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Title: Evaluation Framework for Organization-Based Ridesharing: Service Design 

Considerations and Potential for AUB 

 

 

Ridesharing services, including Carpooling and Demand Responsive Transit, 

have been gaining increased interest recently by individuals, employers and institutions 

alike. From the individual traveler‟s perspective, car ownership and increasing fuel 

costs represent the main drivers to seek ridesharing services, especially in areas lacking 

reliable and attractive public transport services. On the other hand, the objective of 

employers and institutions (such as universities, hospitals, etc.) is to reduce car parking 

demand by their personnel (employees, students, etc.), as well as to reduce traffic 

congestion in their surroundings, while at the same time maintaining feasible travel 

alternatives for affiliated individuals. 

 

This dissertation presents a framework for the evaluation of ridesharing services 

in an organization-based context encompassing impacts and evaluation criteria and can 

be used as a decision support tool by any organization. This framework consists of three 

main modules: the demand estimation module, the service design module, and the 

evaluation module. Each of the three modules was analyzed taking into account the 

essential components, methods, and the needed data. 

 

An important aspect of this framework lies in the development of a many-to-one 

ride matching approach based on the Capacitated Vehicle Routing Problem with Time 

Windows. The problem is context-related to the ridesharing specifics, including unit 

demand, asymmetric network, narrow time windows at departure, and common arrival 

time at destination. New heuristic algorithms are proposed based on different traversals 

of hierarchical spanning trees derived from the all-pairs shortest path matrix (distance or 

travel time matrix). A tree type is selected depending on the solution strategy, where the 

Proximity Clustering Tree (PCT) is used to prioritize matching passengers within 

proximity clusters while the Minimum Deviation Tree (MDT) is used to match 

passengers along route with minimum deviations. Results are compared with exact 

solutions and other known methods, and in most cases have shown near optimal 

solutions with substantially reduced computational efforts. 

 

A case study is presented to illustrate the implementation of the developed 

framework using actual data from the American University of Beirut; such data was 

also documented for future research. 
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CHAPTER 1 

INTRODUCTION 

Ridesharing services have been gaining increased interest as a contributing 

factor towards sustainable transport systems by reducing travel cost, congestion, and 

parking demand. The continuous technological advancement in computational power 

and the ability to represent more accurate space and time data have allowed for further 

research into solutions for the complex problem of ridesharing service design.  

This research develops and tests a feasibility framework for the evaluation of 

ridesharing services in an organization-based context. The significance of this 

research lies in the development of a framework encompassing all impacts and 

evaluation criteria for organization-based ridesharing and can be used as a decision 

support tool. Additionally, this work introduces the formulation and development of 

new ride matching algorithms that achieve higher ride matching opportunities with 

fast processing compared to known methods in the literature. This chapter provides a 

historical background of ridesharing, defines the available schemes, and identifies the 

opportunities for a ridesharing service for the American University of Beirut (AUB). 

1.1 Historical Background of Ridesharing 

Early forms of organized mass campaigns encouraging people and coworkers 

to rideshare started as early as World War II. At that time, public posters were used in 

North America to promote car sharing to reserve national resources for the war. Later, 

during the 1973 oil crisis, and the 1979 energy crisis, ridesharing was also publicly 

promoted in campaigns, and its modal share increased considerably reaching 19.7% 

by the year 1980. This share dropped to 13.4% in the year 1990 due to the drop of 

gasoline prices and other socio-economic factors (Ferguson 1997), then continued 
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decreasing to become 10.1% in the year 2004, and slightly started to increase to 

10.7% in the year 2005 (US Census Bureau, 2004, 2005). 

A review of the historical price change of gas over the last century to date 

shows consistency between the interest in ridesharing and the increase of gas price in 

the US (Figure 1.1). Over the last few years the gas price (~3.57$/gal) exceeded its 

maximum historical value during the oil and energy crisis in the mid-seventies 

(considering the inflated dollar value: 3.44$/gal in 1979). The increased gas price 

coupled with additional factors (congestion, parking deficit, environmental concerns 

…), is a major drive for the recent increased interest in ridesharing. In addition, the 

technological advancement of computing and telecommunication is in a position to 

provide better implementation solutions. 

 

Figure 1.1: Annual Gas Prices Adjusted for Inflation 1919-2011 (cost/gallon in Feb. 2012 U.S. $) 

(Source: ConsumerEnergyReport.com based on the U.S. EIA data) 

 

In a recent study, Chan and Shaheen (2011) categorized the ridesharing 

evolution into five phases (Figure 1.2): (1) WWII car-sharing clubs (1942-1945); (2) 

Major responses to energy crisis (1970s); (3) Early organized ridesharing schemes 
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(1980-1997); (4) Reliable ridesharing systems (1999-2004); and (5) Strategy-based, 

technology-enabled ride matching (2004 to present). 

 

Figure 1.2: Five Phases of North American Ridesharing (Chan and Shaheen 2011) 
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1.2 Ridesharing Schemes 

 

Ridesharing exists in different schemes. Chan and Shaheen (2012) presented a 

classification of today‟s ridesharing schemes and the relationships among its 

participants (Figure 1.3). Three main categories of ridesharing are identified as 

follows: “Acquaintance-based” carpool by families, friends, and coworkers; 

“Organization-based” typically through memberships; and “Ad-hoc” that is more of 

casual ridesharing. This research is focused on the “Organization-based” ridesharing 

of coworkers or students using cars or vans that are operated by the owner or by a 

third-party (e.g. shared-taxi). 

 

Figure 1.3: Ridesharing Classification Scheme (Chan and Shaheen 2011) 

 

The study by Chan and Shaheen (2011) estimated that there are more than six 

hundred ride matching services currently operating in the U.S. and Canada. They 
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expected the North American ridesharing to include over the next decade “greater 

interoperability among services, technology integration, and policy support”. They 

recommended further research on the understanding of the role of behavioral 

economics, interoperability, multimodal integration, and public policy in increasing 

ridesharing potential, as well as the resulting impact of ridesharing on infrastructure, 

congestion, and emissions. 

In Beirut, a common ridesharing service is available in the form of shared taxi 

(jitneys) and is known locally as “service”. The shared taxi is considered the 

backbone of mass transportation services in Greater Beirut Area where it serves 14% 

of the transportation demand (Team International 1999). Jitneys in Beirut“... operate 

independently and are characterized by their frequency of service and flexibility in 

routing and scheduling; they respond to hail calls by passengers anywhere along the 

route and stop at any point for drop-off” (Kaysi et al. 2007). 

 

1.3 Problem Statement 

 

The problem is to evaluate the opportunities of an organization-based 

ridesharing service as a sustainable solution for the increased parking demand and 

congestion. An evaluation framework for the feasibility of the ridesharing service is 

needed. This framework encompasses the different elements that mainly include: the 

demand estimation for ridesharing, the service design to meet this demand, and the 

feasibility of this service in terms of service impact, cost, and revenue.  

The service design problem is the most challenging component of the 

evaluation framework. The objective is to design the best ridesharing scheme for 

transporting a number of passengers from different origins (their homes) to a single 
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destination (organization), and then back (two way, but not necessarily with the same 

passengers), using a shared-taxi service. The ride matching process is the main 

component of the service design, and it can be defined as a special case of the general 

VRP (Vehicle Routing Problem) or an mTSP (multiple Traveling Salesman Problem) 

for finding the solution for a “many-to-one and one-to-many” problem. The service 

must satisfy each user‟s time window (for departure and arrival), and may operate at 

different times of the day. The solution is to group passengers into vehicles, and 

define the tour/route for each vehicle, with the objective of minimizing the total 

traveled distance by these vehicles, while satisfying the passengers‟ time windows 

and the vehicle capacity constraints.  

 

1.4 Opportunities for AUB 

 

The American University of Beirut (AUB), an urban campus in the center of 

Beirut, Lebanon, has a population of around 8,000 students and 4,400 employees 

including the nearby medical center (academic year 2012/2013). In a recent study on 

parking demand measures for AUB, Aoun et al. (2013) identified the AUB faculty, 

staff, and students need for nearly 3,000 external parking spaces in addition to the 

1,105 parking spaces on campus. A commute survey was conducted in 2010 and 

showed that carpooling comprises 12% and 16%, and shared-taxi (service or jitney) 

comprises 14% and 8%, of the current commuting modes of students and employees, 

respectively (Khattab et al. 2012). Aoun et al. (2013) indicated that the existing 

ridesharing schemes were student and employee initiatives (acquaintance-based). 

They concluded that in seeking solutions to parking and congestion problems in its 

neighborhood, AUB should look into schemes for encouraging and expanding such 
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activities through an institution-based ridesharing initiative. As such, various forms of 

service delivery schemes may be considered for analysis including: Carpooling (CP) 

and Shared-Taxi (ST). The ST scheme may be viewed as a Demand Responsive 

Transit (DRT: a public transport service characterized by flexible routing and 

scheduling) and as an innovative transportation demand management (TDM) practice 

that could be a good fit for AUB whereby users could benefit from an exclusive 

dynamic taxi-sharing service that combines the benefits of a private taxi 

(professionalism, reliability, vehicle comfort, etc.) with the cost and occupancy of a 

shared-taxi. The ST scenario, requiring no parking, is practically the approach that 

could potentially contribute the most to solving the parking demand problem around 

AUB campus.   

 

1.5 Scope of Research 

  

The scope of this research consists of three main parts. The first part is a 

development of an evaluation framework encompassing the elements related to the 

feasibility of ridesharing systems. This evaluation framework consists of three main 

modules: the demand estimation module, the service design module, and the 

feasibility module. An important aspect of this framework is the incorporation of the 

demand side in the service design process; this has not been addressed previously in 

the literature. This framework is designed as an interactive user friendly tool that is 

developed using Excel and ArcGIS programming capabilities. The second part 

highlights the strengths and weaknesses of previous ride matching methods of the 

service design module, and introduces and tests a new proposed heuristic algorithm 

using hierarchical spanning trees. Finally, part three illustrates the implementation of 

the developed framework in a case study for AUB. The most feasible ridesharing 
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alternative is determined using a simple deterministic demand module and a full 

implementation of the proposed ride matching algorithm taking into consideration 

service delivery scenarios and varying the involved parameters. The analysis includes 

system feasibility assessment in terms of cost and revenue as well as service impact 

on parking demand and congestion (expressed in terms of the number of students 

switching from driving their own cars to the ridesharing service). 

 

1.6. Research Contribution 

This research develops a comprehensive framework encompassing all factors 

and criteria for evaluating the feasibility of different potential alternative services for 

an organization-based ridesharing context. This framework accommodates for an 

iterative process between the demand estimation and the service design. The research 

introduces a new proposed ride matching algorithm that is context-related to the 

organization-based ridesharing problem. This framework is implemented on a 

complete case study for the American University of Beirut and the used database is 

documented for future research benchmarking. The original demand, based on which 

the service design step is undertaken, is based on broad service design parameters. 

 

1.7 Dissertation Structure 

 

The remainder of this dissertation is organized as follows. Chapter 2 presents a 

literature review identifying the gaps in previous research related to ridesharing 

services. Chapter 3 investigates the various elements of a ridesharing system and 

establishes an evaluation framework for the feasibility of ridesharing systems. 

Chapter 4 proposes a new heuristic algorithm for the service design of ridesharing 
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systems based on hierarchical spanning trees. Chapter 5 presents a case study for a 

shared taxi system for the American University of Beirut. Chapter 6 concludes the 

dissertation, identifies the contribution of this research, describes the research 

limitations, and proposes potential future research. 

 

  



 

10 
 

CHAPTER 2 

LITERATURE REVIEW 

 

This chapter provides an overview of the literature related to the different 

elements of ridesharing studies, and is divided into six sections. Section 2.1 discusses 

research related to various ridesharing demand estimation models. Section 2.2 

investigates the different ride matching methods and algorithms in the ridesharing 

service design, and orients the ride matching problem within the literature on the 

Vehicle Routing Problem. Section 2.3 presents the technological enablers for 

ridesharing that are described in the literature. Section 2.4 provides a brief overview 

of the literature related to the feasibility and impact of ridesharing services. Section 

2.5 is a review of the literature on success and failures of ridesharing systems. Finally, 

a summary is presented in section 2.6. 

 

2.1 Ridesharing Demand 

The estimation of the ridesharing demand is the first and most important step 

in determining the viability of a ridesharing service. Its objective is to quantify the 

real market for ridesharing.  

In an early study, Gensch (1980) developed a segmentation strategy to 

increase ridesharing by identifying people willing to switch from the drive alone 

mode to rideshare. The author proposed a methodology of identifying “switchable” 

individuals by looking at existing mode choice datasets used in calibrating a logit 

model for Santa Monica, California. The study showed that individuals who do not 
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perceive significant differences in the satisfaction level of various transport modes are 

more likely to switch to ridesharing.  

Amey (2010) discussed a gap in the literature related to the estimation of 

realistic demand for ridesharing in general, by attributing this estimation problem to 

the substantial amount of traveler information needed (detailed information from a 

large number of people on their daily travel habits) and the challenges associated with 

access to this private data. He indicated that prospects for demand analysis at the scale 

of an organization are much better in terms of the data requirements, availability 

(organization-specific travel surveys), and privacy concerns. He proposed a data 

driven methodology (using detailed commute survey data) for estimating the potential 

of ridesharing at an organizational scale. The study presented results for the 

Massachusetts Institute of Technology (MIT), which have indicated a significant 

difference between the estimated “potential” rideshare and the “observed” behavior. 

He made inferences from this comparison about the relative importance of trip 

characteristics versus the importance of human attitudes in rideshare arrangements. 

Another study by Deakin et al. (2010) investigated ridesharing opportunities among 

students at the University of California at Berkeley; they determined the number of 

users willing to switch to ridesharing services through stated preference surveys. The 

study concluded on some factors encouraging participation in ridesharing including 

incentives, cost or time savings, safety and security (ridesharing operator screening 

other participants and the driver through background checks), and the availability of 

computer and cell phone messaging. On the other hand, the factors that were 

identified to discourage shifting from driving alone to ridesharing included the need to 

make stops en route, flexibility, privacy, and ability to satisfy one‟s own audio and 

climate preferences. 
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Ciari and Axhausen (2012) investigated the impact of selected socio-economic 

variables (income), travel time, and other indicators that could provide a useful 

background for policy evaluation and planning of ridesharing initiatives. They used 

stated preference surveys to develop multinomial logit mode choice models. 

Respondents were asked to choose among drive alone, public transport, carpooling as 

driver and carpooling as passenger. The most important variable affecting the 

switching was found to be the VTTS (value of travel time savings), and the study 

outcome demonstrated a satisfactory fit of the model, with a higher preference to the 

carpool “as passenger” compared to the “as driver” option. 

 

2.2. Service Design and Ride Matching Algorithms 

This section presents a review of the related service design problems in the 

literature, discusses the similarities and differences, and indicates the potential 

contributions of this research in the different aspects of the problem at hand. 

2.2.1. The Vehicle Routing Problem 

The Vehicle Routing Problem (VRP) was first introduced by Dantzig and 

Ramser in 1959, and has been under extensive study in the fields of transportation, 

distribution, and logistics. VRP is often time dependent, and includes partitioning and 

sequencing sub-problems that are not independent of each other. VRP exists in 

different variants; we introduce the main types in the following subsections. 

The Capacitated VRP (CVRP) problem (Christofides et al. 1981) is the basic 

example, where the objective is to minimize the total cost of all vehicles while 

satisfying a single constraint, being each vehicle‟s capacity. The VRP problem is 

typically considered for the transportation of goods, and thus the demand at each node 
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is usually different in quantity. Our problem considers the transportation of people; 

thus we have a unit demand at every node, and the objective is to minimize the cost of 

supply. This research presents fast heuristics for solving the CVRP with unit demand, 

while enabling the generation of solutions for different vehicle capacities with the 

least computational efforts. This is beneficial when investigating the best vehicle size 

(car or van) for each case study. 

The VRP with Time Windows (VRPTW) problem (Solomon 1987, Gehring 

and Homberger 2005) imposes an additional constraint specifying a time margin at 

pick-up and/or delivery points. Different schemes of time window distributions exist 

depending on the problem type. In general, the transportation of goods has longer 

time window spans than commuter passengers. Our problem considers a group of 

coworkers or students who share a common fixed arrival time (work/class time), so 

the time window is considered at the departure point (home). A late departure time 

(TL) is the desired time for pick-up that is based on a direct route from the origin to 

the destination without any route deviation. However, due to the need to pick up 

additional passengers along the way, each passenger is willing to accept an additional 

in-vehicle travel time (ΔT). This extra travel time deviation is accommodated by an 

early departure time (TE) where (TE = TL – ΔT). The objective may be based on 

either maximizing the user utility (by minimizing ΔT), or maximizing the operator 

profit (by minimizing the total cost while satisfying a defined maximum acceptable 

ΔT). In this research, we associate the time window constraint with a „maximum 

allowable route deviation‟ being the ratio of ΔT to the direct travel time of each 

passenger. In any car arrangement of a ridesharing problem, the first picked up 

passenger always experiences the highest „deviation‟, and the last passenger has zero 

deviation towards the final destination. 
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The VRP with Pick-ups and Deliveries (VRPPD) problem is a generalized 

form of the VRP where each node may be visited for pick-up or delivery of goods or 

passengers. In this problem the vehicle is serving deliveries and pick-ups 

concurrently, with a “many-origins to many-destinations” scheme. Although our 

problem involves pick-ups and deliveries, they are not expected to occur concurrently 

due to the deviation constraint of each passenger. In this case, each vehicle is 

expected to be either picking up passengers from home to work (many-to-one) or 

delivering passengers from work back to their homes (one-to-many). For example, if a 

car is dropping off passengers in an outbound trip from the depot, the sequence of 

drop-off stops will be from the nearest to the farthest. Any pick-up passenger along its 

way would rather be picked up after the last passenger is dropped off (at a further 

distance from the depot), instead of an earlier pick-up with longer deviation. 

2.2.2. VRP Solution Approaches 

The VRP is known to be NP-Hard, and thus exact algorithms cannot solve large 

problems in real time. Investigating all possible solutions using naïve or brute force 

methods is not computationally feasible, even for problems with small numbers of 

passengers. Therefore, researchers have developed numerous heuristic algorithms to 

find the best possible solutions. Some known heuristic methods include: Branch-and-

Bound (Branch-and-Cut) algorithm, Clarke and Wright's Savings algorithm, Nearest 

Neighbour (Greedy) algorithm, Column Generation algorithm, Genetic algorithm, and 

the Ant Colony algorithm. 

Following the Laporte and Nobert (1987) survey, VRP algorithms can be 

classified into three broad categories: Direct Tree Search Methods, Dynamic 

Programming, and Integer Linear Programming (ILP). The three index vehicle flow 

formulation, developed by Fisher and Jaikumar (1978), is commonly used in ILP 
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approaches.   

Christofides et al. (1981) were the first to investigate algorithms to solve the VRP 

based on spanning trees and shortest path relaxations. They have used branch-and-

bound tree search and demonstrated exact solutions for constraints-free small VRP 

problems of up to 25 customers. 

Araque et al. (1990) focused on a graph-based approach and studied the associated 

polyhedral structure of the (identical customer) VRP, where the objective is to find a 

minimum cost set of routes, all originating and terminating from a given depot, with 

the properties that no two routes intersect at any vertex other than the depot, and no 

route contains more than K customers. They also noted that if the last link of each 

route is eliminated, then any feasible set of routes becomes a feasible solution to the 

subtree cardinality-constrained minimal spanning tree problem. They introduced a 

number of new valid inequalities and specified conditions for ensuring when these 

inequalities are facets for the associated integer polyhedra. 

2.2.3. Organization-Based Ridesharing 

Despite the vast variety of VRP research efforts, little is available on the solutions 

for the special case of the organization-based ridesharing problem. Most of the 

relevant literature is focused on the demand, success, and failure of adopted 

ridesharing systems, while little is found on the routing aspect of the problem. 

The typical ride matching processes in a Dial-a-Ride problem (door to door 

ridesharing service) involve complex algorithms to match multiple origins with 

multiple destinations (many-to-many). However, researchers have simplified this 

process in the many-to-one scenario where one common origin/destination is defined 

for all users (institutional context: universities, hospitals, etc.).  

The problem is context-related to the ridesharing specifics, including unit demand, 
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asymmetric networks, narrow time windows at departure, and common arrival time at 

the destination. 

An oversimplified example was the assumption of a uniform spatial distribution of 

the users across the study area by Tsao and Lin (1999). Other researchers (Sarraino et 

al. 2008, Deakin et al. 2010, and Buliung et al. 2010) have improved the simple 

assumption of uniform spatial distribution of users for matching trip ends by 

identifying users within clusters of a set radius using GIS tools. 

The proposed solution approach by Deakin et al. (2010) was mainly matching 

students based on their spatial and temporal attributes. Students were first matched 

according to their schedules, and then were matched spatially in proximity clusters. 

The objective was to maximize matched rides satisfying a geographical cluster size. 

Nevertheless, the authors did not indicate explicitly the steps or methods in 

establishing the proximity clusters, and how the students in each cluster were grouped 

in cars. Despite the effectiveness of this fast approach in the cases where students‟ 

home locations may represent a clustered distribution, it is not expected to be as 

effective in other cases of random or continuous distributions. 

On the other hand, Amey (2010) argued that spatial clustering to match students 

within close proximity may underestimate the trip matching by overlooking 

opportunities of matching students within a minimum deviation along the route. The 

author proposed a heuristic method of pairing students in groups of two, and the 

objective was to maximize matched pairs while considering the highest possible VMT 

(Vehicle-Miles-Traveled) savings, and satisfying acceptable driver delay constraints. 

Two approaches were briefly discussed with no indication of the related formulation 

or procedures. The first involved a fast approach using a simple spreadsheet, while the 

second used the CPLEX software. The advantage of the pairing approach is the 
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consideration of potential ride matches along the route; however, it is limited to 

matching only two passengers per car. The proposed process is divided into three 

main steps:  

1- Compute travel time between each user and MIT campus, and between all user 

pairs. 

2- Apply a set of criteria for filtering pairs with potentially feasible pairing 

(driver with access to a car, willing to accept a maximum of 5-minute 

additional delay on travel time, and has a maximum 30-minute 

arrival/departure time difference with the passenger). 

3- Use spreadsheet/CPLEX solvers to identify the most feasible pairings. 

The strength of this methodology is in exploring all possible pairings compared to 

geographical clustering techniques that overlook the mid-trip matches. In addition, a 

major advantage of this process lies in its structure where step 1 (requiring traffic 

modeling software to calculate origin-destination travel times) is done only once. The 

remaining steps 2 and 3 can be easily done in simple spreadsheets, thus allowing real 

time processing of the various parameters/variables involved. Real time (or dynamic) 

ridesharing increases the pre-booking opportunities through short notice 

arrangements. 

However, there are some limitations in Amey‟s (2010) proposed approach that can 

be summarized as follows: 

1- Delays at Intersections: The road network model needs to have sufficient level 

of detail. The author clearly states the issue of not including delays at 

intersections in the travel time calculation which is expected to render some of 

the travel time calculation unrealistic. 

2- Spatial Aggregation: Aggregating users to the nearest intersection 
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(automatically) might not be the best option; for example, a passenger might 

walk a slightly longer distance to a different intersection on the opposite 

direction to the one selected. This overlooks the road directionality issues as 

residences on each side of the road may be directed to different intersections 

(in the presence of a median). 

3- Pairing: The approach is designed for “pairing” of trips, and the author 

assumes very limited opportunity to match three or more feasible rides. This 

limits the use of the tool to two-person carpools (driver + passenger), and 

excludes the possibility of using it for multiple passenger rides (car or van). 

For example, if three users are living in the same (or adjacent) building, the 

developed tool will match two of them and leave the third one out. 

4- Filtering: The author applied filtering to exclude „passengers‟ living within 

one mile from the MIT campus; however, this filter was applied at a later 

stage in the process (after the aggregation and expansion of the calculated 

travel times). A lot of calculation could be saved by applying this filter at the 

beginning of the process. 

5- Potential Rerouting: The tool does not offer to show the “potential rerouting 

plan” of the „driver‟ (how much it changed from his regular commute route 

due to the deviation to pick up the paired passenger). 

Another study of taxi sharing among coworkers in Taiwan was presented earlier 

by Tao and Chen (2007). They proposed two heuristic algorithms based on the greedy 

algorithm and the time-space network. Their solution procedure is to search for the 

nearest passengers while expanding the proximity search radius. The objective was to 

minimize the VMT and passenger delays, while satisfying passenger preferences 

(passengers‟ gender, desired car occupancy, etc.) and the vehicle capacity constraint. 
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They performed an actual field trial at Taipei Nei-Hu Science and Technology Park in 

Taiwan, and concluded with plausible numerical testing results. They used 10 taxi 

cabs and 798 participants over a period of 17 days and claimed a successful matching 

rate of 60% with an average occupancy of 2.4 passengers/vehicle. This approach 

enables matching closest proximity rides, as well as the potential matches along the 

route. The main disadvantage of this method lies in the computational efforts needed 

for the time-space network calculations for large problems. It is to be noted that 

despite the relatively large size of the sample under consideration, introducing user 

preferences would result in breaking up the problem into much smaller sub-problems 

instead of complicating the solution. 

Yan et al. (2012) have further developed a modified method based on the 

method proposed by Tao and Chen (2007) of using time-space network flow 

techniques in studying methods for the taxi pooling (similar to ST) problem. They 

used three heuristic NBS (Network Based Solution) models and a Lagrangian 

relaxation-based algorithm. The first model was for fleet and passenger routing and 

scheduling, and the second and third models were established for passenger matching 

in a single taxi.  

Two main solution strategies can be concluded from the above literature; the 

first is clustering of customers within a proximity range, while the second is matching 

customers with minimum deviations along routes. This research proposes a heuristic 

approach that incorporates both strategies, and presents the results for different 

problem sizes and customer spatial distributions. The main advantage of this robust 

heuristic approach is in its ability to solve large problems quickly with the possibility 

of selecting various car capacities compared to the pairing of two passengers approach 

presented by Amey (2010). In addition, it presents a practical methodology for 
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proximity clustering that can be used for problems with clustered as well as random 

and continuous distributions of customers. 

2.2.4. Multi-Objective VRP 

The design of a typical ridesharing system involves the objective of reducing 

the operator‟s total cost while maintaining a predetermined passenger burden 

constraint. However, this may not be the case in reality. Other objectives may also 

include minimization of the total number of cars needed, determination of the optimal 

car size/capacity, and/or maximization of passenger utility by minimizing their travel 

burden (equity). Jozefowiez et al. (2008) related these objectives to different aspects 

of vehicle routing problems: tour (cost, profit, makespan, balance...), nodes/arcs (time 

windows, customer satisfaction...), and resources (management of the fleet, 

specificities of the product to deliver ...). 

In a study by Chevrier et al. (2012) on the solution of the DRT dial-a-ride 

problem, the authors proposed an evolutionary approach (using hybrid algorithms 

denoted as: NSGA-IIH, SPEA2H, IBEAH) that optimizes three objectives concurrently: 

- Economic: minimizing the operational costs (number of vehicles used);  

- Environmental: minimizing the duration of the vehicles‟ journeys to limit the 

emission of pollutants (reducing the carbon tax); 

- Quality of service: minimizing the likely delays which may occur. 

 They applied three state-of-the-art algorithms on synthetic data and realistic 

problems. The optimization processing time was in the range of one to two minutes. 

Ultimately, minimizing the processing time is essential in reducing the overhead time 

delay in matching real time requests for ridesharing. 

Perugia et al. (2011) were the first to introduce the multi-objective Home-to-

Work Transportation Problem (HWTP) and the associated equilibrium between 
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conflicting criteria such as efficiency, effectiveness, and equity. Although their work 

was based on the service design of bus routes and stops, their problem is similar to the 

institutional ridesharing problem at hand. Similarities include the multi-objective 

consideration of the time window distributions, equity among passengers, and the 

efficiency of the operational cost.  

2.3. Technological Enablers 

Technological advancement has enabled accurate location positioning of 

customers, wireless communication, and the development of online complex ride 

matching tools with real time processing. Deakin et al. (2010) proposed the use of 

Global Positioning System (GPS) technology to assist drivers and passengers in 

finding each other during pick-ups. 

In a more recent study, Amey et al. (2011) studied innovative real time 

ridesharing services that rely heavily on advanced mobile phones. Such a dynamic 

ridesharing service allows “short-notice” ride matching opportunities. They 

highlighted the potential opportunities and obstacles, and provided recommendations 

for this real time innovation, including: targeting large employers, integration of 

travel information from multiple modes, and comprehensive participant engagement. 

Other research by Agatz et al. (2011) on the impact of smart phones 

technology use in real time ridesharing presented a simulation study based on actual 

travel demand data of metropolitan Atlanta. The authors compared sophisticated ride 

matching optimization methods (that account for smart phone advantages) with the 

Strawman greedy algorithm (requiring no sophisticated software to solve) and the 

results demonstrated a substantial improvement in ridesharing matches. They 

implemented their approach in a simulation environment in C++ and CPLEX 11.1 (a 

linear binary integer programming solver). 
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Raubal et al. (2007) introduced spatial and temporal concepts that can be 

employed during the planning process. The aim of their proposed methodology was to 

significantly reduce the overhead time of the peer-to-peer communication and the 

computational time of the real-time ride matching. They defined the shared-ride 

systems as a match of the clients (having travel demand, e.g. pedestrians) and the 

hosts (vehicles being the supply), and have used “host decision” and “client choice” 

algorithms in a simulation environment. 

 

2.4. Feasibility and Service Impact 

This section presents literature on the feasibility of ridesharing services and 

the service impact in terms of reducing congestion and emissions. 

2.4.1. System Feasibility 

Little is found in the literature in relation to costing of ridesharing services as 

compared to the demand estimation models and the ride matching optimization 

problem. Deakin et al. (2010) indicated that the cost for a dynamic ridesharing 

program would include start-up and ongoing staffing, marketing and advertising, 

incentives to participants, ride matching software and related hardware, and program 

evaluation. Conducting a cost-benefit analysis was beyond their research scope. 

Lee et al. (2005) presented a feasibility study for a taxipooling dispatching 

system with actual cost parameter values obtained from Taiwan. They presented a 

sensitivity analysis for the total system cost for a proposed two-step dispatching 

algorithm under different demand and service design scenarios. 

iTrans (2007) conducted a feasibility study of a vanpool program for Greater 

Toronto Area and Hamilton. The study included a market analysis investigation, a 
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business case for a third-party vanpool operation model, a financial implementation 

plan, and the expected environmental benefits 

2.4.2. Service Impact 

Bonsall‟s (1981) research for ridesharing opportunities in the UK concluded 

with two main results: ridesharing is an abstraction of patronage from public 

transport; and the population who would potentially use ridesharing would rarely 

exceed 2% (much less than the U.S. due to socio-cultural differences and higher 

public transport availability in the U.K.); thus the impact on energy consumption, 

road congestion or pollution is extremely limited. 

Kocur and Hendrickson (1982) were among the early researchers to develop models 

to assess cost and fuel savings from ride-sharing. They used probabilistic methods to 

account for day-to-day variability in demand as well as trip origins and destinations 

associated with ridesharing. Their model also considered the varying fuel economy 

with trip length and passenger load.  

Evans and Pratt (2005) identified three benefits of implementing vanpool 

ridesharing programs being “the reductions in work commute travel costs and 

improved travel comfort”, “the reduction of energy consumption and air pollution”, 

and the “reduction of traffic congestion and parking demand at work sites”. 

Caulfield (2009) studied the reduction of congestion and greenhouse gas 

emission for the various ride-sharing patterns using 2006 census data and COPERT4 

(a traffic emissions software by the European Environment Agency) model in the case 

of Dublin. 

2.5. Successes and Failures of Ridesharing Systems 

Numerous case studies of successful ridesharing systems were reported in the 



 

24 
 

literature (Comsis 1993, Evans and Pratt 2005). Buliung et al. (2009) indicated that 

despite the fact that carpool is one of the most difficult forms of mode choice to 

achieve, it is possible to identify factors contributing to the success of carpool 

initiatives including incentives, expansion of carpool facilities (e.g. HOV lanes), 

employer based programs, and social marketing. 

On the other hand, Enoch et al. (2006) investigated the failure reasons in 72 

DRT projects from around the world to draw conclusions and lessons learned. The 

study concluded that “DRT projects are often not realistically costed or designed with 

a full understanding of the market they are to serve”. They identified the root of the 

DRT failure to be often found in the working skills and partnership between various 

stakeholders. The study recommended a phased implementation approach of the DRT 

with respect to service flexibility and the adaptation of costly technological systems. 

 

2.6. Summary 

The literature review presented in this chapter has indicated the different 

elements that are related to the organization-based ridesharing studies. These elements 

can be categorized into three main areas: ridesharing demand studies, ridesharing 

service design, and feasibility of ridesharing services. In general, researchers have 

addressed each of these elements independently. An evaluation framework integrating 

these various elements is needed to present the big picture and to provide the 

interrelationships among these elements.  

Moreover, a gap is found in the ride matching methods for the organization-

based ridesharing problem. Most of the relevant literature was found to be focused on 

the demand for ridesharing systems, while little is found on the routing aspect of the 

problem.  
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CHAPTER 3 

PROPOSED EVALUATION FRAMEWORK 

 

In this chapter, an evaluation framework for the feasibility of institution-based 

ridesharing services is presented. It integrates the various aspects of the problem that 

were discussed in the literature review and were addressed independently by other 

researchers. This chapter is structured into five main sections as follows. Section 3.1 

is an overview of the framework, and the following four sections discuss the main 

components of the framework: the “user and spatial data model”, the “demand 

estimation module”, the “service design module”, and the “feasibility module” (see 

Figure 3.1).  

 

Figure 3.1: Main Components of the Evaluation Framework 

3.1. Overview 

The proposed analysis framework presented in Figure 3.2 represents the 

interrelationships among the various elements and processes that comprise the scope 

of the evaluation of a ridesharing service.  
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The ultimate objective of the framework is to identify the most feasible 

ridesharing service design option with a balance between multiple objectives that may 

be conflicting, such as maximum number of ride matching opportunities, minimum 

total cost, and minimum user disutility, while considering different service delivery 

options. The feasibility of each option is determined using cost-benefit analysis at the 

operator level. 

 

Figure 3.2: Proposed Evaluation Framework 
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Two sets of inputs are needed for the model: the users database and the spatial 

database. A three phased iterative process is used to determine the optimal ride 

matching scheme.  

First, the subset of users willing to switch from their current mode of transport 

to the new ridesharing service is estimated using the demand module. Additional 

filtering (e.g. passengers‟ sex, car occupancy, and climate preference) and initial 

schedule matching is applied to this subset. Second, based on the proposed 

ridesharing service design specifics (maximum deviation and vehicle capacity), 

spatial matching algorithms are further applied to the schedule-matched user subset. 

Service delivery options (pre-booked or real time) and the associated technological 

enablers are also considered (the main component is the online ride matching tool). 

Finally, the resulting estimated demand is used for the financial feasibility 

assessment, and the service impact on the existing parking demand and congestion is 

evaluated. A feasible system may attract investors from the private sector. A reduction 

in parking demand may encourage the institution to provide supporting policies and 

financial subsidies. Reduction of the user cost (by institutional subsidy) can also be 

tested for an increased willingness to switch scenario. Each service delivery option 

may lead to different service attributes (cost, deviation, etc.), possibly affecting the 

“willingness to switch” estimation in phase one. This calls for an iterative process 

between the three phases allowing the analysis of different “what-if” scenarios (see 

Figure 3.1). While appearing complex, the iterative approach of this proposed 

framework makes it useful as a decision aid tool. In the case study presented in 

Chapter 5, the iterative process is simplified by defining a set of scenarios first and 

then investigating them in all three phases. 
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The following subsections discuss the main components of the proposed 

framework. Each of the main modules of the framework can be further developed 

using detailed methodologies and advanced tools. However, this research is mainly 

focused on the service design module, and a new ride matching algorithm is presented 

in detail in Chapter 4.  In addition, a case study with application of all the modules of 

the framework is elaborated in Chapter 5. 

 

3.2. Users and Spatial Data Model 

An input database needs to be developed when investigating the opportunities 

to introduce a ridesharing service for any organization. This input database consists of 

the users database and a spatial database.  

3.2.1. Users Database 

It is a common practice for some organizations to undertake a comprehensive 

commute survey of its employees/students to better understand their commute 

patterns and preferences. A typical commute survey includes the spatial, temporal, 

and other socio-economic characteristics of the target population, and their current 

commuting patterns. The main interest is typically to reduce the number of “drive 

alone” users to reduce the parking demand and congestion. The potential users of the 

ridesharing service among the target population are a subset of employees and/or 

students (of a given institution) living beyond a walking distance zone. 

This data is needed for the spatial database model and for the demand module, 

and it consists of the following users database: 

- User gender, age, position (student, employee, etc.), and other socio-economic data 

- Schedule: the daily starting and ending time 
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- Current commute mode to the organization, and the preference for possible rideshare 

- Home address: zone, street, and building 

3.2.2. Spatial Database Model 

With the availability of advanced GIS (Geographic Information Systems) 

models, a GIS model may be available or may need to be developed to represent the 

road network database with travel time attributes (extracted from available traffic 

models for the study area), as well as other network analysis attributes that are needed 

for establishing shortest path routes between any given points. The GIS model will 

also include users‟ addresses and their organization‟s address that will be geocoded as 

point locations (origins/destinations). 

This data is needed for the demand and service design modules, and it consists 

of the following spatial database: 

- Point locations of all users and the organization 

- Road network for routing 

- Travel time between all points (cost matrix) 

Given the addresses of all potential users and their destinations, these data are used to 

determine the grouping of users in cars and the routing plan of each car. 

 

3.3. Demand Estimation Module 

After the user and spatial datasets are assembled, they are used in the demand 

module to estimate the potential user population for the new ridesharing service. The 

“willingness to switch” is generally a model that estimates the probability of users 

currently commuting by other modes of transport (drive alone, public transport, 

private taxi, etc.) to switch to ridesharing given the service attributes. Discrete choice 
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models are typically used to analyze and predict the user‟s decision of switching to 

ridesharing. The user cost, travel time, and other service attributes (comfort, 

reliability, and availability) are the main factors in determining the willingness to 

switch in addition to users‟ characteristics, attitudes, and needs. This section presents 

the user cost and travel time factors, while the other service attributes are discussed in 

the service design section 3.4. 

3.3.1. User Cost 

The user cost is determined for the current commuting mode of each user 

potentially switching to the new ridesharing service. The trip cost for users currently 

commuting by their own cars is estimated based on their travelled miles (gas and car 

maintenance) and the parking fees. Users that are currently carpooling may be 

considered to share the trip cost. The cost for other users that are currently commuting 

by public transport (bus and/or taxi-service) is estimated based on applicable public 

transport fares between each user‟s home location and the organization. 

On the other hand, the ridesharing fare is the new user cost after switching to the 

new ridesharing service. Different scenarios of fare values may be investigated in the 

demand forecast. Furuhata et al. (2013) identified three industry types of fare pricing 

rules as follows: 

 Catalog price: listing of flat rates, typically based on geographical zones. 

 Rule-based pricing: using a cost calculation formula, typically per mile and number 

of passengers/stop. 

 Negotiation-based pricing: price is negotiated between the driver and passenger on a 

car by car basis. 
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3.3.2. Travel Time 

The travel time for each user is computed for both the current commuting 

mode and the new ridesharing service. The total door-to-door travel time consists of 

two components: the IVTT (in-vehicle travel time) and the OVTT (out-of-vehicle 

travel time). The IVTT is computed from the route length divided by the average 

speed (different for public transport and private cars), and the OVTT is typically the 

walking plus waiting time (mainly for public transport). 

For the new ridesharing service, the travel time for each user is the direct 

door-to-door travel time by the taxicab plus an additional delay due to the route 

deviation to collect additional passengers along the way. For the inbound trips (home-

to-work), the first picked up passenger would observe the highest route deviation (not 

exceeding the maximum allowed), and the last picked up passenger would observe no 

delay (direct route to the organization). For the outbound trips (work-to-home), the 

first dropped off passenger would observe no delay, and the last dropped off 

passenger would observe the maximum delay. The maximum allowable deviation is 

expressed as a percentage of the direct travel time of each passenger.  

In reality the travel time matrix between the different nodes on the network 

varies throughout the day. For example, a passenger‟s travel time from his/her home 

to the destination (the organization) may be 40 minutes during peak hours and 25 

minutes during off-peak hours. As such, considering the maximum deviation as a 

percentage of the travel time may reflect some of this variability of the travel time. 

However, the actual travel time along different routes may not be proportionally 

changing at different times of the day. Huang and Gao (2012) addressed the problem 

of finding optimal paths in networks where all link travel times are stochastic and 
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time-dependent, and correlated over time and space. The authors defined a disutility 

function of travel time to evaluate the paths using a developed exact label-correcting 

algorithm, and presented analytical results in small and large networks where the 

impact on finding the optimal path is closely related to the levels of correlation and 

risk attitude. 

3.3.3. Value of Time 

A value of travel time (VOT) factor is considered in conjunction with the user 

travel time and travel cost when considering shifting to a new travel mode. It is used 

to assess the amount that a user would be willing to pay in order to save time (e.g. 

users switching from public transport to the new ridesharing service), or the amount 

that the user would accept saving as a compensation for the extra travel time (e.g. 

users switching from private car to the new ridesharing service). 

3.4. Service Design Module 

The service design module consists of several elements that are identified in 

the framework as follows: service delivery, service attributes, ride matching tools, 

technological enablers, and vehicle dispatch. These five components are discussed in 

the following subsections. 

3.4.1. Service Delivery 

In general, traditional public transport service design consists of establishing 

routes, stops, and schedules that are typically predetermined and fixed. In ridesharing 

service design, these elements are established with flexible arrangements that can vary 

from pre-booked to real time. Other parameters, related to cost and revenue, are also 

considered. 
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For organization-based ridesharing schemes, a defined set of users are 

typically served on a regular schedule using a dedicated fleet of taxicab vehicles. 

Since the operation schedule of the organization is typically predetermined, the 

majority of the trips are expected to be pre-booked. However, the service design 

should anticipate limited changes in terms of new requests or canceled requests during 

the operation of any regular day.  

3.4.2. Service Attributes 

The main service attributes are: the fare for the ride, route deviation 

(additional delay to the trip travel time), convenience (privacy, perception of security, 

on-board wifi, and comfort during the trip), system flexibility (real time/dynamic 

service), service availability (for the different users of the organization), and service 

reliability (on time departures/arrivals and guaranteed rides in emergencies or 

unscheduled operations). These attributes contribute directly to the demand module 

for determining the user‟s willingness to switch to the ridesharing service. This 

necessitates iterative processing of the elements of the developed framework when 

updating the service attributes (potential fare changes due to subsidy, and the impact 

of the technological enablers on reducing delays, increasing system reliability and 

service availability) and subsequently establishing a new demand estimate. For the 

purposes of the case study in Chapter 5, a simple deterministic demand model was 

implemented taking into consideration the user cost and travel time in association 

with the value of time.  

3.4.3. Ride Matching Tools 

The proposed service design in the developed framework is intended to be 

used for Shared-Taxi (all-passengers ride matching scenario) but is flexible and 
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generic to enable consideration of other ridesharing service options, i.e. carpool 

(driver-passenger ride matching scenario). As such, temporal matching might be one-

way (possibly different passengers in each direction) or two-way (same passengers 

are coming and leaving together).  

Two main ride matching approaches (clustering and pairing) were identified and 

discussed in the literature review. The advantages and disadvantages of each of the 

ride matching approaches are summarized in Table 3.1 below.  

Table 3.1: Comparison of Existing Ride Matching Methods 

Method Advantages Disadvantages 

Clustering 

Best for defining fare 

structures 

Matches multiple passengers 

Misses out passengers along the 

way 

Pairing 
Captures possible matches 

along the way 

Matches only one passenger to 

each driver 

Uncertainty about the actual 

delay resulting from the route 

deviation (travel time 

variability/reliability) 

 

This research proposes a new hybrid method using a heuristic algorithm that 

combines the advantages of both methods. This new proposed method is discussed in 

detail in Chapter 4 of this thesis. 

3.4.4. Technological Enablers 

Technological advancement in computational speed (micro-processors), 

telecommunication (3G, Web, SMS, etc.) and location based systems (GPS, AGPS, 

and other geo-location capabilities) provides the possibility to upgrade static 

scheduling and assignment to dynamic (i.e. real time) matching. This may include 

mobile application for reservations (dynamic ridesharing), driver to passenger 

communication and notification at pick-up, on-board wifi facility, and vehicle 
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tracking. The selection of the type and specifications of the technological enablers is 

based mainly on the intended service delivery that will either require fixed pre-

booking or real time requests.  

3.4.5. Vehicle Dispatch 

A vehicle dispatch tool is needed depending on the operation schedule of the 

organization. In the case of an organization with the same starting time in the morning 

and ending time in the evening, a vehicle is dispatched to make a single tour per day. 

On the other hand, a vehicle may be dispatched to make multiple tours per day for 

other cases of organizations that have different starting and ending times per user 

groups (i.e. factory shifts, hospitals, or universities). The proposed ride matching 

algorithm solves the problem for each group of users sharing the same starting and/or 

ending time separately. The vehicle dispatch provides the link between the trips of the 

whole day; it also includes routing and scheduling of the vehicles and the drivers. The 

ride matching tool may be integrated with the vehicle dispatch tool for the 

optimization of the taxicab fleet size. This integration may be in 2-step processing 

(ride matching then dispatching) or combined in complex algorithms with multi-

objective optimization of the overall system. For the purpose of this research, a simple 

greedy vehicle dispatch method is adopted as a post processing of the ride matching 

algorithm (this may not guarantee the optimal number of required cars). 

 

3.5. System Feasibility Module 

Evaluating the feasibility of any proposed ridesharing service involves both 

financial and economic decisions. A cost-benefit analysis, comparing expenditures 

and revenues, is typically used for the financial decision. The economic decision 
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seeks the impact of the ridesharing service on the different stakeholders (the users, the 

organization, the operator, and the neighborhood of the organization). 

3.5.1. Operator’s Cost-Benefit 

The resulting estimated demand for the ridesharing service is the key element 

of the developed framework. The system feasibility is established using the estimated 

capital and operational costs of the service and the expected revenue from the 

ridesharing demand.  

The main components of the operator‟s cost include the price for the online 

ride matching tool, the acquisition cost for the vehicle fleet, and the operational costs 

for fuel, salaries, office rent, and other expenses. On the other hand, the operator‟s 

revenue consists of the fare collection and may also include financial subsidy from the 

organization served. 

3.5.2. Service Impact 

The proposed ridesharing service may have different impacts on the various 

stakeholders. Table 3.2 summarizes the impacts of ridesharing from the perspectives 

of user, the institution, the neighborhood, and the operator. 

Table 3.2: Impacts of Ridesharing on the Different Stakeholders 

User’s 

Perspective 

Institutional 

Perspective 

Neighborhood 

Perspective 

Operator’s 

Perspective 

Personal 

economic and 

time benefits 

Reduction in parking demand and 

congestion (sustainable transport) 
Profit 

Safety 

Environmental 

benefit (reduction of 

emissions and noise) 

 

Convenience 

Reduce reliance 

on private auto 
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3.5.3. Institutional Support 

The estimated service impact is a determining factor for motivating the 

institutional support, through financial subsidy and/or supporting policies, which in 

turn will increase the opportunities for higher demand. For example, a university or 

institution might favor partially subsidizing a low-fare ridesharing service instead of 

building a new parking facility to meet the increased demand. 

3.5.4. Interest of the Private Sector 

A profit opportunity coupled with institutional support offers an attractive 

scenario for the private sector in general and the private taxi operators in specific to 

invest in the implementation of the ridesharing service. 

3.5.5. Policy Scenarios 

The proposed evaluation framework is used to test policy scenarios. Three 

important factors are to be investigated when planning different scenarios of a 

proposed ridesharing service. These factors are the fare level, the maximum allowable 

deviation, and the vehicle capacity. Figure 3.3 below presents the interrelationships 

between these factors and the main elements of the framework (scenario parameters in 

yellow, demand module in pink, service design module in blue, and feasibility module 

in green).  

The demand is mainly affected by the fare and the maximum deviation values. 

Consequently, the service design is mainly dependent on the demand size, the 

maximum deviation, and the vehicle capacity. As result of the service design, the 

observed deviations may be considerably less than the maximum allowable deviation, 

and thus it may feed back into the demand module and result in an increase in the 

demand. This was identified as a gap in the literature where the service design process 
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was addressed by researchers independently, assuming a fixed demand. 

The service impact is also determined by the demand, and in scenarios where 

higher demand leads to a considerable reduction in parking demand and congestion 

the organization may be encouraged to provide financial subsidy to reduce the fare to 

increase the demand. 

The service design determines the fleet size and the vehicle miles which 

constitute the main elements of the operator‟s cost. The operator‟s revenue is 

calculated using the demand and the fare price. A cost-benefit analysis may lead into 

lowering or increasing the fare price which in turn feeds back into the demand module 

affecting the remaining elements of the framework. 

  

 

LEGEND 
  Scenario Parameters        

  Demand Module 

  Service Design Module 

  Feasibility Module 

Figure 3.3: Interrelationships among the Main Elements of the Framework 
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CHAPTER 4 

PROPOSED RIDEMATCHING ALGORITHM 

 

This chapter proposes a new many-to-one ride matching algorithm based on 

the Capacitated Vehicle Routing Problem with Time Windows. The problem is 

focused on the context of organization-based ridesharing, including unit demand, 

asymmetric network, narrow time windows at departure, and common arrival time at 

destination. This chapter is organized into five main sections as follows. Section 4.1 

presents two motivating examples explaining the solution strategies identified in the 

literature. Section 4.2 describes a proposed new heuristic algorithm that combines the 

advantages of both solution strategies (clustering and pairing) and with capabilities of 

fast solving large size problems with different vehicle capacities. A step-by-step 

example of using the proposed algorithm is elaborated in section 4.3. Section 4.4 

provides methods for finding optimal solutions by implementing a mathematical 

formulation in CPLEX. Section 4.5 presents the simulation results of small and large 

problems using the developed algorithms. Finally, conclusions are drawn in Section 

4.6. 

4.1. Motivating Examples 

4.1.2. Example 1 

 

The ride matching approach proposed in this research utilizes both strategies 

discussed in the literature: matching of proximity clustered passengers, and matching 

passengers with minimum deviation along a route. The following is a small example 

that illustrates the difference between proximity clustering and minimum deviation 
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strategies, and their implications on maximizing the user utility or minimizing the 

operator‟s cost. 

The problem consists of transporting 4 passengers P1, P2, P3, and P4 to the 

destination depot D (see Figure 4.1). Two cars (each with a capacity of 2) are 

available at the depot, and each car will need to collect a maximum of two passengers 

and then return to the depot. The travel time matrix is presented in the same Figure, 

 

Figure 4.1: Schematic Showing the Four Passengers and the Depot 

Considering that the farthest passenger is always picked up first, the possible 

solutions consist of three combinations: S1 = {P4-P3, P2-P1}, S2 = {P4-P2, P3-P1}, 

and S3 = {P4-P1, P3-P2}. The summary of the results is presented in Table 4.1 below. 

Table 4.1: Results of Example 1 

  Passengers 
Cost 

(total travel time)  
Deviation (ΔT) 

on 
1

st
 Passenger Solution Car 1

st 2
nd Per Car Total 

S1 
1 P4 P3 40 

60 
4 

2 P2 P1 20 2 

S2 
1 P4 P2 37 

72 
1 

2 P3 P1 35 1 

S3 
1 P4 P1 38 

75 
2 

2 P3 P2 37 3 

 

CCOOSSTT  DD  PP11  PP22  PP33  PP44  

DD  00  77  99  1177  1188  

PP11  77  00  44  1111  1133  

PP22  99  44  00  1111  1100  

PP33  1177  1111  1111  00  55  

PP44  1188  1133  1100  55  00  

  

S1
S2
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Solution S1 has the least total cost; one car is assigned to the remote 

passengers 4 and 3, and the other car is assigned to the close passengers 2 and 1. The 

solution strategy can be described as “clustering neighboring passengers”, and then 

assigning a car to each cluster. 

On the other hand, although solution S2 has a 20% higher total cost, it 

improves the user utility by reducing the extra travel time burden (deviation T) on 

the first passenger of each car, from 4 and 2 to 1 each. This solution strategy can be 

described as “matching passengers along the routes” (least deviation). 

Solution S3 is inferior to solution S2 on all fronts; it has the highest total cost, 

and does not offer a better user utility. Compared to S1, only passenger P4 has a lower 

deviation in S3, while the total cost is substantially higher than in S1. 

If the objective is to minimize the total cost, then S1 is the optimal solution. 

However, if a constraint is imposed by limiting the maximum acceptable passenger 

burden to be 2, then S1 becomes infeasible, and S2 becomes the optimal solution. 

4.1.2. Example 2 

The first motivating example illustrated the trade-off between the passenger 

deviation and the total cost. Another equally significant factor in VRP solutions is the 

number of cars needed. The number of available cars may be limited (considered as a 

constraint), or the solution needs to find the least feasible number of cars (considered 

as objective). The following example is a further illustration of the variability of the 

two solution strategies (proximity clustering and minimum deviation) on all three 

factors. 
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The problem consists of transporting 6 passengers A, A‟, B, B‟, C, and C‟ to 

the destination depot D (see Figure 4.2). To reduce the number of possible solutions, 

passengers (A, B, C) and (A‟, B‟, C‟) were located in a symmetrical grid 

configuration from the depot, with (Y/2) vertical distance from the axis of symmetry, 

and (X1, X2, X3) horizontal distances, respectively. The cost (travel distance) from any 

point to the depot is calculated as the Euclidean distance. 

 

Figure 4.2: Schematic Showing the Six Passengers and the Depot 

Assuming cars with three passenger capacities are available at the depot, two 

scenarios were investigated. The first considers a maximum passenger deviation value 

equivalent to Y (similar to the cost term, the deviation is in distance units), with no 

constraint imposed on the number of cars available. The second considers a maximum 

of two cars available with no constraint imposed on the maximum deviation.  

Scenario 1: 

If Y is less than X1, X2, and X3, there will be only two feasible solutions. Since 

the maximum deviation is Y, any car packing of a passenger and its symmetric 

location (Y distance apart) will reach its maximum allowable deviation and thus 

cannot deviate to pack any third passenger. As a result, this will entail only two 
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feasible solutions for this problem. The first solution S1, depicting the first strategy of 

“clustering proximity passengers”, entails three cars as follows {(A, A‟), (B, B‟), and 

(C, C‟)}. On the other hand, the second solution S2, presenting the “route deviation” 

strategy, consists of two cars as follows {(A, B, C) and (A‟, B‟, C‟)}. This explains 

the efficiency of “route deviation” strategy in achieving higher matches for problems 

with tight passenger deviation constraints.  

Having considered the number of required cars for the two solutions, it is also 

reasonable to look into their total cost objective. Two numerical applications were 

considered as follows, {X1= 10, X2= 20, X3= 30, Y= 3} were assigned to Scenario 1a, 

while Scenario 1b was assigned the same values except for {X3 = 40}. A summary of 

the results is presented in Table 4.2 below. 

Table 4.2: Results of Scenario 1 

Scenario X1 X2 X3 Y Solution 
Num. 

of cars 
Total 

Cost 
Max. 

Dev. 

1a 10 20 30 3 
S1 (A, A‟), (B, B‟), and (C, C‟) 3 129.41 3 
S2 (C, B, A) and (C‟, B‟, A‟) 2 120.30 0.07 

1b 10 20 40 3 
S1 (A, A‟), (B, B‟), and (C, C‟) 3 149.39 3 
S2 (C, B, A) and (C‟, B‟, A‟) 2 160.28 0.08 

 

Numerical results in Table 4.2 demonstrated that even with the same problem 

configuration, increasing the distance X3 from 30 to 40 has changed the total cost for 

solution S2 (route deviation strategy) from being 7% lower than S1 (proximity 

clustering strategy) to become 7% higher. Therefore, solutions with a smaller number 

of cars may not necessarily lead to a lower total travel time (or distance) cost. On the 

other hand, the maximum deviation among all passengers is considerably less for S2 

in both scenarios. 
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 Scenario 2: 

In this scenario, the maximum deviation constraint is relaxed, and the number 

of cars is fixed at its maximum of two fully packed cars. For this scenario, solution S1 

is infeasible (requiring 3 cars), but Solution S2 is feasible. In addition, there exist 

three new feasible solutions that can be described as hybrid approaches of clustering 

two neighboring passengers with a third passenger along the way. A numerical 

application for Scenarios 2a and 2b is considered using the same distance values of 

Scenarios 1a and 1b, respectively. A summary of the results is presented in Table 4.3 

below. It is to be noted that other solutions exist by interchanging any or all 

passengers of each car by their symmetry (A with A‟, B with B‟, and C with C‟); this 

will either lead to a longer or a symmetric solution relative to the solutions presented 

in  Table 4.3 below.  

Table 4.3: Results of Scenario 2 

Scenario X1 X2 X3 Y Solution 
Total 

Cost 
Max. 

Dev. 

2a 10 20 30 3 

S1 Infeasible 

S2 (C, B, A) and (C‟, B‟, A‟) 120.30 0.07 

S3 (C, C‟, B‟) and (B, A‟, A) 100.26 3.05 

S4 (C, C‟, A‟) and (B‟, B, A) 100.26 3.07 

S5 (C, B, B‟) and (C‟, A‟, A) 126.24 3.07 

2b 10 20 40 3 

S1 Infeasible 

S2 (C, B, A) and (C‟, B‟, A‟) 160.28 0.08 

S3 (C, C‟, B‟) and (B, A‟, A) 120.25 3.05 

S4 (C, C‟, A‟) and (B‟, B, A) 120.25 3.08 
S5 (C, B, B‟) and (C‟, A‟, A) 166.22 3.08 

 

Solutions S3 and S4 are the optimal solution for the lowest cost objective; they 

both present a hybrid strategy (proximity clustering then route deviation). However, 

S3 has marginally lower deviation than S4 (since it picks the nearest third passenger). 

This hybrid solution has substantially lower total cost than both S1 and S2, although 

S1 becomes infeasible in scenario 2 due to the maximum number of cars constraint. 
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Solution S5 is also a hybrid solution, but in the opposite order (route deviation then 

proximity clustering). Solution S5 is the worst in both cost objective and maximum 

deviation. 

In conclusion, a hybrid solution approach needs to be developed. It would 

combine the advantage of both solution strategies (proximity and deviation). At each 

passenger location, a binary decision needs to be made for the next passenger, either 

picking the closest proximity passenger, or the passenger with the least route 

deviation. 

4.2. Proposed Heuristic Approach 

Three ride matching solutions for the organization-based ridesharing problem 

were identified in the literature. Tao and Chen (2007) presented a greedy approach by 

matching the nearest neighbor while satisfying a time-space network flow. Deakin et 

al. (2010) presented a simple clustering strategy that matches nearest neighbors 

satisfying a cluster size. Amey (2010) highlighted the opportunities of matching 

passengers along the route, but presented a solution that matches two passengers only. 

This section describes a proposed new heuristic algorithm that combines the 

advantages of both solution strategies (clustering and pairing) and with capabilities of 

fast solving large size problems with different vehicle capacities.  

The proposed heuristic approach for solving the given ridesharing problem 

comprises three steps; the first is establishing the cost matrix that forms the basis of 

any solution approach. Second, a hierarchical spanning tree, rooted at the organization 

location (considered to be the depot), is derived from the cost matrix to structure the 

search of feasible ride matches.  The final step is an enumerated tree traversal 

algorithm to pack the feasible nodes in the tree into cars. This approach enables 
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searching for solution improvements by iterating the third step using different values 

for the maximum deviation and/or car capacities based on different time windows. 

4.2.1. The Cost Matrix 

Establishing the cost matrix is the first step toward solving any routing 

problem. It comprises finding the minimum cost for a vehicle to travel between every 

pair of nodes to be visited. The unit of the cost term depends on whether it is based on 

the travel distance, the travel time, or the financial cost. 

In graph theory the cost matrix is known as the All Pairs Shortest Path (APSP) 

matrix, in which we have to find a shortest path between every pair of nodes. It 

contains all the edges that can form any possible solution of the routing problem. 

There exist various methods and algorithms for solving the APSP including: 

Dijkstra's, Bellman-Ford, Floyd-Warshall and Johnson‟s algorithms. 

In typical VRP problems, and in most known benchmark data (Solomon 1987, 

Gehring and Homberger 2005), the nodes are defined by their geographical 

coordinates, and the shortest path can then be computed as the Euclidean, Manhattan, 

or Great Circle distance. Such simplifications may be practical in urban street 

networks, but will always result in a symmetrical cost matrix and are not practical 

when the travel time is in consideration. With the availability of advanced GIS 

(Geographic Information Systems) models, travel time cost matrices can be generated 

from the GIS network analysis tools. This method reflects the actual congested speeds 

on roads in the computation of travel times, and enables the proper representation of 

the asymmetrical nature of the road network. 
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4.2.2. The Hierarchical Spanning Tree Structures 

Given a full APSP matrix that represents all the edges connecting every pair of 

nodes, the problem can be defined as a complete graph (or complete digraph in the 

case of asymmetric networks). Finding the edges forming a hierarchical spanning tree 

with the depot as the source node is possible by searching the APSP for a single 

linkage for each node (i) to its parent node (j). We propose two possible hierarchical 

tree structures that reflect each of the solution strategies: the proximity clustering and 

the minimum route deviation approach. If the solution strategy is based on proximity 

clustering, then the Proximity Clustering Tree (PCT) can be established, where (j) is 

the closest to (i) and is closer to the depot than (i). On the other hand, when the 

hierarchy is based on minimum route deviation, then each node (i) is linked to the 

node (j) that will incur the least cost increase for travel from (i) to the depot 

(compared to direct travel without deviation) irrespective of the proximity. Therefore, 

another spanning tree may be defined as the Minimum Deviation Tree (MDT), where 

each node (i) is linked to its parent node (j), where (j) has the least route deviation for 

(i), and is closer to the depot than (i). The approaches of finding the PCT and the 

MDT are illustrated in the flowcharts in Figure 4.3 below, where the complexity of 

each method is determined to be ϴ(n
2
) for n nodes.  
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Figure 4.3: Flowcharts of the PCT and MDT Methods 

An example illustrating the PCT and MDT of a 24-node problem is presented 

in Figure 4.4. The child-parent relationship in the PCT is based on the closest 

proximity distance, i.e. the parent is the closest node to the child while in MDT the 

parent has the least deviation to the child. In this example, in the PCT tree the parent 

of node 9 is node 20 and the parent of node 20 is node 10. However, in the MDT tree 

all nodes 9, 20, and 10 have the same parent node 1. In general the PCT has the 

greater depth and the MDT has the greater breadth. Each of the two tree structures 

may lead to different car packing arrangements that will work best depending on the 
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structure of the problem, i.e. whether the nodes are generally in clustered or random 

distributions. 

 

 

Figure 4.4: Illustration Example of the PCT and MDT Network and Chart Diagrams 

 

4.2.3. Tree Traversal Algorithm 

After constructing the PCT and MDT trees, an enumerated tree traversal 

algorithm is used to pack the passengers into cars. The hierarchical tree structure will 

enable a fast search by trying to match sibling nodes (nodes having the same parent) 

then moving up to their parent. The procedure may be described in the following 

steps: start a new car from a leaf node (i) that is the farthest from the depot for PCT 

(or the farthest node among the nodes with maximum tree level in the case of MDT), 
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then try to pack with its siblings starting from the “closest to (i)” to the “farthest from 

(i)” while satisfying the time window constraint of each passenger in the car. If the car 

capacity is not reached after searching all available siblings, the search location 

demotes  (by moving up to the parent level) and then tries to pack with the parent and 

then its siblings in the same manner. Once the depot and/or the car capacity are 

reached, a new car is started by repeating the above steps until all passengers are 

picked up. Alternatively, if the vehicle fleet size is strictly constrained, then time 

constraint violations are allowed for any car packing that does not reach capacity; the 

packing steps of this specific car are repeated (starting from the first passenger again) 

with an increased “maximum allowable deviation” value until the car is fully packed 

(in the case of the many-to-one, the implication of the increased maximum allowable 

deviation should be anticipated in earlier departure time rather than late arrival time). 

A flowchart of the tree traversal algorithm is presented in Figure 4.5, where the 

complexity of this method is determined to be ϴ(n
3
) for n nodes. 
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Figure 4.5: Flowchart of the Tree Traversal Algorithm 

4.3. Step-by-Step Example 3 

This example illustrates the steps of solving a small problem of 10 nodes (9 

passengers and the depot) using the proposed heuristic approach.  The coordinates of 

the nodes are presented in Table 4.4 and in Figure 4.6. The problem consists of 

transporting the 9 passengers to the destination depot D. Cars with three passenger 

capacities are available at the depot, and the maximum allowable deviation for each 

passenger is 20% of his/her direct route distance.  
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Table 4.4: X and Y Coordinate of Nodes (Example 3) 

Node X Y 

Depot 0 0 
1 5 5 
2 5 10 
3 11 14 
4 15 10 
5 4 18 
6 10 20 
7 15 19 
8 20 20 
9 20 15 

 

 

Figure 4.6: Distribution of the Nodes (Example 3) 

4.3.1. Step 1: Cost Matrix 

The first step is to calculate the cost matrix. The cost may be travel time, 

distance, or the associated financial cost. In this problem the Euclidean distance is 

considered as the cost (Ci,j) between any two nodes (i and j). The coordinates in Table 

4.4 are used to calculate the APSP and the resulting cost matrix is presented in Table 
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4.5 below. Although the cost matrix in this example is symmetric, the proposed 

heuristic is applicable for problems with asymmetric cost matrices as well. 

Table 4.5: Cost Matrix (Example 3) 

O\D Depot 1 2 3 4 5 6 7 8 9 

Depot 0.0 7.1 11.2 17.8 18.0 18.4 22.4 24.2 28.3 25.0 

1 7.1 0.0 5.0 10.8 11.2 13.0 15.8 17.2 21.2 18.0 

2 11.2 5.0 0.0 7.2 10.0 8.1 11.2 13.5 18.0 15.8 

3 17.8 10.8 7.2 0.0 5.7 8.1 6.1 6.4 10.8 9.1 

4 18.0 11.2 10.0 5.7 0.0 13.6 11.2 9.0 11.2 7.1 

5 18.4 13.0 8.1 8.1 13.6 0.0 6.3 11.0 16.1 16.3 

6 22.4 15.8 11.2 6.1 11.2 6.3 0.0 5.1 10.0 11.2 

7 24.2 17.2 13.5 6.4 9.0 11.0 5.1 0.0 5.1 6.4 

8 28.3 21.2 18.0 10.8 11.2 16.1 10.0 5.1 0.0 5.0 

9 25.0 18.0 15.8 9.1 7.1 16.3 11.2 6.4 5.0 0.0 

 

4.3.2. Step 2: Hierarchical Trees 

Given the cost matrix, the hierarchical trees depicting the spatial structure of 

the nodes can be determined. This step requires linking each node to its parent node 

(single linkage clustering, every node has a single parent while a parent may have 

more than one child). This is done by looping over the 9 nodes and comparing the 

distances between each node and all other nodes. For PCT the parent is the closest 

node to the node under consideration, while at the same time being closer to the 

depot. The distance from node 1 to the depot is 7.1, and the closest node to 1 is node 

2, but node 2 is 11.2 away from the depot. Therefore 2 cannot be the parent of 1, and 

the same applies for all other nodes as node 1 is the closest to the depot. As a result, 

the parent of 1 is the depot. Next, node 1 is determined to be the parent of node 2, as it 

is the closest to it (distance from 2 to 1 is 5), and node 1 is closer to the depot. In a 

similar fashion, the parents of nodes 3, 4, 5, 6, 7, 8, and 9 are the nodes 2, 3, 2, 3, 6, 9, 

and 7, respectively. 
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For MDT the parent is the node that results in the least route deviation to the 

node under consideration, while at the same time being closer to the depot. The 

deviation made by node j for node i is calculated as (Ci,j + Cj,D – Ci,D). Node 1 is 

already determined to be the closest to the depot, so the parent of node 1 is the depot. 

For node 2, the only possible parent is node 1, since it is the only node closer to the 

depot than 2. Next, node 3 has both nodes 1 and 2 closer to the depot. The deviations 

for node 3 from nodes 1 and 2 are 0.1 and 0.6, respectively. Therefore, the parent of 

node 3 is node 1. In a similar fashion, the parents of nodes 4, 5, 6, 7, 8, and 9 are the 

nodes 1, 2, 2, 3, 1, and 1, respectively. Chart diagrams of the PCT and MDT trees are 

illustrated in Figure 4.7a. 

PCT 

 

MDT 

 

Figure 4.7a: Hierarchical Trees (Example 3) 

 

4.3.3. Step 3: Tree Traversal 

The third and final step is to traverse the hierarchical trees given the problem 

constraints. Any variation in the problem constraints would only require repeating this 
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step without any impact on steps 1 and 2. The tree traversal is the same for both PCT 

and MDT except for the choice of the first passenger in each new car.  

The PCT starts by assigning the farthest available node from the depot to the 

first car. In this problem node 8 is the farthest. So car 1 in the PCT solution will first 

pick the passenger at node 8, and since the car capacity is still not reached it searches 

for additional passengers by investigating any available siblings for 8. Since node 8 

has no siblings, the search moves to investigate the parent node. The parent of node 8 

is node 9 and it is available, and the deviation constraint is satisfied (the deviation that 

node 9 imposes on node 8 is 1.7 or 6.1% of its direct cost to the depot). Therefore, the 

passenger at node 9 is assigned to the car. Every time a passenger is picked up it is 

labeled as being no longer available for pickup again. Next, since the car capacity is 

still not reached, the search continues for a third passenger. Node 9 has no siblings so 

the parent node 7 is available, but the deviation constraint is not satisfied with respect 

to node 8 (the deviation imposed by node 7 on nodes 8 and 9 is 25.9% and 22.4%, 

respectively). So the search continues for any siblings for node 7, then its parent node 

6 which also leads to violating the deviation constraint for both nodes 8 and 9 

(deviations of 36.3% and 34.2%, respectively). And the search continues to node 4, 

the sibling of node 6, and it satisfies the deviation constraint for both nodes 8 and 9 

(6.4% and 0.4%, respectively). After assigning node 4 as the third passenger in the 

car, the car capacity is reached and a new car is started by assigning the farthest 

available node from the depot (being node 7 now). In a similar fashion the remaining 

passengers are identified and packed into cars. Table 4.6a presents a summary of 

results of the PCT solution. 
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Table 4.6a: PCT Solution (Example 3) 

Cars Passengers Cost 

 
Deviations (1

st
 and 2

nd
) 

Car 1 8 9 4 58.4 
 

1.8 0.1 6.4% 0.4% 

Car 2 7 6 3 53.2 

 
4.8 1.5 19.7% 6.8% 

Car 3 5 2 1 38.6 
 

1.7 0.9 9.2% 8.0% 

  
Total 150.1 

 
10.8 

  
 

On the other hand, the MDT starts assigning the farthest node to the depot, 

among the available nodes with highest level in the tree. In this problem, nodes 5, 6, 7 

have the highest level in the tree (level 4); and among all three nodes, node 7 is the 

farthest from the depot. So car 1 in the MDT solution will first pick the passenger at 

node 7, and continue searching for additional passengers in the same manner as in 

PCT. Table 4.6b presents a summary of results of the MDT solution. 

Table 4.6b: MDT Solution (Example 3) 

Cars Passengers Cost 
 

Deviations (1
st
 and 2

nd
) 

Car 1 7 3 2 49.0 
 

0.6 0.6 2.4% 3.3% 

Car 2 8 9 4 58.4 
 

1.8 0.1 6.4% 0.4% 

Car 3 6 5 1 48.8 
 

4.1 1.7 18.2% 9.1% 

  
TOTAL 156.2 

 
8.8 

   

As shown in Tables 4.6a and 4.6b, the PCT resulted in lower total cost but 

higher total deviations than the MDT. Both solutions achieved full packing of three 

cars; however, if the maximum deviation constraint is reduced to 19%, the MDT 

solution would still be feasible but the PCT solution would require a fourth car for the 

passenger at node 3. 

A color coding for each of the three cars in the PCT and MDT solutions was 

used for illustration of the steps. Cars 1, 2, and 3 were colored in blue, red, and green, 

respectively. The colors are highlighted in Tables 4.6a and 4.6b and in Figure 4.7b. 
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PCT 

 

MDT 

 

Figure 4.7b: Color Coding of the Hierarchical Trees (Example 3) 

Nodes 8, 9, and 7 present a proximity cluster (maximum distance between the 

nodes is 6.4), but car 1 in the PCT solution excluded node 7 due to the deviation 

constraint, and searched for potential passengers along the way and resulted in a car 

identical to Car 2 of the MDT solution. Furthermore, nodes 7, 6, and 3 presented 

another proximity cluster (maximum distance between the nodes is 6.4) that was 

successfully served by car 2 in the PCT solution. Similar to the PCT the MDT 

searches the closest proximity siblings of the node before moving to the parent (that 

has the least deviation), as in the case of nodes 8, 9 and 4 in car 2 of the MDT 

solution. This demonstrates the advantage of the hybrid strategy of both methods 

(PCT prioritizes matching passengers within proximity clusters and MDT prioritizes 

matching passengers along the same route). 

 

4.4. Optimal Solutions 

In order to assess the results of the proposed heuristic approach, optimal 

solutions need to be established for benchmarking. The VRPTW is known to be a 
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strongly NP-hard optimization problem, thus requiring efficient algorithms and 

computer software implementation for estimating optimal solutions. The most 

commonly used solution approach is the three index vehicle flow formulation. This 

approach is an Integer Linear Programming (ILP) formulation that was first 

introduced by Fisher and Jaikumar (1978). This research implemented this approach 

using the IBM ILOG CPLEX Optimization Studio for the exercise of establishing 

benchmark optimal solutions. Different objectives may be considered in the 

optimization of a VRP problem, including minimizing the “total cost”, minimizing the 

“number of cars”, or minimizing the “total passenger deviation”. Typically, the main 

objective of the VRPTW problem is to minimize the total cost, while the number of 

cars and the time windows are defined as constraints.  

4.4.1. Mathematical Formulation 

The following is the three index vehicle flow formulation for the VRPTW 

problem as presented by Desrosiers et al. (1995).  

Notation: 

• Let N = {1 . . . . , n} be the set of customers.  

• K, indexed by k, is the set of available vehicles to be routed & scheduled.  

• Consider the graphs G
k
 = (V

k
, A

k
), for all k  K, each of them consisting of a set 

V
k
 of nodes and a set A

k
 of arcs. 

• The set V
k
 consists of N ∪ {o(k), d(k)}, where o(k) and d(k) represent respectively 

the origin-depot and the destination-depot of vehicle k, k  K. 

• The set A
k
 contains all feasible arcs, which is a subset of V

k
 × V

k
. 

• [ai , bi] is the time window within which customer i  N is visited. 

• For each arc (i, j)  A
k 
 , k  K, there is a cost c

k
ij and a travel time t

k
ij.  

• Assume that the service time at node i is included in the travel time t
k
ij , for all i. 

• All the customers must be assigned to at most v vehicles, v ≤ |K|, such that the 

capacity Q
k
 of each vehicle is not exceeded. 
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Decision Variables: 

• Flow variables X
k
i,j (i, j)  A

k 
 , k  K, a binary variable which is equal to 1 if arc 

(i,j) is used by vehicle k, and 0 otherwise; 

• Time variables T
k
i , i  V

k 
 , k  K, specifying the start of service at node i. 

Formulation: 

The problem of finding the minimal cost set of routes satisfying the VRPTW 

constraints can then be formulated as follows: 

 

(4.1) 

Subject to: 

 
(4.2) 

 
(4.3) 

 
(4.4) 

 
(4.5) 

 
(4.6) 

 

(4.7) 

(4.8) 

 
(4.9) 

 

The objective function (4.1) represents the total cost. Equality (4.2) is used to 

ensure that each customer is assigned once to a vehicle. Constraint (4.3) is used to 
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ensure that the maximum number of vehicles is not exceeded, and might be changed 

to equality to fix the number of vehicles used at exactly v. Equality (4.4) is used to 

ensure that the origin depot, for any vehicle k, has a departure to exactly one node. 

Equality (4.5) is used to ensure that the destination depot, for any vehicle k, is arrived 

at from exactly one node. Flow conservation at each node for each vehicle is ensured 

using equation (4.6). Constraints (4.7) and (4.8) ensure the time window feasibility, 

while constraint (4.9) guarantees the feasibility of car capacities. 

The heuristic approach for the ridesharing problem in this research may 

additionally be compared with optimal solutions minimizing the “total passenger 

deviation” as an objective instead of the time window constraints. Therefore, the 

objective function (4.1) may be modified to account for the deviation of the first 

passenger (being the passenger to observe the total deviation of the car). This can be 

done by subtracting the direct cost of the first passenger from the total cost of each 

vehicle as shown in the new function (4.10) below.  

 

(4.10) 

 

4.4.2. Implementation in CPLEX 

The advantage of the three index vehicle flow formulation lies in the matrix 

representation of the decision variables and constraints. For example, the decision 

variables X
k
i,j are implemented in K matrices of size n × n. This enables the 

implementation of the problem in the Excel add-in of CPLEX. 
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Special cases of time window relaxation and limited car capacities are 

proposed for the benchmarking problems in this research. As a result of the time 

window relaxation the constraints (4.7) and (4.8) are taken out, and should be 

replaced by “Sub-tour Elimination Constraints” SEC (Solomon 1983, Desrosiers et al. 

1995). The SEC equation by Miller‐Tucker‐Zemlin (MTZ 1960) requires the use of 

mathematical programming languages (to include multiplications) and cannot be 

implemented in the available Excel module of CPLEX. Therefore, the simulation 

example was used for problems with car capacities equal to 3 passengers. Then if any 

link Xi,j between two passengers i and j is part of the solution (Xi,j = 1), either i or j 

must be connected to the depot (X
k

o,i = 1 or X
k

j,d = 1). In other words, since the 

passengers are 3 then if (Xi,j = 1) then either i must be the first passenger (Xd,i = 1) or j 

must be the third passenger (Xj,d = 1). As such an SEC may be implemented using the 

following equation 4.11. 

X
k

ij = X
k

di + X
k

jd (4.11) 

 In the case of two passengers in the car, Equation 4.11 may be written as: 

X
k

ij = X
k

di = X
k

jd (4.12) 

 

4.5. Simulation Results 

 To the authors‟ knowledge, there is no documentation of available benchmark 

datasets that are relevant to the problem of organization-based ridesharing. As such 

two types of simulations were carried out: the first using small problems of 24 nodes 

that were tested against optimal solutions, and the second using large problems of 600 

nodes of actual data. 
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4.5.1. Simulation of Small Problems 

For practical purposes, we created a variation of Solomon's (1987) VRPTW 

benchmark data that includes clustered and random problems with 100 customer 

instances each. We divided each of the two problem types into 4 subsets (A, B, C, and 

D) of 24 customers each, and excluded the remaining customers (see Figures 4.8a and 

4.8b). To increase the possibilities of having passengers along the route, the depot was 

considered to be at one corner (with coordinates X = 0, Y = 0). The varying demand 

at each node was converted to unity. The coordinates of the eight benchmark 

problems are presented in Table 4.7. 

 

  
Figure 4.8a: Partitioning Solomon’s Random Benchmark Data (R101) 
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Figure 4.8b: Partitioning Solomon’s Clustered Benchmark Data (C101) 

 

Table 4.7: Coordinates of the Eight Benchmark Problems 

Node 

R101A R101B R101C R101D C101A C101B C101C C101D 

X Y X Y X Y X Y X Y X Y X Y X Y 

Depot 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 41 49 65 20 6 68 44 17 25 85 45 68 25 55 40 69 

 2  35 17 45 30 47 47 46 13 22 75 45 70 23 55 38 68 

3 55 45 35 40 49 58 49 11 22 85 42 66 20 55 38 70 

4 55 20 41 37 27 43 49 42 20 80 42 68 8 45 35 66 

5 15 30 64 42 37 31 53 43 20 85 42 65 5 45 35 69 

6 25 30 40 60 57 29 61 52 18 75 30 50 0 45 15 75 

7 20 50 31 52 63 23 57 48 35 32 30 52 26 32 15 80 

8 10 43 35 69 53 12 56 37 33 32 28 52 25 30 28 55 

9 55 60 53 52 32 12 55 54 33 35 25 50 25 35 20 50 

10 30 60 65 55 36 26 15 47 30 32 25 52 95 30 35 30 

11 20 65 63 65 21 24 14 37 30 35 23 52 95 35 32 30 

12 50 35 2 60 17 34 11 31 28 35 10 35 92 30 30 30 

13 30 25 20 20 12 24 16 22 66 55 10 40 90 35 28 30 

14 15 10 5 5 24 58 4 18 65 55 8 40 88 30 42 15 

15 30 5 60 12 27 69 28 18 65 60 5 35 88 35 40 5 

16 10 20 40 25 15 77 26 52 63 58 2 40 87 30 40 15 

17 5 30 42 7 62 77 26 35 60 55 0 40 85 25 38 5 

18 20 40 24 12 49 73 31 67 60 60 50 35 85 35 38 15 

19 15 60 23 3 67 5 15 19 62 80 50 40 75 55 35 5 

20 45 65 11 14 56 39 22 22 60 80 48 40 72 55 50 30 

21 45 20 6 38 37 47 18 24 60 85 47 35 70 58 48 30 

22 45 10 2 48 37 56 26 27 58 75 47 40 67 85 45 30 

23 55 5 8 56 57 68 25 24 55 80 45 35 65 85 53 30 

24 65 35 13 52 47 16 22 27 55 85 45 65 65 82 53 35 
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The objective is to find low cost solutions while considering equity among 

passengers (in terms of reducing the maximum deviation). First, we tried to solve 

each of the eight problems using the proposed heuristic approach considering a car 

capacity of three passengers and a fixed number of eight cars to be fully packed. The 

desired “maximum allowable deviation” is set to 10%, and violations of this 

“maximum deviation” were allowed in cases where a full car packing was not 

possible. Table 4.8a presents a summary of the results of the eight benchmark 

problems using both PCT and MDT of the heuristic approach. Three values are 

presented for each solution: the “total cost” (of all cars), the “total deviation” (of all 

passengers), and the “maximum deviation” (the highest observed passenger deviation 

expressed in percent of his/her direct cost). In general, the PCT has resulted in lower 

values for the “total cost”, while the MDT results are lower in terms of “total 

deviations” and “maximum deviations”, especially in problems of random customer 

locations.  

Second, to benchmark the results of the proposed heuristic approach with 

optimal solutions, we implemented two CPLEX models in Excel using the three index 

vehicle flow formulation as presented by Desrosiers et al. (1995). The number of cars 

was fixed at eight vehicles, each with a capacity of three passengers. The first model 

assumes a time window relaxation with the objective of minimizing the total cost (to 

obtain lower bound minimum cost solutions). The second model is a modification of 

the objective function of the first model (see Eq. 4.10), where the new objective is set 

to minimize the total of “all first passenger deviations” (being the total vehicle cost 

minus the direct cost of the first passenger). This objective approximates the goal of 

minimizing total deviation since the first passenger deviation is typically the largest. 

Table 4.8b summarizes the results of the optimal solutions that were established in 
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CPLEX (or when the “Mixed Integer Programming” stops for a relative gap tolerance 

of 0.0001). These lower bound „total cost‟ and „total first deviation‟ solutions are then 

compared with the generated results using the proposed heuristic approach.  

The chart in Figure 4.9a presents the „total cost‟ values of all eight problems 

(normalized by the lower bound value of the first CPLEX model), while the chart in 

Figure 4.9b presents the „total deviation‟ values of all eight problems (normalized by 

the lower bound value of the second CPLEX model). The results of both PCT and 

MDT of the heuristic approach lie in general between the lower bound obtained from 

CPLEX 1 model and the value obtained from the second CPLEX model (except for 

R101 that is slightly higher for MDT). It can be noted that the PCT would generally 

result in lower total cost (the closest towards the lower bound „minimum cost‟ 

solutions of CPLEX 1, and with lower deviations), while the MDT would generally 

result in lower „deviation‟ (the closest towards the lower bound „total deviation‟ 

solutions of CPLEX 2, and with lower total cost). The computational time for each 

problem ranged from 20 minutes to 1 hour in CPLEX, compared to a maximum of 5 

seconds in the proposed heuristic approaches (for both steps: tree building and tree 

traversal). All computations were performed on a 64-bit Intel Core i7 Central 

Processing Unit (CPU) with 1.6 Gigahertz (GHz) processor speed and 6 Gigabyte 

(GB) random access memory (RAM) computer. 
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Table 4.8a: Simulation Results Using Heuristic Approaches 

Sample 
PCT MDT 

Total 

Cost 
Total 

Dev. 
Max. 

Dev. 
Total 

Cost 
Total 

Dev. 
Max. 

Dev. 

Random 
Customer 
Locations 

R101A 1,125.7 70.9 37% 1,121.3 26.9 12% 

R101B 1,060.9 69.2 61% 1,163.8 64.7 22% 

R101C 1,243.1 76.3 14% 1,287.0 40.2 9% 

R101D 928.6 55.7 25% 1,007.5 28.5 12% 

Clustered 
Customer 
Locations 

C101A 1,323.5 53.3 10% 1,394.1 30.9 7% 
C101B 991.6 28.5 11% 992.2 34.7 11% 

C101C 1,308.5 39.1 16% 1,316.2 34.3 16% 
C101D 987.3 18.8 4% 998.2 18.9 4% 

 

Table 4.8b: Simulation Results Using CPLEX 

Sample 
CPLEX 1 (Min. Cost) CPLEX 2 (Min. First Dev.) 

Total 

Cost 
Total 

Dev. 
Max. 

Dev. 
Total 

Cost 
Total 

Dev. 
Max. 

Dev. 

Random 
Customer 
Locations 

R101A 995.9 52.6 43% 1,126.5 14.3 4.7% 

R101B 1,042.1 64.4 28% 1,194.5 16.1 9% 

R101C 1,171.0 102.4 29% 1,281.4 28.0 11% 

R101D 876.7 170.6 170% 1,040.4 14.4 10% 

Clustered 
Customer 
Locations 

C101A 1,311.7 30.5 5% 1,489.5 8.0 3% 
C101B 984.9 18.6 8% 1,072.1 16.8 8% 

C101C 1,306.0 37.2 16% 1,440.0 27.8 16% 
C101D 987.3 18.8 4% 996.8 15.2 4% 

 

 

 

Figure 4.9a: Comparison of the ‘Total Cost’ Results (normalized by min. total cost) 
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Figure 4.9b: Comparison of the ‘Total Deviation’ Results (normalized by CPLEX2) 

 

4.5.2. Simulation of Large Problems 

The simulation of large problems was undertaken using actual data from the 

American University of Beirut (AUB). This database is discussed in details as a case 

study in chapter 5, and is documented for benchmarking in future research. A subset 

of 600 students was considered for the purpose of this problem. A combined clustered 

and random spatial distribution of the students was observed in this problem (see 

Figure 4.10). 
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Figure 4.10: Spatial Distribution of the 600-student Case Study 

The simulation was conducted using both the PCT and the MDT hierarchical 

trees, and for different car capacities (3, 4, 5, and 6), and values for the „maximum 

allowable deviation‟ (extra travel time burden per passenger) ranging from 10% to 

40% (with a 5% increment). The observed computational time for the construction of 

each of the two hierarchical trees did not exceed 50 seconds, and the run time of the 

„tree traversal algorithm‟ for each scenario (different car capacities and maximum 

burden) did not exceed 30 seconds. 

In this problem the number of cars is not constrained, and the results will be 

compared with respect to the resulting total cost, the number of cars that are fully 
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occupied, and the total number of cars needed to serve all 600 students given the 

different burden ranges. A summary of the results is presented in Table 4.9 below. 

Table 4.9: Simulation Results of Large Problems 

Max. 

Deviation 

Allowed 

PCT MDT % Diff. 

in Total 

Cost 
Number 

of Cars 

Cars Fully 

Occupied 

Total Cost 

(Seconds) 

Number 

of Cars 

Cars Fully 

Occupied 

Total Cost 

(Seconds) 

Car Capacity = 3 

10% 242 156 2,472,192 242 160 2,495,034 0.9% 

15% 228 170 2,361,663 224 178 2,353,806 -0.3% 

20% 216 179 2,292,543 212 186 2,280,510 -0.5% 

25% 209 188 2,240,451 208 191 2,272,671 1.4% 

30% 207 192 2,229,507 206 193  2,258,343 1.3% 

35% 205 195 2,225,574 205 195 2,253,069 1.2% 

40% 206 193 2,228,634 203 196 2,243,259 0.7% 

Car Capacity = 4 

10% 219 82 2,235,879 217 90 2,219,625 -0.7% 

15% 198 101 2,043,324 190 107 1,996,083 -2.3% 

20% 179 116 1,916,289 180 114 1,926,297 0.5% 

25% 170 122 1,846,908 170 126 1,862,973 0.9% 

30% 165 131 1,820,061 164 136 1,831,923 0.7% 

35% 161 137 1,799,289 160 139 1,819,521 1.1% 

40% 160 138 1,780,560 158 141 1,808,064 1.5% 

Car Capacity = 5 

10% 213 37 2,138,931 209 54 2,097,180 -2.0% 

15% 186 52 1,903,698 180 62 1,841,841 -3.2% 

20% 163 73 1,714,275 163 74 1,736,433 1.3% 

25% 150 85 1,630,773 148 88 1,647,126 1.0% 

30% 144 90 1,600,011 142 94 1,609,290 0.6% 

35% 139 94 1,567,764 136 104 1,568,835 0.1% 

40% 137 101 1,537,938 132 106 1,535,418 -0.2% 

Car Capacity = 6 

10% 211 21 2,113,740 208 22 2,079,853 -1.6% 

15% 179 32 1,804,491 173 38 1,754,892 -2.7% 

20% 156 44 1,649,583 154 45 1,654,002 0.3% 

25% 141 50 1,537,740 138 60 1,532,673 -0.3% 

30% 132 62 1,468,107 131 67 1,471,833 0.3% 

35% 126 68 1,427,076 124 69 1,456,983 2.1% 

40% 121 72 1,400,850 118 79 1,397,241 -0.3% 

 

This case study presents a general real life example where the customers are 

spatially distributed in both random and clustered structures. It is shown that in 

general the MDT results in a smaller number of required cars, and a higher number of 



 

70 
 

fully occupied cars, and in many cases a lower total cost than the PCT (the relative 

difference of the total cost is within ±3%).  

A considerable advantage of the proposed heuristic approach lies in the 

possibility of fast generation of different solutions while varying the values of the 

time window constraints (in terms of maximum deviation) and the vehicle capacity. A 

sensitivity analysis can then be easily implemented by observing the variation in 

results for the given 600-student case study (see Figure 4.11). In this case, we can 

conclude that the rate of change (decrease) in the total number of cars required 

becomes less when the maximum deviation exceeds 25% (for all car capacities), and 

when the car capacity exceeds 5 passengers (for any level of maximum deviation). 

 

Figure 4.11: Results of the 600-student Simulation Problem 

 

4.6. Summary and Conclusion 

This research investigates different solution approaches for the design of 
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general vehicle routing problem, and can be generalized as CVRPTW problem. 

Additional problem specifics include unit demand, asymmetric network, narrow time 

windows at departure, and common arrival time at destination. In this context, little 

research was found to offer a detailed solution methodology for this specific problem. 

In general, the solution approaches include matching passengers within a proximity 

cluster and matching passengers within a minimum route deviation. This research 

presents a three-step solution approach incorporating two solution strategies in the 

form of hierarchical spanning trees (PCT and MDT). The structure of the hierarchical 

trees enables the fast search of feasible solutions through an enumerated tree traversal 

algorithm. Simulation results for small problems were compared with optimal 

solutions implemented in CPLEX (with „least cost‟ and „least deviation‟ objectives), 

and have shown that the PCT results in lower „total cost‟ (closest to the cost lower 

bound), and the MDT results in lower „total deviation‟ and „maximum deviation‟ 

(closest to the deviation lower bound). With the lack of benchmark data for the 

problem at hand, actual data from the American University of Beirut were used and 

are documented for future research.  

In the case of large problems with a combined random and clustered 

customers‟ distribution, the PCT and MDT were tested against each other for different 

values of the „maximum allowable deviation‟ and „car capacities‟. It was shown that 

in general the MDT results in a smaller number of required cars, a higher number of 

fully occupied cars, and a total cost within ±3% of the PCT solutions. Table 4.10 

below presents a summary that characterizes the general performance of the PCT and 

MDT along different dimensions. 
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Table 4.10: General Performance of the PCT and MDT along Different Dimensions  

Indicator PCT MDT 

Strategy 
Proximity 

passengers 

Along route 

passengers 

Max. Deviation Higher Lower 

Travel Cost 

(travel 

time/distance) 

Lower Higher 

Number of Cars Higher Lower 

Fare Same within car 
Varying 

along route 

Operator cost 
Trade-off between the travel 

cost and the cost for vehicle fleet 

 

This research presented a fast heuristic approach for solving the CVRPTW 

with unit demand that may be used in real-time (less than 50 seconds for problems 

with 600 instances). Its main advantage lies in the capability to generate solutions for 

different vehicle capacities and time window constraints with substantially reduced 

computational efforts. This is beneficial when investigating the sensitivity to “cost”, 

“vehicle capacity”, and “maximum acceptable delay” for each case study.  

Additional work may investigate the possibility of integrating the hierarchical 

structure of the PCT and MDT into a single solution. It may also be expanded to solve 

the general case of CVRPTW with varying demand. Other extensions may also 

include adding user preferences like matching by gender and/or vehicle occupancy 

preference. Although our problem anticipates pick-ups and deliveries to occur 

separately, additional considerations for vehicle dispatch should be made for the case 

of sequential pick-ups and deliveries (e.g. for university students), where a car may be 

assigned to start a new pick-up after delivering the last passenger without returning to 
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the depot. Such considerations are addressed in the context of the case study in 

Chapter 5. 

The developed many-to-one ride matching algorithm may be expanded to 

solve many-to-few problems for consideration of more than a single destination (e.g. 

multiple organizations within close proximity). The PCT and MDT trees can be 

established based on a central node between the organizations. The packing of cars in 

the tree traversal algorithm will prioritize matching passengers of the same 

organization in the same car. If the car capacity is not reached and there are no more 

passengers that can be packed while satisfying the time window of the passengers in 

the car, the algorithm then tries to match additional passengers from another 

organization. The car will first be routed to the organization of the first passenger(s); 

the additional passenger(s) will be mainly observing the deviation for the route 

between the first and the second destinations (organizations). A problem similar to 

Example 2 in section 4.1.2 consists of transporting two sets of three passengers A, B, 

C, and A‟, B‟, C‟ to the destination depots D and D‟ respectively, (see Figure 4.12). If 

the maximum deviation is Y, only one solution of 2 cars is possible as follows, Car 1 

{C, B, A‟, D, D‟} and Car 2 {C‟, B‟, A, D‟, D}. 

 

Figure 4.12: Distribution of Nodes in a Many-to-Few Example 
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CHAPTER 5 

CASE STUDY 

 

The proposed evaluation framework in this research is generic and could be 

used for any organization or institution for which the pertinent data is available. This 

chapter presents a case study which considers the feasibility of new ridesharing 

services at the American University of Beirut (AUB), and is organized into six main 

sections as follows. Section 5.1 provides an overview of AUB. Section 5.2 discusses 

the developed AUB database for this case study. Section 5.3 presents a deterministic 

demand estimation model using different scenarios (different fares and maximum 

deviations) for the AUB case study. Section 5.4 describes the proposed service design 

and the results of the ride matching simulations using the developed heuristic 

approach. Section 5.5 presents the feasibility of the different demand, service design, 

and policy scenarios. And finally, conclusions are drawn in Section 5.6. 

 

5.1. Overview 

Despite the lack of any on-campus parking facility for AUB students, nearly 

one third of the students commute to the university by driving their own car (Khattab 

et al. 2012). While the number of enrolled students at AUB has increased by 18% 

over the last 10 years (6,947 in 2003-04 to 8,171 in 2012-13), the parking deficiency 

in the campus neighborhood is increasing dramatically. Aoun et al. (2013) estimated 

the AUB demand to be 3,000 external parking spaces in addition to the 1,105 parking 

spaces on campus (dedicated for full-time faculty and staff). Figure 5.1 illustrates, for 
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a regular working day, the severe packing of parked cars in a typical parking lot in the 

AUB neighborhood. 

 

Figure 5.1: Packing of Cars in a Typical Parking Lot in the AUB Neighborhood 

As part of the AUB Neighborhood Initiative studies, „student commuting‟ 

surveys were conducted during the years 2007 and 2010. All students were asked 

where they were living during the current term, and which of the following options 

they use to commute to AUB: walking; public transportation (bus and/or jitney); 

private taxi; dropped-off; carpool (with other students); drive alone; or other 

(chauffeur, bicycle, motorcycle, etc.). 

Seventy percent of the enrolled students responded to the 2007 survey (4,949 

out of 7,047), compared to nearly twenty percent response rate in the 2010 survey 

(1,468 out of 7,577 students). Results from both surveys indicated that 12% of the 

students live on campus, and the remaining off-campus residents have exhibited 

noticeable changes in their commuting patterns as presented in Table 5.1. Despite 

some differences in the definition/classification of the commuting mode in the two 

surveys, significant switching may be observed in the students‟ commute from driving 
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alone (private car) to carpool. This reflects an increased interest in ridesharing among 

students, and it appears to be related to the increased parking deficiency around the 

AUB campus, in addition to a 50% increase in gas prices (from 15$/20L in 2007 to 

23$/20L in 2010).  

Table 5.1: Students’ Modal Split Based on the 2007 and 2010 Commute Surveys 

2007 Survey 
 

2010 Survey 

Mode of commuting  % 
 

Mode of commuting % 

On campus 12% 
 

On campus 12% 

Walking 19% 
 

Walking 18% 

My Car 30% 
 

Drive Alone 24% 

In other Student’s Car 3.5% 
 

Carpool  12% 

Dropped Off 10.5% 
 

Dropped Off 9% 

Public Transportation 22% 
 

Public Transportation 24% 

Private Taxi 2% 
 

Private Taxi 1% 

Other  1% 
 

Other 0% 

Grand Total 100% 
 

Grand Total 100% 

 

5.2. AUB Database 

The developed data models for this case study comprise the student commute 

survey, the spatial databases, and the cost parameters; these are presented in the 

following three subsections. The database and results of this case study are 

documented for benchmarking in future research. 

5.2.1. Student Commute Survey 

The 2007 survey had the higher response rate of 70% (compared to 20% in 

2010), and the profile of respondents was found to be matching the student body at 

large. More importantly, only the 2007 survey data was linked to the actual schedule 

of each corresponding student due to the availability of student identifier data in that 

survey but not in the 2010 survey. This rendered the 2007 data practically more 

usable for the spatial and temporal considerations of this case study.  
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It is worth noting that the sample considered in this case study comprises the 

available data of the responding students (70% of student population) and was not 

expanded to account for the remaining 30%. A subset of this sample was eventually 

used, representing the potential users data for the proposed ridesharing services. The 

following criteria were used in defining this subset: (i) students who live within 

Greater Beirut Area (GBA) and (ii) students who commute to AUB by any of the 

following modes: private car, private taxi, drop-off, carpool, and public transport (see 

Table 5.2).  

Table 5.2: Data Subset of Potential Users 

MODE Students % 

My Car 1,177 42% 

Public Transportation 944 34% 

Dropped off 443 16% 

With Other Student 130 5% 

Private Taxi 94 3% 

TOTAL 2,788 100% 

 

In addition to their commuting mode, each of the 2,788 students in Table 5.2 

has a known address location during the current term (zone level), as well as a 

specific term schedule (starting time, ending time, and the days for all registered 

courses). 

5.2.2. Spatial Database 

A geographically referenced digital model of the Greater Beirut Area (GBA) 

was developed for this case study and included the zone boundaries, the road network, 

and the students‟ home locations. The following is the detailed description of every 

data layer: 



 

78 
 

 Zone Boundaries 

The GBA is divided into 63 Traffic Analysis Zones (TAZ) that have been 

conventionally used in almost all transportation studies (Team 1999) over the last two 

decades (Figure 5.2). With the lack of a structured format for addresses in Beirut, the 

students were asked to identify where they live by referring to the GBA map and then 

selecting their zone of residence from a drop-down menu. These zones were used in 

determining the address of every student in both the 2007 and 2010 commute surveys.   

 

Figure 5.2: GBA Zone Boundaries 

 Students‟ Home Locations 

The student home locations are represented by a point layer that contains the 

exact location of each student and is used for scheduling and routing considerations 

(pick-up/drop-off). It is typically a geocoding process of converting the structured 
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address provided by each student into a point location on the map. However, with the 

absence of a structured address format for the GBA, this geocoding process was not 

possible for this case study. As a consequence of the fact that the address of each 

student was only available by its relevant zone number, the data representing the 

home location of each student was synthesized. Given a polygon layer of the 

footprints of existing buildings in the GBA, each student was randomly associated to 

one of the buildings within his/her zone, and was represented by a point location 

depicting the centroid of the building‟s footprint. Figure 5.3 shows the home locations 

of the data subset of potential users listed in Table 5.2. 

 

Figure 5.3: Students’ Home Locations 

 Road Network 

As part of the integrated GIS database of the AUB neighborhood studies, a 

detailed road network model for the GBA was made available for this case study. This 

data layer consists of 3,520 kilometers of roads in GBA, represented by nearly 40,000 
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road links that are fully attributed with road class, congested average speed, and 

traffic directions. The GBA road network layer is presented in Figure 5.4 below. 

Together with the students‟ home locations layer, this road layer is used to determine 

the shortest path between any two students, and between each student and AUB 

(including the direct route and the associated travel distance and travel time during 

congestion). 

 

Figure 5.4: GBA Road Network Model 

5.2.3. Cost Parameters 

Two types of cost parameters are needed for the financial assessment exercise 

of this case study. The first type is the user cost that includes estimation of the cost of 
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the current commute mode of each student and the fare structure for the proposed 

shared-taxi. The second type is the taxi sharing operator‟s costs. 

 Cost of the current commute modes 

The potential users that are under consideration in this case study are the 

students commuting by one of the following five modes: “My car”, “Public 

Transportation”, “Dropped off”, “With Other Student”, and “Private Taxi”. Figure 5.5 

below presents the current fare structures of private taxi (source: Allo Taxi leading 

taxi company in Beirut), and of public transport (average fares of buses and jitneys). 

  

Figure 5.5: Fare Structure of Private Taxi and Public Transport to AUB 

A brief market research exercise was conducted to establish the current fare 

structures for private taxi and public transport (local private taxi Allo Taxi 2014 and 

LCC 2014 bus operator websites). The value of time was estimated at 13$/hour for 

students commuting by private car or private taxi, , 10$/hour for students commuting 

with family member or other student‟s car, and 3$/hour  for students commuting in 
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public transport (based on the values presented in the research paper by Al-Ayyash et 

al. 2015 for AUB students). The direct “In Vehicle Travel Time” (IVTT) between any 

two locations on the network was assumed to be the same for all passenger cars 

(students commuting in their own car, in other student‟s car, with family member, or 

in private taxi), and a value higher by 80% was assumed for students commuting in 

public transport. The “Out of Vehicle Travel Time” (OVTT) was considered as a 7-

minute average walking distance from parking locations around campus to the 

university gate (for students driving their own car). The OVTT of private taxi is 

considered to be zero since the service is door-to-door. For students commuting in 

other students‟ cars or with family members, the OVTT was estimated as a 15-minute 

average waiting time, while the OVTT for students commuting by public transport 

was estimated as 20 minutes average waiting and walking time (IBI 2000). It is worth 

noting that the travel cost of a passenger car is calculated using a time factor ($/hour) 

and was approximated as 6$/hour (being 5.5$/hour gas + 0.5$/hour maintenance) 

assuming current gas price of 1.1$/liter and an average consumption of 5 km/liter with 

an average congested speed of 25 km/hour. A summary of the one-way travel cost and 

travel time parameters for the five commuting modes is presented in Table 5.3. 

Table 5.3: Cost and Travel Time of the Current Commuting Modes 

Mode VOT 
Travel Time 

Travel Cost 
In Vehicle Out of Vehicle 

My Car 13$/hr Direct 
7-minute Walk 

to/from parking 
6$/hour + Parking $3 

Public 

Transport 
3$/hr 

1.8 × 

Direct 

20-minute Waiting 

and Walking Time 
See Figure  

Family Member 

Drop-Off 
10$/hr Direct 

15-minute Waiting 

Time 
6$/hour* 

In Other 

Student‟s Car 
10$/hr Direct 

15-minute Waiting 

Time 
50% of My Car 

Private Taxi 13$/hr Direct - See Figure  
* Average of „half the cost of a shared trip‟ and the „cost of a dedicated 2-way trip‟ for each drop-off and pick-up 
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Given the average speed on every road link in the GIS road network model, 

the direct travel time is calculated for every student home location using the „shortest 

path‟ tool of the GIS network analyst module. Figure 5.6 presents the spatial 

distribution of the direct travel time from any location in GBA to AUB. The direct 

travel time values, ranging from 3 minutes to 57 minutes, are based on the peak hour 

average network speeds (considered in this case study as 30, 25, and 15 km/hour for 

primary, secondary, and local roads, respectively). For practical purposes, the delay at 

intersections and the time-of-day variability of the average speed on the road network 

were not reflected in this case study. 

 

Figure 5.6: Direct Travel Time to AUB 
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 Shared-taxi fare structure 

The fare structure of the proposed shared-taxi system is suggested to follow 

the same zonal breakdown as the private taxi. Different fare scenarios may be 

investigated by considering it as a fraction of the private taxi fare. For example, if the 

suggested fare per passenger is 30% of the private taxi fare, a shared-taxi collecting 

four passengers from the same zone would have revenue of 120% of the private taxi 

fare. On the other hand, it would have a reduced revenue (90% of taxi fare) if it 

collects only three passengers from the same zone. Table 5.4 presents the maximum 

revenue per taxi for different fare scenarios and number of passengers (assuming the 

same zone for all passengers). 

Table 5.4: Maximum Revenue for Different Fare Scenarios 

 Passengers  
Fare        

3 4 

20% 60%* 80%* 

30% 90%* 120% 

40% 120% 160% 

50% 150% 200% 

* Reduced revenue 

 Operator‟s cost structure 

For the purpose of this case study, the work is focused on shared-taxi schemes 

since they have the highest matching opportunities and a greater impact on the 

parking demand and neighborhood congestion. The operator‟s cost varies depending 

on the service design. Two main options may possibly be considered as follows.. 

These options entail providing shared rides to AUB students by either commissioning 

those shared trips to already existing taxi operators in Beirut (option 1), or to a new 

and exclusive operator for AUB (option 2). The operator‟s cost components for each 

option are presented in Table 5.5. 
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Table 5.5: Operator’s Cost Components for the Different Options 

Option Online 

System 

Cost Per 

Mile Driven 

Cost of a 

Dedicated Fleet 

1 – ST (existing) Yes Yes No 

2 – ST (exclusive) Yes Yes Yes 

 

The following estimates for the operator‟s cost components are considered for the 

AUB case study: 

 The cost of the online ride matching system is estimated to be US$40,000, 

and it includes web registration costs, the salaries for an IT developer and a 

system operator. 

 The cost per mile driven is estimated at 6$/hour (see private car in Table 5.3) 

 A shared-taxi driver earns 3$/hour 

 The annual lease of a dedicated taxi fleet can be considered as 20% of the cost 

of the cars. The price of a new Japanese sedan car ranges between $20,000 

and $30,000. Considering the price of a new 2014 Toyota Corolla (Toyota 

dealer price in Beirut is $21,500 including tax and registration fees), the 

average yearly lease can be approximated as $4,500 including maintenance 

and insurance. 

 Other administrative expenditures are presented in Table 5.6 below. 

Table 5.6: Annual Administrative Expenditures for Exclusive Shared-Taxi 

Fixed Cost: Administrative Expenditures 

Salaries, wages and benefits (excluding drivers) $30,000 25.0% 

Integrated on-line ride matching system $40,000 33.3% 

Accounting and consulting fees $10,000 8.3% 

Advertising and promotion $5,000 4.2% 

Rent: Office / Depot $30,000 25.0% 

Expenses: Telephone and other $5,000 4.2% 

Total Expenditures: $120,000 100.0% 
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5.3. Demand Estimation 

The main objective of this case study is to demonstrate the interaction of the 

different modules of the evaluation framework (see Figure 3.2) using actual data and 

simulation of different demand, service design, and policy scenarios. To simulate the 

demand for the taxi sharing service, a simple deterministic demand model is adopted. 

The demand estimation is undertaken using a conditional cost function, where a 

student i is determined to switch to the new ST services if it is cheaper, while 

considering the ST fare (Fi), the cost of his/her current commuting mode (CCM,i), and 

the value of travel time savings if switching. Switching to ST is considered to take 

place if the following equation is satisfied: 

Fi - CCM,i + VOTi × (TTST,i - TTCM,i) < 0 Eq. 5.1 

Where: 

Fi = ST fare for student i computed as a fraction of the private taxi fare (Figure 5.5) 

CCM,i = out-of-pocket cost of the current commute mode for student i (Table 5.3) 

VOTi = Value of Time for student i (Table 5.3) 

TTCM,i = Travel Time using the current commute mode for student i (Table 5.3) 

TTST,i = Travel Time using the ST for student i, which is the direct travel time 

(shortest path) plus the average deviation (conservatively estimated as 
2
/3 of the 

maximum allowable deviation; the actual deviation for student i is not used in this 

equation since the demand model is applied before the routing algorithm). Ideally, the 

chart in Figure 3.3 indicates a feedback into updating the demand after determining 

the actual average deviation in the service design module. The results of the average 

deviations in the service design module indicated slightly lower values than the 

estimated 
2
/3 of the maximum allowable deviation, but the demand results were not 



 

87 
 

updated. As such the case study did not implement this iterative process between the 

service design and the demand modules. 

It is important to note however, that a threshold is applied in equation 5.1 for 

the case of students currently commuting by „private taxi‟. Such a threshold is meant 

to reflect the extent of saving beyond which the taxi commuter is likely to switch 

from private taxi to shared taxi (sharing the taxi ride for a substantial saving in cost to 

compensate extra travel time and less privacy and comfort). This threshold was 

estimated as 25% of the weighted average of private taxi fares for the different zones 

($11.24), or approximately $3. As such, any private taxi (PT) user will not switch to 

the shared taxi unless the user incurs a saving of $3 or more and the Equation 5.2 

below is used instead of Equation 5.1. 

Fi – CPT,i + VOTi × (TTST,i – TTPT,i) ≤ -3 Eq. 5.2 

 

5.3.1. Scenarios 

The deterministic demand model adopted in this case study is based on 

financial saving and does not include other factors such as availability, reliability, and 

comfort. As a result, the demand will be determined using two criteria, namely, the 

savings in the „out-of-the-pocket expenses‟ and the savings in „travel time‟ (see 

Figure 3.3). Therefore, scenarios of different ST fare levels and different maximum 

allowable deviations are investigated. Figure 5.7 presents the demand variation for the 

different commuting modes (private car, private taxi, drop-off, carpool, and public 

transport) based on a fixed „maximum allowable deviation‟ of 30% and for different 

fare values ranging from 20% to 90% of the fare of a „private taxi‟. On the other hand, 
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Figure 5.8 presents the variation of the total demand for the different values of the 

„maximum allowable deviation‟ and „fares‟. 

 

Figure 5.7: Demand Variation by Mode based on Different Fare Values 

 

Figure 5.8: Demand Variation based on Different Max. Deviations and Fare Values 

As it can be concluded from Figures 5.7 and 5.8, the ST demand is more 

sensitive to changes in the „fare‟ level than to the variation in the „allowable 

maximum deviation‟. It could also be said from Figure 5.7 that the public transport 

users are not likely to switch to ST when the fare exceeds 30%.  
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For the demand analysis, nine scenarios are proposed for further investigation 

for three „fare‟ values (30%, 40%, and 50%) and three „maximum deviation‟ values 

(20%, 30%, and 40%). Table 5.7 below presents the designated scenarios. 

Table 5.7: Scenarios for Analysis 

Scenarios Fare = 30% Fare = 40% Fare = 50% 

Max. Dev. = 20% S1 S2 S3 

Max. Dev. = 30% S4 S5 S6 

Max. Dev. = 40% S7 S8 S9 

 

5.4. Service Design  

After determining the demand for the shared taxi based on all nine scenarios, 

the best service design scheme is investigated. This process involves three main steps. 

First, the problem needs to be partitioned into different time groups of students who 

are expected to be served separately. Second, the students in each time group are 

matched in taxis to be shared. Finally, a simple taxi dispatch is implemented to match 

up inbound and outbound trips by cars. 

5.4.1. Temporal Pre-Matching 

Unlike full time employees, the AUB students have different schedules in 

terms of starting and ending of classes for each day of the week. Therefore, the total 

demand needs to be partitioned into temporal groups (different hours of school days) 

that are considered separately. For example, considering a typical Monday of the 

Spring 2007 term, the subset of students who may potentially switch to the shared taxi 

is determined to be 2,393 (out of the weekly 2,788 students in Table 5.2). Based on 

their course schedules (starting and ending times), these students are then grouped 

into hourly inbound and outbound clusters as presented in Table 5.8 and further 
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illustrated in Figure 5.9a. This demonstrates a substantial reduction in the size of the 

ride matching problem since the number of students to be considered in each group is 

at most a quarter of the total. It can be noted from the student registration records that 

the accumulated number of students attending the morning classes is much higher 

than in the afternoon (see Figure 5.9b) yielding in an imbalance in the number of 

arrival and departure students‟ trips throughout the day. 

 

Table 5.8: One-Way Partitioning of Students (ST) 

Time 

Class Schedule 
Start Time 

Class Schedule 
End Time 

No. of 
Students 

% 
No. of 

Students 
% 

8:00 574 24.0% - - 

9:00 617 25.8% 12 0.5% 

10:00 399 16.7% 34 1.4% 

11:00 259 10.8% 88 3.7% 

12:00 177 7.4% 166 6.9% 

13:00 88 3.7% 198 8.3% 

14:00 100 4.2% 290 12.1% 

15:00 47 2.0% 360 15.0% 

16:00 60 2.5% 319 13.3% 

17:00 59 2.5% 332 13.9% 

18:00 9 0.4% 178 7.4% 

19:00 4 0.2% 263 11.0% 

20:00 - - 131 5.5% 

21:00 - - 7 0.3% 

22:00 - - 15 0.6% 

TOTAL 2,393 100% 2,393 100% 
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Figure 5.9a: Chart of Students’ Schedule Partitions in Table 5.8 

 

 

Figure 5.9b: Chart of the Cumulative Number of Students Attending Classes over the Time of 

the Day 

 

Another more significant problem reduction is expected if the service design 

was for carpools; a reduction in the problem size limits the matching opportunities. In 

this case, the students‟ partitioning should be based on matching both starting and 

ending times. Although this case study addresses the service design of ST only, for 

illustration purposes Table 5.9 presents the results of two-way partitioning of 

students‟ schedules. Comparing with the results in Table 5.8, the opportunities of 

matching students in cars are much less in the two-way partitioning (number of 

groups is almost six times as big, and therefore group sizes are significantly smaller).  
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Table 5.9: Two-Way Partitioning of Students (CP) 

End 
Start 9

:0
0

 

1
0

:0
0

 

1
1

:0
0

 

1
2

:0
0

 

1
3

:0
0

 

1
4

:0
0

 

1
5

:0
0

 

1
6

:0
0

 

1
7

:0
0

 

1
8

:0
0

 

1
9

:0
0

 

2
0

:0
0

 

2
1

:0
0

 

2
2

:0
0

 

Total 

8:00 12 22 28 49 40 96 90 66 83 30 46 9 1 2 574 

9:00   12 33 53 47 90 107 90 87 45 42 10 - 1 617 

10:00     27 31 58 38 65 57 57 11 34 19 - 2 399 

11:00       33 24 25 35 37 42 19 22 18 - 4 259 

12:00         29 24 27 24 13 15 28 17 - - 177 

13:00           17 14 18 13 5 14 5 1 1 88 

14:00             22 24 16 11 21 6 - - 100 

15:00               3 16 10 12 6 - - 47 

16:00                 5 31 19 3 1 1 60 

17:00                   1 25 33 - - 59 

18:00                     - 5 4 - 9 

19:00                       - - 4 4 

Total 12 34 88 166 198 290 360 319 332 178 263 131 7 15 2,393 

 

5.4.2. Ride Matching 

The proposed ride matching algorithms in Chapter 4 are implemented in this 

case study. The simulation includes testing both the PCT and MDT methodologies, 

and for „car capacities‟ of 3 and 4 passengers. The testing will include the 9 demand 

scenarios indicated in Table 5.7, for all 26 groups of students indicated in Table  5.8 

(12 inbound and 14 outbound). For illustration purposes, we present the detailed 

simulation results for the 8:00 AM inbound group consisting of 574 students 

(potential users). These students share the same class start time, and they all must be 

on campus at the same time. The service design will determine the number of cars 

needed and their routing to transport the subset of students who are willing to switch 

under each of the 9 scenarios. The number of students willing to switch was computed 

using the proposed demand function as presented in Table 5.10 below. Scenario S1 

(lowest fare and lowest deviation) has the highest demand (79% willing to switch) 

compared to Scenario S9 (highest fare and highest deviation) which has the lowest 

demand (19% willing to switch). 
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Table 5.10: Demand for the Monday 8:00 AM Group 

Scenarios Fare = 30% Fare = 40% Fare = 50% 

Max. Dev. = 20% 454 (79%) 229 (40%) 124 (22%) 

Max. Dev. = 30% 430 (75%) 199 (35%) 112 (20%) 

Max. Dev. = 40% 385 (67%) 184 (32%) 109 (19%) 

 

The main outcomes of the simulated scenarios include: the number of cars 

needed, the total travel time (or travel distance), and the observed „average passenger 

deviation‟; these results are presented in Tables 5.11, 5.12, and 5.13, respectively. 

Table 5.11: Number of Required Cars for the AM Peak Hour 

Number of Required Cars 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 
S1 

20% 
30% 170 145 168 142 

S2 40% 92 81 87 79 
S3 50% 54 48 50 47 
S4 

30% 
30% 155 126 151 122 

S5 40% 75 62 73 60 
S6 50% 44 39 42 36 
S7 

40% 
30% 133 106 134 102 

S8 40% 66 54 65 53 
S9 50% 40 33 38 32 

 

Table 5.11 shows that the MDT algorithm resulted in a smaller number of cars 

than the PCT except for one instance (scenario S7 for car capacity = 3). An equally 

important observation is that the number of required cars is reduced by 10% to 20% 

when the car capacity is increased from 3 to 4 passengers/car. This can also be 

presented in terms of average car occupancy, by dividing the demand (in Table 5.9) 

by the respective number of trips of each scenario. The chart in Figure 5.10 presents 

the average vehicle occupancy of scenarios S2, S5, and S8 (where the fare is 40%), 

and shows that the MDT results in higher occupancy in the case of higher car 

capacity.  
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Figure 5.10: Average Car Occupancy Chart (ST Fare is 40% of Private Taxi) 

 

Despite the fact that the PCT algorithm generally results in lower total travel 

time (as discussed in Chapter 4), the MDT achieves higher matching rates (for narrow 

time windows constraints) thus requiring a smaller number of cars (as shown in Table 

5.11). As a result, Table 5.12 shows that the total travel time using PCT is generally 

lower than the MDT, with some exceptions for the scenarios requiring relatively 

fewer cars in MDT than PCT. 

Table 5.12: Total Travel Time for the AM Peak Hour 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 
S1 

20% 
30% 111.8 95.3 112.2 96.0 

S2 40% 55.3 48.5 54.6 48.7 
S3 50% 26.9 24.3 25.9 24.5 
S4 

30% 
30% 99.8 83.4 100.7 84.4 

S5 40% 44.3 38.1 44.4 38.5 
S6 50% 21.8 19.3 21.6 19.2 
S7 

40% 
30% 83.2 68.5 84.0 67.7 

S8 40% 38.6 32.1 39.0 32.6 
S9 50% 20.9 17.9 20.6 18.1 

 

In a similar manner, the „average passenger deviation‟ is generally less in 

MDT than in PCT. However, due to the lower vehicle occupancy for PCT in some 

2.00

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

30% 40% 50%

A
ve

. O
cc

u
p

an
cy

 

Max. Deviation 

MDT4

PCT4

MDT3

PCT3

mailto:S@
mailto:S@
mailto:S@
mailto:S@


 

95 
 

scenarios (requiring more cars), some values in Table 5.13 are lower for PCT than 

MDT. 

Table 5.13: Average Passenger Deviation 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 
S1 

20% 
30% 5.5% 7.3% 5.2% 7.1% 

S2 40% 6.6% 8.2% 6.1% 7.4% 
S3 50% 7.2% 8.7% 7.7% 9.0% 
S4 

30% 
30% 6.7% 10.2% 7.0% 9.8% 

S5 40% 9.3% 12.3% 7.9% 10.7% 
S6 50% 9.5% 13.1% 9.5% 13.5% 
S7 

40% 
30% 9.8% 13.0% 8.1% 11.7% 

S8 40% 10.9% 14.0% 8.8% 13.4% 
S9 50% 12.3% 17.4% 11.8% 17.6% 

 

The same steps should be repeated for all inbound and outbound groups, and 

all the results are evaluated in the feasibility module. For practical purposes, we 

extrapolated the morning demand into a full day demand (using a factor of 8 = 2 way 

× 
1
/0.25 where the 0.25 represents the fraction of the morning peak hour demand). 

5.4.3. Taxi Dispatch 

The proposed ride matching algorithm solves each group of students presented 

in Table 5.8 separately; however, the taxicab fleet size needs to be optimally 

determined taking into account the inter-relationships of the daily inbound and 

outbound trips and the schedule of the available fleet.  Each vehicle completing its 

designated route within a group needs to be dispatched for another task in another 

group. The best scenario (in terms of the least relocation distance) for a single vehicle 

dispatch is when it is assigned to the nearest passenger to be picked up after dropping 

off the last passenger onboard. This method achieves the highest savings in terms of 

traveled distance. On the other hand, the optimal dispatch of the overall system may 

require different arrangements using complex algorithms (allowing extra traveled 
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distances instead of this greedy method that may require a larger number of required 

cars). 

For the purpose of this case study, a simple greedy approach is suggested for 

the fleet dispatch. It takes into consideration the time and location of every vehicle 

after completing each task. The depot is practically assumed to be adjacent to the 

AUB campus; therefore, all outbound trips (AUB to students‟ residences) are 

expected to be dispatched to vehicles available at the depot. For the first 8:00 AM 

group in the morning all required vehicles are dispatched to travel empty to start 

collecting the passengers and bringing them to AUB based on the temporal pre-

matching and ride matching approached described earlier. For the subsequent groups 

of inbound and outbound time slots, the vehicle is either idle at the depot (due to a 

lower demand), or in a backhaul operation (delivery then pick-up). Given the demand 

variation over the whole day as shown in Figure 5.9, the governing number of 

vehicles is determined in the highest peak hours (where close to 50% of the students 

start their classes at either 8:00 AM or 9:00 AM). Considering scenario S1, for a car 

capacity of 4 passengers, the MDT algorithm specifies the need for 142 and 152 cars 

to respectively serve the 454 and 486 students switching to use the new ST services 

(with classes starting at 8:00 AM and 9:00 AM). 

Having determined the number of cars needed for the highest two consecutive 

hours, the number of cars that may be dispatched to serve both peak hours can be 

determined as follows. Since there are no students finishing at 8:00 AM, all 142 cars 

arriving to AUB at or before 8:00 AM are ready to be dispatched to pick up the 

students that have classes at 9:00 AM. Those cars can only serve the students who are 

within 30 minutes of AUB. Figure 5.11 presents the distribution of the 9:00 AM cars 
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doing pick-ups and their associated trip durations, indicating that close to 50% of the 

pick-ups are within 30 minutes of AUB. Based on this, and anticipating the need for 

deviations, one may estimate that 40% of the vehicles completing the 8:00 AM drop-

offs at AUB may be able to serve the 9:00 AM pick-ups.  

 

Figure 5.11: Maximum One-Way Trip Durations of Cars 

 

It can be concluded from the above analysis that, the governing number of cars 

required to serve the peak 2-hour demand for scenario S1 is 227 cars (142 + 85). As 

shown in Table 5.8 the hourly demand fraction drops by 35% (from 25.8% at 9:00 

AM to 16.7% at 10:00 AM) and continues dropping for the rest of the day. As a result 

nearly 30%* of the car fleet is expected to operate for a single trip in the morning 

peak hour and stay idle at the depot for the rest of the day. 

* (From the 142 required cars for 8:00 AM, we have 57 operating again at 9:00 AM 

and 85 ready to operate after 9:00 AM. Therefore, the 145 required cars for 9:00 AM 

include the 57 cars from 8:00 AM and 88 new cars. At 10:00 AM the required cars 

are 97 where 85 are available from 8:00 AM cars, and 12 cars are needed from 9:00 

AM cars. Therefore, at least 76 of the 88 new cars operating at 9:00 AM will no 

longer be needed for the rest of the day, 76/227 = 33.4%) 
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  It was shown in Figure 5.8 that nearly 50% of the car trip durations are less 

than 30 minutes. As such, 50% of the cars operating at any regular hour of the day 

(between 9:00 and 18:00) to deliver students from AUB to their residences (outbound 

trips) may operate in backhaul (picking up new students after finishing dropping off 

its passengers and before returning to AUB) given a repositioning time that can meet 

the pick-up time of the first passenger of the new inbound trip. This operation can be 

optimized using advanced dispatching algorithms resulting in a reduction of the total 

travel distance (or travel time) of the vehicle fleet to serve the total daily demand. 

However, and for the purpose of this case study, this reduction was approximated as 

20% (being a 40% reduction of the tour distance for 50% of the trip demand). 

5.5. Feasibility Analysis 

Investigating the feasibility of the different scenarios is essential in 

determining the viability of the proposed ST initiative. It enables decision and policy 

making, and setting directions for the design and financing of the ST system for the 

different fare and maximum deviation scenarios.  

This section addresses the financial cost and benefit of operating the ST 

service based on different scenarios. The analysis time period is for one year 

including three semesters (Fall, Spring, and Summer). The demand results of the 

typical Monday are expanded to represent the weekly demand (Monday through 

Friday) using an approximated factor of 4.86 (given that the students registered for 

Monday-Wednesday classes are 5,701, for Tuesday-Thursday 5,634, and for Friday 

5,061) for the Fall and Spring terms (24 study weeks). In a similar fashion, the 

Summer term is considered at 40% of the daily demand of the Fall and Spring terms 

(6 study weeks). As such, the results of the typical weekday may be expanded to one 
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year by multiplying its demand by a factor of ~128 (24 weeks × 4.86 days/week + 6 

weeks × 4.86 days/week × 40% demand = 128.3). 

Two options for the service delivery are suggested for the analysis. The first 

option is to commission the service to existing private taxi companies (single or 

multiple operators), while the second is to consider a completely new service provider 

operating exclusively for AUB students. The same demand of the 9 scenarios will be 

investigated for both service delivery options. Option 1 may also be considered as a 

benchmark for the feasibility of Option 2. 

 Fare Revenue 

Given a specified „Fare‟ for each of the 9 scenarios as a fraction of the „Private 

Taxi Fare‟, the fare revenue can be calculated for each student from the respective 

zone of his/her home location. Table 5.14 presents the fare revenue for each of the 9 

scenarios; such fare revenue is the same in both service delivery options. It can be 

noted from Table 5.14 that the average fare per ride is relatively lower in scenarios 

S1, S4, and S7 where the fare is the lowest (30%). 

Table 5.14: Demand and Fare Revenue for the Typical Day ($) 

Scenario Requests 
Fare 

Revenue 
Ave. Rate 
per Ride 

S1 3,632 $  11,394 $        3.1 

S2 

1,832 $     6,935 $        3.8 

S3 992 $     3,859 $        3.9 

S4 

3,440 $  10,499 $        3.1 

S5 1,592 $     5,916 $        3.7 

S6 

896 $     3,341 $        3.7 

S7 3,080 $     8,798 $        2.9 

S8 

1,472 $     5,389 $        3.7 

S9 872 $     3,269 $        3.7 
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 Operator‟s Cost - Option 1 

To benchmark the feasibility assessment of a complete implementation of the 

AUB ST system with a dedicated vehicle fleet, a first option is evaluated based on the 

concept of commissioning the AUB ridesharing demand to one or more private taxi 

companies. In this option the operator is an intermediate link between the existing taxi 

company/companies and the students, by simply operating the student ride matching 

system and collecting the fares and then commissioning the student trips to the taxi 

companies. This option is only viable when the fare collection revenue is higher than 

the operator‟s cost. As previously discussed in section 5.2.3 the operator‟s cost of this 

option includes the cost of the annual investment for the proposed online ridesharing 

system (Table 5.6), in addition to the charges of the private taxi company (in other 

words, the existing taxi company charges the operator for the booked trips and the 

operator‟s revenue is from the students‟ fare collection, therefore, in cases of trips 

matching only one student the operator collect a fraction of the fee charged by the 

private taxi company, while in other cases of trips matching multiple students the 

operator collects fares from the students that exceed the trip cost charged by the 

private taxi company). The same fare structure defined in Figure 5.5 is adopted while 

applying a surcharge that is proportional to the extent of vehicle route deviation (the 

original fare of the commissioned taxi for the direct trip is increased by the same 

percentage of the route deviation calculated for each car serving more than one 

passenger). Table 5.15 presents the total charges of the private taxi company for the 

typical day. This individual charge varies by the zone of the first pick-up student (or 

the last in drop-off) and the vehicle deviations to pick-up/drop-off additional 

passengers. As such, these charges would vary for different car capacities and ride 

matching methods that may lead to different number of trips and total travel distances. 
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Table 5.15: Charges of the Private Taxi Company for Option 1 (Typical Day) 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 

20% 

30%  $    14,962   $    12,676   $    14,730   $    12,592  

S2 

40%  $      7,396   $      6,484   $      7,168   $      6,411  

S3 50%  $      3,755   $      3,422   $      3,551   $      3,436  

S4 

30% 

30%  $    13,350   $    11,149   $    13,326   $    11,164  

S5 40%  $      6,129   $      5,259   $      6,051   $      5,215  

S6 

50%  $      3,014   $      2,726   $      2,937   $      2,700  

S7 

40% 

30%  $    11,181   $      9,232   $    11,261   $      9,030  

S8 

40%  $      5,464   $      4,519   $      5,419   $      4,536  

S9 50%  $      2,875   $      2,442   $      2,785   $      2,522  

 

As noted earlier, the MDT achieves the highest matches in general, thus reducing 

the number of cars needed. As a result, the total charges in Table 5.15 vary between 

PCT and MDT due to the trade-off between the „total travel time‟ and the „total 

number of car trips needed‟. In other words, the reduction of the needed taxi cars in 

the MDT method may or may not lead to a lower cost than the PCT depending on the 

associated total deviation and travel distance.  

 Operator‟s Costs - Option 2 

In this option the operator is a new ST company dedicated for AUB students. The 

initial investment cost for this option includes the acquisition cost (lease) of the 

taxicab fleet as well as the online ride matching system and other items as listed in 

Table 5.6 (total of $120,000 annually). As discussed in section 5.2.3, the annual lease 

of a private taxicab is approximately $4,500 (including maintenance and insurance). 

The total number of cars needed for every scenario is listed in Table 5.16 below (this 

is the governing number of cars needed to serve the 8:00 and 9:00 AM peak hours 

demand which comprises 50% of the daily demand and is to be served in 2 hours). 
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Table 5.16: Number of Required Cars for the Typical Day 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 
20% 

30% 271 231 268 227 

S2 
40% 147 129 139 126 

S3 50% 86 76 79 75 

S4 

30% 
30% 247 201 241 195 

S5 40% 119 99 116 95 

S6 
50% 70 62 67 57 

S7 
40% 

30% 212 169 214 163 

S8 
40% 105 86 103 84 

S9 50% 63 52 60 51 

 

The operational costs are estimated based on the total travel time (or traveled 

kilometers) at a rate of 9$/hour (as described in Section 5.2.3: 6$/hour for the vehicle 

operation and 3$/hour for the driver based on a monthly salary of 600$). The total 

travel time for the typical day (extrapolated from the 8:00 AM trips) in each scenario 

is presented in Table 5.17. In general, the MDT resulted in a higher travel time 

compared to the PCT. 

Table 5.17: Total Travel Time for the Typical Day (Hours) 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 
20% 

30% 715 610 718 615 

S2 

40% 354 310 350 312 

S3 50% 172 155 166 157 

S4 

30% 

30% 638 534 645 540 

S5 40% 284 244 284 246 

S6 

50% 140 123 138 123 

S7 
40% 

30% 533 439 538 433 

S8 

40% 247 205 249 209 

S9 50% 134 114 132 116 

 

 Feasibility of Options 1 and 2 

The daily charges of the taxi companies in Option 1 and the daily operational 

costs of Option 2 are expanded from the typical day to a full year horizon, and then 
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added to the annual administrative expenditures of each option. The resulting total 

cost is then subtracted from the yearly fare revenue of every scenario to determine the 

net revenue of both options 1 and 2 as presented in Tables 5.18 and 5.19, respectively. 

Table 5.18: Net Annual Revenue for Option 1 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 
20% 

30%  $        (496,809)  $        (204,167)  $        (467,100)  $        (193,430) 

S2  

40%  $          (98,978)  $             17,738   $          (69,819)  $             27,179  

S3 50%  $          (26,705)  $             15,895   $                (632)  $             14,129  

S4  

30% 

30%  $        (404,882)  $        (123,184)  $        (401,893)  $        (125,121) 

S5 40%  $          (67,344)  $             44,080   $          (57,357)  $             49,726  

S6  

50%  $               1,881   $             38,716   $             11,817   $             42,127  

S7 
40% 

30%  $        (344,995)  $          (95,536)  $        (355,216)  $          (69,623) 

S8  

40%  $          (49,611)  $             71,361   $          (43,856)  $             69,156  

S9 50%  $             10,431   $             65,948   $             22,000   $             55,690  
 

It can be observed from Table 5.18 that feasible scenarios are almost 

exclusively associated with fares exceeding 30% and car capacities equal to 4. 

Scenarios S2, S5, and S8 (with fare levels of 40%) seem to present a balance between 

the fare and the associated demand that results in the highest net profit. On the other 

hand, a fare of 30% results in the highest demand but least profit per request, and the 

50% fare level results in the highest profit per request but the least demand. 

Table 5.19: Net Annual Revenue for Option 2 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 
20% 

30%  $        (705,217)  $        (403,806)  $        (694,605)  $        (391,041) 

S2  

40%  $        (301,456)  $        (170,016)  $        (260,497)  $        (158,447) 

S3 50%  $        (211,279)  $        (147,027)  $        (172,413)  $        (144,130) 

S4  

30% 

30%  $        (623,103)  $        (295,717)  $        (603,355)  $        (275,991) 

S5 40%  $        (225,002)  $          (88,911)  $        (211,962)  $          (74,147) 

S6  

50%  $        (168,049)  $        (113,277)  $        (152,732)  $          (90,152) 

S7 
40% 

30%  $        (561,463)  $        (259,498)  $        (576,204)  $        (226,691) 

S8  

40%  $        (186,981)  $          (53,833)  $        (181,118)  $          (48,570) 

S9 50%  $        (139,344)  $          (67,150)  $        (123,416)  $          (64,643) 
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Table 5.19 demonstrates the general infeasibility of Option 2 for all nine 

scenarios. This is evidently caused by the high capital investment in the fleet of taxis 

(compared to Option 1), and the idle cars after the 8:00 and 9:00 AM peak period. A 

similar situation is encountered in the infeasibility of dedicating a fleet of low 

capacity vehicles (or cars) to transport employees on a single trip to work per day 

basis. Typically, high capacity vehicles (or buses) are likely to be used for the single 

trip per day scenario (school bus, workers, and employees). The study by Tao and 

Chen (2007), for the employee based shared taxi service, was based on a scenario 

similar to option 1. In order to address the infeasibility of Option 2, a number of 

policies are proposed below. 

Service policies: 

 Limiting the vehicle fleet size by commissioning the extra peak hour demand 

(that require additional cars which will operate for one trip per day and will 

remain idle for the rest of the day) to private taxi operators (considered for 

analysis as Option 3) 

 Denying requests matching fewer than 3 passengers in the peak hours (this 

option was not considered for analysis as it would also reduce the outbound 

demand of the denied peak hour inbound trips and which may occur in the 

off-peak hour, and may have an overall negative impact on TS adoption) 

 Imposing a higher acceptable deviation during peak hours to achieve full 

packing of the vehicles (considered for analysis as Option 4) 

 Increasing the vehicle capacity (at least during peak periods) using one of the 

following: 
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o  Multi-Purpose Vehicles (MPV) offering extra seats (considered for 

analysis as Option 5) 

o Heterogeneous fleet of cars and vans  

Demand management / Pricing policies: 

 Increasing the fare during peak hours, resulting in shedding of peak demand 

(considered for analysis as Option 6) 

Institutional policies: 

 Seeking subsidy/funding from AUB 

 Balancing the course distribution and schedules (a large fraction of classes are 

offered at 8:00 and 9:00 AM) to reduce the high early morning peak demand 

Other revenue sources: 

  Using the vehicle fleet to serve the AUB students (or other customers) for 

other trips during holidays and weekends  

In what follows we present the results of feasibility analysis for Options 3 to 6. 

 Feasibility of Option 3 

This option is a hybrid option between Options 1 and 2 and consists of limiting 

the number of cars required to serve a single trip per day during the peak hours only. 

Based on an analysis of the hourly demand levels in Table 5.8 this may be broadly 

achieved by commissioning 30% of the morning peak demand to an existing taxi 

company. The results for the feasibility of this option are summarized in Table 5.20 

below, and have indicated that this option can be feasible for car capacities equal to 4, 

fares equal to 40%, and for maximum deviations between 30% and 40%. 
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Table 5.20: Net Annual Revenue for Option 3 

Sc. 
Max. 
Dev. 

Fare 
PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 
S1 

20% 
30%  $        (421,199)  $        (160,945)  $        (412,192)  $        (152,383) 

S2  40%  $        (143,433)  $          (31,322)  $        (111,458)  $          (22,950) 
S3 50%  $        (116,361)  $          (63,858)  $          (85,542)  $          (62,323) 
S4  

30% 
30%  $        (362,649)  $          (85,264)  $        (350,233)  $          (73,238) 

S5 40%  $          (98,690)  $             15,301   $          (88,917)  $             25,331  
S6  50%  $          (90,429)  $          (45,102)  $          (78,553)  $          (28,519) 
S7 

40% 
30%  $        (336,578)  $          (82,088)  $        (348,955)  $          (55,873) 

S8  40%  $          (76,366)  $             36,631   $          (72,536)  $             39,310  
S9 50%  $          (70,324)  $          (10,518)  $          (57,760)  $             (9,981) 

 

 Feasibility of Option 4 

This option imposes a 40% maximum deviation on the peak hour demand. It 

was assumed that no change in demand shall occur since the overall sensitivity of 

demand with respect to maximum deviation is limited (see Figure 5.8) and since 

the rider will continue to experience the original maximum deviation in the off-

peak hours. This option enables a higher packing during peak hours, hence 

limiting the number of cars required to serve a single trip per day during the peak 

hours only. The results for the feasibility of this option are summarized in Table 

5.21 below, and indicate that this option can be feasible for scenario 2 only 

considering car capacities equal to 4, fares equal to 40%, and for maximum 

deviations equal to 20%.  

Table 5.21: Net Annual Revenue for Option 4 

Sc. 
Off-Peak 

Max. Dev. 
Fare 

PCT MDT 
Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 
20% 

30%  $        (427,858)  $        (108,980)  $  (440,840)  $   (84,070) 
S2 40%  $        (100,470)  $             37,936   $    (88,743)  $      44,306  
S3 50%  $        (107,060)  $          (35,940)  $    (87,267)  $   (33,273) 
S4 

30% 
30%  $        (454,319)  $        (140,024)  $  (470,373)  $ (116,846) 

S5 40%  $        (160,267)  $          (26,798)  $  (152,495)  $   (21,276) 
S6 50%  $        (139,766)  $          (69,804)  $  (124,220)  $   (65,397) 
S7 

40% 
30%  $        (561,463)  $        (259,498)  $  (576,204)  $ (226,691) 

S8 40%  $        (186,981)  $          (53,833)  $  (181,118)  $  (48,570) 
S9 50%  $        (139,344)  $          (67,150)  $  (123,416)  $  (64,643) 

mailto:S@
mailto:S@
mailto:S@
mailto:S@
mailto:S@
mailto:S@
mailto:S@
mailto:S@


 

107 
 

 

 Feasibility of Option 5 

To maintain the same demand of the proposed fare and maximum deviation in the 

9 scenarios of option 2, a new option 5 of using a vehicle fleet consisting of higher 

capacity MPVs is suggested. For the purpose of this case study we suggested the 

Toyota Avanza MPV (or similar model); this vehicle is commonly used by the taxi 

companies operating in Beirut and by the AUB escort and security services. This 

vehicle has seven seats (six passengers and the driver). The dealer price of this model 

is 16,000$ and the annual lease value is estimated at 3,400$ (including insurance). 

The feasibility of this option was investigated for scenarios S2, S5, and S8 (with the 

balanced fare value of 40%). The car capacity was considered as 6 and 4 for the peak 

and off-peak hours, respectively. The results of the vehicle fleet size and the annual 

net revenue of option 5 are presented in Tables 5.22 and 5.23, respectively.  

Table 5.22: Number of Required Cars for Option 5 

Scenario Max. Dev. PCT MDT 

S2 

20% 123 117 

S5 30% 91 85 

S8 

40% 72 74 

 

Table 5.23: Net Annual Revenue for Option 5 

Sc. Max. Dev. PCT MDT 

S2 

20%  $        (2,653)  $        18,414  

S5 30%  $        52,187   $        72,754  

S8 

40%  $        95,975   $        84,788  

 

 

It can be concluded that Option 5 resulted in a substantial reduction in the cost and 

thus an increase in the net profit. This demonstrates that the option of operating 

exclusive taxi service for AUB may also be feasible compared to commissioning the 

mailto:S@
mailto:S@
mailto:S@
mailto:S@


 

108 
 

service to an existing Private Taxi operator for maximum deviation equal to or greater 

than 30%. The key factor is in reducing the initial investment in cars by increasing the 

seat capacity during peak hours using MPV cars.  

 Feasibility of Option 6 

This option is a demand management policy by increasing the fare during peak 

hours, resulting in reduced peak demand. This option imposes a 50% fare level for the 

peak hour demand; the impact on the overall demand was considered (a student 

coming to AUB during peak hours will consider the average fare between that of the 

peak hour and the lower price of the returning trip during the off-peak). This option 

enables leveling the high demand during peak hours, hence limiting the number of 

cars required to serve a single trip per day during the peak hours only. The results for 

the feasibility of this option are summarized in Table 5.24 below, and indicate that 

this option can be feasible for scenarios of 30% and 40% fare in the off-peak. 

Expectedly, the fare of 50% in the off-peak (scenarios 3, 6, and 9) would lead to the 

same infeasibility results of Option 2 as both would be the same. 

 

Table 5.24: Net Annual Revenue for Option 6 

Sc. 
Off-Peak 

Max. Dev. 
Fare 

PCT MDT 

Car Cap. 3 Car Cap. 4 Car Cap. 3 Car Cap. 4 

S1 
20% 

30%  $      105,659   $       247,322   $       110,646   $       253,321  

S2  

40%  $    (132,004)  $       (26,852)  $       (99,236)  $       (17,597) 

S3 50%  $    (211,279)  $     (147,027)  $     (172,413)  $     (144,130) 

S4  

30% 

30%  $       104,947   $       258,818   $       114,228   $       268,089  

S5 40%  $       (90,419)  $          18,454   $       (79,987)  $          30,265  

S6  

50%  $     (168,049)  $     (113,277)  $     (152,732)  $       (90,152) 

S7 
40% 

30%  $         59,173   $       201,097   $          52,245   $       216,516  

S8  

40%  $       (70,120)  $          36,398   $       (65,430)  $          40,609  

S9 50%  $     (139,344)  $       (67,150)  $     (123,416)  $       (64,643) 

 

mailto:S@
mailto:S@
mailto:S@
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5.6. Recommendations for AUB 

The current AUB population is estimated to be 8,000 students and 4,400 

employees (including AUBMC). On a typical weekday, nearly 1,400 students‟ cars 

are parked in the vicinity of the campus (in public/on-street parking) between 12:00 

and 1:00 PM. Moreover, an equal number of employees‟ cars was identified to park 

off-campus (Aoun et al. 2012) in addition to the 1,105 available parking spaces on 

campus. The total parking demand for AUB is approximately 4,000 parking spaces 

where only 25% of this demand is supplied on campus. 

Student commuting surveys were conducted in the years 2007 and 2010 and 

have indicated a reduction in the students commuting by their private car from 30% to 

24%. On the other hand, the students ridesharing in carpools have increased from 

3.5% to 12% (between 2007 and 2010). This ridesharing activity was carried out by 

student and employee initiatives in response to the increased fuel cost and parking 

deficiencies. AUB should look into schemes for encouraging and expanding such 

activities through an institution-based ridesharing initiative. 

The AUB Neighborhood Initiative has attempted to address the problem of 

reducing the parking demand and congestion in the neighborhood while maintaining a 

feasible transportation service to students and employees. AUB researchers have 

proposed an exclusive, dynamic taxi-sharing service that combines the benefits of a 

private taxi (professionalism, reliability, vehicle comfort, etc.) with the cost and 

occupancy of a shared-taxi (Aoun et al. 2012). This will offer a low cost door-to-door 

trip to students with a minimum route deviation to pick up/drop off other students 

within proximity or along the way. 

This research has investigated the feasibility of different shared-taxi service 

options for AUB students. A demand analysis indicated that a shared-taxi fare 
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equivalent to 40% of the fare of a private taxi would attract 30% to 40% of the 

students‟ trips. Using data from the 2007 students commute survey (70% sample size 

with known students‟ schedules, home locations, and current commute modes), the 

opportunities of matching student trips in shared-taxi cars were assessed (using a 

developed ride matching tool). Two main service options were considered in the 

analysis; the first consisted of having a third party operator that would provide an 

online ridesharing system for students, collect the fees from the students, and 

commission the matched trips to existing taxi companies, while the second option 

consisted of having an operator with an exclusive taxicab fleet dedicated to AUB 

students. 

The ride matching analysis considered cars with 3 to 4 passenger capacities 

and has concluded that the majority of the cars are expected to be nearly fully packed 

while a relatively smaller portion of the trips will be serving one student per car. To 

ensure system reliability and availability for students, the single passenger trips were 

assumed to be served with the same fare as the shared trips and the feasibility was 

established for the overall car trips. 

 Analysis of the results has indicated the feasibility of Option 1 for car 

capacities of 4 passengers, and the infeasibility of Option 2. The main reason behind 

the infeasibility of the second option is the need for a large taxi-cab fleet where 30% 

of these cars will operate for a single trip in the morning peak to serve 50% of the 

students in the morning peak (8:00 to 9:00 AM) and will remain idle for the 

remaining off-peak hours of the day. This required the investigation of different 

demand management and service design policies that resulted in the feasibility of this 

option under certain scenarios. 
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 The results of this study highlight the opportunities for a feasible shared-taxi 

service for AUB students. This potential business opportunity would attract the 

interest of private investors. AUB as a nonprofit organization may consider inviting 

interested private investors and taxi companies to take advantage of this opportunity 

with a limited role for the AUB administration as a facilitator only. AUB may 

consider funding further research for market studies and potential risk assessments, as 

well as increasing the students‟ awareness and participation. This research has also 

investigated the success and failure of existing ridesharing systems and highlighted 

the importance of market studies, proper costing, the phased implementation of the 

system, and the cooperation of the different stakeholders (AUB, the students, and the 

shared taxi operator). 

 

5.7. Summary and Conclusions 

This case study aimed at presenting the mechanism of the proposed evaluation 

framework for an actual case study. It can be concluded that a ST ridesharing service 

can offer a feasible solution for AUB students and the university. A suggested ST fare 

of 40% of the fare of a private taxi would attract 30% to 40% of the students 

commuting in private cars to switch to the new ST service. Considering a benchmark 

scenario of commissioning the trips to existing taxi companies (Option 1) has shown 

that the AUB demand can be feasibly served using taxicab cars with capacities of four 

passengers. Given the high peaking demand of the incoming trips to AUB in the 

morning peak, around 30% of the required number of cars will only serve a single trip 

per day. A critical component in the feasibility of a dedicated taxicab fleet for AUB is 

the acquisition cost (lease) of the vehicle fleet. Nine demand scenarios (using 

maximum deviation values of 20%, 30%, and 40% with fare values of 30%, 40%, and 
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50%) were tested considering the lease of a dedicated taxi fleet option (Option 2) and 

have shown the infeasibility of the nine scenarios. The mechanism of the proposed 

evaluation framework enables the investigation and testing of service, demand 

management/pricing, and institutional policies. Four additional options were further 

analyzed using hybrid scenarios of different service and pricing policies and have 

indicated the best feasible scenario for these options. 

The following subsections summarize the general conclusions and service 

impact and indicate the limitations of this case study.  

5.7.1. General Conclusions 

 Any increase in the „Fare‟ and/or the „Maximum Deviation‟ results in a 

decrease in the demand. The „Fare‟ variation has a much higher impact on the 

demand compared to the „Maximum Deviation‟. 

 „Maximum Deviation‟ variations have a bigger impact on the ride matching 

process and car occupancy levels than the „Fare‟ variations (translated in 

demand variation). 

 The MDT algorithm results in higher „travel times‟ (or „travel distances‟) but 

lower „number of cars required‟ than the PCT. 

 Saving in „travel time‟ has less financial benefit compared to reduction of the 

„required number of cars‟; as a result, MDT has offered a better overall 

feasibility than the PCT despite its higher „travel time‟ results. 

 The MDT algorithm generally achieves lower „average passenger deviation‟ 

than the PCT algorithm (depending on the spatial distribution of the 

passengers whether random or clustered as discussed in Chapter 4). 
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 Opportunities for two-way ride matching for carpooling are substantially less 

than the one-way matching for ST. 

 Most public transport users would likely switch to ST when the fares are low 

(less than 30%) or subsidized. 

 In order to address the infeasibility of service options, a number of policies 

were identified and proposed as follows: service policies, demand 

management / pricing policies, institutional policies, and other revenue 

sources. 

5.7.2. Service Impact 

In addition to the cost benefit analysis, other important impacts should also be 

considered with respect to the students, the operator, the university, and the 

community. These service impacts are summarized in Table 5.25 below.  

Table 5.25: Service Impacts 

Impact 

Criterion 
Students Operator AUB Community 

Fare 

Higher 

Demand, Cost 

Savings 

Less Profit 

per user 

Reduction in 

Parking Demand, 

Need for Subsidy 

Reduction in 

Parking and 

Congestion 

Least 

Deviation 

Higher 

Demand, 
Travel Time 

Savings 

More cars 
Less Profit 

- - 

Higher 

Car 

Capacity 

Less comfort 

Less cars 

More 

Profit 

- 

Less trips to 

AUB (Reduce 

Congestion) 

 

5.7.3. Limitations 

An important limitation in this work lies in the deterministic nature of the 

demand model used and which included cost and travel time savings only. 
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Considerations for additional factors are recommended, including comfort, service 

availability, and reliability. Al-Ayyash et al. (2015) have used stated preferences 

survey data to estimate an integrated choice and latent variable model for a shared 

ride taxi service for AUB. The service reliability may include a „Guaranteed Ride 

Home‟ option in any emergency or in case of unscheduled class. This option can be 

priced differently or limited to a certain number of times per semester. In addition, 

this case study did not consider dynamic (real time) requests or cancellation, and the 

impact of technological enablers. 

Other limitations in the service design module of this case study include: 

 Simplification of the average speed on each road segment and its time-of-day 

variability (same for peak and off-peak hours) 

  Delays at intersections were not considered 

 Simplification of the vehicle dispatch optimization method 

 The iterative process between the service design and the demand modules was 

not implemented. 
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CHAPTER 6 

SUMMARY AND FUTURE RESEARCH 

 

6.1. Summary 

 

 

This dissertation presented a feasibility framework for the evaluation of 

ridesharing services in an organization-based context encompassing all impacts and 

evaluation criteria and can be used as a decision support tool. This framework 

consisted of three main modules: the demand estimation module, the service design 

module, and the feasibility module. Each of the three modules was analyzed taking 

into account the essential components, methods, and the needed data. The 

interrelationships between these modules (and their components) were established 

showing an iterative feedback between the three modules. This has enabled analysis 

of “what if” scenarios for the demand, the service design, and the feasibility modules. 

In general, researchers have addressed each of the three modules of the framework 

independently and a gap was found in the literature for the ride matching methods for 

the organization-based ridesharing problem. This problem is a variant of the 

CVRPTW that is characterized by unit demand, asymmetric network, and narrow 

time windows with common arrival/departure time to/from the organization location. 

The solution for this problem is identified to have two main objectives that are 

generally conflicting (minimizing total cost and minimizing the user deviation). In 

this regard, this work introduced the formulation and development of a new ride 

matching algorithm using hierarchical spanning trees. Two tree types were defined in 

the proposed heuristic algorithm (PCT and MDT), where the PCT is based on the 

proximity clustering strategy for total cost minimization while the MDT is based on 
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the route deviation strategy for user deviation minimization. This new algorithm was 

tested against optimal solutions for small problems and has provided high quality 

solutions in a substantially shorter processing time. Moreover, for large size problems 

it was demonstrated to achieve higher ride matching opportunities and for different 

vehicle capacities with fast processing compared to known methods in the literature.  

A case study was presented to illustrate the implementation of the developed 

framework using actual data from the American University of Beirut; such data was 

also documented for future research. The most feasible ridesharing alternative to the 

current travel mode was determined using a simple deterministic demand module and 

a full implementation of the proposed ride matching algorithm taking into 

consideration service delivery scenarios and varying the involved parameters. The 

analysis included system feasibility assessment in terms of cost and revenue as well as 

service impact on parking demand and congestion. The results of this case study have 

shown that the high peak hour demand requires up to 30% extra number of cars 

(compared to the regular off peak requirements) that will only operate for a single trip 

in the morning and will remain idle for the rest of the day. Different feasible solutions 

were recommended for AUB that consisted of different hybrid scenarios related to 

service design, demand management, pricing, and institutional policies. 

 

6.2. Research Contribution 

 

The significance of this research lies in the development of a comprehensive 

framework encompassing all factors and criteria for evaluating the feasibility of 

different potential alternative services for an organization-based ridesharing context. 

Previous researches have addressed specific parts of this framework independently, 

and have given little input on the big picture. One main contribution is the 
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incorporation of the demand side in the service design process, while previous service 

design literature assumed a fixed demand independent of the outcomes of the service 

design. 

The developed framework defines the modeling elements of alternative 

service options, the associated parameters and factors, and the database needed. It can 

be used as a decision aid tool that analyzes in a comparative manner the feasibility of 

various service design alternatives with the option of varying key parameters using an 

iterative approach. This framework calls for an iterative process between three main 

modules, being the demand estimation, the service design, and the feasibility. 

This research investigates various ride matching methods and algorithms that 

were previously developed by researchers for their applicability in a university or 

large institution context (“many-to-one”, with one known destination for a subset of a 

determined users‟ database). The research introduces a new proposed ride matching 

algorithm that is context-related to the organization-based ridesharing problem as a 

special case of the Capacitated Vehicle Routing Problem with Time Windows 

(VRPTW).  The advantage of this algorithm lies in its capability to fast solve large 

problems with two types of solution strategies, matching passengers within proximity 

clusters and matching passengers along minimum route deviations. This algorithm 

can be used for investigating different vehicle capacities and maximum deviation 

constraints. 

This research implements a complete case study for the American University 

of Beirut using the three modules of the developed framework and provides a 

documentation of the used database for future research benchmarking. The original 
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demand, based on which the service design step is undertaken, is based on broad 

service design parameters. 

 

6.3. Future Research 

 

 

The evaluation framework presented in this dissertation is generic and its 

importance lies in the interrelationships among the various elements of ridesharing 

studies. Each of the three main modules of the framework can be either implemented 

using simplified methodologies or sophisticated models. The following subsections 

discuss the recommended future research for each of the three modules. 

6.3.1. Future Research for the Demand Module 

A deterministic demand model was used in this research for the purpose of 

presenting the mechanism of the proposed evaluation framework for an actual case 

study. Advanced demand models using stated preference data can be further 

developed based on the works presented by Amey (2010), Deakin et al. (2010), and 

Al-Ayyash et al. (2015). Additional factors which may need to be included in such 

models are comfort, service availability, and reliability. In addition, the demand 

model needs to reflect the probabilistic nature of the decision to switch to the shared 

taxi service. 

6.3.2. Future Research for the Service Design Module 

The service design module is the most challenging component of the 

framework. This research presented a fast heuristic algorithm that achieves higher 

matching opportunities than the previous methods identified in the literature. Despite 

this important contribution to the service design module, additional work is identified 

here for future research including: 
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 A new method combining both PCT and MDT trees as a single solution may be 

investigated 

 Developing additional steps in the proposed ride matching algorithm for 

problems with dynamic ridesharing (new or canceled requests in real time) 

 This research is focused on the evaluation of shared taxi (all users are 

passengers) and can be modified to be used for the classical carpool problem 

(matching drivers with passengers) 

 Expanding the many-to-one ride matching algorithm to many-to-few for 

consideration of more than a single destination node (e.g. large campus with 

multiple gates or when considering ridesharing for multiple organizations within 

close proximity) 

 Improving travel time calculations by considering more accurate average speed 

on each road segment and its time-of-day variability (different peak and off-peak 

hours), in addition to the consideration of the delay at intersections 

 Development of an advanced dispatching optimization algorithm 

 Additional research is needed for the “technological enablers” component and the 

associated impact on the demand, the service design, and the system cost. 

6.3.3. Future Research for the Feasibility Module 

The feasibility module can be expanded to include a more sophisticated cost-

benefit financial model and a broader impact assessment. Consideration of long term 

impact of the ridesharing service may include changes in car ownership of the users 

and their preference for home locations. Future research may also investigate 

additional policy scenarios that reflect the interests of various stakeholders.  
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