

AMERICAN UNIVERSITY OF BEIRUT

IMPACT OF REDUNDANT PARITY CHECKS ON
LINEAR PROGRAMMING DECODING OF LDPC

CODES

by

HANI THABET AUDAH

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
May 2014

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Professor Louay
Bazzi, whose patience and guidance have been invaluable to me during the completion of
this thesis. Working with him has certainly been a principal motivation for my graduate
research, and I can say with confidence that I am a more proficient researcher now than I
was when we began working together.

I would also like to thank my committee members, Professor Ibrahim Abou Fay-
cal and Professor Fadi Zaraket, for their useful commentaries on the results that have
been presented to them. They’ve helped me better appraise the value of my work. I have
been fortunate enough to have a committee of accommodating and understanding faculty
members.

Of course, special thanks are due to my family for their appreciation of the time
and effort that has been spent working on this thesis. Surely it would not have been
possible without your support. To my wonderful parents, Thabet and Mona, and my okay
brothers, Nabeel and Mohammed, thank you for all the encouragement.

v

AN ABSTRACT OF THE THESIS OF

Hani Thabet Audah for Master of Engineering
Major: Electrical and Computer Engineering

Title:
Impact of Redundant Parity Checks on Linear Programming Decoding of LDPC Codes

The use of linear programming (LP) to decode low density parity check codes was first
suggested by Feldman[1]. It is a relaxation of the maximum likelihood decoding
problem into a linear optimization problem of polynomial complexity. The underlying
polytope is obtained by adding all the local linear constraints associated with the
individual check nodes in the Tanner graph of the code. This relaxation results in invalid
codewords being included in the polytope of the LP solver. While it had been suggested
by Feldman that the size of the polytope may be reduced through the addition of
redundant parity checks – parity checks obtained through the combination of other parity
checks – the issue was not further examined in that paper. The purpose of this thesis is to
carry out such an analysis and determine what reduction in polytope size may be
possible through the addition of these redundant checks.

It will be shown that in the case of good girth LDPC codes, and assuming rea-
sonable conjectures on the fundamental polytope of the LP decoder to be true, the LDPC
codes typically encountered in practice, such redundant checks do not improve the error-
correction capability of these codes under LP decoding.

vi

CONTENTS

Page

AKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF TABLES . ix

Chapter

1. Introduction . 1

1.1. Background . 1

2. Literature Review . 3

2.1. Linear Codes . 3

2.2. Linear Programming . 4

2.3. Linear Programming Decoding . 6

2.3.1. Feldman Approach . 6

2.3.2. Koetter-Vontobel Approach 8

2.4. LP Decoder Performance . 10

2.5. Redundant Parity Checks . 14

3. Impact of Redundant Parity Checks 16

3.1. Redundant Parity Check Over Trees 16

3.2. Redundant Parity Checks Over Random LDPC Codes 22

vii

3.3. Redundant Parity Checks Over Long Cycles 25

4. Future Work . 35

4.1. Extension to (dl,dr)-regular Codes 35

4.2. Effect of Good Girth . 37

4.3. Hyperflows and Fractional Weight 38

5. Conclusion . 39

viii

TABLES

Table Page

1. Threshold βk for values of k from 3 to 8 34

ix

CHAPTER 1

INTRODUCTION

1.1. Background

Any transmission of data over non-ideal channels entails some uncertainty at the

receiving end. Delay, distortion, and rearrangement are just three of the ways a channel

may affect the transmitted data. Any of several models may be used to represent the effect

of the channel as tractably as possible, taking into account the properties of the particular

medium being used. Apart from some trivial cases, error-correction coding is needed if

such communication is to achieve the theoretical bounds established by Shannon in his

landmark 1948 paper. The premise behind error-correction is that the effect of the channel

may be determined and reversed at the receiver if certain redundancy is added prior to

transmission. The manner in which redundancy is to be added remains the principal focus

of error-correction coding.

The k message bits to be transmitted are first mapped into a codeword X of n

bits which is sent over the channel and received as another codeword Y (from a possibly

different symbol alphabet). The receiver then must use knowledge of the channel model

to recover the original transmitted codeword. The set of all codewords is called the code,

referred to here as C. The decoder that returns a codeword X for any received Y with min-

imum probability of error is called the maximum-likelihood (ML) decoder. ML decoding

is known to be NP-hard for general codes as well as the class of codes considered here,

so a study of suboptimal decoding is warranted. Indeed, there has been a growing interest

in suboptimal decoders and reducing the gap between the widely used iterative decoders

and ML decoding, or at least a proper understanding of the theoretical limits of this gap.

The rate of a code C is defined as 1
n log|F |(M), M being the size |C| and n the

1

length of each codeword. Informally, the more redundancy is added to transmit a given

length of message bits, the less the rate of the code. An information-theoretic bound

introduced in Shannon’s paper called channel capacity represents the maximum rate of

communication possible given a probabilistic channel model. Until fairly recently, there

had been no known good codes, that is, practical codes of rate close to capacity. The

LDPC codes mentioned in the next section are a class of capacity-approaching codes that

can be brought arbitrarily close to capacity (for symmetric memoryless channels) without

requiring prohibitive complexity in the encoder/decoder. These codes were introduced

by Gallager in his thesis dating back to 1960 [2] and did not receive much attention

until researchers working on Turbo codes in the early 1990s revisited the area of iterative

decoding (also discussed in the next section). Since that time, LDPC codes have been

at the forefront of modern coding theory, with performance that is mostly unmatched by

classical coding schemes.

Our interest is in the decoding of LDPC codes using linear programming (LP),

an approach first proposed by Feldman[3]. Linear programming is a solution technique

used to find the minimum of an objective linear function over a given domain under some

specified linear constraints. We will see that ML decoding can be reformulated into a

linear programming problem, so that a conventional LP algorithm effectively becomes our

channel decoder. While this approach offers no computational advantage to the iterative

algorithms that have been in use previously, they are more amenable to mathematical

analysis. What Feldman actually proposes in his thesis is not exact ML decoding using LP

but a relaxed form that avoids the computational complexity problems of ML decoding.

2

CHAPTER 2

LITERATURE REVIEW

2.1. Linear Codes

A code C of block length n is said to be linear over a field F if, when viewed

as a set of n-tuples, it forms a subspace of the vector space Fn. We will be concerned

here exclusively with binary linear codes, where the field F is the binary field F2. For

linear codes, it is easy to show that the minimum distance between any two codewords is

the minimum of all non-zero codewords. Linear codes are commonly represented using a

generator matrix G whose rows are the basis vectors of the subspace C. Each linear code

has an associated dual code denoted C⊥ and given by C⊥ = {y|∀x ∈C : ∑xiyi = 0}. The

generator matrix H for this dual code is another description of the code C, and is referred

to as the parity check matrix. Clearly, the matrix product HG results in a zero matrix,

and the rows of H may be understood as a set of equations of the form {∑
i∈S

xi = 0 in F2}

where the set S is the set of indices of non-zero entries in a row of H. A code may thus

alternatively be represented using a Tanner graph. In a Tanner graph, the codeword bits

are represented as variable nodes, and each parity constraint is represented as a check

node connected to the variable nodes to which the constraint applies.

Assume a codeword X is chosen from C with probability px(X) and a symbol Y

is received at the other end of the channel. If Y is decoded to x̂(Y) ∈C, the probability of

decoder error is 1− px|y(X |Y). Maximum a-posteriori decoding minimizes this by taking

x̂(Y) to be argmaxx∈C px|y(X |Y) . For the case of uniform codeword probability px(X),

we end up with the maximum likelihood decoder:

x̂(Y) = argmax
x∈C

py|x(Y |X)px(X) = argmax
x∈C

py|x(Y |X)

3

For a memoryless channel, this expression may be reformulated as

argmax
x∈C

n

∏
i=1

pyi|xi(Yi|Xi) = argmax
x∈C

∏
n
i=1 pyi|xi(Yi|Xi)

∏
n
i=1 pyi|xi(Yi|0)

= argmax
x∈C

log(
n

∏
i=1

pyi|xi(Yi|Xi)

pyi|xi(Yi|0)
)

= argmax
x∈C

n

∑
i=1

log(
pyi|xi(Yi|Xi)

pyi|xi(Yi|0)
) = argmin

x∈C

n

∑
i=1

γixi.

where the quantity γi = log
(

Pr[Yi|Xi=0]
Pr[Yi|Xi=0]

)
is known as the log-likelihood ratio

(LLR). For the p-BSC this expression evaluates to log[(1− p)/p] when a 0 is received in

error and log[p/(1− p)] when it is received correctly. We can rescale all γi values without

affecting the ML decoder’s decision, so we will take γi to be -1 for bits received in error

and +1 for those received correctly.

Throughout this paper, the channel under consideration is the memoryless binary

symmetric channel (BSC) where each bit is flipped with probability p and passes unaltered

with probability 1-p, independently of all other bits.

2.2. Linear Programming

For the purpose of this thesis, only a brief mention of linear programming need

be covered; we refer the reader to [4] for an introductory treatment to the subject. Linear

programming searches for the minimum of some objective linear function f subject to

some linear constraints on the independent variables. These constraints define a polytope

containing some of the points in the domain of f . A linear program is generally expressed

in standard form:

Minimize
n

∑
j=1

c jx j subject to: (1)

n

∑
j=1

ai jx j ≤ bi for i = 1, ... , m (2)

4

x j ≥ 0 for j = 1, ... , n (3)

It can be shown that for all feasible linear programs, the minimum must be at

one or more of the vertices on the boundaries of this polytope. Linear programming

algorithms are either vertex algorithms that can only iterate between vertices, or interior

point algorithms that can visit interior points in the intermediate steps. There exist LP

solvers that run in time polynomial in the number of constraints in the problem (e.g.

ellipsoid algorithm).

An important concept in linear programming is the notion of duality. Given a

linear program expressed as in (1), what is the best (highest) lower bound we can achieve

on the value returned by the LP solver? This question can be rephrased as yet another

linear program. Without undue detail, the dual is obtained by replacing the above LP

with:

Maximize
m

∑
i=1

biyi subject to: (4)

m

∑
j=1

ai jyi ≤ bi for j = 1, ... , n (5)

yi ≥ 0 for i = 1, ... , m (6)

By definition, the solution to this dual LP must be less than the solution of the

original LP, called the primal LP. It can be shown that the two optima are actually equal.

In fact, this equality follows directly from Farkas’ Lemma[4].

Duality plays a very important role in linear programming and is referenced in

much of the literature on LP decoding, discussed next.

5

2.3. Linear Programming Decoding

Maximum-likelihood decoding is optimal in that it returns the codeword most

likely to have caused the observed channel output. The ML-decoding problem, how-

ever, is known to be NP-hard. The message-passing algorithms presented earlier are a

widely used alternative approximation to ML decoding. But though much work has gone

into better understanding the performance of message-passing decoders, results are still

lacking. The LP decoding algorithm to be discussed here is more analytically tractable.

Additionally, there are some known relations between LP decoding and min-sum decod-

ing1 over certain limited channels and code graphs (e.g. codes without cycles), and other

less powerful relations that apply to more general codes [5].

2.3.1. Feldman Approach

The use of linear programming to decode linear codes was first suggested by

Feldman[1]. Whereas the purpose in maximum likelihood decoding is to determine the

codeword that minimizes
n
∑

i=1
xiγi, linear programming decoding makes use of the fact that

the minimum value of a linear function of x will be on one (or more) of the vertices of the

polytope defined by the LP constraints. The first step in LP decoding is to rephrase the

ML decoding problem as a linear optimization problem. The function to be minimized

here is the log-likelihood ratio over the set of possible codewords. We can expand the

domain of definition of this function to include the convex hull of the region enclosed

by these codewords by taking f =
n
∑

i=1
γi fi where fi must be in the convex hull of the ith

coordinate of all codewords in C. Linear programming can therefore be used on this

polytope to minimize the objective function, and, since LP always returns a vertex of

the polytope, the result will always be a valid codeword. The polytope defined by these

codeword vertices is thus given by:

1Min-sum decoding is a form of iterative decoding that, in some cases, has a performance close to the
BP algorithm mentioned earlier

6

℘= {∑
y∈C

λyy : λy ≥ 0, ∑
y∈C

λy = 1}

Although LP polynomial-time algorithms do exist, they are polynomial in the

number of constraints describing the polytope. As the number of constraints in formula

increases exponentially with the codeword length, we end up again with an exponential-

time algorithm for ML decoding. To reduce this complexity, Feldman proposes a relax-

ation of the polytope whereby every check node defines its own set of allowed codewords

(local code) and the intersection of the polytopes of all local codes is considered instead.

With each check node j having neighborhood N(j), the subsets S ⊂ N(j) with an even

number of nodes defines a set E j = {S ⊂ N(j) : |S| is even} which corresponds clearly

to a local codeword, a codeword whose variable nodes in N(j) satisfy the single check

node constraint imposed by j. Each codeword x must correspond, then, to a single S⊂ E j

such that xi = 1↔ i ∈ S. Let w j,S denote the indicator variable that is 1 for that particular

set S chosen, so that ∑
S∈E j

w j,S = 1 (as there is only one). Furthermore, let fi denote the

indicator variable for the ith codeword bit, where i ∈ N(j). we know that if fi = 1 there is

exactly one set S in E j that contains i such that w j,S = 1, and if fi = 0 then there are none.

Thus, fi = ∑
S∈E j
i∈S

w j,S. The set of points (integral or real) satisfying these constraints form

the relaxed polytope for Feldman’s LP decoder.

The new linear program to be solved is thus:

minimize
n

∑
i=1

γi fi subject to (f ,w) ∈℘ (7)

where ℘= ∩ j℘j and ℘j is the individual jth check node polytope defined by:

∀i,0≤ fi ≤ 1 (8)

∀S ∈ E j,0≤ w j,S ≤ 1 (9)

∀i ∈ N(j), fi = ∑
S∈E j,i∈S

w j,S (10)

7

∑
S∈E j

w j,S = 1 (11)

For LDPC codes, the above polytope would require a linear number of con-

straints, and LP decoding would therefore be linear in codeword length. Clearly, however,

there are codewords in the relaxed polytope that are not included in the original polytope

and the LP decoder fails if it returns any of these fractional codewords as the minimal

codeword (or if ML decoding also fails). Any integral point in the relaxed polytope must

clearly have been in the original polytope. Hence, the LP decoder has the property that

any valid codeword returned by it must be the maximum-likelihood codeword. Moreover,

as a result of the symmetry of the underlying polytope, the zero-codeword assumption

remains valid for LP decoding with this relaxation. That is, the error-probability does

not depend on which particular codeword was transmitted, and the all-zero codeword is

always assumed to be transmitted.

2.3.2. Koetter-Vontobel Approach

Koetter and Vontobel arrived at the same polytope relaxation by analyzing uni-

versal graph covers[6]. A graph m-cover G′ (or m-lifting) of a graph G consists of m

copies of G with the adjacency between the nodes changed such that if x,y ∈G are neigh-

bors then there exist two copies x′,y′ ∈ G′ of x and y such that x’ and y’ are neighbors.

Any message-passing algorithm decides on the values of the variable nodes based on the

local neighborhood of that node, so to any variable node any finite graph cover code "ap-

pears" the same as the original graph code under message-passing decoding. But it is

not difficult to see that the graph cover code includes more than simply the liftings of the

codewords from the original graph , and the additional codewords are therefore the ones

responsible for decoding errors. The authors then proceed to analyze the code defined

by the union of all codes of finite covers of the original code graph. To this end, the au-

thors define pseudo-codewords ωi(ĉ) in the original graph by averaging the values in all

8

copies of x in the cover, and assigning that (real) value to x. The polytope of all pseudo-

codewords in G turns out (after some derivation) to be the intersection of the polytopes

obtained by considering check nodes individually, that is, it turns out to be identical to the

relaxed polytope of Feldman.

The conditions that lead to LP decoder success have been studied in [7], and it

is shown there that an equivalent characterization of LP success may be stated as: given

an error pattern and the corresponding values γ(vi) for the variable nodes, the LP decoder

succeeds if we can find a function (called the dual witness) defined on the edges of the

Tanner graph satisfying

∀v ∈V, ∑
c∈N(v):w(v,c)>0

w(v,c)< ∑
c∈N(v):w(v,c)≤0

(−w(v,c))+ γ(v) (12)

∀c ∈C,∀v,v′ ∈ N(c),w(v,c)+w(v′,c)≥ 0 (13)

The second equation can be replaced with

∀c ∈C,∃Pc ≥ 0,∃v ∈ N(c) : w(v,c) =−Pc and ∀v′ ∈ N(c) s.t. v′ 6= v,w(v′,c) = Pc (14)

and the resulting function is then called a hyperflow[8]. Moreover, it has been shown that

the existence of either of these functions for a given error pattern is in fact both sufficient

and necessary for LP decoder success[9]. For the remainder of this thesis, we will choose

to work with the hyperflow equations.

The following lemma follows from the definition of a hyperflow and will be used

later. Informally, it states that, in a hyperflow, the total flow from the set of variable nodes

to the set of check nodes cannot be greater than the total flow from the check nodes to the

variable nodes by more than n.

Lemma 1. Given a Tanner graph G(V,C) with hyperflow w, define the quantities wLR

9

(L-to-R flow) and wRL (R-to-L flow) as:

wLR = ∑
v∈V,c∈C:w(v,c)>0

w(v,c) (15a)

wRL = ∑
v∈V,c∈C:w(v,c)<0

|w(v,c)| (15b)

Then the summation wLR is upper-bounded by wRL +n.

Proof. We can rewrite (15a) as wLR = ∑
v∈V

(
∑

c∈N(v):w(v,c)>0
w(v,c)

)
, and (15b) as wRL =

∑
v∈V

(
∑

c∈N(v):w(v,c)>0
w(v,c)

)
. Now we can use equation (12) for each variable node v to

obtain:

wLR−wRL < ∑
v∈V

γ(v)< n

which completes the proof.

2.4. LP Decoder Performance

We have already seen that the girth of the code graph plays an important role

in the iterative decoding of LDPC codes, but as this paper deals with LP decoding, we

should mention first a few results by Feldman et al. on the performance of LP decoders

and its relation to properties of the underlying code graph. The results will also be of use

in some of the proofs in later sections. We mention an important quantity that quantifies

the error-correction capability of a code when the LP decoder is used. It is defined here

over a sequence of codes rather than an ensemble, hence the definition may be somewhat

at odds with others found in the literature.

Definition 1. Let {Cn} be a sequence of linear codes of codeword length n. The LP-

threshold t for this sequence is defined as:

t = sup{ε > 0| Pr
ε-BSC

[LP error on Cn]→ 0 as n→ ∞} (16)

10

To state some LP decoding performance bounds over graphs with good girth, we

start with the following definition from [3]:

Definition 2. Given a polytope P defined over some variables { fi}i∈I where the variables

0≤ fi ≤ 1 correspond to the coordinates of the point f in the polytope, define the weight

of a point f ∈ P to be the sum ∑
i

fi. The fractional distance of a code is then defined to be

the minimum weight of any vertex in the set of non-zero vertices of P.

We can think of this fractional distance as an extension of the hamming distance

for fractional codewords. In fact, as can be seen from the definition, the fractional distance

serves as a lower bound for the hamming distance of the code since every actual codeword

is also a vertex in the polytope P. Feldman goes even further by exhibiting the following

relation between LP decoder performance and fractional distance:

Theorem 1. For a code G with a fractional distance d f rac, the LP decoder is successful

if at most dd f rac/2e−1 bits are flipped by the BSC.

Proof. See theorem 9 from [3].

Just as girth may be used to derive a lower-bound on the hamming distance of a

code, it can also be used to derive a lower-bound on its fractional distance. This is made

precise by the following theorem2 , also proved in [3].

Theorem 2. Let G be a factor graph with dl ≥ 3 and dr ≥ 2. Let g be the girth of G,

g > 4. Then the fractional distance is at least d f rac ≥ (dl−1)dg/4e−1.

For graphs G with girth Ω(logn), we thus have (from theorem 2) that G has a

fractional distance at least on the order of dlogn
l , and (from theorem 1) that the LP decoder

2Actually, the theorem references another quantity called the max-fractional distance, defined as

dmax
f rac = min

f∈℘

 ∑
i

fi

maxi fi

 (17)

but we will not be concerned with this distinction, as it can be shown that theorem 1 also applies for the
max-fractional distance.

11

can correct up to Ω(n1−ε) errors, where ε can be chosen arbitrarily small. That is, we can

correct any sublinear number of errors given code graphs of good girth.

A higher lower-bound on the minimum number of correctible errors can be de-

rived for expander graphs, and these higher bounds will be used later in this paper.

Definition 3. A (L,R) bipartite graph is called an (d,γ,α)-expander if every subset S⊂ L

of size less than γn has at least dα|S| neighbors.

We already know that such graphs exist. When they are used to construct code

graphs, they can yield powerful codes with better provable lower bounds on correctable

errors:

Theorem 3. Let G be an (αn,δc)-expander where δ > 2/3+1/(3c) and δc is an integer,

and let C be an LDPC code with length n and rate at least 1− m
n whose Tanner graph is

G. Then the LP decoder succeeds, as long as at most 3δ−2
2δ−1(αn−1) bits are flipped by the

channel.

Proof. See section IV from [10].

Theorem 3 shows that LP decoding can be used to correct a linear fraction of the

errors introduced by the BSC, when the code graph G is an expander. Equivalently, for the

LP polytope of expander graphs, there are no fractional codewords of sublinear weight.

This is in contrast to the case of good-girth graphs, which only guarantees a sublinear

number of correctable errors (albeit for any exponent below 1). Efficient constructions of

expander codes have already been derived, though it will suffice to know only that random

d-regular bipartite graphs are known to be good expanders with high probability.

Our final observation concerning LP decoding performance is that LP decoding

is useless for codes that do not contain low-degree check nodes, which will be the case

for random high-density parity check codes (with high probability). This will explain the

rationale behind restricting our discussion to LDPC codes to begin with. We will prove a

12

lemma from which this claim follows trivially, and which will be of use later. A quantity

that will need to be defined first is a variable node’s in-flow:

Definition 4. Given a hyperflow w on some Tanner graph G containing a variable node

v, define v’s in-flow to be ∑
c∈N(v),w(v,c)<0

|w(v,c)|.

Lemma 2. Let {Cn} be a sequence of codes of length n, and assume all check nodes of

code Cn’s Tanner graph have degree at least f (n), where f (n) is a strictly increasing

function of n. Then, for any pair of positive constants σ ,δ there exists an integer N such

that for all n≥ N, there are no hyperflows on code Cn’s Tanner graph having δn variable

nodes with in-flow greater than σ .

Proof. Assume there is a pair of constants σ > 0, δ > 0 that violates the conditions of

the statement of the lemma. Then there is a subsequence {Dn} of {Cn} such that each

code Dn has a Tanner graph with a hyperflow w such that δn variable nodes of Dn have

in-flow greater than σ . Thus the R-to-L flow, as defined by lemma 1, is given by a

function α(n) = Ω(n), and the L-to-R is at least α(n) f (n). Their difference is therefore

wLR−wRL = α(n) f (n)−α(n) = α(n)(f (n)− 1) = ω(n). By lemma 1, we know this

difference can’t be ω(n) for a valid hyperflow, so we conclude that there exist no σ ,δ

that violate the statement of the theorem.

Our claim regarding high-density codes follows:

Theorem 4. Let {Cn} be a sequence of codes of length n such that Cn’s Tanner graph has

a minimum check-node degree f (n)→ ∞. The LP-threshold for this sequence is then 0.

Proof. Assume we are operating in the ε-BSC, where ε > 0. Take 0 < ε ′ < ε . The prob-

ability that there are more than ε ′n incorrectly received variable nodes clearly goes to 1

as n increases (applying the Chernoff bound gives Pr[less than ε ′n errors]< e−
(1−ε ′/ε)2εn

2).

If there are more than ε ′n errors, then these ε ′n variable nodes would each require an

in-flow greater than 1. By lemma 2 we can find an integer N such that for all n > N, such

13

a hyperflow cannot exist. That is, for all n > N, the decoder fails unless there are less than

ε ′n errors, which occurs with probability going to zero. Since ε was chosen arbitrarily,

the LP-threshold for the sequence is indeed 0.

2.5. Redundant Parity Checks

The polytope defined above is just one relaxation that achieves a polynomial-in-

n number of facets. It is not at all clear what relaxations are achievable while keeping the

number of facets polynomial. One method of tightening the previous model, mentioned in

[3], is the addition of redundant check nodes to the code graph. A redundant parity check

is a parity check obtained through the addition of two or more parity checks from the

original code graph. That is, a redundant parity check obtained by combining the check

nodes {ci} contains an edge to variable node v if and only if an odd number of check

nodes in S are connected to v. Since the LP polytope is the intersection of all individual

check node polytopes, even a redundant check node (which does not alter the code) may

strengthen the polytope. Some redundant checks are verifiably useless for this purpose;

indeed, it will be shown first that adding a redundant check node over check nodes that

do not form a cycle will not alter the polytope.

Of course, these joint polytopes represent one way to tighten Feldman’s relax-

ation, and the simple proposition above makes it clear that only checks whose neighbors

form cycles should be considered. We now know that these redundant checks must be

placed on a cycle for any reduction in the polytope’s size. It is of theoretical interest to

know just what extent of tightening is possible through a similar approach. In this thesis,

we investigate whether redundant checks might be useful for the LP decoding of LDPC

codes with good girth (i.e. the LDPC codes encountered in practice).

Redundant cycles could also be added adaptively, once it is clear which cycles

would help avoid LP decoder failure. Such an approach is taken in [11]. This form of

14

adaptive decoding is possible due to the ML certificate property: as the LP solver must

fail by returning an invalid codeword, it can be run again after modifying a region of the

polytope containing the fractional codeword returned. Our interest, however, is in refining

the polytope prior to running the LP solver, as there has been very little work done to this

end.

In fact, a whole range of reductions could be possible using other techniques,

and there is much theoretical interest in knowing if there are any that lie between the

ML polytope and Feldman’s relaxed polytope such that (i) there are polynomially many

facets and (ii) the gap in error-probability to ML decoding is significantly reduced. A

number of generic polytope reductions that apply to arbitrary 0-1 integer programming

problems are explored in [12] and the original LP decoding paper by Feldman suggested

using these reductions on the LP-decoding polytope to examine the resulting reduction in

error probability.

15

CHAPTER 3

IMPACT OF REDUNDANT PARITY CHECKS

3.1. Redundant Parity Check Over Trees

The claim above that check nodes placed above other checks that do not form a

cycle would not tighten polytope is easily proved.

Recall the general idea behind the LP relaxation of Feldman: rather than taking

the convex hull of all valid codewords (vertices satisfying all the parity constraints), we

take the convex hull of all codewords satisfying some parity constraint j to obtain an in-

termediate polytope ℘j, then intersect all the polytopes ℘j to obtain the final polytope ℘.

The effect of adding a redundant parity check r on the LP decoder for some Tanner graph

can therefore be visualized as intersecting this polytope with an additional intermediate

polytope ℘r: that corresponding to the new redundant parity constraint. Consider the

polytope
⋂

i∈A
℘i for some set of check nodes A in the original graph. We can form a joint

polytope from these |A| checks as follows:

Definition 5. The joint polytope for the parity checks in a set A is the convex hull of

codewords satisfying all parity constraints in A1. The code node jA corresponding to the

checks in A is a check node connected to the variable nodes in N(A) such that a code

satisfies jA if it satisfies all the parity checks in A.

With the previous definition, we can relate the code node jA with the joint poly-

tope as follows:

Theorem 5. Given a set A of parity checks corresponding to code node jA, let E jA be the

set of sets S ⊂ N(A) such that if the variable nodes in S are all 1 and the variable nodes

1Note in particular that the joint polytope of all the check nodes is thus the original ML decoding
polytope.

16

in N(A)/S are 0, then the parity checks in A are all satisfied. Then the convex hull of the

set of codewords satisfying the constraints in A is given by the set of all f for which there

exists variables w jA,S such that:

∀i,0≤ fi ≤ 1 (18)

∀S ∈ E jA,0≤ w jA,S ≤ 1 (19)

∀i ∈ N(jA), fi = ∑
S∈E jA ,i∈S

w jA,S (20)

∑
S∈E jA

w jA,S = 1 (21)

If the joint polytope of the parity constraints in A is the same as the polytope⋂
i∈A

℘i, then the intersection of the polytope ℘r (where r is now the redundant parity con-

straint formed from the checks in A) will not lead to a reduction in polytope size. To see

why this is the case, compare the joint polytope with the added polytope ℘r: a codeword

that satisfied all parity constraints in |A| would clearly satisfy the redundant constraint

formed by r, hence the convex hull ℘A of these codewords would be a subset of the

convex hull of the codewords satisfying r.

The purpose of this section will be to show that if the parity checks in A are such

that they do not form a cycle, then adding a redundant parity check over A will not alter

the LP decoding polytope described by equations (18) - (21).

Theorem 6. Let A be a set of parity checks in some Tanner graph G(V,C) such that there

exists no cycle in the subgraph formed by the variable and check nodes in
⋃

c∈C(c∪N(c)).

Let rA be a redundant parity check over the check nodes in A. Then, the LP fundamen-

tal polytope for the Tanner graph G(V,C) is equivalent to the fundamental polytope of

G(V,C∪ rA).

We restrict our attention first to two check nodes j1 and j2 that share a single

variable node. Both nodes are assumed to be code nodes as defined in Definition 5;

a parity check j is therefore a special case of code node jA where the set A consists

17

of a single parity check (j itself). We will show that the joint polytope of these two

code nodes is equivalent to the intersection of the two polytopes ℘j1
⋂

℘j2 . We know

that ℘⊂℘j1
⋂

℘j2 so we need only show the opposite inclusion. Let f be a fractional

codeword in both polytopes. Then by (9) - (11) we can find variables w j1,S1 and w j1,S2

such that:

∀S ∈ E j,0≤ w j,S ≤ 1 (22)

∀i ∈ N(j), fi = ∑
S∈E j,i∈S

w j,S (23)

∑
S∈E j

w j,S = 1 (24)

We need to form variables {w jA,S} where A = {1,2} and S ∈ E jA such that, if

equations (22) - (24) are satisfied by (f ,w j1,S1) and (f ,w j2,S2), those same equations

would still be satisfied for (f ,w).

Since this is equivalent to the statement that any f in , we conclude that we gain

nothing by joining these two nodes. Before furnishing a proof, it should be noted that this

single case is sufficient, since any tightening of the polytope obtained by considering the

joint polytopes of multiple check nodes whose variable nodes do not form a cycle could

be obtained by repeatedly considering two check nodes with some shared neighbor2.

Lemma 3. Let j1 and j2 be two code nodes sharing a single variable node v. Suppose

there exist two sets {w j1,S} and {w j2,S} satisfying equations (18) - (21). Then there exists

a third set {w jA,S} satisfying those equations for A = {1,2}.

Proof. If S is the subset of variable nodes connected to j1∪ j2 \ v, let S′ = S∩N(j1) and

S′′ = S∩N(j2). We define w jA,S to be

2Trivially, if two check nodes share more than two variable nodes, they would form a cycle. So we are
justified in assuming only a single shared variable node.

18



w j1,S′∪vw j2,S′′∪v/ fv if v ∈ S, fv 6= 0

w j1,S′w j2,S′′/(1− fv) if v 6∈ S, fv 6= 1

0 if fv = 0

1 if fv = 1

(25)

where fv denotes the (fractional) value of f on variable node v. The proof is

complete if we can show that equations (18) - (21) are satisfied for (f ,w j,S). Equations

(18) and (19) are clearly satisfied. To show that equation 20 is also satisfied, we consider

first the case where the ith node is the common variable node v. Then

∑
S∈E j,i∈S

w j,S = ∑
S∈E j

(w j1,(S′∪v)w j2,(S′′∪v))/ fv

=
1
fv

∑
(S′∪v)∈E j1

w j1,S′∪v ∑
(S′′∪v)∈E j2

w j2,S′′∪v

= fv

As for the case i ∈ N j1, i 6= v we get

∑
S∈E j,i∈S

w j,S = ∑
S∈E j,i∈S

v∈S

w j,S′w j2,S′′/ fv

+ ∑
S∈E j,i∈S

v6∈S

(w j1,S′w j2,S′′)/(1− fv)

= ∑
(S′∪v)∈E j1 ,i∈S′

w j1,(S′∪v)

fv
∑

S′′∪v∈E j2 ,i∈S′′
w j2,S′′

+ ∑
S′∈E j1 ,i∈S′

w j1,S′

fv
∑

S′′∈E j2 ,i∈S′′
w j2,S′′

= fi

with the case i ∈ N j2, i 6= v handled identically.

And (21) is satisfied since

19

∑
S∈E j

w j,S =
1

1− fv
∑

S′∈E j1

∑
S′′∈E j2

w j1,S′w j2,S′′

+
1
fv

∑
(S′∪v)∈E j1

∑
(S′′∪v)∈E j2

w j1,(S′∪v)w j2,(S′′∪v)

= 1

For the case fv = 0, the verification is also trivial:

∑
S∈E j,i∈S

w j,S = 0

= fv

since w j,S = 0 for all S that contain v when fv = 0.

Moreover, we have:

∑
S∈E j,i∈S

w j,S = ∑
S∈E j,i∈S

v∈S

0

+ ∑
S∈E j,i∈S

v6∈S

(w j1,S′w j2,S′′)/(1− fv)

= ∑
S′∈E j1 ,i∈S′

w j1,S′ ∑
S′′∈E j2

w j2,S′′

= fi

since ∑
S′′∈E j2

w j2,S′′ = 1 and ∑
S′∈E j1 ,i∈S′

w j1,S′ = fi.

And finally for summation (21) we have:

∑
S∈E j

w j,S = ∑
S∈E j,v∈S

w j,S + ∑
S∈E j,v6∈S

w j,S = 0+1 = 1

The proof when fv = 1 follows similarly.

20

Any redundant check that does not form a cycle with its neighboring variable

nodes can be handled using the above lemma, by sequentially merging two of its check

nodes that share a single variable node. An immediate corollary for this lemma (which

will also be needed) is now given.

Corollary 1. Let j1 and j2 be two code nodes sharing a single variable node v. Suppose

there exist two sets {w j1,S} and {w j2,S} satisfying equations (18) - (21). Then there exists

a third set {w jA,S} satisfying those equations for A = {1,2}.

Proof. Let j3 be a check node of degree 2 attached a one variable node from each of

N(j1),N(j2). Clearly, the joint polytope ℘B where B = 1,2,3 is a subset of ℘A. From the

previous lemma, we know that the joint polytope is in fact equivalent to the intersection of

the polytopes ∩i∈B℘i (simply apply the lemma to B = 1,3 and then to B = 1,2,3). Thus,

the joint polytope for two code nodes that do not share any variable nodes is equivalent to

the intersection of the individual polytopes corresponding to the code nodes.

Thus we can now give a proof for theorem 6.

Proof of theorem 6. For a check node j, let N′(j) denote the set of check nodes that share

a variable node with j. Since
⋃

c∈A(c∪N(c)) contains no cycles, the check nodes con-

nected to rA must form a forest. Assume for now that there is a single tree in this forest.

Recall that each parity check node may be viewed as a code node jB where B has a single

parity check. We can therefore apply lemma 3 to obtain a proof by induction. The the-

orem holds when the tree is of size 1 since, in that case, both the fundamental and joint

polytope are given by℘A. Assume now that the theorem holds for all sets of size less than

|A|. Pick a check node j1 from the tree. The joint polytope for j1∩N′(j1) (the polytope

corresponding to the code node jB where B = j1∪N′(j1)) is equal to the intersection of

polytopes
⋂

i∈{ j1∪N′(j1)}℘i. We may thus merge the code nodes in j1∪N′(j1) without a

reduction in size of the fundamental polytope. The remaining code nodes clearly form a

tree of size less than |A|. Hence, the proof follows by induction, under the previous as-

21

sumption of a single tree in the forest. If the forest had more than one tree, we would end

up with several check nodes that do not share any variable nodes. By refdisjoint-corollary,

the joint polytope for these code nodes is also equal to the intersection of the individual

code nodes’ polytopes, and we conclude that the joint polytope for all the check nodes in

A is equal to the intersection of the individual polytopes for each of the check nodes.

3.2. Redundant Parity Checks Over Random LDPC Codes

Having considered the case of redundant checks containing no cycles, we move

now to those that contain at least one cycle. The purpose here is not to show that these

checks do not alter the polytope (by returning to the defining equations 8 - 11), but to

show that adding all such checks will not improve the LP-threshold of the LP decoder.

So though such checks may reduce the polytope size, the reduction is insignificant in our

present context of error correction. Essential to this part of the proof is our assumption

of good girth for the underlying code graph. That is, we prove that for almost all LDPC

code graphs with girth Ω(logn), adding all redundant parity checks does not increase the

LP threshold. We now state the main theorem of this thesis:

Theorem 7. Let {Cn} be a sequence of LDPC codes and assume there exist values for

N, ξ , and Λ and a function f (n)→ ∞ such that the following conditions are satisfied for

n > N.

(a) If there exists a function w on Cn’s Tanner graph Gn that satisfies equation (14) for

all check nodes and equation (12) for all but ξ n variable nodes, then there exists a

hyperflow on Gn.

(b) The Tanner graph for code Cn has a girth of at least Λ logn.

(c) Any sum of at least Λ logn parity checks results in a parity check of degree at least

f (n).

22

Then, for n > N, the LP thresholds for the sequence {Cn} and the corresponding

sequence {C′n} obtained by adding all redundant parity checks to each Cn are equal.

Before we provide a proof of this theorem we will need an additional lemma. The

proof will follow the general idea behind our proof of theorem 4 for random high-density

codes. To show that redundant check nodes will not help increase the LP-threshold, it

is necessary to show that for there to be any non-zero difference ∆ in threshold resulting

from the addition of redundant checks there must exist a code graph (possibly different

from the original graph) and a hyperflow on that graph with a linear-sized subset U of

variable nodes such that each variable node v ∈ U receives “non-negligible” flow from

redundant nodes. We will make use of the following definition throughout the rest of the

section:

Definition 6. Let v be a variable node in a Tanner graph G that includes some redundant

parity checks, and let w be a hyperflow for G under some error-pattern. Then we refer to

the sum of all the edge weights for edges between a variable node v and the redundant

check nodes in the hyperflow as node v’s redundant-in-flow (flow coming from redundant

nodes).

To prove the above statement, we need in turn a result from [9] that will allow us

to find a hyperflow with a constant lower-bound on this redundant-in-flow.

Lemma 4. Let ζ be a binary linear code with Tanner graph (V,C,E) where V = v1, ,vn.

Let ε,δ > 0 and ε ′ = ε +(1− ε)δ . Assume that ε,ε ′,δ < 1. Let qε ′ be the probability of

LP decoding error on the ε ′-BSC. For every error pattern x∈ {0,1}n, if G= (V,C,E,w,γ)

is a WDAG corresponding to a dual witness for x, let f (w) ∈ Rn be defined by

fi(w) = ∑
c∈N(vi):w(vi,c)>0

w(vi,c)− ∑
c∈N(vi):w(vi,c)≤0

(−w(vi,c)) = ∑
c∈N(vi)

w(vi,c)

for all i ∈ [n]. Then,

23

Pr
x∼Ber(ε,n)

{∃ a dual witness w for x s.t. fi(w)< γ(vi)−
δ

2
,∀i ∈ [n]} ≥ 1− 2qε ′

δ

The paper fittingly calls the difference γ(vi)− fi(w) the LP excess. The theorem

therefore establishes a lower-bound of 1− 2q
ε ′

δ
on the probability that there is a hyperflow

with an excess ≥ δ

2 on all variable nodes.

Proof of theorem 7. Denote the Tanner graph for code Cn by Gn and that for C′n by G′n.

Assume ε1 < ε2 and take σ = ε2−ε1
1−ε1

. Furthermore, assume we are operating on an ε2-BSC.

From lemma 4, there exists (with probability 1− 2qε2
σ
→ 1) a hyperflow for G′n with an

excess of σ on all variable nodes; denote this hyperflow by w′. We have shown (theorem

6) that redundant parity checks over checks that do not form cycles in the original graph

do not alter the LP decoding polytope. We may thus consider only redundant checks

placed over checks that form a cycle in G′n. Now, since (by hypothesis) graph G′n has

no cycles of length less than Λ logn, all such redundant checks must be placed over at

least Λ logn many checks in G′n. By condition (c), all such checks thus have degree

greater than f (n) where f (n)→ ∞ for increasing n. We can now use lemma 2 to show

that the number of nodes with redundant-in-flow greater than σ must be sublinear. If the

number of variable nodes with redundant-in-flow greater than σ was larger than δn for

all n sufficiently large, the constants σ ,δ would violate lemma 2. Thus, there are only

sublinearly many variable nodes in the resulting graph with redundant-in-flow greater

than σ . Since the hyperflow w′ was chosen to have an excess of σ on all its variable

nodes, we can conclude that there exists a function w on the edges of Gn such that w has

at most sublinearly many variable nodes that do not satisfy the hyperflow equation (12).

Namely, we can just take w to be the function w′ restricted to the edges in Gn; the variable

nodes in this hyperflow all have at most σ less flow from the same variable nodes in w′

and only a sublinear number of variable nodes had less than σ LP-excess in w′. From

(a), we know that, for n sufficiently large, if there exists a function w on the edges of

Gn that has less than ξ n variable nodes that violate equation 12 (and all of whose check

24

nodes satisfy hyperflow equation 14), then there exists a valid hyperflow on Gn for that

same error pattern. This implies that for n sufficiently large, the existence of a hyperflow

on G2 implies the existence of a hyperflow on G1 under the same error pattern. But

this in turn implies that Pr{LP decoder failure on G1} ≤ Pr{LP decoder failure on G2},

where the latter term goes to zero as n→ ∞ since we are operating at ε < ε2. Hence, the

initial assumption of ε1 < ε2 must have been incorrect, and the two codes have the same

threshold, completing the proof.

Thus, we have shown that, under the conditions stated in the hypothesis of theo-

rem 7, redundant parity checks offer no advantage to LP decoding of LDPC codes, in that

they cause no increase in LP-threshold. We have already seen why condition (b) is a valid

assumption: codes with girth Ω(logn) are the ones used in practice. Our reasoning behind

the first condition comes from the fact that most graphs are expanders (the probability of

a random regular-graph not being an expander decreases exponentially) and, as explained

in section 3, the LP polytope over such graphs cannot return the non-zero codeword if the

received codeword has weight less than δn for some constant δ > 0. The conjecture that

condition (a) follows from this will be briefly discussed later. In what follows, we will

show why the second condition is in fact also a valid assumption for almost all graphs.

3.3. Redundant Parity Checks Over Long Cycles

For the remainder of this section, we assume the LDPC code graph to be con-

structed randomly such that each check node is connected to dr variable nodes chosen at

random from the n total variable nodes, for increasing values of codeword length n.

Note that this will not result in a (dl,dr)-regular LDPC code, and we will have

more to say about this in section 4.1.. Moreover, and perhaps more importantly, the

resulting code graph may not have good girth, and this issue is breifly addressed in section

4.2.. We will use G to refer to both a sequence of codegraphs for increasing codeword

25

length and a specific graph in the sequence interchangeably. H will refer to the m× n

matrix (m being the number of check nodes) such that

Hi, j =


1, if check node i is connected to variable node j

0, otherwise

H is also seen to be the parity check matrix for code G’s dual, since the rows

of a parity check matrix are a basis for the orthogonal space for G. For ease of notation

we will call this model of randomness in the matrix row-randomness, since the rows are

chosen independently at random from the set of weight-dr binary vectors of length n.

The argument for the case of redundant checks including cycles is as follows: In

a graph with good girth, a redundant parity check must include a large number of parity

checks from the original graph if it is to contain a cycle3. If we can show that such

redundant checks must consequently have a large degree, then, noting that in a hyperflow

a check node with degree d and an out-flow of α requires an in-flow of exactly dα , for

these nodes to supply a non-negligible flow to some variable node would require a large

in-flow from the other variable nodes. Indeed, it will be shown that the in-flow required

from all added redundant parity checks to cause a reduction in the LP threshold cannot be

met given only n variable nodes. It would follow, then, that the addition of all redundant

parity checks connected to parity checks forming cycles in the original graph could not

improve the error-correction of the LP decoder.

The main difficulty, however, is in showing that a redundant parity check con-

taining a large number of checks, each of degree dr, cannot lead to a parity check of low

degree. It is conceivable (in a graph with cycles) for a large set of parity checks to share

variable nodes such that the degrees of most of these variable nodes is even, making the

weight of the sum of the parity constraints (and the degree of the corresponding redundant

parity check) small. It will be shown that for code graphs sampled from the uniform en-

3‘large’ is on the order of logn, the girth of the graphs considered here

26

semble of (dv,dc) codes, the probability of this occurring for any redundant parity check

will converge to zero exponentially as the codeword length is increased. This is the reason

for our use of the random ensemble as opposed to a single deterministic code matrix. Note

that it is certainly possible to construct a matrix that violates this property, but the result

is sufficient as it shows that this will not be the case for almost all codes we encounter.

In the theorem below, note that the term c logn arises from the girth of the code

graphs we are working with. Under this assumption, any subset of less than c logn rows

contains no cycles, and does not affect the LP threshold by Theorem 3.

Theorem 8. Let Hm,n denote an m×n matrix constructed by randomly selecting each of

its m rows from the set of binary vectors of length n and weight dc. There exists a threshold

β such that if m < βn, the probability that Hm,n has a combination of at least c logn rows

that sum to a vector of weight less than any fixed constant N goes to zero as n→ ∞.

The proof of theorem 8 follows an argument by Calkin[13], though that paper

deals with the probability of a row-randomly constructed matrix H having less than full

rank. That is, Calkin proves the existence of a threshold β as in theorem 8 above such that

a row-random matrix of uniform row weight and # of rows
of columns < β (resp. > β) will have

full rank with a probability that converges to 1 (resp. 0) as n→ ∞.

In what follows, we will view the addition of rows of the matrix H as a Markov

process, and attempt to upper-bound the probability that such a process will lead to a sum

of weight less than N. We recall first the definition of a Markov chain, and its associated

transition matrix.

Definition 7. If we let the random variables X1,X2, ...,Xn denote the state in a stochas-

tic process, the sequence is said to form a Markov chain if knowledge of the current

state makes future states independent of past ones, that is, if Pr{Xn|X1,X2, ...,Xn−1} =

Pr{Xn|Xn−1}. If the transition probabilities are independent of time (the index of the cur-

rent state), the process is said to be a stationary Markov process. We can then form

a matrix P, called the transition matrix, whose i jth entry is given by the probability

27

Pr{Xn = j|Xn−1 = i} of transitioning from the ith to the jth state in any given index. Fur-

thermore, the transition matrix for a sequence of m consecutive transitions in the process

is given by the matrix product Pm.

We will modify the proof to show we can get no low-weight vectors from sum-

ming a large number of rows. We start with a zero vector and iteratively add rows chosen

uniformly at random from the set of weight-dc vectors in {0,1}n. The process clearly

forms a Markov chain whose states are the weight of the summation, and whose transi-

tion matrix is given by A = {apq} where apq is the state transition probability

apq =

(q
k−p+q

2

)(n−q
k+p−q

2

)(n
k

) ,

and the numerator is interpreted to be zero if k+q+ p is even. This expression

can be motivated as follows: starting with a vector of weight q, there are
(n

k

)
different

ways to choose the weight-k binary vector to be added. This vector will flip k bits from

the original vector and must lead to a weight difference of p−q. The original vector has

q ones. Let k1 and k2 denote the number of ones and zeros flipped, respectively, from the

original vector. We must have that k1 + k2 = k and k2− k1 = p− q; the only solution is

thus k1 =
k−p+q

2 , k2 =
k+p−q

2 . There are obviously
(n

k−p+q
2

)(n−q
k+p−q

2

)
ways to do this.

The resulting matrix A must of course be symmetric. Simply consider the proba-

bilities apq and aqp: adding any vector v2 twice to some vector v1 will result in v1, and we

can use this to obtain a one-to-one correspondence between vectors that cause a weight

transition p→ q and those that cause a weight transition q→ p. Hence, there are as many

vectors that cause either weight transition and apq = aqp for any p,q. It follows from

linear algebra then that we may diagonalize A as A = P−1AP where P is an invertible

matrix. More specifically, we may diagonalize A using its eigenvectors by taking P to be

the matrix whose ith column vector is the ith eigenvector. The theorem below involves

tedious algebraic manipulations and we will omit the proof. Refer to (2.1) and (2.2) in

28

Calkin’s paper for a detailed derivation.

Theorem 9. Let λi and ei denote the eigenvalues of A and their corresponding eigenvec-

tors, respectively. Let U be a matrix whose ith column is ei and let Λ be a diagonal matrix

with ith diagonal entry λi.

(a) The eigenvalues λi of A are given by

λi =
k

∑
t=0

(−1)t

(i
t

)(n−i
k−t

)(n
k

) (26)

(b) The jth component of ei is given by

ei[j] =
j

∑
t=0

(−1)t
(

i
t

)(
n− i
j− t

)
(27)

(c) U2 = 2nI

(d) A = (1/2n)UΛU

We are interested in the probability of returning to any of states {0, ..., N} after

t steps. That is, we are interested in the sum
N
∑

p=0
a(t)p0, where a(t)pq denotes the pqth entry of

the transition matrix for t iterations of the above Markov process, that is, the pqth entry

for matrix At .

From parts (c) and (d) of Theorem 9, a(t)p0 is given by
n
∑

i=0

1
2n ei[p]λ t

i
(n

i

)
. Through-

out the proof, we will make use of the following naive bound on ei[p]: ei[p] =
p
∑

t=0
(−1)t(i

t

)(n−i
p−t

)
≤

(N + 1)
(n

N

)2 for all p ∈ [0,N] and n sufficiently large. Hence,
N
∑

p=0
a(t)p0 is bounded by

(N+1)(n
N)

2

2n

n
∑

i=0
λ t

i
(n

i

)
.

Definition 8. Let Hm,n be the matrix constructed in theorem 8. We define M to be the

number of combinations of rows of Hm,n that sum to a binary vector of weight less than

N.

29

In what follows, we will attempt to upper-bound the expected value E(M) with a

bound that converges to zero for increasing n. From the previous discussion, we have that

E(M)≤
m

∑
t=c logn

(
m
t

) n

∑
i=0

N +1
2n λ

t
i

(
n
N

)2(n
i

)
=

n

∑
i=0

(
m

∑
t=c logn

N +1
2n λ

t
i

(
n
N

)2(n
i

))
(28)

However, as will become apparent in the proof of lemma 6 below, the fact that t is re-

stricted to be above c logn will only be needed for i ∈
(

n
2 −n4/7, n

2 +n4/7
)

. That is, for

i 6∈
(

n
2 −n4/7, n

2 +n4/7
)

, we will only need:

m

∑
t=c logn

(
m
t

)
N +1

2n λ
t
i

(
n
N

)2(n
i

)
≤

m

∑
t=0

(
m
t

)
N +1

2n λ
t
i

(
n
N

)2(n
i

)
(29)

=
N +1

2n

(
n
N

)2(n
i

)
(1+λi)

m (30)

We will show that the added factor of (N +1)
(n

N

)2 doesn’t affect the asymptotic

behaviour of E(M). The following bounds on λi will also be needed:

Lemma 5. (a) |λi|< 1 for all 0≤ i≤ n.

(b) If i > n
2 then λi = (−1)kλn−i.

(c) If 0 < ξ < 1
2 and i = ξ n then

λi =

(
1− 2i

n

)k

−
4
(k

2

)
n

(
1− 2i

n

)k−2 i
n

(
1− i

n

)
+O

(
k3

ξ 2n2

)

(d) If θ < 1− 1
k and n

2 − i = nθ

2 then λi = o
(1

n

)
.

Proof. See Lemma 3.1 in Calkin’s paper and the comments following it.

Define f (α,β) = −log(2)−α(α)− (1−α) log(1−α)+β log(1+(1−2α)k)

and let (αk,βk) be the root of f (α,β) = 0 and ∂ f (α,β)
∂α

= 0.

Lemma 6. There exists a positive constant βk such that if β < βk and m ≤ βn then

E(M)→ 0 as n→ ∞.

30

Proof. The summation is divided into the same parts as in Calkin’s paper, and each is

seen to be unaffected (asymptotically) by the added factor. The total range is i∈ [0,n] and

the expression to be evaluated is (28).

For the tail i ∈ [0,εn], we use the bound (1+λi)
m < 2m:

εn

∑
i=0

N +1
2n

(
n
N

)2(n
i

)
(1+λi)

m <
εn

∑
i=0

N +1
2n−m

(
n
N

)2(n
i

)
< εn

(
n
N

)2 N +1
2n−m

(
n

εn

)
→ 0

for ε sufficiently small. Note that the convergence is due to the fact that 2n−m =

2∆n for some ∆> 0 (since m is assumed to be a fraction of n) and
(n

εn

)
<
(en

εn

)εn
=
(e

ε

)εn
=((e

ε

)ε/∆
)∆n

. Now, ((e
ε

)ε/∆
)∆n

2∆n =

((e
ε

)ε/∆

2

)∆n

and we can select ε < ∆ small enough so that this last expression goes to zero (this in

turn follows trivially when we recall that n1/n → 1 as n→ ∞). Similarly for the range

(1− ε)n < i < n,

n

∑
i=(1−ε)n

N2

2n

(
n
N

)2(n
i

)
(1+λi)

m <
n

∑
i=(1−ε)n

N2

2n−m

(
n
N

)2(n
i

)

< εn
(

n
N

)2

2m−n
(

n
εn

)
→ 0

For the range n
2 − n4/7 < i < n

2 + n4/7, where 4
7 was chosen so that θ in (d) of

lemma (5) satisfies the condition θ < 1− 1
dc

required for dc ≥ 3, the naive bound above in

(29) will not suffice, since, for example, at i = n
2 the Stirling approximation on

(n
i

)
gives

2n

(π n
2)

1/2 . Instead, we return to the original expression for E(M):

E(M)≤
m

∑
t=c logn

(
m
t

) n

∑
i=0

N2

2n λ
t
i

(
n
N

)2(n
i

)
=

n

∑
i=0

(
m

∑
t=c logn

(
m
t

)
λ

t
i

)
N2

2n

(
n
N

)2(n
i

)

31

Consider the term

(
m
∑

t=c logn

(m
t

)
λ t

i

)
. As will be seen, lemma 5 above guarantees

a decreasing λi in the interval in question. Hence, we expect there to be a small tail in

the summation for low weight codewords (t < c logn), and indeed the summation can be

shown to converge to zero.

Using the bound
(m

t

)
≤
(em

t

)t and the bound (by (d) of Theorem 5) λi ≤
(

1
ω(n)

)
,

we get:

m

∑
t=c logn

(
m
t

)
λ

t
i ≤

m

∑
t=c logn

(em
t

)t
(

1
ω(n)

)t

≤ max
t≥c logn

m
(

1
tt

)(
em

ω(n)

)t

= O
(

1
(logn)logn

)

where in the last equality we used the fact that m ≤ n so that em
ω(n) < 1 for n

sufficiently large, and the expression is maximized by minimizing t.

We thus have:

n
2+n4/7

∑
i= n

2−n4/7

(
m

∑
t=c logn

(
m
t

)
λ

t
i

)
N +1

2n

(
n
N

)2(n
i

)
= O

(
1

(logn)logn (N +1)
(

n
N

)2
)

→ 0

since
n
∑
i

(n
i

)
≤ 2n.

For n
2(1−ε)< i < n

2−n4/7, we have λi < εk− (k
2)
n εk−2+O(k3

n2) and (1+λi)
m <

enεk−(k
2)εk−2

, so:

n
2−n4/7

∑
i= n

2 (1−ε)

N2

2n

(
n
N

)2(n
i

)
(1+λi)

m <

n
2−n4/7

∑
i= n

2 (1−ε)

N2

2n

(
n
N

)2(n
i

)
enεk−(k

2)εk−2
→ 0

At this point, we need to explain the choice of function f (α,β) defined earlier.

32

The value f (i
n ,

m
n) in fact corresponds to the value f such that expn f (i

n ,
m
n) is equal to

the ith term in equation (30) excluding the factor (N +1)
(n

N

)2. Hence, for negative values

of f , the term would decrease exponentially to zero and if the function f is negative for

all
(i

n ,
m
n

)
then the sum would also decrease exponentially to zero. Moreover, the added

factor (N +1)
(n

N

)2 clearly does not affect this convergence.

2n f (i
n ,

m
n) =

(
1+(1−2α)k)m

2n 2−α logα−(1−α) log(1−α)

≈ 1
2n (1+λi)

m
(

n
i

)

where we used (c) from lemma (5) to approximate the numerator and the follow-

ing relation between binary entropy and binomial coefficients:

H(α)≈ 1
n

log
(

n
pn

)

to approximate the denominator.

Thus, if f (i
n ,

m
n)< γ < 0 for all α ∈ (ε,1− ε), then

n
2 (1−ε)

∑
i=εn

N2

2n

(
n
N

)2(n
i

)
(1+λi)

m <

(
n
N

)2

neγn+o(n)→ 0

Note that this holds for the same (αk,βk) threshold parameters as for the 0-weight

case. Hence, as long as β < βk we have that E(M)→ 0.

Though we are working exclusively with low-density codes of fixed weight, it

should be noted that the threshold parameter varies with the weight k of each row ac-

cording to the (approximate) relationship βk ∼ 1− e−k
log2 . The thresholds can be solved

numerically, and below is a table of bounds on the threshold from Darling[14]. For the

codes under consideration, the values are clearly seen to be sufficient, that is, for all prac-

33

Row weight (k) βk

3 0.917935
4 0.976770
5 0.992438
6 0.997380
7 0.999064
8 0.999660

Table 1: Threshold βk for values of k from 3 to 8

tically encountered code rates (n−m
n) theorem 8 holds.

Thus, we have shown that the third condition mentioned in theorem 7 is in fact

true with probability going to one for randomly selected LDPC codes, that is, for almost

all LDPC codes. Theorem 7 may therefore be interpreted as a statement that the addition

of all redundant parity checks to almost any LDPC code of good girth will not lead to an

increase in the LP threshold, as long as it satisfies the first condition.

34

CHAPTER 4

FUTURE WORK

4.1. Extension to (dl,dr)-regular Codes

Theorem 6 above applies in the case of equal weight rows chosen randomly and

independently. This leads to column weights also being random, meaning the code is

actually not an (dv,dc) regular LDPC code. Fixing the column weights as well would

make the rows dependent, and the previous analysis would therefore no longer apply.

To remedy this, consider modifying the previous code graph to satisfy both the row and

column constraints. Specifically, the following process is applied to the random graph

constructed previously:

Algorithm 1 Convert dl code to (dl,dr) code.
Require: H is a matrix whose rows are random k-weight binary vectors
Ensure: A matrix H ′ whose rows are random k-weight binary vectors and whose

columns are random l-weight binary vectors where ln = km
for i = 1 to n do

j = 1;
if ith column of H has weight < l then

Pick any column i < j < n (at random) of weight > l
Pick any row r (at random) such that r(1) = 1 and r(j) = 0

else
if ith column of H has weight > l then

Pick any column i < j < n (at random) of weight < l
Pick any row r (at random) such that r(1) = 0 and r(j) = 1

end if
end ifSwap r(1) and r(j)

end for

We need to show that this algorithm, when applied to the previous code matrices,

will result in (i) H ′ having a uniform distribution over the set of all (dl,dr) code matrices,

and (ii) Pr{∃x ∈ 0,1m : w(xH ′) < N} < Pr{∃x ∈ 0,1m : w(xH) < N}. The proof of (i) is

trivial. A valid swap in the ith iteration of the loop above is between a random entry in the

35

first column of the submatrix Hi→n and an entry on the same row of a randomly selected

second column. Thus we have that, after the ith iteration, the first column of Hi→n has

a uniform distribution over the vectors of weight l and the matrix Hi+1→n has a uniform

distribution over all matrices such that H has rows of weight k and H1→i has columns of

weight l. At the end of the nth iteration, H ′ will therefore have a uniform distribution over

all (l,k)-regular matrices.

For (ii) we need show that any such swap that leads to more balanced columns

will reduce the probability that there exists a combination that sums to a vector of weight

less than N. Let c be some combination of rows {rS} of H and assume we are swapping

the ith and jth columns of some row r ∈ {rS}, where w(i) > w(j), r(i) = 1 and r(j) =

0. The only values affected by the swap are c(i) and c(j), and they are both inverted.

Hence the weight of c would have increased if both were 0, decreased if both were 1,

and remained unchanged otherwise. If we can show that Pr{c(j) = 0} > Pr{c(i) = 1}

then the new combination c′ (after the swap) is more likely to have weight greater than

c. This would show that any individual swap in the above procedure reduces the chances

of a combination having weight below N. Since the proof of theorem 8 was done through

an application of the union bound, this would imply that Pr{∃x ∈ 0,1m : w(xH ′)< N}<

Pr{∃x ∈ 0,1m : w(xH)< N}, as claimed.

Now Pr{c(i) = 1} is the probability of an even number of 1s in the set C of

ith column entries in {rS}. Intuitively, we expect this to be higher for the column with

more 1s already in it. This can be verified when the columns are populated using i.i.d.

Bernoulli trials, that is, when the entries are 1 with fixed probability p regardless of the

other entries. For this case, the above probability is equivalent to 1
2

[
1+(1−2pi)

|C|
]

where pi is the probability of an entry in the column being 1. Similarly for the ith column:

Pr{c(j) = 1}= 1
2

[
1+(1−2p)|C|

]
. Since there are more 1 entries in the ith column than

the jth column, we have pi > p j and Pr{c(j) = 0} > Pr{c(i) = 1}. We would need to

verify this for the distribution of entries in this matrix for the extension to (dv,dc) random

36

codes to be valid.

4.2. Effect of Good Girth

The matrices H considered so far in this thesis have been random – whether

row-random or random (dl,dr)-regular. Such a construction does not ensure the resulting

codes will have good girth, yet girth was a central part of the proof. For the results

to be valid, theorem 7 must be shown to be true when H is chosen randomly from the

ensemble of (dl,dr) codes having good girth. That is, we must show that the exclusion of

matrices H having small cycles does not increase the probability of the sum of O(logn)

its rows having a weight less than some constant N. Intuitively, exclusion of cycles should

actually increase the weight. Specifically, consider the sum of two randomly chosen rows

of H. For these rows to form a cycle they must share two of their adjacent variable nodes,

meaning the bits corresponding to these two column positions would be zero, decreasing

the weight of the sum. Things are less obvious when we consider a larger number of rows.

We will state what is required and leave the problem open for future work. Ide-

ally, we would want a mapping φ from a graph with cycles smaller than c logn to one with

none, such that (i) the distribution on φ(H) remains uniform over the matrices with no

cycles smaller than c logn and (ii) the sum of the rows of φ(H) is at least as large as that

of φ(H). Moreover, φ should maintain regularity of the resulting code graph so that we

are still dealing with (dl,dr)-regular codes. The most trivial examples – breaking a cycle

by removing a random edge from any small cycle – results in random matrices of good

girth, but the process of removing edges does not preserve regularity and may decrease

the weight of some combinations, as variables nodes that previously had odd degree might

now have even degree.

There is a whole range of manipulations to the graph that might be considered for

this purpose. Unfortunately, none of the techniques we considered was shown to satisfy

37

all the above conditions, and this problem thus remains unsolved.

4.3. Hyperflows and Fractional Weight

Finally, and perhaps most importantly, we require a proof of the following state-

ment: In a sequence of codes that can correct a linear fraction of errors introduced by the

BSC channel, any edge function on the Tanner graph Gn of Cn implies the existence a

hyperflow on Gn, for n sufficiently large. More informally, we are looking for a relation

between the number of bit errors in the codeword returned by the LP decoder, and the

minimum number of variable nodes in an edge function on Gn that violate the hyperflow

equation. If it can be shown that a linear number in the former minimum implies a linear

number in the latter, the proof can be considered complete. Unfortunately, this is some-

thing that was not addressed in this thesis, and represents the biggest gap in the above

proofs, though the problem appears to suggest a more simple proof.

38

CHAPTER 5

CONCLUSION

Our work has shown that, under a reasonable assumption, redundant parity checks

may be excluded as a method to tighten the polytope when it comes to the LDPC codes

that are typically encountered: those of good girth. The assumption used was a relation

between the error correction of the LP decoder and the number of variable nodes in a

Tanner graph that satisfy the hyperflow equations, namely, that for LP decoder that cor-

rect a constant fraction of errors, the existence of an edge function that leaves at most

sublinearly many variable nodes that don’t satisfy their hyperflow equations implies the

existence of a valid hyperflow on the same graph. By showing that (i) redundant checks

over non-cycle-forming parity checks from the original code do not alter the polytope

and (ii) redundant checks over cycle-forming parity checks will almost surely have high

degree, we arrived at the conclusion that any “useful” parity checks require too much

flow from a valid hyperflow of the code graph. This answers a question initially posed by

Feldman concerning the extent of error-correction improvement possible through redun-

dant parity checks. In his paper, Feldman presents a random code graph from the LDPC

ensemble and demonstrates that the addition of all sum-of-two redundant checks causes

an appreciable reduction in the error rate. According to the results presented in this thesis,

any such improvement will not cause a reduction in the LP threshold for the ensemble of

LDPC codes of girth O(logn). We have shown that the probability that there exists a “use-

ful” redundant parity check for a fundamental polytope that satisfies the conjecture falls

exponentially with codeword length, implying that for almost all regular LDPC codes of

good girth, these checks offer no improvement.

39

BIBLIOGRAPHY

[1] J. Feldman. Decoding Error-Correcting Codes via Linear Programming. PhD the-

sis, Massachusetts Institute of Technology, Cambridge, MA, September 2003.

[2] R. G. Gallager. Low Density Parity Check Codes. PhD thesis, Massachusetts Insti-

tute of Technology, Cambridge, MA, September 1960.

[3] J. Feldman, M.J. Wainwright, and D.R. Karger. Using linear programming to decode

binary linear codes. Information Theory, IEEE Transactions on, 51(3):954–972,

2005.

[4] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.

Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[5] S. Arora, C. Daskalakis, and D. Steurer. Message-passing algorithms and improved

lp decoding. Information Theory, IEEE Transactions on, 58(12):7260–7271, 2012.

[6] Ralf Koetter and Pascal O. Vontobel. Graph-covers and iterative decoding of finite

length codes, 2003.

[7] J. Feldman, T. Malkin, R.A. Servedio, C. Stein, and M.J. Wainwright. Lp decoding

corrects a constant fraction of errors. Information Theory, IEEE Transactions on,

53(1):82–89, 2007.

[8] C. Daskalakis, A.G. Dimakis, Richard M. Karp, and M.J. Wainwright. Probabilistic

40

analysis of linear programming decoding. Information Theory, IEEE Transactions

on, 54(8):3565–3578, 2008.

[9] Louay Bazzi, Badih Ghazi, and Rüdiger L. Urbanke. Linear programming decoding

of spatially coupled codes. CoRR, abs/1301.6410, 2013.

[10] J. Feldman, T. Malkin, R.A. Servedio, C. Stein, and M.J. Wainwright. Lp decoding

corrects a constant fraction of errors. Information Theory, IEEE Transactions on,

53(1):82–89, Jan 2007.

[11] Alexandros G. Dimakis, Amin A. Gohari, and Martin J. Wainwright. Guessing

facets: Polytope structure and improved lp decoding. CoRR, abs/0709.3915, 2007.

[12] Monique Laurent. A comparison of the sherali-adams, lovász-schrijver, and lasserre

relaxations for 0-1 programming. Mathematics of Operations Research, 28(3):pp.

470–496, 2003.

[13] Neil J. Calkin. Dependent sets of constant weight binary vectors. Combinatorics,

Probability and Computing, 6(3):263–271, 1997.

[14] R. W. R. Darling, M. D. Penrose, A. R. Wade, and S. L. Zabell. Rank deficiency in

sparse random GF[2] matrices. ArXiv e-prints, November 2012.

41

