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AN ABSTRACT OF THE THESIS OF

MOHAMAD ALI NOUREDDINE for Master of Engineering
Major: Electrical and Computer Engineering

Title: Verification of Software and Embedded Systems using AIG Solvers

It is critical for software and hardware developers to design correct and reliable
systems. In particular, safety critical systems such as medical equipment, navigation
control and targeting devices do not tolerate defects in their logical components. Static
analysis techniques are used to check and prove correctness of logic components with
respect to formal specifications. In particular, ABC is a model checker that takes an
And-Inverter-Graph (AIG) circuit, a directed acyclic graph with two input AND gates,
inverters and memory elements, reduces it using synthesis algorithms, and checks it for
correctness using proof algorithms. Existing techniques transform software programs
and embedded system design components into Conjunctive Normal Form (CNF) for-
mulae and Symbolic Model Verifier (SMV) code, and use satisfiability (SAT) solvers
and symbolic model checkers, respectively, to check their validity within a user speci-
fied finite domain. These techniques often fail to scale well with the increasing size of
systems and with larger finite domains.

In this work, we explore the use of AIG solvers to address the verification of
software and embedded systems subject to bounds on the data width of their vari-
ables. {P}S{Q} translates imperative logic systems, written in a C-like language,
into AIG. BIP{I} translates an embedded system, written within the Behaviour-
Interaction-Priority (BIP) framework, into AIG. Both methods use the ABC AIG solver
to reduce the generated AIG circuits using sequential synthesis algorithms, and then
check them for validity. The solver either (1) proves the specifications valid within
the finite domain, (2) generates a counter example and reports it to the developer
for debugging, or (3) reaches its computational bounds before making a decision. We
evaluated {P}S{Q} against a set of array and list manipulation algorithms, and var-
ious benchmarks obtained from the second competition on software verification (SV-
Comp’13). Results show that {P}S{Q} reaches bounds higher than those possible with
the CBMC bounded model checker. It was also able to rank amongst the top three
tools in the software verification competition. We also evaluated BIP{I} against two
benchmarks, an Automatic Teller Machine (ATM) system and the Quorum consensus
protocol. BIP{I} surpasses the NuSMV model checker on both designs.
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Chapter 1

Introduction

It is critical for software and hardware developers to design correct and reliable systems.
In particular, safety critical systems such as medical equipment, navigation control and
targeting devices do not tolerate defects in the their logical components. A logical defect
might lead to severe consequences including loss of human life. A loss of precision due
to a conversion from 64-bits into 16-bits of an integer value, caused the Ariane-5 missile
to crash only 16 seconds after it has been launched. Additionally, a software bug in
the control of a radiation therapy machine, “Therac-25”, has lead to the death of six
cancer patients between 1985 and 1987 [1].

In addition, information technology (IT) systems have made their way into
several aspects of modern life. Smart phones, TVs, personal computers, laptops, bank-
ing, money transfer and e-shopping rely on IT systems. Logic defects in such systems
can lead to loss of service, as well as other damages. Intel had to recall its faulty
Pentium processors, that had a bug in the floating point unit, for a cost of 475 million
US dollars [2].

Researchers introduced techniques to (1) accurately specify the requirements
of logic components, (2) validate that the implementation of a logic component respects
the specifications for a finite bounded domain, and (3) prove that a logic component re-
spects its specifications for unbounded domains. Dynamic analysis techniques exercise
the logical component for a given set of inputs, e.g. test cases, and check the results
against a correctness predicate or an oracle [1]. Exhaustive testing is impossible in
practical scenarios, because it involves exercising a practically infinite number of test
cases [3].

Static analysis techniques are used to check and prove correctness of logic com-
ponents with respect to formal specifications. Tools exist that synthesize, optimize, and
check sequential circuits. ABC [4] is an industrial strength academic sequential synthe-
sis and verification tool. It takes as input an And-Inverter-Graph (AIG) representation
of a sequential circuit, reduces it using synthesis and reduction algorithms, and checks
it for correctness using proof algorithms. An AIG is a directed acyclic graph with two
input AND gates, inverters and memory elements. Since AND gates and inverters (i.e.
NAND gates) are functionally complete, the restriction of logic gates to ANDs and
inverters does not affect expressiveness.

Software systems are usually designed in high level programming languages
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such as C, C++ and JAVA. Software verification tools such as CBMC [5] take as
input software programs and check them for memory safety, array access safety, and
user defined assertions (invariants). Given bounds on the unwinding depth of the
loops, and on range of variables in the program, CBMC unfolds the program into a
Boolean Conjunctive Normal Form (CNF) formula that asserts the specified properties.
CBMC then uses Boolean satisfiability (SAT) solvers such as MiniSat [6] to check for
correctness. CBMC verification tasks often fail to scale well with the increase in the
size of the problem; specifically, with the loop unwinding bound and the complexity of
the program.

Furthermore, in recent years, the application area of embedded systems has
witnessed a large expansion, especially with the emergence of automotive electronics
and mobile and control devices. Computations in embedded systems are subject to
several physical and architectural constraints that render the separation between soft-
ware and hardware design impractical [7]. The Behavior-Interaction-Priority (BIP)
framework is a Component-Based System (CBS) design framework that uses a ded-
icated language and tool-set in order to support a rigorous and layered design flow
for embedded systems. It allows to build complex systems by coordinating the be-
havior of a set of atomic components [8]. In order to check CBS, the BIP framework
uses: (1) DFinder [9], a compositional and incremental verification tool-set, and (2) the
NuSMV [10] model checker. However, DFinder does not handle data transfer between
individual BIP components, and does not support checking for properties other than
deadlock freedom. Additionally, for complex systems, NuSMV often suffers from the
state space explosion problem [11], and fails to perform its verification tasks.

In this thesis, we present two techniques with supporting tools to address the
verification of both software systems and CBSs: (1) {P}S{Q}and (2) BIP{I}, respec-
tively. {P}S{Q} is a tool that takes an imperative program S with a specification, a
precondition and postcondition pair (P,Q), and checks whether S satisfies the specifi-
cation. This check is performed within a bound b on the domain of the program and
specification variables (S |= (P,Q)|b); i.e. when the bounded inputs of S satisfy P,
the outputs of S satisfy Q. The program is written in a subset of C++ that includes
integers, arrays, loops, and recursion, extended with a do together construct. The
specification consists of a precondition Pand a postcondition Q, both written in first
order logic (FOL). Our method translates the problem S |= (P,Q)|b into an equisat-
isfiable AIG, and passes the AIG to ABC for sequential synthesis and model checking.
If successful, the check implies that the S satisfies its specification pair (P,Q). Oth-
erwise, it returns a counterexample and enables the developer to visualize it using the
GtkWave [12] waveform viewer for debugging.

BIP{I} is a tool that targets two design goals of the BIP framework: (1)
verification and (2) code generation. Similarly to {P}S{Q}, it takes an input BIP
system with a set of optional specifications, and translates it in an equisatisfiable AIG.
It then uses the ABC model checker to perform synthesis and verification. Additionally,
unlike the BIP code generator used in [8] that uses a generic implementation of the
BIP engine, BIP{I} generates an AIG system with a customized engine that is able
to execute multiple atomic component transitions simultaneously.
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1.1 Advantages of sequential circuits

We formally define sequential circuits in Chapter 2; for now a sequential circuit can be
viewed as a restricted C++ program, specifically a multi-threaded program in which
all variables are either integers, whose range is statically bounded, or Boolean-valued,
and dynamic allocation is forbidden [13].

There are two key advantages to compiling systems into sequential circuits:

Advantage 1 Sequential encodings are much more succinct than pure combinational
SAT formulae. They are imperative and state-holding while CNF formulas, for
example, are declarative and state-free. For example, they can naturally repre-
sent the execution of quantifiers and loops without the need for unrolling them.
Moreover, they can store and reuse intermediate results in local variables. In
cases, SAT encoding algorithms produce a data structure that uses several or-
ders of magnitude more memory to represent.

Advantage 2 Casting the decision problem for a property of a system as an invariant
check on a sequential circuit allows us to make use of a number of powerful
automated analysis techniques that we discuss in Chapter 2 and that have no
counterpart in CNF analysis.

{P}S{Q} and BIP{I} use ABC [4] to automatically check invariants in AIGs.
ABC is a transformation-based verification (TBV) [14] framework that encompasses
reduction and abstraction techniques such as retiming [15], redundancy removal [16,
17, 18, 19], logic rewriting [20], interpolation [21], and localization [22]. It operates on
AIGs; Boolean netlists with memory elements, and iteratively and synergistically calls
numerous transformation and abstraction algorithms. These algorithms simplify and
decompose complex problems until they become tractable for decision techniques such
as symbolic model checking, bounded model checking, induction, interpolation, circuit
SAT solving, and target enlargement [23, 24, 25, 26, 27].

In this thesis we make the following contributions.

• We encode an imperative program S with a first order logic specification (P,Q)
into an AIG with an invariant that is stuck to true iff S satisfies Q for all inputs
that satisfy Pwithin a given bound on the range of the program variables.

• We use a program counter semantics to encode the S and (P,Q) into an AIG. We
use that to encode and compute a termination guarantee check within a bound
on the number of iterations or recursive calls a program can make. We use the
termination guarantee bound to prove run time efficiency of given algorithms.

• We encode a BIP system into an AIG with an invariant that is stuck to true
iff the system is deadlock free, or satisfies a set of specifications. The generated
AIG system will have its own customized engine that is able to execute multiple
transitions simultaneously.

• We allow for simulation of the BIP system by generating a C++ code, while
allowing for optional user control over the interactions to execute.
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• We use the ABC sequential circuit verification framework to check the generated
AIGs, and we check systems and programs that are orders of magnitude higher
than those possible with the other techniques.

• We implement our methods in two tools: {P}S{Q} and BIP{I}.

• We provide our tools and benchmarks online 1.

The rest of this thesis is organized as follows. Chapter 2 gives an overview of
the preliminary information needed throughout this thesis. Chapters 3 and 4 present
the techniques used in {P}S{Q} and BIP{I}, respectively. Chapter 5 highlights the
main implementation details and gives a brief user manual for each of the two tools. We
present our results in chapters 6 and 7. We discuss relevant related work in chapter 8
to finally conclude in chapter 9.

1http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=sa
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Chapter 2

Background

In this chapter, we present formalisms used throughout this thesis. A reader well-
formed in logic verification and sequential circuits may wish to skip this section, using
it only as a reference.

Let V = {v1, v2, . . . , vm} be a set of scalar variables and A = {a1, a2, . . . , an}
be a set of array variables.

Definition 1 (terms). A term is either a variable v ∈ V , a constant c ∈ Z, or an indexed
array variable of the form a[t] which denotes the tth element of a where a ∈ A and t is
a term. Arithmetic expressions of the form −t, t1 + t2, t1− t2, t1 ∗ t2, t1/t2, t1%t2 are all
terms where t, t1, t2 are terms and −,+, ∗, /, and % denote the substraction, addition,
multiplication, division and remainder operations, respectively.

Definition 2 (Boolean term). A constant from the set B = {true, false} is a Boolean
term. The expressions t1 < t2, t1 6 t2, t1 > t2, t1 > t2, t1 == t2 are all Boolean
terms where t1, t2 are terms and <,6, >,>, and == denote smaller, less than or
equal, bigger than, bigger than or equal, and equal, respectively. The expressions
b1&&b2, b1‖‖b2, !b1,− >,== are all Boolean terms where b1, b2 are Boolean terms and
&&, ‖‖, !,− >, and == denote logical conjunction, disjunction, negation, implication,
and equivalence, respectively.

Definition 3 (First order logic formula). A Boolean term is a first order formula.
A quantified formula of the form Qq.b(q), where Q ∈ {∀,∃} is either a universal or
existential quantifier, q is a quantified variable, and b(q) is a first order formula with q
as a free variable.

2.1 Sequential circuits

The ABC solver operates on an sequential circuit representation of a program.

Definition 4 (Sequential circuit). A sequential circuit is a tuple
(
(V,E), G,O

)
. The

pair (V,E) represents a directed graph on vertices V and edges E ⊆ V × V where E is
a totally ordered relation. The function G : V 7→ types maps vertices to types. There
are three disjoint types: primary inputs, bit-registers (which we often simply refer to as
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registers), and logical gates. Registers have designated initial values, as well as next-
state functions. Gates describe logical functions such as the conjunction or disjunction
of other vertices. A subset O of V is specified as the primary outputs of V . We will
denote the set of primary input variables by I, and the set of bit-register variables by
R.

Definition 5 (Fanins). We define the direct fanins of a gate u to be {v : (v, u) ∈ E}
the set of source vertices connected to u in E. We call the support of u {v : (v ∈ I ∨v ∈
R) ∧ (v, u) ∈ ∗E} all source vertices in R or I that are connected to u with ∗E, the
transitive closure of E.

The ABC solver reasons about And-Inverter-Graphs (AIG) which are acyclic
sequential circuits with only AND gates and inverters. All AND gates are restricted
to have 2 fanins. Since AND gates and inverters are functionally complete, this is not
a limitation. For the sequential circuit to be syntactically well-formed, vertices in I
should have no fanins, vertices in R should have 2 fanins (the next-state function and
the initial-value function of that register) and gates should have two fanins. The initial-
value functions of R shall have no registers in their support. All sequential circuits we
consider will be well-formed.

Definition 6 (State). A state is a Boolean valuation to vertices in R.

Definition 7 (Trace). A trace is a mapping t : V × N 7→ B that assigns a valuation
to all vertices in V across time steps denoted as indexes from N. The mapping must
be consistent with E and G as follows. Term uj denotes the source vertex of the j-th
incoming edge to v, implying that (uj , v) ∈ E. The value of gate v at time i in trace t
is denoted by t(v, i).

t(v, i) =


siv : v ∈ I with sampled value siv
t(u2, i− 1) : v ∈ R, i > 0, u2 := next-state of v

t(u1, 0) : v ∈ R, i = 0, u1 := initial-state of v

Gv
(
t(u1, i), ..., t(un, i)

)
: v is a combinational gate with function Gv

The semantics of a sequential circuit are defined with respect to semantical
traces. Given an input valuation sequence and an initial state, the resulting trace is a
sequence of Boolean valuations to all vertices in V which is consistent with the Boolean
functions at the gates. We will refer to the transition from one valuation to the next
as a step. A node in the circuit is justifiable if there is an input sequence which when
applied to an initial state will result in that node taking value true. A node in the
circuit is valid if its negation is not justifiable. We will refer to targets and invariants
in the circuit; these are simply vertices in the circuit whose justifiability and validity
is of interest respectively.

2.2 The CAIG component language

6



1 component: decl wiredef init ‘while(true)’ ‘{’ next ‘}’

2 type: bool | int | bool ‘[’NUM‘]’ | int ‘[’NUM‘]’

3 declaration: wire type ID ‘;’ | type ID ‘;’

4

5 decl: declaration+

6 wiredef: (target = expr ‘;’)*

7

8 init: ‘@do_together’ ‘{’ (target = expr ‘;’)* ‘}’

9 next: ‘@do_together’ ‘{’ (target = expr ‘;’)* ‘}’

10 target: ID | ID ‘[’expr‘]’

11 expr: expr? expr : expr

Figure 2.1: CAIG component language grammar

The grammar in Figure 2.1 describes CAIG , a high level imperative language
that describes a sequential circuit. An CAIG program starts with a list of declara-
tions of wire, register, and array variables. Wires are defined in a list of assignment
statements in the wiredef block. Each wire can be the target at most one assignment
statement. If a wire is not assigned, then it is left as a free input to the circuit.

The init list of statements assigns initial values for the register variables. All
assignment statements within the init block execute simultaneously as indicated with
the do together keyword. Similarly, the next list of statements updates the values of
the register variables.

Each assignment statement has a left hand side target term which is either a
variable or an access operator to an array element. The right hand side of an assignment
is a combinational expression that is either a term (from Definition 1) or a ternary choice
expression. The ternary choice (a?b:c) returns b if a is true and c otherwise.

2.3 ABC sequential solver

ABC is an open source sequential circuit solver that operates on a sequential circuit
in AIG format and checks the satisfiability of a designated output gate therein. ABC
applies several reduction and abstraction techniques to simplify and decompose the
problem into smaller problems. It then calls decision techniques to decide the simplified
problems. In what follows we discuss some of the techniques that are briefly listed in
Table 2.1.

2.3.1 Structural Register Sweep (SRS)

SRS detects registers that are stuck-at-constant and eliminates them from a given se-
quential AIG circuit. The technique starts by zeroing up all initial values of registers
in the circuit. It then uses the ternary simulation algorithm in order to detect stuck-
at-constant registers. The algorithm starts from the initial values of the registers and
simulates the circuit using x values for the circuit’s primary inputs. The simulation
algorithm stops when a new ternary state is equal to a previously computed ternary
state. In this case, any register having the same constant value at each reachable
ternary state will be declared to be stuck-at-constant and thus eliminated. The struc-
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tural sweeping algorithm stop when no further reduction in the number of registers is
possible [28].

2.3.2 Signal Correspondence (Scorr)

Scorr uses k-step induction in order to detect and merge sets of classes of sequentially-
equivalent nodes [28]. The base case for this algorithm is that the equivalence between
the classes holds for the first k frames, and the inductive case is that given the base
case, starting from any state, the equivalence holds in the (k + 1)st state. Key to the
signal correspondence algorithm is the way the candidate equivalences are assumed for
the base case. Abc implements speculative reduction, originally presented in [35], which
merges, but does not remove, any node of an equivalence class onto its representative,
in each of the first k time frames. Instead of removing the merged node, a constraint
is added to assert that the node and its representative are equal. This technique is
claimed to decrease the number of constraints added to the SAT solved for induction.

2.3.3 Rewriting

Rewriting aims at finding nodes in a Directed Acyclic Graph (DAG) where by replacing
subgraphs rooted at these nodes by pre-computed subgraphs can introduce important
reductions in the DAG size, while keeping the functionality of these nodes intact. The
algorithm traverses the DAG in depth-first post-order and gives a score for each root
node. The score represents the number of nodes that would result from performing a
rewrite at this node. If a rewrite exists such that the size of the DAG is decreased,
such a rewrite is performed and scores are recomputed accordingly. Rewriting has been
proposed initially in [29], targeted for Reduced Boolean Circuits (RBC); it was later
implemented and improved for ABC in [30].

2.3.4 Retiming

Retiming a sequential circuit is a standard technique used in sequential synthesis,
aiming at the relocation of the registers in the circuit in order to optimize some of
the circuit characteristics. Retiming can either targets the minimization of the delay
in the circuit, or the minimization of the number of registers given a delay constraint,
or the unconstrained minimization of the number of registers in the circuit. It does so
while keeping the output functionality of the circuit intact [31]

2.3.5 Property Directed Reachability (Pdr)

The Pdr algorithm aims at proving that no violating state is reachable from the ini-
tial state of a given AIG network. It maintains a trace representing a list of over-
approximations of the states reachable from the initial state, along with a set of proof-
obligations, which can be a set of bad states or a set of states from which a bad state
is reachable. Given the trace and the set of obligations, the Pdr algorithm manipu-
lates them and keeps on adding facts to the trace until either an inductive invariant
is reached and the property is proved, or a counter example is found (a bad is state
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is proven to be reachable). The algorithm was originally developed by Aaron Bradley
in [36, 37] and was later improved by Een et. al in [34].

2.3.6 Temporal Induction

Temporal induction carries an inductive proof of the property over the time steps of a
sequential circuit. Similar to a standard inductive proof, it consists of a base case and an
inductive hypothesis. These steps are typically expressed as SAT problems to be solved
by traditional SAT solvers. k-step induction strengthens simple temporal inductive
proofs by assuming that the property holds for the first k time steps (states), i.e. a
longer base case needs to be proven [32]. Since the target is to prove unsatisfiability
(proving that the negation of the property is unsatisfiable), if the base case is satisfiable,
a counter-example is returned. Otherwise, the induction step is checked by assuming
that the property holds for all the states except the last one (the (k+ 1)’th state) [38].

2.3.7 Interpolation

Given an unsatisfiable formula A∧B, an interpolant I is a formula such that A =⇒ I,
I∧B is unsatisfiable and I contains only common variables to A and B. Given a system
M , a property p and a bound k, interpolation based verification starts by attempting
bounded model checking (BMC) with the bound k. If a counter-example is found, the
algorithm returns. Otherwise, it partitions the problem into a prefix pre and a suffix
suf , such that the problem is the conjunction of the two. Then the interpolant I of pre
and suf is computed, it represents an over-approximation of the set of states reachable
in one step from the initial state of the algorithm. If I contains no new states, a fixpoint
is reached and the property is proved. Otherwise, the algorithm reiterates and replaces
the initial states with new states added by I [33].
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Table 2.1: Example ABC techniques

Technique Description ABC command
Balancing Balancing reduces the number of AIG levels

by applying associativity transformations [4]
balance

Structural Register
Sweep (SRS)

SRS reduces the number of registers in the
circuit by eliminating stuck-at-constant reg-
isters [28]

scl -l

Signal Correspon-
dence (Scorr)

Scorr computes a set of classes of
sequentially-equivalent nodes using k-step
induction [28]

ssweep

Rewriting AIG rewriting iteratively selects and replaces
rooted AIG subgraphs with smaller pre-
computed subgraphs in order to reduce the
size of the AIG [29]

rewrite

Refactoring AIG refactoring is a variation of AIG rewrit-
ing that uses a heuristic algorithm to com-
pute one large cut for each AIG node, then
replaces the structure of these cuts with a
factored form if an improvement is observ-
able [30]

refactor

Retiming Retiming aims at manipulating registers over
combinational nodes in a given logic network,
while maintaining the output functionality
and logic structure [31]

retime

Temporal Induc-
tion

Temporal induction uses SAT solvers to
carry simple and k-step induction proofs over
the time steps of the sequential circuit [32]

ind

Interpolation Interpolation-based algorithms aim at find-
ing interpolants in order to derive an over-
approximation of the reachable states of
the AIG network with respect to the prop-
erty [33]

int

Property Directed
Reachability (Pdr)

Pdr tries to prove that there is no transi-
tion from an initial state of the AIG to a bad
state [34]

pdr
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Chapter 3

{P}S{Q}: Imperative Programs
to AIG

{P}S{Q} targets the verification of imperative programs annotated with precondition
and postcondition specifications. An imperative program is a sequence of instructions
that describes in full details the steps that the execution unit must take to accurately
implement the required functionality. In order to verify that a program accurately
implements its functionality, the developer provides a set of formal specifications in
the form of a precondition-postcondition pair. A precondition is a FOL formula over
the the program’s inputs that specifies which combination of inputs are acceptable;
i.e. under which inputs the program is expected to work. A postcondition is a FOL
formula over the program’s inputs and outputs that defines the program’s expected
output. The postcondition relates the program’s outputs to its inputs [39].

Given a program S, a precondition and postcondition pair (P,Q), and a bound
b on the domain of S and its variables, {P}S{Q} checks whether S satisfies its spec-
ifications (S |= (P,Q)|b); i.e. when the bounded inputs of S satisfy P, the outputs
of S must necessarily satisfy Q. {P}S{Q} accepts programs written an imperative
language, T iny, a subset of C++ extended with support for FOL and a block syn-
chronization construct, the do together block. The tool then translates the problem
(S |= (P,Q)|b) into an equisatisfiable AIG using a program counter encoding. The
generated AIG has a single output o that is set to 1 iff S violates its specifications. The
tool then uses the ABC sequential AIG model checker [4] to check that o is never set to
1. If the check is successful, S satisfies its specifications. Otherwise, {P}S{Q} returns
the violating trace (i.e. the counterexample) to the user for debugging of S.

The Array search program in Figure 3.1(a) takes as input an array a, a start
index s, an end index e, a data value d, and the number of elements in the array n. It
is annotated with a specification consisting of a precondition and a postcondition. The
precondition states that the start s and end e indices are within array bounds and that
the array size n is within the bound on array sizes. The postcondition states that if rv
is valid between s and e inclusive, then a[rv] must be equal to d, otherwise, rv must
be invalid (-1) and all entries in a between s and e inclusive are not equal to d.

Figure 3.1(b) shows an equivalent encoding of the array search program us-
ing a program counter execution model. The equivalent program introduces Boolean
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(a) Array search program

1 int ArraySearch(int [] a, int d, int s, int e, int n) {

2 @pre as { 0 <= s && s <= e && e < n && n <= MAXSIZE; }

3 int i = s; // pc = pc+1

4 while(i <= e) { // pc = (i <= e) ? 5 : 10;

5 if (a[i] == d) { // pc = (a[i] == d) ? 6 : 8;

6 break;} // pc = 10;

7 else {

8 i = i+1;} // pc = 4;

9 }

10 return i; // pc = 11; rv = i;

11 @post as {

12 ((rv >= s && rv <= e) -> a[rv] == d) xor

13 (rv == -1 -> forall(int i:[s .. e]) { a[i] != d })

14 } }

(b) Program with program counter

1 dotogether {

2 preas = 0 <= s && s <= e && e < n && n <= MAXSIZE;

3 //initial values

4 pc = 0; notdone = true; postas = true; }

5 while (notdone) { dotogether { // next state functions

6 i = (pc == 3) ? s : (pc == 8) ? i+1 : i;

7 notdone = (pc == 11) ? false : true;

8 rv = (pc == 10) ? i : rv;

9 pc = (pc == 0) ? 3: (pc == 3) ? 4 :

10 (pc == 4) ? ( (i <= e) ? 5 : 10 ) :

11 (pc == 5) ? (a[i] == d) ? 6 : 8 ) :

12 (pc == 6) ? 10 :

13 (pc == 8) ? 4 :

14 (pc == 10) ? 11 : pc; }

15 postas = ((rv >= s && rv <= e) -> a[rv] == d) xor

16 (rv == -1 -> forall(int i:[s .. e]) { a[i] != d }); }

Figure 3.1: (a) Array search program, and (b) equivalent array search program
with program counter

variables preas, postas, and notdone to encode the precondition, the postcondition,
and the running state of the program, respectively. The equivalent program also intro-
duces a program counter variable pc which encodes the control flow of the program as
indicated in the comments of Figure 3.1(a). The rv variable denotes the return value
of the original program.

The notdone variable is initialized to true, and pc program counter is initial-
ized to the first executable line of the program 3. Once pc reaches the last executable
line of the program 13, the program terminates and thus notdone becomes false.
Assignment statements are grouped by target variables, and encoded into conditional
assignment statements that depend on the value of pc. For example, the iterator i is
assigned to s when pc is 3, incremented when pc is 8, and remains the same otherwise.

The program in Figure 3.1(b) is semantically equivalent to the original pro-
gram in Figure 3.1(a). Furthermore, the assignment statements on Lines 1 and 3 assign
initial values to the target variables. The assignment statements inside the while loop
(Lines 5 to 13) compute the next state value of each of the target variables of the
program.

Our method translates the program in Figure 3.1(b) to a sequential circuit
where an iteration of the while loop is equivalent to a single time step in the sequential
circuit. The method represents each Boolean variable with one register, and each scalar
variable with a finite vector (bit-vector) of registers with initial value and next state
functions. The initial state functions of the vector of registers corresponding to a
variable are connected to a vector of gates that represents the right hand side initial
value assignment statement of the variable. For example, pc ranges from 0 to 11 and
can be encoded using 4 registers.

Program variables that are not initialized in the code are considered input
variables and the methods connects their initial value functions to free primary inputs.
The method connects the next state functions of register vectors corresponding to pro-
gram variables to gates that represent the right hand side of the next state assignment.
The conditional, arithmetic, and Boolean operations in the right hand side expressions
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are encoded as combinational logic circuits in the usual manner.
Our method takes the resulting sequential circuit, designates a gate therein

that represents preas∧done→ postas as the output gate, passes the circuit to ABC, and
checks for the validity of the designated gate. The ABC solver returns a counterexample
a = [000], s = 0, e = 1, n = 3, d = 1, rv = 2 where d is not in a, and the return value is
e+ 1, while the postcondition requires an invalid index (-1).

The provided counter example can be used to fix the program. A possible fix
is to replace Line 6 with return i;, and Line 10 with return -1;. Our method takes
the fixed program, transforms it into a sequential circuit, and passes it to ABC which
validates the correctness of the program modulo the finite size of the variable vectors
using symbolic model checking.

3.1 Limitations of translation to CNF

Existing tools such as CBMC [5] check for pointer safety, within bound array access and
user defined assertions in C programs. Given a C program and a bound on the range
of variables, CBMC unwinds the program’s loops and recursive functions, and unfolds
the program into a Boolean (CNF) formula that asserts the specified properties. It
then uses SAT methods and tools such as MiniSat [6] to check the CNF formula for
counter examples.

Recent advances in SAT enabled tools like the Alloy Analyzer [40] and CBMC
to check designs of real systems. However, these designs often need to be partial, leaving
out important functionality aspects of the systems, to enable the analysis to complete.
Moreover, the analysis is typically bound to relatively small limits, e.g., fewer than 7
nodes in a tree structure with the Alloy Analyzer.

There are three limiting aspects of translating high-level programs to SAT.

Disadvantage 1 The translation to CNF depends on the bounds; a small increase in
the bound on variable ranges can cause a large increase in the size of the trans-
lated CNF formula due to unwinding loop and recursion structures in programs,
or eliminating quantifiers in declarative first order logic.

Disadvantage 2 The SAT solver is restricted to using optimizations, such as sym-
metry breaking [41] and observability don’t cares (ODC) [42], that apply at the
level of CNF formulas. However these optimizations usually aim at increasing
the speed of the solver and often result in larger formulas as they add literals and
clauses to the CNF formula to encode symmetry and ODC optimizations [43].
Often times when the analyzer successfully generates a large CNF formula, the
underlying solver requires intractable resources.

Disadvantage 3 Often times the CNF formula generated needs to be regenerated
with higher bounds in case the unwinding bounds were not large enough for the
loops to complete as is the case with CBMC. Note that multiple bounds exist
and they need not be all increased during one iteration.

To extend the applicability of static analysis to a wider class of programs
as well as to check more sophisticated specifications and gain more confidence in the
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results, we need to scale the analysis to significantly larger bounds; limits on the range
of design and program variables.

The work in[44] takes a declarative formula φ in first order logic (FOL) with
transitive closure and a bound on the universe of discourse and translates it to a se-
quential circuit expressed in VHDL. It then passes the sequential circuit to a sequential
circuit solver and decides the validity of φ within the bound. It scales to bounds larger
than what is possible with Kodkod [45] which translates φ into a propositional Boolean
formula in conjunctive normal form (CNF) and checks its validity with a Boolean sat-
isfiability solver.

The work in[46] translates an imperative C program, with an assertion state-
ment therein, and a bound on the input size, into a sequential circuit expressed in
VHDL. It then passes the sequential circuit to a sequential circuit solver and decides
the validity of the assertion within the bound. It scales to bounds larger than what is
possible with CBMC[47] which translates the program with a bound on the input size
and the number of loop iterations into a propositional Boolean formula in conjunctive
normal form (CNF) and checks for correctness using a Boolean satisfiability solver.

Our method extends the work in [44, 46] in that

• it supports function calls including recursion, and requires a bound on recursion
depth only if the recursive function uses local variables,

• it enables a termination guarantee check within a bound on execution time, it
then uses the execution time bound with bounded model checking to decide
correctness,

• it directly translates the program into bit level representation using and inverted
graphs (AIG) instead of the VHDL representation that requires a VHDL compiler
to be translated into bit level,

• it uses ABC [4], an open source sequential circuit solver, instead of SixthSense [48]
an IBM internal sequential circuit solver,

• and it is an open source tool available online 1.

3.2 The T iny imperative language

The grammar in Figure 3.2 describes T iny, {P}S{Q}’s imperative input language. It
is composed of a subset of the C++ programming language, extended with first order
logic support and some special constructs. A program is a list of declarations and
statements. Variables can be declared to be of two kinds: (1) wires and (2) registers.
Wires are non-memory elements used to monitor the values of different variables or
terms in the program, at every instance in the program’s execution. Once assigned to
a term, wires will reflect the value of the term at every point in the program. On the
contrary, register variables are memory elements that only change value once they are
the target of an assignment statement executed at a specific program point. The value

1http://webfea.fea.aub.edu.lb/fadi/dkwk/doku.php?id=sa
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of a register variable is memorized between two different assignment statements. In
what follows, we refer by wires to wire variables, and by variables to register variables.

A variable can either be single or an array. Arrays can be declared to have a
constant predefined size, or can be left free to have the maximum number of elements
to be determined by {P}S{Q}’s runtime engine. Similarly, wires can either be singular
or arrays. {P}S{Q} currently support one dimensional and two dimensional arrays.
Given a two dimensional array a of size n by m where n and m are constants, the tool
transforms a into a single dimensional array a′ of size n ×m, and translates all array
accesses a[i][j] into accesses of the form a′[i× (n×m) + j].

Statements can be assignment statements, control statements or synchroniza-
tion statements. Assignment statements modify the state of program by assigning new
values to select program variables. Control statements are used to modify the control
state of the program by selecting the next program location, possibly begin dictated
by the value of a certain term. {P}S{Q} supports the if-then-else selection con-
trol statement and the while loop control statement. Synchronization statements
start with the dotogether modifier, and are used to enforce the execution of a list
of data-independent assignment or selection statements at the same program point
(equivalently, at the same clock cycle).

Additionally, {P}S{Q} provides support for function definitions and function
calls. Defining and calling a function is done in the same manner as in a regular C++
program, with the exception that return statements must always be present at the
end of a function’s body. {P}S{Q} allows also allows the declaration of recursive
functions. Expressions in T iny extend the definition of terms presented in Definition 1
of Chapter 2 with the addition of allowing terms to also be function calls, as depicted
by the notation term with function call on line 31 of Figure 3.2.

{P}S{Q} extends the subset of C++ above with support for FOL specifica-
tions, written in the form of pre-condition, post-condition pairs. FOL expressions are
Boolean expressions that can be Boolean terms or function calls, or quantified expres-
sions. A quantified expression is either universally (forall) or existentially (exists)
quantified.

3.3 Translation to AIG

Given an imperative program S written in the T iny language, and annotated with
a FOL precondition postcondition specification pair (P,Q), {P}S{Q} transforms the
tuple (S, (P,Q)) into an CAIG program S’. The tool then synthesizes S’ into an eq-
uisatisfiable AIG C having a single output representing the formula ¬ (P ∧ S =⇒ Q).
The tool then uses the ABC AIG solver to verify the validity of ¬o and thus prove that
S satisfies its specification pair (P,Q) if successful. If the validity check fails, the tool
returns a counterexample to be used by the developer for debugging.

3.3.1 Preprocessing

{P}S{Q} first starts by transforming S into an intermediate program S’ = ρ(S ) where
ρ is a code transformation function that simplifies function calls, recursive functions
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1 program: block+

2 block: (declaration | statement)

3 statement: assignment_statement | conditional_statement |

4 loop_statement | sync_statement

5

6 // declarations

7 declaration: variable_declaration | function_declaration | property_declaration

8 variable_declaration: modifier? type id (‘[’ num ‘]’ (‘[’ num ‘]’)?)?

9 (‘=’ term)?

10 function_declaration: type id ‘(’ argument_list? ‘)’

11 ‘{’ block* return_statement ‘}’

12

13 // statements

14 assignment_statement: target ‘=’ expression ‘;’

15 sync_statement: ‘@dotogether’ ‘{’ (assignment_statement | conditional_statement)+ ‘}’

16 conditional_statement: ‘if’ ‘(’ expresssion ‘)’ ‘{’ block ‘}’

17 ‘else’ ‘{’ block+ ‘}’

18 loop_statement: ‘while’ ‘(’ expression ‘)’

19 ‘{’ block+ ‘}’

20 return_statement: ‘return’ expression ‘;’

21

22 // properties

23 property_declaration: precondition | postcondition

24 precondition: ‘@pre’ id ‘{’ property+ ‘}’

25 postcondition: ‘@post’ id ‘{’ property+ ‘}’

26 property: expression | quantified_property

27 quantified_property: (‘forall’|‘exists’) ‘(’ range ‘)’

28 ‘{’ property+ ‘;’ ‘}’

29

30 // expressions

31 expression: term_with_function_call

32 function call: id ‘(’ call_arguments? ‘)’

33 call_argument: id (‘,’ id)*

34

35 argument_list: variable_declaration (‘,’ variable_declaration)*

36 modifier: ‘wire’ | ‘const’

37 specifier: ‘int’ | ‘bool’

38 target: id | target ‘[’ expression ‘]’

39 range: id ‘[’ expression ‘...’ expression ‘]’

Figure 3.2: The T iny imperative language

and properties.

Function calls. ρ does not inline functions; instead, it uses a program counter
mechanism to avoid inlining and reuse the same code and thus the same AIG after
synthesis. Key to that is the transformation of function class as follows. Let f(argsf )
by a call to function declaration fd(argsfd where argsf is a list of expressions passed
as arguments to f , and argsfd is the list of arguments declared in fd. Let ret(fd) be
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Program S

1 int fact (int n) {

2 int result;

3 if (n == 0) {

4 result = 1;

5 } else {

6 result = n * fact(n-1);

7 }

8 return result;

9 }

10

11 y = fact (x);

Program ρ( S )

1 int fact::result [];

2 int fact (int [] n) {

3 if (n[fact::sp] == 0) {

4 result[fact::sp] = 1;

5 } else {

6 n[fact::sp + 1] = n[fact::sp] - 1;

7 fact::sp = fact::sp + 1;

8 call_func(fact);

9 fact::sp = fact::sp - 1;

10 result[fact::sp] = n[fact::sp]

11 * fact::ret[fact::sp+1];

12 }

13 return result[fact::sp];

14 }

15

16 fact::n[0] = x;

17 call_func(fact);

18 y = fact::ret[0];

Figure 3.3: Transformation function ρ on function calls

the return variable of fd, and argsf (i) and argsfd(i) be the i’th argument passed to f
and declared in fd, respectively, for 0 ≤ i ≤ |argsf |.

Consider the assignment statement s = (target := f(argsf )) where target is
the target of the assignment as defined in line 38 of Figure 3.2. The transformation
function ρ(s) is defined as follows:

ρ(s) =

{ (
;
|argsf |
i=0 (argsfd(i) := argsf (i))

)
;

call func(fd) ; (target := ret(fd))
(3.1)

The ; operator represents an ordering of the statements, where s1; s2 means that s1
executes before (or possibly at the same time as) s2. Intuitively, ρ copies the arguments
passed to the call f onto the arguments declared in the function declaration fd. It then
adds the call func(fd) statement, a special statement that redirects the control of
the program to the starting point of fd’s body. It finally assigns that target of s to the
return variable of the function fd.

Recursive functions. Let fd(argsfd) be a recursive function with arguments argsfd ,
and let f(argsf ) be a recursive call to fd, i.e. a call to fd from inside the body of fd.
Using ρ, {P}S{Q} emulates recursion by (1) adding a stack pointer variable spfd that
maintains the recursive depth of the current function call, and (2) increasing the dimen-
sionality of all arguments and local variable of fd by 1. In other words, variables become
arrays and arrays become two dimensional arrays. Subsequently, all assignments and
references to arguments or local variables of fd are replaced by array access terms in-
dexed by the current value of spfd . The recursion depth (i.e. spfd) is incremented
before each recursive call f and decremented once it returns.
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Consider the assignment statement s = (target := f(argsf )) where target is
the target of the assignment as defined in line 38 of Figure 3.2, and f is a recursive call
to fd. The transformation function ρ(s) is then defined as follows:

ρ(s) =


(

;
|argsf |
i=0 (argsfd(i)[spfd + 1] := argsf (i))

)
;

(spfd := spfd + 1) ; call func(fd); (spfd := spfd − 1)

(target := ret(fd)[spfd + 1]) ;

(3.2)

Note that arguments of fd to be assigned are indexed by the future value of the recursion
stack depth pointer (i.e. spfd + 1) before the the pointer is incremented. The same is
applied to the return variable of fd after the pointer has been decremented.

Additionally, consider the assignment statement s = (target := f(argsf ))
where f is a non-recursive call to fd, spfd is guaranteed to have a value of 0 and the
transformation function ρ(s) is defined as:

ρ(s) =

{ (
;
|argsf |
i=0 (argsfd(i)[0] := argsf (i))

)
;

call func(fd); (target := ret(fd)[0]) ;
(3.3)

Figure 3.3 shows an example of applying the transformation function ρ onto
a program containing a recursive function call fact(n) that computes the factorial of
an integer n. The argument n of fact and the local variable result are transformed
into the arrays fact::n and fact::result. fact::sp is the recursive stack pointer
variable added by ρ for the function fact. Local references to n are result are replaced
by the sequence access terms fact::n[fact::sp] and result[fact::sp].

Lines 6-11 of ρ(S) in Figure 3.3 show the result of applying rho on the recursive
function call fact(n-1) on line 6 of the program S. The next value of the argument
n is assigned to the current value of n decremented by 1, as shown in the statement
fact::n[fact::sp + 1] = fact::n[fact::sp] - 1. The stack pointer variable is
then incremented before adding the function call statement call func(fact) that
gives the control to the body of the function fact. Once the function call returns,
the stack pointer variable is decremented, and any reference to the return variable
of fact is replaced by an array access term to the next value of the stack pointer
(fact::sp + 1). Lines 16-18 of S’ shows the result of applying ρ to a non-recursive
call to fact, in which the arguments and return variable of fact are replaced by array
access terms indexed by 0.

Quantifiers. Consider the assignment statement s = (target := Q(i : [t1 . . . t2]){B})
where target is the target variable of the assignment, Q is either ‘forall’ or ‘exists’,
i is a quantified variable, t1 and t2 are terms representing the range of i, and B is a
Boolean FOL formula. ρ(s) is defined as follows:

ρ(s) =


(Qr := true) ; (i := t1) ;

while(i <= t2){ρ (Qr := Qr (&& or ||) B) ; (i := i+ 1)};
(target := Qr)

(3.4)
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Program S

1 y = forall(int i:[0 .. N])

2 { a[i] != e };

Program ρ( S )

1 forall::i = 0;

2 forall::ret = true;

3

4 while (forall::i <= N && forall::ret) {

5 forall::ret = forall::ret

6 && (a[i] != e);

7 forall::i = forall::i + 1;

8 }

9

10 y = forall::ret;

Figure 3.4: Transformation function ρ on universal quantifier

For the quantified expression (Q(i : [t1 . . . t2]){B}), ρ adds a Boolean return variable
Qr that is initialized to true and holds the value of the expression. Then ρ trans-
forms the expression into a while loop that iterates over all possible values of i, and
assigns the return variable Qr to its current value conjuncted or disjuncted with the
value of B). The type of the operation performed is determined by the nature of the
quantifier; conjunction for the universal quantifier (‘forall’) and disjunction for the ex-
istensial quantifier (‘exists’). ρ finally adds the actual assignment statement of target
as target := Qr. Note that ρ is also applied to the update assignment to the variable
Qr in order to handle the cases where B is also quantified or it contains a function call.

Figure 3.4 shows an example of applying the transformation function ρ on a
program S containing an assignment of the variable y to a universal quantifier. Note
that we added the expression forall::ret to the condition of the while loop in order to
allow for early exit of the loop. Additionally, in the case the bounds on the quantified
variable are constants, we optimize the transformation by unrolling the loop into a
single large Boolean expression.

Pre/Post conditions. Consider the T iny precondition and postcondition dec-
larations @pre P {B} and @post Q {F} where B and F are Boolean expressions.
For brevity, we refer by P and Q to the precondition and postcondition delcarations,
respectively. The transformation function ρ is defined as follows:

ρ(P) = ρ (xP := B) (3.5)

ρ(Q) = ρ (xQ := F) ; assert(xP =⇒ xQ) (3.6)

ρ creates for each declaration a Boolean variable that is used to hold its value across
the program’s execution. ρ then replaces the precondition declaration P by a state-
ment that assign its created variable xP to its declared FOL formula B. Similarly, ρ
replaces the postcondition declaration Q by the statement xQ := F . In order to resolve
quantification or function calls in B and F , we also apply ρ to the created statements.

Additionally, ρ adds an assertion statement assert(xP =⇒ xQ) after the
postcondition assignment statement. This assertion statement will not be evaluated,
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instead it used the help {P}S{Q} determine the outputs to pass to the ABC AIG
solver for verification.

All statements and expressions in S that are not mentioned in this Section
are kept unchanged by the transformation function ρ.

3.4 Tranformation to CAIG
After preprocessing, {P}S{Q} transforms the program S ′ = ρ(S) into an equisatisfiable
CAIG program C. Synthesizing an AIG from C is then a direct translation of variables
into bit registers and building their next state function according to the next block
definition in C. {P}S{Q} uses program counter semantics to translate S’ into C. The
program counter is used to ensure the correct sequencing of assignments in the program;
i.e. to provide the concept of time.

Our method assigns a unique label for each statement in the program S’. Let
s be any statement in S’, and let sa, si, sw, and fd be an assignment statement, a
conditional statement, a loop statement and a function declaration in S’, respectively.
Additionally, let e be an array access expression, and let call(fd) be an added call func

statement that calls the function declaration fd. Our method defines the following
functions:

• label(s): The unique label identifying the statement s

• next(s): The label of the statement that directly follows s in the program order.

• condition(si): The Boolean condition of the selection statement si.

• then(si): The label of the first statement in the then code block of si.

• else(si): The label of the first statement in the else code block of si.

• condition(sw): The Boolean condition of the loo statement sw.

• body(sw): The label of of the first statement in the body of the sw.

• last(sw): The last statement in the body of the loop sw.

• target(sa): The target variable of the assignment sa.

• expression(sa: The expression to be assigned to the target of sa.

• body(fd): The label of the first statement in the body of the function fd.

• return(call(fd)): The label of the statement to which the function call statement
should return after calling fd.

• base(e): The array which the expression e is indexing.

• index(e): The index at which the the base of the expression e is indexed.
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Algorithm 1 shows the procedure used in {P}S{Q} to translate a preprocessed
T iny program S’ with a set of variables V and an initial entry statement, into an CAIG
program C, to be used for the synthesis of the equisatisfiable AIG. Intuitively, the wire
declarations, variable definitions and wire definitions are directly moved from S’ to
their corresponding blocks in C. Additionally, in order to model time, {P}S{Q} adds a
new scalar variable to the program S’, the program counter pc. This variable is key to
avoid inlining functions and unrolling loops. It is used to ensure the proper sequencing
of the statements of S’; the current value of the pc variable defines which statement
is to be execute. For example, reassigning the value of pc to the starting point of a
loop’s body allows {P}S{Q} to make use of the same code block (thus the same AIG)
to execute a single loop infinitely many times.

The algorithm starts by building the initialization list of C. It assigns the
program counter variable pc to the label of the entry statement of S’. Then for each
variable v ∈ V that is used before being assigned (i.e. used with an undefined value),
it assigns v to a set of free inputs (AIG primary inputs) who’s values are to be set by
the ABC AIG solver. Note that since variables can be initialized at different points
in the program (and not necessarily at the starting point of the algorithm), we delay
their initialization step into the next block, where these variables will get their initial
value at the appropriate pc value.

Subsequently, the algorithm moves to building the next state block of C. For
each variable v ∈ V , and for each assignment statement s such that target(s) = v, the
next state of v will be expression(s) iff pc == label(s). If at a given statement label, v
is not being assigned, it retains its current value. For example, consider the following
assignment statements for v:

1 (l1): x = 1;

2 (l2): x = 3;

3 (l3): x = 5;

The algorithm builds the next state function of x as the following statement

1 x = (pc == l1)? 1 : (pc == l2)? 3 : (pc == l3)? 5 : x;

After traversing all of S’s variables, the algorithm then builds the next state
assignment for the program counter. At a given statement s, the default behavior
of the pc is to move from the current label label(s) to the label of the statement that
directly follows s, i.e. next(s). Only control statements such as conditional statements,
loop statements, function call statements and return statements are allowed to alter
the default behavior of pc.

Conditional statements alter the value of the program counter based on the
evaluation of their conditional expression. Consider a conditional statement s and let
e = condition(s). When pc is at label(s), its next value is either the label of the first
statement in then then branch of s if e evaluates to true, or to the first statement
in the else branch of s otherwise. Therefore at label(s), the next state of the pc is
defined as (e)? then(s) : else(s).

Similarly, loop statements move the program counter into their body when
their conditional expression evaluates to true, and to their next statement once it is
false. Consider a loop statement s and let e = condition(s). At label(s), the next state
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of pc is defined as (e)? body(s) : next(s). Note that according to the T iny, the loop
statement block is considered as a single statement, and thus the next statement to
follow s would be the first statement outside its body, i.e. its exit point. Additionally,
for the last statement in the body of the loop, its next statement is defined as the loop
statement itself. This ensure that once the pc reaches that last statement in the loop,
it once again evaluates its condition in order to determine whether to exit or stay in
the loop.

Finally, function call statements and return statements redirect the program
counter into the body of the function and to the first statement after the call, respec-
tively. Note that for a non-recursive function, there is at most one active function call
at a time, therefore it is easy to track the label at which the program counter should
return to. For a recursive function, we maintain a stack of function calls and redirect
the control to statement after the call that is on top of the stack.

Post-processing

After constructing the CAIG program C, {P}S{Q} employs a last post-processing
step to resolve array accessing. Given an array access expression a[i] where a is an
array and i is an index, resolving this access expression is to transform it into an array
access where the index is constant. An array access expression with a constant index
is handled as a regular register variable in C.

The first part of algorithm 2 shows the post processing of a reference to an
array access expression e. The algorithm pushes the variable index i outside of the
array access by creating a set of checks for the value of i at each possible index of the
array a, and returning the appropriate array element accordingly.

The second part of algorithm 2 shows the post processing of statement s where
target(s) is an array access of the form a[i]. Since this assignment statement can be to
any of the elements of the array a, as dictated by the value of i, the algorithm creates
an assignment statement for each possible element of a. This ensure that only the
correct element get assigned to the value of expression(e) by creating a check for i at
each possible index of the array.

Figure 3.5 shows an CAIG program C that contains array access assignments
and references. Post-processing transforms the assignment statement on line 14 of the
program Cinto assignment statements over all the elements of the array a, with added
checks on the value of the index i. Also post-processing replaces the expression b[k] in
the right hand side of the assignment statements with the expression (k == 0)? b[0] :
b[1]. This expression checks on the value of k for all possible indices to the array b and
returns the corresponding element.

3.5 CAIG to AIG

Given a bound b on the bit width of variables, {P}S{Q} synthesizes an AIG by a direct
translation of a CAIG program C into a sequential circuit. The synthesis proceeds as
follows. Scalar register variables and array elements are translated into vectors of b bits
registers, while Boolean variables and array elements are directly mapped onto one bit
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Program C

1 int a [2];

2 int b [2];

3 int i, k;

4 @dotogether {

5 a[0] = free_inputs;

6 a[1] = free_inputs;

7 i = free_inputs;

8 k = free_inputs;

9 b[0] = free_inputs;

10 b[1] = free_inputs;

11 }

12

13 @dotogether {

14 a[i] = (pc == l1)? b[k] : a[i];

15 }

C after post-processing

1 int a [2];

2 int b [2];

3 int i, k;

4 @dotogether {

5 a[0] = free_inputs;

6 a[1] = free_inputs;

7 i = free_inputs;

8 k = free_inputs;

9 b[0] = free_inputs;

10 b[1] = free_inputs;

11 }

12

13 @dotogether {

14 a[0] = (i == 0)?

15 ((pc == l1)? ((k == 0)? b[0] : b[1]) : a[0])

16 : a[0];

17 a[1] = (i == 1)?

18 ((pc == l1)? ((k == 0)? b[0] : b[1]) : a[1])

19 : a[1];

20 }

Figure 3.5: Post processing of a CAIG C

registers. The init block of C is used to determine the initial value of the instantiated
registers.

The next block of C infers the next state functions for all registers in the
AIG, including the program counter. For each variable, we translate the expression of
its next state function into a hierarchy of multiplexers that reflect the ternary choice
expressions in C’s assignment expressions.

Finally, {P}S{Q} builds the primary output of the AIG as the negation of
the assertion statement introduced in the pre-processing step. Given a precondition
P and a postcondition Q, the primary output o will be ¬(xP =⇒ xQ) where xP and
xQ are the precondition and postcondition variables introduced in the pre-processing
step.

23



Algorithm 1 T iny to CAIG transformation algorithm

1: Input: T iny program S’, entry statement
2: Output: CAIG program C
3:

4: // build the initialization list
5: init list []
6: for all v ∈ V do
7: if used before assigned(v) then
8: init list.insert (“v = free inputs”)
9: end if

10: end for
11: init list.insert (“pc = label(entry statement)”)
12:

13: // build the next state list for variables
14: next state list []
15: for all v ∈ V do
16: nextv = “v = ”
17: for all Assignment statement s such that target(s) = v do
18: nextv+ = “(pc == label(s))? expression(s) : ”
19: end for
20: nextv+ = “v”
21: next state list.insert (nextv)
22: end for
23:

24: // build the next state for the program counter
25: npc = “pc = ”
26: for all statement s do
27: if is conditional statement (s) then
28: npc+ = “(pc == label(s))? (condition(s)? then(s) : else(s)) : ”
29: else if is loop statement (s) then
30: npc+ = “(pc == label(s))? (condition(s)? body(s) : next(s)) : ”
31: else if is function call(s) then
32: fd := function declaration of (s)
33: npc+ = “(pc == label(s))? (body(fd)) : ”
34: else if is return statement (s) then
35: fd := function declaration of (s)
36: npc+ = “(pc == label(s))? (return(call(fd))) : ”
37: else
38: npc+ = “(pc == label(s))? (next(s)) : ”
39: end if
40: end for
41: next state list.insert (npc)
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Algorithm 2 Array access resolving algorithm

1: // array access on right hand side
2: Input: Array access expression e
3: Output: Array access expressions e′ with constant indexing
4: a := base(e)
5: i := index(e)
6: N := size(a)− 1
7: for j ∈ 0 . . . N − 1 do
8: e′+ = (i == j)? a[j] :
9: end for

10: e′+ = a[N ]
11:

12: // array access on left hand side
13: Input: Statement of the form a[i] = e, e is an expression
14: Output: A list of statements where all array accesses have a constant index
15: List of statements []
16: N := size(a)− 1
17: for j ∈ 0 . . . N − 1 do
18: List of statements.insert (a[j] = (i == j)? e : a[j])
19: end for
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Chapter 4

BIP{I}: BIP to AIG

4.1 BIP - Behavior Interaction Priority

We recall the necessary concepts of the BIP framework [8]. BIP allows to construct
systems by superposing three layers of modeling: Behavior, Interaction, and Priority.
The behavior layer consists of a set of atomic components represented by transition
systems. The interaction layer models the collaboration between components. Interac-
tions are described using sets of ports. The priority layer is used to specify scheduling
policies applied to the interaction layer, given by a strict partial order on interactions.

Figure 4.1 shows a traffic light controller system modeled in BIP. It is com-
posed of two atomic components, timer and light. The timer counts the amount of
time for which the light must stay in a specific state (i.e. a specific color of the light).
The light component determines the color of the traffic light. Additionally, it informs
the timer about the amount of time to spend in each location through a data transfer
on the interaction between the two components.

timer done

[true] done.n := done.m

done
[true] [true]

done
m := 5

done
m := 10

G

YR

m := 3
[true]

done

[t ≥ n]

t := t+ 1

s0

[t < n]
timer

done
t := 0

Figure 4.1: Traffic light controller BIP system
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4.1.1 Component-based Construction

BIP offers primitives and constructs for modeling and composing complex behaviors
from atomic components. Atomic components are Labeled Transition Systems (LTS)
extended with C functions and data. Transitions are labeled with sets of communication
ports. Composite components are obtained from atomic components by specifying
connectors and priorities.

Atomic Components.

An atomic component is endowed with a finite set of local variables X taking values in
a domain Data. Atomic components synchronize and exchange data with each others
through ports.

Definition 8 (Port). A port p[xp], where xp ⊆ X, is defined by a port identifier p and
some data variables in a set xp (referred to as the support set). We denote by p.X the
set of variables assigned to the port p, that is, xp.

Definition 9 (Atomic component). An atomic component B is defined as a tuple (P,L,
T,X, {gτ}τ∈T , {fτ}τ∈T ), where:

• (P,L, T ) is an LTS over a set of ports P . L is a set of control locations and
T ⊆ L× P × L is a set of transitions.

• X is a set of variables.

• For each transition τ ∈ T :

– gτ is a Boolean condition over X: the guard of τ ,

– fτ = {(x, fx(X)) | x ∈ X} where (x, fx(X)) ∈ fτ expresses the assignment
statement x := fx(X) updating x with the value of the expression fx(X).

For τ = (l, p, l′) ∈ T a transition of the internal LTS, l (resp. l′) is referred to
as the source (resp. destination) location and p is a port through which an interaction
with another component can take place. Moreover, a transition τ = (l, p, l′) ∈ T in the
internal LTS involves a transition in the atomic component of the form (l, p, gτ , fτ , l

′)
which can be executed only if the guard gτ evaluates to true, and fτ is a computation
step: a set of assignments to local variables in X.

In the sequel we use the dot notation. Given a transition τ = (l, p, gτ , fτ , l
′),

τ.src, τ.port , τ.guard , τ.func, and τ.dest denote l, p, gτ , fτ , and l′, respectively. Also,
the set of variables used in a transition is defined as ϕ(fτ ) = {x ∈ X | x := fx(X) ∈ fτ}.
Given an atomic component B, B.P denotes the set of ports of the atomic component
B, B.L denotes its set of locations, etc.

Given a set X of variables, we denote by X the set of valuations defined on
X. Formally, X = {σ : X → Data}, where Data is the set of all values possibly taken
by variables in X.
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Semantics of Atomic Components. The semantics of an atomic component is
an LTS over configurations and ports, formally defined as follows:

Definition 10 (Semantics of Atomic Components). The semantics of the atomic com-
ponent B = (P,L, T,X, {gτ}τ∈T , {fτ}τ∈T ) is defined as the labeled transition system
SB = (QB, PB, TB), where:

• QB = L×X, where X denotes the set of valuations on X,

• PB = P ×X denotes the set of labels, that is, ports augmented with valuations
of variables,

• TB is the set of transitions defined as follows. TB = {((l′, v′), p(vp), (l, v)) ∈
QB × PB × QB | ∃τ = (l′, p[xp], l) ∈ T : gτ (v′) ∧ v = fτ (v′/vp)}, where vp is a
valuation of the variables of p.

A configuration is a pair (l, v) ∈ QB where l ∈ L is a control location, v ∈ X

is a valuation of the variables in X. The evolution of configurations (l′, v′)
p(vp)→ (l, v),

where vp is a valuation of the variables attached to the port p, is possible if there exists
a transition (l′, p[xp], gτ , fτ , l), such that gτ (v′) = true. As a result, the valuation v′ of
variables is modified to v = fτ (v′/vp).

Creating composite components.

Assuming some available atomic components B1, . . . , Bn, we show how to connect the
components in the set {Bi}i∈I with I ⊆ [1, n] using an interaction. An interaction a is
used to specify the sets of ports that have to be jointly executed.

Definition 11 (Interaction). An interaction a is a tuple (Pa, Ga, Fa), where:

• Pa ⊆ ∪ni=1Bi.P is a nonempty set of ports that contains at most one port of
every component, that is, ∀i : 1 ≤ i ≤ n : |Bi.P ∩ Pa| ≤ 1. We denote by
Xa = ∪p∈Pap.X the set of variables available to a,

• Ga : Xa → {true, false} is a guard,

• Fa : Xa → Xa is an update function.

Pa is the set of connected ports called the support set of a. For each i ∈ I, xi
is a set of variables associated with the port pi.

Definition 12 (Composite Component). A composite component is defined from a set
of available atomic components {Bi}i∈I and a set of interactions γ = {aj}j∈J . The
connection of the components in {Bi}i∈I using the set γ of connectors is denoted by
γ({Bi}i∈I).

Definition 13 (Semantics of Composite Components). A state q of a composite com-
ponent γ({B1, . . . , Bn}), where γ connects the Bi’s for i ∈ [1, n], is an n-tuple q =
(q1, . . . , qn) where qi = (li, vi) is a state of Bi. Thus, the semantics of γ({B1, . . . , Bn})
is precisely defined as the labeled transition system S = (Q, γ,−→), where:
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• Q = B1.Q× . . .×Bn.Q,

• −→ is the least set of transitions satisfying the following rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({vpi}i∈I)
∀i ∈ I : qi

pi(vi)−→ i q
′
i ∧ vi = F ia({vpi}i∈I) ∀i 6∈ I : qi = q′i

(q1, . . . , qn)
a−→ (q′1, . . . , q

′
n)

where vpi denotes the valuation of the variables attached to the port pi and F ia is
the partial function derived from Fa restricted to the variables associated with pi.

The meaning of the above rule is the following: if there exists an interaction
a such that all its ports are enabled in the current state and its guard evaluates to
true, then the interaction can be fired. When a is fired, all involved components evolve
according to the interaction and uninvolved components remain in the same state.

Notice that several distinct interactions can be enabled at the same time,
thus introducing non-determinism in the product behavior. One can add priorities to
reduce non-determinism. In this case, one of the interactions with the highest priority
is chosen non-deterministically.1

Definition 14 (Priority). Let S = (Q, γ,−→) be the behavior of the composite com-
ponent γ({B1, . . . , Bn}). A priority model π is a strict partial order on the set of
interactions A. Given a priority model π, we abbreviate (a, a′) ∈ π by a ≺π a′ or a ≺ a′
when clear from the context. Adding the priority model π over γ({B1, . . . , Bn}) defines
a new composite component π

(
γ({B1, . . . , Bn})

)
noted π(S) and whose behavior is de-

fined by (Q, γ,−→π), where −→π is the least set of transitions satisfying the following
rule:

q
a−→ q′ ¬

(
∃a′ ∈ A,∃q′′ ∈ Q : a ≺ a′ ∧ q a′−→ q′′

)
q

a−→π q
′

An interaction a is enabled in π(S) whenever a is enabled in S and a is maximal
according to π among the active interactions in S.

Finally, we consider systems defined as a parallel composition of components
together with an initial state.

Definition 15 (System). A BIP system S is a tuple (B, Init , v) where B is a composite
component, Init ∈ B1.L × . . . × Bn.L is the initial state of B, and v ∈ XInit where
XInit ⊆ ∪ni=1Bi.X.

4.2 BIP to CAIG
Given a BIP system S = (B, Init, v), BIP{I} translates S into an CAIG program
C with its own customized execution engine. Listing 4.1 shows the algorithm used

1The BIP engine implementing this semantics chooses one interaction at random, when faced
with several enabled interactions.
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by BIP{I} to implement this translation. The algorithm is divided into 4 steps:
(1) wire and variable declarations, (2) wire definitions, (3) init block and (4) next

block construction. The lists decl-list, wiredef-list, init-list and next-list

represent the list of declarations and lists of statements used in the declaration, wire
definition, init and next blocks of C, respectively.

Given a port p from the system S, we define the function interaction(p) =
{a ∈ γ | p ∈ a.P} where γ is the set of interactions in the composite component B
of S. This function returns the set of interactions in which the port p takes part.
Additionally, the function component(p) = Bi such that p ∈ Bi.P for i ∈ I defines the
component to which the port p belongs. Furthermore the function transitions(p) =
{τ ∈ component(p) | τ ∈ B.T ∧ τ.port = p} defines the set of transitions τ in the
component B = component(p) such that τ is labeled by p.

Intuitively, for each component Bi in B, BIP{I} defined a scalar variable Bi.l
that represents the control location l ∈ Bi.L at which the component Bi is currently
at. Additionally, it declares a scalar variable Bi.xj for each variable xj ∈ Bi.X. The
algorithm defines the initial values for control locations and data variables based on
the Init relation of the system S. It thus builds the initialization list by adding the
assignments “Bi.` := Init.Bi” and “Bi.xj := v(Bi.xj)” for j ∈ [1 . . . |Bi.X|] and i ∈
[1 . . . |I|], where Init.Bi is the initial location from which Bi starts and v(Bi.xj) is the
initial valuation of the variable xj ∈ Bi.X.

For each atomic component Bi in B, and for every port p ∈ Bi.P , BIP{I} de-
fines two Boolean wires. (1) The port enablement wire (Bi.pj .e) that is set to true iff
the port pj ∈ Bi is enabled. The port pj is enabled iff there exists a transition
τ ∈ transitions(pj) such that the guard of τ evaluates to true and Bi is in the con-
trol location l = τ.src. (2) The port selected wire (Bi.pj .s) that is set to true iff
the port pj ∈ Bi is selected. The port pj is selected iff there exists an interaction
a ∈ interactions(pj) that is selected for execution by the BIP engine.

For each interaction ak ∈ γ, BIP{I} defines three Boolean wires. (1) The
interaction enablement wire, ie[k], that is set to true iff the interaction ak is enabled.
ak is enabled iff the guard of the interaction ak.guard evaluates to true and all ports
p ∈ ak.P are enabled. (2) The interaction priority wire, ip[k], that is set to true
iff the interaction ak is enabled and there does not exist any interaction aj ∈ γ
such that aj is enabled and has a higher priority than ak. (3) The interaction se-
lected wire, is[k], that is set to true iff the interaction ak is selected for execution.
Given a set of enabled interactions with equal priority, the BIP engine synthesized
by BIP{I} selects interactions for execution based on the following procedure. It
makes use of a non-deterministic selector (the selector scalar wire defined on line
10 of Listing 4.1) and selects the active interaction aj having an index j equal to
the non-deterministic value of the selector wire. If no such interaction exists, the en-
gine selects the interaction with the largest index. This is depicted by the assignment
“is[j] = ip[j]∧((selector = j) ∧ (¬(ip[selector] ∧ ∀k > j : ¬ip[k]))) ” on line 32 of List-
ing 4.1.

BIP{I} synthesizes a BIP execution engine that is based on a two clock
cycles approach. In the first cycle, the engine selects an interaction a ∈ γ and executes
its actions. In the second cycle, the engine checks for possible transitions τ ∈ Bi
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such that τ.port is selected, for i ∈ [1 . . . |I|], and executes their actions τ.actions.
Contrarily to the BIP engine in [8], BIP{I}’s engine executes the actions of all possible
transitions simultaneously. Additionally, the engine updates the locations of the atomic
components Bi of B in accordance with the executed transitions; i.e., executing a
transition τ ∈ Bi.L transitions Bi from control location l1 = τ.src to location l2 =
τ.dest.

BIP{I} updates the values of the data variables in accordance with the
actions of the executed interactions and transitions. An assignment statement σ ∈
ak.actions where ak ∈ γ is an interaction executes and updates the value of its target
data variable iff the interaction ak is selected for execution, i.e., when is[k] evaluate to
true and the engine is in its first cycle. Similarly σ ∈ τ.actions where τ is a transition
executes and update the value of its target data variable iff the transitions τ is allowed
to execute, i.e., when τ.port is selected and the engine is in its second cycle. Updates
to data variable are shown on lines 61 and 69 of the algorithm in Listing 4.1.

BIP{I} uses the same AIG synthesis engine used in {P}S{Q} in order to
synthesize an AIG from the generated CAIG program C. If the developer wishes the
check for deadlock freedom, BIP{I} adds an assertion statement to C to check that
at each cycle, there is at least one interaction enabled for execution. Additionally,
developers can also add custom assertions defined as FOL properties. These assertions
are handled in the same manner that {P}S{Q} handles them, and BIP{I} uses the
ABC AIG solver to check for the validity of the assertions.

4.3 Illustrative Example

Table 4.1 shows a sample execution trace of {P}S{Q}’s BIP engine on the traffic light
example presented in Figure 4.1. The variables timer.t, timer.n, timer.`, light.` and
light.m represent t, n and the control location variable in the timer component, and
the control location variable and m in the light component, respectively. We start at
cycle c where that state of the BIP system is

(timer.t = 9, timer.n = 10, timer.` = s0, light.` = G, light.m = 3)

and we assume that the execution engine has picked the interaction involving the timer
port of the timer component has been selected and executed.

At cycle c+ 1, the engine executes the internal transition in the timer compo-
nent that corresponds to the timer.timer port being selected and the component is in
location s0. Therefore the variable timer.t is incremented and the component remains
in the same control location s0. Since the light component had no ports involved in
the executed interaction, it will not change state.

At cycle c + 2, the guard t ≥ n is enabled and thus the timer.done and
light.done ports are enabled. The engine selects the interaction connecting the two
components for execution. It executes the actions associated with this interaction and
transfers the value of the variable done.m to the variable done.n.

At cycle c+ 3, the engine executes the interaction transitions that correspond
to the interaction executed at cycle c+2. In the timer component, the variable timer.t
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Table 4.1: Sample of BIP{I} execution

Cycle timer.t timer.n timer.` light.` light.m
c 9 10 s0 G 3

c+ 1 10 10 s0 G 3
c+ 2 10 3 s0 G 3
c+ 3 0 3 s0 Y 5

is reset 0 and the control location remains in location s0. In the light component,
the variable light.m takes the value 5 and the control location moves to location Y
corresponding to the yellow light being displayed.

Listing 4.2 shows a code snippet from the code that BIP{I} generates when
applied to the traffic light controller BIP system shown in Figure 4.1. Lines 2 to 19 show
the wire definitions for the system. The interaction labeled by 0 corresponds to the
interaction involving the timer.timer port, while the interaction labeled 1 correspond to
the interaction involving the ports timer.done and light.done. Interaction 0 is enabled
(ie[0]) when its guard is enabled (true in this case) and the port timer.timer that it
involves is enabled, i.e., the wire timer.timer.e is set to true. Similarly, interaction 1
is enabled (ie[1]) when its guard is enabled and the ports timer.done and light.done
are enabled (timer.done.e ∧ light.done.e).

The wires ip[0] and ip[1] are asserted when each of the two interactions is
prioritized. We assume in our case that interaction 1 has a higher priority, and thus
interaction 0 is only prioritized when it is enabled and interaction 1 is not. In any other
case, it is interaction 1 that is prioritized by the engine.

Furthermore, the wires is[0] and is[1] represent the execution of the engine’s
interaction selection procedure. The wire selector is a non-deterministic wire used by
the engine to make non-deterministic choices when several interactions are prioritized.
The interaction 0 is selected when it is prioritized and either the non-deterministic
selector selects it (selector == 0) or the interaction 1 is not prioritized. The interaction
1 is selected when it is prioritized and either the selector selects it (selector == 1) or
the selector wire has selected an interaction that is not prioritized. Since interaction 1
has the largest index, it is directly selected when the value of the selector corresponds
to an interaction that is not prioritized (¬ip[selector]).

The wires component.port.e and component.port.s represent the port enabled
and selected wires, respectively. For example, the timer port in the timer component
(timer.timer.e) is enabled when the component is in control location s0 and the guard
timer.t < n is enabled. Additionally, this port is selected when the interaction 0 in
which it is involved has been selected (timer.timer.s = is[0]).

Lines 21 to 38 show the next state functions for each of the variables and
control variables of the components of the system. In the first execution cycle (cycle ==
0), the engine selects and executes interactions. In the second execution cycle (cycle ==
1), it executes internal transitions. When the interaction 1 is selected (is[1]) and the
engine is in its first cycle, the value of the variable light.m is transfered to the variable
timer.n. Otherwise, timer.n retains its current value.
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In the internal transition execution cycle, the next state value of the variable
light.m is dictated by the control location at which the component is currently at,
and whether the port light.done is selected (equivalently the interaction 1 has been
selected). For example, if the port light.done is selected and the component is at the
yellow light location (Y ), the value of light.m will be 10.

Finally, the control location variables timer.` and light.` are also updated
according to the internal transitions of the atomic components. For example when the
light.done port is selected and the light component is in the green control location (G),
light.` moves from G to Y .
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Listing 4.1: BIP to CAIG transformation algorithm
1 Input : (π

(
γ({Bi}i∈I)

)
), where γ = {aj}j∈J

2 Output : CAIG program C
3

4 /* **************** declarations ***************** */

5 // interaction wires

6 decl -list += wire bool ie[|J|]; // interaction enablement

7 decl -list += wire bool ip[|J|]; // interaction priority

8 decl -list += wire bool is[|J|]; // interaction selected

9

10 decl -list += wire int selector; // non -deterministic priority selector

11

12 decl -list += bool cycle; // cycle denotes whether we are executing an

interaction or a transition

13

14 foreach i ∈ [1..|I|]
15 foreach j ∈ [1..|Bi.P |]
16 decl -list += wire bool Bi.pj .e; // port enablement

17 decl -list += wire bool Bi.pj .s; // port selected

18

19 decl -list += int Bi.`;
20 foreach j ∈ [1..|Bi.X|]
21 decl -list += int Bi.xj; // variable registers

22

23 /* **************** wire list definitions ***************** */

24 foreach j ∈ [1..|J |]
25 wiredef -list += ie[j] := aj .guard ∧

∧
p∈ai.P component(p).p.e

26 wiredef -list += ip[j] := ie[j] ∧ (∀k 6= j : ie[k]⇒ ak < aj)
27 wiredef -list += is[j] := ip[j] ∧ (selector = j ∨ (¬ip[selector] ∧ ∀k > j : ¬ip[k])
28

29 foreach i ∈ [1..|I|]
30 foreach j ∈ [1..|Bi.P |] // where Bi.P = {p1, . . . , p|Bi.P |}
31 wiredef -list += Bi.pj .e :=

∨
τ∈transitions(Bi.p)

τ.guard ∧Bi.` = τ.src;

32 wiredef -list += Bi.pj .s :=
∨
ak∈interactions(Bi.pj)

is[k];

33

34 /* **************** init list definitions ***************** */

35 init -list += cycle := 0;
36 foreach i ∈ [1..|I|]
37 init -list += Bi.` := Init.Bi;
38 foreach j ∈ [1..|Bi.X|]
39 init -list += Bi.xj := v(Bi.xj); // v is the initial valuation

40

41 /* **************** next list definitions ***************** */

42 foreach i ∈ [1..|I|]
43 foreach j ∈ [1..|Bi.X|]
44 st = Bi.xj := (cycle = 0)?

45 foreach k ∈ [1..|J |]
46 foreach assignment σ ∈ ak.action
47 i f (Bi.xj = σ.term)

48 st += is[k]?σ.expr :
49

50 foreach τ ∈ Bi.T
51 foreach assignment σ ∈ τ.action
52 i f (Bi.xj = σ.term)

53 st += Bi.port(τ).s?σ.expr :
54 st += Bi.xj;
55

56 st += Bi.` := (cycle = 1)?
57 foreach τ ∈ Bi.T
58 st += Bi.port(τ).s? τ.dest :
59 st += Bi.`
60

61 next -list += st;

62 next -list += cycle := ¬cycle;

34



Listing 4.2: Sample of BIP{I} generated code
1 /** Wire definitions **/

2 ie[0] = true ∧ timer.timer.e
3 ie[1] = true ∧ timer.done.e ∧ light.done.e
4

5 ip[0] = ie[0] ∧ ¬ie[1]
6 ip[1] = ie[1]
7

8 is[0] = ip[0] ∧ ((selector == 0) ∨ (¬ip[selector] ∧ ¬ip[1]))
9 is[1] = ip[1] ∧ ((selector == 1) ∨ (¬ip[selector]))

10

11 timer.timer.e = (timer.` == s0) ∧ (t < n)
12 timer.done.e = (timer.` == s0) ∧ (t ≥ n)
13 light.done.e = true ∧ ((light.` == G)
14 ||(light.` == R)
15 ||(light.` == Y ))
16

17 timer.timer.s = is[0]
18 timer.done.s = is[1]
19 light.done.s = is[1]
20

21 /** Next state functions: Interactions **/

22 timer.n = (cycle == 0)?(is[1]?light.m : timer.n) : timer.n
23

24 /** Next state functions: Transitions **/

25 timer.t = (cycle == 1)?
26 ((timer.timer.s)?(timer.t+ 1) :
27 ((timer.done.s)?0 : timer.t)) : timer.t;
28 light.m = (cycle == 1)?
29 ((light.done.s ∧ light.` == G)?5 :
30 ((light.done.s ∧ light.` == Y )?10 :
31 ((light.done.s ∧ light.` == R)?3 : light.m))) : light.m
32 timer.` = (cycle == 1)?
33 ((timer.timer.s)?s0 :
34 ((timer.done.s)?s0 : timer.`)) : timer.`
35 light.` = (cycle == 1)?
36 ((light.done.s ∧ light.` == G)?Y :
37 ((light.done.s ∧ light.` == Y )?R :
38 ((light.done.s ∧ light.` == R)?G : light.`))) : light.`
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Chapter 5

Implementation

This chapter discusses the implementation of {P}S{Q} and BIP{I}. It highlights the
main design options and gives a brief introduction to the usage of each of the tools.

5.1 {P}S{Q}
Figure 5.1 shows the overall architecture of the {P}S{Q} tool. We implemented a
parser for T iny using ANTLR [49]. Given a program S and an FOL precondition
postcondition pair (P,Q), the parser generates a control flow graph (CFG) GS repre-
senting the different control paths that can be taken in S. The code transformation
engine in {P}S{Q} operates on GS and builds a CFG G′S in which all function calls,
recursive functions, quantifiers and specifications have been resolved.

Given a bound b on the data width of variables in S, G′S is then translated
into an equivalent CAIG CFG G′′S in accordance with the translation algorithms pre-
sented in Section 3.4. We use the AIG API provided in ABC to translate G′′S into an
equisatisfiable AIG C. We check the consistency and sanity of C using the provided
ABC checks, and can thus start performing synthesis and verification procedures. If
the verification is conclusive, either a proof for S |= (P,Q)|b has been established, or a
counterexample has been generated. The user can visualize the generated counterex-
ample using the Gtkwave tool for debugging before fixing the code and re-initiating

Proof

cex
Visualization

Valid

Resource limit

Debug

Synthesis
and Verification

No conclusive

result

Code transformation Translation to CAIGT iny parser

Synthesis into AIG

Figure 5.1: Architecture of {P}S{Q}

36



1 class test {

2 int x;

3 int y;

4

5 void main ()

6 {

7 int z;

8

9 @pre add {

10 x > 0 && y > 0;

11 }

12

13 z = x + y;

14

15 @post add {

16 z > x && z > y;

17 }

18 }

19 };

Figure 5.2: Example source code

the verification procedure again. In the case where ABC fails to provide a conclusive
result, the user can retry the verification procedures using higher computational and
architectural resources if available. We implemented {P}S{Q} entirely in C++.

A short tutorial

{P}S{Q} is equipped with an interactive front-end that uses the GNU readline li-
brary [50] and aims at providing users with a user friendly command based interface
to parse input files, start synthesis and verification procedures, and explore counter
examples. Each command has a set of input arguments that can be controlled by the
user to customize the synthesis and verification engines.

In addition, {P}S{Q} supports a batch execution mode where it takes an
input file containing a set of commands, one per line, and executes them on behalf of
the user without the need for going through the interactive interface.

Figure 5.2 shows a simple example program that adds to positive integers x

and y and checks that the result is larger than both. The class keyword is required
for future support of object oriented programming, and currently has no effect on the
rest of the source code. The main function specifies the entry of the program and is
the only function that is allowed and required to be of void return type, and thus does
not include a return statement.

Starting {P}S{Q} in interactive mode can be done using the --int argument
flag as follows:

./run --int

### This is {P}S{Q} version 1.1.0 brought to you by

### the Software Analysis and Research Lab (SARLA) at

### the American University of Beirut (AUB).

### This version was compiled on May 2 2014 08:02:00
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{P}S{Q}>

The help command lists all of the available {P}S{Q} commands. The description of
each command can be viewed by passing it the --help or -h command line argument.
We start by parsing the source code presented in figure 5.2 using the read command,
and we pass it the name of the source file using -i flag:

{P}S{Q}> read -i add.c

{P}S{Q}::Parsing file add.c...

{P}S{Q}::Parsing successful...

Next we start the synthesis and verification engine using the start prove command, to
which we pass our customized data width bounds. {P}S{Q} supports bounds on the
data width of variables, on the number of elements in the arrays, and on the recursion
depth of recursive functions. It also allows users to alter some flags that enable and
disable array index checks, unsigned integer overflow checks and unrolling of quantifiers
if possible. We start the synthesis and verification procedures with a data bit width on
variables of 4 and with all checks enabled:

{P}S{Q}> start_prove -b 4

*** Warning! Using default recursion check depth = 3

{P}S{Q}: Removed 0 dangling nodes from code graph!

+----------------------------------------------------------------------+

Configuration parameters:

-------------------------

Abc Debugging: Disabled

Index Checking: Enabled

Overflow Checking: Enabled

Unroll quantifiers: Yes

Group conditions: Yes

Check termination: No

SD Computation: No

Latch bit width: 4

Array Bound: 15

Stack Limit: 15

Program Counter bit width: 4

+----------------------------------------------------------------------+

{P}S{Q} prints the list of configuration parameters that it is going to use for synthesis
and verification. The issued warning draws the user’s attention to the fact that the
default value for the depth of the recursion check is 3. This value is used to set a bound
on the maximum depth that {P}S{Q} will explore in order to determine whether a
function is indirectly recursive or not.

Once the start prove command terminates, {P}S{Q} has generated the
AIG C and has linked it with ABC in order to apply reduction and proof algorithms.
{P}S{Q} redirects all commands that are prefixed with abc to the ABC model checker.
Reducing and proving C is done as follows:

{P}S{Q}> abc balance

Calling ABC with the following command

balance

{P}S{Q}> abc ssweep -r

Calling ABC with the following command

ssweep -r

{P}S{Q}> abc print_stats
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Calling ABC with the following command

print_stats

(null) : i/o = 8/ 1 lat = 18 and = 129 lev = 10

{P}S{Q}> abc dprove

Calling ABC with the following command

dprove

Output 0 of miter "(null)" was asserted in frame 3. Time = 0.00 sec

Networks are not equivalent.

We have applied the balancing and structural register sweeping reduction algorithms
on the generated AIG before calling the proof procedure dprove. ABC has detected a
counterexample that asserts the output of C in 3 time frames. We can dump the values
of the counterexample in a vcd file that can be read by the Gtkwave waveform viewer
using the debug− oadd.vcd command. The counterexample shows that the values of x
and y are 14 and 6 respectively. Although this does not violate the postcondition Q, it
creates an overflow exception since that the largest representable unsigned integer with
a data bit-width of 4 is 15, i.e., the addition 14 + 6 overflows. We resort to making
the precondition Pstronger in order to resolve the overflow. Adding the condition
x < 15− y to Pwould be enough to remove the overflow exception. We fix the source
code accordingly and rerun the verification procedure using the interpolation proving
algorithm:

{P}S{Q}> abc balance

Calling ABC with the following command

balance

{P}S{Q}> abc ssweep -r

Calling ABC with the following command

ssweep -r

{P}S{Q}> abc int

Calling ABC with the following command

int

Property proved. Time = 0.05 sec

Running the above commands in batch mode can be easily done by saving
the commands in a text file, one per line, and then passing the --batch command line
argument along with the name of the file to {P}S{Q}.

Command line reference

Table 5.1 provides a reference for the command line interface options in {P}S{Q}.
The list of command line options that can be passed to each of these commands can
be retrieved by passing the -h flag to the command for help.

5.2 BIP{I}
We implemented BIP{I} in JAVA and used the BIP parser provided freely in [51].
Given an input BIP program S, the parser generates a parse graph G. BIP{I} tra-
verses G and translates S into an equivalent CAIG program S’. We then use the
same synthesis engine in {P}S{Q} to synthesize an equisatisfiable AIG circuit C that
is passed to ABC for sequential synthesis and verification.

BIP{I} is equipped with a command line interface that accepts a set of
configuration options. It takes the name of the input BIP file, optional configuration
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Table 5.1: Summary of {P}S{Q} commands

Command Description
abc cmd Call ABC with the command cmd

echo str Print str to the standard output
help Display a list of available commands
read Parse an input file and generate a code graph
print time Print the elapsed time in the last command and the total

time elapsed
print conf Print the current configuration of {P}S{Q}
prove status Print the status of the current proving session
sim status Print the status of the current simulation session
start prove Start a proving session
start sim Start a simulation session
sim variable Print variable values for a range of simulation frames
stop prove Stop the current proving session
stop sim Stop the current simulation session
debug Debug the counter example generated from the current

proving session
quit,exit Exit the {P}S{Q} environment

flags and an option to generate C++ emulation code. After parsing the input file,
{P}S{Q} performs synthesis steps and generates an output CAIG file. We then pass
this file to {P}S{Q} to synthesize the AIG circuit C and call ABC for reduction and
verification. BIP{I} makes use of the same debugging interface provided by {P}S{Q}
in order to allow users to visualize counterexamples if any is return by ABC.

Additionally, {P}S{Q} supports the generation of C++ emulation code. It
allows the users to guide the execution engine by providing a guide file that lists the
order in which interactions are to take place. In case no such file is provided, the
emulator uses a random number generator to choose an interaction to execute in case
several candidates are available. BIP{I} also allows users to set a bound on the number
of clock cycles to execute in the emulation code. Furthermore, {P}S{Q} allows users
to specify whether to initialize the variables in the atomic components or to leave them
as free inputs. Figure 5.3 shows BIP{I}’s command line options along with their
description and an example usage.
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##Usage

‘java -jar bip-to-abc.jar [options] input.bip output.abc [property.txt]‘

where:

input.bip = input BIP file name (required)

output.abc = ABC file name to be generated (required)

property.txt = Pre and Post condition written in two different lines (optional)

and options are:

-? prints usage to stdout; exits (optional)

-emulator <s> Generate emulation code output.abc.cpp (optional)

- guide.txt: indices of interactions assigned to selector

- integer <= 0: infinite exection

- integer > 0: number of cycles to be executed

-h prints usage to stdout; exits (optional)

-help displays verbose help information (optional)

-initialize-vars Initialize free variables (optional)

-version displays command’s version (optional)

##Example

‘java -jar bip-to-abc.jar -initialize-vars -emulator=guide input.bip output.abc property.txt’

‘java -jar bip-to-abc.jar -o -i -e=guide input.bip output.abc property.txt’

‘java -jar bip-to-abc.jar -o -i -e=0 input.bip output.abc property.txt’

‘java -jar bip-to-abc.jar -o -i -e=30 input.bip output.abc property.txt’

‘java -jar bip-to-abc.jar -o -e=guide input.bip output.abc’

Figure 5.3: BIP{I}’s command line options
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Chapter 6

{P}S{Q} Results

We evaluate {P}S{Q} against three different program verification benchmarks. We
first present a case study of linear and binary search and compare {P}S{Q}’s results
with those obtained from CBMC. The second set of benchmarks contains standard
functions such as searching, sorting, linked list operations and array partitioning. The
third set contains benchmarks from the second competition on Software Verification
(SV-COMP 2013) [52], a competition aimed at the thorough evaluation of automatic
program verification tools. We ran all experiments on an Intel Core i7 machine with 8
GB memory.

6.1 Searching: {P}S{Q} and CBMC

The programs S1 and S2 in Figures 6.1 and 6.2 show the linear search and binary search
algorithms annotated with appropriate preconditions and postconditions, respectively.
The precondition in S1 ensures that the provided size n is valid, i.e., positive and smaller
than the largest allowed array size. The precondition in Pm2 checks that the provided
size n is valid and that the array a is sorted in ascending order. The postcondition in
both S1 and S2 checks that when the returned index rv is between 0 and the size n,
then array element at the index, a[rv], is equal to the element e to search for. It also
checks that when rv is invalid, the element e is not present in the array a.

We use {P}S{Q} and CBMC to verify that the programs S1 and S2 satisfy
the precondition-postcondition pairs provided. We make use of the assume statement
CPROVER assume in CBMC to implement the preconditions, and we encode the quan-

tifiers as while loops. In {P}S{Q}, we use the dedicate property grammar and the
FOL support to write the specifications. We implement the check precondition =⇒
postcondition as an assertion statement in CBMC.

We compare the results obtained from {P}S{Q} and CBMC in terms of the
problem size and verification time. The problem size is defined as the number of vari-
ables and clauses in the generated CNF formulae in CBMC, and the number of latches,
AND gates and logic levels in the generated AIGs in {P}S{Q}. We report on the size
of the generated formulae and AIGs after performing optimization and reduction steps
in both CBMC and {P}S{Q}. We compare the time taken by both tools to perform all
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1 int ls (int [] a, int e, int n) {

2 @pre ls {0 <= n && n <= MAX_ARRAY_SIZE}

3 int i = 0;

4 while (i < n) {

5 if (a[i] == e)

6 return i;

7 i = i + 1;

8 }

9 return -1;

10

11 @post ls { (rv >= 0 && rv < n) -> (a[rv] == e) &&

12 (rv == -1) -> (forall(int i:[0..n-1]) {a[i] != e})

13 }

14 }

Figure 6.1: The linear search algorithm with pre and post conditions

of the required steps to return a decision, including both optimization and verification.
Since CBMC supports only 16, 32 and 64 bits scalars, we use the size of the input array
a as the variable to change between different settings of the programs S1 and S2. We
set a time-out limit of 30 minutes and do not set a limit on the amount of memory the
program can use (up to the machine’s physical limit).

Note that in the addition to the above, CBMC requires users to provide an
unwinding limit. This limit is used by CBMC to unroll loops in the input programs
S1 and S2. We use an unwinding limit of 2 × array size for our experiments and we
enable the CBMC unwinding assertions. {P}S{Q} does not require any unwinding
limit since it does not perform unrolling, it uses the program counter to execute the
loops infinitely many times using the same AIG.

Table 6.1 shows the results of using {P}S{Q} and CBMC to verify the pro-
grams S1 and S2 for different sizes of the input array a, shown in the column size. The
columns Vars and Clauses report on the size of the CNF formula generated by CBMC
in terms of the number of variables and clauses, respectively. The columns lat, and and
lev show the size of the generated AIG by {P}S{Q} in terms of the number of latches,
and gates and logic levels, respectively. The last two columns show the time taken by
{P}S{Q} and CBMC to perform both reduction and verification. The Time-out entry
indicates that the tool reached the time out limit before returning a conclusive result
about the verification problem.

The results show that {P}S{Q} is able to verify the linear search program S1
for sizes much higher than those provided by CBMC. For array size of 15 and above,
{P}S{Q} is able to efficiently generate the AIG, and call ABC to reduce and verify it,
while CBMC reached the time out limit without giving any decision. Also, the size of
the generated AIG by {P}S{Q} is always smaller than the size of the CNF formula
generated by CBMC. For example, for an array size of 15, CBMC’s CNF formula
contains 9112 variables and 34496 clauses, while {P}S{Q}’s AIG has 119 bit registers
and 1116 AND gates. This clearly shows the advantage that the program counter
encoding provides over loop unrolling.
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1 int bs (int [] a, int e, int n) {

2 @pre bs {0 <= n && n <= MAX_ARRAY_SIZE && isSorted(a,n)}

3 int low = 0, high = n -1;

4 while (low < high) {

5 int mid = (low + high) >> 1;

6 if (a[mid] < e) {

7 low = mid + 1;

8 } else {

9 high = mid;

10 }

11 }

12 if ((low == high) && (a[low] == el)) {

13 return low;

14 } else {

15 return -1;

16 }

17

18 @post bs { (rv >= 0 && rv < n) -> (a[rv] == e) &&

19 (rv == -1) -> (forall(int i:[0..n-1]) {a[i] != e})

20 }

21 }

22

23 isSorted(int [] a, int n) = forall(int i:[0..n-2]) {

24 a[i] <= a[i+1]

25 }

Figure 6.2: The binary search algorithm with pre and post conditions

For the binary search program (S2), both tools show similar performance for
sizes of 3, 7 and 15. {P}S{Q} outperforms CBMC for a bound of 63 since CBMC
reached the time out limit while {P}S{Q} was able to verify the program in 1152
seconds. Similarly to S1, the size of the generated AIGs by {P}S{Q} is orders of mag-
nitudes smaller than the size of the generated CNF formulae by CBMC. For example,
for a size of 63, the number of variables in the generated AIG is 99% smaller than the
number of variables in the generated CNF formula.

6.2 Standard benchmarks

Table 6.2 shows the results of applying {P}S{Q} on a set of standard program func-
tions. The first column shows the program S to verify. ls stands for linear search, bs
stands for binary search, bsort stands for bubble sort, ss stands for selection sort, a-p
stands for array partitioning, lli stands for linked list insert and llr stands for linked
list remove. The column b shows the chosen bit width for the variables in S. Table 6.3
lists the properties verified for each of the standard benchmarks.

To evaluate the size of the generated AIGs, we report on the number of latches
(lat), the number of AND gates (and) and the number of logic levels (lev) as recorded
by the ABC tool. We show the size of the AIGs before and after applying synthesis and
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Table 6.1: {P}S{Q} and CBMC comparison

CBMC formula size {P}S{Q} AIG size Time (s)
S size Vars Clauses lat and lev {P}S{Q} CBMC
S1 3 2416 6784 41 313 15 4.36 0.016
S1 7 4612 15008 68 568 19 12.4 722.4
S1 15 9112 34496 119 1116 21 16.87 Time-out
S1 31 18332 84928 226 2346 24 33.67 Time-out
S1 63 37216 230208 461 5100 26 99.64 Time-out
S1 127 75876 695616 984 11315 28 396.98 Time-out

S2 3 6503 24533 56 55 19 1.04 0.085
S2 7 16172 68130 83 850 17 1.47 1.91
S2 15 42461 197223 143 1943 20 27.69 38.493
S2 63 390623 2133649 529 9052 25 1152.22 Time-out

reduction algorithms. We use common synthesis algorithms such structural sweeping
(ssweep), retiming (retime), refactoring (refactore) and several other combinations of
algorithms provided by ABC.

For performance evaluation, the column Ver. shows the time taken by the
verification algorithm and the column Total shows the total time taken by ABC to
perform both synthesis (reduction) and verification. The set of provided programs
are all correct (i.e., contain no bugs), the Check column shows the result of the proof
algorithm applied by ABC. A conclusive check (X) indicates that the solver was able
to assert that the program satisfies its specifications. A non conclusive check (N/A)
indicates that the solver hit the time limit before returning a validity answer. We set
a time-out of 1800 seconds on induction based proof algorithm and a 1000000 Binary
Decision Diagrams (BDD) size limit for algorithms based on BDD reachability. The
amount of memory that {P}S{Q} is allowed to use is only limited by the machine’s
physical limit, i.e., 8 GB.

The results in Table 6.2 clearly show the advantage that using the sequential
circuit encoding provides. The ABC synthesis engine is always able to rewrite the
generated AIG in a way to greatly reduce the number of AND gates and logic levels.
For example, for the linear search algorithm with a bit bound of 8, ABC achieved a
93% reduction in the number of logic levels (from 529 to 33), and a 21% reduction in
the number of AND gates. For more complex designs, such as the linked list insertion,
the reduction algorithms achieved 50% reduction in the number of logic levels, 80%
reduction in the number of AND gates and 58% reduction in the number of latches.

On average, the ABC synthesis algorithms achieved 43% reduction in the
number of latches, 53% reduction in the number of AND gates and 47% reduction in
the number of logic levels. Therefore we can conclude that {P}S{Q} can effectively
make use of ABC’s synthesis algorithm to reduce the problem by half and thus help the
proof algorithms. Furthermore, we note that even in the cases where the ABC solver
was not able to provide a conclusive result about the properties to verify, {P}S{Q}
was still able to generate and efficiently reduce the AIG circuits. This in fact allows us
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Table 6.2: Results of standard benchmarks

Before reduction After reduction Time (s)
S b lat and lev lat and lev Ver. Total Check
ls 2 86 719 24 41 313 15 0.33 4.36 X
ls 3 118 1064 27 68 568 19 3.89 12.4 X
ls 4 174 1781 30 119 1116 21 2.41 16.87 X
ls 5 286 3362 45 226 2346 24 1.43 33.67 X
ls 6 526 6895 78 461 5100 26 4.57 99.64 X
ls 7 1054 14780 143 984 11315 28 21.32 396.981 X
ls 8 4798 70742 529 4718 55364 33 682.11 8022.11 X

bsort 2 114 1198 29 44 393 16 0.29 5.79 X
bsort 3 169 2218 35 68 885 20 17.1 31.09 X
bsort 4 276 5607 47 117 2106 22 1390.25 1426.98 N/A

ss 2 112 1208 27 43 427 15 0.53 5.81 X
ss 3 167 2239 35 69 949 19 209.37 223.54 X
ss 4 280 5676 47 125 2236 22 1800 1852.76 N/A

a-p 2 110 1896 33 57 689 19 0.87 2.79 X
a-p 3 147 2509 34 87 1174 24 93.47 97.56 X
a-p 4 208 3829 38 141 2419 29 2127 2135.7 N/A

lli 2 237 4310 38 98 871 19 109.63 118.89 X
lli 3 344 6117 41 179 1693 26 1800 1811 N/A

llr 2 197 2906 33 84 722 21 47.72 71.3829 X
llr 3 293 4454 39 157 1387 25 1800.15 1830.21 N/A

bs 3 94 879 30 56 555 19 0.11 1.04 X
bs 4 151 1832 42 83 850 17 0.54 1.47 X
bs 5 268 5185 62 143 1943 20 25.42 27.69 X

to try the validity checks using higher time-out limits and BDD size limits, or try new
proof algorithms in the future.

6.3 SV-COMP 2013 benchmarks

We evaluated {P}S{Q} against a select set of benchmarks obtained from the second
competition on Software Verification SVCOMP’13 [52]. We selected the benchmarks
from the ControlFlowInteger and the Loops and compare the execution time obtained
from running {P}S{Q} with the tools ranked first, second and third in each of the two
categories.

Table 6.4 summarizes the results obtained from running {P}S{Q} on the
select set of SVCOMP’13 benchmarks. The first column shows the name of the bench-
mark as presented in the competition. The status column shows the decision that
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Table 6.3: The properties checked for the standard benchmarks

S Property
Linear-search The element is actually in the array if the return index is

valid, and is not present in the array if the return index
is invalid

Binary-search The element is actually in the array if the return index is
valid, and is not present in the array if the return index
is invalid

Bubble-sort The array is actually in sorted order
Selection-sort The array is actually in sorted order
Array-partition The array is partitioned around the element at 0
Linked-list The list is consistent and the insertion (removal) actually

took place

{P}S{Q} returned, it is colored in green to indicate that the results are accurate, i.e.,
{P}S{Q} produced no false negative nor false positives. We report on the total execu-
tion time taken by {P}S{Q}, the winner on the category (gold), the first runner (silver)
and the second runner (bronze) for each of the selected benchmarks. Additionally, we
report on the average execution time taken by each of the four tools for each of the two
categories from which we selected the benchmarks. The benchmarks labeled locks *

belong to the ControlFlowInteger category, while the remaining benchmarks belong to
the Loops category.

In the ControlFlowInteger category, {P}S{Q} outperformed the bronze tool
on all of the benchmarks. It was also able to outperform the silver tool on the first
six safe benchmarks and outperform the golden tool on the first two. For the unsafe
benchmarks, {P}S{Q} surpassed the other tools and was able to find a counterexample
1.7 times faster than the fastest tool. On average, {P}S{Q} topped the bronze tool
and was ranked very closely behind the silver one.

In the Loops category, {P}S{Q} surpassed both of the silver and the bronze
tools on all of the benchmarks and came very close the gold tool. In fact, the silver tool
produced a false counterexample on the count up down s benchmark and the bronze
tool produced a false counterexample on the invert string s benchmark. {P}S{Q}
was able to accurately verify and disprove all of the benchmarks. On average, {P}S{Q}
ranked second outperforming both the silver and the bronze tools, and came very closely
behind the gold tool.
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Table 6.4: SVCOMP’13 results

S status time (s) gold silver bronze
locks 5 safe safe 0.28 0.4 1.2 1.3
locks 6 safe safe 0.32 0.43 1.3 1.6
locks 7 safe safe 0.52 0.4 1.3 1.9
locks 8 safe safe 0.62 0.4 1.3 2.3
locks 9 safe safe 1.05 0.39 1.3 3.5
locks 10 safe safe 0.88 0.4 1.3 6.4
locks 11 safe safe 3.42 0.39 1.4 24
locks 12 safe safe 4.21 0.4 1.4 110
locks 13 safe safe 4.18 0.43 1.4 100
locks 14 safe safe 5.9 0.4 1.4 100
locks 15 safe safe 6.83 0.4 1.4 100

locks 14 unsafe unsafe 0.99 3.2 1.6 1.8
locks 15 unsafe unsafe 0.91 4.2 1.6 1.8

Average N/A 2.316 0.911 1.377 34.969

array safe safe 0.116 0.05 0.15 0.48
array unsafe unsafe 0.091 0.09 0.47 0.46

count up down s safe 0.137 0.28 450 0.39
count up down u unsafe 0.095 0.04 0.15 0.43

invert string s safe 1.808 0.03 14 0.56
invert string u unsafe 0.266 0.11 10 0.68

Average N/A 0.419 0.100 79.128 0.500
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Chapter 7

BIP{I} Results

We evaluated BIP{I} against two industrial benchmarks, an Automatic Teller Ma-
chine (ATM) [53] and the Quorum consensus protocol [54]. We report on the size of the
generated AIGs before and after reduction, and on the time taken by the ABC solver
to reduce and verify the benchmarks. We compare the results for the verification of
the ATM benchmark with the NuSMV [10] model checker.

7.1 The ATM benchmark

An ATM is a computerized system that provides financial services for users in a public
space. Figure 7.1 shows a structured BIP model of an ATM system adapted from the
description provided in [53]. The system is composed of four atomic components: (1)
the User, (2) the ATM, (3) the Bank Validation and (4) the Bank Transaction. It is
the job of the ATM component to handle all interactions between the users and the
bank. No communication between the users and the bank is allowed.

The ATM starts from an idle location and waits for the user to insert his card
and enter the confidential code. The user has 5 time units to enter the code before
the counter expires and the card is ejected by the ATM. Once the code is entered,
the ATM checks with the bank validation unit for the correctness of the code. If the
code is invalid, the card is ejected and no transaction occurs. If the code is valid, the
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Figure 7.1: Modeling of ATM system in BIP
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Table 7.1: ATM results

Original After reduction Time(s)
ATMs lat and lev lat and lev Ver. Total NuSMV

2 78 2308 125 37 552 25 21.83 26.1 1.4
3 102 3689 197 50 804 29 32.65 38.87 142.6
4 146 5669 234 63 1036 29 590 597 3361

ATM waits for the user to enter the desired amount of money for the transaction. The
time-out for entering the amount of money is of 6 time units.

Once the user enters the desired transaction amount, the ATM checks with
the bank whether the transaction is allowed or not by communicating with the bank
transaction unit. If the transaction is approved, the money is transferred to the user
and the card is ejected. If the transaction is rejected, the user is notified and the card is
ejected. In all cases, the ATM goes back to the idle location waiting for any additional
users. In our model, we assume the presence of a single bank and multiple ATMs and
users.

Table 7.1 shows the improvement obtained by using BIP{I} to verify the
deadlock freedom of the ATM system, as compared to using the NuSMV model checker [10].
The first column of the table shows the number of clients and ATMs in the system.
Columns lat, and and lev present the number of latches, AND gates and logic lev-
els in the AIG generated by BIP{I} before and after applying reduction techniques,
respectively. We report on the verification time taken by the ABC solver to check
the generated AIG, and the total taken to perform both synthesis (reduction) and
verification, in addition to the time taken by NuSMV to perform verification.

With the increase in the number of users and ATMs in the system, BIP{I}
outperforms NuSMV in terms of total verification time, reaching a speedup of 5.6 for
4 users and ATMs. Additionally, BIP{I} allows developers to make use of several
reduction techniques that are able to reach an average of 50% reduction in the size
of the AIG. Note that for 2 ATMs and users, NuSMV outperforms BIP{I}. This is
due to the fact that when performing verification, ABC tries multiple verification and
reduction algorithms before reaching a conclusive result. However, the advantage that
BIP{I} presents can be clearly seen for larger number of ATMs and users.

7.2 The Quorum protocol

The Quorum protocol is a consensus protocol proposed in [54] as complementary to
the Paxos consensus protocol [55] under perfect channel conditions. Consensus allows
a set of communicating processes (clients and servers in our case) to agree on a com-
mon value. Each of clients proposes a value and receives a common decision value.
The authors in [54] propose to use Quorum when no failures occur (perfect channel
conditions) and Paxos when less than half of the servers may fail.

The Quorum protocol operates as follows.

1. Upon proposal, a client c broadcasts its proposed value v to all servers. It also
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saves v in its local memory and starts a local time tc.

2. When a server receives a value v from a client c, it performs the following check.

• It if has not sent any accept messages, it sends an accept message accept(v)
to the client c.

• If it has already accepted value v′, it sends an accept message accept(v′) to
the client c.

3. If a client c receives two different accept messages, it switches to the backup
phase switch− backup(proposalc).

4. If a client c receives the same accept messages accept(v) from all the servers, it
decides on the value v.

5. If a client’s timer tc expires, it waits for at least one accept message accept(v′)
from a server, or chooses a value v′ from an already received accept(v′) message,
and then switches to the backup phase with the value v′.

6. The backup phase is an implementation of the Paxos algorithm. Quorum in this
case has decided that the channel is not perfect.

We implemented the Quorum protocol in BIP, and we used BIP{I} to verify
two invariants as defined in [54].

Invariant1 If a client c decides on a value v, then all clients c′ 6= c that have switched,
either before or after c, switch with the value v.

Invarian2 If a client c decides on a value v, then all clients c′ 6= c who decide, do so
with the same value v.

Table 7.2 shows the results of using BIP{I} to verify the Quorum protocol for
2 and 4 clients with 2 servers. The designs are indexed as num clients-num servers-
status where num clients is the number of clients, num servers is the number of
servers and status is either valid (v) or erroneous (e). A valid design contains no
design bugs, while an erroneous design is injected with a bug. We report on the size
of the AIG in terms of number of latches (lat), number of AND gates (and) and
logic levels (lev) before and after applying reduction algorithms. We also show the
time taken by ABC to decide the problem, and the total time taken for reduction and
decision procedures. A X decision indicates that ABC proved that the property is
never violated, i.e., the design is valid, while a χ decision means that ABC was able to
find a counter example that violates the property.

Using ABC’s synthesis and reduction algorithms, BIP{I} was able to reduce
the size of the generated AIGs for all designs by a factor larger than 50%. Furthermore,
BIP{I} was able to give conclusive results about all four designs, unlike NuSMV which
failed to give any decision about the designs having 4 clients and 2 servers. For example,
BIP{I} found a counter example for the erroneous design having 4 clients and 2 servers
in 0.24(s) while NuSMV failed to do so. Figure 7.2 shows a snippet of the generated
counter example for the erroneous design, visualized using the Gtkwave [12] waveform
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Table 7.2: Quorum results

Original After reduction Time (s)
Design lat and lev lat and lev Ver. Tot. Decision
2-2-v 264 3614 105 66 641 29 240.6 245 X
2-2-e 264 3508 101 65 923 51 0.78 0.11 χ
4-2-v 390 6453 151 117 1170 30 58 hours X
4-2-e 390 6305 145 117 1129 50 0.24 0.31 χ

Figure 7.2: Visualization of a counter example using Gtkwave

viewer. The variables presented in the counterexample are the current control locations
of the different components in the design.
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Chapter 8

Related work

8.1 Verification of software programs

The need to design correct software and hardware systems has pushed researchers to
design verification techniques and tools targeted towards software, hardware and em-
bedded systems. SPIN is a model checking tool targeting the verification of process
interactions. It presents a front-end with a high level specification language called
Promela, aimed at allowing users to provide descriptions of concurrent systems or dis-
tributed algorithms [56]. SPIN accepts Linear Temporal Properties (LTL) specifications
as input, and translates them into Büchi automaton using simple on-the-fly construc-
tion. In fact, SPIN considers the input specifications as impossible conditions, i.e.
conditions that should never be met for correct behavior of a given system. Therefore
it aims at checking whether the language of the design and that of the specification
do not intersect. If such an intersection exists, SPIN returns a counter example. Oth-
erwise the design is considered to be correct. {P}S{Q} differs from SPIN in that it
takes a imperative program S and FOL precondition-postcondition pair (P,Q), and
translates them into an equisatisfiable AIG. On the resulting AIG, several reduction
and proof algorithms can be applied to perform model checking, most of which have
no counterpart in SPIN.

Alloy [40] and CBMC [5] are tools that perform bounded model checking.
CBMC accepts ANSI-C input code and supports several standard C libraries. It checks
for pointer operations and within bound array access, and allows for dynamic memory
allocation using new and malloc. CBMC takes an input program and an unwinding
bound, and generates a CNF formula that describes the behavior of the program.
CBMC uses Single Static Assignment (SSA) transformations and loop unwinding in
order to generate the appropriate CNF formula.

Similarly, Alloy takes input structural specifications where entities can either
be sets, functions or relations, and allows operations on these three elementary types. It
then transforms such specifications into CNF formulae and uses SAT solvers to generate
satisfying models. Alloy differs from CBMC in that it is aimed at generating systems
that satisfy the given specifications, i.e. find models for the structural specifications,
while CBMC is aimed at the verification of a given design against a set of specifications.
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Both Alloy and CBMC transform the given problems into SAT problems and use an off
the shelf SAT solver [57, 58, 6] to try and find a model for the generated CNF formula.
The model will then be a counter example for CBMC, and a correct system for Alloy.

Techniques based on loop unwinding and translation to CNF suffer from the
rapid increase in the size of the generated CNF formulae with respect to the size of
the input programs and specifications, and the unwinding bounds. Additionally, the
generated CNF formula may need to be regenerated in cases where the unwinding
bounds were not large enough. This iterative procedure is costly and might require
intractable resources.

8.2 Verification of embedded systems

The overlap between software and hardware design in embedded systems creates more
challenges for the verification process. SystemC [59] is a modeling platform based on
C++ that provides design abstractions at the Register Transfer Level (RTL), behavior,
and system levels. It aims at providing a common design environment for embedded
system design and hardware-software co-design. SystemC designers write their systems
in C++ using SystemC class libraries that provide implementations for hardware spe-
cific objects such as concurrent modules and clocks. Therefore the input systems can be
compiled using standard C++ compilers to generate binaries for simulation. SystemC
allows for the communication between different components of a system through the
usage of ports, interfaces and channels.

The BIP framework differs from SystemC in that it presents a dedicated lan-
guage and supporting tool-set that describes the behavior of individual system compo-
nents as symbolic LTS. Communication between components in BIP is ensured through
ports and interactions. BIP operates at a higher level than SystemC and does not pro-
vide support for circuit level constructs.

Verification techniques for SystemC and BIP make use of symbolic model
checking tools. NuSMV2 [10] is a symbolic model checker that employs both SAT and
BDD based model checking techniques. It processes an input describing the logical
system design as a finite state machine, and a set of specifications expressed in LTL,
Computational Tree Logic (CTL) and Property Specification Language (PSL). Given
a system S and a set of specifications P , NuSMV2 first flattens S and P by resolving
all module instantiations and creating modules and processes, thus generating one
synchronous design. It then performs a Boolean encoding step to eliminate all scalar
variables, arithmetic and set operations and thus encode them as Boolean functions.

In order to avoid the state space explosion problem, NuSMV2 performs a cone
of influence reduction [60] step in order to eliminate non-needed parts of the flattened
model and specifications. The cone of influence reduction abstraction technique aims
at simplifying the model in hand by only referring to variables that are of interest to
the verification procedure, i.e. variables that influence the specifications to check [61].

DFinder [9] is an automated verification tool for checking invariants on systems
described in the BIP language. Given a BIP system S and an invariant I, DFinder
operates compositionally and iteratively to compute invariants X of the interactions
and the atomic components of S. It then uses the Yices Satisfiability Modulo Theory
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(SMT) solver [62] to check for the validity of the formula X ∧¬I = false. Additionally,
DFinder checks the deadlock freedom of S by building an invariant Id that represents
the states of of S in which no interactions are enabled, i.e., a deadlock occurs. It then
checks the for the formula X ∧Id = false, i.e., none of the deadlock states are reachable
in S.

Techniques based on symbolic model checking for the verification of BIP de-
signs suffer from the state space explosion problem, and often fail to scale with the size
and the complexity of the systems. On the other hand, DFinder does not handle data
transfer between atomic components, thus limiting the range of practical applications
on which it can be applied. Our technique handles data transfers and uses the wide
range of synthesis and reduction algorithms provided by ABC to effectively reduce the
size and the complexity of the verification problem. Most of these algorithms have no
counterpart in symbolic model checking.
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Chapter 9

Conclusion

In this thesis, we presented two techniques with supporting tools, {P}S{Q} and
BIP{I}, that target the verification of the imperative programs and embedded sys-
tems. {P}S{Q} is a tool that takes an imperative program S with a specification, a
precondition and postcondition pair (P,Q), and checks whether S satisfies the spec-
ification. This check is performed within a bound b on the domain of the program
and specification variables (S |= (P,Q)|b); i.e. when the bounded inputs of S satisfy
P, the outputs of S satisfy Q. The tool translates the problem S |= (P,Q)|b into
an equisatisfiable AIG. BIP{I} is a tool that takes an input BIP design with a set
of optional specifications, and translates it in an equisatisfiable AIG, having its own
customized execution engine.

Both tools pass the generated AIGs to the AIG synthesis and verification tool
ABC for reduction and model checking. ABC employs several reduction algorithms that
can be used to reduce the size of the AIG and thus the size of the decision problem.
ABC also includes a set of different proof algorithms that can be used to efficiently
verify the AIGs generated by {P}S{Q} and BIP{I}.

As future work, we plan to extend {P}S{Q} with support for LTL specifica-
tions, specifically System Verilog Assertions SVA. We will devise a synthesis algorithm
that generates AIGs from SVAs and use ABC to model check designs annotated with
SVAs. Furthermore, we plan to extend BIP{I} with more customization to the ex-
ecution engine, specifically by allowing the engine to execute multiple interactions in
parallel. We envision that this parallelism will allow for the generation of more efficient
AIGs, and thus improve the verification results.
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