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AN ABSTRACT OF THE THESIS OF

Firas A. Abi Farraj for Master of Engineering
Major: Mechanical Engineering

Title: Non-Iterative Visual Odometry using a Monocular Camera

This thesis presents a visual odometry system for ground vehicles using a
single downward-facing camera and two tilt sensors. Conventional visual odometry
algorithms use the probabilistic and iterative RANSAC to remove outliers and
calculate the motion. They suffer from different problems including dynamic
obstacles, changes in lighting conditions, inaccuracy in depth estimation and the
high computational cost. The proposed method calculates the motion from a
monocular camera without using any probabilistic (non-deterministic) or iterative
routines. It makes use of the constant distance between the camera and the
ground to impose the depth and improve the accuracy. Moreover, it makes use of
the concept of a downward looking camera and the known depth to implement the
inliers-detection method as a substitute for RANSAC to remove outliers. This
improves the speed of the algorithm and decreases the computational cost. The
algorithm is validated for real data sets and shows competitive accuracy and
robustness with a loop closure error reaching as low as 1.25% for a run of 461
meters.
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CHAPTER 1

INTRODUCTION

Navigation is the process of planning, recording, and controlling the course

and position of a body. Automating this process is a key aspect of the evolution of

transportation systems and is still one of the major challenges facing full

autonomy. The ego motion estimation of a body is the initial step in navigation

and it refers to estimating the path a body has moved and the final potion and

orientation it has reached.

The most popular technology for navigation is the global positioning

system (GPS) although one of its drawbacks is outages that occur in urban canyons

and under foliage. Dead-reckoning systems, on the other hand, are based on

incrementally estimating position by integrating the differential motion estimates

in time. Each position is dependent on previous measurements and the track is

estimated by calculating the displacement between each two positions xi−1 and xi

and summing them all together. An error in calculating one position estimate

propagates throughout the sequence incrementing the error with each step.

Local positioning systems differ widely and can be divided into different

categories. The most popular sensors used in local positioning systems are

encoders and Inertial navigation systems (INS). Encoders are cheap and easy to

use but are relatively inaccurate because of unequal wheel diameters, misalignment

of wheels, uneven travel floors, wheel slippage and others [6]. On the other hand,

Inertial Navigation Systems can be accurate but this accuracy comes at a price.

Conventional IMUs drift quickly which highly impacts their accuracy [38].

Range finding sensors, like lasers and LIDARs can also be used for local
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motion estimation. LIDARs are used to form a 3D map of the environment in

which the robot is moving. This 3D map is then used to navigate using the

Iterative Closest Point method (ICP) or Simultaneous Localization and Mapping

(SLAM).

One of the latest techniques developed for localization and tracking are

those based on computer vision which have become more and more influential with

the increasing computational power of modern computers. Real-time visual

odometry algorithms include one of the variants of optical flow, Structure From

Motion (SFM) [39] or Visual SLAM [8, 27, 3, 40, 5] and others [20, 10, 14, 31, 25].

SLAM/SfM can produce good results but the computational overhead is generally

overbearing for real-time applications, unless additional complexities are

introduced to the standard algorithms. For instance, in the filtering techniques of

SLAM, computation is reduced by marginalizing out all poses except for the

current one [9]. In SfM the practice has been to limit Bundle Adjustment to

certain keyframes of the image sequence [22].

When one is only interested in recovering the motion of a vehicle without

particular focus on the structure of the environment, a special case of SFM known

as Visual Odometry (VO)[36, 12] is applied. While most flavors of VO also involve

constructing a local map, one only cares about local consistency of the trajectory;

whereas in SLAM global motion and map consistency is sought usually after loop

closure. Further constraints can be applied when the vehicle is moving in a

structured environment among which one of the most common is the assumption

that the ground is locally planar [21, 31, 25].

Visual odometry algorithms are highly dependent on the working

environment in which they are used [12]. They need specific conditions to give

accurate results and can be totally unreliable if these conditions are not satisfied.

One of the important conditions for SFM/SLAM to give accurate results is the

2



presence of a rich 3D structure in the camera’s field of view [17]. Having a

dominant plane in the field of view of the camera is a mathematical singularity

which leads to unacceptable results. Moreover, an accurate calculation of the

translation needs a high number of close features whereas rotation is more

dependent on far ones. The absence of close features leads to a bad estimate of the

translation which has a bad impact on the calculated path.

In vast areas like a desert, a playground or a highway the above conditions

are not satisfied. Most of the features in the camera’s field of view are far and not

reliable for an accurate motion estimation. Furthermore, the remaining close

features belong to a dominant plane (the ground plane) and as previously

mentioned, the presence of a dominant plane is a mathematical singularity for

both algorithms. Adding to that the high computational cost resulting from the

iterative nature of all algorithms used on a monocular camera, the need for a

better solution for monocular visual odometry arises.

I present in my work a visual odometry system for ground vehicles using a

single downward-facing camera and two tilt sensors. The method calculates the

motion from a monocular camera without using any probabilistic

(non-deterministic) or iterative routines. Accordingly, the proposed method

improves the accuracy, the certainty, and the speed of the algorithm. It is

validated for real data sets and shows competitive accuracy and robustness with a

loop closure error reaching as low as 1.25% for a run of 461 meters.

1.1 Thesis Outline

This thesis proceeds as follows:

Chapter 2 gives a background for this thesis. An overview of basic models and

theories in computer vision ranging from the feature extraction and matching
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to the motion estimation itself.

Chapter 3 presents a literature review for visual odometry. Previous studies

tackling visual odometry are put forward and the main contribution of this

thesis is described.

Chapter 4 explains the theory of the presented algorithm and the details of each

step.

Chapter 5 presents the experiments and results we obtained by applying the

algorithm on real data.

Chapter 6 concludes the thesis with a discussion and suggestions for future

development.
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CHAPTER 2

BACKGROUND

Visual Odometry is the process by which we calculate the motion of an

agent (vehicle, robot, etc) using the input from one or multiple cameras. Images

taken are studied and analyzed to get the needed data for calculating the agent’s

position. In this section the basic theoretical background needed for understanding

visual odometry is presented.

2.1 Projective Geometry

An image is the projection of a 3D scene on a plane. As can be seen from

Fig. (2.1), the light ray emitted from a 3D point P and passing through the center

of projection (COP), also called the focal point, intersects the projection plane

situated at a distance d = focallength from the COP at a certain point p. Now

moving from a single 3D point to a general 3D scene, all light rays reflected by the

scene and passing through the COP form the image at the projection plane (image

plane).

The frame of reference is taken to have the COP (focal point) as its origin

and the axis perpendicular to the projection plane as its z-axis. This is called the

camera frame. It is related to the world frame of reference by a 3D transformation

consisting of a translation t and a rotation R—called the extrinsic camera

parameters. A 3D point with coordinates (X, Y, Z)t with respect to the camera

frame is projected in the image plane to the 2D point (d ∗ Y/Z, d ∗X/Z) as can be

seen in Fig. (2.2). Rearranging and replacing d by its value f (the focal length of

the camera) we get:
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Figure 2.1: Projecting a 3D point on the projection plane
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, (2.1)

where (X, Y, Z) are the coordinates of the 3D points and (x,y) are the

coordinates of the 2D projections.

Figure 2.2: Projecting a 3D point on the projection plane (top and side view)

6



2.1.1 Camera Intrinsic Parameters

Fig. 2.3 shows a simplified example of how an image is perceived by a

computer. Here, the coordinates of a point are given in pixels with respect to the

upper left corner of the image and are called pixel coordinates. When these

coordinates are transformed to absolute coordinates expressed in mm with respect

to the center of the image, they are called normalized coordinates. Rearranging

equations from Fig. (2.3) we get:
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where (x′, y′) are the pixel coordinates and (x, y) are the normalized coordinates.

If the pixels are not rectangular but distorted by an angle θ, the above relation

becomes:
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2.2 Multiple View Geometry

Two images of the same scene have multiple common features between

them. These two images can be matched together extracting the common features

between them after which the extracted matches can be used to calculate the

displacement between them.
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Figure 2.3: the pixels in an image from a digital camera

2.2.1 Features Extraction and Matching

Extracting the unique features from each image and matching them

together defines the first most essential step to proceed with visual odometry.

These features are usually located where there is a high contrast in the image like

objects’ edges and corners. Researchers presented many types of features including

SIFT [26], SURF[4], FAST[34], ASIFT[42], HARRIS[16] corners detector, and

others. Extracted features are then matched between each two frames using a

matching technique that is dependent on the type of feature-extraction algorithm

involved. Much work has been done on these algorithms and they have reached a

notable accuracy in the past few years although mismatches are still inevitable.

Some typical cases in which matching fails are the following:

• Different lighting conditions:

Rapid changes in lighting conditions, like when a car flashes its lights at you

for example, lead to a big change in the colors of the pixels and the intensity

of light in each which highly disrupts the implemented matching algorithm.

• Spectral surfaces (like the surface of a mirror)
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The positions of the features reflected on a spectral surface change as you

move. This change in position makes them useless in estimating the motion

of the camera. However, the matching algorithm can’t differentiate them

from real fixed features and they must be treated off-line.

• Periodic structures where the same pattern is repeated

Periodic structures obviously fool the matching algorithm. Most of the

remarkable features in a periodic structure are repeated several times and

the matching algorithm can’t differentiate one from another.

• Strong 3D structure where a change in the view angle changes the object’s

aspect completely.

This case is mostly specific to some sculptures and some forms of modern art

architecture where the 3D shape can be very complex in contrast to the

simple conventional cases.

If matching between two frames fails, the calculated transformation (R and t)

between these frames will be drastically affected. Wrong matches are often called

outliers and are treated in many ways among which the most famous is RANSAC

[28, 11]. However, even with these algorithms, the accuracy of the system is still

much effected when the amount of outliers and noise is notable.

2.2.2 Two View Geometry Computation

Our aim here is to find the mathematical relation between features of the

two images. This relation is a function of the displacement between the two frames

(i.e. , the rotation and translation between the two camera poses). It depends on

the structure of the scene that is captured by the camera. In the case of a general

3D scene, the fundamental matrix governs the relationship between the two frames

while for a planar scene, a simpler homography may do. Other techniques for
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calculating the displacement between two frames include optical flow and

correlation or template matching.

SFM (structure from motion) algorithms are among the most popular

visual odometry algorithms. They start by calculating the Fundamental matrix (or

Essential matrix in the case of a calibrated camera) from the matches between the

two images using several algorithms among which the most known are the 8 points

and the 5 points algorithms [17, 29]. The rotation and the translation between the

two frames are then extracted from those matrices after which the 3D environment

is reconstructed using triangulation and a resulting map is created. The map can

be a dense map or simply a sparse one in cases like our case where we are just

interested in tracking the robot. SFM is used either with a single camera where a

scaled map is obtained or with a stereo rig where the map is to the correct scale.

Another variant in which a map is formed and the robot is localized in

that map is SLAM. The dependency between localization and mapping is what

makes SLAM and SFM problems difficult to resolve. SLAM uses a Gaussian or a

particle filter on previously gained information to predict the location of a robot

with a certain probability. It then finds the best estimate using measurements and

observations like features or depth values from a camera or a laser. While in SFM

we may concentrate on the local consistency of the trajectory, SLAM seeks the

global motion and map consistency - usually after loop closure.

SLAM and SFM can produce good results but the computational overhead

is generally over-bearing for real-time applications, unless additional

simplifications are introduced to the standards algorithms and thus reducing the

accuracy. Optical flow is an alternate algorithm where features are tracked

through frames over time and their motion is transformed into velocity vectors

which are then used to calculate the rotation and translation between the frames.
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SFM/SLAM are the most important algorithms used in the case of a

general 3D scene. They are sensitive and applicable only in certain environments

where we have a rich 3D structure and abundance of features. Moreover, as the

settings differ from an environment to another, the algorithms must be tweaked

and tuned to fit the new settings by relieving some constraints and applying others.

For example, in certain circumstances we may need to isolate close features from

far ones and calculate the translation from the former and the rotation from the

latter. Moreover, we may totally depend on 3D to 2D motion estimation after we

have an initial rich 3D map or we may still need to incorporate 2D to 2D in case

we have a low number of features. Such tweaks are highly dependent on the nature

of the environment we are working in and are mostly the result of experimentation.

However, in some particular environments like when using a camera

pointing to the ground, the scene is planar and some constraints can be added to

develop new algorithms more accurate and robust than the former two. In fact any

two views of the same plane are related by what is known as a homography which

is a projective transformation mapping two planes in space. Using matches

between two different views of the same plane, we can calculate the homography

governing the relationship between the two views and use it to extract the

displacement between the two camera poses. Many applications use homographies

even if we have more than one plane in the camera’s field of view. In such cases, a

different homography is calculated for each plane and included in the motion

estimation. Sometimes homographies are also coupled with a laser range finder to

improve the results as will be seen in the next section.

The last method to mention is using correlation or template matching [31]

which differs from all of the above. This algorithm works only on a pure planar

scene. Instead of extracting and matching features between two frames, a template

(a section of the image) is taken from the first image and we search for a window
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in the second image to match the saved template and subsequently, the translation

and rotation between the two frames are calculated. Fourier-Mellin [14] or Fast

Fourier transforms [31] are coupled with optimization techniques to estimate

motion in such algorithms. Some good results have been retrieved using those

methods but they are also dependent on some particular conditions. Detailed

literature review on homography-based and correlation-based methods will follow

in the next chapter.
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CHAPTER 3

VISUAL ODOMETRY STATE OF THE ART

Recovering the motion of an agent using a monocular camera is a subject

that dates back to the 1980s with [24] and [15]. In 2004, Hartley and Zisserman

summed up the state of the art in their famous book [17]. Later that year Nister

presented his landmark paper on the five point algorithm [29]. The algorithm is an

algebraic solution for the five-point relative pose problem, which imposes the

constraints resulting from the camera parameters and should supposedly give more

accurate results. Although five-point-based algorithms achieved relatively good

accuracies on long distances [30, 37], they are still sensitive to noise and outliers

and dependent on the environment in which they are implemented (urban, rural,

indoor, outdoor, ...).

When the vehicle being considered is restricted to travel on the ground,

and the environment is locally planar, further constraints can be applied to make

VO more robust. Ke and Kanade [21] present a system based on the local ground

planarity assumption, where the ground plane is first segmented and the motion is

iteratively calculated after transforming the camera geometry to that of a ‘virtual’

downward-looking camera. The advantage of using this transformation is the

removal of the ambiguity between translational and rotational motion parameters.

In their work, the authors concentrated more on extracting the ground plane and

few experimental data on the egomotion estimation were presented. Fig. ?? shows

the geometry of the forward tilted camera transformed by Ke and Kenade to a

‘virtual’ downward-looking camera and used in the calculations.

Fernandez and Price were among the first to propose a camera facing the

ground [10]. They used a pseudo optical flow (a simplified optical flow algorithm)
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to calculate the robot’s egomotion. The method proves to work on different

terrains including gravel, tarmac and grass but problems were faced with static

and dynamic shadows and variations in lighting conditions. The importance of this

work is that it was the first to present a visual odometry algorithm with a

downward-looking camera. This approach was later adopted by many researchers

who presented more efficient and accurate algorithms.

In 2005, Wang et al. [41] present a visual odometry algorithm based on

homographies. They restrict the motion of the robot to a flat plane and use a

feature tracker, which rejects outliers in an iterative manner using RANSAC [28].

Moreover, they use a Kalman filter to predict the motion of a camera and thus the

motion of the pixels on the image to help guide the feature extraction and

matching algorithm and increase its speed. The error is roughly three percent on a

run of twenty three meters and at a processing speed of twenty-five frames per

second. The drawback of the technique is that it is iterative and the features must

be tracked through frames; a condition that limits the speed of the robot in order

to enable features to be tracked between three or more frames.

Template matching methods using Fast Fourier Transforms [31],

Fourier-Mellin Transforms [14, 20] and other nonlinear iterative techniques [25, 41]

were also used on a camera facing the ground. One of the best results reported by

such methods are those presented by Kazik and Goktogan [20] using a

Fourier-Mellin transform with a downward-looking camera. They achieved an

accuracy of less than one percent on a straight path. However, the tests were

carried out on relatively small distances of one to three meters, which raises

questions as to their performance on longer runs.

One of the recent template-matching-based works is that of

Nourani-Vatani and Borges in 2011 [31] who present a visual odometry algorithm

for ground vehicles using Fast Fourier transforms. Conventional template matching
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is the process by which we extract a template (window) from the first image and

search for it in the second one. However, in the mentioned work, the authors

introduce a quality measurement technique to asses the quality of the extracted

template. Several templates are extracted from each image and the highest-quality

template is used for the motion estimation. Experiments were performed on a car

over long distances totaling 6km. The average accuracy was found to be 8%.

Although the algorithm proved to be robust over long distances and on surfaces

with scarce features, an accuracy of 8% is not sufficient for many real-world

implementations, which need more precision.

Lovegrove et al. [25] used the rear parking camera of a car for estimating

its motion. The rear parking camera captures a planar surface (the ground behind

the car) at a certain angle. This planar scene is used to calculate the homography

between two successive frames using nonlinear optimization techniques. No

numerical results are presented in the publication but the path calculated was

overlapped on a Google Earth map showing an error of no less than 7-10% if we

are to compare the final offset to the covered distance.

We will now digress a little to set the tone for the remainder of the thesis,

where we are promoting non-iterative motion estimation techniques. As an

example of iterative motion estimation techniques let us recall Nister’s 5-point

algorithm [29] where a minimal set of five points are used to calculate the Essential

matrix, from which Rotation and Translation are extracted. Outliers are rejected

with the help of iterative RANSAC using approximately 162 iterations for each

pair of images. With this number of iterations, one can guarantee that with a

probability of ninety-nine percent, the calculated Essential matrix and set of inliers

are correct. While this percentage is relatively high, one out of each one hundred

image pairs could be wrong and if undetected, will propagate throughout the

sequence, thereby corrupting the remaining motion estimate.
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Howard [19] proposes to solve this problem by using the inliers-detection

method, initially proposed by Hirschmuller et al. [18]. Here motion is estimated by

minimizing the image re-projection error using the standard Levenberg-Marquardt

least-squares algorithm. Howard reports an error of 0.25% while testing his system

on a wheeled robot for a run of approximately four hundred meters. In his

implementation, Howard uses a stereo camera tilted slightly downwards, where a

large number of relatively close features is present; a condition which favors

excellent depth estimates by the stereo rig. Another advantage of the

inliers-detection method is the inherent reduction in implementation time due to

the non-iterative nature of the technique. The disadvantage of using a stereo

camera becomes significant when there are not enough features close to the camera

and the system has to rely on far away features, where the problem of uncertainty

in the depth estimation is high. Moreover, stereo cameras are not readily available

everywhere, unless you create your own rig, which can easily become uncalibrated

as a result of motion and vibrations.

3.1 Thesis Contribution

This thesis combines the most important notions of the above techniques,

especially that of the inliers-detection method and the virtual downward-looking

camera, addressing their shortcomings and presenting an ego motion estimation

technique using a single camera. The method we present also imposes the local

planarity of the ground as a constraint on the motion. Moreover, it makes use of

the fixed position of the camera with respect to the ground to transform camera

geometry to a virtual downward-looking camera, which allows us to calculate the

3D coordinates of the features (the depth being known after transforming the

camera into a downward-looking one) and remove the ambiguity between the

different motion parameters. After calculating the 3D coordinates, outliers are
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removed using the inlier detection method and the planar motion is calculated.

Moreover, tilt sensors are coupled with the camera to calculate the full 5

dimensional motion of the wheeled robot. The main contributions of this thesis are:

• It makes use of the rigid position of the camera with respect to the ground to

eliminate the uncertainty in the depth and thus improve the accuracy of the

system.

• It implements the inliers-detection method on a monocular camera and

avoids the probabilistic iterative RANSAC and thus presenting the first

purely non-iterative method on a monocular camera, thereby decreasing the

computational cost and achieving higher accuracy.

17



CHAPTER 4

VISUAL ODOMETRY SYSTEM

In VO the camera can be mounted to either face forwards, downwards,

sideways, or a combination of the above with each having its advantages and

disadvantages according to the specific VO algorithm that is used.

In the case of a forward looking camera (Z-axis pointing forward) the XZ

plane is parallel to the ground, and motion includes rotation wy about the y-axis

and translation (Tx, Tz). In this setup, there is an ambiguity between a translation

Tx of the camera or a rotation wy as they both induce the same displacement in

the observed features. The same ambiguity exists for a sideway-looking camera

between Tz and wy. However, for a downward-looking camera, the planar motion

resulting from wz is different from that of (Tx, Ty) and the displacement of the

features resulting from each of these parameters is independent from that of the

other. For this reason, we mount the cameras facing the ground in our proposed

motion estimation system.

Furthermore, the downward-looking camera is at a known constant

distance from the ground, which means that the depth of the features that are

captured by the camera with respect to the camera frame is known. This

eliminates the uncertainty in the depth, which is a major source of error in

algorithms on visual odometry. It also allows to use an inliers-detection method

instead of RANSAC to decrease the computational cost, and decrease problems

related to dynamic scenes. This method is described in detail later in Section 4.1.

To cope with the limited field of view of a downward-looking camera, it is

tilted slightly upwards (see Fig. 4.1). Then, we back-rotate the camera view into
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Figure 4.1: Left: the downward-looking slightly tilted camera. Right: After rotating
to the virtual downward-looking camera

that of a virtual downward-looking one. This way, we will be able to impose the

constraints of the downward-facing camera and estimate the motion accordingly.

The angle at which the camera is tilted should be less than 30 degrees because as

it increases the capability of the camera to capture accurate and detailed features

from the ground plane decreases—thereby affecting the matching process.

Our approach is based on three initial assumptions, which are reasonable

for wheeled robots:

1. The camera is calibrated

2. The camera is rigidly fixed to the mobile robot and the rotation matrix

between it and a virtual downward-looking camera is calculated

3. The robot is moving on a locally planar ground (not a rough off-road terrain)

The input to the algorithm is a set of images extracted from a monocular

camera facing the ground in addition to the data gathered from two tilt sensors.

The vision algorithm is used to calculate the planar motion while the tilt sensors

are used to impose the displacements in the pitch and the roll angles. The

algorithm is as follows:
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Algorithm 1 Motion estimation using inliers-detection

i = 1; While !end

• extract features from images i and i+ 1

• match the images

• transform camera geometry to a downward-looking camera, impose

the depth, and calculate the 3D coordinates of the features

• find the maximum set of inliers

• Compute the planar motion between the two frames

• impose the variation of the pitch and the roll angles using the data

from the tilt sensors

• increment i

end while

The details of the different steps of our proposed system are presented

next. Affine-SIFT (ASIFT) [42] features, XA and XB , are first extracted from two

images, imA and imB , respectively. XA and XB are matched using their

corresponding descriptors. Next, using the camera’s calibration matrix K, the

normalized coordinates Xna and Xnb of the features are calculated. Xna and Xnb

define the 2D coordinates of the features in the image plane, which is located at a

distance of 1 mm from the camera’s focal point. The 3D coordinates Xi of those

features with respect to the camera frame having the camera’s focal point as its

origin will then be Xi = (xi, yi, 1).

Rotating back to the virtual downward-looking camera as can be seen in

Fig. 4.1, we obtain the 3D coordinates of the features with respect to the frame of

reference that is attached to the camera. This transformation is performed as

follows

Xdi = Rc/d ∗Xi, (4.1)
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with Xdi being the coordinates of the feature with respect to the reference

attached to the virtual downward-looking camera, Rc/d is the rotation matrix

between the real camera’s reference and the virtual downward-looking camera’s

reference, and Xi is the 3D coordinates of the features with respect to the

camera’s reference.

Knowing that the features belong to the ground plane which is located at

a distance d from the camera’s focal point (Fig. 4.2), we can calculate the real

world coordinates of the features where xw
d =

xvi
zvi

, and yw
d =

yvi
zvi

.

Figure 4.2: Virtual downward-looking camera with the features

where xw and yw are the coordinates of the features in the world coordinates, xvi ,

yvi and zvi are the coordinates of the features in the downward-looking camera

frame and d is the distance between the camera’s focal point and the ground.

This results in the determination of the 3D coordinates of the features

with respect to the frame attached to the virtual downward-looking camera. The

process is repeated on both imA and imB .
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4.1 Inliers Detection

False matches are inevitable in the features matching stage regardless of

the matching algorithm that is used. The most common approach to reject outliers

is to use RANSAC.

RANSAC is the process by which we select at random a sample consisting

of the minimal number of points needed to calculate a model—three points in our

case. This model is calculated and tested on the total set of matches. The number

of matches that fit to the model is then calculated and the process is repeated

several times. Once we are done, the model with the highest vote (the one with

the highest number of fitting matches) is considered to be the best solution and

the matches that do not fit to this model are considered outliers. As the number of

RANSAC iterations increases, the probability that the correct solution is reached

increases. In practical scenarios, thousands of RANSAC iterations are used but

this number may decrease to hundreds in real time implementations trading

efficiency for speed.

Though RANSAC has many advantages it still has its disadvantages. It is

a non-deterministic algorithm meaning that the correct model is selected up to a

certain probability. In the case of real time implementation this probability is

taken to be ninety-nine percent which seems high but actually means that for

every hundred image pairs, there is one wrong pair. Reflecting on real scenarios,

which have thousands of frames processed for distances of hundreds of meters, tens

of wrong frames would probably exist which, if undetected, will propagate

throughout the sequence, thereby corrupting the whole motion estimate. In

addition, the high computational cost due to the large number of iterations

promotes the use of a different paradigm.

Based on the above, and in order to achieve better robustness and

22



substantially reduce the computational cost, we use an algorithm inspired from

Hirschmuller et al. [18] to compute the maximum set of inliers. The algorithm

relies on the fact that the distance between two 3D points belonging to the same

rigid body will always remain constant. This means that the distance between the

3D features XiA
and XjA

from frame imgA should be equal to the distance

between their corresponding matches XiB
and XjB

from frame imgB .

Having calculated the 3D coordinates of the features in previous steps, we

now need to find the set of maximum consistent inliers. We take a feature XiA

from frame imgA and its correspondence XiB
from frame imgB and compare the

distances between XiA
and all the other features XkA

belonging to frame imgA to

the distances between XiB
in imgB and all the other features XkB

belonging to

frame imgB . If features i and k are inliers, then we should have

XiA
XkA

−XiB
XkB

= 0. (4.2)

However, this equation is never zero because of noise. To overcome that, the

average distance between each two features is compared to a thershold δ. Thus we

have
XiA

XkA
−XiB

XkB

XiA
XkA

+XiB
XkB

< δ. (4.3)

The inliers-detection method is summarized in Algorithm 2. After

checking each feature i with all other features k for consistency, those with the

highest agreement form a set of robust consistent inliers Q. Other features are

then checked for consistency with this set and are added to it if they are

consistent. The remaining matches are outliers and are thus removed.

23



Algorithm 2 Inliers-detection algorithm

for i = 1→ TotalNumberOfMatches do

for k = 1→ TotalNumberOfMatches do

if
XiA

XkA
−XiB

XkB

XiA
XkA

+XiB
XkB

≤ δ then

mark(i)← mark(i) + 1
end if

end for

end for

• Features with the highest marks are inliers as they are the most consistent
• Other features are checked again for consistency with high-mark inliers and
those that prove to be consistent are considered inliers too
• Inconsistent matches are removed

4.2 3D-to-3D Motion Estimation

After extracting the set of inliers Q, consisting of two matched sets of 3D

features Xa and Xb, motion between the two frames is calculated using the method

proposed by Arun et al. [2], which consists of calculating the rotation using SVD,

followed by the calculation of the translation from the centroids of the two 3D sets

USV T = svd[(Xa −Xa)(Xb −Xb)
T
], (4.4)

Rb = V UT , (4.5)

tb = Xb −RXa, (4.6)

where Xa and Xb are sets of corresponding 3-D points, Xa and Xb the centroids of

the 3-D sets of points Xa and Xb respectively, and Rb and tb the rotation and

translation mapping the first set of 3D-points to the second set.
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4.3 Imposing the 3D Structure

The algorithm described above, allows us to calculate the motion in a 2D

plane (three degrees of freedom). However, we have 5 degrees of freedom for a

wheeled robot:

• translation along the x-axis

• translation along the y-axis

• yaw

• pitch

• roll

There is no translation along the z-axis as the robot is in continuous

contact with the ground. The translations along the x-axis, the translation along

the y-axis and the variation in the yaw are calculated using the vision algorithm

while the variations in the pitch and the roll remain unknown. This ambiguity can

be resolved by coupling the camera with a tilt sensor (such as an IMU or an

inclinometer).

After calculating the displacement in x, y and yaw between frame n− 1

and frame n using the vision algorithm, the variations in the pitch and the roll are

imposed using the data from the inclinometers:

P5D = Pvision ∗ Ppitch ∗ Proll, (4.7)

Where P5D is the projection matrix representing the full five dimensional motion

between frame n− 1 and frame n, Ppitch is the projection matrix containing the

variation in the pitch, Proll is the projection matrix containing the variation in the

roll and Pvision is the projection matrix representing the local planar motion

calculated using the vision algorithm.
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After calculating the relative motion (P5D) between each frame n− 1 and

n in the sequence, the projection matrix Tn describing the absolute position and

orientation of each frame n is then calculated as:

Tn = T1 ∗ P1 ∗ P2 ∗ .... ∗ Pn−1 (4.8)
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CHAPTER 5

CALIBRATION

5.1 Experimental Setup

For experimental evaluation, we equipped a Pioneer 3 robot [1] with a

Sony DFW-VL500 camera [32]. The camera is rigidly fixed to the robot and

directed downwards towards the ground. It is slightly tilted forward to increase the

field of view as can be seen in Fig. 5.1.

Figure 5.1: A picture of the experimental setup showing the camera and the robot

To evaluate the accuracy of our proposed algorithms, we ensure that all

the experimental runs start and end at the same location. We mark the ground

where we started the run and make sure that the robot gets finally back to the

same initial position. Accordingly, the accuracy of our method is captured via the
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following error function.

error =
|FinalPosition− InitialPosition|

TotalDistance
. (5.1)

After fixing the camera to the robot, the rotation between the camera and

a virtual downward-looking camera is calculated. For our experiments, we

calculated this rotation using Bouguet’s camera calibration toolbox for MATLAB

[7] by placing a checkerboard on the ground and capturing an image from the

camera which is fixed to the robot. This is the most critical step in the set up and

must be handled with much care as experiments proved that the motion estimates

are sensitive to it. To gauge the effect of correctly computing the pitch angle on

our algorithm, for a 100 meter run (Fig. 5.2) our motion estimation is tested with

three different values for the pitch angle, one is the correct pitch angle while the

other two are one degree off the correct value. The considerable effect on motion

estimation for one degree error in the pitch angle is clearly visible.

However, this rotation can’t be calculated up to the needed accuracy in a

straight forward manner. The rotation contains three parameters: pitch, roll and

yaw. Those three parameters change with changing the position of the camera and

so we can’t take different images, compute the rotation for each and use the

average between them as they will have different values for each position. As a

work-around, a manual optimization is performed to reach to the accurate value.
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5.2 Calibrating the Rotation Matrix Between the Tilted Camera and

the Vertical

As mentioned above, the rotation matrix between the tilted camera and

the vertical is calculated using vision algorithms from one image of a checkerboard

placed on the ground plane. However, the calculated rotation is still within an

error range of 1 degrees and not up to the needed accuracy. Moreover, it is not

possible to use more than one image for the calculations as the rotation matrix will

differ between one image and the other (specifically for the yaw angle).

To solve this problem, the value of the rotation calculated from an image

of the checkerboard is taken as an initial estimate of the rotation. This value is

then used to calculate the path for one of the experiments performed. Since all the

runs started and ended at the same position, it is expected that the path

calculated should be a closed loop. However, this initial estimate is not observed

to be a closed loop.

Between the three angles constituting the rotation (pitch, roll and yaw),

the pitch angle is the angle having the biggest impact on the results. This angle is

the one to be optimized and calibrated until an optimal value which best

represents the rotation between the camera and the vertical is attained. So, after

getting the first estimate of the path, the value of the pitch angle is tweaked

(increased by 0.5 degrees for example) and the path is re-calculated with the new

rotation. The impact of increasing the pitch angle on the path assessed and we

have one of the cases below:

• The results obtained are worse than the first results (the loop was open and

now it is more open for example).

In this case, we conclude that we should have decreased the value of the
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pitch angle instead of increasing it. So the initial estimate of the pitch angle

is decreased by 0.5 degrees and the impact is re-assessed.

• The results are obtained are better but still need some adjustments:

– The loop was open. It is better now but it is still open: Increase the

pitch angle by more than 0.5 degrees and re-calculate.

– The loop was open. It is better now closed more than needed: Increase

the pitch angle by less than 0.5 degrees and re-calculate.

• The results are good

After this tweaking and tuning, we arrive to the value of the pitch angle which

gives the best results for the first experiment. This value is then used to calculate

the path for the other experiments and the error is calculated for each one. It is

either that the calibrated rotation fits the other experiments too or that it still

needs more tuning. In case more tuning is needed, one of the other experiments

should be chosen to perform the optimization on it. It is advised to choose one of

the experiments which still show the lowest accuracy (farthest from loop closure).

The pitch angle is then optimized for this experiment (let us say Experiment 5)

and the mean between the pitch angle obtained by optimizing for Experiment one

and the one obtained by optimizing for Experiment 5 is calculated. This usually

should be enough for an acceptable estimation of the rotation between the camera

and the vertical. However, if more accuracy is needed, the above process can be

repeated again for more than two runs. The mean between the values which best

fit the different runs can then be used with confidence for future experiments.
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5.3 Scale Estimation

In conventional monocular visual odometry algorithms, the path is

calculated up to scale. This means that, for example, we can’t identify if the place

we are moving in is a doll’s house, a real one or a giant one. However, in the

algorithm proposed above, the distance between the camera and the ground is

known. This allows us to calculate the real 3D coordinates of the features

(unscaled) and thus the absolute motion of the camera and not a relative scaled

one. This brings us to the question of how to calculate the distance between the

camera and the ground with enough accuracy.

The depth (the distance between the camera and the ground) is directly

proportional to the scale of the path estimated. This means that if the depth is

estimated as d or as 10d, the only difference will be in the length of the path and

not on its form or on the loop closure. However, a scale is essential to fit the path

correctly on a map without trial and error especially if the algorithm is

implemented in real time. This leaves us with the need of an accurate estimation

of the depth.

In order to estimate the depth, two positions separated by a known

distance l are marked on the ground. Then, the robot is placed in the first position

and moved to the final position after which the path traversed by the robot is

calculated using the above vision algorithm. The distance between the camera and

the ground is assumed to be 1. After calculating the path, the calculated distance

between the initial position of the robot and its final position would be x (the

distance calculated by the vision algorithm). However, the real distance is l. The

scale by which the calculated path must be scaled to get the absolute motion

would then be scale = x/l and the distance between the camera and the ground

would also be d = x/l. Of course, the more this calibration step is repeated the
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better the accuracy of the scale we are getting.

5.4 Coupling the tilt sensors

Several runs were performed on a 2D plane to validate the accuracy of the

vision algorithm after which two rotation sensors were coupled to the camera to

calculate the full 5D motion of the mobile robot. The sensors used were US Digital

T7 one dimensional Inclinometers. A simple platform was manufactured to ensure

that the two sensors are perpendicular and correctly aligned and fixed on the

robot. The track which was chosen for testing has a steep slope and four sharp

turns. Moreover, the turns are on the slopes and not on the straight ground which

is more challenging for the algorithm as the 5 parameters are varying altogether.

After gathering the data, the obtained results were noisy. The source of

the noise was the inclinometers and the noise propagated to the calculated path

which had a big impact on the results. A polynomial fit was used to remove the

vibrations but even a 10 degree-polynomial didn’t form a good fit (see fig. 5.3).

Instead of increasing the degree of the polynomial to fit the whole set of data, the

data was divided into several independent intervals and a 10-degree polynomial fit

was independently used on each to remove vibrations. The number of intervals to

which the data should be divided and the degree of the polynomial varies for each

experiment and is dependent on the slopes present and the variations in the pitch

and the roll throughout the path.

Once the noise from the tilt sensors was removed, the path calculated by

the algorithm was smooth. In order to validate the path, it was imposed on a

google satellite image (the start point, end point, and the path boundaries being

visible on the map) but it seemed to be off the expected track. However, after

further investigations, I noticed that the satellite image was really a ”top view”. It
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Figure 5.3: Top: 10 degree polynomial fitted to the tilt sensor noisy data. Bottom:
10 degree polynomial fitted to the tilt sensor noisy data after dividing it into several
intervals.

was taken from an angle as one of the sides of the building was clearly visible in it

while the other was not. Comparing the dimensions on the image to the real ones,

the angle at which the satellite had taken the photo was estimated by around 12

degrees. After imposing this inclination on the path estimated by the algorithm

and projecting it on the map, the results were much better. The results obtained

are discussed in the coming section.
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CHAPTER 6

RESULTS

6.1 Results for the runs on a 2D plane

The vision algorithm was tested on several surfaces and for different

distances. After several experimental runs, the computed accuracy of our method

reached 98.75% for a run of 461 m and increased to 99.44% for smaller distances of

up to 90 meters. A summary of the results is presented in Table (6.1). Two of the

runs (namely 1 and 3) are depicted in Fig. (6.1) and (6.2) respectively. These runs

were done outdoors and a sample of the ground images is shown in the figures as

well. Appendix 1 contains the detailed results of the different runs that were

performed.

A frame rate of between six and ten Hertz was used for our experiments as

a compromise between processing speed and minimum overlap between consecutive

frames. Tests were also repeated at a higher frame rate of fifteen Hertz to

investigate its affect, but no improvement resulted. In fact, almost no change was

detected and the accuracy was even lower sometimes for higher frame rates. The

incremental nature of the error explains this phenomena as the more frames you

analyze, the more noise is susceptible to corrupt the system.

The algorithm was then tested in the case of where features were sparse.

To simulate such a environment a higher shutter speed was set on the camera to

decrease the quality of the images and obtain less features, where the number of

matches between one image and the other was sometimes as low as 30 features. On

contrary to other algorithms that fail in such settings, our algorithm sustained an

acceptable accuracy of around 4% for runs reaching up to 32 meters.
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Table 6.1: The results from the different runs showing the error and the distance
covered in each

Run Frames Freq. Distance Error
1 4849 10Hz 418.1 m 5.25 m (1.25%)
2 1394 6Hz 100.2 m 1.49 m (1.48%)
3 1082 6Hz 90.4 m 0.5 m (0.56%)
4 357 6Hz 26.6 m 0.13 m (0.46%)
5 302 6Hz 26.4 m 0.23 m (0.91%)
6 364 6Hz 20.4 m 0.16 m (0.78%)
7 285 6Hz 15.8 m 0.12 m (0.78%)
8 256 6Hz 14.7 m 0.23 m (1.6%)
9 391 10Hz 12.5 m 0.21 m (1.67%)
10 419 10Hz 12.53 m 0.049 m (0.35%)
11 461 10Hz 13.66 m 0.058 m (0.43%)

In short, for all the experiments conducted and over the thousands of

frames the algorithm was tested on, it proved to be robust and didn’t fail except

when the image comparison method failed. There were problems on reflective

surfaces like polished flagstones where it is difficult to match images correctly.

However, in real life scenarios this is usually not a problem since most surfaces,

ranging from indoor and outdoor pavements to gravel and asphalt roads, contain

enough features for robust performance of the image comparison algorithm.
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Figure 6.1: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 461meters.
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Figure 6.2: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 90.4 meters.

6.2 Results with the tilt sensors

After the tilt sensors were introduced, the results of the algorithm were

compared to the path generated using a GPS and an IMU (the MTi-G IMU). Both

results are displayed in fig. 8.12. As you can see in the figure, if we are to asses the

final reached position, the GPS would definitely be better as it is generating an

absolute measurement (not dependent on previous measurements) whereas the
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vision algorithm calculates its position in an accumulative manner (which means

that the error propagates throughout the whole sequence). However, the vision

algorithm showed to be much more consistent locally than the GPS and the IMU

coupled together. In other words, the vision algorithm is much more accurate and

consistent on small distances but this accuracy starts to decrease as the length of

the path increases to 1Km and more. The reason behind this decay is that a

negligible error in the rotation estimation (in the order of 0.1 degrees) will have a

huge impact on such long runs whereas as mentioned above, the GPS is estimating

its position from scratch without using previously-calculated polluted data.
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Figure 6.3: Above: Estimated trajectory on a non-planar path using my algorithm.
Below: Estimated path using fused data from a GPS and an Inertial Measurement
Unit (MTi-G IMU)

The basic limitation of the algorithm is that it is limited to mobile robots

only. Moreover, it doesn’t work on a rough-off road terrain because in such terrain

the ground can’t be considered to be locally planar which is a pre-requisite for the

algorithm.
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It was not possible to compare our method to conventional vision

algorithms like the famous 8 points and 5 points Structure From Motion

algorithms as these algorithms don’t give acceptable results once all the features in

the images belong to one plane (the ground plane in my case). This is a

mathematical singularity for those algorithms as discussed earlier in the thesis and

therefore it was not possible to test another algorithm on the same data set that

we got from our experiments.

However, if we are to compare it to the results mentioned in the literature

for monocular VOs, we observe that our algorithm is the first to reach an average

accuracy of 0.9%. The highest accuracy to be reported before for conventional

SFM is 2.5% on long runs and it is worth to note here that this accuracy was

obtained in very specific conditions as neither me, nor other colleagues before me

were able to re-produce them. Other researchers reported high accuracies of

around 2% or even 1% but these were on small runs of less than 5 meters. Our

algorithm attains such an accuracy for runs as long as 460 m which proves that it

is much more robust and accurate on long distances than the other algorithms

present in the literature.

Moreover, the algorithm is the first monocular VO algorithm without any

iterative or probabilistic routine. The main steps in monocular VO algorithms are

the following:

• Feature extraction

• Feature matching

• Removal of outliers

• Estimating the motion

• Optimizing the final results
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The first four steps are common and inevitable for all algorithms whereas real time

VOs usually skip the final step to reduce the cost. In the algorithm I presented

above I use the conventional feature extraction and matching techniques. The main

contribution of the thesis is in steps 3 and 4. Still, and since we are comparing the

computational costs of the different VO algorithms, step 4 is to be disregarded

because its computational cost is negligible compared to that of the other steps.

All monocular VO algorithms presented in the literature use the iterative

RANSAC to remove outliers. They need a minimum of 160 RANSAC iterations

(usually more) to remove outliers. However, my algorithm removes outliers with a

single iteration by making use of the rigid position of the camera with respect to

the ground and the inliers detection method. This means that the computational

cost of step 3 is decreased.

In order to asses the impact of replacing RANSAC by the inliers detection

method on the computational cost and the accuracy of the algorithm, both

algorithms were implemented in MATLAB on an Intel(R) core(TM) i7-3940XM

CPU @ 3.00 GHz 3.20 GHz processor with a 32 GB installed memory (RAM).

Both algorithms were tested over 1200 frames and the results are presented in fig.

6.4 below. The computational cost was decreased by 58% while the accuracy was

still the same for both algorithms.
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Figure 6.4: This figure shows the time consumed by each of the inliers detection
method and RANSAC (with 160 iterations) versus the number of processed frames.
An improvement by 58% is oberved.
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CHAPTER 7

CONCLUSIONS

In this thesis, we presented a hybrid visual odometry algorithm in which

we implemented the inliers-detection method on a monocular camera and coupled

that with the geometry of a virtual downward-looking camera to eliminate

uncertainty in the depth. The significance of this approach is that it calculates the

motion from a monocular camera without iterative or probabilistic techniques

neither for motion estimation nor for outliers rejection. The result was an

improvement in the accuracy with real-time speeds of implementation. The

computational cost was decreased by 58% and the error at loop closure was as low

as 1.25% on loops of approximately 418 meters.

Moreover, the vision algorithm was coupled with two inclinometers to

calculate the full motion of the robot in the presence of slopes. Other ideas like

auto calibration to continuously re-estimate the rotation between the camera and a

virtual downward-looking camera can also be investigated. This is needed for a

vehicle that is equipped with a suspension system like that of a car, where the

body rotates with respect to the ground while negotiating sharp turns. Another

potential proposition would be to use a particle filter with a laser range finder and

force-fit the robot into a pre-defined map (or maybe a google satellite image). This

would highly reduce the impact of the drift which results mostly from errors in the

estimation of the rotation on long runs.
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CHAPTER 8

APPENDIX
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Figure 8.1: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 13.66 meters and an error of 0.43%.
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Figure 8.2: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 12.53 meters and an error of 0.35%.
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Figure 8.3: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 12.5 meters and an error of 1.67%.
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Figure 8.4: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 20.4 meters. The error is 0.78%.
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Figure 8.5: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 15.8 meters. The error is 0.78%
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Figure 8.6: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 14.7 meters. The error is 1.6%

50



−7 −6 −5 −4 −3 −2 −1 0

−3

−2

−1

0

1

2

3

Y
 (

m
)

X (m)

 

 

path covered

starting point

ending point

Figure 8.7: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 26.4 meters. The error is 0.91%
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Figure 8.8: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 26.6 meters. The error is 0.46%
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Figure 8.9: Top: picture of the experimental environment (right) and sample texture
of the ground (left). Bottom: estimated trajectory using our system for a total run
of 100.2 meters. The error is 1.48%
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Figure 8.10: Top: picture of the experimental environment (right) and sample tex-
ture of the ground (left). Bottom: estimated trajectory using our system for a total
run of 90.4 meters. the error is 0.56%
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Figure 8.11: Top: picture of the experimental environment (right) and sample tex-
ture of the ground (left). Bottom: estimated trajectory using our system for a total
run of 418.1 meters. The error is 1.25%
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Figure 8.12: Above: Estimated trajectory on a non-planar path using my algorithm.
Below: Estimated path using fused data from a GPS and an Inertial Measurement
Unit (MTi-G IMU)
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