd WOTK ...t et e e 7
Suspiciousness Metric and MOEIVALION . .ceeeaeevviiiviiiiiiiiiiiiiiiiiiiiii e 9
Technique DeSCrPLiONcoooe e 13
1. Background DefinitioNsS ..o 13
P2 N [T 1 11 01 o PSSO PP P PP PPPPPPP 15
3. IMPIEMENLALION ... e 19
EXPerimental WOTKoooiiiiiii e 20
1. SUDJECT Programs ...cccceiiiiiiiiiiiiiiiieiieeiieie ettt 21

2. RESUIS ...

. MITIGATING THE IMPACT OF COINCIDENTAL

CORRECTENESS ON FAULT LOCALIZATION.......ccccocvevriinne.

3. TECN-II e —————
C. Empirical EValUALION...........ccviiiiiiiieeee e

1. EVAIUALION MEIICS oo e e e

WD

D. REIATE WOTK ..oeeeieeee et ettt et et e et e et e e e e e eea s e reeeennreeneennaees

V. ONLINE INTRUSION DETECTION USING PROFILE-

BASED SIGNATURES. ...,

A. Execution Profiling ...
B. SIgNature GENEIAtION............c.eet s eeseeeessasassaaaaasaesaasaasaesaesesssssensensnnnnnns
C. SiIgnature MatChINGcocooiiiiiieeee e
1. Instrumentation MOAUIE.............coooiiiiiiiiiii e
2. Matching MOAUIEcoaiiiiiiiiieiieeieeeeeeeee e
D. Empirical EVAlUALIONcooiiiiiiiiiiiiiiiiiiiiiie ittt mnee e e e e eee e
1. Subject Programs and BeBES...........uuuuurmrrmriminnniniiinnimmmmnneeennnenes

2. EXperimental SEtUP c et

SUDJECE PrOgramsS .ceeeeeuieiiiiiiiiiiii s e
RESUILS ...

ANAIYSIS ..ttt

24

.59

B R BSUIS . ettt s 66

4. Profiling and COSt ANB/S........cuuuuiiuiirriiiiiieiiiiieiierieiirereneee e 71

E. REIAIEU WOTK ... e e e et e e e e e e 72

V. USER-DEFINED COVERAGE CRITERION FOR TEST

CASE INTENT VERIFICATION........ccooiiiiecree e 75
A. Definitions and NOTAtIONSccuvireeeriie e 78

B, MOTIVALION ...ttt e e s 80

C. Methodology and Implementation ... s 83

1. Specifying Test REQUIFBIIZE..........cooeeeeeeeeeeieeeeeeeee e 83

2. Migrating Test Requirefsacross VersionsSccccvvveeveeeecmmeeeene 86

3. Checking the Coverag@edt Requirementscccceevvvvvnimcmcea.. 92

D. CASE STUIESeviiiiiiiiiii e errmm et ere e e e s 93

1. TeStNG 8 BUQ FiX.aauaamniniiiii e 93

2. Testing Scenarios of dAgOAthMuvviiiiiiiiiiiceeee s 96

E. Related WOIK......cooiiiiiiiii i mee e 100
VI. LOSSLESS REDUCTION OF EXECUTION PROFILES 102
A. Motivating EXamMPIE.......o.uiiiiiiiiiiitceeee ettt be e beeeeeeeeee e e 103

B. PropoSed APPrOACKceuiiiiiiiieicemmemmeeteetveveesieaneseseeeseeanessnsnessnennneeeeeeeeeees 105

C. EXperimental StUAY ... 110

1. MethodolOogycoooeee e 110

2. Subject Programs andiPngfTypPescoovvvviviiiiiiiiiiiiiiiieeneeiiinnnns 110
3. MELIICS et 111
4. RESUIS ..o 111

D. Benefits for State-based Comparison of T@HESccoeevieiiiiiiiiiiieee. 131

1. DisSimilarity MetriCS. cceeeiiiiiiieiiiiiieieeieeeeeeeeeeee et 114

2. RESUIS...ou e 115

VIl. CONCLUSIONS AND FUTURE WORK ..o 117
A, ThesSiS CONIIDULIONS ..uu.iiviiiii et i e e e e b e s e eeeaa e s aans 117

ST U (| (T4 0] 119
REFERENGCES.. ... e e, 121

Xi

CHAPTER |

INTRODUCTION

Dynamic software analysis encompasses a wide mingesks that aim at ensuring
the reliability of a software product. Charactergsoftware behavior is a valuable task in
testing as it allows quantifying the quality ofest suite, comparing test cases, as well as
pinpointing the faulty code when failures are oliedr The general approach is to
instrument the given program, run it on a given sagte, and collect execution profiles for
each test case. Afterward, all the aforementiomedlyaes could be performed by
considering the execution profiles induced by gashcase. Many approaches were
proposed where each uses a particular aspect ofittxe as a basis for profiling. In most
of the cases, profiling is done to keep track ofgoam elements being executed such as
statements, branches, def-use pairs, method dbsmnation flows, etc. This dissertation
aims at proposing and evaluating new types of ei@tprofiles to complement existing
ones especially in the cases where the bug/sceaiahniand is too complex to be modeled
by traditional profiles. Specifically, the proposagproaches model the runtime behavior
via complex structures that involve state profilidgpendence information, combinations

of structural elements, and sequence data.

A. Background
State profiling is simply the task of recording tredues assigned to the program

variables at runtime. The idea of leveraging thHeesof variables has been first proposed
1

by Xie and Notkin in [1]. They collected value sfra and computed their differences to
assist regression testing; their focus was on ¢\dr@ables and function parameters. In [2],
Xie et al explored representing the state of objects areraning the equivalence
between them. The purpose was to identify redundlaibtests from automatically
generated test suites. In [3], Francis and Po#tigpresented an empirical study of the
effectiveness of test case filtering techniqueagisibject-state profiling. Their profiles
contained a count of how many times each posslijkctstate occurred during the
execution of the program. They compared their tedalstructural profiling techniques,
but their observations were not decisive. Parnsh@rso [4] argue that understanding the
root causes of failures might not be achieved syrbplinspecting the suspicious
statement(s) provided by state-of-the-art faulalzation techniques. Instead, extra
activities including the inspection of program state needed. Daikon [5] discovers certain
invariants concerning selected variables. Suchriants are in the form of boolean
formulae and are generated based on the valuesieddwy these variables in a set of runs.
In this work we propose using state profiling, ddaion to other types of runtime
information, to enhance software analysis. In #raining sections we briefly describe the
major areas of research that would benefit frompsaposed approaches and summarize

our contribution in that regard.

B. Coverage-based Fault Localization
Coverage-based fault localization techniques aitocatting faulty code by first

identifying the executing program elements thatelate the most with failure. It often

happens that the correlation measure of such eksmegenot high enough to successfully
guide the developer to the fault. This shortcoménlikely due to the fact that the covered
program elements are simple (e.g., statementsciheanor def-use pairs), and thus, cannot
characterize most defects that are typically niwmatr

In chapter 2, we present a technique that ideastgfert dependence chains that
are highly correlated with failure [6], which werinfailure-correlated dependence chains
In addition to considering data and control depesds, we augment each chain by
computing a set of predicates involving the sowalaes and target values of its edges.
This supplementary state information can potentiadllp identify failure-correlated chains
that are shorter in length and can better assistating the faulty code.

Also, in chapter 3 we tackle the issue of coinctdecorrectness which impairs the
accuracy of coverage-based fault localization A7¢oincidentally correct test case is a one
that exercises the fault and yet produces a coogput. Coincidental correctness is shown
to be prevalent and it's a safety reducing facgtcautomated fault localization techniques

because it leads to underestimating the suspicesssof faulty program elements.

C. Intrusion Detection

Intrusion detection systems, I@Ss, are categorized into two basic design
approaches: anomaly-based and signature-basedirStraperates by collecting
information on normal or safe behavior and ideesifattacks that vary from this expected
set, while the second examines incoming execufmmgatterns of attacks that match its

collection of attack signatures. While anomaly-lgbis¢rusion detection mechanisms can

detect previously un-encountered attacks, they nsigfier from a high rate of false
positives. On the other hand, signature-based appes, although potentially exhibiting
less false positives, are unable to detect attacksn their collection of attack signatures
and thus can result in a higher rate of false megmtChapter 4 investigates a signature-
based technique to application-based intrusionctiete[8]. The proposed technique
generates signatures in the form of combinatiorsrottural elements comprising method

calls, method call pairs, basic blocks, basic bledges, and def-use pairs.

D. Regression Testing

The goal of regression testing is to ensure treabthavior of existing code,
believed correct by previous testing, is not alldvg new program changes. We argue that
the primary focus of regression testing should theale associated with: a) earlier bug
fixes; and b) particular application scenarios adgred to be important by the tester.
Existing coverage criteria do not enable such foEos example, 100% branch coverage
does not guarantee that a given bug fix is exetaise given application scenario is tested.
Therefore, there is a need for a new and compleangnbverage criterion in which the
user can define a test requirement characterizgigean behavior to be covered as opposed
to choosing from a pool of pre-defined and gengragram elements. We propose this new
methodology and call WCov [9], a user-defined coverage criterion wheretast
requirement is an execution pattern of program efémand predicates describing the
program state. Our proposed criterion is not meangplace existing criteria, but to

complement them as it focuses the testing on impbdode patterns that could go untested

otherwise UCov supports test case intent verification. For exanfallowing a bug fix, the
testing team may augment the regression suitethalest case that revealed the bug.
However, this test case might become obsoletealuede modifications not related to the
bug. But if an execution pattern characterizinglihg was defined by the us&iCov

would determine that test case intent verificateited. This methodology is presented in

chapter 5.

E. Dimensionality Reduction

Execution profiles form the basis of many dynamiagpam analysis techniques
developed to solve problems in fields such assigis¢ minimization and program
comprehension. A typical profile comprises inforioatthat approximates the execution
path of a program, specifically, the frequency afwrence of program elements that are
structural in nature, such as statements, branahédsdef-use pairs. One major limitation is
the high dimensionality present in most types afifgs, which is likely to diminish the
effectiveness of several techniques based on tGhapter 6 addresses this problem by
presenting an approach that performs a losslesstied on execution profiles [10]. It also
shows how state-based comparison of test casgsdd benefit from such reduction

mechanism.

CHAPTER Il

FAULT LOCALIZATION USING DEPENDENCE CHAINS

Coverage-based fault localization techniques gdlgeratail two main steps. First,
they identify the executing program elements tloatetate most with failure. Second,
starting from these elements, which are not nedésfize causes of the failure, they try to
locate the faulty code following some examinatitrategy. It often happens that in the first
step the correlation measure of the identified elesiis not high enough to successfully
guide the developer to the fault. This shortcom#niikely due to the fact that the program
elements covered are simple, and therefore, cavavtcterize most defects that are
typically more complex. This calls for covering gram elements whose complexity
matches the complexity of the defect under conatd®r. Noting that a less complex
element cannot characterize the defect to begim wihereas an excessively complex
element is likely to subsume the defect and subdéssharacterize it, but might lead to
erroneously tagging too many elements as suspicidusultimate goal then is to arrive at
a program element that characterizes as closgdpssble the defect at hand. In this
chapter we present the notion of dependence cf@inshose intermediate nodes
represent (statement, variable) pairs and edgesteléata or control dependence. We aim
at identifying short dependence chains that arklyigprrelated with failure, which we
termfailure-correlated dependence chai®®r more effective fault localization, both the
number and length of these failure-correlated chahould be minimal. In addition to

considering data and control dependences, we augraeh chain by computing a set of
6

predicates involving the source values and targktes of its edges. This supplementary
state information can potentially help identifylfae-correlated chains that are shorter in
length and can better assist in locating the fazdiye. It should be noted that our goal here
is not to directly locate faults, but to identiBiltire-correlated program elements (namely,
dependence chains) that could subsequently letie tault following a given examination
strategy.

The rest of the chapter is organized as followstiSe A surveys related work.
Section B describes the suspiciousness metricarsg¢grovides an example that motivates
our work. Section C describes our technique andréhgns. Finally, Section D describes

our experimental work and presents our results.

A. Related Work

As previously mentioned, coverage-based fault inatbn techniques generally
entail identifying failure-correlated program elentsefollowed by locating the faulty code
using some examination strategy. Our focus inwlagk is on the former only, that is, what
program elements are better to use.

Jones et al. [12] presented a technique thatwiseslization to assist with
locating faults. They implemented their techniqua tool called Tarantula. The
technique uses color to visually map the partiogmadf each program statement in the
outcome of the execution of the program with a $egte, consisting of both passing and
failing test cases. To provide the visual mappthg,program statements are colored using

a continuous spectrum from red to yellow to greka:greater the percentage of failing test

cases that execute a statement, the more redatieensint should appear. A statenmgns

considered more suspicious (more red) than statesnérM(s;) > M(s;) where

M(s) = % fail(s)
% fail(s) + %opas$s)

In the above equation, which determines the susgsciess or color of statemen®&ail(s)
is the ratio of the number of failing runs that exted s to the total number of failing runs,
and%pass(s)s the ratio of the number of passing runs thatated s to the total number
of passing runs.

Denmat et al. [13] studied the limitations of teehnique presented by Jones et
al. [12]. They argued that for it to be effeetithe following three requirements must hold:
1) a defect is due to a single faulty statemenst&ements are independent of each other,
and 3) executing a faulty statement leads mogiefitne to a failure. Clearly, the
aforementioned requirements are not likely to led when dealing with complex
programs involving non-trivial defects. RenierigldReiss [14] described a technique that
produces a report of the “suspicious” parts of@gpm by analyzing the spectra
differences between the faulty run and the com@&tthat most resembles it. The
experiments they conducted used basic block coeespgctra whereas the technique
proposed here involves much more complex spectadan dependence chains.
Dallmeier et al. [15] presented a tool for Jakagpams that locates likely failure-causing
classes by comparing method call sequences ofrfgaasd failing runs. Clause and
Orso [16] presented a technique for debuggingriad that occur while the software runs
on user platforms. Their technique allows for reawng, replaying, and minimizing user

executions. The resulting minimized execution tteam be used to debug the defect(s)
8

leading to the observed failure. Santelices dtldl. presented a Tarantula-based technique
in which a statement is assigned the maximum arageeof the following three scores:

score computed using statement coverage, branerame, and def-use coverage.

B. Suspiciousness Metric and Motivation
Let E denote the type of the program element to covetean instance dE. In
our experiments, presented in Section D, we emipleyollowing suspiciousness metric

that we define for statements and dependence chains
Mg(e) =F - P where

e = a dependence chain of some given length or enséatt

F=flfr

P=p/pr

f = number of failing runs that executed

fr = total number of failing runs

p = number of passing runs that execlged

pr = total number of passing runs

Me ranges from -1.0 to 1.0 and the goal of our wertoibe able to identify a small set of
chains with arMg value of 1.0 based on which the faulty code walllbcated. We opted to
use the above metric as opposed to other metrieacht proposed in the literature (e.qg.,
Tarantula), due to its simplicity and intuitiveneBer example, if = 0.1 and® = 0.0,Mg
would be 0.1 (indicating a mild suspiciousness)exehs the Tarantula metric described

above would be 1.0 (indicating a strong suspicieas)) which overstates the
9

suspiciousness of the given program element. Nexpn@sent our motivating example, and
in order to make our discussion more comprehense/@ill assume that an examination
strategy is used following the computation of themciousness metrics. We will adopt the
strategy presented by Jones and Harft8j and used in Tarantula [12]. The strategy
assumes that all statements are ranked and expealsveloper to examine statements
from the top of the ranking scale then down unfdwalty statement is found. That is, all
executed statements in a program are ranked irsteftheir likelihood of being faulty by
comparing the chains induced by the failing runtheoones induced in the passing runs.
The ranking of the statements associated with engbhain is determined by contrasting
the percentage of failing runs to the percentageass$ing runs that induced it. The
statements associated with a chain are the soancktargets of its edges.

As a motivating example for covering chains (boreavirom [19]), consider the
Java method shown in Table 1 where statementduls/f the+ operator should have been
a- . Note how wherfx[i] < 0) both the faulty and correct statements assigsdnee
value toy except whex[i] is equal tol . Therefore, the failure is triggered only in the
case when one or more elementg[pf are equal to-1 . Table 1 also shows the
following: a) Six test cases each comprising tlaleenents ok[] , two of the test cases
trigger a failure and the other four do not. b) Btetement coverage information for each
test case: a check mark indicates that the statemhéme given row was executed at least
once using the test case at the given column. eValues of the suspiciousness metric
computed based on statement coverage as opposkditocoverage, i.e., Mg(e) eis a

statement.

10

Table 1. Java code and statement coverage informati for the motivating example

* Statement 5 is faulty. The correct statement i}: Passing Test Caseg Failing Test Cases

y = =X[i] - LIX[i]; */

— o
o la |Y | s S "
- o S " A
public static void foo(int [] x) U DR B IS < g M
— o o Ty (,? =] E
{
1 inty;intz; v v v v v v 0.0
2 for (inti=0;i<x.length; i++}{ v v v v v v 0.0
3 y=0; v v | v v v v 0.0
4 if (X[< 0){ v | v [V v v v 0.0
5 y = X[i] + 1/X[i]; v v v v v v 0.0
6 Telse if (X[i] > 0) { v v v v -0.25
7 y = X]i] - L/x[i]; v v v v -0.25
}
3 if (y==0){ v v v v v v 0.0
9 z=.. v v v v v 0.25
}else {
10 z=.. v v | v v v v 0.0
}
}

11}

As shown, all failing and all passing runs executedfaulty statement (statement
5) leading to aMg value of 0.0, which is clearly not high. In additj several other
statements share the saMgevalue and one even has a highkrvalue of 0.25. Clearly,
for this example, a ranking scheme based on statecogerage would not be of much help

for the developer in locating the fault.

11

Table 2 shows how using dependence chains of lehgtino more effective than
statement coverage. In this case a chain is atlimectcontrol dependencer adef-use
As shown, the chains involving the faulty statenmametthe direct control dependerocié4,
5) and the def-usgu(y, 5, 8), which are not ranked the highest givet ¥ out of 11 chains
are equally or higher ranked. In addition, no chaifength one is highly correlated with

failure, which calls for trying a more complex prag element.

Table 2. Coverage information for chains of lengti

cd(sre, gy Passing Test Cases Failing Test Cases
du(var,sre, g9 5 3 | 0,1,-2 -3,-3,-4 -5,-300,1 | -3,-1,-100 100,1,-1 Mg
cd(2,3) v v v v v v 0.0
cd(2,4) v v v v v v 0.0
cd(2,8) v v v v v v 0.0
cd(4,5) v v v v v v 0.0
cd(4,6) v v v v -0.25
cd(8,9) v v v v v 0.25
cd(8,10) v v v v v v 0.0
cd(6,7) v v v v 0.25
du(y,5,8) v v v v v v 0.0
du(y.7.8) v v v v -0.25
du(y,3,8) v -0.25

Table 3 shows how using dependence chains of léhigtleffective at locating the
faulty statement. The chain comprisitg(y,5,8)>cd(8,9) covers the faulty statement and

is highly correlated with failure. In this caseg ttleveloper would only need to examine
12

three statements to locate the faulty code, nars&yements 5, 8 and 9. In this case, a
single chain exhibited a very high correlation wafure, which suggests that trying a

more complex program element is not needed.

Table 3. Coverage information for chains of lengtt2

cd(sre, trat Passing Test Cases Failing Test Casgs

du(var,sre,tg) 1353 [01,-2 |-2-3-4 |-5-3001 |-3,1,-100 |100,1-1 | Mg
cd(2,3) >du(y,3,8) v -0.25
cd(2,4) >cd(4,5) v v v v v v 0.0
cd(2,4) >cd(4,6) v v v v -0.25
cd(2,8) >cd(8,9) v v v v v 0.25
cd(2,8) >cd(8,10) v v v v v v 0.0
cd(4,5) >du(y,58) v v v v v v 0.0
cd(4,6) >cd(6,7) v v v v -0.25
cd(6,7) >du(y,7.,8) v v v v -0.25
du(y,5,8) -—>cd(8,9) v v 1.0
du(y,5,8) —>cd(8,10) v v v v v v 0.0
du(y,7,8) -—>cd(8,9) v v v v -0.25
du(y,7,8) ->cd(8,10) v v v v -0.25
du(y,3,8) —>cd(8,9) v -0.25

C. Technique Description
Here we provide some basic definitions, preseniatgorithm, then describe our

implementation.
13

1. Background Definitions
Definition 1- A nodeis a pair(s, v)wheresis a statemeny; is a variable such that
vis defined (assigned a value)af node represents the source or the target okatd
data or control dependence. In the case vghgma conditionaly is irrelevant and the node
is called goredicate nodeFor a node, we denote bgt(n) the statement associated with
and byvar(n) the variable associated with
Definition 2- The direct dependences induced at modee described by the pair

({ng, mp, ..., n}, M), denoted by, that satisfies the following:
a) Thenys are nodes.
b) One of the following is true:
« k=1,n;is a predicate node, ast{m)is control dependent at(r).

* st(m)uses the values oar(n), var(rp), ...,var(ny) that were last defined at

st(m), st(ryp), ...,st(ry), respectively.

We also denote bgources(dthe sefny, ny, ..., n}, bytarget(d)the nodem, and bytime(d)

the timestamp indicating whehwas exercised.

Definition 3 -A chainis a sequence of nodes, (1, ...,) wherek > 2 andd a set

of dependencel;, d,, ..., d.1} that satisfies the following:

a) V1<i<k2time(d) <time(d:1)

b) V1<i<k1,n € sources(g andn.; = target(d)
14

c) 7 any dependenadsatisfying both of the following:

e d&{dy, o, ..., dg}

e d2<i<ksuchthah;; & sources(dandn; = target(d)andtime(d)>
time(d.1) andtime(d)<=time(d.1)
In other words, there exists no depeodé¢hat broke the chain.
Definition 4 -Given a chairt = (m, Iy, ..., i), we denote byail(c) the node and

definelength(c)to bek-1. V 1 < i < k-1, n; is said to be the predecessonef.

Definition 5- A chaine = (m, ny, ..., i) is said to be aaxtensiorof another chaic

=(my, mp, ..., m)iff k>pandV 1<i<p m=n.

Definition 6- A chainc is said to benaximalin a set of chainSif and only if no

extension ot is contained irs.

2. Algorithm

The basic high level steps of our algorithm (whikkhown in Figure 1) are:

a) Specify E to represent statememéxall thate is the type of the program element

to cover.

15

Input:
1) Sequence of direct dependences exercised urpmdetieular test caself, @, ..., ¢) sorted

according to their increasing timestamp
2) A max length L.y

Output:
Set of maximal chains whose lengthsik max
1. output = ;
2. unfinished = ;
3. fori=1lton
{
4. chainsToBeAdded = D;
5. forj=1tod i .sources.size() {
6. chainsToBeAdded.add(
7. new chain(d i .sources|j], d i .target));
}
8. for k=1 to unfinished.size() {
0. Chain ch = unfinished.get(k);
10. if (d i .hasPredicateSource()==false &&
11. ch.tail.isPredicate()==false &&
12. ch.tail.equals(d i .target) &&
13. ch.tail.predecessor & d ; .sources)
{
14. output.add(ch);
}
15. else if (ch.tail € d.sources)
{
16. Chain extended = ch.extend(d.target);
17. if (length(extended) == max)
18. output.add(extended);
else
19. chainsToBeAdded.add(extended);
}
}
20. unfinished.add(chainsToBeAdded);
}

21. for k=1 to unfinished.size() {

22. Chain ch = unfinished.get(k);
23. if(ch.wasExtended() == false)
24. output.add(ch);

Figure 1. Algorithm for computing dependence chains

16

b)

d)

9)

h)

Compute the suspiciousness metrigal for all executing statemeni&his step
involves executing a test suite on the subjectiamgn order to collect execution

profiles describing the frequency of occurrencesawh statement.

Exit if the highest encountered score was In@his case, covering chains cannot

improve on covering statements.

Specify E to represent dependence chains of lemggh.e., an instanceof E is a

chainc such thatength(c)= 1.

Compute the suspiciousness metrigé) for all executing chaing his step is

similar to step b.

Exit if the highest encountered score was THat is, the algorithm succeeded in

identifying at least one chain that entirely caatet with failure.

Increase the complexity of Ehis is done by alternating between: a) augmenting
the covered dependence chain with a set of predigatolving the source values
and target values of its edges, and b) increasiadength of the chain by one.
That is, the sequence of covered program elemeoks las follows: 1)

statements, 2) chains of length one, 3) chainsrajth one augmented with
predicates, 4) chains of length two, 5) chaineabth two augmented with

predicates, and so on.

Exit if the complexity of E renders profile collect infeasible, otherwise go to

step eln our experiments we exit our algorithm when peotollection for a

17

given chain length exceeds 24 hours. Here the ihgois considered to have

partially succeeded if it was able to improve @atesnent coverage.

The algorithm maintains two lists of chaiwstputandunfinished Theoutputlist
contains exercised chains that can’t be extendgchare either because they reached the
maximum length_ax0or because they were killed by a subsequent depeedi.e. the talil
is no longer dependent on the head). Uihinishedist contains exercised chains that
didn’t reachLnax yet and whose tail is still dependent on the h€ad each direct
dependences pairof the sequence, lines 5-7 generate a list ofhshafi length one each
corresponding to one of the sourceslofEventually, these will be added to th&inished
list on line 20. Lines 10-14 check for any unfiredhchain that was broken dyand moves
it to theoutputlist. Lines 15-19 identify the unfinished chaihat can be extended dy
creates an extended copy of each, and adds thaedextehains to thenfinishedlist unless
their length is equal tbmaxin which case they get moved to theputlist. After all
dependences are processed, lines 21-24 move timeshefl chains that weren’t extended

to theoutputlist.

Step 7 of our algorithm involves augmenting theeted dependence chain with a set
of predicates in order to arrive at a more compleain that is more likely to characterize
complex defects. In defining these predicates wsicker four types of variables, namely,
boolean scalar, string, andobject referenceWe also categorize these predicates into those
describing the source valuso{irce predicatgsthose describing the target valtarget
predicate$, and those describing the relationship betweerstiurce and target values

(relationship predicatés The latter type is considered only when bothaldes are of the

18

same type. Note that the predicates, listed bedogvcomputed for each edge of a given

chain:
i. Source predicates
» source ==True, source ==False applicable when the source ib@olean
* source > 0, source == 0, source < 0; applicablewthe source is scalar

» source ==null, source !=null ; applicable when the source istang or an

object reference
ii. Target predicategsimilar to above)

iii. Relationship predicates

e source > target, source == target, source < taagpglicable when the

source and target asealars

* source == target, source != target; applicable wthersource and target

areboolears, strings, orreference

3. Implementation

In our implementation we targeted the Java platfdrhe challenging part of our
implementation is execution profiling, i.e, devalapa profiler capable of capturing the
occurrences of dependence chains of some givethlesugd their associated value

predicates.

19

Our tool consists of two main components: lirumenterand theProfiler. The
preliminary step in applying the tool is to instrei the target byte code class files using
thelnstrumenterwhich was implemented using tBgte Code Engineering Library
BCEL[156]. Thelnstrumenterinserts a number of method calls to Brefiler at given
points of interest. At runtime, the instrumenteglagation invokes thé&rofiler, passing it
information that enables it to track the occurreotdirect data and control dependences as
well as the values taken by their sources and targais basic functionality of therofiler
could be extended using plugin components. Fonibik, we wrote two plugins. The first
takes as input the direct dependences as they andua specified chain length, and
records the induced dependence chains, i.e., lilggnpmplements the algorithm presented
in Figure 1. The second plugin takes as input Hieas of the sources and targets of the

direct dependences, and computes the predicateslabpreviously.

D. Experimental Work

Our experiments mainly aim at validating whetheplgipng our technique on a
program with a single defect would successfullyhidg a small set of failure-correlated
dependence chains. The ultimate goal, of courds,lexate the faulty code starting from
this set, but this work does not address this fékis section first describes our subject

programs then tries to empirically answer our regeguestion.

20

1. Subject Programs

Our experiments involved 18 seeded versions tleapart of the Siemens test
suite [157], namely, &t_infoversions, 4eplaceversions, and &asversions. These
programs were manually converted to Java as pamtesious work [61]. It should be noted
that due to constraints on our computing resourgedjad to reduce the test suite sizes of
several of our programs in order to complete thudilercollection process. The reduction
was conducted by randomly selecting 10% of thénfailests, 10% of the passing tests that
exercise the faulty code, and 10% of the passiig that do not exercise the faulty code.
Also, we only used this small subset of the Sienprograms because we excluded
programs that: 1) contained faulty code that ieptally hard to manage in our
experimental setup (e.g., deleted code, constatdtions, faults that span several
statements, faults related to array sizes), ar)/grelded high suspiciousness scores when
statement coverage is used. Recall from our atgarih Section C.2 that when statement

coverage performs well, using chains must not leel (see step c).

2. Results
Table 4 presents the results of our experimemtalféhe seeded versions we used.

For each version they show:
1) The results computed using statement coverage:
a. Maxs the maximumnMe score attained by a statement
b. Faults theMg score of the faulty code

21

2) The results computed using chain coverage. Notentbanly show the results with
respect to the best encountered configurationtheesimplest configuration among
those which led to a maximum suspiciousness stioed|ll set of results could be

found in [6])
a. Pred whether the dependence chains were augmentegreiticates
b. L:length of the dependence chains
c. N: number of induced chains
d. Max: the maximumME score attained by a chain
e. Fault:: the maximumMg score attained by a chain traversing the faultyecod

Our main concern in this work is to explore the okdependence chains to identify

program elements that are highly suspicious. Talsleows that:

1) In 17 versions (except facas_v24, the maximunMe score attained by covering
chains is greater than the maximivia score attained by covering statements; and

this applies to chains that are relatively sherB (n most cases).

2) In 9 versions, a maximum score of 1.0 is attaifat.attaining a score of 1.0
means: a) we ran out of resources, or b) the defauiot be characterized by a
dependence chain (as it seems to be the caseaomith af theicasversions), or c)

the test suite contained coincidentally corredstate subject of the next chapter.

3) In 8 versions, augmenting the chains with predeateroved the maximum score.

22

4) In 15 versions, the most suspicious chain had gttegreater than one and/or was
augmented with predicates, which means that otintqae is more effective than

the combined coverage of def-uses and direct cotymendences.

5) Fault; is greater thafaults in all 18 versions includintpt_info_v9 replace_v23
andtcas_v24(note that Table 4 only shows the configuraticat ted to a maximum
value ofMax). This is an indication that, when it comes taalireg the fault, chain

coverage is likely to perform better than statenoenerage.

To summarize, our technique is effective at idgimg short dependence chains that
are highly correlated with failure, and augmenthgins with predicates seems to enhance
the effectiveness of our technique. This improviéelciveness was observed in 17 out of

18 versions.

Table 4. Results for tot_info, replace, and tcas

Statement Covera Chain Coverage (best configurati

Max, Fault; Pred L N Max. Fault,

v4 0.4¢ 0.47 Yes 4 7171¢ 0.7 0.5¢

v5 0.81 0.3¢ No 2 300¢: 1 0.67

ol V7 0.8: 0.2¢ Yes 1 110« 1 1
€| v 0.87 0.3/ No 1 857 1 0.3/
‘6| v13 0.72 0.2¢ Yes 1 1111 1 1
1 vie 0.6 0.1 No 2 302¢ 0.9t 0.17
v18 0.8¢ 0.1¢4 Yes 1 110¢ 1 1
v20 0.4 0.0¢ Yes 1 113« 0.67 0.67

Q v9 0.6¢ 0.€ No 2 2167 1 0.71
| vi0 0.6¢ 0.5¢ Yes 4 7538¢ 0.92 0.8¢
2 v 0.6 0.6¢ No 2 221¢ 1 0.7¢
EZE 0.71 0.47 Yes | 1 54E 1 0.47
v9 0.77 0.4¢ No 2 282 0.7¢ 0.7
v20 0.71 0.4¢ No 1 15C 0.7t 0.7

@l va1 0.7¢ 0.4¢ Yes 1 22¢ 0.8:2 0.6¢
2| v22 0.7¢ 0.4¢ No 2 27€ 0.91 0.7¢
v24 0.74 0.4¢ No 1 14¢ 0.74 0.4¢
v34 0.2 0.1t No 2 297 1 1

N
w

CHAPTER Il

MITIGATING THE IMPACT OF COINCIDENTAL
CORRECTENESS ON FAULT LOCALIZATION

ThePIE (Propagation-Infection-Execution) model preserntef20] emphasizes
that the execution of a defect is not a sufficemdition for failure, and that the
propagation of the infectious state to the outpwtiso required. This is also reiterated in
theRIP (Reachability-Infection-Propagation) model desedilin [21]. It is argued in both
models that for failure to be observed the follayvihree conditions must be meg € the
defect was executed or reached=@he program has transitioned into an infectistase;
and G = the infection has propagated to the output. €idental correctness (CC) arises
when the program produces the correct output vdoitelition Gz is met but not & We
recognize two forms of coincidental correctnessakvend strong. In weak CCr& met,
whereas €might or might not be met; while in strong CC,b@k and G are met [61].
Hence, a test case that satisfies the strong fé@Caalso satisfies its weak form.

Coverage-based fault localization (CBFL) technigsesk to: 1) identify failure-
correlated program elements using test suites inhalests are tagged as failing or passing,
i.e., elements that are induced by all (or moslintaruns and not induced by any (or most)
passing runs; and 2) locate the faulty code usimgesexamination strategy [12][19].

In [73] we showed that coincidental correctnegwévalent, and demonstrated
that it is a safety reducing factor for a Taranstide CBFL [12][18]. That is, when
coincidentally correct tests are present, the det@clikely be ranked as less suspicious

than when they are not present. Several othernessma have also studied and pointed out
24

the prevalence of coincidental correctness antBatagrading effect on fault
localization [25][102][122][125]. All of this wtivated us to investigate techniques to
cleanse test suites from coincidentally corredstasorder to enhance CBFL. This chapter
presents the work published in [7] and [73] whadims at cleansing tests suites from CC
tests in order to enhance the CBFL process ofiigerg failure-correlated program
elements.

The remainder of this chapter is organized aswdloSection A motivates the
work by showing how CC has a safety reducing efdecCBFL. Sections B describes our
two proposed techniques. Section C presents ouirieaistudy and discusses the

findings. Finally, Section D surveys work relateccbincidental correctness.

A. Motivation

CBFL techniques generally entail two phad#ls) identifying failure-correlated
program elements using some suspiciousness m&tandPh,) locating the faulty code
using some examination strategy. Typically, thétégues differ in botiM and the
examination strategy; and the performance of arngigehnique is attributed to both phases.
This work does not make any attempts to impmkg but instead focuses on identifying
CC tests and consequently improviPgy.

We now demonstrate how weak coincidental corresthas a safety reducing
effect on CBFL. Specifically, we show that the prese of CC tests leadsNbvalues that
underestimate the suspiciousness of faulty progal@ments, and thus identifying or

removing CC tests from tests suites improlRbs We carry this out in the context of

25

widely used suspiciousness metrics [101][102hely, Jaccard [106], Tarantula [12],
AMPLE [15], and Ochiai [101][102]. These metricse the following components:

e = faulty program element

ay1(e) = # of failing runs that executed e

ap1(e) = # of failing runs that did not execute e

ay0(€) = # of passing runs that executed e

apo(€) = # of passing runs that did not execute e

TheJaccardmetric is defined as follows:

M(e) = asq(e)

ay1(e) + agy(e) + aso(e)

Assume thah tests executedbut did not induce a failure, i.e., the test sadatainsh CC
tests. In this case, the valuehdfe) is misleading and to arrive at a more faithiziue we
should subtraat from a;o(€), the new value would become:

a;1(e)
a;;(e) +api(e) + ape) — n

M'(e) =

It is clear thatM’(e) > M(e), i.e., not accounting for n would underestimate the
suspiciousness of e

The mainTarantulasuspiciousness metric is defined as follows:

F(e)
F(e)+ P(e)

M(e) =
where

fr = total # of failing runs = ai(e) + ap(e)
26

pr = total # of passing runs =€) + ay(e)
F(e) = au(e) / fr

P(e) = ao(e) / pr

In case oh CC tests, the more accurate metric would then be

F(e)
F(e) + P'(e)

M'(e) =
whereP'(€) = (aso(€)-n) / (pr — n). It could be easily shown tht'(e) > M(e). To verify,
M'(e) > M(e) = 1/M'(e) < 1/M(e) = P'(e)/F(e)< P(e)/F(e)= P'(e)/P(e)< 1, which
holds sincea(e) < pr.

The AMPLE metric is:

M(e)= | F(e) — P(e)
A more accurate value would b(e) = | F(e) — P’(e)] whereP'(e) = (awo(€)-n) / (o1 -).
Here alsoP’(e) < P(e) and consequentiyl’(e) > M(e).

Finally, theOchiai metric is defined as follows:

a1(e)

M(e) =
\/(all(e) + a01(e)) X (a11(3) + alo(e))

To arrive at a more faithful suspiciousness valgeshould subtraat from a;o(e) leading
to

aq1(e)

M'(e) =
\/(‘111(6’) + a01(e)) x (a;1(e) + a;o(e) —n)

which is clearly larger thaki(e).

27

It should be noted that in our empirical study ¢®ecC) we adopt th©chiai metric since
it was shown to outperform the other metrics [99].

To summarize, we have shown above that cleansstgtées from CC would
improvePh, by assigning the faulty code higher (or equalpsgiisusness values. The

scope of this work is to devise techniques thateaehthis purpose.

B. Cleansing Techniques

Figure 2 depicts a test suite T with its variousiponents. It comprises a set of
passing testspland a set of failing tests;Twhere F might be composed of a subset of
coincidentally correct testsc and another subset of true passing tegiss TAS noted
earlier, Tcc refers to either weak or strong coincidentallyreot tests, depending on the
context. Our aim is to identifyck given T- and Tr so that the tests incg would be
discarded from T in order to enhance the safeYRBFL. A passing test identified by our
techniques as a potential CC test will be called;aand the set of identified ¢g, our
estimate of ¢, will be called &c'. We present two techniques to achieve our goal,
namely,Tech-landTech-IL Both techniques are based on analyzing execptiiiles,

which we describe next.

28

TtrucP Tp
True Passing Tests g / Passing Tests

T

Test Suite

Failing Tests

X Executed Faulty Code

Figure 2. A test suite with its various components

1. Basic Concepts

a. Execution Profiles

The execution profiles we consider consist of ti¥ing three types of program

elements:

Basic blocks BB): For every basic blocB such thaB is executed in at least one test, a
BB profile contains a flag indicating whethgiis executed in the current test.
Basic-block edgesBBE): For every pair of basic blocl&l andB2 such that there is a
branch fromB1 to B2 in at least one test, BBE profile contains a flag indicating
whether this branch is taken in the current test.

Def-use pairsQUP): For every pair consisting of a variable defmitD(x) and a use
U(X) such thatD(x) dynamically reache&J(x) in at least one test, BUP profile

contains a flag indicating whethB{x) dynamically reached(x) in the current test.

29

» CombinedBB, BBE andDUP (ALL): Combines profiling information d8B, BBEand
DUP. ALL profiles are likely to characterize the behavidrtlee target application
better than each of the other types consideredichahlly.

Our experiments in Section C involve both Java @ndrograms. We generate
ALL execution profiles for the Java subjects using@ that was developed in [67].

Whereas we generate (onBMB execution profiles for the C subjects usgapv[155].

b. Definition of cg

Given a program elemerd, we denote byF(e) the ratio of failing test cases
executinge, and byP(e) the ratio of passing test cases execugngach test casg is
associated with a characteristic functfpdefined as follows:

_ (lifeis exercised by t;
file) = {0 otherwise

Given a test suit@ that exercises elemergs e, ..., @, atestcasgin T is
represented by the feature vectgr= [f;(e;) fi(ez) .. fi(ey)]. Both of our techniques
assume that: 1) there exists a set of elementshwte callcc.’s, that correlate with
coincidental correctness, and 2) a good candidatadc. is any program element that
occurs in all failing runs and in a non-zero but excessively large percentage of passing

runs.

2. Tech-I
Tech-I conjectures that coincidentally correct tests samailar to failing tests in

terms of their execution profiles; and hence angeeted to automatically cluster together.
30

Our approach is to use cluster analysis [64][12BH specificalljk-meansclustering, to
partition the whole test suite into two clustergkphe cluster containing the majority of
failing tests and label all passing tests withiastc's. We use the Euclidean metric as a
distance measure and discard elements that ad®tIn fact, sinceTech-lconsiders an
elemente to be acc iff F(e)=1 and 0 <P(e) < 1, it follows that all failing runs would
collapse to the same point in the clustering pre.céle distance between two tesendt;

is defined as follows:

d(tt)= | D (iled - fi@))?
k=1

ek is acce
The two initial means consist of the common failpaint and the most distant

passing test.

3. Tech-ll

Tech-Ipartitions the whole test suite into two clustesgpecting that one will
mainly contain true passing tests, and the othiéndgeand CC tests. On the other hand,
Techll partitions only the passing tests into two clustexpecting that one of the clusters
will be comprised of only (or mostly) CC test®chll is an improvement of the cleansing
technique presented in [73], which considers amehte to be acc iff F(e)=1 and 0 <
P(e)< & wheref is a non-zero threshold specified by the usexrssigns eacbc. a weight
equal to its Tarantula suspiciousness score arstieciithe passing tests into two groups
according to thec.’s they induce. The cluster associated with thgdaaveragec. weight

is selected as the one containing the CC testgeddgnize three main limitations in that
31

approach thatech-lItries to address. First, the user is requiregexi$y a value fop,

which restricts the automation of the techniqueosd, and most importantly, we found
that there is no unique value é®that works best for all considered applicationsaky, the
experiments we conducted exhibited a high ratalskfpositives and in some cases, a high
rate of false negatives. To overcome these linoitati we modeled thex.'s as a fuzzy set.
Fuzzy set theory [128] was developed to model/fgrieness/subjectivity associated with
certain concepts when designing intelligent systés “high” temperature, “normal”
speed, etc). Contrary to classical set theory, neeshiip in a fuzzy set can be partial and is
associated with a function that maps the elememtsidered into the interval [0, 1]. The
membership value represents the degree of comiggtibith the property defining the
fuzzy set. An element with membership value of & @mplete member of the fuzzy set
whereas an element with membership value of Otismeember at all. In our context,
there will be no strict boundary betwessn's and nonec:'s; the transition will be gradual.
Figure 3 shows function that defines such a fuzzy set. Our choice is guimethe

empirical study we conducted in [61] and by oueition to use a generically shaped
function. The value 56% represents the averageeakuCC’s per test suite among the 148
subject programs we used in that study. Theretote, would be given a (full)

membership of 1 if it is exercised by 56% of thegpag runs. Moreover, since an element
executed by no passing runs can'’t lieave seiu(0%)=0. Similarly, we sat(100%)=0

because an element exercised by all passing rimethe ac as well.

32

0% 56% 100%
percentage of passing runs

Figure 3. The fuzzy set of cce’s

As such, CCE will be a fuzzy set defined by théofelng membership function:

0ifF(e) <1
fece(e) = {,u(P(e)) otherwise

Given a set of passing test caSdhat induces program elements, we quantify the

likelihood of Sto contain CC tests using the following metric:

Zties Yk=1fi(er) X fece(er)
N

Relevance(S) =

RelevancEs,) > Relevanc€s;) means that compared $g the tests irf induce program

elements that cumulatively are more likely tocgs.

Tech-lliteratively use&-meango split the passing tests into two clusters aidcts the
cluster having a higher relevance value as thecontining thecg's. It stops when the
relevance of the selected cluster drops below 7b#teorelevance of the one chosen

initially. The used distance metric incorporates @CE membership values as follows:

33

d(t;t;) = Z[fCCE(ek) X (filer) — fj(ek))]z

n
k=1
At each iteration, the initial means are chosetin@agwo test cases separated by the largest

measured distance. What follows is the pseudoamdBeich-It

1. Teo « 0

2. Tp' — T P

3. (clusterl, cluster2) ~ Kmeans(T ¢, 2)

4. Ry, — max(relevance(clusterl), relevance(cluster2))

5. R «Ry

6. WhileR/R (>=0.75

7. selected SelectClusterWithMaxRelevance(clusterl,cluster2)
8. Tee < T cer U selected

9. Tp T p —selected

10. (clusterl, cluster2) — Kmeans(T ¢, 2)
11. R — max(relevance(clusterl), relevance(cluster2))

Line 1 initializes our estimate of the coincidehtalorrect tests, dc’, to the empty set.
Line 2 initializes the set of passing tests tha&d® be analyzed T to Tp. Lines 3 and 4
create two clusters out o T compute their respective relevance then stoee thaximum
in Rp to be used in Line 6 as part of the stopping ate Lines 7 through 9 select the
cluster with the higher relevance, add its assedit#sts to dc', and subtract them from
Tp'. Lines 10 and 11 create two clusters out of tbe neduced ¥, compute their
respective relevance, and stores their maximum iorie 6 implements the stopping

criterion, i.e., the loop exists when R drops be(6W5 * R).

34

C. Empirical Evaluation
1. Evaluation Metrics

In order to empirically evaluate the effectivenesur techniques we compute
metrics to quantify the generated false negativesfalse positives. We also compute two
metricsFaultScoreandMaxScorethat will help assess the potential impact of 6Gr

cleansing techniques on the safety of CBFL techesqu

a. Measure of generated false negatives and faligves

Tqc - Tcc'
FN — I cC |
| Tecl

The FN measure above assesses whether or not we aressudigeidentifying all of the
coincidentally correct test3cc is the set of (true) coincidentally correct ted¢termined
using the oracles, anti¢' is the estimate ofcc computed using our techniques. In the
example of Figure 4 the value BN is 2/5.

_ |(Tp — Tee) N Tec'|

FP
Tp = Tecl

The FP measure assesses whether we are erroneously rcategeests as coincidentally

correct. In Figure 4, the value BP is 1/12.

35

TtlueP Tp
True Passing Tests Passing Tests

TCC
CC Tests

T

Test Suite

’
TCC
Tcc estimate

T¢

Failing Tests

X Executed Faulty Code

Figure 4. TCC’ estimate resulting in two false negéves and one false positive

b. FaultScore and MaxScore

Using theOchiai suspiciousness metri€aultScoreis the value assigned to the
fault, andMaxScoreis the maximum observed value assigned to anyrgnoglement.
These metrics are used as follows:

a) MaxScorecan be used to decide whether or not to applyCélicleansing approach to
a given test suitd. Assuming that the used profile types are suitabieugh to
characterize the fault at handMaxScorevalue that is strictly less than 1.0 implies
that T contains coincidentally correct tests, and thesgfour approach is likely to be
beneficial. Note that MaxScoreof 1.0 does not always mean that no coincidentally
correct tests exist, since it is possible that elsi unrelated to the defective code
would have amM(e) = 1.0.

b)In our experiments we will gauge the changeaatiltScorefrom whenT is used to

when T-Tce is used. An increased value BaultScoreis an indication that our

36

cleansing techniques will lead to an improved sadétthe CBFL techniques. Also, it
is desirable that, after cleansifi@ultScoreis 1.0 or at least close to 1.0.
Finally, as stated before, the scope of this werkoi devise techniques for cleansing test
suites from CC as this would improve the safetBfFL; therefore, our experiments will

not involve CBFL precision related tasks such asm@ration strategies.

2. Subject Programs
Our empirical study involved the following 15 sutfjprograms:

1) All seven of the Siemens programs [157] that veereverted from C to Java as part
of previous work [61].

2) Release 1, 3, and 5 NanoXML[157]

3) TheJTidyHTML andXML syntax checker and pretty printetease 3.(158]

4) Spacean interpreter for an array definition langudtg’]

5) Three Unix utilities: the stream editeed the lexical analyzer generatibex, and
the file compression/decompression tgoip. All three were downloaded with their
test suites fronfil57]

Table 5 provides more information about these suilpeograms and associated versions.
Note how Space, JTidy, sed, flex, and gape relatively large and some contain real
faults [105]. Our experiments involveBB and ALL execution profiles for the Java
programs and onlBB for the C programs. For the C programs, we usedytiov tool [155]

to generate the profiles and we had to discargeallions that caused compile errors with

the gcc version we useud4(.3.4. We also discarded all test cases that causedesggtion

37

faults (in the C programs) and those which cause@mions being thrown (in the Java
programs). Among the resulting versions/test suwes additionally discarded the ones
containing no failures, those with very few passings, and those for which no proper
fault oracle could be used (e.g. constant mutatiomeader file). Table 5 summarizes the
versions’ information by showing for each subjeigram the original number of versions
available (All), the number used in our evaluati®ised), the number of versions that
exhibited no CCs (noCCs), and the number exhibitiogtrue passing tests (noTrueP).
Thus, there are 363 original versions, from whiclyd 42 are used. Also, 37 out of the

142 exhibited either no CCs or no true passingtesid had to be evaluated separately.

Table 5. Subject programs

Program #Versions Platform | LOC | Profiling | Fault Type
All | Used | noCCs | noTrueP Type

print_tokens 7 4 1 0 Hava 536 |BB-ALL |Seeded
print_tokens2 10 8 2 0 Vava 387 |BB-ALL |Seeded
IReplace 32 6 0 0 HVava 554 |BB-ALL |Seeded
ISchedule 9 4 0 0 HVava 425 |BB-ALL |Seeded
lschedule2 10 8 0 0 HVava 766 |BB-ALL |seeded
Tecas 41 19 0 0 Vava 136 |BB-ALL |(Seeded
tot_info 23 17 1 0 Hava 494 |BB-ALL |Seeded
INanoXML r1 5 3 0 0 Wava 4,334 |BB-ALL |Real
INanoXML r3 5 5 2 0 Vava 7,185 |BB-ALL |Real
INanoXML r5 6 4 0 0 Wava 7,646 |BB-ALL |Real

WTidy 5 1 0 0 Wava 9,153 |BB-ALL |Real

ISpace 38 27 1 C 6,445 |BB IReal

Gzip 59 5 4 0 C 9,251 |BB lseeded

ISed 32 10 0 C 11,699 |BB IReal-seeded
\Flex 81 21 15 5 C 15,895 |BB lseeded

38

3. Results

Table 6 provides the following information abouetihO5 versions exhibiting
failures, CCs, and true passing tests: a) test suie, b) number of failing tests, ¢) number
of weak CC tests, and dhaultScorevalues computed using the original test suitegraft
applying Tech-| and after applyingech-Il respectively. Note that since the test suites of
Spaceand JTidy are relatively large (13,525 and 16,694 respelgfiveve opted to
randomly select a smaller subset of 1000 test caddle preserving the same ratio of
failing/CCltrue passing. Also note that the fayfids ranged between added/deleted code,
altered conditionals, wrong assignment statememteng function arguments, missing

conditionals, and others.

Table 6. Versions used and results

FaultScore
Program 'TH | Tl iect org. Tech-1 | Tech-II
print_tokens_v2 4070 48 1546 0.17 1.00 0.74
print_tokens_v5 4070 150 1250 0.33 0.63 1.00
print_tokens_v7 4070 28 357 0.27 1.00 1.00
print_tokens2_v1 4055 240 2841 0.28 1.00 0.78
print_tokens2_v3 4055 33 726 0.21 1.00 0.45
print_tokens2_v4 4055 332 1099 0.48 1.00 1.00
print_tokens2_v7 4055 207 1222 0.38 1.00 1.00
print_tokens2_v8 4055 256 3247 0.27 1.00 0.56
print_tokens2_v9 4055 56 1373 0.20 1.00 1.00
replace_v2 2843 11 1325 0.09 1.00 1.00
replace_v7 2843 54 765 0.26 1.00 1.00
replace_v8 2843 212 607 0.51 1.00 0.95
replace_v16 2843 54 765 0.26 1.00 1.00
replace_v28 2843 18 801 0.15 0.20 0.20
replace_v30 2843 469 350 0.76 1.00 0.95
schedule_v2 2650 210 1382 0.36 1.00 1.00
schedule_v3 2650 159 1199 0.34 1.00 1.00
schedule_v4 2650 294 1481 0.41 1.00 1.00
schedule_v8 2650 31 1311 0.15 1.00 1.00

39

schedule2_v1 2710 65 1802 0.19 1.00 0.94
schedule2_v2 2710 31 2636 0.11 0.51 0.26
schedule2_v3 2710 34 2633 0.11 0.52 0.26
schedule2_v4 2710 2 2578 0.03 1.00 0.09
schedule2_v5 2710 32 2628 0.11 0.52 0.22
schedule2_v6 2710 7 2573 0.05 1.00 1.00
schedule2_v7 2710 31 2636 0.11 0.51 0.26
schedule2_v10 2710 46 2614 0.13 0.59 0.30
teas_vl 1597 131 345 0.52 1.00 1.00
tcas_v2 1597 67 808 0.28 1.00 1.00
tecas_vb 1597 10 1557 0.08 1.00 0.13
tcas_v6 1597 12 584 0.14 1.00 1.00
teas_v7 1597 36 1531 0.15 1.00 0.22
tcas_v9 1597 7 868 0.09 1.00 1.00
tcas_v16 1597 70 1497 0.21 0.30 0.30
tcas_v17 1597 35 1532 0.15 1.00 0.22
tcas_v18 1597 29 1538 0.14 1.00 0.20
tcas_v19 1597 19 1548 0.11 1.00 0.16
tecas_v20 1597 18 857 0.14 1.00 1.00
tcas_v22 1597 11 864 0.11 1.00 1.00
tecas_v24 1597 7 868 0.09 1.00 1.00
tcas_v25 1597 3 396 0.09 1.00 1.00
tcas_v26 1597 11 1556 0.08 0.13 0.13
tecas_v27 1597 10 1557 0.08 1.00 0.13
tecas_v29 1597 18 857 0.14 1.00 1.00
tecas_v37 1597 92 464 0.41 1.00 1.00
tecas_v39 1597 3 396 0.09 1.00 1.00
tot_info_v2 1052 10 953 0.10 0.85 0.34
tot_info_v3 1052 3 1046 0.05 1.00 0.12
tot_info_v4 1052 33 635 0.22 1.00 1.00
tot_info_v5 1052 29 739 0.19 1.00 1.00
tot_info_v7 1052 123 674 0.39 1.00 1.00
tot_info_v8 1052 199 29 0.93 1.00 1.00
tot_info_v9 1052 37 731 0.22 1.00 1.00
tot_info_v11 1052 199 29 0.93 1.00 1.00
tot_info_v12 1052 33 696 0.21 1.00 1.00
tot_info_v13 1052 128 669 0.40 1.00 1.00
tot_info_v14 1052 2 1047 0.04 1.00 0.10
tot_info_v15 1052 199 29 0.93 1.00 1.00
tot_info_v16 1052 170 793 0.42 0.96 0.71
tot_info_v17 1052 44 624 0.26 1.00 1.00
tot_info_v22 1052 23 843 0.16 1.00 0.36
tot_info_v23 1052 71 597 0.33 1.00 1.00
nanol_v1l 169 27 137 0.41 0.74 0.55
nanol_v3 169 45 12 0.89 1.00 1.00
nanol_vb 169 29 113 0.45 1.00 0.84
nano3_v1l 141 10 54 0.40 0.95 0.85
nano3_v3 141 10 123 0.27 0.88 0.38
nano3_v4 141 4 3 0.76 1.00 1.00
nano5_v2 141 30 40 0.65 1.00 0.97
nano5_v4 141 40 48 0.67 1.00 1.00
nano5_vb 141 30 40 0.65 1.00 0.97
nano5_v6 141 30 103 0.47 0.73 0.63
jtidy_v1 1000 10 863 0.11 1.00 0.24
space_v3 1000 47 908 0.22 1.00 0.26

40

space_vH 1000 291 10 0.98 1.00 1.00
space_v6 1000 935 10 0.99 1.00 1.00
space_v7 1000 11 18 0.62 1.00 1.00
space_v8 1000 10 13 0.66 1.00 1.00
space_v9 1000 305 128 0.84 1.00 1.00
space_v10 1000 87 59 0.77 1.00 1.00
space_v11l 1000 69 95 0.65 1.00 1.00
space_v12 1000 10 10 0.71 1.00 1.00
space_v13 1000 56 10 0.92 1.00 1.00
space_v14 1000 129 631 0.41 1.00 1.00
space_v15 1000 254 413 0.62 1.00 1.00
space_v16 1000 36 10 0.88 1.00 1.00
space_v17 1000 14 502 0.16 1.00 1.00
space_v18 1000 10 10 0.71 1.00 1.00
space_v19 1000 90 10 0.95 1.00 1.00
space_v20 1000 15 10 0.77 1.00 1.00
space_v21 1000 15 10 0.77 1.00 1.00
space_v23 1000 20 23 0.68 1.00 1.00
space_v24 1000 52 229 0.43 1.00 1.00
space_v28 1000 490 302 0.79 0.95 0.98
space_v31 1000 119 54 0.83 1.00 0.88
space_v33 1000 7 20 0.51 1.00 1.00
flex4_v6 532 148 96 0.78 1.00 1.00
gzip5_vl 195 6 2 0.87 1.00 1.00
sed2_v1 212 38 6 0.93 1.00 1.00
sed2_v2 212 12 6 0.82 1.00 1.00
sed2_v3 212 6 77 0.27 1.00 1.00
sed3_v1 213 3 12 0.45 1.00 1.00
sed3_v3 213 13 2 0.93 1.00 1.00
sed3_v4 213 29 4 0.94 0.98 1.00
sed4_v3 213 1 1 0.71 1.00 1.00

Figures 5 and 6 involve all of the 105 Java andeiens listed in Table 6. They
show the results of our techniques computed uBBgxecution profiles. Whereas Figures
7 and 8 show the results involving only 73 Javaioss usingALL execution profiles. The
results associated with the remaining 37 versibas éxhibited no CCs or no true passing
tests are presented later in this section.

The plot in Figure 5 shows the results of applyirech-Ito identify weak CC

tests, namely, FN, FP, and (FN+FP). For claritg borizontal axis shows the versions

41

identifiers sorted in ascending order based onr trespective values of (FN+FP). The
following could be observed:
a. 18 versions did not exhibit any false negativefatse positives, i.e., FN and FP are
both O
b. 14 other versions exhibited a low FN+FP of less tha%
c. The remaining versions exhibited a relatively hiki+FP mostly due to FP
d. With the exception of versions 103, 104, and 10l (eersions 1-18) a high FP was
counteracted with a low FN, and vice-versa

Also, not shown in the figure, the average FN is&% the average FP is 45%

—===fP =——FN FP+FN

140%

120% |

100% - _—
80% - T
60% - -
40% "

20% - ﬁ M

0% - = :

1 11 21 31 41 51 61 71 81 91 101

Program ID

Figure 5. CC cleansing results usindech-I (BB)

Figure 6 is the counterpart of Figure 5 usiregh-1L We make the following observations:
a. 15 versions (14.3%) exhibited an FN+FP of 0%

b. 21 other versions exhibited a low FN+FP of less tha%o

42

c. The remaining versions exhibited a relatively higit+FP due to either FP or FN
d. With the exception of versions 52, 57, 72, 100-1@&d versions 1-15), and
similarly to Tech-| a high FP was counteracted with a low FN, and-viersa

e. The average FN and FP are 9% and 30%, respectively

- P cm— FN FP+FN
150% -
100%) | 3 v
1)
A
|
50% - i '\1'
0% - ‘Jl_.au_a W || .
1 11 21 31 41 51 61 71 81 91 101
Program ID

Figure 6. CC cleansing results usin@ech-Il (BB)

In summary, Tech-l is the better performer in terms of its low rate false
negatives, whereabech-Ilis better in terms of its lower rate of false p@ss. But when
taking both FN and FP into consideration, the ayeraf FN+FP is 47% fomech-land
39% forTech-Il, makingTech-lIthe better overall performer.

Figures 7 and 8 present the results for the 73yavsions whe\LL profiling is
applied. The same general conclusions can be matiesiscenario. Specificallfech-I
tends to outperforrech-Ilin terms of false negatives while the contrarydsoh terms of

false positives and the aggregate of false alafiesh-Iresults in 3% FN and 39% FP on
43

average with 18 versions having a value of FN+HRiREtp 0. On the other hantiech-Il
results in 12% FN and 19% FP on average with 14imes (15%) having a value of
FN+FP equal to 0. It's worth mentioning that theulés for individual versions are almost
the same when compared to B profiling scenario. Concerninbech-| the results
remained exactly the same for 53 versions, weghthji different for 12 others, and varied
with no particular pattern in the remaining 8 vens (i.e. didn’t result in lower/higher
FP/EN all the time). Fofech-1|, the results remained the same for 46 versions we
slightly different for 19 others, and also variethano particular pattern for the remaining

ones.

c===fP ——FN FP+FN

120%

100% - -

80% - !.'

60% - : u

40% - 0

20% X_M A

0% - ‘—‘-/— A -
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Program ID

Figure 7. CC cleansing results usinech-I (ALL)

44

—===fP =——FN FP+FN

120%
100%
80% - vt
60% - i
40%

20% - ’ m ‘ V
0% -+ X, _Au _l;lp_. ' |IJI ‘..._.4)

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71
ProgramID

Figure 8. CC cleansing results usinech-II (ALL)

Furthermore, we intended to apply our techniqoegxtreme cases in which no weak
CCor no true passing runs are present in the téstlseing considered. We used 31
versions with naCC's and 6 others with no true passing runs. In tmenér caseTech-I
resulted in an average of false positives equaDébd wherea3 ech-Ilaveraged 60%.
Obviously, no false negatives would be expecteitia® are n€C’s to begin with.
Concerning the versions with no true passing téstsaverage rate of false negatives
resulting fromTech-landTech-llare 21% and 24% respectively. Similarly, one wolild

expect any false positives in such versions.

4. Analysis
Columns 6, 7, and 8 in Table 6 show the valuBafltScore(usingBB profiling)

in each of the following scenarios, respectively:b&fore applying any of the cleansing

45

techniques, 2) after applyingech-| and 3) after applyingTech-IL The average
improvement inFaultScorewas 0.52 when applyingech-land 0.39 when applyingech-

II. Applying Tech-lled to improvingFaultScorevalues for all 105 versions. Among these,
the value ofFaultScorereached a (maximum) value of 1 for 88 versionil&rly,
applyingTech-Illed to improvingrFaultScorefor all 105 versions and achieving a value of
1 for 67 of them.

The results ofALL profiling were very similar. The values &aultScoreafter
applyingTech-I(resp.Tech-Il) were the same as those presented in column . gekimn
8) except for 8 applications (resp. 10 applicatfjoiiie average improvement was 0.53 for
Tech-land 0.38 fofTech-Il Again, the value oFaultScoreimproved for all 105 versions
using both techniques. FurthermorehaultScoreof 1 was obtained for 87 versions using
Tech-land 66 versions usinfech-1l These results suggest that our techniques aly li&
benefit CBFL. Note that the reason tf&ch-lappears superior in this context is probably
due to the fact that it yields a lower rate of éategatives.

Concerning the suitability dflaxScoreas an indicator of the presence of CC’s, we
first considered the 31 versions exhibiting no CCad computed their associated
MaxScoreusingT; they turned out to be all equal to 1. Also, coesity the 111 versions
that did contain CC’s, only 18 hadweaxScoreof 1. This suggests that\daxScoreof 1 is
somewhat a good predictor thhtdoes not contain CC’s, in which case cleansingois
needed.

Our final conclusion concerns the impact of thefipng type on cleansing

efficiency. In relation to the discussions of Figsir7 and 8, among the 73 versions for

46

which bothBB andALL profiling was usedJech-lgave almost the same results for the vast
majority of them (89% of the versions) and didndllédw a particular trend for the
remaining ones. These observations applyTézh-Il as well and therefore it can be
concluded that the profiling type does not matferother observation that supports this
claim is thatMaxScore(before cleansing) exhibited the same values uBB@nd ALL

profiling for all 73 Java versions.

D. Related Work

A coverage refinement approach is presented ib][i® reduce the influence of
coincidental correctness on fault localization. Wk introduces a concept calledntext
pattern which is unique for each fault type and descrithesprogram behavior before and
after the faulty code. Coverage results for aliesteents are refined with the context-pattern
following a context-pattern matching. The papetslisontext patterns for specific types of
fault such as: missing function calls and missisgignments. It also presents results of
experiments that showed that coincidental corrastine a common problem and harmful
for coverage-based fault localization.

In the work presented in [120], which is based[b10], the authors described
coincidental correctness as a problem that occtenever the weak mutation hypothesis
(WMH) is not holding.WMH states that whenever a fault was executed anefffest is
detectable at the fault location then the outpuit ve affected. The work was primarily an
empirical study to identify how ofteWMH holds. On the other hand, the work in [20]

focused on identifying points in the tested codat thre likely to develop the type of

47

undetected errors that lead to coincidental caness. ThePIE analysis presented in the
paper investigates three factors related to faalgments in the tested program: fault
execution, creation of faulty states (infectiomgddailure propagation to the output. Fault
execution analysis can be done by studying thegtitity of execution of certain locations
in the code based on a predefined set of inputsctibpn can be analyzed based on a pre-
estimation for a fault behavior. Finally, the prgption of fault can be studied by injecting

failure states and then studying their propagatstimate.

48

CHAPTER IV

ONLINE INTRUSION DETECTION USING PROFILE-BASED
SIGNATURES

Intrusions or attacks, particularly in the contektan application, make use of a
vulnerability within the application in order to induce unsathéavior; the input used to
take advantage of this vulnerability is referredasanexploit Consequently, signatures
corresponding to such attacks can be partitionedarploit-based and vulnerability-based
signatures; the former are derived from the infndsicing the intrusion, whereas the latter
are constructed using the vulnerability itself. yR&j solely on exploit-based signatures in
an IDS allows it to become viable to polymorphitaeks - attacks that differ syntactically
but semantically trigger the same vulnerabilit@][4As such, we opt to devise an intrusion
detection approach that leverages signatures that im part vulnerability-based,
specifically, these signatures do not characteaheevulnerabilities themselves, but instead
they characterize program events that correlatdn (éind not necessarily cause) the
exploitation of program vulnerabilities.

We rely on program execution profiling informatitm define attack signatures,
which we termprofile-based signaturedn this work, execution profiles comprise method
calls, method call pairs, basic blocks, branches dafinition-use pairs. This approach is
inspired by the idea that exploits induced by aaservulnerability are likely to exhibit
similar traits or patterns of execution, so by mgiout the collection of events gathered

during the occurrence of attacks, we would be &bleharacterize the events or program
49

conditions that correlate with vulnerabilities, ahence devise corresponding signatures.
As a result, these signatures can be deployed rwahi intrusion detection system to
capture future exploits, by checking if any incogliexecutions induce the events they
describe. Note that since the identified profiledzh signatures correlate with a given
exploit, there exists a potential of using thenutolerstand, locate, and fix the associated
vulnerability [12][19], but this is not the comoeof this work. Instead, our concern is to
prevent a system from being attacked in cases winenis aware that attacks due to a
certain vulnerability occurred, and the task of enstanding, locating, and fixing that
vulnerability is underway. It is not uncommon tath task might take a very long time or
might be even abandoned altogether due to thefistodifying the code.

It is not often the case that an attack is indubgdhe execution of a single
program element (e.g., the execution of a singiéestent or a single branch), but by the

execution of a combination of such elements. Cansitbr example, the following code

fragment:
sl. X =2,
s2. y=-2;
s3. if (...)
s4. X +=10;
s5. if (...)
S6. y=y*-2;
S7. y =y +-2*%;
s8. Z=X*y;

50

s9. if (z>=0) I/ should be if (z > 0)

s10. access granted
s11. else
sl12. access deni ed

The intrusion occurs only whem is equal to 0 ats9, which is the site of the
“vulnerability” in this case, allowing access when it should beede This action can only
take place if the definition-use palldJP(s1,s7), DUP(s6,s@ndbranchedBranch(s3,s5)
Branch(s5,s6)execute in a program run. Any single element eséhon its own is not
enough to induce the erroneous behavior, but @inecbmbination of them can allow for
the exploitation of the vulnerability, and theresy intrusion. For instance, detecting the
execution of the brandBranch(s3,s5and the def-use paDUP(s6,s7) or alternatively the
def-use paiDUP(s1,s7)and the brancBranch(s5,s6)should alert to an attack. Note that
any one of these combinations is a sufficient agxkeasary condition for the occurrence of
the intrusion, and thus any of them can be utiliae@ signature in the detection system.
The main phases of our proposed solution are edédron in the subsequent
sections. In summary, the following tasks are agptin the vulnerable subject application:
Taskl.Creating a training set that adequately charactesizthe usage pattern of the
application and includes both normal tests and @itteests
Task2.Executing the training set and collecting the exiecuprofiles
Task3.Generating the profile-based signatures that mostlyrelate with the attacks

Since a brute-force enumeration of all possible woations is not a feasible

51

solution, this task uses a genetic algorithm taniife the combinations of program
elements that correlate with the attacks that eeduwithin the training set.
Task4.Incorporating the generated signature(s) into thiusion detection system
The remainder of the chapter is organized asv@ldNVe begin explaining the phases
of our implementation in Section A with executiamfiing, followed by signature
generation in Section B, and signature matchingdction C. The empirical evaluation and
analysis of obtained results is given in SectiorriDally, in Section E we comparatively

discuss related work.

A. Execution Profiling
Each test in our training set, whether it represamt attack or a normal behavior,

will have a profile generated for it containing anhation about the occurrence of the

following program elements:

1) Method calls KC): For every methodM that is executed in at least one testMi(D
profile entry indicates wheth&f is called in the current test

2) Method call pairsNICP): For every combination of methotil andM2 such thatvi1
callsM2 in at least one test, &MCP profile entry indicates wheth&t1 callsM2 in the
current test

3) Basic blocks BB): For every basic blocB such thaB is executed in at least one test, a

BB profile entry indicates wheth&is executed in the current test

52

4) Basic-block edges or branchd3BE): For every pair of basic blockl andB2 such
that there is a branch froBil to B2 in at least one test,BBE profile entry indicates
whether this branch is taken in the current test

5) Def-use pairs@UP): For every pair consisting of a variable defmitD(x) and a use
U(x) such thaD(x) dynamically reached(x) in at least one test,RUP profile entry
indicates whethed(x) dynamically reached(x) in the current test

In most cases, a combination of these elementdégbelenough to characterize the

behavior of the profiled application and shoul@allsome form of distinction between safe

and malicious program runs. It is this distincttbat we aim to leverage. Finally, it should
be noted that the profiling tool that we use irsthiork targets the Java platform and has

been developed in prior work [60][63][65][67].

B. Signature Generation

The goal of our work is to generate signaturesdnatrepresentative of attack
patterns, and comprised of combinations of progelements of multiple types. Obviously,
such combinations must be of relatively minimaksio allow for tolerable runtime
overhead (during the matching process), and haseutad in as many exploits and as few
safe runs as possible, so as to ensure accepshbdeaf false positives and false negatives.
Generating these signatures using the brute-fdgoeithm would entail considering all
possible combinations of profiled elements, i.eegponential number of combinations
with respect to the size of the profiles, whicimat a viable solution. Therefore, an

approximation algorithm is the rational alternatigad in our case, we use a genetic

53

algorithm. Genetic algorithms are global searclrisgas used to solve combinatorial
optimization and learning problems [55]. In gehesagenetic algorithm solves a given
problem by operating on a population of candidatat®ns, evaluating their quality, then
applying a form of transformation ovgenerationor iterations to improve the quality of
these solutions, and ultimately evolving to a srgplution - or set of solutions - that fits
certain criteria.

In what follows we discuss the design of the genggorithm as used for the
purpose of generating attack-inducing signatur@ge khat we generate one signature per
vulnerability, even though one signature charaziggi multiple vulnerabilities could also
be generated using our algorithm.

Chromosome Representatidm.our implementation, a chromosome has to
represent a combination of multi-type elements bd string notation would be suitable to
indicate which profiled elements are included inle@ombination instance. The size of
each bit string is equal to the total number ofcexien elements gathered during the
profiling phase; a bit set to 1 implies that theresponding element is included in this
particular combination. Therefore, by varying tlsigions of 1s and Os in a bit string, a
new combination of program elements is created tla@cumber of 1s in the bit string
corresponds to the size of the combination. An @taraf chromosome representation in
the context of our problem is given in Figure 9eTdircled 1-bit indicates that the
corresponding method call element is included enabmbination; the 0-bit implies that the

corresponding DU-pair element is not included.

54

"1 1]|o|o|o|1]o]|o]2 1|ofl1fo]1|of1|2]|o|lof1]o0 J
o M M|Mm|Mm|m|B|B|B|B s|8|oliojo|lo|lo|o|o|o|D|o
cilclc|c|c|B|8|B|B g|s|luliviu|lu|u|lu|lu|lu|u]|u
i PP |P E E|E| PPy P|lP|P|P| PlP|P|P

Figure 9. Chromosome Representation

Fitness FunctionOnce an individual chromosome is created, ite§s is
evaluated to determine how good this combinatidutem is in identifying exploits. For
this purpose, we employ a fitness function thaesebn the number of safe and unsafe test
cases in the training set which contain this cortbam. In particular, the fitness function is
a numeric measure of the quality of the soluticat thdicates the execution frequency of a
combination in malicious test cases relative te $aét cases as is shown in this equation:
fitness(chromosome) = %unsafe runs — %safe runs

where%unsafe runss the number of malicious test cases contairiegcombination over
the total number of malicious test cases, and likevior%safe runsUItimately, the aim is
to end up with a solution whose fitness is equdl, toe. a combination (or set of
combinations) that occurred in all exploits but moany safe run. This would guarantee the
elimination of false negatives and false positifrem the training set, but not necessarily
from all yet unseen tests, of course.

Population GeneratioriThe population is a set of chromosomes signifying a
collection of candidate solutions, which will evelinto the final solution. We begin with
theinitiating-chromosomérom which the entire population is spawned. Tigdting-

chromosome is constructed as a function of thesatsion of the execution profiles of all

55

unsafe test runs in the training set. The resuftimgiram elements are the ones of interest
since they occurred in all attacks associated thighgiven vulnerability. The population is
then formed, one combination bit string at a titmetaking a random subset of the
initiating-chromosome. The subset selection is dareprobabilistically-randomized
manner: for each element of the initiating-chronmepthe chosen probability determines
if it is to be included in the combination or ndhe value of this probability governs the
size of the resulting combination relative to time ©f the initiating-chromosome, so we
tend to use rather small probabilities to satisfy equirement for minimal-sized
combinations. To further illustrate the populatgeneration mechanism, Figure 10
presents a sample of three individual chromosoredset! from the initiating-
chromosome. The initiating-chromosome represeritiagntersection of exploit profiles is
shown in 10-(a) whereas the resulting populatiaorciosomes are shown in 10-(b); the 0-
bit circled in red indicates that the element didl @xecute in all unsafe test case, placing a
0-bit in all individuals. The 1-bits in the initiag-chromosome are probabilistically

assigned as 1s or Os in the population chromosomes.

1 17 o 1 {of1f1]o 1 Jalolalala]o]lr]|1]o]1 1 0 I
I L B l

1|0 o oloflof1]o o 1|loflol1fo]|o|lo]|12]|o]oli1o]

of|1lioflo|o]|of1]olio oo 1 ?? olo|o|lo|1li1 ; ’

ofofiojlofo|1]ofofi1} olo|1fof1]ofof1|o|ofofo J

(b)

Figure 10. Initial Population Generation

56

Transformation OperatoiVe employfitness-based crossovgf7], its basic
functioning resembles that of genetic heredity, ieleenew chromosome is produced as a
result of combining two parent chromosomes andipgsown properties from each onto
the new child, always favoring the parent with tigher fithess. The intended result is for
the constructed child to have as good or betteedis than its parents. The adopted genetic
algorithm is asteady-stat®ne, implying that the transformation is appliedoss
generations, in each generation creating a sirgheatild which replaces another
individual in the population. To diversify the dhijeneration process, a child chromosome
is either the result of a crossover or a complatatyglom setting similar to that introduced
in the population generation phase; however, cresse applied at a much higher rate to
maintain the property of inheritance. To conduetd¢hossover, two parent combinations are
randomly selected from the population then thedchdnerated is a combination containing
program elements from both parents, behaving silyila the idea of inheriting traits from
one's parents. Nevertheless, to ensure improveofdiné child's fithess, more elements
should be taken from the parent combination witihar fitness. On the bit string level,
each bit in the child chromosome is set to be etputile same-indexed-bit in one of its
parents, always favoring the better-fitted one sThiaccomplished by assigning the
probability factor of adopting the bit value frohetparent with better fitness to be higher
than that of the lower-fitness parent.

Acceptance Criterionlhe fitness function is a measure of the qualitg oertain
solution or combination, but to actually determivieen a solution is deemed fit enough to

be considered, a certain threshold for the fitwvadse must be set. In our case, we evaluate

57

the fitness of a chromosome to determine whethsffitt enough to include in the general
population once it is created. However, we dorguiee such threshold to be high. In fact,
small values are desirable as they ensure the fanmaf a population to start with as well
as achieving more diversity among the candidatatieols.

Stopping CriterionThe last step to determine when the generatior@ugen should
stop, indicating that an adequate solution to tleblem has been attained. This happens
when one of the following conditions is met: 1)adusion with fitness equals to 1.0 is
encountered, which means that there is no roonmfprovement anymore; or 2) a
maximum number of generations is reached. It ighvarentioning that we keep track of
the best encountered solution (resulting from asweer or random generation) throughout
the entire process. This guarantees that we em@dvpg the best alternative in case no

solution with fitness of 1.0 was found.

C. Signature Matching

The back-end of our proposed IDS involee®cution profilingollowed by
signature generatigrsignature matchingonstitutes its front-end. First, it should be
pointed out that signature generation is carrigdaueach individual vulnerability, i.e.,
given an application with multiple vulnerabilitiesultiple independent signatures are
generated, and their resulting XML representatamesmerged into a single definition file
to be passed to the signature matching subsystereaHer, a signature generated for an
individual vulnerability will be referred to simphssignature and the collection of

signatures for all vulnerabilities in the applicatiwill be referred to asignature-set.

58

Given the signature-set definition file, the sigma matching subsystem parses it
at startup and maintains a description of the @nwgelements characterizing the signatures
in order to: 1) dynamically instrument the targeplécation, 2) perform signature
matching, and 3) alert in case of intrusions. Builssystem checks if all the program
elementsNIC, MCP, BB, BBE DUP) constituting a given signature in the signatuet-s
occur in a single execution of the application.ehable this type of surveillance,
instrumentation is required. Instrumentation isitijection of instructions at the Java
bytecode-level of an application. In this instarinstrumentation is meant to detect when
the elements identified as part of a signaturarafact encountered. Therefore, two
modules are designed to construct the signaturehingt subsystem, and will be discussed

next: 1) the instrumentation module, and 2) thecimag module.

1. Instrumentation Module

In order to achieve acceptable online performanee€nose to apply selective
and dynamic instrumentation to enable the requapgalication monitoring. Selective
instrumentation is desirable as only the elemegmesified by the signatures (and some
related ones) need to be analyzed [69]. The adgardf dynamic instrumentation is that it
does not require stopping and restarting the depl@pplication any time a new signature
is to be registered within the matching systemciig not the case with static
instrumentation.

In implementing our module we use the java.langrumsent package, which

enableglynamicinstrumentation and can be used in conjunction thiéhbytecode

59

manipulation libraryBCEL[156], which provides functionality to inject bytade
instructions. This package allows instrumentatipmiay of Javaagents which are
pluggable libraries that run embedded in the Javiad Machine (JVM) and intercept the
class-loading process. The agents are run in tamd#nthe target application and are
programmed to carry out the instrumentation. Thelémented agent (1) reads in the XML
formatted signature-set definition file, (2) parge® determine what particular elements
are involved in each of the signatures, then (8riments the classes (at load time) to
insert the necessary bytecode instructions. Thertied instructions which consist of calls
to methods within the matching module vary accagdmthe type of elements in a given
signature; therefore, calls are inserted at tHevahg locations:
1) ForMC elements: at the entry statement of the methocifsgE by the signature
2) ForMCP elements: at the entry and exit of all methodfhéapplication as this is
needed in order to track the application’s dynaeait stack. Given a signature
specified adMCP(f1, f2), it is not sufficient to simply check whether @tionsfl and
f2 were entered, but the matching module should ctiexkop of the call stack at the
entry off2 to make sure thdl was actually the caller
3) ForBB elements: at the entry statement of the basikidpecified by the signature
4) ForBBEelements: at the entry statement o8k in the method containing tiBS8E
specified by the signature. BBE entails a sourcBB and a targel8B both of which
belonging to the same method. Instrumenting thecgoand target of thBBE is not

sufficient as it is not always the case that tingabwill execute right after the source.

60

5) ForDUP elements: at the definition and use statementsfggmbby the signature, and
also at all other statements that define the iredivariable.
As it is apparent from the above, the efficiencynline signature matching is dictated not
only by the number of elements constituting tha@aigres in the signature-set, but also by
the type of these elements. Clearly, the cost afitnong MCs andBBs is lower than of
MCPs, BBEs andDUPs. For this reason, it is beneficial to first toyidentify signatures
containing onlyMCs andBBs, and in case none are found, then try to idesiggatures
containing the other types of elements. In fags, ssheme is adopted in our work, as

described in Section D.2.

2. Matching Module

The matching module maintains a flag for each efdignatures in the signature-
set, as well as a set of flags for each of the etgswithin the given signature. If all the
elements constituting a particular signature haseegted and had their flags set, then the
flag pertaining to that signature is set as weltl a message alerts to the detection of an
intrusion. Consider the following two scenarios véhthe element under inspection is a
DUP(s1, s2)nvolving a local variable. In the first: a) thefahition siteslis executed
leading the matching module to set a flag indigathre execution of the definition, and b)
the use sits2is executed while the definition flag is still skt the second: a) the
definition siteslis executed leading the module to set a flag atthg the execution of the
definition, b) the variable was redefined leading matching module to reset the definition

flag, and c) the use sig2is executed while the definition flag is not setaaresult of b). In

61

the first scenario, the module will indicate tBafiP(s1, s2has matched, whereas in the

second it will not.

D. Empirical Evaluation

1. Subject Programs and Test Suites

Our study involves seven applications, three taisecurity focus, namelypmcat
3.0, Tomcat 3.2.1andJigsaw 2.0.5and four that do not, i.grint_tokens2JTidy,
scheduleandtot_infa The latter applications are used to demonsthat@pplicability of
the approach to online failure detection; notingf tmost existing work on online failure
detection [39][43] is based on anomaly detectir. simplicity, we will refer to the
defects and failures iprint_tokens2JTidy, scheduleandtot_infoas vulnerabilities and
attacks, respectively.

Apache Tomcat 3i8 an open-source Servlet/JSP container having four
vulnerabilities: JSP source disclosuveal{l), directory listing disclosures@l-2), and JSP
engine denial of service(l-3andvul-4). The test suite consists of 658 requests, 460 of
which are safe, while the rest are attack-indudigfe that in this program, as well as in
the others, the number of malicious requests iefa than that of safe ones within the test
suite, which is analogous to a real-life situatidbhe safe requests included 193 Servlet
requests, 150 JSP requests, and 117 HTML/text stgMYhereas the unsafe requests
included 150 requests exploitingl-1, 38 requests exploitingul-2, 6 requests fovul-3,

and 4 requests faul-4.

62

Apache Tomcat 3.2dontains three vulnerabilitiegul-1 exhibits JSP source code
disclosure, angtul-2 andvul-3 exhibit JSP engine denial of service. The tesestonsists
of 497 requests, with only 24 unsafe tests. The sajuests include 283 Servlet requests,
69 JSP requests, and 121 HTML/text requests. Thafemequests comprise 18 requests
exploitingvul-1, 2 requests exploitingul-2, and 4 requests foul-3.

Jigsaw 2.0.5s also an open-source web server and Servletic@ntcontaining four
vulnerabilities: denial of service\(l-1), path disclosurev(l-2), directory listing disclosure
(vul-3) and illegal file accesw(l-4). The test suite contains 490 normal requestgand
exploits. The safe requests include 193 Servlatasts, 191 JSP requests, and 106 normal
HTML/text requests. The unsafe requests includeqlest exploitingul-1, 2 requests
exploitingvul-2,4 requests fovul-3,and 33 requests faul-4.

JTidy 3.0is an HTML syntax checker and pretty printer.tést suite comprises 1000
files (each containing 280 lines on average). Sohtke tests were downloaded from the
Google Groups (groups.google.com) using a web eraavid the others were part of the
XML Conformance Test Suite. Of these, 192 were Xfilks and the rest were HTML
files. JTidyfailed on 180 of these test cases distributedlimnfs: 1) 83 exercisedul-1; 2)
2 exercisediul-2; 3) 95 exercisesul-3.

print_tokensds a lexical analyzer developed as part of thenSies benchmark [89].
We constructed a multiple-fault version using sarhthe original bugs. The test suite
contains 1801 passing tests and 548 failing orstglalited among 7 vulnerabilities as
follows: 1) 205 exercisedul-1; 2) 146 exercisedul-2; 3) 19 exercisesul-3; 4) 20

exercisedrul-4; 5) 96 exercisetlul-5; 6) 33 exercisesiul-6; and 7) 29 exercisedil-7.

63

schedulas a priority scheduler also from the Siemensesdihe multiple-fault
version we used involved 981 passing tests and fi#lidg tests. Among the failing runs,
1070 exercise#tul-1, 30 exercisedul-2, and 214 exercisedil-3.

tot_infois another Siemens program, which computes infoomaneasures. We set
up a multiple-fault version of it that includes @liverabilities. The test suite consists of 791
passing runs and 148 failing runs: 1) 20 exerciagd; 2) 19 exercisesul-2;, 3) 37

exercisedrul-3; 4) 1 exercisedul-4; 5) 3 exercisedul-5; and 6) 68 exercisedul-6.

2. Experimental Setup
We evaluate the effectiveness of the system iactieg attacks by measuring the rate
of false positives and false negatives exhibited.al¢o consider the overhead imposed
during its online deployment. For this purpose,cogduct experiments on our subject
programs and compute the relevant metrics. Eagedytrogram has an associated test
suiteT that, for the sake of our study, we consider tam@dequate representation of its
input space. For each program we apply the follgveiteps:
1) Identify the safe and unsafe test caseE in
2) Generate the execution profiles for the tesfE in
3) For each vulnerability perform the following
a. Construct a training st that is a subset df, which includes both safe and unsafe
runs. We opt to vary the size ©f in order to assess its effect on the accuracyiof o
approach, especially when only a fraction of thegtlae exploits is presented

during the learning process. Specifically, we d®’|/[T| to take on the values

64

5%, 10%, 20%, through 90%, respectively. Also, un @xperiments we explore
two modes for constructing, clusteringandrandom described later in this
section.

b. Apply the genetic algorithm to generate a signaigsociated with the vulnerability
comprising combinations of program elements. Anthastioned previously, we
will first try to generate signatures containindyoMCs andBBs, and in case none
are found, then we will try to generate signatw@staining the other types of
elements. Specifically, signature generation walldoderly conducted using the
following types of elements until a high fithesgrsature is found: NICs, BBs},
{MCs, BBs, DUPs}, {MCs, BBs, DUPs, MCPs}, { MCs, BBs, DUPs, MCPs, BBEs}

4) Save the resulting signature-set in an XML defomitfile
5) Activate the signature matching subsystem usingitdpeature-set and rerun the
application using
6) Determine the number of false positives and faésgatives detected
7) Measure the slowdown as the time ratio of runnivegtest suite with and without
activating the matching system
Therandommode for constructing the training set is conddittg simply randomly
selecting tests from to formT’, whereas thelusteringmode proceeds as follows: test
cases i are automatically clustered based on the simylafitheir execution profiles
comprisingMCs, MCPs, BBs, BBEs, andDUPs. ThenT” is built by randomly selecting, if
possible, two tests from each cluster, one safeatesone unsafe test associated with the

given vulnerability. This process is repeated atkclusters until the desired percentage of

65

safe/unsafe tests is reached. The goal here 18 torcover, as much as possible, the
behaviors induced by. A similar approach was used for the purposesifgaite
minimization in [67]. Note that the size ©f is dictated by the chosen number of clusters
and by our decision to ensure that at least twafertgst case from the given vulnerability
is included.

Obviously, these two modes are not applicablaactce sincd is unknown. We
investigate them strictly to validate our assumptimat the training set must adequately
characterize the usage pattern of the applicaéisnve hypothesize th@t built using
clusteringshould characteriZ€ better then when built usimgndom And thus, we expect
our results to turn out better usidlgistering

Finally, due to the non-determinism introducedlg selection of the training sets
and the use of the genetic algorithm, the resuéisgmted in the following sub-section are

reported by averaging the results from five itenasi of our approach.

3. Results

We measure the number of false alarms produced aloertain signature-set is
deployed. False alarms include false negativesciedibby undetected exploits and false
positives resulting from incorrect labeling of safeecutions. By monitoring the output of
our IDS, we can determine which test cases argdi@s attacks when the IDS issues an
alert. Then, this collection &attacks” is compared with the actual set of exploits given

initially: a missing request is tagged afalse negativeand any safe request in the

66

“attacks” collection is counted asfalse positiveThe percentage of false alarms is

computed as follows:

% False Negatives = (# of falsely flagged exploits)/(Total # of exploits)

% False Positives = (# of falsely flagged safe runs)/(Total # of safe runs)

The amount of overhead induced is measured byingfinon the application prior to

instrumentation and then again after the IDS is/atd, and in both cases recording the

execution times. The slowdown is thus calculated as

% Slowdown = (Time with IDS - Time without IDS)/(Time without IDS)

In addition to the above three entities, we complgefollowing:

1)

2)

3)

4)

Average Signature Length (ASlgverage length (number of program elements) of
the generated individual signatures in the sigrasat

Elements Types (Typedypes of the elements constituting the signatureshe
signature-set (involved in all five iterations)

Best Possible Fitness using Training Set (BPHFitness of the intersecting elements
amongst the failing runs iit’. If BPF~ < 1.0, our approach wilhot yield good
results. This metric could be computed prior tologment; therefore, a user will be
aware of the potential risk of incoming false alarimcase its value is less than 1.0.
Best Possible Fitness using Full Test Suite (BPFtness of the intersecting
elements amongst the failing runsTinlf BPF < 1.0, our approach wilhot yield
good results. Note that this number cannot be coeadpn practice a$ is not known;

we are computing it strictly for analysis purposes.

67

Table 7 consists of selected entries corresportditige cases when our approach

performed best in terms of both low rates of fallsgms and small sizes of the training

sets. The 7 rows denotedAd$ correspond to when all vulnerabilities in a giagplication

are considered (the whole signature-set), the @@orrespond to when individual

vulnerabilities are considered. The table presgr@siumber of exploits/failures, then for

both modes of building the training set, it shols best observed result. We make the

following observations regarding teisteringmode:

1)

2)

Our approach performed very well except Yoif-3 in jigsaw, vul-2 in schedule and
vul-2 andvul-3 in tot_infa That is, for 26 out 30 cases, it exhibited nedahlarms
given small training sets. Note that out of thesR6cessful cases, 19 involved training
sets of size 5%, 3 of size 10%, 2 of size 20%, 2amd size 30%. Also, the average
signature length varied from 1.0 to 4.2 with anrage of 2.14; and except for 6 cases,
the signatures involveMICs and/orBBs only. This implies that the genetic algorithm
was capable, in most cases, to identify small, Engmd effective signatures from
relatively small training sets.

The values oBPF andBPFy is 1 for all entries exceptul-2 in schedule andvul-2
and vul-3 in tot_infg which explains why our approach performed podoly these
cases. This shortcoming is due to the fact thagrgthe used profile types there were
no combinations of elements that highly correlaitt whe exploits at hand. Also, given
that the values odBPF are known to be less than 1.0 prior to deploymaniser of
our approach could take precautionary measure®ab wlith the potential incoming

false alarms.

68

3) As expected, when our approach does not perfornh avelone or more individual
vulnerabilities it also performs poorly on the candad vulnerabilities, as exhibited in
theAll entries.

4) In regard to the slowdown induced by our matchiysgjesm, it was not insignificant but
not hindering as it varied from 46% to 102%. Spealfy, the slowdown was 74.2%,
65.5%, 92.7%, 47%, 102%, 46%, and 60%, Tamcat 3.0 Tomcat 3.2.1Jigsaw
2.0.5 print_tokens2 JTidy, schedule and tot_info, respectively. Note that these
numbers correspond to when the whole signatures-seinsidered (i.eAll).

5) Consideringvul-3in jigsaw, it is the rate of false negatives that is exaedgihigh and
not the rate of false positives. This means thagrwforming the training sets, the
selected unsafe tests are not adequately chamctethe malicious usage pattern of
the application. Also, as shown in Tableahdomperformed unexpectedly better than
clustering Therefore, the poor performance here is due tmatequate training set.
Note that only 4 unsafe tests are present iwhich is likely the reason behind this
behavior.

6) In Section D.2 we expected thelusteringwould yield better results thamndom
Table 7 supports that in general except for the cgul-3in jigsaw.

To summarize, our approach worked very well fooR60of the 30 vulnerabilities but failed
for the remaining 4. That is, in 86.67% of the sas@roduced no false alarms using
training sets of size 30% or less. Note that treraye rates of false negatives and false

positives were 0.43% and 1.03%, respectively.

69

Table 7. Selected data from all applications

Clustering Random
Fail ||T'|/|T|| %FP |%FN|ASL| Types [T')/|T| %FP | %FN |ASL| Types
° vul-1/150| 5% | 0% | 0%| 2.0 BB 5% | 0% | 0% | 1.0 BB
15 vul-2| 38| 5% | 0% | 0%| 1.0 BB 10% | 0% | 0% | 1.0 BB
S [vul-3] 6 [30% | 0% | 0% [3.6] MC-BB 30% | 0% | 0%| 4.0 MC-BB
E vul-4| 4 | 10% | 0% | 0% | 3.6| MC-BB 5% | 0% | 0% | 3.4 MC-BB
All 1198]| 30% | 0% | 0% | - - 30% | 0% | 0% | - -
_ |vul-1| 18 | 5% | 0% | 0% | 2.8| MC-BB 5% | 0% | 0% | 1.0 BB
S [vul-2] 2 | 5% | 0% | 0% | 2.6] MC-BB 30%| 0% | 0%| 3. MC-BB
E vul-3| 4 | 5% | 0% | 0% | 3.8| MC-BB 20% | 0% | 0% | 3.4 MC-BB
All | 24| 5% | 0% | 0% | - - 30% | 0% | 0% | - -
vul-1] 1 | 5% | 0% | 0% | 3.2| MC-BB 5% | 0% | 0% | 4.0 MC-BB
= |wl-2| 2 | 5% | 0% | 0%| 3.2 MC-BB 5% | 0% | 0% | 3.2 MC-BB
g vul-3| 4 | 10% | 0% |10%|3.4| MC-BB 5% |0.08% 0% | 1.8/ MC-BB
= |vul-4| 33| 5% | 0% | 0% | 2.0 BB 5% | 0% | 0% | 2.4 MC-BB
Al | 40 | 60% | 0% | 0% | - - 5% |0.08% 0% - -
vul-1| 83| 30% | 0% | 0% | 2.0 BB 40% | 0% | 0% | 3.8 MC-BB
2 |vul-2| 2 | 5% | 0% | 0% | 26| MC-BB 5% | 0% | 0% | 2.4 BB
E vul-3] 95| 10% | 0% | 0% | 3.4| MC-BB 10% | 0.02% 0% | 3.0/ MC-BB
All 1180| 30% | 0% | 0% | - - 40% | 0% | 0% | - -
vul-1|205| 5% | 0% | 0% | 1.0 BB 5% | 0% | 0% | 1.0 BB
vul-2|146| 5% | 0% | 0% | 1.0 BBE 5% | 0% | 0% | 1.0 BBE
E vul-3] 19| 5% | 0% | 0% |2.0| MC-BB 10% | 0% | 0% | 2. MC-BB
% vul-4| 20| 20% | 0% | 0% |2.0| MC-BB 60% | 0% | 0%| 2. MC-BB
Zi|vul-50 96 | 5% | 0% | 0% | 1.0 BB 30% | 0% | 0% | 1.0 BB
g vul-6| 33| 20% | 0% | 0% |2.0| MC-BB 20% | 0% | 0% | 2. MC-BB
vul-7| 29| 10% | 0% | 0% | 1.0 MC 20% | 0% | 0% | 1.0 MC
All 548 5% | 0% | 0% | - - 5% | 0% | 0% | - -
o |vul-1{1070 5% | 0% | 0%| 1.0 BB 20% | 0% | 0% | 1.0 BB
§ vul-2| 30 | 40% | 5.5% |4.7%| 4.2 |MC-BB-DUP| 100%| 8.1%| 0% | 5.2MC-BB-DUP
S |vul-3[214| 5% | 0% | 0% | 2.C BB 10% | 0% | 0% | 2.€ BB
O Al (1314 40% | 5.5%| 0.11%6 - - 80% | 7.2%| 0.05% - -
vul-1/ 20| 5% | 0% | 0%| 1.(DUP 30% | 0% | 0% | 1.0 DUP
vul-2| 19 | 50% [14.4%| 0% | 1.6 BB 50% | 14.4% 0% | 2.0 BB
qg vul-3| 37 | 20% (2.78%| 0% |2.2| BB-BBE | 60% |2.78% 0% | 3.0/ BB-BBE
“ilvul4| 1 | 5% | 0% | 0% | 1.C BB 5% | 0% | 0% | 2.2 MC-BB
S Jwl-5] 3| 5% | 0% | 0%| 1.d DUP 10% | 0% | 6.67%1.2| MC-DUP
vul-6| 68 | 5% | 0% | 0%| 1.(DUP 10% | 0% | 0% | 1.8 MC-DUP
All | 148| 20% | 10.2%1.2%| - - 60% | 14.1% 0% - -

70

4. Profiling and Cost Analysis

Table 8 shows the number of profiling elementereed for each of the seven
applications, categorized by element type. For g@tenas a result of executing themcat
3.0test suite, a total of 26,137 distinct programredats were tracked and recorded of
which 1,083 werdiCs, 1,640 werdCPs, 7,130 wer®Bs, 7,533 wer8BEs, and 8,751
wereDUPs. Typically, these numbers differ based on the &pd structure of the

application, and are indicative of the size of bitestrings operated on in the genetic

algorithm.
Table 8. Number of program elements per application

Tomcat 3.0 Tomcat 3.2.1 Jigsaw print_tokens2 JTidy schedule tot_info
Total 26137 24438 29895 891 22110 1047 1276
MCs 1083 1030 1216 22 325 24 18
MCPs 1640 1637 2155 30 693 37 23
BBs 7130 6485 7553 278 4853 238 271
BBEs 7533 6777 7978 310 5604 280 315
DUPs 8751 8509 10993 251 10635 468 649

Cost of Tasklsince the training set is formed by simply augtmegnthe existing
application’s test suite by the observed attadies cost of creating it was insignificant in
our study.

Cost of TaskZhe cost of collecting the test suites profilesTfomcat 3.0Tomcat 3.2.1
Jigsaw 2.0.5print_tokens2JTidy, scheduleandtot_infowas 13 minutes, 1.1 minutes, 3.6
minutes, 83 minutes, 271 minutes, 57 minutes, &whiButes, respectively. Noting that

profiling the safe runs of a given test suite guieed to be performed only once (for the

71

lifetime of the version of the application), wheseghe attack runs must be profiled right
after they get discovered in the field.

Cost of Task3the signature generation process took, on avekeggthan one second for
26 vulnerabilities. But took considerably more Yoit-2 in schedulg63 sec)yul-2in

tot_info (30 sec)yul-3in tot_info(20 sec), andul-2 in print_tokensZ4 sec)

Cost of Task4as stated in the previous section incorporatieggenerated signatures in the

IDS induced a showdown that varied from 46% to 102%

E. Related Work

In [58] Martinet al. presented PQL (Program Query Language), a langhage
allows developers to specify code patterns thatacterize given vulnerabilities. The user-
provided code patterns are then used to genesttgia matcher and a dynamic matcher.
Aspect-oriented programming is used to instrumleatapplication in order to generate
execution traces to be analyzed by the dynamicheatd his approach resembles our
proposed solution as it also monitors executinghesyéout differs in the following:

1. It requires the user to examine the applicationecadd manually specify the
code patterns (i.e., signatures) to be matched;hwisidemanding on the part of
the user and prone to error. In our solution, @dtiner hand, the signatures are
automatically discovered

2. The use of aspect-oriented programming limits theressiveness and
complexity of the user-defined patterf&l]. The patterns discovered by our

technique are complex as they encompass combisatigorofiling elements

72

In [27] Lorenzoliet al. presented a technique that identifies failure extistand prevents
future occurrences of the failures they describeoAtline of the technique follows:
1. The user manually specifies oracles, in the formJWIL assertions, which
address specific fault types
2. Static data-flow analysis is used to automaticadgntify the program points
that potentially affect the oracles
3. The program points are monitored during trainin@t@ment the oracles with
dynamically generated properties (using Daikoi [5]
4. The user specified oracles and automatically géeenaroperties are then used
for failure detection and failure analysis
The methodology of our approach is fundamentalffecent than what Lorenzokt al.
proposed, and more importantly our approach hasrmam advantages: a) it does not
require the user to define oracles; and b) it is/mus to fault type.

Exploit-based pattern matching techniques analypeming input to extract a
pattern to be matched against attack sequence=dsitorthe detection system's database.
The pattern could be a sequence of bytes, or a icatidn of entities, e.g., Kim and
Karp [51] used patterns involving the IP protonamber, the destination port number, and
the sequence of bytes. This methodology falls shibtietecting variants of a given exploit,
which made some researchers shift their focus wsvarulnerability-based pattern
matching [40][41]. Our proposed pattern matchiechnique is neither exploit-based nor
vulnerability-based, but is more similar to thedathan to the former since our generated

signatures characterize the program behavior irdlbgehe vulnerability.

73

Brumley et al. [40] introduced the concept of a vulnerabilitgrsature which is a
representation for the set of inputs that satis§pecified vulnerability condition. Given a
new detected exploit for an unknown vulnerabilapd the tupleR, T, X, ¢ whereP is the
program,x is the exploit stringgc is a vulnerability condition satisfied by (e.g., “heap
overflow at a specific line number”), afidis the execution trace & onx. The aim is to
generate a vulnerability signature that will matature malicious inputg’ by examining
them without running?. Our technique is more advantageous as it doesegoiire any
information about the vulnerability, whereas therhnique hinges on detailed information,
namely, the vulnerability condition and location.

In [70] Newsome and Song proposed the use ofrdimtaint analysis for the
automatic generation of exploit-based signaturegsyTimplementedaintChecka tool
that enables the user to mark (taint) untrustedtso be tracked via dynamic data-flow
analysis, in order to detect whether it is usechtoy out an attack aintCheckallows the
detection of attacks that cause sensitive prograloeg to be overwritten with the
attacker’s data, i.eqverwriteattacks Following the detection of an attack, the tool
provides information that could be used to autocadi§i generate signatures to be deployed
for attack filtering. Our proposed technique hasftillowing advantages: 1) it is more
general as it is not limited to overwrite attacksit does not require the user to pinpoint
the inputs to be tainted; and 3) it is noted @] [fhatTaintCheckslowed down the target
application between 1.5 to 40 times, the overhegbsed by our implementation is much

lower as it varied from 46% to 102%.

74

CHAPTER V

USER-DEFINED COVERAGE CRITERION FOR TEST CASE
INTENT VERIFICATION

In practice, program correctness is mainly affirmf@@ughtesting i.e., by
checking that the program produces the expectqaibiRegression testing an essential
part of the maintenance phase of software develapnis goal is to ensure that the
behavior of existing code, believed correct by as testing, is not altered by new
program changes. Since exhaustive testing is asilile, testers rely artoverage criteria
to guide their test selection and to provide atuprule for testing.

We argue that the primary focus of regressionngsthould be on code associated
with: a) earlier bug fixes; and b) particular apption scenarios considered to be important
by the developer or tester. Existing coverage rigitdo not enable such focus, e.g., 100%
branch coverage does not guarantee that a givefibisgexercised or a given application
scenario is tested. Therefore, there is a need f@w and complementary coverage
criterion in which the user can define a test reguent characterizing a given behavior to
be covered as opposed to choosing from a poolestipfined and generic program
elements. We propose this new methodology andtdaCov, auser-defined coverage
criterion [9] wherein a test requiremef#l] is an execution pattern of program elements
and predicates. Our proposed criterion is not meargplace existing criteria but to
complement them as it focuses the testing on impbdode patterns that could go untested

otherwise.
75

UCovsupports test case intent verification. For exanfallowing a bug fix, the
testing team may augment the regression testwithlighe test case that revealed the bug.
Evidently, this new test case induces an execyattern associated with the bug;
however, it might become obsolete due to code nwadibns not related to the bug. But
our coverage criterion, based on a user definedutiom pattern (a test requirement)
characterizing the bug and coupled with the tes¢ caould:

a) Detect whether the test requirement was satisfietbb

b) Determine whether test case intent verificatiorspdr failed.

c) Deem the test suite deficient in case test intenfigation failed. Thus, suggesting

that a new test case that satisfy the requiremesdsto be (manually) generated.

Current coverage criteria limit the user to choggiom a set of program elements that
vary in the level of granularity and complexity.ode include statements, branches, logic
expressions [82], def-uses [24], information flpairs [63], slice pairs [60], and paths [84].
At first, it might appear that what we are propgsis simply to cover more complex test
requirements comprised of some patterns or combmabf existing program elements.
But in fact, the main goal and contribution of ouethodology is to covdyehaviorsas
opposed to generic structural program elementsi@nduple tests with intents to be
verified and preserved. Noting that, to our knowledheither of these concepts has been
previously proposed, and as Sections B and D demada@sthey fill in an important gap
lacking in existing coverage criteria.
We implemented our methodology for the Java platfor a tool that provides the

following:

76

b)

An Eclipse plugin to enable users to easily def@se requirements

The ability of cross referencing the test requirateecross subsequent versions of
a given programwhich is a non-trivial task due to the code defeces between
versions.

The ability to determine whether the test requinetm@re satisfiedwhich entails

instrumenting th&ystem Under TegBUT) at the byte code level.

We appliedJCovonto two real life case studies; the first caseginvolves a bug fix, and

the second is a scenario of significance to progeguirements.

The main advantages bfCovto the software maintenance process are desdodled:

a)

b)

Bug resurrection happens when faulty code thatfixasl, gets introduced again
Typically this might happen due to the uncoordidatecess of a file in a source
control system by more than one develop&2ovensures the coverage of the test
requirement associated with the bug fix and thuwers the resurrecting bug.
Without UCoy, resurrecting bugs might escape typical structcowakrage-based
testing.

A Bug fix could become faulty due to other codengbs(i.e., a bug was introduced
in the bug fix). Here alsa)Covcan detect that the test requirement associatidd wi
the bug fix is not satisfied, which calls for ratiisg the bug fix and test suite.

In UCoy, a test casethat was coupled with a bug fix, a feature, or s@oenario of
interest to the tester/developer, is intended tdywan expected (correct) behavior
of the application. But if becomes obsolete, that expected behavior would go

unverified, which will be detected hyCov.

77

d) Understandably, even full coverage achieved bytiegistructural coverage criteria
does not establish that all (or any) of the scesant a given algorithm are tested.
To generalize item c); ilCov, each scenario could be coupled with a test case,
thus relying olJCovto ensure coverage of the scenarios. This enablekation
testingwhose aim is to exercise the functionality of $1T.
The remainder of this chapter is organized aswdloSection A provides definitions and
notation for specifying test requirements. SecBowalks through a motivating example.
Section C describes the main componentd@bv. Section D presents our real life case

studies. Finally, related work is surveyed in Sattt.

A. Definitions and Notations

This section provides definitions for entities k&let to UCov, and notation for
specifying test requirements.

Definition 1 - A program elements a basic programming unit such as a statement, a
branch, or a definition-use pair.

Definition 2 -A test requiremenis an execution pattern thatest case must satisty
cover.

Definition 3 -A basictest requiremenfpbtr) is a test requirement involving only a set of
program elements and a logical expression thatridbesctheir execution. For example,
basic test requiremeffts; 0 b1) O(-=dupi1)ls:r, Which involves the set of program elements

{s1, b1, dupy}, is considered to be satisfied if: a) statem®&rar branchb; did execute, and,

78

b) definition-use paidup did not execute. Note that the logical operatanspsrted by
UCovare, negation~), conjunction [J), and disjunction{).

Definition 4 - A conditional test requiremer(ttr) is a test requirement comprising a
test requirementr, and a predicatp specifying a state of some program variables.&or
conditional test requirement to be satisfigdshould be satisfied, amgshould evaluate to
true immediately before. For example, the conditiorsst trequirementls: Obiletr, x >
yletr requires that statemest and brancho; be executed and, when that happenbge
strictly greater tham.

Definition 5 - A sequential test requiremef(gtr) is a test requirement composed of a
sequence of at least two test requirements that brusatisfied one after the other. For
example, the sequential test requiremBtibilotr, [b2lotr, [bs Usiletr>]str requires that
branches; andb, be sequentially executed, followed yyor s;.

Definition 6 -A repeated test requireme(itr) is a test requirement comprising a test
requirementtr, and a range indicating the number of times ituhdoe repeated. For
example, the repeated test requireniént Jbile:r, 5, 10001+ requires that statemest
and branctb; be executed at least 5 times and at most 1000 .timesse one or both of
the bounds do not matter, ddh’t care¢’ symbol could be specified, e.g.5{[o, 100, _ }

requires that statemesitbe executed at least 100 times.

79

B. Motivation
Typically, algorithms are presented while stressthg prime scenarios they
support, which we believe should all be testedgiaelity assurance. Noting that even full
coverage achieved by existing structural coverageria does not establish that all (or
any) of the scenarios of an algorithm are testesl,adlvocate our user-defined coverage
criterion as an effective solution to this tasktultively, each documented scenario (or
case) associated with the algorithm describesast lene execution pattern that should be
coupled with designated test cases. We illustreausage of/Covin testing the algorithm
for deleting a node in a binary search tree.
The algorithm shown in Figure 11 is presentedir] gnd considers four cases concerning
the nodez to be deleted:
Casellf zhas no children, then it is replaced by NIL.
Case2If zhas only one child, then it is replaced by thaidch
Case3lIf z has two children, then it is replaced by its sssoe, which is the
leftmost node in the sub-tree rooted at the ridtitdcof z. In this case, the
successor of (sayy) has no right child. That ig, would be a leaf and thus
deletingz would be achieved by replacing the contents loy those ofy and
replacingy with NIL.
Case4Similarly to Case3 z has two children, and is replaced by its successor
However, herg has a right child, and the contentzaire replaced by those

of y but instead of replacingwith NIL, it is replaced by its right child.

80

wnh e

10.
11.
12.
13.

14.
15.
16.

BSTDELETE(T, z
Input: Binary Search Tree (T), pointer to the ntmlbe deleted (z)
Output: Binary Search Tree (T’) obtained from Taefeting z

if left[z] = NIL or right[z] = NIL
then vy ~z
else y — TREE-SUCCESSOR(2)

if lefty] # NIL
then x left[y]
else x —right[y]

if x #NIL
then p[x] - ply]

if ply] = NIL

then root[T] X
else if y=left[p[y]]

then left[p[y]] —X
else right[p[y]] X

if y #z
then key[z] < keyly]
copy y’'s satellite data into z

9 details the individual and cumulative statememt laranch coverage information for each

of the test cases. As show, achieves 100% statement coverage and 100% branch

Figure 11. Pseudo-code for deleting a node in a BST

Figure 12 depicts a test suiltecomprising the four test casgst,, ts, andt,. Table

coverage.

shown at the bottom of Table 9, along witts coverage information. Test casegandt;
cover the execution patterns (test requirementsfageland Case2? respectively. And
botht; andt, cover the execution pattern Gase3 Therefore Casedis left untested, i.e.,

none of the tests cover test requirenentslesr, [ssloer, [s8loer>1str.

The execution patterns associated with each o&ldperithm’s scenarios are also

81

t1

Z Z

I'd I'd
(s)

t2 ts

Z

/
()

t4

Figure 12. Test suite T = {t1, t2, t3, t4}

Table 9. Coverage information for test suite T

{t1, t2, t3, ta}

Statements

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

Branches

S1-S2

S1—-S3

S4—-S5

S4—-S6

S7—S8

S7—-S89

S9—S10

S9-S11

S11-S12

S11-S13

S14—-S15

S14—END

NEIR IR AR ARNANE AN AR IANE AR ABNE AR AR AANANE ZANASEZANE IR NA NI
ANEAREIR IR IRNEIRNEARNEIRNEIRIRNE SR IR SRNENENENE JRNENE RN N
LARNENEIRNEIRNEIRNEIRNEARNEANENANE ZRNE SRNE IRNENE SR NENE SN

IR R A R A R A R A A A R A A RN R A A IR DR A

N AR AN AN RN N RN AN N AN AN AN AN AN AN AN AN ANENANENANENANENANAN

Prime
Scenarios

Execution Patterns (TR)

Casel

[<[s2]btr, [SS]btr, [[37]btr, x==NIL]ctr>]str

Case2

[<[S2]btr, [SS]btr>]str

Case3

[<[s3]btr, [SS]btr, [[37]btr, x==NIL]ctr>]str

Case4

[<[33]btr, [Sé‘]btr, [38]btr>]str

x| x|[x[X
X[(x|[X|%
x| S| %%

AN R

CIRSENAN

82

This example demonstrates how applying our covecaigerion would deem test suite
T deficient despite the fact that it satisfied fstihtement and branch coverage. In order to
test all four scenarios usindCov, the user would: 1) specify their four respectiest
requirements shown at the bottom of Table 9; antb2gach test requirement, design at

least one test case that satisfies it.

C. Methodology and Implementation

UCoventails three main tasks and associated compotieta/e describe next.

1. Specifying Test Requirements
We first designed and built a programming interfdg enables the user to
specify test requirements of the types we descrilh&skction A. Note that our
implementation expects the program elements tgbeifsed at the Java bytecode level.
Since such interface is only adequate for usersavb@lso developers, we used a graphical
Eclipse plugin that hides its complexity. The outpiithe plugin is compilable code that
specifies the user-defined test requirements usatlg to the programming interface.
Figures 13-15 present the class diagrams of thgr@maming interface. A s@tR
of user-defined test requirements comprises afibasic test requiremenstr's),
conditional test requirementst('s), sequential test requiremergs’s), and repeated test
requirementsr{r's). Figure 13 shows that: 1) th's, andtr's are made up of any of the
four types of test requirements; and 2) ¢krés are made up of any of the four types of test

requirements in addition topedicate Figure 14 shows thattdr is composed of the

83

conjunction, disjunction, and negation of primitiv&'s, which in turn are made up of
statements, def-use pairs, and branches. Finafjyré-15 shows that@redicateis made
up of the conjunction, disjunction, and negatiompmitive predicates or clauses.

To illustrate the use ddCovs programming interface, the test requiremesj,
result==true] ., associated with function reset shown in Figurevb@ld be specified as

shown in Figure 17.

1
R Ko>— & =

Str rr

Figure 13. Class Diagram of the programming interfae

84

btr

| | |

Primitive_ Conjunctive Disjunctive Negation
br br br br
Structural ‘
Element

S

Figure 14. Class Diagram associated with btr class

, 2
Predicate |
1
Primitive_ Conjunctive Disjunctive Negation
Predicate Predicate Predicate Predicate
1.2
Variable

Figure 15. Class Diagram associated with Predicatdass

85

boolean reset()

s1: boolean result = false;

s2: if (override | | valveClosed)
s3: result = true;

s4: return result;

Figure 16. Function to control the shutdown systenn a reactor

Statemens] = new Statemen"Reactor, "reset, "()Z2", 19):

btr btrl = new Primitive_btr&1);

Variablevarl=new Variable(Local", "result", "Reactor’, "reset’; "()Z");
Predicatgored1=new Primitive_PredicatéEqual”, varl,new Booleantrue));
ctr ctrl = new ctr(btrl, pred};

Figure 17. Specifying conditional test requiremenexample

2. Migrating Test Requirements across Versions

The test requirements consideredU@ov are built from statements, branches,

def-uses, and predicates. Since branches and dgefams constructed from statements, and

predicates are constructed from program varialhestask of migrating test requirements

across versions boils down to cross referencirtgrsints and variables across versions.

a. Statement Mapping

As our implementation targets the Java platform, ap¢ to match bytecode

statements across versions using a technique éaspiom the notion oAbstract Syntax

86

Tress[22][85][94][97]. Given a bytecode statemesmtdefined relative to the start of a
methodM in a particular version of the software being ¢desed, our technique identifies
the counterpart of relative to the start d¥l in a subsequent version by analyzing what we
call thebytecode dependence t@DT) of M in both versions.
The BDT of a particular function is constructed staticafpm its list of bytecode
instructions §;, &, ..., S} as follows:

* The tree has+1 nodes: a root node labeled “start” andescendant nodes each of

which corresponds to one of the bytecode instrastio

* A nodenis the parent of another nodeif one of the following holds:

o0 nandn’ respectively correspond to bytecode instructigrands such that
s consumes a value (from the JVM's operand staek)wias produced by.
This captures thdirect data dependencelationship described {65].

0 n is either the “start” node or a node correspondiaga conditional
instruction andn’ represents a non-producer instruction in the tiseope
of n. This captures thelirect control dependenceelationship described
in [65].

» Siblings are ordered according to their relativeifians in the bytecode instruction
list.
Figure 18 illustrates the above by showing a sriippdava code, the corresponding
bytecode instructions, and the resultBIQT. The nodes of thBDT are annotated with the

offsets of the corresponding bytecode instructions.

87

void foo() 11 iload_1

{ 12 istore 3
... 13 iload 2
i = % 14 iload 1
if (y < x) 15 if_icmpge 20 (+5)
i = g5 18 iload 2

19 istore 3
20 return

() (b)

12

11(iload] [iload (" iload](istore 19

13 14
Ciows Jus

15[if_icmpge] [return]20

(c)

Figure 18. (a) Sample method foo, (b) Bytecode lisf foo, (c) BDT of foo

When trying to match a test requireménagainst a subsequent version, every
statemensin tr is mapped. We first check if the code of the métbarresponding te
(sayM) has changed between the two versions. If so,omnstuct theBDT of M with
respect to the original version (sByand that corresponding to the subsequent ve(san
B’). Then, we determine the nodeBhthat is structurally most similar &in B using an
iterative algorithm as follows:

1. We start with a set of potential candidates. Tleeeghe nodes iB’ whose
corresponding bytecode instruction opcode is etjugdat ofs.

2. We repeatedly eliminate the candidates which faihalarity test of
increasing precision. The order we follow is: letalescendants, level-1

ancestors, level-2 descendants, level-2 ance$wr.3 descendants etc.

88

That is, in the first iteration, we eliminate dietcandidates whose children
(i.e. level-1 descendants) Bi are not similar to the children sfn B. In
the second iteration, we eliminate (from the renmgjrcandidates) those
whose parents (i.e. level-1 ancestordpirmren’t similar to the parent of
in B, and so on. And if more than one candidate gitlain; we consider
the siblings of.

. The algorithm successfully stops when only one lgighmilar candidate
remains.

. If at some iteration the set of candidates becaangsty, we restore the
results of the previous iteration and require titervention of the user to
resolve the ambiguity. We also require user intetio@ in case we
reached the final iteration with several candidatiesvever, both

scenarios are unlikely to occur.

To demonstrate our mapping mechanism, we conardéupdated” version of the

method foo of Figure 18. In the new version, shawRigure 19 with its corresponding

bytecode an®8DT, foo is modified by adding a statement that coraptihe sum of andy.

In addition, variablen is renamed toin (to be revisited). We will denote tBDT of

Figure 18 byB and that of Figure 19 y'. Also, we will identify every node using its

offset relative to the correspondiBT, (for exampleB-11refers to node 11 iB). In what

follows, we show how our algorithm maBs19to B’-29, i.e., “m =y” inB to “min = y” in

B’. We start with the set of all potential candidateese are the nodesBn associated

with anistore instruction, the type of instructid®19is associated with. Therefore, the

89

initial set of candidates consistsBif19, B’-22, andB’-29. In the first iterationB’-19 is
eliminated because its child differs from thaBsl9 Alternatively,B’-22 andB’-29 are
kept as they pass this first similarity test. Ia #econd iteration, these two candidates
undergo the second similarity test which compdnes parents with that d-19. As a
result,B’-22 is eliminated an@®’-29 is left as the only candidate. As such, the atgori

terminates by mapping-19to B’-29.

16 iload_1
void foo () 17 iload_2
{ 18 iadd
19 istore 4
21 iload 1
22 istore 3
! xi 23 iload 2
if(y < x 24 iload 1
min = y; 25 if_icmpge 30 (+5)
} 28 iload 2
29 istore 3
30 return

’

19 [istore] 22 [istore] 25 [if_icmpge] [return] 30
| |]
18 [iadd] 21 [iload] [iload][iload][istore] 29

16[iload][iload]17 z 2 28

(c)

sum
min

x+y;

Figure 19. Updated version of foo

b. Variable Mapping

Our cross referencing technique accounts for vhriadatching as well. The need

for this kind of matching arises when the name w&@able involved in a test requirement

90

Is changed in the subsequent version. We levelegstatement mapping mechanism
described above as a basis for variable mappingjlass:
1. For each variable to be mapped, we identify the set of bytecodeestahts
referencing it in the original version, s&y{s;, %, ..., S}-
2. Then, we perform statement mapping to get th&sdts’, s, ..., s} relevant
to the subsequent version.
3. For eachs’, we identify the variable it references and thenocensider the
counterpart of to be the variable referenced by all statemeng.in
4. As described in step 3, a “perfect” match occurgnvall the statements 8i
reference the same variable. But if this was netctise, user intervention will
be required in order to update the test requirement
As an example of variable mapping, consider methodand its updated version shown in
Figures 18 and 19, respectively. The fact thatadeim was renamed tmin (and it is
involved in a test requirement) necessitates apglghe variable mapping algorithm
described above. We first identify the nodes th&renceam in B, which areB-12 andB-
19. Applying the statement mapping procedure, we Brd2to B’-22 andB-19to B’-29.
Then, we determine the variable(s) referenceB’B32 andB’-29. In this case, both nodes
reference variablmin, meaning that the algorithm was successful agp#yf matchingn

andmin.

91

3. Checking the Coverage of Test Requirements
Our approach for checking the coverage of testirements is to some extent
similar to what we adopted in [8], which was désed in chapter 4, for the purpose of
matching attack signatures. The approach entadsstepsinstrumentatiorandmatching
both of which are done at run-time. For a givergpamP associated with a set of user-
defined test requirement$TR, the instrumentation module applies dynamic
instrumentation at class load time Bmo enable the online matching of the test
requirements specified IdTR The instrumentation is done by inserting methalts¢o the
matching module at specific locationsRnThese locations include:
1. Every statement specified WiTR Note that, in cas8 TRwas specified in a
previous version, statements are mapped accorditigetapproach discussed
in Section C.2.
2. The entry statement of each method specifiddTiR.
3. Every basic blockEB) leader in the method containing a branch spetifie
UTR.
4. The definition and use statements of each def-asg[PUP) specified inUTR
as well as all statements that define the variaivelved.
The matching module, on the other hand, keeps thak thebtr’'s specified inUTR as
independent test requirements or as part of marglEx ones. For every sublr, the
matching module also maintainsimestampand acounterindicating the last time and the
number of times it got executed, respectively.degtJ TR containsctr's, the matching

module would keep track of the “current” valuesabbfinvolved variables. The matching

92

module is triggered in two cases: 1) state updatéication; and 2) structural notification.
The first occurs when a variable relevanufbR gets updated. In this case, the value of the
corresponding variable is simply updated. The se@ase occurs whenbdr referenced by
UTRgets executed by the program. Here, the matcldatap the timestamp and the

counter of the corresponditdyr and checks all relevant test requirements.

D. Case Studies
1. Testing a Bug Fix

This case study involves two versiondN&#noXML, anXML parser comprising
7,646 lines of code. The two versions were dowrgdaalong with their test suites from the
SIRrepository [157] and they correspond to versibiasid 3 inSIR Hereafter, we will
refer to these versions BignoXML_vlandNanoXML_v3

A typical NanoXMLtest case involves running a java test programt#tkes in a
certainXML file as input and applies sof&anoXMLfunctionalities on it. Specifically, the
test program in our case studyPiarserl_vw_vl.javand the input file isestvw_29.xml
shown in Figures 20 and 21, respectively. Basicdlhe program parses the input file
using theparse()method defined istdXMLParser.javan theNanoXMLpackage and
outputs the result.

This test case reveals one of the bugdanoXML_viwhich is fixed in
NanoXML_v3namely, avhile replaced by aif in methodelementAttributesProcessed
NonValidator.java shown in Figure 22. Figure 23 contrasts the Jaolitput against the

expected output.

93

public class Parserl_vw_vl

public static void main(String argsf]) throws Exception
if (args. length == 0){
System.err.printin("Usage: java Parserl_vw_vO0 file.xml");
Runtime .getRuntime().exit(1);
String filename =args[OJ;
IXMLParser parser = XMLParserFactory.createDefaultXMLParser();
IXMLReader reader = StdXMLReader.fileReader(filename);

parser.setReader(reader);

XMLElement xml = (XMLElement) parser.parse();
(new XMLWriter(System .out)).write(xml);

}
}

Figure 20. Test program Parserl_vw_vl.java

<IDOCTYPEFOO [
<IENTITY % extParamEntity SYSTEM "E:\Nanoxml\inputs\nano2\i nclude.ent”

<IENTITY value "%extParamEntity;" >
<IELEMENTFOO (#PCDATA) >
<IATTLIST FOO
x CDATA #REQUIRED
y CDATA #FIXED "“fixedValue"
z CDATA "defaultValue" >
1>

<FOOx ='1'>
<VAZ>vaz </VAZ> &value ; </[FOO>

Figure 21. Input file testvw_29.xml

public void elementAttributesProcessed(String name,
String nsPrefix,
String nsSystemld,
Properties extraAttributes)
{
Properties props=(Properties) this .currentElements.pop(); /Is1
Enumeration _enum = props.keys(); lIs2
if (_enum.hasMoreElements()) /Is3 -- should be while(_enum.hasMoreElements())
String key =(String) _enum.nextElement(); lIs4
extraAttributes.put(key, props.get(key)); 1Is5
}
}

Figure 22. Faulty code in NonValidator.java

94

<FOO x="1" <FOO x="1" z="defaultValue"

z="defaultValue"> y="fixedValue">
<VAZ>vaz</VAZ> <VAZ>vaz</VAZ>
INCLUDE INCLUDE

</FOO> a) </FOO> b)

Figure 23. (a) Faulty output; and (b) Expected outpt

Note that the bug fix would be exercisedNanoXML_v3only if thewhile loop
iterates twice or more. This behavior could be aagat inUCov by the repeated test
requirement [§4]or, 2, _ i, OF the sequence test requiremens{sl, [Su]oer>]sw, and
possibly others.

UCov revealed that when executed iNanoXML v3 the test case
{Parserl_vw_v1.java, testvw_29.xml} did not actyadixercise the bug fix (i.e., our user-
defined test requirement was not covered), buteatstresulted in an exception being
thrown. Thus, in this real life case studlyCov alerted us that the test case associated with
the bug fix became obsolete and that an altereatectse needs to be created.

To further investigate this case study, we manuadlgked down the code change
which rendered that test case obsolete and founthatit is related to the use of a
different constructor of thBRL class in methodpenStreann StdXMLReader.java
Noting that if the new constructor is replaced lg original one, Bipt, 2, _ }r and
[<[S4]btr, [Salbtr>]str Would then be covered. The original code and thdified one are

shown in Figure 24.

95

public Reader openStream(String publicID,
String systemlID)
throws MalformedURLException

FileNotFoundException s a
IOException ()
systemlID = “file:” + systemlID;
URLurl = new URL(systemID);

public Reader openStream(String publicID,
String systemID)

throws MalformedURLException
FileNotFoundException (b)
IOException

URLurl = new URL(this .currentSystemID, systemID);

Figure 24. Code change that renders test case {Pard_vw_v1.java, testvw_29.xml} obsolete.

(a) NanoXML_v1; and (b) NanoXML_v3

2. Testing Scenarios of an Algorithm

This case study targets the situation where a Bpéehavior needs to be tested.
The application being considereda$_info one of the seven Siemens programs [89] that
are widely used in the literature. More specifigalte inspect functionfoTbl that
computes Kullback's information measure of a cayairty table according to the following

formula [92]:

T Cc r c

> xylog(xy) — Y xlog(x) — ¥ xlog(x;) + Niogh
i=1

i=1 j=1 j=1
wherer andc are respectively the number of rows and columnbBercontingency table;
is the value of the entry at ravand columr), x; is the sum of row, X is the sum of column

j, andN is the sum of all entries in the table.

96

InfoTbl determines the information measure of a contingéaloleT by computing the four
components of the formula above according to tleeigggcode shown in Table 10. The
algorithm starts by checkingTfhas at least two rows and two columns; if natttirns -3
indicating that the table is too small. Lines 5kdé&p over the rows of, compute the sum
of each row and store it in array . At the same time, the sum N of all entries inttidde
is computed. If a negative entry is encounteredhduthis process, the algorithm returns
the “error” value -2. It also returns -1 if thedbsum isn’t strictly positive (lines 16-18).
Similarly, the column sums are computed and storedrayxj (lines 19-25). The rest of
the code computes each of the four componentedftiiback formula and aggregates the
result in variablénfo as indicated in the table.
We distinguish three conditional checks in the ctbdé prevent the algorithm from
computing log(0). Those are the ones at lines 28aBd 38. The first checks if the sum of
the {" row is different than zero, the second checkdijf] Ts different than zero, and the
third checks if the sum of th& folumn is different than zero. We argue that apartant
scenario to be covered is one in which the contingeable satisfies the following four
conditions:

1) Isvalid, i.e., has at least 2 rows and 2 colurdogsn’t have negative entries, and

isn’t all zeros.
2) Has at least one row whose sum is zero.
3) Has at least one column whose sum is zero.

4) Has a strictly positive information measure so thaimple contingency table such

as[g (1)] with zero information measure would not be congdes a candidate.

97

We deem this scenario important because each dfitbe conditional checks on lines 28,
32, and 38 would evaluate bothttae andfalsewithin the same test case. Applyio§€oy,

the following test requirement, denoteds\captures the scenario at hand:

P =[<l[s13lvtr, sum==01ctr, [[s24]6tr, SumMm==01csr, [[s42)btr, info>01ctr>]str

0O 0 O
For example, test cases based on the contingehkey{m 2 3] satisfy#” and thus are
0 1 1

deemed important.
To verify whethetot_infds original (full) test suite, which was downloadiedm

SIR[157], covers?, we created a modified versiontof_infoin which we hard-coded
some monitoring instructions that trigger a notifion in case”is exercised. After running
the modified version under the full test suite,faend out that no test case covéts

This real life case study shows that some scendraismight be deemed important can go
untested if not represented by non-generic testiregents such as those supported by

UCov.

98

Table 10. Information Measure Algorithm

Input: Contingency table T, # rows r, # columns ¢
Output: -3 if r <l orc <1, -2 if T contains a negative entry, -1 if T is al | zeros,
Kullback measure of T otherwise

1.ifr <10Rc <1

2 return -3

3. end if

4.N=0

5. for i=1 to r

6 sum = 0

7 for j=1 to c

. el L B Computing row sums
10. end 1if

11. sum += T[i,]] and
12. end for

13. xi[i] = sum

14. N += sum total sum
15. end for

16.ifN <O

17. return-1

18. end if

19. for j=1 to c
20. sum = 0

21. for i=1 to r

N e i Computing column sums
24 . xj[j] = sum

25. end for

26.info=N xlog(N) [*** 4th component of Kullback’s formula *** /
27. fori=1tor

28. if xi[i]>0

29. info -= xi[i] xlog(xi[i]) /*** 2nd component ***/

30. endif

31. forj=1toc

32. if T[i,j]>0

33. info +=TJ[i,j] xlog(TTi,jJ)/*** 1st component ***/

34. end if

35. end for

36. end for

37.forj=1toc

38. if xj[j]>0

39. info -= xj[j] xlog(xj[jl) /*** 3rd component ***/

40. endif

41. end for

42. return info

99

E. Related Work

Over the years, researchers have proposed numsoeesage criteria many of
which are discussed or listed in [21]. The fundatals of data flow testing and def-use
coverage were presented in [93][95]. Data flostitey was contrasted against control flow
and branch testing in [23] and [89]. Coveragtgical expressions is treated in [82]
and [90]. Test case selection and prioritizat®discussed in [153], and surveyed in [31].
However, none of the above proposed techniquespialte of verifying or preserving the
intent of test cases.

Several techniques surveyed and compared in |i@®ht linking faults to test
cases, and at ranking test cases based on theianeke to detected faults based on
coverage metrics. These techniques employ stalistietrics and target fault localization.
UCovdiffers in that it aims at establishing am@intainingthe link between the fault, the
test case, and the bug fix.

User defined coverage for hardware designs wasdated in [88] as a
methodology to annotate hardware logic written KDL or Verilog with coverage events.
The method is not intended to preserve the integpecific test cases and is limited to
hardware design§ystemVerilog86] supports a functional coverage specification
language that introduces concepts like cover poaager expressions, cover groups, and
cross cover. Those coverage specifications areéddhio hardware designs, are not related
to specific test cases, and require knowledgeefthole design.

DSD-Crasher [98] aims at finding bugs by dynantycaktracting invariants that

describe the intended behavior of the program uehiey unwanted values from the domain

100

of the program, exploring execution paths of thegpam that cover the invariants, and then
generating test cases that cover the extracted.pltie work does not maintain the link
between the detected invariants, the extractedspatid the test casé$Covcan make use

of the techniques proposed in DSD-Crasher to autioatly extract execution paths and

link them to existing test cases after the appro¥#he user.

101

CHAPTER VI

LOSSLESS REDUCTION OF EXECUTION PROFILES

Execution profiles are pivotal to several dynamiggpam analysis techniques
such as test suite minimization and prioritizatié#], fault localization [12], and
application-based intrusion detection [64]. Thenber of elements that a typical execution
profile contains is usually in the order of thougser more, amongst which a considerable

proportion are redundant.

A well-known approach to reduce the high dimendionand redundancy in
execution profiles is to uderincipal Component Analys(®CA) [83][142][145].PCA
reduces the dimensionality of a data set (pos#ivylving correlated variables) to a new
set involving uncorrelated variables. The generatezbrrelated variables are called
principal component@Cs). The obtained set has tA€s ordered by the fraction of the
total information/variation each retains. Thatle first PC captures as much of the
variability present in the data set as possibke séecond PC also captures as much of the
variability but under the constraint of being unetated with the previous (first) PC, and
similarly for the subsequent PCs. After applying®?Gnly the first few PCs are retained
and the remaining ones ignored. Note that PCA toams the original data toreew
coordinate system. Therefore, it is not possibletover the non-redundant profiling

elements from the retained PCs, which renders reaftyware analysis techniques

102

inapplicable. For example, in coverage based faaélization [6][12][19], identifying
failure-correlated PCs witiotlead to the failure-correlated program elementsclvare
normally needed to locate the fault. The approaetare proposing does not suffer from

this limitation as it preserves the original cooate system.

In this chapter we present an evolutionary apprdacheducing redundancy in
execution profiles associated with a given tedesiO]. It uses genetic algorithito find
a minimal subset of profiling elements tisafelyrepresent the original set. The advantage
of such approach isn’t limited to reducing the afgprogram analyses that utilize the
execution profiles directly. There are situatiorfseve a limited number of variables or
statements need to be identified for tracking aoditoring. One example is online
intrusion and failure detection [8], another @tstbased comparison of test cases [11].We
evaluated our approach by applying it on eight esEtscecution profiles and measuring its
impact on clustering and test suite minimizatiohe Tesults showed marginal deterioration

in either analyses even though the reduction eatged from 94% to 99%.

The rest of this chapter is organized as folloveti®n A presents an example
that motivates our approach. Section B describesgproach. Section C describes our
experimental studies and results. Finally, Sediigiresents a state-based comparison

technigue and shows how it can benefit from th@ased reduction mechanism.

A. Motivating Example
First we show an example demonstrating how redundeeduction is performed

by identifying sets o$ingleprofiling elements that exhibit the same pattdraazurrence

103

in all the test cases. Then we demonstrate howdufossless reduction could be

performed by considering subsets of the profililgreents, the subject of this work.

Table 11 shows the execution profiles for five tedes with respect to seven
programming elements; e.g., statements and/or besné&or example, the first row
indicates that test casgexecutes the elemerds &;, &, &, ande;. We refer to this

representation as tlexecution Matrix

Table 11. Sample Execution Profiles

€| & | & | & | & | 6

ty
to
t3
t4
ts

R Ol Ol O r
o k| Rkl RrloO
R Ol Ol O r
o ~r| o r|l kL
S =)
o P O k|l kL
Rl O Ol Ol | ®

It can be noticed tha&, e;, ande; exhibit the same pattern of occurrence in all
five test cases; similarlg, andes. Therefore, €, &;, €7} could be replaced bg, and {e;,
es} by &4, to yield reduced execution profiles comprisingyahelements, namelyg{, e,
€4, 6}. We refer to this type of reduction Basic Redundancy Removal

However, this subset still contains some redundaBpgcifically, knowing the
execution status of subset; { &} in any test case, we can infer the executiorustaf the
remaining profiling elements. Table 12 summarihes telationship. For example, it
indicates that every test case that exer@gsbsit note; exercises both ah andes.
Following this observation, the execution profilesable 11 could be reduced down to

only two elementsg; ande,.
104

Table 12. {e2,e5} are inferred from {el,e4}

{e1eq) {e6}
01 11
11 00
00 11
10 01

As demonstrated in the above example, given afsstezution profiles, our aim
is to devise a method for determining a minimalsstlof elements whose execution status
implies the execution status of the remaining olrean ideal situation our algorithm
should consider every subset (combination) of efesmdut given their large count, such a
brute force approach is infeasible, which callstfe use of an approximation algorithm,

e.g., a genetic algorithm.

B. Proposed Approach
Assuming the set of profiling elements being coased isE, the problem of
determining the most representative subset in tefregecution status translates to the task

of finding a subset S that results in the minimwonditional entropyd (S/S) where

DV(S)|

S = E — S. This is equivalent to finding a subset S havimgaximal value fo V)|

whereDV(S)(resp.DV(E)) is the set of distinct values assumedifyesp.E). Of course, E
is one such subset but we are interested in thbseswze is minimal. Note that the values
of a given subset of elements can be regardeceasotitatenation of its corresponding bits

in theExecution Matrix Given the size of the search space at halft) (we opt to use a

105

heuristic approach to search for potential repriagime subsets. Specifically, we use a
genetic algorithm where each candidate solutioapsesented by a vector of bits
(chromosompewhose size is equal to the total number of elémekxvalue of 1 means that

the corresponding element is included in the sotuéind a value of O indicates otherwise.

The fitness of a particular solution/subSé$ quantified agitness(S) = %. The

pseudocode shown in Figure 25 describes our teghmidpich takes an execution matkix
associated with a set of profiling elemehtas input and determines a (likely small) subset
of E with fitness equal to 1. As a pre-processing stepperform basic redundancy
removal to arrive at a reduced matkix and element sé&’, which is useful to reduce the
search space. The genetic algorithm first createsitial population by randomly
generating small subsetsf. After that, it repeatedly applies crossover andation to
produce new solutions. Every time a superior sotuémerges, it replaces a less fit one in
the population. This iterative process is termidatetwo cases: 1) a solution having a
fitness of 1 is encountered or 2) the maximum nurobéerations is exhausted. In case the
GA terminates without arriving at a fitness of ¥ augment the best encountered solution
by adding one element at a time in a greedy fastwoas to reach the maximum fitness.
One might argue that such step could be donerggdrom an empty solution or a totally
random one. However, such approach has two distalyes First, it's very costly if the
starting solution has low fitness. Second, as iteefactor isn’t enforced, this approach
wouldn't likely yield small solutions. Next we ddtthe steps of our algorithm.

Line 1:Basic redundancy removal is appliedMrandE. That is,E is partitioned
into Ey, By, ..., E, where eaclt; contains elements & having equivalent columns M.

106

E’ is formed by choosing one element from eBcandM’ is derived froniM by removing

the columns corresponding to the elements-H'.

Lines 2-3:Some variables are initialized; e.gsult is used to keep track of

the best encountered solution.

Line 4: The initial population is built by generating rama subsets d&’ whose
sizes are close ttog,|DV (E)|. Such choice is guided by the fact that the sizee
smallest possible representative subset havingesB of 1 cannot be smaller than this
threshold. This step is an important factor to @ge subsequently to a relatively small
solution. The size of the initial population, whishmaintained in subsequent iterations, is

equal to POP_SIZE.

107

Input: Execution Matrix M, Profiling Elements E
Parameters: MAX ITERATIONS //num of GA iterations

POP_SIZE //population size
MUT_PROB //probability of mutation

Output: Z chromosome representing a subset of E with
fitness equal to 1

8]

LS I SR V]

le.

17.

18.
19.

(M’, E’) « BasicRedundancyRemoval (M, E)
nbIterations « 0

result < null

population « genRandomSubsets (E’, POP_SIZE)
while [nbIterations < MAX ITERATIONS] AND

[fit (result) < 1.0]

(pl, p2) « rouletteWheelSelection(population)
child « crossover (pl, p2)

child « mutation(child, MUT_PROB)

replace (population, pl, p2, child)

best « getSolutionWithMaxFitness (population)
if fit(best) > fit(result)

result « best

end if

nbIterations « nbIterations + 1
end while

while [fit (result) < 1]

result « result U maxGain(result, E’-result)

end while

return result

Figure 25. Genetic Algorithm for Lossless Reduction

108

Line 5:The algorithm loops MAX_ITERATIONS times unlessaution with fitness

1.0 is encountered.

Line 6: Within each iteration, the algorithm selects tvawgnt chromosomes using the
roulette wheel methodology, which randomly selects chromosome at a time based on
its relative fitness with respect to the populatios, solutions with higher fitness values

are more likely to be selected.

Line 7: The selected parent chromosomes undergo singte-gaissover to create a
child chromosome as follows. First, each of thespi# at the same random position.
Then, a new (child) chromosome is created by ceneding the first part of the first parent

with the second part of the second parent.

Line 8:The child chromosome undergoes mutation, where lidés randomly

flipped with a probability equal to MUT_PROB.

Line 9: The child chromosome replaces the less fit paféne fithess of the former

is higher than that of the latter.

Lines 10-12The result is constantly updated by comparing the best solution

obtained in every subsequent generation.

Lines 16-18if the solution returned by the GA (s&y) doesn’t have a fithess of
1.0., we augment it by adding one element at a fioma E’-Sga until the fithess becomes

1.0. Each time we add the element that resultsamtaximum increase in fitness.

Concerning the parameters of B8, we used a value of 1000 for MAX_ITERATIONS,

0.05 for MUT_PROB, and 100 for POP_SIZE.
109

C. Experimental Study
1. Methodology

We evaluated our reduction technique by examinmgnipact on two common
types of analysis that make use of execution gsfitlustering and test suite minimization.
The main criterion was to check whether reducirgggtofiling elements using the
proposed approach has a negative impact on thaygofthe results. Cluster analysis has
been used in several areas of dynamic softwargsiaand was applied onto execution
profiles comprising program elements that variesrfistatements to slice pairs [60] and
paths [144]. In this work we will adopt a straifgintvard clustering approach that uges
meanswith Euclidean distance measures. Test cases vbeutdpresented as binary vectors
where the'f bit is set to 1 (resp. 0) if the correspondingfiiny element is exercised by it
(resp. not exercised). On the other hand, test suilhimization techniques aim at finding a
minimal subset that covers the same elements awitfiral suite. A typical approach is to
select one test at a time in a greedy manner smrasximize the number of covered

elements. We will refer to this approach®ySM(Greedy Test Suite Minimization).

2. Subject Programs and Profiling Types

Our experiments involved 5 Java applicatiains (nfo schedule, schedule2,
replace,andprint_tokensand 3 programs written in Gface flex2 andsed3. We
downloaded all 8 applications from the SIR repagi{@57] and seeded each of them with
2 to 5 faults (also included in the SIR packag@fier augmenting each application with

oracles and executing the associated test suitejene able to label each test case as

110

passing or failing. Failing test cases were furthbeled according to the fault triggered.
As a result, for each application we hagriliclass labelavhere N denotes the number of

faults. Note that we discarded all failing tesw@tttniggered more than one bug.

We used the tool developed in [67] to instrumbetiava programs where the
generated execution profiles consisted of basicksliobranches, method calls, method call
pairs, and def-use pairs. Concerning@yerograms, we generated execution profiles
consisting solely of statements using @@0Vtool [155].

3. Metrics

For each subject program, we applietheansclustering andcTSMbefore and
after reduction. The quality of clustering was dfifeed using Rand Index [146] and F-
measure [32], both of which evaluate the similédyween the clustering obtained by a
given algorithm K-meansn our case) to the “perfect” clustering wherewats belonging
to the same (resp. different) class are placedarsame (resp. different) cluster.
ConcerningcTSM we assessed its quality in either scenario bytwog the number of
class labels retained in the minimized suite. Ashsthe value of this metric ranges
between 1 and the total number of class label$, mgher values indicating better

performance.

4. Results
Table 13 shows the results we obtained for theb@estiprograms. Columns 2, 3,
and 4 respectively correspond to the number ofilprgfelements before reduction, those

after reduction, and the resulting reduction r&&umn 5 compares the F-measure for the

111

k-mean<lustering when applied on the original elemenhtseopposed to the reduced one.
Similarly, column 6 contrasts the Rand index fothboases. The last column enumerates
the total number of class labels, those retainedppyyingGTSMon the original profiles,
and those retained by applying it on the reducexs oNote that all the experiments
involving non-determinism (i.e. genetic algorithmdéork-meanywere repeated 10 times
and the results were averaged accordingly (valueslumns 3 and 7 were rounded to the
nearest integer). The main conclusion that carréerdis that our reduction mechanism
has no significant negative impact on either anglgespite the fact that the reduction rate
ranged between 94% and 99%. More specificallyFmeeasure and the Rand index were
nearly the same for all programs except flex2 whieeedifference in the F-measure was
higher than the average. A possible explanatiorhtrig the extent of reduction that
reached 99%. Concerni®®TSM for three of the programsof_info, schedulezand

space, the number of labels captured by the minimiagitesdidn’t change after reduction.
For the other fourschedule, replace, print_tokensdsed3, fault coverage was reduced
by 1 after reduction. As for flex2, the coveragesweduced by 2. Again, the last result

might also be attributed to the high reduction.rate

It's worth mentioning that the original (unreduceldta turned out to be unsuitable
for clustering and minimization in the first pladéis is evident from the generally low
values of F-measure and Rand index as well asathélfat in 6 out of the 8 programs
GTSMmissed at least one fault. However, our goal wasendiscuss the quality of
clustering oIGTSMbut rather to show that applying our reductiorhtegue doesn’t

deteriorate such analyses.

112

Table 13. Results

Elements % F-measure Rand # Labels
Program # Elements)
Post -Reduction | Reduction | 5rig/GA orig/GA All/orig/GA
tot_info 1269 45 96% 0.23/0.22 0.46/0.45 6/4/4
schedule 1043 63 94% 0.09/0.08 0.28/0.28 4/3/2
schedule2 1288 61 95% 0.07/0.07 0.06/0.0p 4/3/3
Replace 901 39 96% 0.19/0.2 0.08/0.08 3/2/1
print_tokens2 879 48 95% 0.25/0.24 0.3/0.3 5/4/3
Space 3164 142 96% 0.07/0.0f 0.1/0.1 6/5/5
flex2 2914 31 99% 0.2/0.15 0.46/0.45 4/4/2
sed3 1328 37 97% 0.3/0.2P 0.35/0.34 4/4/3

D. Benefits for State-based Comparison of Test Cases

We presented in [11] three metrics to quantifydiesimilarity between state-
based execution profiles. In what follows we préslea proposed approach and explain
how it’s likely to benefit from the lossless redoatmechanism investigated in this
chapter.

State profiling requires the ability to capture #adues taken by the program
variables at some points during execution. Fa plirpose, using tHgyte Code
Engineering Library(BCEL) [156], we built a tool capable of captgithe values assigned
to variables in a Java program. By default, thiddee at every definition of each program
variable. But the tool is made configurable to dadbe user to select which variables to
monitor and when to capture their values. Limitihg number of variables and the
sampling rate is crucial for practicality reasagisen that realistic programs contain a large
number of variables (unbounded in some cases) r@nploasibly long running.

At first hand, monitoring the inputs and outputeres intuitive, but it might not be

as beneficial as monitoring some internal variabies are more likely to characterize the
113

defect. Therefore, in situations where the useaunftool is familiar with the code (possibly
the developer), internal variables deemed critcghe implementation should be selected
for monitoring. However, when such option is nohigable, we can benefit from the
lossless reduction mechanism presented previosdiyllaws: 1) use reduction to identify
a minimal subset of structural elements, 2) idgritie variables associated with such
elements, and 3) monitor the values of the varglentified in step 2).

Once the variables to be monitored are selectedpttl could capture their values
following every definition (assignment). But theeugan choose other sampling times, e.g.,

at the exit of specific functions, or at the exemubf specific statements.

1. Dissimilarity Metrics

Execution profiles are typically compared in pawsbuild a dissimilarity matrix
that contains the dissimilarity metrics values lestw all profiles. In this work we adopt
and evaluate the dissimilarity metrics describeldweNote that X)) and §;) correspond to

the sequences of values assumed by the same neahvtarable in both profiles

Euclidean:

V2 (% -)2

114

Chi-Square Goodness of Fit:

(x - y)°
2. X

Relative Entropy:

> (%*log =)

For all the metrics, when comparing two profilesuogqual lengths we prolonged
the size of the shorter profile by duplicatinglést value. Also, in order to compare the
shapes of the functions represented by the pradespposed to comparing exact values,

we normalized each profile to range between 0 and 1

2. Results

In order to evaluate the proposed dissimilarityriogt we conducted experiments
using 10 versions of 4 programs from the SiemensHto@ark print_tokensprint_tokens2
schedule andtot_infg). For each seeded version and each metric typeonguted the
metrics values between all pairs of distinct téisét satisfy the following: 1) both tests are
passing, denoted as categ®fy;, and 2) one test is passing and the other isgillenoted

as categoryF. We then computed and compared the average me#iless for each of the

115

2 categories. It should be noted that in our expenis the profiles comprised the values
assigned at every definition of a single variabiattwe considered critical to the
implementation. The values are captured within ecig function, possibly at more than
one location. We found that in 8 out of 10 casesgiall three metrics, passing tests were
on average most dissimilar from failing tests. is abserved that theuclideanand the
Chi-Squaremetrics agreed on all cases. These results cldarhyonstrate that state-based

comparison is promising.

116

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

A. Thesis Contributions

We investigated several approaches to overcomiitations of certain
software analysis techniques that rely on analyexegution profiles. We proposed
modeling the runtime behavior of software via coexptructures that involve state
profiling, dependence information, combinationswiictural elements, and sequence data.
Our work involved various areas such as fault iaedibn, regression testing, and intrusion
detection.

In chapter 2 we proposed a fault localization téghe based on identifying short
dependence chains that are highly correlated \aithré. In addition to considering data
and control dependences, we augment each chaionyyuting a set of predicates
involving the source values and target valuesoédtges. We used 18 versions of the
Siemens test suite to evaluate the effectivenesaraiechnique in comparison to when
statement coverage is used. Our results were piragras the technique successfully
identified more correlated chains in 17 out of &8sions.

In chapter 3 we showed that coincidental correstigeprevalent and
demonstrated that it is a safety reducing factociverage-based fault localization. We
then proposed two techniques for cleansing tegtséiom coincidental correctness to

enhance the safety of CBFL, given that the testchave already been classified as failing
117

or passing. We evaluated the effectiveness ofexhmiques by empirically quantifying
their accuracy in identifying CC tests. The resulese promising, e.g., the better
performing technique, using 105 test suites andcddsck coverage, exhibited 9% false
negatives and 30% false positives on average, atfidlse negatives nor false positives in
14.3% of the test suites. Using 73 test suitesAdridcoverage (combined basic-block,
basic-block-edges, and def-use pairs), the numbers 12%, 19%, and 15%, respectively.
This work also allowed us to conclude that our téghes are likely to benefit coverage-
based fault localization since applying them alwagsto a higher suspiciousness score for
the fault.

In chapter 4 we proposed an approach to applicétésed intrusion detection
relying on profile-based signatures. Our technisfaets by collecting exercised program
elements, including method calls, method call p&iesic blocks, basic block edges, and
definition-use pairs. The actual construction @& tleeded signature is a learning process,
implemented via a genetic algorithm, which generfit@m a training set of executions the
combinations of elements that lead to unsafe ei@witThese combinations form the
signature, which is fed to a matching system thatitors the application by way of
dynamic selective instrumentation and alerts taugibns when a match is detected. Our
experiments involved seven Java applications comigi30 vulnerabilities/defects. The
results showed that our approach worked very wel26 vulnerabilities/defects (86.67%)
and the overhead imposed by the system is somewghaptable as it varied from 46% to
102%. The exhibited average rates of false negatine false positives were 0.43% and

1.03%, respectively.

118

Chapter 5 presentddiCov, a methodology and tool support for precise tasec
intent verification in regression test suiteCovcomplements existing coverage criteria by
focusing the testing on important code patternsetvaviors that could go untested
otherwise. That idJCov allows the tester to specify user-defined testiregqnents to be
covered. Such requirements incorporate structleatents, predicates describing the state
of select program variables, and sequence infoomati

Chapter 6 presented a lossless reduction mechamisnded to mitigate the
impact of high dimensionality present in most typésxecution profiles. We evaluated
this approach by applying it on eight sets of exiecuprofiles, and our results showed a
reduction rate from 94% to 99% without significaeterioration in the quality of
clustering and test suite minimization. We alsovet how state-based comparison of test

cases could benefit from such reduction mechanism.

B. Future Work

We plan to refindJCov by extending the set of predicates that coulddassl dor
specifying test requirements. The current versitowa for first-order logic predicates
only, which is not enough to describe all the stalat might be of interest to the user.
Also, we intend to investigate test case intens@neation. That is, in case of a failed test
intent verification, automated test case generatitiioe performed whose aim is to satisfy
the user-defined test requirement and thus preseevimtent of the test case.

Concerning intrusion detection, we will explorengstest case generation tools to

automatically create new inputs. This might furtimprove the performance of theS

119

because the latter is dependent on the qualityeofraining sets. We believe that 3 out of
the 4 cases in which our approach performed poarg/preventable and can be addressed
in future work. In these cases, signatures thatacherize the exploits could not be found
because we only relied on structural program elésrenbuild our execution profiles. To
remedy this shortcoming, we plan to incorporatéestgormation in the process of
signature generation by augmenting statementsher structural elements with simple
predicates. This type of augmented profiles coldd be investigated in the context of
identifying coincidentally correct test cases.

We also intend to leverage state profiling for auwaitic classification of test cases
and test suite minimization. We envision a supexdigarning mechanism that utilizes a
neural network to carry out the classification talke values of select internal variables at
specific events, such as the execution of certatesents, would be used as input to the
neural network. As for test suite minimization, wél explore a greedy approach that
determines a minimal set of test cases whose "stateerage is equivalent to the original

test suite.

120

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

T. Xie and D. Notkin, “Checking inside the blackxbdRegression testing by
comparing value spectraEEE Transactions on Software Engineerimgl. 31, no.
10, pp. 869 — 883, 2005.

T. Xie, D. Marinov, and D. Notkin, “Rostra: A framverk for detecting redundant
object-oriented unit tests,” inProceedings of the 9 IEEE International
Conference on Automated Software Engineenipg 196 — 205, 2004.

P. A. Francis, Advanced Techniques for SoftwareluFai Classification and
Observation-based Testing. PhD thesis, Case Wd3tsg@rve University, 2005.

C. Parnin and A. Orso, “Are automated debuggindiriepies actually helping
programmers?,” ifProceedings of the 2011 International SymposiunSofiware
Testing and Analysipp. 199 — 209, 2011.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D.tkia, “Dynamically discovering
likely program invariants to support program evigof’ IEEE Transactions on
Software Engineeringrol. 27, no. 2, pp. 99 — 123, 2001.

R. Abou Assi and W. Masri, “Identifying failure-cefated dependence chains,” in
Proceedings of the ™4 IEEE International Conference on Software Testing,
Verification and Validation Workshopgp. 607 — 616, 2011.

W. Masri and R. Abou Assi, “Prevalence of coinci@d¢mcorrectness and mitigation
of its impact on fault localizationACM Transactions on Software Engineering and
Methodologyvol. 23, no. 1, pp. 8:1 — 8:28, 2014.

W. Masri, R. Abou Assi, and M. EI-Ghali, “Generajiprofile-based signatures for
online intrusion and failure detectiorfiformation and Software Technolqgyol.
56, no. 2, pp. 238 — 251, 2014.

R. Abou Assi, F. Zaraket, and W. Masri, “Ucov: a&mudefined coverage criterion
for test case intent verification Submitted to ACM Transactions on Software
Engineering and Methodolog2014.

R. Abou Assi and W. Masri, “Lossless reduction ak@ution profiles using a
genetic algorithm,” inProceedings of the"™IEEE International Conference on
Software Testing, Verification and Validation Wdréps 2014.

W. Masri, J. Daou, and R. Abou Assi, “State prafiliof internal variables,” in
Proceedings of the "7 IEEE International Conference on Software Testing,
Verication and Validation Workshop2014.

J. A. Jones, M. J. Harrold, and J. Stasko, “Viasion of test information to assist
fault localization,” inProceedings of the 34international conference on Software
engineeringpp. 467 — 477, 2002.

T. Denmat, M. Ducasse, and O. Ridoux, “Data minamgl crosschecking of
execution traces,” ifProceedings of the S0IEEE/ACM International Conference
on Automated Software Engineeriqgp. 396 — 399, 2005.

121

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

M. Renieres and S. P. Reiss, “Fault localizatiothwiearest neighbor queries,” in
Proceedings of the ¥BIEEE International Conference on Automated Sofewar
Engineering pp. 30 — 39, 2003.

V. Dallmeier, C. Lindig, and A. Zeller, “Lightweighbug localization with
AMPLE,” in Proceedings of the sixth international symposium Aartomated
analysis-driven debuggingp. 99 — 104, 2005.

J. Clause and A. Orso, “A technique for enablind aapporting debugging of field
failures,” in Proceedings of the 39 International Conference on Software
Engineering pp. 261 — 270, 2007.

R. Santelices, J. A. Jones, Y. Yu, and M. J. Hdrrtlightweight fault-localization
using multiple coverage types,” iRroceedings of th&1% IEEE International
Conference on Software Engineeripgp. 56 — 66, 2009.

J. A. Jones and M. J. Harrold, “Empirical evaluataf the tarantula automatic fault
localization technique,” inProceedings of the 30 IEEE/ACM international
Conference on Automated software engineenipg 273 — 282, 2005.

W. Masri, “Fault localization based on informatidlow coverage,” Software
Testing, Verification and Reliabilityol. 20, no. 2, pp. 121 — 147, 2010.

J. M. Voas, “Pie: A dynamic failure-based techniquEEEE Transactions on
Software Engineeringrol. 18, no. 8, pp. 717 — 727, 1992.

P. Ammann and J. Offuttptroduction to software testingCambridge University
Press, 2008.

B. Fluri, M. Wursch, M. Pinzger, and H. C. Gall, fénge distilling: Tree
differencing for fine-grained source code changeaexion,” |IEEE Transactions on
Software Engineeringrol. 33, no. 11, pp. 725 - 743, 2007.

P. G. Frankl and S. N. Weiss, “An experimental cangon of the effectiveness of
branch testing and data flow testinEEE Transactions on Software Engineering
vol. 19, no. 8, pp. 774 — 787, 1993.

P. G. Frankl and E. J. Weyuker, “An applicable figrof data flow testing criteria,”
IEEE Transactions on Software Engineeringl. 14, no. 10, pp. 1483 — 1498,
1988.

R. M. Hierons, “Avoiding coincidental correctness bhoundary value analysis,”
ACM Transactions on Software Engineering and Mebhagl;, vol. 15, no. 3, pp.
227 — 241, 2006.

T. L. Graves, M. J. Harrold, J.-M. Kim, A. Portand G. Rothermel, “An empirical
study of regression test selection techniques,” Pimceedings of the 30
international conference on Software engineerimg 188 — 197, 1998.

D. Lorenzoli, L. Mariani, and M. Pezze, “Towardslfggotecting enterprise
applications,” in Proceedings of the ¥8IEEE International Symposium on
Software Reliabilitypp. 39 — 48, 2007.

122

[28]

[29]

[30]

[31]

[32]
[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

M. J. Harrold and M. L. Soffa, “Efficient computati of interprocedural definition-
use chains,’ACM Transactions on Programming Languages and 8\ssteol. 16,
no. 2, pp. 175 — 204, 1994.

D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Analous system call detection,”
ACM Transactions on Information and System Seqgurdl 9, no. 1, pp. 61 — 93,
2006.

D. Wagner and P. Soto, “Mimicry attacks on hosteoasntrusion detection
systems,” in Proceedings of the ™ ACM Conference on Computer and
Communications Securitpp. 255 — 264, 2002.

S. Yoo and M. Harman, “Regression testing minimagt selection and
prioritization: a survey,'Software Testing, Verification and Reliabiligol. 22, no.
2, pp. 67 — 120, 2012.

C. J. V. Rijsbergerinformation RetrievalButterworth-Heinemann, 1979.

W. Lee and S. J. Stolf@ata mining approaches for intrusion detectidefense
Technical Information Center, 2000.

W. Masri and A. Podgurski, “An empirical study dfet strength of information
flows in programs,” inProceedings of the 2006 International Workshop on
Dynamic Systems Analyspp. 73 — 80, 2006.

G. Liepins and H. Vaccaro, “Anomaly detection: pse and framework,” in
Proceedings of the 2National Computer Security Conferengm. 495 — 504,
1989.

H. Do, S. Elbaum, and G. Rothermel, “Supportingtaadied experimentation with
testing techniques: An infrastructure and its ptékmmpact,” Empirical Software
Engineering vol. 10, no. 4, pp. 405 — 435, 2005.

R. Agrawal, T. Imielinski, and A. Swami, “Mining saciation rules between sets of
items in large database®\CM SIGMOD Recordvol. 22, pp. 207 — 216, 1993.

T. Apiwattanapong, A. Orso, and M. J. Harrold, iE##nt and precise dynamic
impact analysis using execute-after sequences,”Pinceedings of the 37
international conference on Software engineerppg 432 — 441, 2005.

P. Bodik, G. Friedman, L. Biewald, H. Levine, G.ndaa, K. Patel, G. Tolle, J.
Hui, A. Fox, M. I. Jordan, et al., “Combining vidization and statistical analysis to
improve operator confidence and efficiency forueel detection and localization,”
in Proceedings of the"2 International Conference on Autonomic Computipp.
89 — 100, 2005.

D. Brumley, J. Newsome, D. Song, H. Wang, and &, Jhowards automatic
generation of vulnerability-based signatures,”Hroceedings of the 2006 IEEE
Symposium on Security and Privapp. 2 — 16, 2006.

D. Brumley, H. Wang, S. Jha, and D. Song, “Creatinigperability signatures using
weakest preconditions,” irProceedings of the JDIEEE Computer Security
Foundations Symposiymp. 311 — 325, 2007.

123

[42] A. Chaturvedi, S. Bhatkar, and R. Sekar, “Improvattack detection in host-based
IDS by learning properties of system call arguménis Proceedings of the IEEE
Symposium on Security and Priva2@05.

[43] H. Chen, G. Jiang, C. Ungureanu, and K. Yoshili{taline tracking of component
interactions for failure detection and localization distributed systems,TEEE
Transactions on Systems, Man, and Cybernetics, ®afipplications and Reviews
vol. 37, no. 4, pp. 644 — 651, 2007.

[44] D. E. Denning, “A lattice model of secure infornaetiflow,” Communications of
the ACM vol. 19, no. 5, pp. 236 — 243, 1976.

[45] M. El-Ghali and W. Masri, “Intrusion detection ugirsignatures extracted from
execution profiles,” inProceedings of the 2009 ICSE Workshop on Software
Engineering for Secure Systempp. 17 — 24, 2009.

[46] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and Gong, “Anomaly
detection using call stack information,” Rroceedings of the 2003 Symposium on
Security and Privacypp. 62 — 75, 2003.

[47] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. Anfgstaff, “A sense of self for
unix processes,” irProceedings of the 1996 IEEE Symposium on Secanty
Privacy, pp. 120 — 128, 1996.

[48] J. T. Giffin, S. Jha, and B. P. Miller, “Automateliscovery of mimicry attacks,”
Recent Advances in Intrusion Detectipp. 41 — 60, 2006.

[49] D. Jackson and E. J. Rollins, “Chopping: A geneadion of slicing,”technical
report, DTIC Document, 1994.

[50] D. Kang, D. Fuller, and V. Honavar, “Learning cléisss for misuse and anomaly
detection using a bag of system calls representatio Information Assurance
Workshop IAW'05Proceedings from the™6Annual IEEE SMCpp. 118 — 125,
2005.

[51] H. Kim and B. Karp, “Autograph: Toward automatedstiidbuted worm signature
detection,”"USENIX security symposiuwol. 286, 2004.

[52] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “Ometdetection of anomalous
system call argumentsComputer Security--ESORICS 20@®. 326 — 343, 2003.

[53] W. Lee, S. J. Stolfo, and K. W. Mok, “A data minifigamework for building
intrusion detection models,” ifProceedings of the 1999 IEEE Symposium on
Security and Privacypp. 120 — 132, 1999.

[54] D. Leon, A. Podgurski, and L. J. White, “Multivatieavisualization in observation-
based testing,” irProceedings of the 2 international conference on Software
engineeringpp. 116 — 125, 2000.

[55] Z. Li, M. Harman, and R. M. Hierons, “Search altjums for regression test case

prioritization,” IEEE Transactions on Software Engineeringl. 33, no. 4, pp. 225
— 237, 2007.

124

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

R. Lippmann, J. W. Haines, D. J. Fried, J. Korbal K. Das, “Analysis and results
of the 1999 darpa off-line intrusion detection ewxion,” Recent Advances in
Intrusion Detectionpp. 162 — 182, 2000.

H. Mannila, H. Toivonen, and A. I. Verkamo, “Dis@ing frequent episodes in
sequences extended abstract, Pimceedings of the®1Conference on Knowledge
Discovery and Data Miningl995.

M. Martin, B. Livshits, and M. S. Lam, “Finding apgation errors and security
flaws using pqgl: a program query languag&CM SIGPLAN Noticesvol. 40, pp.
365 — 383, 2005.

S. McConnellCode completeO’Reilly Media, Inc., 2004.

W. Masri, “Exploiting the empirical characteristicd program dependences for
improved forward computation of dynamic slicesEmpirical Software
Engineeringvol. 13, no. 4, pp. 369 — 399, 2008.

W. Masri, R. Abou Assi, M. EI-Ghali, and N. Al-Faia“An empirical study of the
factors that reduce the effectiveness of coveraged fault localization,” in
Proceedings of the "9 International Workshop on Defects in Large Sofevar
Systemspp. 1 -5, 20009.

W. Masri and M. EI-Ghali, “Test case filtering apdoritization based on coverage
of combinations of program elements," firoceedings of the "7 International
Workshop on Dynamic Analysigp. 29 — 34, 2009.

W. Masri and H. Halabi, “An algorithm for capturingriables dependences in test
suites,”Journal of Systems and Softwavel. 84, no. 7, pp. 1171 — 1190, 2011.

W. Masri and A. Podgurski, “Application-based antymatrusion detection with
dynamic information flow analysisComputers & Securifywol. 27, no. 5, pp. 176
—187, 2008.

W. Masri and A. Podgurski, “Algorithms and tool gapt for dynamic information
flow analysis,”Information and Software Technolqgiol. 51, no. 2, pp. 385 — 404,
2009.

W. Masri and A. Podgurski, “Measuring the strengthinformation flows in
programs,”ACM Transactions on Software Engineering and Mebhagl, vol. 19,
no. 2, 2009.

W. Masri, A. Podgurski, and D. Leon, “An empiricstudy of test case filtering
techniques based on exercising information floWSEE Transactions on Software
Engineeringvol. 33, no. 7, pp. 454 — 477, 2007.

F. P. Miller, A. F. Vandome, and J. McBrewster, ‘@nlonware: Computer
software, copyright, office suite, public domairst lof commercial video games
released as freeware, orphan works,” 2009.

J. Newsome, D. Brumley, and D. Song, “Vulnerabiipecific execution filtering
for exploit prevention on commodity software,” iRroceedings of the I3
Symposium on Network and Distributed System SgcR606.

125

[70]

[71]

[72]

[73]

[74]
[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

J. Newsome and D. Song, “Dynamic taint analysisafdomatic detection, analysis,
and signature generation of exploits on commodifiwsare,” in Proceedings of the
12" Annual Network and Distributed System Securityg®gmmn 2005.

A. Nusayr and J. Cook, “Using AOP for detailed mm@ monitoring
instrumentation,” inProceedings of the "7 International Workshop on Dynamic
Analysis pp. 8 — 14, 20009.

L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion elgton with unlabeled data using
clustering,”ACM CSS Workshop on Data Mining Applied to Secuedp1.

W. Masri and R. Abou Assi, “Cleansing test suitesrf coincidental correctness to
enhance fault-localization,” inProceedings of the "3 IEEE International
Conference on Software Testing, Verification antid@sion (ICST) pp. 165 — 174,
2010.

A. Sabelfeld and A. C. Myers, “Language-based miation-flow security,”|EEE
Journal on Selected Areas in Communicatjostd. 21, no. 1, pp. 5-19, 2003.

K. Sen, D. Marinov, and G. Agha, “CUTE: a concaliut testing engine for C,” in
Proceedings of the f0European software engineering conferer2@05.

F. Shull, V. Basili, B. Boehm, A. W. Brown, P. CasiM. Lindvall, D. Port, I. Rus,
R. Tesoriero, and M. Zelkowitz, “What we have leatrabout fighting defects,” in
Proceedings of the'BIEEE Symposium on Software Metripp. 249 — 258, 2002.

A. Singh and A. K. Gupta, “A hybrid heuristic fdrie maximum clique problem,”
Journal of Heuristicsvol. 12, pp. 5 — 22, 2006.

J. Steven, P. Chandra, B. Fleck, and A. Podgufigiapture: A capture/replay tool
for observation-based testing,” Rroceedings of the 2000 International Symposium
on Software Testing and Analygip. 158 — 167, 2000.

D. Wagner and D. Dean, “Intrusion detection vidistanalysis,” inProceedings of
the 2001 IEEE Symposium on Security and Privapy 156 — 168, 2001.

H. Xu, W. Du, and S. J. Chapin, “Context sensisw®maly monitoring of process
control flow to detect mimicry attacks and impossipaths,”"Recent Advances in
Intrusion Detectionpp. 21 — 38, 2004.

H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirtlanorama: capturing system-
wide information flow for malware detection and bs#s,” in Proceedings of the
14" ACM conference on Computer and communications igcpp. 116 — 127,
2007.

P. Ammann, J. Offutt, and H. Huang, “Coverage datéor logical expressions,” in
Proceedings of the 14 International Symposium on Software Reliability
Engineering pp. 99 — 107, 2003.

J. Farjo, R. Abou Assi, W. Masri, and F. ZarakdDoés principal component
analysis improve cluster-based analysis?,” Rmoceedings of the "6 IEEE

International Conference on Software Testing, VWation and Validation
Workshopspp. 400 — 403, 2013.

126

[84]

[85]

[86]
[87]

[88]

[89]

[90]

[91]

[92]
[93]

[94]

[95]

[96]

[97]

T. Ball and J. R. Larus, “Efficient path profiliign Proceedings of the 3%nnual
ACM/IEEE international symposium on Microarchiteetupp. 46 — 57, 1996.

I. D. Baxter, A. Yahin, L. Moura, M. Sant'Anna, ahd Bier, “Clone detection
using abstract syntax trees,” Proceedings of the International Conference on
Software Maintenancep. 368 — 377, 1998.

J. Bergeron, E. Cerny, A. Hunter, and A. Nightirgalerification methodology
manual for SystemVerilo&pringer, 2006.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.irBtet al., Introduction to
algorithms vol. 2. MIT press Cambridge, 2001.

R. Grinwald, E. Harel, M. Orgad, S. Ur, and A. ZiUser defined coverage - a tool
supported methodology for design verification,”Rroceedings of the $5annual
Design Automation Conferenqgap. 158 — 163, ACM, 1998.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrafiixperiments on the
effectiveness of data flow and control flow-basedttadequacy criteria,” in
Proceedings of the Binternational Conference on Software Engineeripg. 191

— 200, 1994.

J. A. Jones and M. J. Harrold, “Test-suite redurctad prioritization for modified
condition/decision coveragelEEE Transactions on Software Engineeringl. 29,
no. 3, pp. 195 — 209, 2003.

W. Masri, R. Abou Assi, F. Zaraket, and N. FatdiEinhancing fault localization
via multivariate visualization,” inProceedings of the ™5 IEEE International
Conference on Software Testing, Verification antidésion Workshopspp. 737 —
741, 2012.

S. Kullback,Information theory and statistic€ourier Dover Publications, 2012.

J. W. Laski and B. Korel, “A data flow oriented gram testing strategyfEEE
Transactions on Software Engineerimg. 3, pp. 347 — 354, 1983.

I. Neamtiu, J. S. Foster, and M. Hicks, “Understagdource code evolution using
abstract syntax tree matchindhCM SIGSOFT Software Engineering Notesl.
30, pp. 1 -5, ACM, 2005.

S. Rapps and E. J.Weyuker, “Selecting software tkgh using data flow
information,” IEEE Transactions on Software Engineerimp. 4, pp. 367 — 375,
1985.

E. Shaccour, F. Zaraket, and W. Masri, “Coverageifigation for test case intent
preservation in regression suites,” Rroceedings of the "61EEE International
Conference on Software Testing, Verification antidétion Workshopspp. 392 —
395, 2013.

W. Yang, “ldentifying syntactic differences betweémo programs,”Software:
Practice and Experien¢&ol. 21, no. 7, pp. 739 — 755, 1991.

127

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

C. Csallner and Y. Smaragdakis, “DSD-crasher: arilybnalysis tool for bug
finding,” in Proceedings of the 2006 international symposiunoftware testing
and analysispp. 245 — 254, 2006.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “@a &accuracy of spectrum-
based fault localization,” ifesting: Academic and Industrial Conference Pragtic
and Research Techniques-MUTATIQig. 89 — 98, 2007.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “$pec-based multiple fault
localization,” in Proceedings of the S4IEEE/ACM International Conference on
Automated Software Engineerjngp. 88 — 99, 2009.

R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “Araleation of similarity
coefficients for software fault localization,” Proceedings of the 2Pacific Rim
International Symposium on Dependable Compuipg 39 — 46, 2006.

R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. V&emund, “A practical
evaluation of spectrum-based fault localizatiadgurnal of Systems and Software
vol. 82, no. 11, pp. 1780 — 1792, 20009.

H. Agrawal, J. Horgan, S. London, and W. Wong, f1Fdocalization using
execution slices and data flow tests,”Rmceedings of IEEE Software Reliability
Engineering pp. 143 — 151, 1995.

B. Baudry, F. Fleurey, and Y. Le Traon, “Improvitest suites for efficient fault
localization,” in Proceedings of the 38international conference on Software
engineeringpp. 82 — 91, 2006.

C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Umsted and automatic generation
of high-coverage tests for complex systems progranmsOSD| vol. 8, pp. 209 —
224, 2008.

M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and Brewer, “Pinpoint: Problem
determination in large, dynamic internet service#)” Proceedings of the
International Conference on Dependable Systems Netvorks pp. 595 — 604,
2002.

W. Dickinson, D. Leon, and A. Podgurski, “Findingjlfires by cluster analysis of
execution profiles,” ifProceedings of the Z3international conference on Software
engineeringpp. 339 — 348, 2001.

M. Harman, A. Lakhotia, and D. Binkley, “Theory aradgorithms for slicing
unstructured programs)hformation and Software Technolqgyol. 48, no. 7, pp.
549 — 565, 2006.

S. Yoo, M. Harman, and D. Clark, “Fault localizatiprioritization: Comparing
information-theoretic and coverage-based approdch®€M Transactions on
Software Engineering and Methodologyl. 22, no. 3, 2013.

W. E. Howden, “Weak mutation testing and complessnef test sets,IEEE
Transactions on Software Engineerimg. 4, pp. 371 — 379, 1982.

128

[111]

[112]

[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]
[124]

[125]

J. Han, M. Kamber, and J. P&ata mining: concepts and techniquédorgan
kaufmann, 2006.

J. A. Jones, J. F. Bowring, and M. J. Harrold, “Detping in parallel,” in
Proceedings of the 2007 international symposiunsoftware testing and analysis
pp. 16 — 26, 2007.

B. Korel and S. Yalamanchili, “Forward computatiohdynamic program slices,”
in Proceedings of the 1994 ACM SIGSOFT internatiolyahmsium on Software
testing and analysjgpp. 66 — 79, 1994.

D. Leon, A. Podgurski, and W. Dickinson, “Visualfigi similarity between program
executions,” ifProceedings of the Y6lEEE International Symposium on Software
Reliability Engineeringpp. 311 — 321, 2005.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. JordarfBug isolation via remote
program sampling,ACM SIGPLAN Noticewol. 38, pp. 141 — 154, 2003.

B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M..1Jordan, “Scalable statistical
bug isolation,”ACM SIGPLAN Noticewol. 40, pp. 15 — 26, 2005.

C. Liu, L. Fei, X. Yan, J. Han, and S. P. MidkiffStatistical debugging: A
hypothesis testing-based approadiEE Transactions on Software Engineering
vol. 32, no. 10, pp. 831 — 848, 2006.

C. Liu, X. Yan, L. Fei, J. Han, and S. P. Midkif§ober: statistical model-based
bug localization,”ACM SIGSOFT Software Engineering Notesl. 30, no. 5, pp.
286 — 295, 2005.

C. Liu and J. Han, “Failure proximity: a fault ldization-based approach,” in
Proceedings of the f4ACM SIGSOFT international symposium on Foundatinfns
software engineeringp. 46 — 56, 2006.

B. Marick, “The weak mutation hypothesis,” Rroceedings of the symposium on
Testing, analysis, and verificatippp. 190 — 199, 1991.

A. Podgurski, D. Leon, P. Francis, W. Masri, M. Eln J. Sun, and B. Wang,
“Automated support for classifying software failueports,” inProceedings of the
25" International Conference on Software Engineering 465 — 475, 2003.

D. J. Richardson and M. C. Thompson, “An analys$itest data selection criteria
using the relay model of fault detection|EEE Transactions on Software
Engineeringvol. 19, no. 6, pp. 533 — 553, 1993.

S. S. Singh and N. Chauhan, “K-means v/s k-medddsomparative study,” in
National Conference on Recent Trends in Engineesifigegchnology 2011.

J. M. Voas and K. W. Miller, “Semantic metrics oftware testability,' Journal of
Systems and Softwaneol. 20, no. 3, pp. 207 — 216, 1993.

X. Wang, S. Cheung, W. K. Chan, and Z. Zhang, “Trajrdoincidental correctness:
Coverage refinement with context patterns to imprdault localization,” in
Proceedings of the 81International Conference on Software Engineering,. 45 —
55, 20009.

129

[126]

[127]

[128]

[129]

[130]

[131]
[132]
[133]
[134]
[135]
[136]

[137]

[138]

[139]
[140]
[141]

[142]

M. Weiser, “Program slicing,” in Proceedings of sfelnternational Conference on
Software Engineering, pp. 439 — 449, 1981.

W. E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crossthhsed statistical method for
effective fault localization,” irProceedings of the®lInternational Conference on
Software Testing, Verification, and Validatjgp. 42 — 51, 2008.

L. A. Zadeh, “Fuzzy sets,Information and contrglvol. 8, no. 3, pp. 338 — 353,
1965.

A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, andl. Aiken, “Statistical debugging:
simultaneous identification of multiple bugs,” iRroceedings of the
International Conference on Machine Learnipg. 1105 - 1112, 2006.

P. Zoeteweij, R. Abreu, R. Golsteijn, and A. J. v@emund, “Diagnosis of
embedded software using program spectraPrivceedings of the ¥4Annual IEEE
International Conference and Workshops on the Eewing of Computer-Based

Systemspp. 213 — 220, 2007.

H. Agrawal and J. R. Horgan, “Dynamic program sli;i ACM SIGPLAN Notices
vol. 25, no. 6, pp. 246 — 256, 1990.

D. Binkley and M. Harman, “A survey of empiricalstgts on program slicing,”
Advances in Computergol. 62, pp. 105 — 178, 2004.

H. Cleve and A. Zeller, “Locating causes of progremtures,” in Proceedings of
the 27" International Conference on Software Engineerimg 342 — 351, 2005.

D. E. Denning, Cryptography and data securityAddison-Wesley Longman
Publishing Co., Inc., 1982.

D. E. Denning and P. J. Denning, “Certificationpobgrams for secure information
flow,” Communications of the AGMol. 20, no. 7, pp. 504 — 513, 1977.

J. S. Fenton, “Memoryless subsysteniye Computer Journalol. 17, no. 2, pp.
143 — 147, 1974.

W. Masri, A. Podgurski, and D. Leon, “Detecting amgbugging insecure
information flows,” inProceedings of the Y9nternational Symposium on Software
Reliability Engineeringpp. 198 — 209, 2004.

P. Arumuga Nainar, T. Chen, J. Rosin, and B. LiliBtatistical debugging using
compound boolean predicates,” iRroceedings of the 2007 International
Symposium on Software Testing and Analygs5 — 15, 2007.

F. Tip, “A survey of program slicing techniquesJournal of Programming
Languagesvol. 3, no. 3, pp. 121 — 189, 1995.

W. W. Cohen, “Fast effective rule induction,” iRroceedings of the 2
International Conference on Machine Learnipg. 115 — 123, 1995.

X. Zhang, N. Gupta, and R. Gupta, “Pruning dynasiimes with confidence ACM
SIGPLAN Noticesvol. 41, pp. 169 — 180, 2006.

I. K. Fodor, “A survey of dimension reduction tedures,” 2002.

130

[143]

[144]
[145]
[146]
[147]
[148]
[149]
[150]
[151]

[152]

[153]

[154]

[155]
[156]
[157]
[158]

M. Harman and P. McMinn, “A theoretical and empmtistudy of search-based
testing: Local, global, and hybrid searchEEE Transactions on Software
Engineering vol. 36, no. 2, pp. 226 — 247, 2010.

T. Reps, T. Ball, M. Das, and J. Larus, The userofjram profiling for software
maintenance with applications to the year 2000 lprabSpringer, 1997.

J. Shlens, “A tutorial on principal component as@y Systems Neurobiology
Laboratory, University of California at San Diegeol. 82, 2005.

W. M. Rand, “Objective criteria for the evaluatiohclustering methods Journal
of the American Statistical associatjorol. 66, no. 336, pp. 846 — 850, 1971.

R. B. Cattell, “The scree test for the number aftdas,” Multivariate behavioral
researchvol. 1, no. 2, pp. 245 - 276, 1966.

L. Hatcher, A step-by-step approach to using th& Sgstem for factor analysis and
structural equation modeling. Sas Institute, 1994.

H. F. Kaiser, “The application of electronic comgnst to factor analysis,”
Educational and psychological measureméa®ic0.

L. I. Smith, “A tutorial on principal components aysis,” Cornell University,
USA, vol. 51, 2002.

. Borg and P. J. Groenen, Modern multidimensiosahling: Theory and
applications. Springer, 2005.

W. Dickinson, D. Leon, and A. Podgurski, “Pursuifaglure: the distribution of
program failures in a profile space®CM SIGSOFT Software Engineering Notes
vol. 26, pp. 246 — 255, 2001.

S. Elbaum, A. G. Malishevsky, and G. Rothermel, siTease prioritization: A
family of empirical studies,IEEE Transactions on Software Engineetingl. 28,
no. 2, pp. 159 — 182, 2002.

A. Podgurski, W. Masri, Y. McCleese, F. G. WolfhdaC. Yang, “Estimation of
software reliability by stratified sampling,ACM Transactions on Software
Engineering and Methodologyol. 8, no. 3, pp. 263 — 283, 1999.

gcc.gnu.org/onlinedocs/gcc/gcov.htmi
jakarta.apache.org/bcel

sir.unl.edu

jtidy.sourceforge.net

131

