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Title: Hybrid and Intelligent Positioning Techniques in Heterogeneous and Cognitive 

Networks 

 

 

Nowadays, the availability of the location information becomes a key factor in 

today’s communications systems for allowing new location based services. In outdoor 

scenarios, the Mobile Terminal (MT) position is obtained with high accuracy thanks to the 

Global Positioning System (GPS) or to the standalone cellular systems. However, the main 

problem of GPS or cellular systems resides in the indoor environment and in scenarios with 

deep shadowing effect where the satellite or cellular signals are broken.  

This thesis is divided into two main parts. In the first part, we present a potentially 

good candidate for critical positioning scenarios with the lack of hearability between the 

Unlocated Mobile Terminal (UMT) and the Anchor Nodes (AN). Indeed, in many cases, 

only one or two ANs are communicating with the UMT. The proposed positioning 

algorithm is based on hybrid data fusion and its extension to the tracking step by adopting 

the Minimum Entropy Criterion to diminish the shortcoming of the Unscented Kalman 

Filter and Particle Filter, usually used in this field. The proposed solution is divided into 

two phases: the learning phase and the processing phase. Using Radial Basis Functions, the 

learning phase allows an accurate model of the probability density function of the 

positioning error while the processing phase aims at reducing the estimation error. We 

show that the proposed algorithm reaches an accuracy of 1m squared in terms of Mean 

Square Error (MSE). 

Not only localizing MTs, but also localizing multiple transmitters in a region is 

also another objective tackled in this thesis. Even though this problem is applicable in 

different applications, the most prominent one is the cognitive radio context. We are 

interested in the uncoordinated system where the cognitive node operates in an 

opportunistic manner. In order to avoid interference, the cognitive system is responsible to 

recognize the area where there are active primary users. Assuming the location of primary 

users and their activity are not known, we propose in this thesis the Space-Alternating 

Generalized Expectation Maximization (SAGE) technique for localizing multiple 

transmitters based on “smart” initial estimations. We show that the proposed SAGE 

technique outperforms the conventional techniques such as the Expectation Maximization 

and the Random Guesses techniques. This improvement is much significant with higher 

shadowing variance.  

 

 



  vii   
 

LIST OF ILLUSTRATIONS 
Figure 1 TOA Ranging ........................................................................................................... 5 

Figure 2 Ambiguities from RSS ............................................................................................. 5 

Figure 3 AOA Model .............................................................................................................. 6 

Figure 4 Positioning Scenario with lack of hearability ......................................................... 13 

Figure 5 Coordinate System Transformation ........................................................................ 18 

Figure 6 Combination of TOA, AOA, and RSS Fingerprints .............................................. 19 

Figure 7 Coupling and Decoupling Algorithm [13] ............................................................. 20 

Figure 9 RSS Clustering Model ............................................................................................ 21 

Figure 10 Hierarchical Binary Tree ...................................................................................... 23 

Figure 11 Genetic Clustering Algorithm .............................................................................. 26 

Figure 12 No-Clustering: MSE vs. TOA-Variance .............................................................. 30 

Figure 13 No-Clustering: MSE vs. Number of RSS Ambiguities ........................................ 31 

Figure 14 No-Clustering: MSE vs. Lambda ......................................................................... 32 

Figure 15 No-Clustering: MSE vs. GPS Error ..................................................................... 32 

Figure 16 No-Clustering: MSE vs. RSS Variance ................................................................ 33 

Figure 17 RSS Clustering: MSE vs. TOA-Variance ............................................................ 34 

Figure 18 Hierarchical Clustering: MSE vs. TOA-Variance ................................................ 35 

Figure 19 Genetic Clustering: MSE vs. TOA-Variance ....................................................... 35 

Figure 20 Schematic of UKF based PDF filter ..................................................................... 40 

Figure 20 MSE for Model 1 .................................................................................................. 48 

Figure 21 CDF of the MSE for Model 1 ............................................................................... 49 

Figure 22 PDF for the innovation for Model 1 ..................................................................... 50 

Figure 23 MSE for Model 2 .................................................................................................. 50 

Figure 24 CDF of the MSE for Model 2 ............................................................................... 51 

Figure 25 PDF of the innovation for Model 2 ...................................................................... 51 

Figure 26 MSE for Model 3 .................................................................................................. 52 

Figure 27 CDF of the MSE for Model 3 ............................................................................... 52 

Figure 28 PDF of the innovation on the long range measurements for Model 3 ................. 53 

Figure 30 Typical Radio Environment Map and radio scene analysis in CR network  [44] . 58 

Figure 30 MSE-Normalized: M=2 and sigma=4dB ............................................................. 69 

Figure 31 MSE-Normalized: M=3 and sigma=4dB ............................................................. 70 

Figure 32 MSE-Normalized: M=2 and sigma=16dB ........................................................... 70 

Figure 33 MSE-Normalized: M=3 and sigma=16dB ........................................................... 71 

Figure 34 MSE-Normalized with M=2,   =20dB, two values of  .................................... 71 

Figure 35 MSE-Normalized with M=2 and sigma=4dB in addition to the NLOS factor on 

quasi-SAGE .......................................................................................................................... 72 

Figure 36 True and Estimated Positions of 2 Transmitters .................................................. 73 



  viii   
 

TABLE OF CONTENTS 
 

ACKNOWLEDGMENTS………………………………………………  v 

     

v AN ABSTRACT OF THE THESIS …………………………………. vi 

 
LIST OF ILLUSTRATIONS….………………………………………… 

 

vii 

  

     Chapter 

I REVIEW OF THE STATE OF THE ART POSITIONING 

TECHNIQUES ................................................................................................... 1 

A. Introduction ..................................................................................................................... 1 

B. Literature Review ........................................................................................................... 3 

 

1. Location Estimation Techniques ................................................................ 3 

a. Time of Arrival (ToA) .................................................................... 3 

b. Received Signal Strength based Fingerprinting .............................. 4 

c. Angle of Arrival (AoA) ................................................................... 6 

2. Cooperative Mobile Positioning ................................................................. 7 

3. 2-Level Kalman Filter (2LKF) ................................................................... 9 

 

II POSITIONING AND CLUSTERING IN 

HETEROGENEOUS NETWORKS WITH LACK OF 

HEARABILITY ............................................................................................... 10 

A. Introduction .......................................................................................................... 10 

B. Problem Statement ....................................................................................................... 11 

C. Coupling and Decoupling Algorithm......................................................................... 15 

D. Proposed Clustering Algorithms ................................................................................ 20 

 



   ix   
 

1. RSS based Clustering ................................................................................ 21 

2. Hierarchical Binary Clustering ................................................................. 22 

3. Genetic Clustering .................................................................................... 23 

a. Genotype ....................................................................................... 25 

b. Population Initialization ................................................................ 26 

c. Fitness Function ............................................................................ 27 

d. Mutation ........................................................................................ 27 

e. Genetic Algorithm over multiple Generations .............................. 28 

 

E. Simulation Results ........................................................................................................ 28 

F. Conclusion ..................................................................................................................... 36 

 

III HYBRID POSITIONING DATA FUSION USING 

UNSCENTED KALMAN FILTER WITH LEARNING 

APPROACH ...................................................................................................... 37 

A. Introduction .......................................................................................................... 37 

B. Proposed UKF with learning approach ..................................................................... 39 

 

1. Learning Phase .......................................................................................... 40 

2. Processing Phase ....................................................................................... 42 

a. Probability Density Estimation ..................................................... 43 

b. Updating the UKF innovation ....................................................... 43 

c. Updating Weights via Entropy Minimization ............................... 44 

d. The overall Algorithm .................................................................. 45 

 

C. Simulation Results ........................................................................................................ 46 

D. Conclusion ..................................................................................................................... 53 

 



   x   
 

IV QUASI-SAGE BASED POSITIONING OF COGNITIVE 

TRANSMITTERS .......................................................................................... 54 

A. Introduction .......................................................................................................... 54 

B. Literature Review ......................................................................................................... 56 

 

1. Location Assisted Wireless Systems ........................................................ 57 

2. Cooperative Localization Model .............................................................. 57 

3. Bayesian Tracking of Primary Users ........................................................ 58 

 

C. Problem Statement and the Maximum Likelihood Solution .................................. 59 

 

1. Problem Statement .................................................................................... 59 

2. The Maximum Likelihood (ML) Solution ................................................ 61 

 

D. Proposed Quasi-SAGE ................................................................................................ 63 

 

1. From EM based techniques to Quasi-SAGE ............................................ 63 

2. The proposed Quasi-SAGE Algorithm ..................................................... 64 

 

E. Simulation Results ........................................................................................................ 67 

F. Conclusion ..................................................................................................................... 73 

 

V CONCLUSION ................................................................................................ 74 

 

Appendix 

I UKF BASED PDF PRELIMINARIES ................................................ 77 

A. RBF Network Specifications ............................................................................... 77 



   xi   
 

B. Inclusion of Renyi’s Entropy ...................................................................................... 78 

C. Renyi’s Quadratic Entropy Calculation using KDE ................................................ 79 

D. Probability Density stimation ..................................................................................... 80 

 

II LOCALIZATION OF COGNITIVE TRANSMITTERS ........... 82 

A. Cooperative Localization Model in Cognitive Network ...................................... 82 

B. Particle Filtering : A Bayesian Tracking Algorithm ................................................ 83 

C. Proposed Quasi-SAGE based positioning algorithm Preliminaries....................... 86 

 

1. SAGE Formulation ................................................................................... 86 

2. Hidden-Data Space ................................................................................... 87 

3. SAGE Algorithm ...................................................................................... 89 

4. Monotonicty .............................................................................................. 90 

5. Convergence ............................................................................................. 91 

 

BIBILIOGRAPHY ..................................................................................................... 93 



1 
 

I CHAPTER 

REVIEW OF THE STATE OF THE ART POSITIONING 

TECHNIQUES 

 
A. Introduction 

 

Today and future communications systems aim at providing high data rates with 

ubiquitous service coverage. Nowadays, the availability of the Mobile Terminal (MT) 

location information at the base stations, i.e. its knowledge by the operators, becomes a key 

factor in today’s communications systems for allowing new location based services  [1] [2].  

In practice, localization techniques are based on Time of Arrival (ToA)  [3], Time Difference 

of Arrival (TDoA)  [4], Received Signal Strength (RSS)  [5] and Angle of Arrival (AoA)  [6]. 

In outdoor scenarios, the MT position is obtained with high accuracy thanks to the Global 

Positioning System (GPS) or to the standalone cellular systems. However, the main problem 

of these positioning systems resides in the indoor environment where the satellite or cellular 

signals are broken but also in scenarios with deep shadowing effect  [7]. Moreover, in 

homogeneous networks such as cellular networks, the estimation of the Positioning 

Information (PI) of any device becomes harder as the physical communications resources 

are more and more valuable.  

A potentially good candidate for critical scenarios resides in the class of 

heterogeneous approaches that combines different radio access technologies (such as 

cellular systems, WiFi, WiMAX). Indeed, cellular and WiFi networks based localization 

techniques have recently received increasing interests in both localization and 
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communication community, e.g.  [8] [9] [10]. This is not only because of the request made by 

Federal Communication Commission (FCC) about the accurate localization of the MTs, but 

also because of many other applications that are location sensitive such as billing, fleet 

management, and  mobile yellow pages  [11].  

Even though all positioning techniques could be exploited in indoor scenarios and 

homogeneous networks however, in practice, there are limits obtained on the combination of 

these techniques as well as on the minimal number of anchor nodes (AN) used in such 

scenarios  [12] [13]. The main challenge resides in the lack of hearability between the 

Unlocated Mobile Terminal (UMT) and the ANs  [12].  Indeed, in many cases, only one or 

two ANs are communicating with the UMT. Hence, new techniques based on hybrid data 

fusion should be proposed and analyzed in this extreme case. In literature, many techniques 

have been proposed  [12] [13]. In  [12], the authors have proposed a positioning technique 

based on the combination of ToA and fingerprinting RSS by using one AN and one Located 

MT (LMT). However, the accuracy of the technique proposed in  [12] is not high enough. 

In  [13], the authors have presented a cooperative positioning technique based on the 

combination of long-range measurements obtained by three ANs and short range 

measurements obtained by Wi-Fi.  The main problem of this technique is that it requires 

measurements obtained by three ANs and a WiFi hotspot.  

 

 

 



3 
 

B. Literature Review 

 

In this section, we briefly describe the basic standalone positioning techniques used 

in the context of homogeneous networks. In addition, we explore different research activities 

on cooperative mobile positioning. Then for tracking purpose, we present a short description 

of the Unscented Kalman Filter (UKF) estimation. 

 

1. Location Estimation Techniques 

 

Training sequences sent by BSs or MTs are used for the location estimation. There 

are 4 main techniques used for localization, which are ToA, TDoA, AoA, RSS and RSS 

based fingerprinting. The ToA and TDoA techniques need at least three BSs for 

localization. The AoA technique requires a minimum of two BSs which means that the 

estimation error may be large, and the ambiguities of location estimation will exist if the 

number of the available BSs is less than the minimum requirement. 

 

a. Time of Arrival (ToA) 

 

The ToA approach includes the calculation of the time needed by the signal to 

travel from the UMT to the ANs. Accordingly, the UMT will be moving on a circle of 

center given by the AN and with a radius d estimated through the ToA. Hence, to detect the 
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exact location of the MT, at least three ANs are required. In this case, the estimated 

position of the UMT is simply within the region of intersection (if it exists) of the drawn 

circles. It could be easily obtained through any filtering technique such as Least Square 

(LS) or Weighted Least Square (WLS).   

 

b. Received Signal Strength based Fingerprinting 

 

The RSS approach includes two main methods: the pathloss lognormal shadowing 

model to deduce a trilateration, and the RSS fingerprinting  [12]. Basically, the RSS based 

fingerprinting firstly collects RSS fingerprints of a scene and then estimates the location of 

the MT by matching on-line measurements with the closest possible location collected by 

measurements in a database  [8]. Therefore for each possible location, ambiguities points 

could exist leading then to high estimation errors in standalone positioning scenario. 
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Figure 1 TOA Ranging 

 

 

Figure 2 Ambiguities from RSS 
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c. Angle of Arrival (AoA) 

 

This technique includes the calculation of the angle at which the signal arrives from 

the UMT to the ANs  [6]. Then, the region where the MT could exist can be drawn. 

Basically, this region is a line having a certain angle with the ANs. Although at least two 

ANs are needed to estimate the location of the MT, the position estimation error could be 

large if a small error occurs in the AoA estimation. Therefore, the AoA based technique is 

with a limited interest for positioning purposes. 

 

 

Figure 3 AOA Model 
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2. Cooperative Mobile Positioning  

 

Recently, cooperative mobile positioning is evolving as a new division of wireless 

location; many research activities are conducted in this domain, such as positioning, 

tracking, and clustering. The core idea of cooperative positioning relies on the utilization of 

trustworthy short-range mobile-to-mobile measurements to enhance the accuracy of the 

location estimation of a wireless system. For instance, the work presented in  [14] 

introduces an example of cooperative mobile positioning system sustained by a hybrid 

WiMAX/Wi-Fi network. 

Eventually, the basic standalone positioning techniques utilized in homogeneous 

networks includes RSS, TOA, TDOA, AOA, etc. Different combinations of these location 

estimation techniques have been implemented to enhance the accuracy of location 

estimation. For instance,  [14] proposes a data fusion between TDOA and RSS 

measurements. Additionally,  [15] shows that the hybrid TOA/TDOA and RSS achieves 

further enhancement in terms of location estimation accuracy when compared to the use 

TOA or TDOA alone; the RSS approach includes two main methods: the pathloss 

lognormal shadowing model to deduce a trilateration, and the fingerprinting  [16]. Basically, 

the RSS based fingerprinting firstly collects RSS fingerprints of a scene and then estimates 

the location of the MT by matching on-line measurements with the closest possible location 

collected by measurements in a database  [8]. Therefore for each possible location, 

ambiguities points could exist leading then to high estimation errors in standalone 

positioning scenario. 
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Moreover, the hybrid TOA-AOA technique presented in [6] proves to achieve 

higher accuracy in position estimation when compared to TOA or AOA alone. Concerning 

limitations, it is well known that three ANs are usually required to obtain suitable location 

accuracy. In GPS based systems, this condition is almost satisfied since there is direct line-

of-sight connection between the UMT and the different positioning satellites. However, 

when the UMT is in deep shadowing or indoor scenarios, the positioning information 

obtained through satellites will be lost and a terrestrial connection through the cellular 

system should be established in order to retrieve the location information. The main 

problem of cellular systems however resides in the hearability restricted conditions of the 

UMT. The work presented in  [17] proposes a hybrid positioning technique, a combination 

between RSS fingerprints, TOA, and AOA; this work make use of a coupling and 

decoupling algorithm via UKF to merge these measurements as a try for solving the lack of 

hearability problem.  

The coupling and decoupling algorithm used by  [17] and  [13] decouples first the 

relative localization, recognized through the short-range measurements obtained via the 

secondary anchor node (SAN), and the absolute localization, recognized through the long-

range cellular obtained via the estimation of the coordinates and orientation of the group in 

the cellular network. After the decoupling of the short and long range measurements, an 

iterative Kalman filter is executed on each measurement to improve the positioning and 

tracking estimates. Then, the absolute positions are obtained by coupling of the long and 

short range measurements. 
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3. 2-Level Kalman Filter (2LKF)    

 

The paper presented by  [13] introduces the 2-Level Kalman Filter (2LKF) as a 

solution for decoupling the relative localization of the users utilizing peer-to-peer ad-hoc 

links from the absolute localization of the same users. Basically, the proposed algorithm 

in  [13]  analyses the framework of positioning for cooperative schemes. This is mainly 

useful for scenarios with heterogeneous technologies. Thus, different timing behaviour of 

the channel measurement procedure can be handled for the long-range and short-range 

technologies without any additional complexity. Hence, this algorithm is based on 

decoupling absolute localization recognized via the long-range cellular links and relative 

localization recognized via the short-range ad-hoc links  [13]. Due to the strong non-linear 

behaviour of the AoA measurements, the UKF is highly recommended for such positioning 

and tracking scenarios. 

Basically, EKF uses the first term of the Taylor series estimation to deal with 

nonlinear systems. When the system is highly nonlinear, EKF may easily diverge. Thus, 

UKF was founded on the basis that estimating a probability distribution is easier than 

estimating an arbitrary nonlinear function. UKF follows a sampling method known as 

unscented transformation (UT) to define a set of sample points, called sigma points, whose 

weighted “sample mean and covariance” are close enough to the real mean and covariance. 

In addition, UKF provides am advantage over the EKF by giving third order accuracy for 

Gaussian inputs and at least the second order for non-Gaussian inputs.  
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II CHAPTER 

POSITIONING AND CLUSTERING IN HETEROGENEOUS 

NETWORKS WITH LACK OF HEARABILITY 

 

 
A. Introduction 

 

In practice, most of the positioning techniques could be exploited in lack of 

hearability scenarios and homogeneous networks. For instance, in indoor scenarios, the main 

challenge resides in the lack of hearability between the Unlocated Mobile Terminal (UMT) 

and the ANs  [8]. Hence, the usual minimal number of anchor nodes (AN) used in such 

scenarios  [12] [13] is not always available. Indeed, in many cases, only one or two ANs are 

communicating with the UMT. This imposes new research directives to find and propose 

adaptive solutions for such critical environment. 

Hence, we first propose a hybrid positioning data fusion based on ToA, AoA and 

RSS fingerprinting. Contrarily to  [12], we propose to use the AoA as an additional input for 

resolving ambiguities. Then, based on an efficient combination of the contributions 

presented in  [12] and  [13], we extend the positioning scenario to its extreme case. Contrarily 

to  [13], we assume in our work that only two ANs are available for localization. So, we 

investigate the combination of short range measurements, obtained via the LMT or via the 

Wi-Fi hotspot, with the long range measurements to improve the accuracy of the positioning 

information using the UKF.  
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Finally, we investigate different clustering approaches for the hybrid data fusion in 

the heterogeneous context. The main objective of clustering is to improve the PI estimation 

by exchanging information with the necessary mobile terminals within a cluster while 

keeping a reduced overhead cost.    

 

B. Problem Statement 

 

It is well known in literature that three ANs are usually required to obtain suitable 

location accuracy. In GPS based systems, this condition is always satisfied since there is 

direct line-of-sight connection between the UMT and the different positioning satellites. 

However, when the UMT is in deep shadowing or indoor scenarios, the positioning 

information obtained through satellites will be lost and a connection through the cellular 

system should be established in order to retrieve the location information.  

However, the main problem of cellular systems resides in the hearability restricted 

conditions of the UMT. With the necessary condition of three ANs, one could assume that 

the UMT is closer to one Base Station (BS- seen as AN) than others. In this case, the signal 

received from the other BSs will be very weak and might be interpreted as interference. 

Therefore, the UMT should search for some local solutions such as local Wi-Fi hotspot or 

another Femto-cell or cooperative communications through the interaction with a LMT to 

resolve the hearability conditions  [18] [19]. In this work, we adopt the positioning estimation 

scenario with restricted hearability conditions such as in indoor scenario, deep shadowing 

conditions, and insufficient number of ANs.   
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As depicted in Figure 4, we assume in this paper that the UMT is connected to one 

BS and a Secondary Anchor Node (SAN such as one Wi-Fi hotspot or a Femto-cell or one 

LMT). We assume that all the estimated ToA and RSS fingerprinting  [20] are collected at 

the home BS for centralized processing. Denote a(ax, ay) as the true 2-D location of the LMT 

or of SAN, u(ux, uy) as the true location of the UMT. Without loss of generality, the 

location of the home BS is set as O= (0, 0). We also assume that the location of the SAN is 

obtained with imperfections and denote  ̂  ( ̂   ̂ )  as its estimated location modelled as 

random with Gaussian distribution with variance     
 .  

In our work, we assume that RSS fingerprinting are collected beforehand at the BS. 

Hence, ambiguities on the location estimation exist. The vector of ambiguities is represented 

as   [          ]  while one point is the exact position and M points represent the 

ambiguities. As given in  [12], the (x,y) coordinates of the ambiguities are modelled as 

random processes with Gaussian distribution and with variance     
 . 

In this section, we propose to use the estimation algorithm studied in  [12] as our 

basic coarse positioning algorithm. In other words, we combine between the RSS 

fingerprints and the ToA measurements. However, in contradiction with  [12], we propose to 

use the AoA information to reduce the number of ambiguities analyzed through the RSS 

fingerprinting. This will reduce the domain search of the possible location of the UMT even 

though is not necessary for the flow and execution of the PDF based algorithm proposed in 

the paper. The ToA based distances estimation between the ANs and the UMT could be 

modelled as: 
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 ̂                          (1) 

 ̂                            (2) 

where  ̂   is the estimated distance between the base station and the UMT,     is the true  

distance between the base station and the UMT. Similarly,  ̂    and      are respectively 

the estimated and true distances between the SAN and the UMT. Also,        is the error 

due to the non-line of sight (NLOS) following an exponential distribution with a probability 

distribution function (pdf)  [21] of p(b) given below  [22] . 

     {
         
                        

 (3) 

where b denotes the NLOS error and E(b)=1/  

 

Figure 4 Positioning Scenario with lack of hearability 

Using ToA technique, we should be able to get the distances from different ANs to 

the UMT. Denote A and B the two possible points provided by the ToA approach, one of 

which is the true position and the other one is an ambiguity point. These solutions could be 
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obtained by finding the intersection points of the two circles of respective centers O(0,0) and 

 ̂( ̂   ̂ ) and of respective radius  ̂   and  ̂   . These intersection points could be easily 

written as  [12]: 

  

{
 
 

 
   

    (  √          )

      
  

  
   √          
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 ,          

  
 

 

where       represents the abscissa of SAN,      is the ordinate of SAN,     is the 

distance between the UMT and the base station and      is the distance between the UMT 

and the SAN. 

In order to solve for the most suitable location, the RSS fingerprinting ambiguities 

points could be used in combination with the ToA intersection points. The proposed solution 

could be obtained by taking the midpoint between the closest RSS ambiguity point to one of 

the solutions A and B obtained in, say S. If the ToA error variances are available then a 

weighted combination could be applied. 
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C. Coupling and Decoupling Algorithm 

 

In  [13], a 2-level Kalman filter was proposed to deal with short range and long 

range measurements and to come-up with a suitable positioning solution. The main 

problem of  [13] is that the authors were based on the long range measurements using three 

BSs (in addition to the short range measurements) from the cellular network to estimate the 

UMT position. Unfortunately, this scenario is quite ideal for investigation and the 

application of the 2-level Kalman filter would be with restricted impact. The main question 

would then be how much the Kalman filter and the combination of heterogeneous networks 

would improve the positioning estimates in critical scenarios. To deal with this scenario, we 

propose to firstly apply the coarse positioning estimation as shown in Figure 6 and then the 

coupling-decoupling algorithm proposed in  [13] as shown in Figure 7. Contrarily to  [13], 

we assume here that all UMT are moving with a velocity v.  In addition, we assume the 

non-linear RSS model is described by: 

 ̂     
     

         (      )          (6) 

where  ̂     
     

is the received power at the UMT j from the AN i,        is the distance 

between the two nodes,   is a variable taking into account the shadowing effect and   is the 

path loss exponent.          is a measurement error taking into account the mismatch 

between the path loss model and the real measurement. Contrarily to  [13], we propose in this 

work to firstly decouple the relative localization, realized by using the short-range 

measurements obtained via the SAN, and the absolute localization, realized by using the 

long-range cellular by estimating the coordinates and orientation of the group in the cellular 
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network. After decoupling the short and long range measurements, UKF is applied on each 

measurement to improve the positioning and tracking estimates. UKF is governed by a 

transition function and an observation function as shown in (7)   and (8). The transition 

function f is based on the state    at time t, and the state      at time t+1. This relation 

between the two states includes is a transition noise    based on a predefined transition 

model. On the other hand, the observation function h relates between the observation    at 

time t, the state   , and the observation noise    at time t based on a predefined observation 

model. In UKF,    and   are normally distributed with zero mean and covariance    and    

respectively.  

              (7) 

            (8) 

Then, a coupling of the long and short range measurements is applied again to 

obtain the absolute position of the UMTs. Additionally, the coupling and decoupling are 

applied on the center of mass of UMTs in order to reduce overhead cost. The proposed 

framework runs in a cyclic way where iterations are performed whenever observations are 

available. The framework considers the following steps: 

 Assume that UMT 1 is the reference and MT 2 is on the x-axis of the relative 

coordinate system as shown in Figure 5. 

 Find the absolute coordinates of different MTs through the cellular network. 

 Decoupling into relative coordinates and center of mass coordinates through a 

transformation of coordinates. 
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o Find the Current Transformation Matrix (CTM) that corresponds to a 

translation followed by a rotation of the axis. 

o Assuming that the absolute and relative coordinates of a MT i are 

defined by x
(i)

 and x
(i)rel 

respectively and that Tctm
 
is the CTM of the 

transformation of coordinates, we can write the following: 

⌊ 
      

 
⌋      ⌊ 

   

 
⌋ 

(9) 

Knowing that we added the last component of the vector on the right-

hand-side in order to perform transformations independent of x
(i)

. 

o Tctm is obtained by defining a translation equivalent to absolute position 

x
(1)

 of MT 1 followed by a rotation equivalent to the angle of the 

segment between MT 2 and MT 1 with respect to the absolute coordinate 

system (                      ⁄  ) 

     

[
 
 
 
 
      

      
 

      

      
 

      

      

      

      
 

   ]
 
 
 
 

[
       

       

   

] 

 

(10) 

knowing that x
(1,2) 

= x
(2)

 – x
(1)

, y
(1,2) 

= y
(2)

 – y
(1)

 and d
(1,2)

 is the Euclidean 

distance between MT 1 and MT 2.  

 Depending on whether available measurements are from short- or long-range 

technology, we apply 
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o A single iteration of a stochastic filter for estimating relative 

localization. 

o A single iteration of a stochastic filter for estimating the coordinates of 

the center of mass. 

o Little number of iterations in the case of mobile scenarios. 

 Coupling estimations of relative and center of mass coordinates in order to have 

absolute estimators by doing the inverse of (9). 

 It is worth reminding that in our scenario we assume that all UMT are moving 

and then a recursive process is applied on the coupling and decoupling 

algorithm. 

 

Figure 5 Coordinate System Transformation 
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Figure 6 Combination of TOA, AOA, and RSS Fingerprints 

 

We remind that the coupling and decoupling are applied on the center of mass of 

UMTs. However, this requires defining this center for all MTs in a proper way. Moreover, 

the coupling and decoupling will be with a limited gain due to the possible large distance 

among UMTs. Hence, we propose in this work efficient clustering algorithms where the 

center of mass and the clusters could be efficiently defined so that the coupling/decoupling 

becomes more interesting.  Therefore, the coupling and decoupling will be applied on few 

centers while keeping the overhead cost reduced. In this work, we propose different 

clustering algorithms and we compare them with the advanced genetic based clustering 

algorithms. 
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Figure 7 Coupling and Decoupling Algorithm [13] 

 

D. Proposed Clustering Algorithms 

 

The main objective of this section is to describe and propose efficient clustering 

algorithms suitable for coupling and decoupling the short and long range measurements. 

Basically, the proposed clustering procedure is used to segregate MTs in such a way to 

improve the positioning estimation while reducing the overhead cost.  
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In our work, we introduce three clustering techniques: the RSS based clustering, the 

hierarchical clustering, and the genetic algorithm based clustering. 

 

1. RSS based Clustering 

 

The RSS clustering algorithm is based on dividing the MTs into 2 clusters. The first 

cluster center is the closest MT (highest RSS) to the serving BS (or AN) and the second 

cluster center is the farthest MT (lowest RSS) from the serving BS.  

 

 

Figure 8 RSS Clustering Model 
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2. Hierarchical Binary Clustering 

 

The aim of hierarchical clustering is to build a hierarchy of clusters from a binary 

tree. Based on the long range measurements, a matrix   ({    }           

     )  of the distances between all MTs is formed. The first step in hierarchical 

clustering is to search for the pair of MTs that are the closest in terms of Euclidean 

Distance. Then, a single linkage method based on the Euclidean distance between all the 

mobile terminals is proposed and implemented. It is again based on the selection of MTs 

pairs with the smallest distance.  The point at which the pair of MTs is joined is called a 

node. Then, we repeat these steps over all MTs until we form a Hierarchical Binary Tree 

(HBT) as shown in Figure 9. Basically, using this method, the distance between the merged 

pair and the other MTs will be the minimum distance of the pair in each case. For instance, 

if the distance between MT2 and MT1 is 5, while the distance between MT3 and MT1 is 

6.5; thus, we choose the minimum of the two, 5, to quantify the distance between (MT2, 

MT3) and MT1. As a result, we will obtain the binary tree where at each step two MTs 

were merged. Thus, for N MTs, we will obtain N-1 nodes. Finally, we are one step ahead 

from creating the clusters based on this hierarchical clustering. Mainly, we should specify a 

minimum and a maximum number of clusters. Then, we segregate the MTs into clusters 

ranging from the minimum till the maximum defined number. However, since in this work 

we impose a condition of at least 2 mobile terminals per cluster (to perform the 

combination between the short range and the long range measurements), the condition on 

the maximum allowed number of clusters is removed. 
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Figure 9 Hierarchical Binary Tree 

 

3. Genetic Clustering 

 

In genetic based algorithms, six main components have to be necessarily defined for 

establishing the similarity with the wireless cellular networks. This includes the definition 

of the following:  

  Genotype 

  Population Initialization 

  Fitness Function 

  Selection Operator 

  Crossover operator 
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 Mutation Operator  

A Genotype is the genetic makeup of a cell, an organism, or an individual  [23]. By 

making an analogy from genetics to cellular networks, the chromosome of N genes 

represents a cell in cellular network with N MTs. Hence, a gene in a chromosome is 

mapped to a position of a mobile user in a cell. Secondly, the initialization of a population 

in genetics can also be mapped on cellular networks in such a way that the position of each 

UMT is selected randomly in the studied area.  The fitness function is a third factor in 

genetic algorithms. It describes the objective function designed to satisfy some conditions 

such as minimizing the mean square error.  In  [23], Azimi et al. introduced an algorithm 

with two stages of fitness functions: the intra-cluster fitness and the extra-cluster fitness. 

Thus, the final fitness value is calculated by subtract Intra-Clstr-Fit from Extra-Clstr-Fit. 

The selection operator in genetics process selects individuals from the mating pool directed 

by the survival of the fitness concepts of natural genetic systems. Finally, the crossover 

operator in genetics represents a probabilistic process that generates at least two child 

individuals by exchanging information between two parent individuals. Therefore, the 

pathway of the analogy from genetics to cellular network consists of the following main 

points: 

 The Genotype is a kind of representation for the mobile users in the cellular 

network. 

  The population initialization for cellular network could be the initialization of 

the mobile users in the network after setting their positions. 
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  The fitness function proposed by Azimi et al.  [23] could be applied on cellular 

networks, or another metric could be used such as RSS indicator or Euclidean 

distance metric. 

The selection and crossover operators are the main operators required for 

aggregating MTs into an optimal number of clusters and finding the most probable 

solution. 

In the following, we describe the genetics based algorithm applied in the heterogeneous 

context for positioning purposes. 

 

a. Genotype 

 

A chromosome is a set of genes in genetics. In our representation, the gene is a 

cluster center; hence, the chromosome is a set of cluster centers. Therefore, the total 

number of clusters determines the size of a chromosome. So, an initial clustering method 

has to be applied on the mobile terminals in order to proceed with the genetic algorithm. 

We can use one of the two clustering methods discussed before i.e. the RSS clustering and 

the hierarchical clustering. The flow chart in Figure 10 presents the proposed genetic 

algorithm for clustering once an initial clustering technique has been applied. 
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b. Population Initialization 

 

The chromosome is a set of cluster centers, and the population is a set of 

chromosomes. Hence, the population in our case is a set of all different combinations of the 

cluster centers. For instance, in the case of 3 clusters having 5 MTs, 3 MTs, and 4 MTs 

respectively as cluster members, we will have 5*3*4=60 different combinations of cluster 

centers. Hence, the population contains 60 chromosomes and the maximum population size 

will be 60.  

 

  Figure 10 Genetic Clustering Algorithm 
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c. Fitness Function 

 

Once an initial clustering is applied, the genetics based algorithm requires the 

definition of the fitness function. In our work, we propose a clustering metric μi for each 

cluster ‘i’ defined by: 

   ∑ ‖     ‖

     

 (9) 

 

 

where xj is cluster member, zi is the cluster center and ‖ ‖ is the Euclidian distance. Then, 

we define μ as the sum of the Euclidian distances of all clusters by: 

  ∑  

 

   

 (10) 

where K is the total number of clusters. The fitness function is defined by:  

    
 

 
 (11) 

 

 

In our clustering approach, we aim at maximizing the fitness function or 

equivalently maximizing the Euclidian distance among clusters. The fitness function plays 

a central role in the clustering process. 

 

d. Mutation 

We pre-generate two “repositories” of random binary digits from which the masks used 

in mutation and crossover will be picked up. Then, a ‘xor’ operation is implemented 
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between the population and the new mask. This mutation will lead to the initiation of a new 

population with the same size but different binary representations, and that is the aim 

behind mutation. After the mutation, a new population is evolved. The population size is 

originally determined by the multiplication of the number of MTs in each cluster. Thus, we 

apply a demapping from binary to decimal. Then, the maximum value obtained in the 

demapping will be the new population size. Then, a factorization will be applied as it leads 

to the new maximum number of the clusters. For instance, the new population size is 90; 

the factorization will result into 2*3*3*5=90. Hence, the new maximum number of the 

clusters will be 4. 

 

e. Genetic Algorithm over multiple Generations 

The latter will give us the maximum possible number of clusters with at least two 

mobile terminals per cluster. Consequently, the entire genetic algorithm is run over many 

generations. At the end of each generation, we select the chromosome that has the highest 

fitness value. Finally, at the end of all the generations we select the generation with the 

highest number of clusters, and the chromosome with the highest fitness. 

 

E. Simulation Results 

The aim of this section is to evaluate the hybrid positioning technique in parallel 

with the proposed clustering approaches. In our simulations, we compare between the long 

range positioning estimation obtained through the BSs and the SAN (i.e. coarse positioning 
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estimation) and that obtained after combination with the UKF. Simulations are applied on 

N = 50 UMTs. They were implemented on the micro cells with 1 Km range placing the BS 

(equivalently the AN) at position (0,0), and the SAN at (√ , 1) km or (√ , −1) km. Along 

this work, the BS with position O(0,0) will be used as a reference. Without loss of 

generality, we assume that all MTs are uniformly distributed around a cluster head, 

assumed to be the first Mobile Terminal (MT 1), within a range radius of 50 m.  The 

simulation was run for 3000 realizations. The number of iterations of the UKF is equal to 2 

while the number of observations is equal to 5.  It is worth mentioning that the positioning 

estimation could be improved if the number of iterations is increased. All results are given 

in terms of Mean Square Error (MSE). 

Figures 11 to 15 show that, independently of the parameter, the proposed hybrid 

data fusion using UKF coupling/decoupling significantly outperforms the stand-alone long 

range measurements. In all these figures, no clustering has been applied. Figure 11 shows 

the improvement made by UKF in combining long range and short range measurements 

just by considering 5 observations per iteration. Figure 12 presents the effect of the number 

of ambiguities obtained from RSS fingerprints on the performance of the positioning 

algorithm. As expected, it is clear that a higher accuracy is obtained when the number of 

the RSS ambiguities increases. This is true for both long range measurements and the 

combination through UKF. In both figures, a noticeable positioning improvement is 

observed. Figure 13 explores the effect of the NLOS parameter 𝜆 on the accuracy of our 

positioning algorithm. 𝜆 is inversely proportional to accuracy. As shown in this figure, the 

MSE strictly increases from 150 till 280 for long range measurements and from 130 till 250 
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for the combination, when 𝜆 increases from 0 till 0.9. Thus, the improvement made by the 

combination using UKF is still preserved. 

Figure 14 explores the effect of the error obtained by GPS measurements. As the 

GPS error variance increases from 0 till 10, the MSE for the long range measurements and 

for the combination slightly increases. This means that the utilization of a LMT as a SAN 

does not really affect the positioning estimation. Similar conclusions could be drawn from 

Figure 15. 

 

Figure 11 No-Clustering: MSE vs. TOA-Variance 
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Figure 12 No-Clustering: MSE vs. Number of RSS Ambiguities 
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Figure 13 No-Clustering: MSE vs. Lambda 

 

Figure 14 No-Clustering: MSE vs. GPS Error 
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Figure 15 No-Clustering: MSE vs. RSS Variance 

Figures 16 to 18 present the effect of clustering on the obtained results. It is clear that, 

independently of the clustering algorithm, some gain is obtained in the simulated scenario. 

Figure 16 shows that the RSS clustering provides a little improvement over the No-

Clustering case. This is compatible to our expectations due to the fact that RSS clustering 

leads to the formation of two clusters. That explains our motivation behind implementing a 

clustering technique based on more advanced approach.  

Figure 17 shows that the hierarchical clustering provides a significant improvement over 

the RSS clustering and over the No-Clustering case. This improvement is due to the fact 

that the hierarchical clustering leads to the formation of higher number of clusters. 

Compared with Figure 11, the MSE reduces from around 125m
2
 till 82 m

2
 while the RSS 

clustering approach presents a MSE around 115m
2
.  



34 
 

Figure 18 presents the performance of the genetic based clustering. It is clear that, as for the 

hierarchical clustering, it presents a large improvement. Nevertheless, this gain is 

comparable to that obtained through the hierarchical clustering. This is due to the fact that 

the genetic based clustering implicitly utilizes hierarchical clustering. However, the added 

value provided is that genetic based clustering generates the highest possible number of 

clusters whose cluster centers attained the highest fitness value. However, for larger 

number of MTs, we expect a significant improvement made by the genetic based clustering 

as it leads to the formation of larger number of clusters than that generated by the 

hierarchical clustering. Moreover, clusters centers will be chosen in a better way since they 

are based on the maximization of the clusters centers.  

 

Figure 16 RSS Clustering: MSE vs. TOA-Variance 
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Figure 17 Hierarchical Clustering: MSE vs. TOA-Variance 

 

 

Figure 18 Genetic Clustering: MSE vs. TOA-Variance 
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F. Conclusion 

 

We presented in this chapter the coupling/decoupling algorithm that merges long 

range measurements with short range measurements. We applied UKF on each 

measurement to improve the positioning and tracking estimates. It is shown through 

simulations that the proposed hybrid data fusion algorithm provided significant 

improvement in terms of position estimation accuracy. Then, we proposed RSS based 

clustering, Hierarchical Binary clustering, and genetic clustering for the sake of obtaining 

higher position estimation accuracy. Simulations proved that genetic and hierarchical 

binary clustering techniques showed higher accuracy enhancement when compared to the 

proposed RSS clustering technique. 
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III CHAPTER 

HYBRID POSITIONING DATA FUSION USING UNSCENTED 

KALMAN FILTER WITH LEARNING APPROACH 
 

 

A. Introduction 

 

Different tracking filters have been proposed and applied to handle the mobility of 

the MTs. Kalman Filter (KF)  [24] is an adaptive recursive solution for the estimation of 

linear Gaussian process based on Least Square Error (LSE). Nevertheless, non-linear 

processes are not handled with the standard KF solutions. Extended Kalman Filter (EKF), 

Second-order extended Kalman Filter (SEKF)  [25], and Unscented Kalman Filter (UKF) 

are examples from the family of Kalman filters. EKF is the first extension of the KF; it 

performs a first order linearization of the nonlinear system and then applies the 

conventional KF estimation. SEKF preserves the second-order terms via the Taylor series 

development of the transition and measurement equations. UKF is based on selecting a set 

of sigma points and performing unscented transform. The conditional mean and variance 

are computed by UKF with third order of accuracy for Gaussian noise. Recently, cubature 

Kalman filter (CKF)  [26] was introduced based on the utilization of a spherical radial 

cubature rule for estimation of the Gaussian filter. The Monte Carlo based filtering, called 

also particle filters, handles complex nonlinear systems  [27]. Particle filters utilize a large 

number of independent random variables defined as particles in order to update the 
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posterior probability. The location, weights, and propagation of the particles are adjusted 

according to the Bayesian rule.  

Recently, nonlinear filters based on probability density function (PDF) have gained 

some attention since PDF captures all the statistical characteristics of a random variable. 

Mainly, two kinds of criteria are generally used in PDF filtering: PDF shaping and entropy 

minimization. PDF shaping is based on picking filtering parameters so that the PDF of the 

residual follows a narrow distributed zero mean Gaussian PDF  [28]. On the other hand, 

entropy minimization techniques aim at minimizing the entropy of the filtering 

residual  [29]- [31]. 

The aim of this chapter is multifold. Firstly, we consider a real scenario with lack of 

hearability and/or insufficient number of ANs. Secondly, we handle the problem of 

positioning accuracy in such scenarios by adopting the PDF based UKF with Minimum 

Entropy Criterion (MEC). Thirdly, we tackle the learning phase effect in such scenarios to 

enhance the positioning accuracy.  

The contributions of this chapter are summarized as follows: 

 Proposition of a learning phase for tracking: The contribution here consists in the 

addition of a learning phase to minimize the error between the measured and 

predicted position. 

 Adoption of the MEC to reduce the innovation (error) in the UKF tracking filter: The 

MEC is proposed as it changes the shape of the error PDF to a narrow and peaky 

shape. 
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 Proof-of-concept in realistic scenarios: this includes some mobility models, in 

contrast with the literature review on this topic. 

 

B. Proposed UKF with learning approach 

 

The UKF filter achieves a good performance under Gaussian noise. However, its 

performance declines under non-Gaussian noise. On the other hand, PF requires highly 

complex computations to deal with non-Gaussian nonlinear systems. Thus, the proposed 

work in this paper is to obtain an optimal estimation based on the MEC in order to diminish 

the shortcoming of the UKF and PF    [32]. Moreover, in most of the UKF based algorithms, 

the mean square error (MSE) is mainly used to describe the deviation of the estimation 

from the true value. However, it only accommodates for the second moment due to the 

second order logarithmic property.  

In non-Gaussian environment, the MSE based method is not suitable since higher 

order moments should be considered in the filter updates. To do so, we propose in this 

paper to consider the minimum error entropy (MEE) as it allows a good measure of the 

dispersion of a random variable. 

To introduce the MEE or equivalently the MEC in the tracking process, we propose 

to divide the filter into two phases, the learning and processing phase. During the learning 

phase, we observe the innovation (error) between the current measurement and the 

predicted positioning information. We propose to use the Radial Basis Function (RBF) in 

the learning phase to recompense for the system non-Gaussianity. The RBF is used since it 
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allows a good description of the error in the UKF filter. Based on the RBF network 

conducted in the learning phase, we will process the estimated and measured data in the 

processing phase. This will allow an enhancement of the state estimation and measurement 

prediction in the UKF filter as shown in Figure 19 and detailed below.  

 

 

Figure 19 Schematic of UKF based PDF filter 

 

1. Learning Phase 

 

This phase is related to the execution of the UKF. Consider the nonlinear system 

described by equations (7) and (8), which defines the state and the measurement of the 

position transition and observation functions.  

We also define the following terms to describe the error in the UKF as follows: 

   
   ̂   ̂      defined as prior error 
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     ̂   ̂    defined as posterior error 

        ̂  (12) 

The term    known as “innovation” describes the discrepancy between the measurement 

and the predicted state as shown in Figure 19. 

In general, the Kalman gain K is obtained from the current state estimate and the 

relative uncertainty of the measurements. Tuning K can be done to attain certain 

performance. The filter tracks measurements more closely with high gain and tracks 

predictions more closely with low gain. In our proposed UKF based PDF filter, the UKF 

gain K is obtained so that the posterior error covariance is minimized. 

The learning about the innovation is introduced in this phase through a neural 

network. In our approach, the neural network is based on set of RBF functions referred to 

as RBF network. The latter is obtained via the multiplication of the radial basis functions 

with the corresponding weights. Hence, the problem resides here in tuning the RBF 

weights.  

Accordingly, we update the innovation term defined in (12) as follows:  

     
   

   
   

     ̂    
   

 (13) 

where the input to the RBF network is the UKF innovation given by: 

     
   

 (14) 

and the neural network update is given by:  
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                     (15) 

In (15),   
  represents the weight matrix of the RBF-network at time k and      

represents the radial basis function which depends on the PDF specifications of the 

innovation term given in (14). The specifications of the RBF network, i.e.     , are 

described in section  A of Appendix  I. In our work, the weight matrix is chosen to minimize 

the entropy criterion. In order to complete the second phase of the UKF based PDF, i.e. 

innovation estimation update and processing, an estimation of the PDF parameters of the 

innovation term has to be firstly done so that the RBF functions are constructed. The 

additional term    
   

should have a zero mean in order to achieve unbiased estimation. It 

remains to define the weight matrix according to the MEC. This will be described in the 

next section.  

 

2. Processing Phase 

 

Based on the PDF estimation of the innovation term, i.e.     and the RBF network, 

the processing phase consists in updating this innovation according to the MEC. Hence, the 

randomness and the entropy of innovation are minimized. This will be done according to the 

following methodologies. 
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a. Probability Density Estimation 

 

In this work, we use the kernel density estimation (KDE), known also as Parzen 

window method, to estimate the probability density due to its relationship with the Renyi’s 

Entropy  [32]. The estimation of the PDF     from the samples given by: 

 ̂    
 

 
∑        

 

   

 

(16) 

where       is the kernel function with bandwidth   and           are the measurements. 

The KDE is explicitly described in Section  D of Appendix  I. 

 

b. Updating the UKF innovation 

 

Mainly, the innovation term could be described by combining (13), (14) and (15): 

     
   

   
  (  

   
)    

   
   

        (17) 

However, a series of measurements has to be taken to obtain the PDF estimation of the 

innovation term. Thus, a pseudo innovation (PI) is going to be utilized instead of real 

innovation in solving this problem  [22].

 

At time step k, the pseudo innovation is expressed, 

based on (17), as follows:

 

   
     [  

    
 ]             

       

              

(18) 
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where N is the number of samples used in the estimation of the PDF. So, we obtain    
 , the 

pseudo innovation term that represents the former error at time step k.    
   shares the same 

linearly dependent term   
 in addition to its simple use in the estimation of PDF and the 

adaptive tuning process. 

 

c. Updating Weights via Entropy Minimization 

 

The minimum entropy criterion is used in the processing phase to reduce the 

uncertainty in the innovation term. Ideally, the PDF of the innovation has to be Gaussian 

with unbounded innovation term or uniform with bounded term  [32]. Practically, these 

results are not achievable because of the contaminated measurement. Hence, this problem 

will be solved by solving the MEE problem as follows: 

   
 

                           (19) 

given a sequence of pseudo innovation data    
  and input   .       is the Renyi’s quadratic 

entropy and W is the weight of the neural network. The minimization of the entropy 

criterion could be replaced with the maximization of the information potential given in 

equation (48) of section  B in Appendix  I, i.e. 

   
 

         
 

      (20) 

Hence, the locally optimal weight which minimizes the entropy is obtained by: 
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(21) 

Basically, an optimal solution is obtained iteratively for online processing. Hence, the 

adaptive law is written by utilizing the gradient descent method. 

                  (22) 

Using (51) of section  0 in Appendix  I, the potential information of the pseudo innovation at 

time k is calculated as follows: 

       
 

  
∑ ∑       

  

 

       

 

       

   
   

(23) 

Formulating       as      for simplicity, the gradient of the information potential is 

expressed as: 
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(24) 

 

d. The overall Algorithm 

The proposed UKF based PDF algorithm with learning approach is summarized as follows: 

1. Selection of the UKF parameters. 
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2. Selection of the kernel bandwidth ∑, normally a diagonal matrix, and the selection 

of RBF network parameters, such as initialization of the weight vector to be equal to 

zero (    ).  

3. Record the state   
   

 using UKF method and the innovation term    using (17). 

4. Update the state estimation during the processing phase by       
   

 

    
     . 

5. Construct the pseudo innovation    
    

   
   

      during the processing 

phase 

6. Update W using (22) and (24) by the properly chosen  . 

7.        go back to 3) 

 

C. Simulation Results 

 

After evaluating the hybrid positioning technique in parallel with the proposed 

clustering approaches, we will evaluate the enhancement added on the UKF via introducing 

UKF+PDF filter. In previous simulations, we compare between the long range positioning 

estimation obtained through the BSs and the SAN (i.e. coarse positioning estimation) and 

that obtained after combination with the UKF.  

Simulations are applied now on N = 3 UMTs. Without loss of generality, we 

assume that all MTs are uniformly distributed in a cellular area of radius 1 Km range 

placing the BS (equivalently the AN) at position (0,0), and the SAN at (√ , 1) km or (√ , 
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−1) km. The simulations are run on a very large number of realizations. Along this work, 

the BS with position O(0,0) will be used as a reference. We ran the simulations for three 

different mobility models of the MTs:  

 Linear variation of only the abscissa of the MTs,  

 Linear variation of both, the abscissa and the ordinate of the MTs,  

 Sinusoidal variation.  

To have a real simulation scenario, we have also considered the case when the MTs are 

moving according to the different mobility models above but with some noise on the 

trajectory. 

Concerning the RBF parameters, we consider that      
   ,     , and the 

number of samples for PDF estimation is equal to 50. All results are given in terms of 

Mean Square Error (MSE). 

Figure 20, Figure 23 and Figure 26 (respectively Figure 21, Figure 24 and Figure 

27), show the MSE (respectively the CDF of the MSE) of the position estimation using the 

hybrid algorithm only, data fusion with UKF, and data fusion with UKF based PDF filter 

with/without a noise imposed on the trajectory of the MTs corresponding to each of the 

three mobility models. It is clearly shown that the data fusion with UKF highly enhances 

the MSE measurements. Additionally, the use of the UKF based PDF filter, i.e. with 

learning approach, enhances the UKF position estimation accuracy. These figures show that 

the MSE could be reduced to less than 1 m, on both average and CDF. Finally, it is obvious 
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that imposing noise over the trajectory of the MTs deteriorates the accuracy of position 

estimation especially with the case hybrid data fusion. This slightly decreases the accuracy 

of the UKF based PDF approach. 

 

Figure 20 MSE for Model 1 
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Figure 21 CDF of the MSE for Model 1 

 

Figure 22, Figure 25 and Figure 28 illustrate the PDF of the innovation term before and 

after applying the learning step (i.e. UKF filter only, and UKF+PDF) corresponding to the 

three mobility models. It can be directly observed how the probability density of the 

innovation term is transformed from a Gaussian like one in the case of UKF to a narrow 

and peaky shape in the case of UKF based PDF, which stands for the minimization of the 

entropy. 
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Figure 22 PDF for the innovation for Model 1 

 

 

Figure 23 MSE for Model 2 

-1 -0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

Innovation

P
D

F

 

 

UKF

UKF+PDF

0 1 2 3 4 5 6 7 8 9 10
10

-2

10
-1

10
0

10
1

10
2

10
3

TOA Variance

M
S

E
-L

o
g

 s
c
a

le

Localization of 3 MTs

 

 

UKF

UKF+PDF

Hybrid

UKF with noise on trajectory

UKF+PDF with noise on trajectory

Hybrid with noise on trajectory



51 
 

 

Figure 24 CDF of the MSE for Model 2 

 

 

Figure 25 PDF of the innovation for Model 2 
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Figure 26 MSE for Model 3 

 

 

Figure 27 CDF of the MSE for Model 3 
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Figure 28 PDF of the innovation on the long range measurements for Model 3 

 

D. Conclusion 
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IV CHAPTER 

QUASI-SAGE BASED POSITIONING OF COGNITIVE 

TRANSMITTERS 

 

 
A. Introduction 

 

Localizing multiple transmitters in a region by making use of the received signal 

strength is one of the main problems that are assessed by researches nowadays. Even 

though this problem is applicable in different applications, the most prominent one is the 

cognitive radio environment  [34] [35]. Basically, a cognitive radio system can be classified 

as coordinated or uncoordinated systems  [36]. In the coordinated environment, the 

cooperation with primary systems is necessary to establish a reliable transmission. In the 

uncoordinated environment, the system should operate in an opportunistic manner by 

identifying spectral holes, usually under-utilized by the primary systems  [37]. The 

identification of the spectral holes is a corner brick in the cognitive environment. It is based 

on the measurements in time or frequency or space of the signal (and of its specifications) 

received from legacy transmitters. 

Basically, the opportunistic transmission should be done in such a way it does not 

interfere with the legacy receivers. Hence, the cognitive system is responsible to recognize 

the area where there are active primary users. Assuming the location of primary users and 

their activity are not known, the nodes identify the areas where primary users are active 

based on the received power measurements. In this domain, we can make use of erroneous 
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detection for proclaiming spectral hole as the detection might be affected by deep 

shadowing  [38] [39]. However, the argument nowadays is not being restricted to simple 

techniques for detection  [40] due to the fact that such techniques leads to conservative 

transmission. Fundamentally, if prior information about transmitter locations is available, 

we can achieve more efficient exploitation of the spectrum.  

The benefit behind localizing transmitters is mainly significant when nodes in a 

cognitive network are mobile. Knowing that the detection techniques require power 

measurements repeatedly at the nodes, the availability of transmitter locations allows a 

reduction of the amount of power measurements by the cognitive nodes. Hence, the 

recognition of spectral holes by making use of transmitter localization requires simple 

tracking of the transmitters’ locations. 

Transmitter localization can be obtained using trilateration technique by making use 

of the received power measurements at three locations. However, this technique doesn’t 

generate an accurate solution due to the error generated by the signal propagation model 

and the imperfections in the sensors. The work proposed in  [41] tackled these challenges by 

proposing the global optimization based on “smart” initial conditions generated by 

clustering. The authors of  [37] handled these challenges by introducing an expectation-

maximization (EM) method for localizing multiple transmitters based on the power 

measurements monitored by a set of arbitrarily-located receivers. Basically, previous 

solutions have tackled multiple transmitters in an additive white Gaussian noise 

scenario  [41]. The authors of  [42] tackled these challenges by proposing a quasi-

expectation-maximization (Quasi-EM) technique for localizing multiple transmitters based 
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on the received power measurements under lognormal shadowing. However, quasi-EM has 

slow convergence, and it doesn’t employ initial conditions.  

In this chapter, we will tackle these challenges by proposing the Quasi-Space 

Alternating Generalized Expectation Maximization (Quasi-SAGE) technique for localizing 

multiple transmitters. Quasi-SAGE method is based on the observation of the power levels 

by a set of arbitrarily-placed receivers. The proposed technique is based on a judicious 

selection of the initial conditions of the transmitters. The main advantages of quasi-SAGE 

are to diminish the dimensionality of the maximum-likelihood estimation problem and to 

obtain faster convergence.  

 

B. Literature Review 

 

A better exploitation of the spectrum can be done via using cooperative sensing to 

generate location estimations of transmitters given the power levels observed by radio 

nodes. The radius around each transmitter, in which opportunistic communication must be 

avoided, can be determined after estimating transmitter locations and identifying the 

properties of legacy systems, government regulations, and the maximum probability of 

interference.  

In this section, we will briefly describe some cooperative communication systems 

used in cognitive network.  Then, we will explore Bayesian tracking approach of primary 
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users to be used by mobile cognitive radio nodes for identifying spectral hole at a location 

without employing measurement at that location. 

  

1. Location Assisted Wireless Systems 

 

The cognitive radio base station (CRB) creates a radio map of the environment in a 

CR network for cooperative communications as shown in Figure 29. This map is obtained 

after defining the location of PUs  [43]. Radio environment map permits obtaining assisting 

CR nodes and dynamic spectrum management within the network in condition that there is 

no interference between PU and CR transmissions. Mainly, a Radio Environment Map 

(REM) provides information related to frequency, power, and space. Additionally, making 

use of REM has two advantages in reducing interference and in terms of radio transmission. 

First, CR nodes can transmit in directional way in condition that the locations of the PUs in 

the surrounding are known so that to avoid any interference. Second, the transmission 

power can be controlled by CR nodes to avoid again any interference with PUs in the 

surroundings. 

 

2. Cooperative Localization Model 

The work presented in  [43] presents the utilization of cooperative localization in CR 

network where each CR node generates its own estimates of the time of arrival (ToA) and 
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direction of arrival (DoA) on the nearest target; then, the obtained estimations are passed to 

the CRB. The link between CRB and CR nodes is assumed to be an error free channel. 

Also, the network is assumed to have awareness of the locations of its CR nodes, and CRB 

is assumed to be the point of origin of the 2D-plane. The system model of this work is 

shown in section  A of Appendix  II. 

 

Figure 29 Typical Radio Environment Map and radio scene analysis in CR network  [43] 

 

3. Bayesian Tracking of Primary Users 

 

When we have knowledge about the posteriori distribution of the noise process, 

Bayesian estimation and tracking is a good candidate to be used in tracking for the sake of 

improving the accuracy of localization. Particle filtering method is a Bayesian tracking 
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algorithm  [43]; the system model is described in section  B of Appendix  II. Particle filtering 

is based on sequential Monte-Carlo process for sequential signal processing. Considering 

the discrete model of given by   [ ] and   [ ] with k=0,1,…N, and the observation vector 

   [  [ ]   [ ]]
 

for the parameter vector    [  [ ]   [ ]]
 

at the observation time k, 

the Bayesian formula for the iterative estimation of the posteriori pdf is given by: 

         
                  

          
 

(25) 

Knowing that: 

           ∫                      
(26) 

In the computation of the posteriori density function, the normalizing component of (25) 

and (26) can be neglected due to the fact that    elements are of first order Markovian 

processes. As a result, the Bayesian estimate is the expected value of the latest density 

function          , given by: 

 ̂  ∫              
(27) 

  

C. Problem Statement and the Maximum Likelihood Solution 

1. Problem Statement 

 

In literature, different spectrum sensing techniques have been proposed to estimate 

the activity of the primary transmitters hence, the availability of the spectral holes. 

Alternatively, the exploitation of the spectrum holes can be done by using cooperative 
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sensing to generate location estimations of transmitters. Hence, based on the transmitter 

estimated positions, its transmitted power and coverage, a cognitive node can determine if 

it can transmit or not from a specific location before reaching its destination.  The location 

of the transmitter can be estimated from three power measurements via trilateration when 

only one transmitter is present. However, when multiple transmitters contribute with 

unidentified proportions to the received power, the non-cooperative localization technique 

doesn’t provide a direct solution. 

To generalize the problem, we consider M legacy transmitters and N cognitive radio 

nodes. The locations of the M transmitters are assumed to be unknown, and they are 

denoted by   [          ] where    represents the two-dimensional location of the i
th

 

transmitter. On the other hand, the N sensors are assumed to be with known arbitrary 

locations. Let        represents the two-dimensional Euclidean distance between the i
th

 

transmitter and the j
th

 receiver. 

Knowing that        represents the Euclidean distance from the transmitter 

positioned at    to the j
th

 receiver, the noise-free received power     from the i
th

 transmitter 

to the j
th

 receiver is denoted by: 

           
  

      
   

with             

(28) 

where      is the power transmitted by the i
th

 transmitter,    is a constant representing the 

antenna and carrier frequency properties,       is a constant representing the error due to 



61 
 

the effect of Non-Line-Of-Sight (NLOS), n is constant representing the pathloss exponent, 

and    is representing the reference distance  [44], usually taken equal to 1m. 

Assuming independent lognormal shadowing corresponding to each transmitter-

receiver pair, the unknown power     measured by the j
th

 receiver from the i
th

 transmitter 

could be modeled as: 

         
   

   (29) 

where             in dB, represents the shadowing variable between transmitter i and 

receiver j. Hence, the total received power    at the j
th

 receiver is given by: 

      ∑   

 

   

 (30) 

where    is the Additive White Gaussian Noise (AWGN) with  zero-mean and variance   . 

 

2. The Maximum Likelihood (ML) Solution 

 

The aim of this algorithm is to determine the ML estimate  ̂ of the locations   of the 

M transmitters based on the power measurements obtained at each cognitive node.  This 

can be represented by the following equation:  

 ̂        
 

       (31) 

where   [          ] .  
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Given the transmitter location  , the measured power at the sensor denoted by    is a 

Gaussian random variable with mean ∑    
 

  and variance   . Let   
  [   

     
      

 ]
 
 such 

that r is a Gaussian random vector with mean    ∑   
 

  and covariance matrix     , 

where    is NxN identity matrix.  Thus, the likelihood is obtained by: 

                ⁄       
 

   
(  ∑  

 

 

   

)

 

(  ∑  
 

 

   

)  

 

(32) 

Thus, the log-likelihood function could be obtained from (32) as follows: 

           ∑  
 

 

   

     ∑  
 

 

   

  

 

(33) 

Using (30) and (33), the likelihood function of unknown received power conditioned on the 

transmitters’ locations   is computed as the product of MN lognormal densities given by: 

         ∏∏
        

    √  
 

 
        (   )        (   ) 

 

   

 

   

 

   

 

 

(34) 

Basically, the log-likelihood doesn’t provide a direct solution due to its complexity 

as it often has multiple local maxima. Thus, alternative solutions should be proposed to 

approach the ML technique. In this paper, we tackle this problem through the Quasi-SAGE 

algorithm as described in the next section. 
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D. Proposed Quasi-SAGE 

1. From EM based techniques to Quasi-SAGE 

 

The EM based techniques  [45] are efficient for iterative parameters estimation. The 

classical computation of an EM method consists of supplementing the observed 

measurements (incomplete data) with a single complete-data space whose association to the 

parameter space simplifies the estimation. Basically, the EM algorithm alternates iteratively 

between an E-step and an M-step.  

- The E-step: It is based on computing the conditional expectation of the complete-data in 

the log-likelihood.  

- The M-step: It is based on maximizing simultaneously that expectation relative to all of the 

unknown parameters, i.e.       ,   and      .  

The implementation of the EM based techniques is most beneficial in applications 

where performing the M-step is simpler than maximizing the original likelihood. 

Furthermore, updating the parameters simultaneously makes the classical EM technique to 

converge slowly due to the need for overly informative complete-data spaces. The 

convergence rate of an EM method has an inverse association with the Fisher information of 

its complete-data space  [45]. Moreover, it is shown that enhanced asymptotic convergence 

rates are obtained with less-informative complete-data spaces  [46]. Additionally, larger step 

sizes and greater likelihood increases are obtained with less informative complete-data 
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spaces in the early iterations  [47]. Hence, there is a tradeoff between complexity and 

convergence rate. 

In our work, we extend the concepts in  [46] to avoid this tradeoff by introducing the 

SAGE based technique. The latter is applicable in scenarios where parameters update is 

done sequentially in small groups of elements. In addition, it associates with each group of 

parameters a hidden-data space instead of utilizing just one large complete-data space. 

Moreover, the flexible admissibility criterion is introduced to ensure the monotonic increase 

of the penalized-likelihood objective in the algorithm. 

Basically, one of the two motivations for the SAGE technique is the convergence 

rate. For instance, applications where the parameter space is very large, such as imaging 

restoration applications, regularizing via smoothness penalties is often necessary. On the 

other hand, a SAGE method decouples the parameter updates by utilizing a separate hidden-

data space. Astonishingly, this technique not only simplifies the maximization, but also 

enhances the converge rate. Also, SAGE technique guarantees the monotonicity, and it is 

based on statistical considerations. For the sake of simplicity of the paper, more details 

regarding SAGE formulation are stated in Section  0 of the Appendix  II. 

 

2. The proposed Quasi-SAGE Algorithm 

 

We address the problem of localizing multiple transmitters based on power 

measurements at multiple receivers under lognormal shadowing. As stated previously, 
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accurate localization of legacy-system transmitters increases the degree of identification 

and exploitation of unused spectrum by cognitive radio nodes without triggering 

interference.  

Basically, the quasi-SAGE algorithm is applied on a wise choice of the index set, on 

which the expectation and maximization steps will be applied. Similar to the quasi-EM 

algorithm, the proposed quasi-SAGE technique alternates between the two steps: 

- The E-step: It concerns the estimation of each transmitter’s locations independently via 

the designated percentage of the received power at each receiver  

- The M-step: It concerns the allocation of a percentage of the received power at each 

receiver to each transmitter proportional to the expected received power given the estimates 

of the last transmitter location.  

Nevertheless, quasi-SAGE differs from quasi-EM in the selection of the set over 

which we apply the previous two steps that are analogous to the expectation and 

maximization steps in the classical EM algorithm. 

Unlike the quasi-EM technique, the proposed quasi-SAGE algorithm does an 

efficient selection of some receivers (not all as in quasi-EM) that are mostly useful for 

localizing the existing transmitters. In our approach, once an initial estimate of the 

transmitters is randomly generated, a set of receivers that are closest in terms of the 

Euclidean distance to the estimated transmitters’ positions is selected. The number of these 

receivers is to be determined empirically. 
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The quasi-SAGE solution can be summarized by the following steps: 

1. Generate randomly the initial estimate  ̂ of the locations for the M transmitters. 

2. Select a set of    receivers, from the initial set of   receivers, that is closest in 

terms of the Euclidean distance to the transmitters. The ratio    ⁄  is a parameter 

tested through simulations. 

3. Compute the expected power in dB from the i
th

 transmitter at the j
th

 receiver for j =1 

to   and i=1 to M: 

     [        (   )]   [       (     
   

  )] 

                       
  

  ( ̂ )
  

 

(35) 

4. Normalize the expected values     so that the expected total power at each receiver 

is equal to the observed power at that receiver: 

 ̃          (
    

   

  

∑   
   

   

) 

 

(36) 

5. Re-estimate the locations of transmitter via the minimization of the sum of squared 

dB error by utilizing the expected values  ̃   . 

 ̂        
 ̃ 

∑  ̃          (
     

 

  ( ̃ )
 )  

  

   

 

 

(37) 

6. Return to Step 2 after a given number of iterations 
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Due to the random initial conditions, the transmitter locations are finally estimated by 

searching over the different iterations for the lowest sum-of-squared log-power errors given 

by the following global minimum cost function:  

   ̂  ∑              ∑(
     

 

  ( ̂ )
 )

 

   

  
  

   

 

 

(38) 

It can be easily proven that this cost function increases the likelihood criteria defined in 

(34). 

 

E. Simulation Results 

 

In this section, we provide simulation results on the proposed quasi-SAGE 

algorithm and we compare its performance to quasi EM technique and to random guessing, 

proposed in literature. The area of interest is considered one-kilometer square. We firstly 

assume that the distance of separation between transmitters to be equal to 200 meters since 

in reality primary transmitters utilizing same frequency band can’t be too close in terms of 

distance to avoid interference. In addition, we assume that the minimum distance between 

two receivers is equal at least twice the reference distance, i.e. d0=1m.  

To run the quasi-SAGE and quasi-EM technique,    different uniformly random 

initial estimates  ̂ of the transmitters’ positions are generated. For each initial estimate, and 

for the sake of fairness, both techniques are executed 10 times (10 iterations). This also 

applies on the random guesses algorithm. 
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The simulation results have been normalized to represent a square of unit area. 

Figures 1 through 6 represent the mean square error over 5000 different random draws for 

M=2 and 3 transmitters, N=2M to 40 receivers, and shadowing variance         

and         . 

Figure 30 and Figure 31 represent the mean normalized squared distance error 

respectively for 2 and 3 transmitters with shadowing variance equals to 4 dB. It is shown 

that the Quasi-EM and Quasi-SAGE techniques perform better performance than the 

random guess technique. Additionally, Quasi-SAGE algorithm shows an additional 

enhancement over the quasi-EM technique. 

Figure 32 and Figure 33 designate the mean normalized squared distance error 

respectively for 2 and 3 transmitters with shadowing variance equals to 16 dB. Similarly, 

the quasi-EM and quasi-SAGE algorithms offer higher accuracy in terms of transmitters’ 

position estimation. The quasi-SAGE technique provides an additional improvement over 

the quasi-EM technique. It is very clear that the improvement provided by the quasi-SAGE 

over the quasi-EM technique is more significant with shadowing variance equals to 16 dB 

when compared to the results with shadowing variance equals to 4 dB. 

As a result, the quasi-SAGE technique generates the smallest MSE for M=2 and 3 

transmitters and         and         . As we increase the number of receivers from 

N=4 to N=40, the performance improvement becomes larger for the proposed quasi-SAGE 

over the quasi-EM, and random guess localization approaches. As expected, the MSE 

decreases for all the three localization methods with the increase in the number of receivers; 
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yet, the performance error ultimately flattens. Basically, the performance enhancements are 

not significant as the number of receivers increases due to the fact that it less likely to 

obtain independent information for the power measurement offered through each additional 

receiver.  

Figure 34 explores the effect of the number of the receivers used by the quasi-

SAGE approach for localizing multiple transmitters. We define the parameter   as the ratio 

between the number of receivers used by the quasi-SAGE approach with respect to the 

quasi-EM technique. As   increases, the number of receivers used by quasi-SAGE 

algorithm becomes closer to the number of receivers used by quasi-EM algorithm. It is 

shown that for       the improvement made by quasi-SAGE technique is more 

significant than that obtained with    . 

 

Figure 30 MSE-Normalized: M=2 and sigma=4dB 
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Figure 31 MSE-Normalized: M=3 and sigma=4dB 

 

 

Figure 32 MSE-Normalized: M=2 and sigma=16dB 
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Figure 33 MSE-Normalized: M=3 and sigma=16dB 
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Furthermore, the effect of the NLOS factor added over the proposed quasi-SAGE 

algorithm is shown in Figure 35. It is shown how the error of transmitters’ localization 

increases with the addition of the NLOS effect. Finally, the true position of 2 transmitters 

and the corresponding estimated positions obtained via the quasi-SAGE and quasi-EM, and 

random guessing techniques are shown within the square region of interest in Figure 36. 

Again, this figure shows the outperformance of the quasi-SAGE algorithm versus the other 

techniques. 

 

 

Figure 35 MSE-Normalized with M=2 and sigma=4dB in addition to the NLOS factor on 

quasi-SAGE 
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Figure 36 True and Estimated Positions of 2 Transmitters 

 

F. Conclusion 

 

In this paper, we have considered the localization of multiple transmitters based on 

power measurements for a cognitive radio environment. To solve this problem, quasi-

SAGE algorithm has been proposed due to its advantages over the solutions existing in 

literature. It has been shown that the proposed quasi-SAGE technique achieves major error 

reduction when compared to quasi-EM and random guessing techniques. This improvement 

is much significant with higher shadowing variance. In the future, some real measurements 

will be considered for the proof-of-concept. 
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V CHAPTER 

CONCLUSION 
 

The existence of the location information at the base stations turns out to be a vital 

factor in today and future communications system for permitting innovative location based 

services. Practically, Time of Arrival (ToA), Time Difference of Arrival (TDOA), 

Received Signal Strength (RSS) and Angle of Arrival (AoA) are the main techniques used 

for positioning. Localization of a Mobile Terminal (MT) is estimated with high accuracy in 

outdoor scenarios due to the Global Positioning System (GPS) or to the standalone cellular 

systems. Nevertheless, this is not the case with indoor scenarios where satellite or cellular 

signals are broken and with scenarios where deep shadowing effect exists. Heterogeneous 

networks, where a combination of radio access technologies exists (such as cellular 

systems, WiFi, WiMAX), presents good candidate for critical scenarios. Definitely, 

significant interests are present for cellular and WiFi networks based localization 

techniques in both communication and localization community. 

In this thesis, we have considered a particular positioning problem with lack of 

hearability or with a limited number of anchor nodes. We have presented a hybrid 

localization approach based on the combination of the ToA, AoA and RSS based 

fingerprinting techniques. Simulations have shown that the proposed hybrid approach 

outperforms the stand-alone ToA and RSS fingerprinting techniques in this critical 

transmission scenario. Based on a 2-level UKF, we have shown that significant positioning 

estimations could be obtained. Moreover, hierarchical and genetic based clustering 
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approaches have been proposed and combined with the UKF to improve the accuracy of the 

estimation algorithm. The simulation results have shown the outperformance of our 

proposed algorithm with respect to the standalone techniques proposed in the literature.   

Moreover, we proposed the use of UKF based PDF filter in this data fusion results 

in further enhancement in the accuracy of the position estimation. The RBF is tuned using 

minimum entropy criterion to achieve an optimal estimation. Additionally, the proposed 

adjustment of the PDF filter parameters is done every time step instead of using a batch 

mode, where parameters are fixed during each batch and are updated between two adjacent 

batches. Thus, using batch mode makes the estimation error to be reduced batch by batch 

causing slow convergence; however, the weight vector of the RBF network in the proposed 

technique is updated at each time step enabling a higher convergence rate. Regarding the 

convergence analysis, the proposed UKF based on PDF filter is shown to be asymptotically 

convergent as long as µ is small enough. Thus, an appropriate step-size µ has to be chosen 

to trade-off between convergence speed and misadjustment. 

Finally, not only localizing MTs, but also localizing multiple transmitters in a 

region is one of the main problems that are assessed by researches nowadays; hence, it is 

also assessed in our thesis. Even though this problem is applicable in different applications, 

the most prominent one of common interest is cognitive radio systems. Localizing active 

primary users is required by the cognitive radio system in order to avoid interference and 

obtain a successful transmission for secondary users. Hence, we considered localization 

multiple transmitters based on power measurements at multiple receivers under lognormal 

shadowing. Different solutions were proposed in the literature to solve the problem of 
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localizing multiple transmitters. Quasi-EM technique is one of the proposed methods used 

to localize multiple transmitters based on the received power measurements under 

lognormal shadowing model. The quasi-EM technique was proposed due to the 

unfeasibility of presenting an analytic distribution for the sum of lognormal random 

variables representing the observed power. We have proposed the quasi-SAGE algorithm 

through wise selection of the index set and application of the analogous expectation and 

maximization steps corresponding to the received power measurements under the 

lognormal shadowing model over this set. It is shown that the proposed quasi-SAGE 

technique achieves major error reduction when compared to random guessing technique. 

Also, the proposed technique shows an improvement over the quasi-EM technique. This 

improvement is much significant with higher shadowing variance. 
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I APPENDIX  

UKF BASED PDF PRELIMINARIES 

 

 
A. RBF Network Specifications 

 

Let’s consider the RBF network                to be defined as follows: 

  [          ]
 
 (39) 

     [          ]
 
 (40) 

         ( 
‖    ‖

 

    
 )     ( 

‖    ‖
 

    
 )            

(41) 

If    and    are symmetrically distributed, that is: 

            (42) 

            (43) 

Then, the RBF network will have a zero-mean output for any stochastic inputs with 

symmetric PDF distribution, as: 

 [ ]   [      ]   [∑       

  

   

] 

 

(44) 

Substituting (40) and (41) in (44), we will obtain the following mean: 
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 [ ]  ∑   [                ]

  

   

 (45) 

Assuming that      is the PDF of x, the mean of the PDF term will be equal to zero: 

(knowing that            and      are odd and even functions of x respectively) 

 [                ]  ∫    [                ]    

 [ ]  ∑   [                ]

  

   

   

(46) 

As a result, the term   
   

achieves a zero mean if we have symmetrically distributed 

condition for the RBF-network since the input to the network is sigma-point innovation 

with a symmetric PDF. 

 

B. Inclusion of Renyi’s Entropy 

 

According to the information theory, Shannon presented in 1948 the entropy as a 

measure of the uncertainty relative to random variables. Renyi’s entropy, named after 

Alfred Renyi  [32], quantifies the randomness of a random variable. It is described as: 

   
 

   
   ∫                       (47) 
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The most commonly used type of Renyi’s entropy of a variable X is the quadratic one 

where    , given by: 

       [∫        
 

]      (    ) (48) 

 

C. Renyi’s Quadratic Entropy Calculation using KDE 

The probability density of a variable X is estimated using KDE as follows: 

     
 

 
∑        

 

   

 (49) 

where       is the Gaussian function defined by the following equation: 

              
 
        

 
    { 

 

 
      

          } (50) 

Consequently, the Renyi’s quadratic entropy is computed using the KDE as follows, 

       (    )      ∫(
 

 
∑         

 

   

)

 

     
 

  
∫(∑∑          (    )

 

   

 

   

)   

          
 

  
∑∑∫          (    )   

 

   

 

   

     
 

  
∑∑ √  (     )

 

   

 

   

 

 

 

(51) 
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Basically, the fourth equality is based on the fact that the convolution of two Gaussian 

functions is also Gaussian. 

 

D. Probability Density Estimation 

 

The probability      represents the PDF of the random vector x in a Lebesque 

measure.    describes the true state in time step k; let  ̂   ̂     and  ̂      describes the 

filtered and the predicted state of  ̂ . 

A kernel has to be non-negative real valued integrable function sustaining the following 

conditions: 

 ∫          
  

  
 

                 

The first condition guarantees that the output of the KDE is a probability density 

function and the second condition ensures stability of the expectation of the process. 

Despite the existence of various kernel functions, the most common one is the Gaussian 

kernel that is expressed in the following equation: 

      
 

√   
      

  

   
  

(52) 

Concerning the KDE, the mean and the variance of the estimated PDF are expressed by: 
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    [ ̂   ]   [ ̂   ]                  ⁄  

   [ ̂   ]    [  ̂     [ ̂   ]  ]  
 

  
            

(53) 

where   and    are two constants related to specific kernel and     is the second order 

derivative of the PDF. Based on the above equations, the best choice of the bandwidth ( ) 

compromises between low bias and low variance since it affects them in opposite manners. 

For a Gaussian kernel, we can select the bandwidth as follows: 

      ̂ or    ̂              
 

     where  ̂ is the data standard deviation, N is the 

number of samples, and d is the dimensionality of the data  [24]. 
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II APPENDIX  

LOCALIZATION OF COGNITIVE TRANSMITTERS 
 

A. Cooperative Localization Model in Cognitive Network 

 

First, the parameters estimated at the CR node are defined as follows: 

  [             ]
  (54)

 

where        is the range obtained from the ToA estimates and        is the angle of arrival 

that represents the directional information of the target PU-j at the ith CR node, given by: 

    [

               

               

                     
               

] 

 

(55) 

 

    [

               

               

                     
               

] 

 

(56) 

The use of maximum likelihood (ML) estimation technique at the CRB along with 

the a-priori knowledge of the CR node locations, we can obtain the following estimates for 

the targets PU-j as shown in the following equations  [48]. 

              
 
    (57) 

              
 
    (58) 
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Where       and       are the true distances and the phase angles of the PU-j’s w.r.t the 

CRB and   
     and   

     are the additive noise components relative to the ML 

approximations. It is assumed that the signal has no fading component.    and     are the 

range and phase respectively describing the signal-to-noise ratio of the received signals 

prior to ML estimation.  

  
      is modeled as a zero mean random process and   

            

  . 

Additionally, the mobility of PUs is modeled by 2-first order Markov processes for 

the phase angle and distance described by the density functions     
    

     and  

 (  
 |  

   ) knowing that   
  and   

  are the phase and the distance at time t. Then, tracking 

the target PU-j is performed in the network by making use of the positional estimates 

   and   . 

 

B. Particle Filtering: A Bayesian Tracking Algorithm 

 

Particle filtering track the desired parameters    and    based on the model defined 

in  [43]. The respective probability distributions are estimated by assuming the discrete 

model of the distributions, and they are given by the following: 

       ∑          

 

   

 

(59) 
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where    [   

     

 ]
 

 are known as the particles that are drawn from each posteriori 

distribution       ,    [   

     

 ]
 
are the weights assigned to the particles, and M is the 

total number of particles. The initial value of the weights is basically    

    ⁄ , and 

   

    ⁄  at k=0; then, they are iteratively calculated using (25). Then, the weights are 

updated using the analytical solutions to the posteriori distributions of the desired 

parameters. So, updating the weights is done according to the following equations. 

 

   

         

          
                (60) 
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(63) 

  Knowing that: 
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 (  

 
)            

 

  
∫         ⁄    

 

 

 

   

        

     ∑    

     

 

   

⁄  

 

 

 

(64) 

 

(65) 

   
                and    

                are known as importance functions. 

Thus, based on the posteriori distributions, the two importance functions are expressed as 

follows: 

   
(     |       )        (   

       )
 

  
(66) 

   
(     |       )                  (67) 

where      (   

       ). Then, we make use of the newly calculated particle weights 

to estimate the parameter via calculating the expectation of the discrete sample set as shown 

below: 

 ̂     ∑    

    

 

 

   

   ̂     ∑    

    

 

 

   

 

 

(68)
 

After performing little estimation, the weights of some particles will be almost zero; 

those particles are no more needed in the process of estimation; importance sampling is 

used in such cases to diminish the complexity of computation in the estimation  [49] [50].  
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C. Proposed Quasi-SAGE based positioning algorithm Preliminaries 

1. SAGE Formulation 

 

Let the observation Y have probability density function            where       is a 

parameter representing the true location of the M transmitter based on the power 

measurement at each sensor represented in subset   of the p-dimensional space   . Given a 

measurement realization Y=y, the maximum penalized-likelihood estimate    ̂of       is 

computed as follows: 

  ̂        
   

           

                    

(69) 

However, the complexity of f or the coupling in P makes the direct maximization 

intractable. Hence, we have to make use of iterative techniques by considering subset of the 

elements of the parameter vector   . The following definition formalizes the idea.  

Definition 1: A set S is defined to be an index set if it i) is nonempty, ii) is a subset of the 

set {1,…,p}, and ii) has no repeated entries. The set  ̃  denotes the complement of S 

intersected with {1,…,p}. 

Let m denotes the cardinality of S; thus,    represents the m dimensional vector consisting 

of m elements of   indexed by the members of S. Similarly,   ̃ represents the p-m 

dimensional vector consisting of the remaining elements of  . For instance, if p=5 and 

S={1,3,4}, then  ̃       ; thus,    [      ]
 and   ̃  [    ]

 . Also, we define 

       ̃       . 
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The “grouped coordinate-ascent” technique is based on sequencing through different index 

sets      and updates only the elements    of   while holding the other parameters 

  ̃ fixed  [51].   
    is assigned to the argument that maximizes   (     ̃

 )  over    ; 

however, there is no analytical form for the maximum of        ̃  over    in some 

applications such as the imaging application even if the index set S consists of a single 

element. The evaluation of  (     ̃
 )   (  )  for many values of    is complex in terms 

of computations. 

Therefore, the SAGE technique, originated from the EM method, utilizes the 

underlying statistical structure of the problem to use simple maximizations instead of the 

expensive numerical maximizations. Basically, SAGE uses the maximization of functional 

       
   instead of the maximization of  (     ̃

 ) over    by presenting the “hidden-

data” space for   . Maximizing          can be done analytically when wise choice of 

hidden-data space is done; hence, avoiding the use of line searches. Eventually, line 

searches for maximizing          is less expensive than line searches for 

maximizing  (    ̃
 ). Additionally,    are initiated to guarantee that the increase in    

leads to an increase in  . 

 

2. Hidden-Data Space 

 

Generating the functions    for each index set S of interest requires the 

identification of an admissible hidden-data space defined in the following sense: 
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Definition 2: A random vector   with probability density function        is an admissible 

hidden-data space with respect to     for        if the joint density of   and Y satisfies 

                 ̃        (70) 

i.e., the conditional distribution         ̃  must be independent of    . Hence,   must be a 

complete-data space for     given   ̃ is known. 

The following explains the association between this definition and the related methods. 

 The complete-data space for the classical EM algorithm  [45] is taken as a special 

case of Definition 2 by selecting S={1,…,p} and Y as a deterministic function of 

  . 

 When decomposing (34), we can represent Y as the output of a noisy channel that 

may depend on    ̃  but not on    

 We describe    using the term “hidden” is used instead of “complete” because 

   will not be complete for     in the original sense of Dempster et al. [45]. Also, 

the aggregate of    will not be an admissible complete-data space for   over all S. 

 The conditional distribution of Y on    is permitted to depend on all of the 

parameters   ̃  . 

 The cascade EM algorithm  [52] presents an alternative generalization based on a 

hierarchy of nested complete-data spaces. Actually, SAGE could be generalized by 

permitting hierarchies for each  . 
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3. SAGE Algorithm 

 

SAGE algorithm is based on the conditional expectation of the log-likelihood of 

   : 

       ̅         ̅   ̅ ̃                ̅ ̃ |     ̅ 

 ∫          ̅            ̅ ̃    

(71) 

This expectation is combined with the penalty function to obtain: 

       ̅         ̅        ̅ ̃  (72) 

Let      be an initial parameter estimate. A generic SAGE algorithm generates a 

sequence of estimates {  }
   

 
 through the following recursion: 

For i=0,1,…{ 

1. Choose an index set       

2. Choose an admissible hidden-data space     for     

3. E-step: compute    
(      ) using (9). 

4. M-step: 

 
  
          

 
  

   
(      ) (73) 

 
 ̃ 
        (74) 

5. Optional: Repeat steps 3 and 4. 

where the maximization in (73) is over the set: 
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  (  )              ̃ 
      (75) 

If an appropriate choice of the index sets and hidden data spaces is made properly, we can 

combine the E-step and the M-step through an analytical maximization into a recursion of 

the form  
  
       

     . 

 

4. Monotonicty 

 

Let S represent the index set and    represents the hidden data space to be used in 

SAGE algorithm. Applying Bayes’ Theorem under regularity conditions  [45] we obtain the 

following: 

       ̅  ∫         ̅            ̅ ̃   

       ̅ ̃         ̅      ̅    

            ̅ ̃             ̅ ̃ 

 

(76) 

       ̅   {    |        ̅ ̃ |     ̅}  

Then,     ̅  ∫   |     ̅           ̅ ̃    

(77) 

As shown in the (77),    is independent of    ; thus, it will not affect the maximization in 

(73). Additionally, we can show the following using these definitions and Jensen’s 

inequality  [45]: 

       ̅      ̅   ̅        ̅ (78) 

Based on that, the following theorem follows directly. 
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Theorem: let    represents the sequence of estimates generated by a SAGE algorithm (73). 

Then, 1)  (  ) is monotonically non-decreasing, 2) if  ̂ maximizes   , then  ̂ is a fixed 

point of the SAGE algorithm, and 3) 

 (    )   (  )    (  
      )    (  

    ) (79) 

On the other hand, standard numerical methods necessitate the evaluation of  (    )  

 (  )  to guarantee monotonicity; however, this prerequisite is hindered for SAGE 

algorithm due to the monotonicity theorem above. 

 

5. Convergence 

 

The monotonicity property guarantees that the sequence {  } will not diverge; 

however, there is no guarantee that it will converge to a local maximum of    [53]. 

Basically, we can summarize the following: 

 Initializing a SAGE algorithm in a region suitably close to a local maximum in the 

interior of   makes the sequence of estimates to converge monotonically in norm to 

it. 

 The region of monotone convergence in norm for strictly concave objectives is 

ensured to be nonempty. 

 Choosing a less informative hidden-data space enhances the asymptotic 

convergence rate of a SAGE method. Basically, faster convergence is achieved with 
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less informative hidden-data spaces; however, simpler M-steps are obtained with 

more informative hidden-data spaces  [47] [54]. 
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