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AN ABSTRACT OF THE THESIS OF

Kawthar Saeed Al-Ali for Master of Engineering
Major: Electrical Engineering

Title: Modelling of EEG dynamics under ECT using Square-Root Cubature Kalman filter

Electroconvulsive therapy (ECT) is a clinical technique used for treating patients
with severe drug resistant depression. The therapy consists of administering brief
current pulses through two stimulating electrodes placed on the subject scalp thus
creating short-lived therapeutic seizure activity in the underlying brain tissue. De-
spite being a superior treatment method, ECT efficacy and cognitive side effects
remain influenced by many parameters including electrode position and configura-
tion as well as the applied current intensity, duration, and polarity. Over the many
years, several innovations were introduced in terms of ECT stimulation param-
eters to reduce side effects while maintaining the antidepressant quality. Impor-
tantly, advancement was experimentally driven with limited understanding of the
role of different brain areas in initiating, recruiting and maintaining ECT-induced
seizures. In this thesis, we propose the use of a nonlinear interaction model to
explain multichannel scalp EEG recordings as the outcome for interacting corti-
cal areas, and thus aid in identifying key cortical players in initiating "efficient"
seizures. The interaction models are built from modified neuronal population
activity models whose dynamics can reproduce basic features of ECT-induced
seizures within local areas and across distant cortical areas. The dynamic models
are then used to identify the strength and directionality of effective connections
between 4 areas of the brain in three various EEG states: normal, ictal and post-
ictal. The Square-Root Cubature Kalman filter, a recently introduced nonlinear
estimation technique, is demonstrated to correctly estimate effective inter-areal
connection in simulation models. The method is subsequently applied on real
EEG recordings obtained in the AUBMC psychiatry department for patients un-
der the FEAST configuration of treatment.
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CHAPTER I

INTRODUCTION

Electroconvulsive therapy (ECT) is a method for treating severe,

medication-resistant depression where a weak current is passed through two

large electrodes resulting in diffused electric fields. The antidepressant efficacy

and cognitive side effects of ECT are influenced by many factors including the

position of the electrodes on the head, the current intensity, polarity, and

electrode configuration. Any variation in these elements affects the threshold for

seizure induction and the way the current propagates into the brain. Throughout

the history of the ECT, there have been many attempts to reduce its side effects

while maintaining its superior antidepressant efficacy. Innovations were made in

terms of pulse shape, pulse width, electrode placement and electrical dosage.

However, many areas were poorly explored until recently such as the current

directionality and the size and shape of the electrodes [1].

ECT side effects are most prominent immediately after a treatment

session, when disorientation is noticeable, and learning and memory are

compromised. Specifically, ECT weakens retention of newly learned information

(anterograde amnesia-AA), and recall of information learned before

treatment(retrograde amnesia-RA). The AA produced by ECT usually occurs for

short-time however the RA lasts longer and shows temporal gradient, with events

occurring closest in time to the treatment both most vulnerable to initial loss and
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the slowest to return [2].

At the neurophysiological level, the seizures induced by ECT are the

result of (a) extensive hyper-activation of underlying cortical neurons and (b)

propagation of such activation to distant cortical areas and brain structures. As as

stimulus is applied, a substantial electric field is created in the cortical tissue

underlying the stimulating electrode which leads to a significant increase in the

extracellular current in this tissue. This current, in turn, leads to strong activation

of neurons as expressed by vigorous firing of action potentials. The neural firing

activity propagates among neurons in the local area as well as to neurons of other

distant connected areas (principally by fibers in the white matter). The

stimulus-induced increase in firing activity is expressed by increase in synaptic

currents in the dendrites of neurons leading to an increase in electric field

fluctuations in the tissue and large amplitude deviations in voltage signal

recorded at the scalp of the subject, known as the electroencephalogram.

Electroencephalographic (EEG) signals are characterized by their amplitude and

frequency. The amplitude reflects the peak fluctuations in electrical voltage. At

rest, EEG amplitudes range from 10 to 100 µV while during a seizure they can

increase to 1000 µV or more. After the seizure, this intense neuronal

hyperactivity is followed by a profound inhibitory response, where postictal EEG

amplitudes may decrease to 1−10µV . On the other hand, EEG frequency refers

to the number of cycles per second and is measured in hertz (Hz). The

electroencephalogram is divided mainly into four frequency bands: delta

(0−4Hz), theta (5−7 Hz), alpha (8−13 Hz), and beta (13−20Hz). The

commonly recorded EEG signals consist of the summation of multiple

2



oscillating components at different frequencies. The largest component is

referred to as the dominant frequency of the signal [3].

ECT treatment consists of multiple sessions. The first session, called a

titration, is aimed at finding the threshold stimulus at which a seizure occurs in

patient. An initial stimulus train lasting for one second is first applied and the

resultant brain activity (as well as muscle tone) of the subject is monitored. If the

seizure doesn’t occur then the time duration is multiplied by 2 and so on. When

the seizure takes place the amount of charge delivered in mC by the train pulse is

recorded and is called the seizure threshold. The second session is a treatment

session where there is a direct admission of a stimulus that delivers an amount of

charge equal to 6× the seizure threshold.

Figure 1 represents the distinctive phases of a seizure [3]. Since

treatment sessions are conducted under anesthesia, the first phase to be noted in

the EEG signal is a period of slow wave anesthetic-related oscillations which is

to be thought of as the baseline activity from which seizures are initiated. As the

stimulus is applied, large artifacts are recorded since the magnitude of the

applied current (0.5-0.9 A) results in voltages well beyond the physiological

range of EEG signals. While this period is rich in dynamics, the artifacts

preclude the exact understanding of undergoing activity. After the stimulus,

recorded EEG undergoes a period of fast runs and irregular spiking (termed early

polyspike in the figure) which subsequently is gives ways to more regular large

amplitude lower-frequency spikes with a dominant frequency of (1-5 Hz). At this

stage, the seizure is maximally spread over the patient scalp and persists for

varying period of time to finally subside (presumably due to autonomous cortical

3



Figure 1: Various phases of a typical ECT induced seizure

inhibition that act to suppress the seizure), thus resulting in the so called

post-ictal suppression, a period of significant quenching of activity. The duration

of a seizure as well as strength of postictal suppression has been experimentally

linked to the effectiveness of an ECT-induced seizures [4]. We are mainly

interested in 3 states: baseline (our normal state), polyspike and slow wave (ictal

phase of 1−4Hz) and the immediate postictal state.

While many clinical studies have pointed to one or more brain areas a

being vigorously activated during an ECT seizure, it remains unclear which

cortical structures play the role of drivers and which are actually being recruited
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into a seizure. Moreover, and given the increased emphasis placed on post-ictal

suppression, it is equally important to isolate the areas that are initially

suppressed and the spatial and time progression of this phenomenon.

In this thesis, we propose to utilize biologically inspired models to, first,

infer the key areas involved in slow-wave seizure activity and the direction of

activity transfer between these areas, and second, to highlight the key areas

subjected to post-ictal suppression and the degree of decoupling between such

brain areas compared to pre-treatment baseline.

Starting with neuronal population models that were initially proposed

by Wendling et al [5] to model spontaneous seizures and later modified by

Karameh et al [6] to model externally induced seizures, we will develop a

network of models that represent the multi-channel EEG recordings obtained

from different brain areas. We will then demonstrate the ability of such models to

propagate slow-wave seizures between different brain areas according to a degree

of connectivity between these areas. An estimation tool will then be used to fit

the obtained models to first simulation data an then to experimentally obtained

data for multiple subjects during titration and treatment sessions.

Our model will try to evaluate the parameters representing the

connections between these different areas under 3 various EEG states: normal,

ictal and postictal. Basically, the Wendling model will be our brain model and

will generate the EEG signals. The square-root cubature Kalman filter will be

used to tune the connections values of the Wendling model in order to match the

generated EEG signals and the real ones from the lab. In summary, The model

combines four blocks of the Wendling model interconnected with twelve

5



parameters and tuned by the square-root Kalman filter.

In the next chapter we will give an overview of the neuronal populations

models starting with the Jansen model, then the Wendling model for spontaneous

seizures followed by the modified Wendling model for induced seizures. Then,

we will present the square-root cubature Kalman filter. The fourth chapter will

portray development of our multi-area model. Finally, results and discussion of

the potential of proposed models will be presented in the fourth chapter.
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CHAPTER II

OVERVIEW OF NEURONAL POPULATION

MODELS

In order to analyze information processing in the nervous system, a

neuronal group study should be conducted. Observation of individual cells

activity does not carry enough information for a wide analysis. In addition, a

large number of cells is involved in the process creating a precise long-range

interactions after inducing some random local activity. Thus, Wilson and Cowan

first developed a deterministic model for the dynamics of neuronal populations

[7]. Any local population contains excitatory and inhibitory cells and any

nervous process is dependent on the interactions between these cells [7]. The

electroencephalogram (EEG) is the recording of electrical brain activity recorded

by electrodes placed on the scalp. Several mathematical models have been

created to simulate this activity [8]. We will present next the Jansen model

followed by the Wendling model.

A. The Jansen Model

This section is based on [8] written by Jansen and Rit to describe their

mathematical model. Figure 2 shows the nonlinear model of a cortical column.

The cortical column is modeled by a population of ’feedforward’ pyramidal
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cells, receiving inhibitory and excitatory feedback from local interneurons and

excitatory input from neighboring or more distant columns. The input is

represented by a pulse density p(t) which can be any arbitrary function,

including white noise.

Figure 2: The Jansen Model

Each of the neuron populations is modeled by two blocks: the

postsynaptic potential (PSP) and the sigmoid. The PSP block transforms the

average pulse density of action potentials coming to the population of neurons

into an average postsynaptic membrane potential which can either be excitatory
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or inhibitory. The impulse response of this block is given by

he(t) =


Aate−at t ≥ 0

0 t < 0
(1)

hi(t) =


Bbte−bt t ≥ 0

0 t < 0
(2)

for excitatory and inhibitory cases, where A and B are the maximum amplitude

of the EPSP and IPSP, and a and b are the lumped representation of the sum of

the reciprocal of the time constant of passive membrane and all other spatially

distributed delays in the dendritic network. The sigmoid block transforms the

average membrane potential of a population of neurons into an average pulse

density of action potentials fired by the neurons. The block is represented by the

following function

Sigm(v) =
2e0

1+ er(v0−v)
(3)

with e0 maximum firing rate of the neural population, V0 the PSP for which a

50% firing rate is achieved, and r the steepness of the sigmoidal transformation.

The last four blocks C1,C2,C3 and C4 represent the connectivity constants that

determines the interaction between the pyramidal cells and the excitatory and

inhibitory interneurons.

Each PSP block can be modeled using two differential equations:

ÿ(t) = Aax(t)−2aẏ(t)−a2y(t) (4)
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rewritten as 
ẏ = z(t)

ż(t) = Aax(t)−2az(t)−a2y(t)
(5)

with x(t) and y(t) are the input and the output signals respectively. The following

set of six differential equations describe the entire model:

ẏ0(t) = y3(t)

ẏ3(t) = AaSigm[y1(t)− y2(t)]−2ay3(t)−a2 y0(t)

ẏ1(t) = y4(t)

ẏ4(t) = Aa{p(t)+C2 Sigm[C1y0(t)]}−2ay4(t)−a2 y1(t)

ẏ2(t) = y5(t)

ẏ5(t) = Bb{C4 Sigm[C3 y0(t)]}−2by5(t)−b2 y2(t)

(6)

The model parameters can be set to some specific values found in the literature.

The four connectivity constants C1,C2,C3 and C4 are proportional to the average

number of synapses between the pyramidal cells and the excitatory and inhibitory

feedback elements. They can be represented as a fraction of one constant:

C =C1;C2 = 0.8C;C3 = 0.25C;C4 = 0.25C (7)

The A and B parameters are proportional to the amplitude of the PSP while a and

b are inversely proportional to the duration of the PSP. Varying the model

parameters results in different outputs like noise, slow periodic activity, and

low-amplitude high frequency activity. The following parameters will be fixed
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throughout our work:

a = 100s−1, b = 50s−1, e0 = 2.5s−1, v0 = 6mV and r = 0.56mV

B. Wendling Model for Spontaneous Seizures

As mentioned in the last section, the Jansen model can generate

EEG-like signals. Wendling took this model one step further to simulate

seizure-like signals. He tried to model the production of realistic epileptic form

activity as a result of imbalance between excitatory and inhibitory synaptic gains

[9]. Thus at specific values, the parameters can drive the model into epileptic

state. In this case, the epileptic signals (spikes or rhythmic signals) replace the

normal EEG signals of the Jansen model. Wendling modified the Jansen model

by adding some blocks in order to represent fast EEG activity observed in

seizure. A second class of inhibitory interneurons was added to the model in

order to raise the kinetics of the system [9]. The impulse responses of the

excitatory, slow inhibitory, and fast inhibitory activities are given by the

following equations:

he(t) = Aat e−at (8a)

hi(t) = Bbt e−bt (8b)

hg(t) = Ggt e−gt (8c)
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Figure 3: Wendling Model

Figure 3 shows the block diagram representation of the model. The

excitatory input p(t) represents the influence from other areas, the output of the

model is the postsynaptic activity (EEG signal). Wendling derived a new set of

differential equations to model the new system[5].

ẏ0(t) = y5(t)

ẏ5(t) = AaSigm[y1(t)− y2(t)− y3(t)]−2ay5(t)−a2 y0(t)

ẏ1(t) = y6(t)

ẏ6(t) = Aa{p(t)+C2 Sigm[C1y0(t)]}−2ay6(t)−a2 y1(t)

ẏ2(t) = y7(t)

ẏ7(t) = Bb{C4 Sigm[C3 y0(t)]}−2by7(t)−b2 y2(t)

ẏ3(t) = y8(t)

ẏ8(t) = Gg{C7 Sigm[C5 y0(t)−C6 y4(t)]}−2gy8(t)−g2 y3(t)

ẏ4(t) = y9(t)

ẏ9(t) = BbSigm[C3 y0(t)]−2by9(t)−b2 y4(t)

yout(t) = y1(t)− y2(t)− y3(t)

(9)
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Where yout(t) is the output EEG signal.

Wendling model can produce six types of EEG signals that represent different

activities in the brain by changing the excitation and inhibition synaptic gain

parameters (A, B, and G) of the depth-EEG model. These types are: Normal

background, sustained discharge of spikes, low voltage rapid activity, slow

quasi-sinusoidal activity, sporadic spikes, and slow rhythmic activity[9].

Jansen model can simulate sustained discharge of spikes which is a

typical ictal activity. However, it cannot simulate fast EEG activity such as

low-voltage rapid discharges observed during seizure. The new model includes a

new subset that represents a second class of inhibitory neurons with faster

kinetics than the present inhibitory neurons [5]. This addition was made based on

the fact that there are two types of gamma-aminobutyric acid GABAA synaptic

responses in pyramidal neurons. GABAA,fast response is near the soma while

GABAA,slow is in the dendrites. GABAA,slow cells inhibit both pyramidal cells

and GABAA,fast interneurons.

As shown in Figure 3 the new added subset provides somatic inhibition

to pyramidal cells. GABAA,fast interneurons receive excitatory input from

pyramidal cells and inhibitory input from GABAA,slow interneurons. Thus the

model consists of four subsets of neurons, the pyramidal cells,the excitatory

interneurons,the slow dendritic-projecting inhibitory interneurons and the fast

somatic-projecting inhibitory interneurons. The excitatory input p(t) modelled

by Gaussian white noise describes the average density of action potentials from

neighboring areas. The EEG output is the summated postsynaptic potentials in

activated pyramidal cells.
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Figure 4: Average postsynaptic membrane potentials: excitatory, slow inhibitory
and fast inhibitory obtained from impulse response given by (8)

C. Modified Wendling Model for Induced Seizures

As mentioned in the previous section, the Wendling model represents

the connectivity between pyramidal cells, excitatory and inhibitory interneurons.

Figure 5 shows the Wendling model of one local area where the basic neural

firing element represents the main pyramidal cells. Filled arrows represent fast

excitatory connections, filled circles represent fast inhibitory connections and

hollow circles represent slow inhibitory connections. The pyramidal cell

population are reciprocally connected to (i) a population of local excitatory

interneurons that provide excitatory feedback to the pyramidal cells (ii) a

population of fast inhibitory interneurons that provide GABAA,fast somatic

inhibition, and (iii) a population of slow inhibitory interneurons that provide

GABAA,slow dentritic inhibition. Thus, rewriting the set of non-linear state-space
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Figure 5: Local Area model

equations in (9) we get:

ẋp(t) = z1(t) (10)

ż1(t) = AaS{xe(t)− xis− xi f (t)}−2azp(t)−a2xp(t)

ẋe(t) = z2(t) (11)

ż2(t) = Aa [u0(t)+ cepS{cpexp(t)}]−2az2(t)−a2xe(t)

ẋis(t) = z3(t) (12)

ż3(t) = BbdspS{cpsxp(t)}−2bz3(t)−b2xis(t)

ẋi f (t) = z4(t) (13)

ż4(t) = Ggd f pS{cp f xp(t)−ds f xii(t)})−2gz4(t)−g2xi f

ẋii(t) = z5(t) (14)

ż5(t) = BbS{cpsxp(t)}−2bz5(t)−b2xii(t)

e(t) = Kiv
(
xe(t)− xis− xi f (t)

)
(15)
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where we have:

xp(t) : the synaptic current output from pyramidal cell population to all

local cells

xe, xis, and xif: the excitatory input, GABAA,slow inhibitory input and

GABAA,fast inhibitory input, respectively, to the pyramidal cells

xii: the slow inhibitory input onto fast inhibitory cell

(A,a), (B,b) and (G,g) : the time profiles of fast excitatory, slow

inhibitory and fast inhibitory cells respectively

u0(t) : the external input assumed to arrive as a firing rate to the local

pyramidal population

dm,n and cm,n: the constants that denote the inhibitory and excitatory

connection strengths, respectively, originating from population m to population n

and (m,n) ∈ {p:pyramidal, e:excitatory interneuron, f: fast interneuron, s: slow

interneuron}

Finally the voltage trace e(t) is proportional to the over all postsynaptic

activity in the pyramidal cell population and is assumed to be representative of

the EEG traces of the overall local area.

Based on [6], the model introduced needs more modifications to truly

represent seizures induced by overwhelming excitatory drive as is the case in

ECT. The Wendling model depends only on the connection parameters. Thus, to

make it depend more on the excitatory drive, the local area model is modified by

adding a fast inhibitory to slow inhibitory neuron connection with the
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corresponding change in the dynamics of slow interneurons ((12))

ẋis(t) = z3(t)

ż3(t) = BbdspS{cpsxp(t)−d f sxi f (t)}−2bz3(t)−b2xis(t)
(16)
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CHAPTER III

OVERVIEW OF KALMAN-BASED ESTIMATION

In this chapter, we will give a brief introduction to the basic Kalman

filter before presenting the square-root cubature Kalman filter that we will be

using throughout our work.

A. Basic Filters

The Kalman filter is a set of mathematical equations that provides a

recursive solution to the linear optimal filtering problem. Each updated estimate

of the state is computed from the previous estimate and the new input data. Thus,

the solution is recursive and there is no need to store the entire past observed data

[10]. The aim of the Kalman filter is to estimate the state x ∈ Rn of a

discrete-time controlled process modeled by the linear stochastic difference

equation [11]

xk+1 = Akxk +Buk +wk (17)

with a measurement z ∈ Rm

zk = Hkxk + vk (18)
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The control input is u ∈ Rl . wk and vk are independent process and measurement

Gaussian noise with zero-mean and covariances Q and R respectively.

p(w)∼ N(0,Q) (19)

p(v)∼ N(0,R) (20)

The Kalman filter computes an a posteriori state estimation x̂k as a

linear combination of an a priori estimate x̂−k and a weighted difference between

an actual measurement zk and an estimated measurement Hkx̂−k as shown in the

following equation:

x̂k = x̂−k +K(zk−Hkx̂−k ) (21)

(zk−Hkx̂−k ) is the residual which we want to make as small as possible in order

for the real and predicted measurements to match. K is the gain that minimizes

the a posteriori error covariance Pk where

Pk = E[(xk− x̂k)(xk− x̂k)
T ] = E[ekeT

k ] (22)

The Kalman filter maintains the first two moments of the state distribution

E[xk] = x̂k

E[(xk− x̂k)(xk− x̂k)
T ] = Pk

(23)

The state distribution is normally distributed if (19) and (20) are met. The a

posteriori states estimation reflects the mean of the state distribution and the a
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posteriori estimate error covariance reflects the variance of the state distribution :

p(xk | zk)∼ N(E[xk],E[(xk− x̂k)(xk− x̂k)
T ])

= N(x̂k,Pk)

(24)

In general, the Kalman filter estimates the process state at time k and

then corrects this estimation based on the noisy measurement zk. The algorithm

is based on two sets of equations: time update and measurement update

equations. The time update equations project the current state and error

covariance estimates forward in time to obtain the a priori estimates for the next

time step. On the other hand, the measurement update equations are responsible

for the feedback: adding a new measurement into the a priori estimate to obtain

an improved a posteriori estimate.

Figure 6: The Ongoing Kalman Filter Cycle

B. Square-Root Cubature Kalman Filters

However, most of the systems that we are dealing with in real life are

nonlinear. Thus, research has been intensively conducted in order to find a
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nonlinear filtering solution based on the Kalman filter. The research resulted in

obtaining the extended Kalman filter, the unscented Kalman filter, and the

quadrature Kalman filter. Nevertheless, these filters suffer from divergence or the

curse of dimensionality or both.

Recently, Arasaratnam and Haykin derived a more accurate nonlinear

filter[12]. This filter can solve high-dimensional nonlinear filtering problems

with minimal computational effort. Their work was based on the fact that the

Bayesian filter solution in the Gaussian domain reduces to the problem of how to

compute multi-dimensional integrals, whose integrands are all of the form

nonlinear function ÃŮ Gaussian density. To compute integrals numerically, they

derived a third-degree spherical-radial cubature rule. Finally, they combined their

cubature rule with the Bayesian filter and created a new filter: The Cubature

Kalman Filter (CKF).

The Cubature Kalman filter tries to solve the filtering problem of a

dynamic system with additive noise, whose state-space model is defined by the

following difference equations:

Process Equation: xk = f (xk−1,uk−1)+ vk−1

Measurement Equation: zk = h(xk,uk)+wk

(25)

vk−1 and wk are independent process and measurement Gaussian noise

sequences with zero means and covariances Qk−1 and Rk respectively. where

xk ∈ Rnx state of the dynamic system at discrete time k

f : Rnx×Rnu → Rnx some known function
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h : Rnx×Rnu → Rnz some known function

uk ∈ Rnu known control input;

zk ∈ Rnz measurement

vk−1 and wk independent process and measurement Gaussian noise

sequences with zero means and covariances Qk−1 and Rk respectively.

The cubature rule has many desirable properties that make the CKF an

improved algorithm for the nonlinear problems. First, having a state-vector of

dimension n requires us to use only 2n cubature points. Thus, at each update we

are making 2n functional evaluations. The computational complexity therefore

grows linearly with the dimension n whereas it grows cubically in terms of flops.

In other words, the CKF lessens the curse of dimensionality but does not provide

a complete solution for this issue. Second, using the CKF with the third-degree

cubature rule may be considered as an optimal approximation to the Bayesian

filter designed for a nonlinear system, under the Gaussian assumption. Finally,

the cubature rule is derivative-free. Therefore, we can apply the CKF to any

model with complicated nonlinearities without having to worry about the

difficult calculations of the Jacobian and Hessian matrices.

Next, in order to improve numerical stability Arasaratnam and Haykin

derived the square-root version of the CKF. The reason behind the SCKF is to

maintain the two properties of the error covariance matrix which are symmetry

and positive definiteness. Usually these two properties are lost due to errors

introduced by arithmetic operations performed on finite word-length digital

computers. The CKF algorithm includes matrix square-rooting, matrix inversion
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and some other operations that may destroy the properties of the covariance

matrix. In addition, some nonlinear filtering problems may be numerically ill

which can cause instability and divergence. In order to avoid these problems,

they use the SCKF which propagates square-root factors of the predictive and

posterior error covariances. It preserves the symmetry and positive

semi-definiteness of the covariance and improves numerical accuracy and

precision. The SCKF algorithm is based on the least-squares method for the

Kalman gain and matrix triangular factorization or triangularization (the QR

decomposition) for covariance updates.

As the state dimension n increases, the computational complexity of the

SCKF grows cubically in terms of flops . Hence it is comparable to that of the

CKF or the EKF. Its complexity can be significantly reduced by taking advantage

of the sparsity of the square-root covariance and by using coding

triangularization algorithms for distributed processor-memory architectures.

The SCKF algorithm is presented next, where all of the steps can be

deduced directly from the CKF except for the update of the posterior error

covariance.

Time Update

1) Evaluate the cubature points (i = 1,2, ..m)

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (26)

where m = 2nx
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2) Evaluate the propagated cubature points (i = 1,2, ..m)

X∗i,k|k−1 = f (Xi,k−1|k−1,uk−1) (27)

3) Estimate the predicted state

x̂k|k−1 =
1
m

m

∑
i=1

X∗i,k|k−1 (28)

4) Estimate the square-root factor of the predicted error covariance

Sk|k−1 = Tria([X ∗
k|k−1 SQ,k−1]) (29)

where SQ,k−1 denotes a square-root factor of Qk−1 such that Qk−1 = SQ,k−1ST
Q,k−1

and the weighted centered(prior mean is subtracted off) matrix

X ∗
k|k−1 =

1√
m
[X∗1,k|k−1− x̂k|k−1 X∗2,k|k−1− x̂k|k−1...X

∗
m,k|k−1− x̂k|k−1] (30)

Measurement Update

1)Evaluate the cubature points (i = 1,2, ..m)

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (31)

2)Evaluate the propagated cubature points (i = 1,2, ..m)

Zi,k|k−1 = h(Xi,k|k−1,uk) (32)
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3)Estimate the predicted measurement

ẑk|k−1 =
1
m

m

∑
i=1

Zi,k|k−1 (33)

4)Estimate the square-root of the innovation covariance matrix

Szz,k|k−1 = Tria([Z ∗
k|k−1 SR,k]) (34)

where SR,k denotes a square-root factor of Rk such that Rk = SR,kST
R,k and the

weighted centered matrix

Zk|k−1 =
1√
m
[Z1,k|k−1− ẑk|k−1 Z2,k|k−1− ẑk|k−1...Zm,k|k−1− ẑk|k−1] (35)

5) Estimate the cross-covariance matrix

Pxz,k|k−1 = Xk|k−1Z
T

k|k−1 (36)

where the weighted, centered matrix

Xk|k−1 =
1√
m
[X1,k|k−1− x̂k|k−1 X2,k|k−1− x̂k|k−1...Xm,k|k−1− x̂k|k−1] (37)

6)Estimate the Kalman gain

Wk = (Pxz,k|k−1/ST
zz,k|k−1)/Szz,k|k−1 (38)
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7) Estimate the updated state

x̂k|k = x̂k|k−1 +Wk(zk− ẑk|k−1) (39)

8) Estimate the square-root factor of the corresponding error covariance

Sk|k = Tria([Xk|k−1 −WkZk|k−1 WkSR,k]) (40)

After the forward filtering pass, we ran the backward smoothing pass

where it recursively computes the smoothed states and parameters backward in

time. The following algorithm for the SCKF forward pass can be found in [13] :

1) Compute the matrices U11,U21 and U22 using the triangularization

algorithm U11 0

U21 U22

=

X ∗
k+1|k SQ,k+1

Xk|k 0

 (41)

where the weighted centered matrix

Xk|k =
1√
2n

[
X1,k/k− x̂k/k...Xm,k/k− x̂k/k

]
(42)

2) Compute the smoother gain

Gk =U21/U11 (43)

3) Compute the smoothed state

x̂k|N = x̂k|k +Gk(x̂k+1|N− x̂k+1|k) (44)

26



4) Compute the square-root of the smoothed state error covariance

Sk/N = Tria
([

U22 GkSk+1/N

])
(45)
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CHAPTER IV

MULTI-AREA SEIZURE MODEL UNDER ECT

A. 4-Area Model

Since one block of the Wendling model represents one single area,

connecting multiple Wendling blocks will create interaction between neural

populations. This will allow one area to initiate a seizure based on the external

input and to initiate a feedback excitatory connection with the other areas driving

them into seizure activity [6]. The other areas may be driven by inputs that are

below seizure-threshold but with the feedback connection will generate a seizure.

Hence, the following equations are the updated version of (11) and (13):

ẋe(t) = z2(t) (46)

ż2(t) = Aa
[
u0(t)+ cepS{cpexp(t)+ kp2p1xp2(t)}

]
−2az2(t)−a2xe(t)

ẋi f (t) = z4(t) (47)

ż4(t) = Ggd f pS{cp f xp(t)+ kp2 f 1xp2(t)−ds f xii(t)})−2gz4(t)−g2xi f (t)

where xp2(t) is the output from the pyramidal cells in area 1 arriving at the other

areas. kp2p1 and kp2 f 1 are the connections from area 2 to the pyramidal and fast

inhibitory cells in area 1, respectively.

Finally, we took into consideration that the signals between areas don’t

arrive instantly but there is some propagation delay between activity generated in
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Figure 7: Multi-Area Model

one area and arriving at another. As shown in Figure 7, we added a new function

between the connections to account for the delay. Table 1 lists the values of the

delays used throughout the simulations where τm,n represents the propagation

delay between activity generated in area m and arriving at area n :

Delay Value in (ms)

τ1,2,τ2,1,τ3,2,τ4,3 4
τ1,3,τ2,4,τ3,1,τ4,2 10
τ1,4,τ2,3,τ3,4,τ4,1 8

Table 1: Values of Propagation Delays between different areas

Our final model consists of 4 areas fully connected with each other as

shown in Figure 8. Based on the original Wendling model differential equations

29



Figure 8: Four Connected Blocks of the Wendling Model

set in addition to the variations made in [6], the 4 areas model consists of 40

differential equations that define the Wendling blocks behavior and the

interaction between them. The following set of 10 differential equations

represents one area with its local activity and the interaction with the signals

arriving from other areas.

ẋp(t) = z1(t) (48)

ż1(t) = AaS{xe(t)− xis(t)− xi f (t)}−2azp(t)−a2xp(t)

ẋe(t) = z2(t) (49)

ż2(t) = Aa
[
u0(t)+ cepS{cpexp(t)+ kp2p1xp2(t− τ2,1)+ kp3p1xp3(t− τ3,1)}

]
+kp4p1xp4(t− τ4,1)−2az2(t)−a2xe(t)

ẋis(t) = z3(t) (50)

ż3(t) = BbdspS{cpsxp(t)−d f sxi f (t)}−2bz3(t)−b2xis(t)

ẋi f (t) = z4(t) (51)

ż4(t) = Ggd f pS{cp f xp(t)+ kp2 f 1xp2(t− τ2,1)+ kp3 f 1xp3(t− τ3,1)})

+kp4 f 1xp4(t− τ4,1)−ds f xii(t)−2gz4(t)−g2xi f (t)

ẋii(t) = z5(t) (52)

ż5(t) = BbS{cpsxp(t)}−2bz5(t)−b2xii(t)
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e(t) = Kiv
(
xe(t)− xis− xi f (t)

)
(53)

Our main goal is to find the values of the connections between brain

areas. We will focus on three EEG types : normal EEG activity, ictal and

postictal phases. Using the data from the AUB medical center lab, we will run

the SCKF in order to find how these parameters are being distributed under the

three different cases. Each area is connected to the three other areas by three

different connections. In total, We have twelve connection values that we need to

find. Basically we want to study how do these connections change in various

EEG states. Thus, setting the 12 parameters to certain values will give us a

specific EEG signal.

What we are aiming for is different from what Wendling et al did in [5].

They were tuning the internal variables of the Wendling model (A,B and G) in

order to get different types of EEG activity. On the other hand, we will fix these

internal variables throughout our work to the values found in [5]. We list them in

Table 2 on page 34.

Next, we integrated the four Wendling Blocks into the SCKF to create

our model. Given the process and measurement equations of the SCKF as:

Process Equation: xk = f (xk−1,uk−1)+ vk−1

Measurement Equation: zk = h(xk,uk)+wk

(54)

we defined the function f to represent the brain model which is in our case the

four connected Wendling blocks. The 40 differential equations that model the

four areas have 40 different states. However, three states from each block were
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passed to the SCKF which in total gives us 12 states. The 3 states used from each

area are xe(t),xis(t) and xi f . As previously mentioned, they are the excitatory

input, the GABAA,slow inhibitory input and the GABAA,fast inhibitory input,

respectively, to the pyramidal cells. The process equation also depends on some

input current and the 12 connection parameters. The latter vary according to the

SCKF output. On the other hand, the output function h is:

e(t) = Kiv
(
xe(t)− xis− xi f (t)

)
(55)

which calculates the EEG value from three states. Hence, the observed output in

SCKF is the four EEG signals corresponding to the four blocks.

Figure 9: Block Diagram of the Model

In summary, starting with some input current value and an initial

estimate of the parameters, the 4 Wendling blocks will generate 4 EEG signals.

The SCKF will compare the generated EEG output to the real EEG signals that

we want to match. The error difference between the two signals determines how

much the parameters will change. The new updated values are fed into the
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Wendling blocks. The cycle is repeated until the error converges to zero and

there is no need to update the parameters anymore. The flow diagram is shown in

figure 9.

Finally, we had 12 Wendling states and 12 connection parameter thus n

in SCKF is equal to 24 and the number of cubature points m is 48. The

Runge-Kutta 4th order method was used to solve the differential equations in

Wendling and all the code was written in MATLAB.
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Parameter Interpretation Standard Value
A Average excitatory synaptic gain 3.25mV
B Average slow inhibitory synaptic gain 22mV
G Average fast inhibitory synaptic gain 10mV
1/a Dendritic average time constant in the feedback excitatory loop a = 100s−1

1/b Dendritic average time constant in the slow feedback inhibitory loop b = 50s−1

1/g Somatic average time constant in the fast feedback inhibitory loop g = 500s−1

C1,C2 Average number of synaptic contacts in the excitatory feedback loop C1 =C,C2 = 0.8C(C = 135)
C3,C4 Average number of synaptic contacts in the slow feedback inhibitory loop C3 =C4 = 0.25C
C5,C6 Average number of synaptic contacts in the fast feedback inhibitory loop C5 = 0.35C,C5 = 0.35C
C7 Average number of synaptic contacts between slow and fast inhibitory interneurons C7 = 0.8C
v0.e0,r Parameters of the nonlinear asymmetric sigmoid function v0 = 6mV,e0 = 2.5s−1,r = 0.56mV

Table 2: Model Parameters Values
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B. SCKF Estimation of Connectivity in Surrogate Data

We will show next the results of testing our model on synthetic EEG

data. To generate EEG, we ran the 4 Wendling blocks with the internal variables

set to the values in Table 2. Then we chose a random combination of the

connection parameters as illustrated in Tables 3 and 4.

kp1 p2 kp1 p3 kp1 p4 kp2 p1 kp2 p3 kp2 p4 kp3 p1 kp3 p2 kp3 p4 kp4 p1 kp4 p2 kp4 p3

60 10 15 20 30 10 30 12 16 43 50 6

Table 3: Values of Parameters

kp1 f2 kp1 f3 kp1 f4 kp2 f1 kp2 f3 kp2 f4 kp3 f1 kp3 f2 kp3 f4 kp4 f1 kp4 f2 kp4 f3

30 5 7.5 10 15 5 15 6 8 21.5 25 3

Table 4: Values of Parameters

The four inputs of the model u1(t),u2(t),u3(t) and u4(t) arriving at

areas 1,2,3 and 4 respectively are shown in Figure 10a. By setting the

parameters and the inputs to the mentioned values, we generated the EEG

synthetic output shown in Figure 10b. Next, we fed this synthetic data to the

SCKF as our desired output and we ran it for 4 seconds. The goal was to test

whether the SCKF can fit the true EEG data and find the right set of parameters.

As displayed in Figure 10c, the SCKF was able to track the generated model data

with high accuracy by predicting the proper values of parameters for the

network. The absolute error is plotted in Figure 10d. Figures 11(a),11(b) and

11(c) show that the SCKF converges also to the right set of parameters that we

used in the model. Moreover looking at the Wendling states of the system, we

find that the SCKF is also able to produce all 12 correct states as displayed in

Figures 11(d), 11(e) and 11(f). Based on these results, we can conclude that our

35



0

200

400

0

100

200

0

100

200

0 1 2 3 4 5
0

100

200

Time (s)

M
ea

n
 In

p
u

t 
R

at
e 

u
(t

)

(a) Input u(t)

−20

0

20

−20

0

20

−20

0

20

0 1 2 3 4 5
−20

0

20

Time (s)

V
o

lt
ag

e 
(m

ic
ro

V
)

(b) EEG Model Output Signal

−50

0

50

−20

0

20

−20

0

20

0 0.5 1 1.5 2 2.5 3 3.5 4
−20

0

20

Time (s)

V
o

lt
ag

e 
(m

ic
ro

V
)

(c) Overlapping Synthetic Data and SCKF
Output Data

−2

0

2

−1

0

1

−1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

0

1

Time (s)

(d) Absolute Error

Figure 10: Surrogate Data Results: Input and Output Signals, Absolute Error

model can track the correct EEG output while converging to the right set of

parameters and thus the true states of the system.
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Figure 11: Surrogate Data Results: Parameters and States
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CHAPTER V

RESULTS

In this chapter, we will show the results of testing our model on real

EEG data from the lab. As explained in the previous chapter, our model consists

of four interconnected areas and our goal is to find the values of the connection

parameters. There are three types of EEG signals that we used through our work:

i) normal ii) ictal and iii) postictal states. We aim to find the difference in the

distribution of parameters for the different EEG states.

A. Data Set

We have been provided with ECT data for five subjects form the

AUBMC (Dr Ziad Nahas, IRB approved protocols). The data set consists of ECT

recorded sessions for five different subjects. Each subject has 0 or 1 recorded

titration session and 2 recorded treatment sessions as illustrated in Table 5.

Subject Number
Number of

Titration Sessions
Number of

Treatment Sessions Reverse Polarity

1 1 2 ×
2 0 2 ×
3 1 2 Treatment 1
4 1 2 Treatment 2
5 0 2 Treatment 1

Table 5: subject Data distribution
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During the ECT session, the electrodes are placed on the scalp

according to the FEAST(focal electrically administered seizure therapy)

configuration. This method combines unidirectional stimulation, control of

polarity, and an asymmetrical electrode configuration (small anterior and large

posterior electrode). FEAST is based on the hypothesis that by improving the

focality of the treatment we may lessen its side effects without affecting the

antidepressant efficacy [1].

B. Additional Smoothing

Each session was divided into three parts: normal, ictal and postictal.

Each part consists of 10 seconds of EEG data scaled down by a factor of 2. As

discussed earlier our goal is to find the values of the parameters for each state.

We had two setups for the different states:

• In the normal and postictal states, we ran the SCKF first as the forward run

and then we ran the square-root cubature Kalman smoother as the

backward run in order to smooth the values of parameters. We assigned a

vector of zeros as initial values for the parameters and the model was able

to converge to a certain set of values for the normal and postictal states.

• In the ictal state, we also ran the SCKF first as a forward run and then we

ran the square-root cubature Kalman smoother as the backward run.

However, the values of parameters were excessively fluctuating thus we

added a third step that consists of taking the average value of the resulting

parameter and using it as an initial value for a second run (forward and

39



backward again). The result was a much more smoothed parameter value

for the ictal state.

C. Global Areas

First, we study the parameter modeling for global areas to model

relative activity of remote areas in the brain. For the global areas, the four brain

areas are taken to be the EEG signals recorded by electrodes F6,F5,P5 and P4

which are found in the frontal and parietal lobes respectively. Figure 12 shows

the position of the electrodes and Table 6 lists the four areas with their

corresponding electrodes.

Area Electrode

1 F6
2 F5
3 P5
4 P4

Table 6: Electrodes in different areas

The connection parameters are displayed in Figure 13. Table 7 lists the

different parameters and their corresponding connected areas. In the next section,

the parameters kp1 p2 , kp1 p3 , kp1 p4 , kp2 p1 , kp2 p3 , kp2 p4 , kp3 p1 , kp3 p2 , kp3 p4 , kp4 p1 ,

kp4 p2 and kp4 p3 will be referred to as P1, P2, P3, P4, P5, P6, P7, P8,P9, P10,

P11 and P12 respectively.
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Figure 12: The 4 brain areas

Area 1 Area 2 Area 3 Area 4

Area 1 kp1 p2 kp1 p3 kp1 p4

Area 2 kp2 p1 kp2 p3 kp2 p4

Area 3 kp3 p1 kp3 p2 kp3 p4

Area 4 kp4 p1 kp4 p2 kp4 p3

Table 7: The connection parameters between the four areas

Figure 13: The 12 parameters
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Figure 14: Subject 3. Treatment 1: EEG Data and SCKF Output Data of normal,
ictal and postictal states

D. SKCF Modeling and Accuracy for Global Areas

We ran SKCF for the different EEG signals obtained from the subjects

in table 5. The resultant models were highly accurate. For illustration, we will

show the detailed results of the first treatment session for subject number 3. As

mentioned earlier, we want the SCKF to be able to track the true EEG signal and

to find the values of parameters. Figure 14 shows the EEG data and the SCKF

output data of the normal, ictal and postictal states. The output of the SCKF is

clearly overlapping the true EEG signal. Figure 15 and 16 show the convergence

of the 12 parameters for the normal and postictal smoothed values are also shown

in 15 and 16 as the green line plot for the normal and postictal states respectively.

Similarly, Figure 17 shows the convergence of the 12 parameters for the ictal

state with their smoothed values corresponding to the first run. Finally, Figure 18

shows the convergence of the 12 parameters for the ictal state with their

smoothed values after the second run of the SCKF.
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Figure 15: Subject 3, Treatment 1: Values of Unsmoothed and Smoothed Parameters for the
Normal State
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Figure 16: Subject 3, Treatment 1: Values of Unsmoothed and Smoothed Parameters for the
Postictal State
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Figure 17: Subject 3, Treatment 1: Values of Unsmoothed and Smoothed Parameters for the Ictal
State , First Run
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Figure 18: Subject 3, Treatment 1: Values of Unsmoothed and Smoothed Parameters for the Ictal
State, Second Run
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E. Critical Study of Parameter Distribution- Global Areas

As was illustrated in the figures, the parameters in the seizure state have

higher values than those in the normal and postictal states. Thus, to critically

analyze this difference, we calculate the change in seizure and postictal

parameters with respect to the normal ones for all sessions according to the

following equations

∆i =
pictal−pnormal

pnormal
(56)

∆p =
ppostictal−pnormal

pnormal
(57)

where pnormal,pictal and ppostictal are the parameters in the normal, ictal and

postictal states respectively.

In what follows, we present the corresponding statistics for each subject.

Each subject section includes the following figures:

1. EEG signal in normal, ictal and postictal states

2. A boxplot that summarizes the values of the 12 parameters

3. A boxplot that summarizes the change in the values of the 12 parameters

∆i and ∆p relative to the normal state as explained in (56) and (57)

4. A bar plot that displays the average power signal in the four areas during

the three different EEG states to understand the different signals strength.

5. A table showing the maximum, minimum, mean and standard deviation

values of ∆i and ∆p across all parameters

45



1. Subject 1

The following is a summary for the data of the first subject. Tables 8

and 9 show the statistics of the normalized change in parameters during the ictal

and postictal states respectively. Each row of the table tabulate the maximum

value, minimum value, mean and standard deviation of all 12 parameters of the

corresponding ECT session. Figures 19, 21 and 23 display the values of the 12

parameters during the titration, treatment 1 and 2 sessions respectively. Figure 20

shows the EEG power in different states across the 4 areas during the titration

session. it also portrays the values of the normalized change in parameters ∆i and

∆p. Figure 22 and 24 display the same information but for treatment 1 and

treatment 2 sessions.

Max Min Mean Std

Titration 129.8056 -9.108 10.41722 9.398436
Treatment 1* 16.98419 -0.73097 6.235382 3.076956
Treatment 2 23.37058 -0.71729 4.962609 3.384356

Table 8: Subject 1: Statistics of normalized change in parameter ∆s during the
postictal state, *Reversed polarity

Max Min Mean Std Dev

Titration -0.54253 -0.7303 -0.62666 0.032475
Treatment 1* -0.20218 -0.68205 -0.48662 0.106325
Treatment 2 -0.55546 -0.68034 -0.62638 0.028131

Table 9: Subject 1: Statistics of normalized change in parameter ∆p during the
postictal state, *Reversed polarity
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Figure 19: Subject 1, Titration 1: Values of Parameters during the three various EEG states

Figure 20: Subject 1, Titration 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 21: Subject 1, Treatment 1: Values of Parameters during the three various EEG states

Figure 22: Subject 1, Treatment 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 23: Subject 1, Treatment 2: Values of Parameters during the three various EEG states

Figure 24: Subject 1, Treatment 2: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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2. Subject 2

The following is a summary for the data of the second subject. Tables 10

and 11 show the statistics of the normalized change in parameters during the ictal

and postictal states respectively. Each row of the table tabulate the maximum

value, minimum value, mean and standard deviation of all 12 parameters of the

corresponding ECT session. Figures 25 and 27 display the values of the 12

parameters during treatment 1 and 2 sessions respectively. Figure 26 shows the

EEG power in different states across the 4 areas during treatment 1 session. it

also portrays the values of the normalized change in parameters ∆i and ∆p.

Figure 28 displays the same information but for treatment treatment 2 session.

Max Min Mean Std Dev

Subject 2
Treatment 1 7.198436 0.111749 3.574245 1.249382
Treatment 2 0.765245 0.343096 0.596251 0.06432

Table 10: Subject 2: Statistics of normalized change in parameter ∆s during the
postictal state

Max Min Mean Std Dev

Subject 2
Treatment 1 0.038793 -0.1205 -0.03878 0.030192
Treatment 2 -0.42431 -0.5506 -0.45623 0.025809

Table 11: Subject 2: Statistics of normalized change in parameter ∆p during the
postictal state
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Figure 25: Subject 2, Treatment 1: Values of Parameters during the three various EEG states

Figure 26: Subject 2, Treatment 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 27: Subject 2, Treatment 1: Values of Parameters during the three various EEG states

Figure 28: Subject 2, Treatment 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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3. Subject 3

The following is a summary for the data of the third subject. Tables 12

and 13 show the statistics of the normalized change in parameters during the ictal

and postictal states respectively. Each row of the table tabulate the maximum

value, minimum value, mean and standard deviation of all 12 parameters of the

corresponding ECT session. Figures 29, 31 and 33 display the values of the 12

parameters during the titration, treatment 1 and 2 sessions respectively. Figure 30

shows the EEG power in different states across the 4 areas during the titration

session. it also portrays the values of the normalized change in parameters ∆i and

∆p. Figure 32 and 34 display the same information but for treatment 1 and

treatment 2 sessions.

Max Min Mean Std Dev

Titration 11.50666 -1.05852 2.718602 2.676634
Treatment 1 15.06745 -1.10959 2.250154 2.435741
Treatment 2 22.28275 -1.87734 2.567572 2.7007

Table 12: Subject 3: Statistics of normalized change in parameter ∆s during the
postictal state

Max Min Mean Std Dev

Titration -0.37395 -0.48513 -0.42502 0.023956
Treatment 1 -0.08445 -0.21786 -0.15188 0.027282
Treatment 2 -0.97904 -0.99257 -0.98472 0.00345

Table 13: Subject 3: Statistics of normalized change in parameter ∆p during the
postictal state
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Figure 29: Subject 3, Titration 1: Values of Parameters during the three various EEG states

Figure 30: Subject 3, Titration 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 31: Subject 3, Treatment 1: Values of Parameters during the three various EEG states

Figure 32: Subject 3, Treatment 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 33: Subject 3, Treatment 2: Values of Parameters during the three various EEG states

Figure 34: Subject 3, Treatment 2: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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4. Subject 4

The following is a summary for the data of the fourth subject. Tables 14

and 15 show the statistics of the normalized change in parameters during the ictal

and postictal states respectively. Each row of the table tabulate the maximum

value, minimum value, mean and standard deviation of all 12 parameters of the

corresponding ECT session. Figures 35, 37 and 39 display the values of the 12

parameters during the titration, treatment 1 and 2 sessions respectively. Figure 36

shows the EEG power in different states across the 4 areas during the titration

session. it also portrays the values of the normalized change in parameters ∆i and

∆p. Figure 38 and 40 display the same information but for treatment 1 and

treatment 2 sessions.

Max Min Mean Std Dev

Subject 4
Titration 2.638187 1.409651 1.820667 0.281372

Treatment 1 5.238391 -0.8633 1.037261 0.769766
Treatment 2* 7.46162 0.810648 2.320972 1.080637

Table 14: Subject 4: Statistics of normalized change in parameter ∆s during the
postictal state, *Reversed polarity

Max Min Mean Std Dev

Subject 4
Titration 0.601388 0.242833 0.420236 0.063795

Treatment 1 -0.88365 -0.91863 -0.89967 0.007219
Treatment 2* -0.42292 -0.52017 -0.46149 0.019505

Table 15: Subject 4: Statistics of normalized change in parameter ∆p during the
postictal state, *Reversed polarity
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Figure 35: Subject 4, Titration 1: Values of Parameters during the three various EEG states

Figure 36: Subject 4, Titration 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 37: Subject 4, Treatment 1: Values of Parameters during the three various EEG states

Figure 38: Subject 4, Treatment 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 39: Subject 4, Treatment 2: Values of Parameters during the three various EEG states

Figure 40: Subject 4, Treatment 2: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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5. Subject 5

The following is a summary for the data of the fifth subject. Tables 16

and 17 show the statistics of the normalized change in parameters during the ictal

and postictal states respectively. Each row of the table tabulate the maximum

value, minimum value, mean and standard deviation of all 12 parameters of the

corresponding ECT session. Figures ?? and 41 display the values of the 12

parameters during treatment 1 and 2 sessions respectively. Figure ?? shows the

EEG power in different states across the 4 areas during treatment 1 session. it

also portrays the values of the normalized change in parameters ∆i and ∆p.

Figure 42 displays the same information but for treatment treatment 2 session.

Max Min Mean Std Dev

Subject 5
Treatment 1* 9.086039 1.381543 3.997328 1.088005
Treatment 2 59.38175 -3.82689 3.691253 4.442815

Table 16: Subject 5: Statistics of normalized change in parameter ∆s during the
postictal state, *Reversed polarity

Max Min Mean Std Dev

Subject 5
Treatment 1* 0.237762 -0.0362 0.118692 0.054397
Treatment 2 -0.53661 -0.65161 -0.58619 0.025335

Table 17: Subject 5: Statistics of normalized change in parameter ∆p during the
postictal state, *Reversed polarity
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Figure 41: Subject 5, Treatment 1: Values of Parameters during the three various EEG states

Figure 42: Subject 5, Treatment 1: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 43: Subject 5, Treatment 2: Values of Parameters during the three various EEG states

Figure 44: Subject 5, Treatment 2: Normalized change in parameter indicates low activity
correlation in the postictal state and high activity correlation in the ictal state between the areas;

Power diagrams show high power in the ictal state and low power in the postictal state
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F. Local Areas

In order to study the parameter distribution and the activity of local

areas, we tested the model on different brain areas as shown in Figure 45. Tables

18 and 19 list the electrodes recording the EEG signals in the right and left

frontal areas and the right and left parietal areas respectively.

Local Area 1: Right Frontal Local Area 2: Left Frontal

Area Electrode Area Electrode
1 F4 1 F5
2 F6 2 F3
3 FC4 3 FC5
4 FC6 4 FC3

Table 18: Electrodes used for the right and left frontal areas

Local Area 3: Right Parietal Local Area 4: Left Parietal

Area Electrode Area Electrode
1 P4 1 P3
2 P6 2 P5
3 PO4 3 PO3
4 PO6 4 PO5

Table 19: Electrodes used for the right and left parietal areas

The results are shown for subject 3. Tables 20 and 21 show the statistics

of the normalized change in parameters for the frontal and parietal regions during

the ictal and postictal states respectively. Each row of the table tabulate the

maximum value, minimum value, mean and standard deviation of all 12

parameters of the corresponding ECT session. Figures 46 and 54 display the

values of the 12 parameters for the right frontal region during treatment 1 and 2

sessions respectively. Figure 47 shows the EEG power in different states across
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Figure 45: Local Brain Areas

the 4 areas in the right frontal region during treatment 1 session. it also portrays

the values of the normalized change in parameters ∆i and ∆p. Figure 55 displays

the same information but for treatment 2 session. Similarly we have the values of

the parameters for the left frontal, right and left parietal regions during treatment

1 in Figures 48, 50 and 52 and during treatment 2 in Figures 56, 58 and 60

respectively. In addition, Figures 49, 51 and 53 display the EEG power and the

change in parameters for the left frontal, right and left parietal regions during

treatment 1 while 57, 59 and 61 display this info during treatment 2. Tables 20

and 21 show the statistics of the normalized change in parameters during the ictal

and postictal states respectively for the frontal and parietal regions. Each row of

the table tabulate the maximum value, minimum value, mean and standard

deviation of all 12 parameters of the corresponding ECT session.

As noticed in the global areas, we also notice that the parameters in the
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seizure state have higher values than those in the normal and postictal states. In

addition, the parameters in the postictal state have lower values than those in the

normal state.
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Figure 46: Subject 3, Treatment 1, Right Frontal: Values of Parameters during the three various
EEG states

Figure 47: Subject 3, Treatment 1, Right Frontal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 48: Subject 3, Treatment 1, Left Frontal: Values of Parameters during the three various
EEG states

Figure 49: Subject 3, Treatment 1, Left Frontal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 50: Subject 3, Treatment 1, Right Parietal: Values of Parameters during the three various
EEG states

Figure 51: Subject 3, Treatment 1, Right Parietal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 52: Subject 3, Treatment 1, Left Parietal: Values of Parameters during the three various
EEG states

Figure 53: Subject 3, Treatment 1, Left Parietal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 54: Subject 3, Treatment 2, Right Frontal: Values of Parameters during the three various
EEG states

Figure 55: Subject 3, Treatment 2, Right Frontal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 56: Subject 3, Treatment 2, Left Frontal: Values of Parameters during the three various
EEG states

Figure 57: Subject 3, Treatment 2, Left Frontal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 58: Subject 3, Treatment 2, Right Parietal: Values of Parameters during the three various
EEG states

Figure 59: Subject 3, Treatment 2, Right Parietal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Figure 60: Subject 3, Treatment 2, Left Parietal: Values of Parameters during the three various
EEG states

Figure 61: Subject 3, Treatment 2, Left Parietal : Normalized change in parameter indicates low
activity correlation in the postictal state and high activity correlation in the ictal state between the

areas; Power diagrams show high power in the ictal state and low power in the postictal state
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Max Min Mean Std Dev

Right Frontal
Treatment 1 251.6034 -8.75602 36.71733 28.64821
Treatment 2 96.33266 -3.37224 12.83477 10.70419

Left Frontal
Treatment 1 2.018286 -0.90465 0.169958 0.615441
Treatment 2 31.77601 -2.19211 5.782697 5.166159

Right Parietal
Treatment 1 15.84592 0.885662 5.061037 2.560878
Treatment 2 14.3982 -0.12457 6.316076 2.179718

Left Parietal
Treatment 1 13.24522 3.703032 7.646297 1.826592
Treatment 2 30.62539 1.4401 18.0189 6.588961

Table 20: Subject 3: Statistics of normalized change in parameter ∆i during the ictal state for the
local areas (Treatment 1 is reversed polarity)

Max Min Mean Std Dev

Right Frontal
Treatment 1 2.150941 1.07244 1.831479 0.199249
Treatment 2 -0.14442 -0.42395 -0.31696 0.059085

Max Min Mean Std Dev

Left Frontal
Treatment 1 0.259693 0.108508 0.163509 0.030075
Treatment 2 -0.58458 -0.6856 -0.63726 0.023704

Max Min Mean Std Dev

Right Parietal
Treatment 1 -0.70384 -0.75708 -0.72432 0.012559
Treatment 2 -0.96424 -0.97594 -0.96912 0.003102

Max Min Mean Std Dev

Left Parietal
Treatment 1 -0.57977 -0.74815 -0.70181 0.032765
Treatment 2 -0.33263 -0.6314 -0.51273 0.068736

Table 21: Subject 3: Statistics of normalized change in parameter ∆p during the postictal state for
the local areas (Treatment 1 is reversed polarity)
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G. Conclusion

The parameters’ values that we got are a measure of activity of neurons

and of how these activities correlate to each other. In other words, they represent

the functional connectivity which is a statement about the observed correlations:

it does not provide any direct insight into how these correlations are mediated

[14]. Specifically, the functional connectivity is defined as the temporal

correlation between spatially remote neurophysiological events: it’s a

characterization of the functional interactions. Hence, our parameters refer to

arbitrary relationships that might exist between the activation of the distinct

separated neuronal populations and not the physical connections [15]. In this

sense, our approach is similar to the so called generalized partial directed

coherence (GPDC) as a measure for causal interaction between different brain

areas [16]. The main distinction is that our work uses nonlinear biologically

based models to infer functional connectivity.

As a general conclusion across subjects, we always have higher values

of ictal parameters compared to normal parameters. This can be clearly seen in

the different statistics tables where the mean of ∆i is positive for all subjects.

Thus, during a seizure the areas are highly correlated and produce a

synchronized activity. On the other hand, during the postictal state the mean of

∆p is almost always negative which indicates low parameters’ values. Moreover,

∆i in the local regions has higher values than the ones in the global regions.

In addition, as listed in Table 5 the configuration of electrodes in some

sessions included a reverse polarity condition. For the same subject, the

treatment with the reverse polarity showed higher ∆p or less
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connectivity/correlation between the 4 areas. .

Finally, looking at the power and the change in postictal parameters ∆p

in the local and global regions, we noticed that as the postictal power increases,

∆p becomes more negative which means that there is less functional connectivity

compared to the normal state. In that case we have more decoupling between the

areas. On the other hand, when the postictal power decreases, there is is more

functional connectivity. As mentioned earlier, the parameters do not model the

physical connections between the areas but rather the correlation between their

activities. Therefore, we can say that as the power decreases in the postictal state,

each area activity is more correlated with the rest of the areas and can be

predicted by the behavior of them. However, when we get a high power postictal

state, the different activities are less correlated and cannot be predicted based on

each other, which means that there are some other elements affecting their

behavior.

As a future work, we definitely need more data to be able to generate

more statistical confidence in the obtained parameter distibutions and get more

general conclusions. In addition, we mainly focused on four global areas that are

located far from each other thus the local areas need to be studied. These local,

area-specific, functional models can provide a better insight to the efficacy of

ECT protocols to modify the dominant activity within areas as it varies with the

distance from stimulating ECT electrodes. At the modeling-estimation level, the

nonlinear biologically inspired models for functional connectivity must be

studied further as tools to address causal interactions between brain areas. The

ECT modeling, here, is an excellent candidate to further explore this idea of how
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various areas dynamically share common behavior across time and across

experiments.
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