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Cloud Computing has revolutionized the technology world and businesses by enabling 

on-demand provisioning of computing resources allowing users to store, process data and run 

applications remotely. This entailed the deployment of large-scale data centers containing 

thousands of computing nodes. However, the energy consumed by Cloud Data Centers today is 

huge resulting in overwhelming electricity bills and carbon dioxide footprints. In 2010, data 

centers consumed around 1.5% of the worldwide electricity and are likely to consume further.  

 

This thesis presents a novel approach to reduce energy consumption in a data center. In 

particular we present a mathematical model that represents the energy dissipation optimization 

problem. We analytically formulate the server selection problem and the supply air temperature 

as a Non Linear Programming (NLP), and propose an algorithm to solve it dynamically. A 

simulation study on SimWare, using real workload traces, shows considerable savings for 

different data center sizes and utilization rates as compared to three other classic algorithms.   

 

The results prove that the proposed algorithm is efficient in handling the energy-

performance trade-off. Moreover, they demonstrate that our algorithm provides significant 

energy savings and maintains a relatively homogenous and stable thermal state at the different 

rack units in the data center. 
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CHAPTER 1 

INTRODUCTION 
 

In recent years, Internet traffic has increased dramatically especially after the huge 

expansion in requests for online marketplaces and social networking websites. Data centers 

constitute the heart of web ecosystem and are the backbone of online services that are now 

essential for any business. This large spread of internet-based computing services has increased 

the density of High Performance Computing (HPC) data centers and entailed the deployment of 

powerful racks to meet the greater need for storage and computing capacity. Therefore, power 

feeding of data centers has increased tremendously as well as the complexity of optimizing the 

energy consumption efficiency of their operation. 

Cooling cost in a data center accounts for about 30% of its total energy cost [20] as 

illustrated in figure 1.1. Current generation of servers consumes around 350 Watts of power at 

maximum utilization; a regular 42U rack would consume around 8 KW with much of this power 

released as heat. This energy consumption is expected to escalate in coming years, to 55KW per 

rack with the use of higher power servers that require 5 KW per chassis [21]. Furthermore, the 

huge energy consumed by data centers today results in overwhelming electricity bills and carbon 

dioxide footprints. Data centers in USA today consume 7.4 Billion USD annually according to a 

U.S. Environmental Protection Agency ENERGY STAR Program report. Figure 1.2 shows that 

the global energy consumed by data centers has increased by 56% from 2005 to 2010 [36]. 

Besides, carbon dioxide (CO2) emissions of the information and communications technology 

(ICT) industry are estimated to be 2% of the worldwide emissions, which is equivalent to the 

emissions of the aviation industry [37]. 
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Figure 1.1: Overall data center costs [20] 

 

 

Figure 1.2: The global data center energy consumption 2000-2010 [36] 

 

As estimated by Koomey [38], the energy consumed by data centers will keep on rising quickly 

except if new efficient resource management solutions are practiced. To address the high-energy 

use problem in data centers, it is required to eliminate inefficiencies in the way computing 
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resources are used when serving application workloads. One way to achieve this objective is to 

improve the management algorithms and the resource distribution. 

 

1.1. Why energy-efficiency in data centers? 

 

During the early days of the Internet, data centers provided few services using single-

purpose server machines. Traditionally, data centers were storage endpoint from where users can 

retrieve data using HTTP, FTP and other network protocol requests using a client-server model. 

The evolution of computing models and services, specifically the emergence of cloud 

computing and social media, transformed large-scale data centers from storage media to service 

providers. They typically serve millions of users internationally. More and more services entailed 

the deployment of large-scale data centers containing thousands of computing nodes with 

hundreds of gigabit bandwidth to the Internet, and petabytes of storage. Hence, advance in the 

design technologies is continually increasing the computing and storage capacities of data 

centers. A side effect of this capacity growth is a huge increase in the power density and energy 

consumption of data centers.  Thermal management is becoming a critical concern for data 

centers managers to find efficient greening strategies that would reduce cooling and computing 

energy at the same time. There are many organizations that are dedicated to promote and develop 

techniques for improving power efficiency and reducing the energy consumed and as a result 

reducing CO2 emission. These include Green Electronics Council, ECO2Clouds, Eco4Cloud, 

FIT4Green, The Green Grid, International Professional Practice Partnership (IP3), and Climate 

Savers Computing Initiative (CSCI). 
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What is needed is the design of a dynamic energy-aware workload assignment algorithm 

to evenly allocate the computational tasks among the rack units based on their power 

consumption, and hence heat dissipation. 

 

1.2. Thesis Motivation and Contribution  

There are two main motivations behind research into the energy efficiency of data 

centers, or most fields of the ICT industry in general. The first is cost, since all forms of 

computing automation consume energy, incurring a cost in the form of the electricity bill. The 

second is environmental sustainability, since as the amount of computers increases, so does the 

overall energy consumption attributed to computing. The research area has otherwise been called 

“Sustainable computing” or “Green ICT” [39]. 

The focus of this research is dynamic energy-efficiency in data centers. We propose to 

design and simulate a dynamic power-aware workload allocation algorithm to allocate 

computational task workloads among servers in cloud-based data centers. Our model takes into 

consideration the allocation of workload, the heat recirculation in the server room, and the air 

temperature provided by the Computer Room Air Conditioning (CRAC). The main contribution 

resides in presenting a precise mathematical formulation of the optimization problem of energy 

consumption in data centers along with a novel solution algorithm that minimizes the total data 

center energy consumed. The cooling energy is reduced by selecting an optimum cold supply air 

temperature value of the CRAC, while the computing energy is reduced by appropriately 

assigning incoming tasks to optimal servers and set the proper velocity for the CPU fan of each 

server. The proposed system design is simulated in SimWare [1] using workload traces from 

experimental datacenters [40].  
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The research methodology of this thesis comprises some successive steps summarized 

below: 

1. Conduct theoretical study of existing algorithms to obtain insights into the design and 

theoretical performance estimation of such algorithms.  

2. Formulate mathematically the problem of minimizing data center energy costs taking into 

consideration all the accounting factors of heat inside the data center. 

3.  Solve the optimization problem using solver packages. 

4. Develop a systematic algorithm to efficiently distribute workload among servers. 

5. Evaluate the performance of the proposed algorithm in the SimWare simulation toolkit 

using real-world workload traces collected from experimental datacenters.  

 

1.3. Thesis Organization 

The main chapters of this thesis are organized as shown in Figure 1.3. The remainder of 

the thesis is structured as follows. Chapter 2 describes a survey and classification of energy-

efficient computing schemes. Also, it presents the scope of this thesis as well as its positioning in 

the field. Chapter 3 provides background information and presents the data center power model 

used. Chapter 4 explains the optimization power problem and our solution algorithm. Chapter 5 

presents simulation results of the proposed algorithm in SimWare. It also provides an evaluation 

of our approach by comparing its results to three classic algorithms. Chapter 6 concludes the 

thesis by summarizing the key findings and discussing some future directions. 
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Figure 1.3: The thesis organization 
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CHAPTER 2 

LITERATURE REVIEW 

The purpose of this chapter is to give an overview of the most prominent approaches of 

reducing energy consumption at the data center levels, classify the methods, highlight their main 

shortcomings, and position our thesis within the research area. 

 The literature shows a considerable work done in the field of optimizing energy 

consumption in data centers. It has been tackled in both mechanical and computer science 

academia. The former focusses on finding best cooling mechanisms and modifying the physical 

layout of data centers. The latter tries to find efficient algorithms for load distribution on 

heterogeneous server racks in the data center. Our literature will mention both perspectives but 

our ultimate scheme will focus on designing the best performance-efficient scheduling algorithm. 

 

2.1. Proposed Solutions 

 

2.1.1. Dynamic Voltage and Frequency Scaling (DVFS) 

Dynamic Voltage and Frequency Scaling (DVFS) is one of the first power saving techniques 

studied and deployed. DVFS adjusts the frequency of the processor in order to reduce power 

dissipation consumption and therefore heat of CPU. It is based on the fact that power in a chip is 

proportional to V
2
f where V is the voltage and f is the operating frequency. In [5], the scheme 

implemented in CloudSim predicts, from the resource utilization log, the CPU utilization and 

adjusts the voltage and frequency of the CPU accordingly to save power. This scheme uses 

“Linear Predicting Method” (LPM) and “Flat Period Reservation-Reduced Method” (FPRRM) to 

improve the prediction method based on M/M/1 queue. In [19], several power-aware Virtual 
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Machine VM distribution schemes based on DVFS are evaluated. Simulation results prove that 

these schemes can reduce power consumption of data centers. 

DVFS decreases the energy dissipation by reducing the supplying voltage and frequency. 

However, this would result in slowing down the execution time and would raise a performance 

concern on the latency resulting from using this approach. 

 

2.1.2 VM consolidation 

 

The fact that an idle server consumes around two third of its peak power suggests to 

minimize the number of running servers by concentrating the workload in the least possible 

number of computing servers and shutting down unused servers. This is referred to as VM 

consolidation and it has become a common approach used for energy efficiency. Many 

commercial cloud management products including Lanamark Suite [6], VMware Capacity 

Planner [7], IBM WebSphere CloudBurst [8], Novell PlateSpin Recon [9] and CapacityIQ [10] 

are implementing it. The authors in [11] propose and evaluate a VM consolidation policy that 

dynamically turns on and off servers based on user demand which is statistically estimated. 

Beloglazov et al, [12] present an algorithm that dynamically consolidates virtual machines using 

adaptive utilization thresholds for servers. This approach first selects VMs that have to be 

migrated based on the Minimization of Migration (MM) policy, then the selected VMs are 

placed according to a modification of the Best Fit Decreasing (BFD) algorithm. Most of the 

nodes that became idle after the migration are switched off. In [13], Xiaoli et al. develop a 

workload-scheduling algorithm aiming to minimize the computing resources. It is an 

improvement of the classical Bin-Packing algorithm. In addition, the proposed technique avoids 

migration of virtual machines, which wastes a significant amount of energy. This is realized by 
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setting a threshold. A simulation comparing this algorithm to the Best Fit Algorithm is 

performed using both C++ and Matlab to prove that the proposed algorithm is more energy 

efficient. The work in [14] presents an Energy-aware technique that allocates the maximum 

possible number of VMs on a physical server taking into consideration the application QoS. To 

realize that, a model of the energy consumed and the time needed for the execution of a standard 

HPC workload benchmark is developed. It contains all possible combinations of allocating the 

VM. The algorithm considers the best allocation of VMs based on optimizing the energy 

consumed and/or the execution time. Hoyer et al [15] assign based on some heuristics VMs to 

physical machines (PMs) by exceeding the maximum capacity of resources of these PMs 

because VMs do not use normally all their allocated resources. Their allocation approach takes 

into consideration both the uncorrelated and the correlated workload. 

In [16], the authors develop a provisioning strategy based on prediction using Error Correction 

Neural Network (ECNN) and Linear Regression as learning algorithms. Kliazovich et al. propose 

in [17] an approach that minimizes the amount of computing resources and takes into 

consideration when servers run continuously at peak loads, and as such, they reduce their 

reliability. In [18], Wang et al. describe their algorithm for VM consolidation when network 

bandwidth demands are dynamic which makes it difficult to use traditional VM allocation 

algorithms. The problem is formulated as a Stochastic Bin-Packing problem where bandwidth 

demands on VMs are modeled as probabilistic allocations. 

The main disadvantage of the VM consolidation approach is that when there is a need to 

turn on a server, a significant amount of energy is consumed. Also, a time delay can occur due to 

the setup time, which can increase the response time and lead to performance degradation.  
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2.1.3. Hybrid approaches 

 

Running several physical machines increases the power consumption, since servers 

consume an important amount of energy even in idle mode. On the other hand, a small number 

of running servers would require running at higher frequencies to meet the higher percentage of 

utilization of these servers and therefore the energy consumption would increase. Consequently, 

[22] and [23] present hybrid approaches that find a balanced tradeoff between the number of 

running physical machines and the voltage/frequency of the CPU on these servers. 

 

2.1.4. Temperature-aware workload scheduling  

 

Temperature-aware workload scheduling is another approach used in optimizing the 

efficient cooling of the data center. It consists of scheduling computational workloads in a way to 

reduce the cooling energy consumed. A main concern in this respect is the possible Heat 

Recirculation from server outlets to inlets that increases the temperature of inlets and causes hot 

spots. To eliminate host spots, data center operators control CRAC to supply lower temperature 

and therefore the cooling cost increases. The authors in [24] present a heuristic technique that 

minimizes the heat recirculation inside the data center room (minimize-heat-recirculation 

(MINHR)) and therefore would enhance the cooling efficiency. In [25], the author introduces 

three task placement algorithms that ensure that the temperature of the outlet is uniform, the 

dissipated power by a server is minimal, or distribution of workloads among servers is uniform. 

Temperature-aware workload scheduling proved to be an efficient scheduling approach. 

Nevertheless, it neglects other important factors contributing to the energy dissipation in data 

centers other than heat recirculation. Further energy savings could be realized by considering 

those factors. 
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2.1.5. Other approaches 

 

Diverse solutions that focus on designing new cooling techniques for a better control of 

the air conditioning to improve energy consumption are proposed. 

An intelligent cooling technique, introduced by Beitelmal et al. in [26], suggest the 

placement of adaptive vent tiles (AVT) where the openings are adjustable to control the cooling 

demand of racks. The main challenge of this method is that it requires the synchronization 

between CRAC units and local AVT for the cooling to be optimal. However, data centers lack 

the sensors infrastructure on the racks side, and the temperature is only sensed on the return air, 

which makes this approach less practical. In [27], AVT for local cooling control is introduced. 

Their method captures the effects of local and zonal cooling mechanisms on the inlet 

temperatures of the racks containing servers. A predictive controller supports this model and 

fulfills the temperature needs of the racks in the data center to reduce the cooling energy intake. 

The model in [28] presents a hot aisle containment approach to minimize recirculation 

and limit mixing of hot air coming from the racks outlet with the cold air produced by the CRAC 

units. This mechanism divides the data center room into a number of overlapping CRAC zones 

of influence. It uses the predictive controller discussed in [27] to regulate the intensity of cooling 

generated by the CRAC units in order to adjust the temperature of rack inlets in each zone. 

VanGeet presents in [29] a number of best practices guidelines to optimize energy-efficiency in 

data centers. These practices focus on heat exclusion, data center air management, thermal 

properties of IT equipment, and air conditioning systems. The air inlet temperature of servers 

must always be kept under a certain threshold to avoid thermal redlining. 

The solution considered in [30] proposes the allocation of incoming workload onto 

servers located in data center locations that are easier to cool than others. Figure 2.1 shows the 
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temperature variation in an HP data center located in Palo Alto. Certain physical areas in the data 

center are easier to cool than others as shown in Figure 2.2.  

 

Figure 2.1: Temperature variation in data center [30] 

  

Figure 2.2: CRAC regions of influence [30] 
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The thermal correlation index (TCI), given by the equation below, is a metric used to define 

regions of influence in a data center. It calculates the response at the i
th

 rack inlet sensor to a step 

change in the temperature supplied by the j
th

 CRAC. This metric ranks the different servers 

physical locations in the data center and thus can be used to develop an algorithm that prefers to 

place computational jobs on servers that are in better efficient cooling locations inside the data 

center. The main limitation of this technique is that it is does not support dynamic scheduling 

tasks and it only copes with batch-processing tasks. 

,

,

i
i j

crac j

T
TCI

T



  

Some algorithms introduced in [31, 32] predict the rack inlet temperature relying on 

intuition-based algorithms, and assign workload tasks to the rack having the lowest inlet 

temperature. These algorithms have low accuracy since they are intuitive by nature. 

Another approach to reduce energy cost in data centers is proposed in [33]. It suggests 

Content Delivery Networks (CDN) where content is reproduced in each CDN center situated in 

different geographical places. Incoming traffic is then routed to CDNs where electricity prices 

are the lowest knowing that electricity varies with the geographical location and time. 

 

2.2. Comparison between our System and Other Solutions 

During our review we came across various approaches for reducing data center energy 

consumption. However, these techniques lack the theoretical formulation of the optimization 

problem of energy consumption in data centers. Also, there is a lack of a holistic solution that 

takes into consideration all the factors contributing to the energy dissipation such as heat 
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recirculation, allocation of workload, CPU fan speed control, and  temperature of air provided by 

the CRAC. 

This study differs from the prior analytic literature in three aspects. First, we consider 

dynamic server provisioning instead of relying on batch-processing tasks. Second, we provide an 

efficient holistic solution. Third, our system minimizes the energy consumption of a data center 

without having to compromise performance. It presents a complete solution to dynamic energy-

efficient task distribution under Quality of Service (QoS) constraints. 

We aim that our scheme ultimately results in a homogenous thermal state of racks. This 

will reduce the energy consumption and therefore would lead to significant cost savings. 
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CHAPTER 3 

PRELIMINARIES 

 

To develop new strategies for power management, it is necessary to develop a model of 

dynamic power consumption. In this chapter, we provide an overview of a typical data center 

layout, the cooling system, cold/hot aisles, and the arrangement of servers. Next, we present the 

power model of the data center and the various metrics to measure its efficiency.  

 

3.1. Data Center Configuration 

In modern data centers, computing servers are commonly arranged in rows of racks of 

blade systems arranged in chassis. Computing servers consume energy according to workload 

and hardware characteristics and generate heat that raises the room temperature.  A typical data 

center layout is shown in figure 3.1 and consists of alternating “hot aisles” and “cold aisles” that 

separate rows of equipment racks. Typically, the racks are 42-U size racks. CRAC units are the 

zonal actuators that stream cooled air to inlet sides of servers via perforated tiles raised in the 

floor of cold aisles [41]. The heated air is then returned from exhausts of racks to CRAC intakes. 

This configuration ensures the separation of the cool inlet air from hot exhaust air. However, the 

recirculation of air in the higher part of the room can cause the infiltration of hot exhaust air into 

the cold aisles resulting in an increase of inlet temperature and the appearance of “hot spots” 

whose temperature is larger than average. Hot spots compound the thermal problem and entail a 

harmful effect on the performance of data centers.  
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Figure 3.1: Typical data center layout [28] 

 

 

3.2. Power Model for the Servers 

 

3.2.1 Server Computing Power 

Fan et al. [44] formulated the relationship between power consumption and CPU 

utilization of a server. The proposed model illustrates the fact that power consumed by a server 

grows almost linearly with the CPU utilization from the value of power consumed when the 

server is idle up to the power consumed when the server is fully utilized. This relationship can be 

represented as shown in (3.1) and illustrated in figure 3.2. 

                                P (u) = Pidle + (Pbusy − Pidle) × u                       (3.1)  

Where P is the estimated power consumption of the server, Pidle is the power consumed 

by the server in the idle state, Pbusy is the power consumption when the server is fully utilized, 

and u is the CPU utilization.  
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Figure 3.2. Server power consumption depending on the CPU utilization [44] 

According to [42] each server consumes half of its peak power in the idle state, therefore 

the power consumed by the server can be calculated by: 

                                    P (u) = w + w × u                              (3.2)   

Where w is the power consumption when the server is idle. 

 

3.2.2 Server Fan Power 

 

Individual servers are equipped with a fan to decrease the temperature within the CPU. 

Many studies have neglected the importance of these fans as an essential element if the thermal 

system architecture. In fact, CPU fans consume a significant amount of power at a cubical rate 

related to their speed, making high speeds of the fan expensive. To the best of our knowledge, 

this study is the first to theoretically calculate the power consumption of CPU fan. 
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To calculate the power consumption of a fan, we rely on the laws of fan affinity and the 

law of convective heat transfer [1]. The law of convective heat transfer assumes that the heat 

transfer is proportional to the amount of air and the difference of temperature between the 

surrounding air and the cooling object: 

Heat transfer (watts) ∝ Temperature difference × Amount of air                    (3.3)  

The law of fan affinity assumes that the amount of air is proportional to the speed of the CPU fan 

denoted by Fan rpm: 

Amount of air ∝ Fanrpm                         (3.4)And that the power dissipation of the fan denoted by 

Fanpower is proportional to the third power of the speed of Fan rpm: 

Fanpower ∝ Fan
3

rpm                                  (3.5) 

Equations (3.3) and (3.4) imply that the fan speed is proportional to the ratio of heat transfer and 

the temperature difference: 

                      

                      
∝                                 (3.6) 

The CPU fan must eliminate the heat generated by the CPU at any time. Therefore, when the fan 

runs at its highest speed denoted by MaxRPM, it should remove w Watts (the maximum 

additional CPU power) at the maximum operable temperature Temergency.  At this operating point, 

the fan consumes its maximum power denoted by MaxPower. The temperature difference in this 

case would be calculated as: 

Temperature difference = Td – Temergency              (3.7) 
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We denote by Td the die temperature of the processor, Tinlet the current inlet temperature of the 

server at time t, currentCPUpower the power of CPU that needs to be removed at time t, 

currentRPM the current speed of the fan, u the utilization of the server at time t, FanPower the 

power consumed by the CPU fan at time t. 

The latter situation implies the Temperature difference at time t to be: 

Temperature difference at t = Td-Tinlet                (3.8) 

In this case, we can write based on (3.6): 

 

 

                                                           (3.9) 

Based on (3.5) we can write: 

   

 

Substituting the expression from (3.9) for currentRPM, we obtain: 

d inlet

d emergency

currentCPUpower

T T
currentRPM MaxRPM

w

T T


 



d inlet

d emergency

w u

T T
currentRPM MaxRPM

w

T T




 



 d emergency

d inlet

u T T
currentRPM MaxRPM

T T

 
 



3
currentRPM

FanPower MaxPower
MaxRPM

 
  

 
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                                           (3.10) 

3.2.3 Server Total Power 

 

The total power consumption of the server is then given by: 

Pserver= Pidle + currentCPUpower + FanPower 

3

server

currentRPM
P w w u MaxPower

MaxRPM

 
     

 
              (3.11) 

The total energy cost consumed by n servers during a period T is presented as: 

3

1

n
i

IT i

i

currentRPM
E w w u MaxPower T

MaxRPM

  
       

   
             (3.12) 

     

3.3. Data Center Power Modeling 

 

3.3.1 Power Consumption of the CRAC Unit 

The CRAC unit is responsible of the cooling of a data center. The efficiency of CRAC is 

modeled by its coefficient of performance (CoP), which is defined as the ratio of the heat 

removed by the CRAC unit (Q) to the total work needed to remove that heat (E). For instance, 

ratio of two designates that to remove heat at the rate of 1000 W, the work performed by the 

CRAC is 500 W. 

 

 
3

d emergency

d inlet

FanPower MaxPo
T T

r
T

e
u

T
w

 
  

 

 





21 
 

Q
CoP

E
              (3.13) 

We will demonstrate in the following the fact that CoP is greater than 1. We define Qc as 

the heat drawn out of the CRAC, and Qh the waste heat dumped into the data center room. CoP 

in this case is given by:  

                (3.14) 

The ratio Qh/Qc is greater than 1 and less than 2. Therefore CoP is greater than 1. 

A greater CoP indicates more efficient cooling, needing less work to remove a constant 

amount of heat. Usually the higher the supplied air temperature the better the CoP. In this thesis, 

we use the COP model of a typical CRAC unit in a HP utility data center illustrated in figure 3.3 

[24]. 

The COP curve in figure 3.3 is given by:  

CoP(Ts)=         
                  8          (3.15) 

where Ts denotes the cold supply temperature streamed by the CRAC (in degrees C). 

The energy cost of the CRAC unit may be quantified as:  

( )

IT
CRAC

s

E
E

CoP T
 [24]                (3.16)                                

Where EIT is the summation of energy consumption over all servers 
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 . 

Fig.3.3. COP curve for the CRAC units at the HP labs utility data center [24]. 

 

 

3.3.2 Total Power Consumption 

The total energy dissipation in a data center is composed of the energy consumed by the 

computing elements EIT and the CRAC cooling energy EAC [43]. 

                           Etotal= EIT + EAC                             (3.17) 

Substituting the values of EIT and EAC given in (3.12) and (3.15) respectively into (3.16) gives the 

total energy consumption as follows 

3

1
20.0068 0.0008 0.458

1
1

n
i

Tota i

s

l
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currentRPM
E w w u MaxPower T

MaxRPMT T 

    
          

      
         (3.18) 
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3.4. Data Center Efficiency Metrics 

Researchers have offered different means to measure datacenter efficiency.  

Power usage effectiveness [1] is a very common metric introduced by the Green Grid. It is 

defined as the ratio of total facility power consumed to power brought to IT computing 

equipment. 

TotalFacilityPower
PUE

ComputingPower
                    (3.19) 

 

In useful terms, a PUE value of 1 means that all power brought into the data center is being 

delivered to power computing equipment. 

Latency is by definition the delay or wasted time that increases response time of a job beyond the 

desired one. 

Standard Deviation of inlet temperatures is a measure of how inlet temperatures of different 

servers are spread out. A low standard deviation indicates that the inlet temperatures tend to be 

close to each other and are distributed in a small range; i.e. the thermal state of servers is 

homogenous. 
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CHAPTER 4 

SYSTEM DESIGN 

 

4.1. Power consumed in computation affects the inlet temperatures 

As computing devices in a data center produce heat when running workloads, the CRAC 

cooling system must supply cold air to their air inlets to keep their temperature from exceeding 

the critical emergency temperature; i.e. the highest operational temperature specified by the 

manufacturer. On the other hand, the inlet temperature of a server in a data center derives from 

the mixture of cold air supplied from the CRAC and hot air recirculated from the other servers. 

In other words, the inlet temperature of a server will experience a rise above the supply 

temperature due to heat from recirculation [25]. 

According to [44] heat recirculation can be estimated using a heat distribution matrix Dn×n={dij}, 

where dij denotes the contribution of server j to the inlet temperature increase of server i in a data 

center of n servers. This matrix can be generated using Arizona State University’s BlueTool. The 

equation relating the inlet temperature for each server i to the CRAC supply temperature is then 

formulated as: 

          Tinlet=Ts+D P                  (4.1) 

Where Tinlet and Ts are the corresponding inlet temperature and the supply cold air temperature 

vectors of n elements, respectively and P = [P1,…,Pn] is the vector of power dissipation of the n 

servers. 
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4.2. Data Center Power Minimization 

4.2.1 Problem Statement  

Our objective is to minimize the total data center energy dissipation given in (3.17) by 1) 

selecting the optimum value of Ts, 2) determining optimal servers to assign incoming tasks, and 

3) setting the proper fan velocity for each server.  

We define a binary variable for each server that indicates whether a server is assigned the 

job or not. Xi denotes the variable for the ith server. Given a data center of n servers, each server 

with power characteristic w, and with Ctot number of CPUs; a task demanding C CPUs; the heat 

distribution matrix D, 
1 2, ,..., n

in in in inT T T T    the vector of inlet temperatures for n servers, the 

energy optimization problem for serving an incoming task is as follows:   

Find Ts, the vector X (of length n), and the vector currentRPM (of length n) every 1 second: 
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4.2.2 Solution to the Optimization Problem 

In order to solve the mathematical optimization problem, we use IBM ILOG Cplex 

Optimizer, the well-known solver package for C++. Cplex is fast, robust, and capable of solving 

complex models and producing precise decisions.  

We assume a homogenous data center with w=130W, Tlow=10°C, Temergency=30°C, 

minRPM=500rpm, MaxRPM=3000rpm, MaxPower=15W. We generate the heat distribution 

matrix Dn×n is using Arizona State University’s BlueTool. The input to BlueTool is a physical 

description of a data center in the Computer Infrastructure Engineering LAnguage (CIELA). 

Figure 3.4 illustrates an example of CIELA which is a high-level XML-based specification 

language to represent the generic layout of the data center. It defines the room architecture 

consisting of the wall locations, the CRAC position as well as the flow rate, the specification of 

equipment such as racks, vents, tiles, etc.  

The nonlinear programming problem presented in section 4.2.1 is programmed in the CPLEX 

software as shown in Appendix A. Our algorithm selects an optimum cold supply air temperature 

value of the CRAC, assigns incoming tasks to optimal servers and sets the proper velocity for the 

CPU fan of each server. 

 

Figure 4.1. CIELA code example for a homogenous data center 

 

4.3. Other approaches 

We present the following classic algorithms to the workload assignment problem, which 

will be compared with our algorithm. We will refer to our proposed algorithm as “OptimalAlg”. 
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LowTempFirst: This scheme assigns more jobs to servers with low inlet temperatures and fewer 

jobs to servers with high inlet temperatures [41]. The goal is to reach a uniform temperature 

distribution inside the data center. 

BestPerformance: This algorithm assigns the upcoming jobs to the server with the least 

utilization [25]. 

MinHR: It calculates Heat Recirculation Factor (HRF) for each server and assigns jobs according 

to the ratio of each server’s HRF to the sum of all HRFs. This approach allocates fewer jobs to a 

server that causes higher recirculation [42]. 
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CHAPTER 5 

SIMULATION 

 

5.1. Introduction 

In this thesis, we use the SimWare toolkit to perform our simulations. SimWare is a 

holistic Warehouse-Scale data center simulator. It analyses the consumed power by servers, fans, 

and cooling units. It also considers the effect of heat recirculation and the air travel time from the 

CRAC to servers. In addition, SimWare can access airflow management strategies and server 

placement inside the data center [1]. All these features would evaluate our proposed model 

accurately and effectively. The input for SimWare is a Standard Workload Format (SWF) file 

where traces are collected from real data center clusters.  

 

 

5.2. Simulations and Results 

In order to test accurately the efficiency and performance of OptimalAlg we consider the 

effect of two different factors: 

1-  Data center size  

2- Workload utilization rates. 

 The degree of energy savings will be verified by comparing it to Lowtempfirst, 

BestPerformance, and minHR. 

5.2.1. Setup 1: data center size 

We simulate using SimWare three different sizes of warehouse-scale data center as 

described in Table 5.1. Each server has a 130-W TDP Xeon E7-2850 processor with 10 cores. 
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Each blade server consumes 130 W in its idle state. According to A1-class server specification 

for datacenters, the servers’ emergency temperature is set to 30°C [45]. We run an SWF file 

workload from 10 high-performance computing clusters in the Shared Hierarchical Academic 

Research Computing Network (SHARCNET) in Canada. The log comprises approximately 1.2 

million accounting jobs from December 2005 through January 2007.To simplify our simulation, 

we run 24,112 jobs corresponding to five days running jobs by the cluster. 

Table 5.1: Various data center sizes simulation test cases 

Test Case Data Center Size Number of Servers 

A Big 500 

B Medium 250 

C small 150 

 

We compare the simulations resulting from OptimalAlg (OA), BestPerformance (BP), 

LowTempFirst (LTF), and MinHR for the different test cases. Results are reported in Tables 5.2, 

5.3, and 5.4 for test cases A, B, and C, respectively. 
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Table 5.2: SimWare Simulations Results for Test Case A 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER 

_IN_ONE_CHASSIS 

10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 5 5 5 5 

Average Supply Temperature (°C) 23.7295 23.721 23.6869 23.816 

Peak Power (W) 193823 193823 193823 174914 

Average Power Consumption (W) 92541.2 92370 92531.6 90262.4 

PUE 1.24854 1.24999 1.24938 1.24256 

Average Latency (sec) 75116.4 74159.4 75172.4 72740.1 

Standard Deviation of Inlet 

temperature 

2.12 2.11 2.1 2.08 

 

 

 

Table 5.3: SimWare Simulations Results for Test Case B 

Scheduling Algorithm Min_HR

Min_HR 

BP LTF OA 

NUMBER_OF_CHASSIS 25 25 25 25 

SERVERS PER 

CHASSISNUMBER_OF_SERVER

S_IN_ONE_CHASSIS 

10 10 10 10 

CORES PER 

SERVERNUMBER_OF_CORES_I

N_ONE_SERVER 

10 10 10 10 

FINISHES_AT_DAY 5 5 5 5 

Average Supply Temperature 

(°C)Average Supply Temperature in 

°C 

24.5066 24.3575 24.2884 24.8165 

Peak Power (W) 93237.8 93237.8 93237.8 83899 

Average Power Consumption 

(W)Average Power Consumption in 

watt 

(Total = CRAC + Servers) 

51187.3 50417.8 51057.1 48461.4 

PUE 1.24109 1.2413 1.24103 1.23193 

Average Latency (sec) 135364 135195 135368 132472 

Standard Deviation of Inlet 

T°Standard Deviation of Inlet 

temperature 

1.87 1.87 1.88 1.81 
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Table 5.4: SimWare Simulations Results for Test Case C 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 15 15 15 15 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 5 5 5 5 

Average Supply Temperature (°C) 24.996 24.7849 24.6189 25.002 

Peak Power (W) 54604.4 54604.4 54604.4 49070.7 

Average Power Consumption (W) 34342.5 33165.1 34221.4 31412.7 

PUE 1.23358 1.23233 1.23348 1.22292 

Average Latency (sec) 226828 225067 226833 219628 

Standard Deviation of Inlet T° 1.65 1.64 1.68 1.56 

 

In order to accurately analyze the simulations, we calculate the percentage savings of 

OptimalAlg in comparison to BestPerformance, LowTempFirst, and MinHR in terms of peak 

power, average power consumption, and latency. Results are summarized in Tables 5.5, 5.6, and 

5.7 for test cases A, B, and C, respectively.  

 

Table 5.5: Percentage of savings of OA in Test Case A 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER 

_IN_ONE_CHASSIS 

10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 5 5 5 5 

Peak Power (W) 9.75% 9.80% 9.80% 174914 

Average Power Consumption (W) 3.76% 3.40% 3.65% 90262.4 

Average Latency (sec) 3.26% 2.10% 3.40% 72740.1 
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Table 5.6: Percentage of savings of OA in Test Case B 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 25 25 25 25 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 5 5 5 5 

Peak Power (W) 11.10% 11.10% 11.10% 83899 

Average Power Consumption (W) 6.82% 5.10% 6.28% 48461.4 

Average Latency (sec) 2.18% 2.10% 2.28% 132472 

 

 

Table 5.7: Percentage of savings of OA in Test Case C 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 5 5 5 5 

Peak Power (W) 10.13% 10.13% 10.13% 49070.7 

Average Power Consumption (W) 9.73% 6.48% 9.40% 31412.7 

Average Latency (sec) 3.27% 2.41% 3.27% 219628 

 

As we can see, the results confirm the hypothesis that OptimalAlg is able to significantly reduce 

energy consumption costs in a cloud data center. In fact, OptimalAlg simulated in a small data 

center of 150 servers is found to achieve an average of 6.48%, 9.4%, and 9.73% energy savings 

in comparison to BestPerformance, Low_temp_first, and MinHR repectively. We consider 0.12 

USD to be the cost of 1 kWh. Therefore, OptimalAlg would achieve 320,964.41 USD, 

465,596.52 USD, and 481,941.93 USD energy cost savings over BestPerformance, 
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Low_temp_first, and MinHR respectively, while the total energy cost of the data center is 

4,953,154.53 USD within a time frame of one year. In a medium size data center of 250 servers, 

approximately 649,518.45 USD, 799,799.19 USD, and 868,571.73 USD energy cost savings are 

realized in comparison to BestPerformance, Low_temp_first, and MinHR respectively when the 

total energy cost is 12,735,655.92 USD. Also, the simulation of a big data center of 500 servers 

proves energy cost savings of 1,613,025.19 USD, 1,731,629.98 USD, and 1,783,816.09 USD 

over BestPerformance, Low_temp_first, and MinHR respectively, while the total energy cost of 

the data center is 47,441,917.44 USD.  

On the other hand, OptimalAlg leads to an average of 10% improvement in peak power 

in comparison to other algorithms in the different test cases. Lowering peak power of servers is 

important because it would extend the data center hardware life. 

The curves in figure 5.1 illustrate the average supply cold temperature for different 

algorithms, in different data center sizes. It can be noticed that OptimalAlg consistently provides 

the highest supply cold temperature and therefore it has the smallest cooling energy of CRAC 

among all algorithms. This is due to the fact that CPU fans play a big role in our algorithm in 

eliminating a considerable amount of heat. CPU fans do not consume a lot of energy compared 

to the cooling energy consumed by CRAC. Our algorithm selects CPU fan speed optimally to 

reduce cooling energy and ultimately the total energy consumed by the data center.  
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Figure 5.1. Average supply temperature in different data center sizes 

 

PUE for the three different test cases are graphically depicted in Figure 5.2. The results show that 

OptimalAlg provides the smallest PUE which further verifies our hypothesis that our algorithm  

is the best performer. 

 

Figure 5.2. PUE in different data center sizes 
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Moreover, Tables 5.2, 5.3, and 5.4 show that OptimalAlg has the smallest standard 

deviation of inlet temperature, which means that our algorithm maintains a relatively 

homogeneous and stable thermal state at the different rack units in the data center. Also, 

OptimalAlg has the lowest latency in comparison with the three others, which indicates that it 

provides a better performance impact. 

 

5.2.2. Setup 2: Workload utilization rates 

The same simulation described in setup 1 was performed using a warehouse-scale data 

center containing 500 blade servers in 50 chassis, with 10 servers per chassis. We ran two 

different SWF files from different physical clusters as shown in Table 5.8 to simulate a medium 

and a small average utilization data center. The number of tasks differs to vary the data center 

utilization. However, we could not simulate high data center utilization rate since the input 

workload traces for SimWare are taken from real clusters and normally the average utilization of 

a data center does not exceed 30%. 

Case Cluster 
Average 

Utilization 
Number of jobs Time Frame 

D 

Shared Hierarchical 

Academic Research 

Computing Network 

(SHARCNET) in Canada 

25.12% 1.2x10
6
 December 2005 

January 2007 

E NASA Ames Research 

Center 

2.53% 42,264 October 1993 

December 2007 
Table 5.8: Various data center utilization rates test cases 

 

SimWare simulation results for test cases D and E are reported in Tables (5.9) and (5.10) 

respectively. 
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Table 5.9: SimWare Simulations Results for Test Case D 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 365 365 365 365 

Average Supply Temperature (°C) 23.0796 22.9941 22.5371 23.4165 

Peak Power (W) 193823 193823 193823 174914 

Average Power Consumption (W) 105910 103333 105879 101625 

PUE 1.24958 1.25265 1.26398 1.24411 

Average Latency (sec) 41141.4 41050.2 41145.6 40985.1 

Standard Deviation of Inlet T° 2.34 2.36 2.55 2.2 

 

Table 5.10: SimWare Simulations Results for Test Case E 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 365 365 365 365 

Average Supply Temperature (°C) 24.4375 24.420

7 

24.429 24.430

5 
Peak Power (W) 125071 124961 125062 124766 

Average Power Consumption (W) 80646.7 80428.

1 

80560.4 80277.

8 
PUE 1.22048 1.2206

4 

1.2205 1.2203

6 
Average Latency (sec) 773.212 773.21

2 

773.212 773.21

2 
Standard Deviation of Inlet T° 1.87 1.89 1.9 1.87 

 

The percentage of savings of OptimalAlg in comparison to BestPerformance, LowTempFirst, 

and MinHR in terms of peak power, average power consumption, and  latency are summarized in 

Tables 5.11 and 5.12.  
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Table 5.11: Percentage of savings of OA in Test Case D 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 365 365 365 365 

Peak Power (W) 11.80% 11.80% 11.80% 174914 

Average Power Consumption (W) 6.04% 3.60% 6.01% 101625 

Average Latency (sec) 2.10% 1.41% 2.10% 40985.1 

 

 

Table 5.12: Percentage of savings of OA in Test Case E 

Scheduling Algorithm Min_HR BP LTF OA 

NUMBER_OF_CHASSIS 50 50 50 50 

SERVERS PER CHASSIS 10 10 10 10 

CORES PER SERVER 10 10 10 10 

FINISHES_AT_DAY 365 365 365 365 

Peak Power (W) 1.20% 1.10% 1.20% 124766 

Average Power Consumption (W) 1.10% 0.80% 1.10% 80277.8 

Average Latency (sec) 0% 0% 0% 773.212 

Plots of average supply temperature and PUE are provided in figures 5.3 and 5.4 respectively. 

The analysis conducted in section 5.2.1 remains true for this setup. OptimalAlg has made 

significant energy consumption reduction with an improved performance impact. In fact, 

OptimalAlg is found to achieve the highest average energy savings and lowest peak power in 

comparison to minHr, BestPerformance, and lowtempfirst as shown in Tables 5.11 and 5.12. 

Also, in both test cases D and E, our proposed algorithm provides the lowest PUE, latency, and 
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standard deviation, which indicates that OptimalAlg performs better than others in different 

utilization rates. Furthermore, we noticed that energy savings grow with the increase of 

utilization. This is reflected by the associated higher percentages in average power consumption 

in test case D over test case E.   

 

Figure 5.3. Average supply temperature in different average utilization rate 

 

Figure 5.4. PUE in different average utilization rate 
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5.2.3. Further Data Analysis 

Based on the observed simulation results, several conclusions can be made: 

1. OptimalAlg significantly outperforms previous allocation algorithms, and produces better 

energy savings with an improved performance impact.  

2. Less energy consumption is achieved using OptimalAlg and consequently less associated 

carbon dioxide is released into the atmosphere. 

3. The performance time of OptimalAlg in SimWare is approximately the same compared to 

other algorithms. This is due to the fact that CPLEX solver used in the implementation is 

one of the fastest solvers available. 

4. Our algorithm showed the highest supply temperature and consequently the lowest 

cooling energy. CPU fans were responsible of eliminating the excess heat. Therefore, the 

assumption that CPU fans play an important role in the thermal management system of a 

data center is met.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

As the technology progresses, the model of bringing computing resources remotely over 

the Internet will thrive. As a result, cloud data centers are estimated to grow. In this context, data 

center energy-efficient management is a critical problem with regard to both the huge operational 

costs and CO2 discharges. 

In this thesis, we presented a novel approach for the implementation of dynamic 

workload allocation by formulating and solving the optimization problem of minimizing the total 

data center energy consumption. The proposed algorithm returns the optimal supply cold 

temperature, task assignment efficiently on different servers, and the corresponding CPU fan 

velocity. The proposed algorithm resulted in energy savings with no performance compromise 

under different utilization of the data center. Simulation results showed an average of 6% energy 

savings for different utilizations and sizes of the data center when compared to three previous 

schemes. Our proposed algorithm will ensure energy provisioning, performance optimizing, and 

on-demand workload allocating. 

Despite significant contributions of the current thesis in dynamic energy-efficiency data 

centers, there are some open research challenges that can be studied in order to further advance the 

area. The current proposed job placement algorithm investigated the mathematical optimization 

problem of energy consumption in data centers without including virtual machine consolidation. In 

such data centers, servers run at 10-50% of their capacity most of the time, which leads to extra costs 

on over-provisioning. Future work may extend the current scheme to include VM consolidation. It is 

essential to carefully design such an algorithm to deliver close to optimal solutions, as VM 

consolidation may lead to performance degradation. Another possible enhancement of the job 
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placement algorithm is applying extra constraints on the job placement. Such constraints can be 

valuable when it is required to allocate jobs on a set of servers. These requirements can be enforced 

by the users due to security and/or privacy concerns. 

 

. 
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