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AN ABSTRACT OF THE THESIS OF 

 
 
 
Layla El Moussawi     for Master of Science 

Major: Biology 
 
 
 
Title: Effect and signaling pathway of epinephrine on the Na+/K+ ATPase in Caco-2 
cells  
 
 
 
 

Epinephrine, a key stress hormone, has been shown to affect the physiological 
homeostasis of several biological processes in various body systems. In the 
gastrointestinal tract, stress has been associated with alterations in colonic functions 
leading to changes in water movements manifested as diarrhea or constipation. Colonic 
water movement is driven by the Na+-gradient created by the Na+/K+-ATPase. Whether 
epinephrine acts via an effect on the Na+/K+-ATPase hasn’t been studied before. In this 
work, we aim to investigate the effect of epinephrine on the Na+/K+-ATPase and to 
elucidate the signaling pathway involved by using CaCo-2 cells as a model. The activity 
of the Na+/K+-ATPase was assayed by measuring ATP hydrolysis in presence and 
absence of ouabain, a specific inhibitor of the enzyme. Epinephrine, added for 20 
minutes, decreased the activity of the Na+/K+-ATPase by 50%. This effect was found to 
be mediated by α2 adrenergic receptors as it was fully abolished in the presence of 
Yohimbine an α2-blocker, but persisted in presence of other adrenergic antagonists. 
Furthermore, treatment with Rp-cAMP, a PKA inhibitor, mimicked epinephrine’s 
negative effect and didn’t result in any additional inhibition when both were added 
simultaneously. Treatment with indomethacin, PTIO, calphostin C, and PD98059, the 
respective inhibitors of PGE2, NO, PKC, and ERK completely abrogated the effect of 
epinephrine. In addition, an inhibitory effect, similar to that of epinephrine’s, was 
observed upon incubation with PGE2, SNAP-1(NO generator), or PMA (PKC 
activator). PGE-2 was shown to act by binding to its EP1-receptors since its effect 
disappeared in presence of SC19220, an EP1-receptor antagonist. PGE2 failed to 
decrease the activity of the Na+/K+-ATPase in presence of PTIO and Calphostin C 
.Similarly, PMA’s negative effect was not observed when added with PTIO, but 
persisted in the presence of indomethacin. Thus it can be concluded that epinephrine 
inhibits the Na+/K+-ATPase by the sequential activation of PGE2, PKC, and NO.  Our 
findings reveal a negative regulatory role for epinephrine on the Na+/K+-ATPase in 
CaCo-2 cells that might underlie the stress –induced disruption in colonic water 
movement.. 
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CHAPTER I 

INTRODUCTION 

 

Stress, whether physical or mental, is a ubiquitous condition that is part of our everyday 

life. When confronted with potential stressors, the brain triggers a cascade of 

physiological reactions, known as the ‘’fight or flight response’’, to ensure the 

individual’s survival and adaptation to the threatening events (McEwen, 2008). Neural 

inputs from the brain stimulate the hypothalamus to release CRH (corticotrophin releasing 

hormone) which, in turn, activates both the sympathetic-adrenal medulla and pituitary-

adrenal cortex axes, resulting in the respective release of the primary stress hormones: 

epinephrine and cortisol into the blood stream(Kemeny, 2003).Together these hormones 

trigger the physiological deviations from homeostasis observed in the different systems of 

the body (cardiovascular, immune, endocrine, reproductive, respiratory,etc…)  during the 

acute stress response ( Chrousos& Tisgos,2002; Khansari D. et al .,1990; McEwen B.S. , 

2008). A key target of the stress reaction appears to be  the gastrointestinal tract (GI) 

whereby the prevalence and the severity of several GI disorders were found to correlate 

with anxiety , depression, and neuroticism (Bhatia & Tandon,2005). Among the various 

GI diseases, the role of stress in the pathophysiology of irritable bowel syndrome (IBS) 

has been extensively studied. IBS is considered one of the most prominent chronic 

gastrointestinal disorders, and is mainly characterized by abdominal pain and discomfort 

due to either frequent diarrhea or constipation (Everhart & Renault, 1991). These 

symptoms have been attributed to a number of factors including: imbalance of autonomic 
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nervous system (Mayer, 2000), changes in the activity of certain regions of the brain 

(Mayer, 2000), deregulated expression of pre- and postsynaptic receptors (Mayer, 2000), 

abnormal neuroendocrine secretion (Posserud et al., 2004), alteration in colonic motor 

response and contractility (Narducci et al., 1985),and certain visceral immune 

perturbations (Cremon et al.,2009;Spiller et al.,2012). 

Epinephrine, a key stress hormone, was reported to affect water movement across the 

epithelium of certain tissues such as the human eye (Erickson-Lamy KA & Nathanson JA, 

1992), lungs (Lane et al., 1998), and kidneys (Hawk et al., 1993) .Nonetheless, a potential 

role of epinephrine, in the alteration of colonic water movement and the development of 

IBS symptoms, or even their exacerbation, has not been investigated before. 

Water movement across epithelial layers of the colon is governed by the Na+ gradient 

created by the Na+/K+-ATPase. By pumping 3Na+ions to the outside of the cell  in 

exchange for 2K +  ions to the inside, the Na+/K+-ATPase establishes and maintains a low 

intracellular Na+ concentration which drives Na+ ions to flow down their electrochemical 

gradient from the lumen into the cytosol . This Na+ diffusion generates osmotic forces that 

cause water molecules to follow across the plasma membrane (Sandle, 1998). 

Consequently ,an alteration in the activity of the Na+/K+-ATPase was found to modify the 

direction and rate of net water transport as detected in the intestines of 

deoxycorticosterone acetate- injected mice (Charney et al.,1975),in the ileum of 

methylprednisolone -pretreated rats (Charney & Donowitz,1976), in rat proximal tubular 

cells following high Na+-diet(Campo et al.,1990) ,and in rat brain during acute cerebral 

ischemia (Mintorovitch et al.,1994). 
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As an attempt to understand the relation between the stress reaction and colonic water 

movement, we aimed to study the effect of epinephrine on the activity of the Na+/K+-

ATPase in colon adenocarcinoma cells (CaCo-2), and to elucidate its underlying 

mechanism of action. 
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CHAPTER II 

LITERATURE REVIEW   

 

A. Catecholamines 

Catecholamines, as their name implies, are amines that possess a catechol (3, 4-

dihydroxyphenyl) group (Nagastu, 2006).They are water soluble compounds that affect a 

wide range of tissues (Molinoff & Axelrod,1971) and act as physiological modulators 

towards homeostasis in response to the varying environmental perturbations (Arun,2004). 

Three distinct catecholamines were indentified in vivo: dopamine, noradrenaline 

(norepinephrine), and adrenaline (epinephrine) (Grace et al., 1997). All are derived from 

L-tyrosine by a sequential cascade of reactions that will first produce dopamine from 

DOPA, followed by further metabolic modifications to give norepinephrine and 

epinephrine (Blaschko, 1939; Nagastu& Levitt, 1964). 

Fluorescence histochemical analysis permitted the in vivo localization of catecholamines 

(Jonsson, 1971). While dopamine appeared to act strictly as a neurotransmitter in the 

central nervous system (Armstrong et al., 1982), epinephrine and norepinephrine were 

shown to be released as both neurotransmitters from central and peripheral (sympathetic) 

neurons (Armstrong et al., 1982), and as hormones from chromaffin cells of the adrenal 

medulla (Wood et al., 1971; Silverberg et al., 1978) 

Whether they are secreted into a synaptic cleft or into the blood stream , epinephrine and 

norepinephrine exert their effects by binding to the cell surface adrenergic receptors (AR) 
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at their target site (Furchgott,1959).Structural and functional analysis allowed the 

subdivision of adrenoceptors into three α1 (α1A,α1B,α1D),three α2 (α2A,α2B,α2C) , and 

three β(β1,β2,β3) subtypes (Bylundet al.,1994) , resulting in a total of nine mammalian 

adrenoceptors identified so far. All adrenergic receptors however, are classified as 

members of the G-protein coupled receptors family characterized by seven-

transmembrane domains , with an extracellular N-terminus and a cytosolic C-terminus, 

and  interact through their cytoplasmic loops with a specific type of  G-proteins 

(Kobilka,1992).  

 

1. Catecholamines and the Na+/K+-ATPase 

The possibility of interaction between catecholamines and the Na+/K+-ATPase wasn’t 

suspected until 1967 when Nishi and Koketsu (1967) reported that ouabain had a highly 

specific effect on the slow inhibitory postsynaptic potentials of sympathetic ganglia, 

suggesting the involvement of an electrogenic Na+ pump in the process. Around that time, 

evidence supporting the regulatory role of catecholamines on the Na+/K+-ATPase started 

accumulating. Norepinephrine stimulated the enzyme’s activity in brown adipose tissue 

(Herd et al., 1970), myelin fraction of cat brain (Iwangoffet al., 1974), skeletal muscles 

(Cheng et al., 1977), and rat cortex (Wu et al., 1979). A similar positive effect was also 

observed in rat brain synaptic membrane (Clausen& Formby, 1967) and resting skeletal 

muscles (James et al., 1999) incubated with epinephrine, but not in dopamine- treated 

adult rat jejunal cells during high salt diet (Vieira-Coelhoet al., 1998).  
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Different mechanisms of action were proposed for the effects of catecholamines on the 

Na+/K+-ATPase. Short-term treatment  of alveolar cells with β-agonists resulted in a 

cAMP-mediated  upregulation in Na+/K+-ATPase gene expression and a corresponding 

increase in its activity(Minakataet al.,1998).The binding of norepinephrine to the rat brain 

α1-adrenergic receptors, on the other hand, elevated cytosolic Ca2+ and activated 

calcineurin, a Ca2+ /calmodulin dependent phosphatase, to dephosphrylate and stimulate 

the Na+/K+-ATPase (Mallicket al.,2000).Finally, dopamine inhibition of the Na+/K+-pump 

was found to be associated with an increased endocytosis of α-subunits from the plasma 

membrane in a PKC, PI3K (Chibalinet al.,1998), and AP-2 mediated process (Ogimotoet 

al.,2000). 

 

a. Na+/K+-ATPase properties 

The Na+/K+-ATPase ,  also known as the Na+/K+-pump , is  ubiquitously expressed and 

essential for the survival of all animal cells (Vasilets & Schwarz ,1994).  It belongs 

together with the Ca2+ ATPase of the sarcoplasmic reticulum and the  H+/K+ ATPase of 

the stomach (Koksoy, 2002),  to the P-type family of ATPases , that  undergo a 

phosphorylation-dephosphorylation cycle, accompanied by a change in conformation,  to  

actively  transport  ions across the plasma membrane (Jorgensen et al ., 2003). For every 

ATP it hydrolyzes,  the Na+/K+-ATPase pumps three Na+ out and two K+ into the cell  

,thereby creating a Na+ and K+ electrochemical gradient  across the membrane ( Therien 

&Blostein  , 2000) that is  essential for the maintenance of  cell membrane potential, cell 

volume, cell pH , Ca2+ , and Cl- levels via Na+/H+ , Na+/Ca2+ , and Na+/Cl-/K+ exchangers 
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respectively.  These gradients also drive the Na+- dependent secondary transport of some 

nutrients like glucose and amino acids across the cell membrane of intestinal and renal 

epithelial cells (Lopina O.D., 2001). Thus the proper regulation of the Na+/K+-ATPase is 

essential for the proper functioning of the cell.  

The Na+/K+-pump is a large hetero-oligomer composed of two polypeptide chains joined 

together by non-covalent bonds: a 110 KD α subunit composed of 10 transmembrane 

domains with   N and C-terminal chains facing the cytosol and two large intracellular 

loops, and a smaller 55 KD β subunit composed of a single transmembrane domain with a 

short cytoplasmic N-terminus and a long glycosylated extracellular C-terminus (Lopina 

O.D., 2001). The subunit is the catalytic subunit with transient phosphorylation sites and 

binding sites for cardiac glycosides, ions (Na+, K+.Mg2+), and ATP. It exists in four 

different isoforms (α1, α2, α3, α4) differentially expressed in tissues and species (Koksoy, 

2002). The β-subunit is thought to play a supportive role. Its oligomerization with the 

alpha subunit seems to be important for the function of the enzyme and for the protection 

of the α-subunit from degradation. It also acts as a chaperon to ensure the proper folding 

and delivery of the α-subunit to the membrane, and is thought to participate in the 

formation of the binding sites of the ligands as well. It exists in 3 isoforms (β1, β2, β3) 

with differential expression among species and tissues.  

Different combination of   and β isoforms are present in different tissues. . The α1β1 

dimer is almost ubiquitously expressed in all cells (Lopina, 2001). 
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b Na+/K+-ATPase regulation 

In general, the Na+/K+-ATPase is subject to two types of activity modulations: Long term 

regulation that interferes with  the biosynthesis and degradation of the α and β subunits, 

and short term regulation which  affects the kinetic behavior of the enzyme and its 

translocation to the cell membrane from intracellular stores (Therienet al.,2000). 

Post-translational phosphorylation, by PKA, PKC, and PKG, is a well understood 

example of the rapid short-term regulation of the sodium pump activity. 

PKA phosphorylation site at Ser 943 was first identified in the C-terminal of the rat renal 

Na+/K+--ATPase α1 subunit (Feschenkoet al., 1995).Despite the fact that it was shown 

later on, to be conserved in all tissues (Lopina, 2001), the effects of its phosphorylation in 

various cell types varies between activation (Cornelius & Logvinko, 1996), inhibition 

(Borteorelloet al., 1991), or no change at all (Feschenkoet al., 1995). This discrepancy can 

be explained by the isoform specific effects of PKA whereby transfection of Hela cells 

with different α isoforms in the presence of dibutyryl cAMP (PKA activator) resulted in 

the direct phosporylation of all isoforms but in the activation of α3 subunit and the 

inhibition of α1and α2 isoforms (Blanco et al., 1998). 

In addition to direct phosphorylation , more complex mechanisms of action were proposed 

for PKA regulation of the   Na+/K+-ATPase that include the activation of mediators such 

as the   PLA2 / eicosanoid synthesis pathway (Satoh et al.,1993) and protein-phosphatase 

inhibitors(DARPP-32/Inhibitor I) (Aperiaet al.,1994)  

PKC is another potent regulator of the Na+/K+-ATPase capable of activating (Greene et 

al., 1986&Lahaye et al., 1998) or inhibiting (Cheng et al., 1997 &Blanco et al., 1998) the 
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enzyme in a tissue and species dependent manner.  Various phosphorylation sites of the 

α1 subunit by PKC have been   identified in various species. These sites include Ser11, 

Ser 16, Ser18, and Ser23 in rat (Vasilets, 1997&Efendievet al., 2000), Ser11 for sheep 

(Beguinet al., 1994), pig and dog (Feschenko & Sweadner, 1995), and Thr 15 and Ser 16 

in Bufomarinus (Beguinet al., 1994). Whether their direct phosphorylation by PKC alters 

the Na+/K+-ATPase activity remains unclear; nonetheless, experiments have shown that 

PKC-dependent phosphorylation at specific residues can   alter the ATPase‘s affinity for 

Na+ (Ferailleet al., 2000), K+, and Mg2+ ions (Ramnanan & Storey, 2006), and promote its 

endocytosis (Dada & Sznajder, 1999) and exocytosis (Bertorello et al., 1999) from and to 

the cell membrane.  

An indirect modulation of the Na+/K+-ATPase by PKC is also possible via activation of 

the PLA2/eiconsaid synthesis pathways (Xia et al., 1995), as in the case with PKA, or the 

stimulation of NO/cGMP/PKG pathways (Chen et al., 2005). 

PKG is another kinase  reported to phosphorylate the α 1 subunit of Na+/K+-ATPase  

purified from the dog, sheep , pig, rat kidney , and Xenopus Oocyte . Little is known 

about the specific phosphorylation residues, but immunoassays identified the 

phosphorylation sites to fall in the intracellular loop of α- subunit between the 35 KDa N-

terminal and 27-KDa C-terminal portions (Fotiset al., 1999). 

PKG regulatory effects on the Na+/K+-ATPase are well established and tissue-dependent. 

PKG was reported to inhibit the Na+/K+-ATPase in alveolar cells (Guoet al.,1998), 

skeletal muscles(Li&Sperelakis,1993), brain (Pontigiaet al.,1998), and colon (Schreiner et 

al.,1980), but to stimulate the enzyme in pulmonary smooth muscles (Tamaoki et 
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al.,1996), mammalian arteries (Ferrer et al.,1995), Purkinjie neurons (Nathansonet 

al.,1995), and duck salt gland (Stewart & Sen,1981). 

Whether PKG, however, exerts its effects in a direct or indirect manner remains to be 

elucidated. 

 

B. Prostaglandins  

Prostaglandins are a group of biologically active lipid mediators that belong to the 

eicosanoid family of fatty acids (Lands, 1979), and are produced and secreted by almost 

all cells of the body (Park et al., 2006). They act as homeostatic modulators under 

physiological conditions (Miller, 2006), or disease markers and causative agents in 

pathological settings (Dubious et al., 1998, Harris et al., 2002). Arachidonic acid, a 

polyunsaturated fatty acid, is released from the cell membrane by the enzyme 

phospholipase A2, and is oxidized by the cycoloxygenase enzyme (COX) to produce the 

unstable intermediate PGG2 .PGG2 is subsequently reduced, by the same COX, to the 

prostaglandin precursor PGH2. Several terminal enzymes will catalyze the formation of 

the different types of prostaglandins (PG) including prostaglandin E2 (PGE2) by PGE2 

synthase (Parket al., 2006).  

Two isoforms of the COX enzyme were identified: COX-1 and COX-2. Both having 

similar function and enzymatic activity as each is capable of catalyzing the two sequential 

oxygenation and reduction reaction in PG synthesis; nonetheless, they are coded by 

distinct genes resulting in their differential mode of expression. While COX-1 is reported 
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to be constitutively expressed, Cox-2 expression is induced by certain cytokines, growth 

factors and other signaling molecules (Vane, 1998). 

PGE2 is among the most well studied prostaglandins and is believed to be the most 

abundant in the human body (Parket al., 2006). It exerts its effects by binding to one or 

more of its E-prostanoid G-protein coupled receptors (EP1, EP2, EP3, EP4) (Bos et al., 

2004) to initiate signaling cascades that will result in a specific altered cellular response. 

Each receptor subtype is associated with different types of G-proteins and thus acts 

through a distinct set of second messengers. While the binding of PGE2 to Gq coupled- 

EP1 receptor induces the activation of PKC and the elevation of cytosolic Ca2+ as a result 

of the hydrolysis of PIP2 by PLC   into DAG and IP3 respectively (Herbert et al., 1990), 

its binding to EP2 and EP4 receptors activates Gs which stimulate adenylate cyclase (AC) 

to produce cAMP, leading to PKA activation (Nakaoet al., 1989). EP3 receptor, on the 

other hand, acts to inhibit AC via the activation of Gi (Sonnenburg et al., 1990). 

 

1. PGE2 and the Na+/K+-ATPase 

A downstream target of prostaglandins is the Na+/K+-ATPase. Satoh et al. (1992) reported 

that arachidonic acid pathway products, especially the cycoloxygenase metabolites, may 

contribute to the indirect inhibition of the renal Na+/K+-ATPase through the PLC-PKC 

route (Ominatoet al., 1996). In general, PGE2 appears to act as a negative modulator of 

the pump in a variety of tissues, despite the fact that a few studies suggest a stimulatory 

effect on the pump (Kreydiyyeh et al., 2006). An increase in PGE2, associated with a 

decrease in cAMP, mediated angiotension II inhibitory effects on Na+/K+-ATPae and 
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water absorption in rat jejunum (Jin et al., 1998) .PGE2 was also shown to  reduce 

Na+/K+-ATPase protein expression in LLCPK1 ( Kreydiyyeh et al., 2004) 

,cardiomyocytes (Skayian & Kreydiyyeh, 2006) ,and  HepG2 cells (Kreydiyyeh et 

al.,2007). Incubation of rat hippocampus ,both in vivo and in vitro, with PGE2 for 30 min 

led to a dose dependent decrease in the Na+/K+-ATPase activity attributed to the PKA and 

PKC- dependent   Ser943 phosphorylation of the α subunit (Oliveria et al.,2009).  

 

2. PGE2 and catecholamines 

Prostaglandins are another group of intracellular molecules modulated by catecholamines. 

Norepinephrine was found to stimulate PGE2 synthesis in a variety of tissues including 

spleen (Bruckner-Schmidt et al., 1981), kidney (Needleman et al., 1974), brain (Seregiet 

al., 1982, Birkleet al., 1981), rabbit and bovine Irides (Yousufzai et al., 1983), and 

sympathetic neurons (Sherbourne et al., 1992). 

Only a few studies addressed the mechanism of action underlying norepinephrine-induced 

synthesis of PGE2, and thus it is still poorly understood. Nonetheless,  α adrenoceptor- 

dependent Ca2+ increase/PLA2 activation and  β adrenoceptor –dependent cAMP 

production were shown to be two possible routes in rat splenic pulpa (Bruckner-Schmidt 

et al.,1981) and  primary rat microglia (Schachetzki et al.,2010) respectively.  

 

C. Nitric Oxide  

Nitric oxide (NO·) is a small 30Da biosynthetic molecule (Brodsky et al., 2001) with 

important physiological roles both in health and disease. Its pharmacological effects 
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extend to a variety of organ systems to modulate processes such as neuronal excitability 

(Erdemli & krnjevie, 1995), arterial vasodilation (Furchgottet al., 1980), smooth muscles 

relaxation (Desai et al., 1991), and immune defense reactions (Xie et al., 1996; Nathan et 

al., 2000). Nonetheless, when present in excessive amount , NO can lead to neurotoxicity 

(Dawson et al., 1993), inflammation (Vane et al., 1994), circulatory and haemorrhagic 

shocks (Wright et al., 1992), just to name a few.  

Intracellular NO is released as a by-product from the oxygenation of L-arginine to L-

citrulline by nitric oxide synthase (NOS), in the presence of calcium/calmodulin complex 

(CAM) and NADPH (Nathan, 1992). Three genetically distinct NOS isoforms (Nakane et 

al., 1993, Marsden et al., 1992; Geller et al., 1993) were identified based on their 

localization, expression, and Ca2+ dependency. nNOS and eNOS , predominate in neural 

and endothelial tissues respectively (Wu,1993,Venugopol et al., 2002), are generally 

constitutively expressed (Forstermann et al.,1998) and are regulated by Ca2+ (Michel et 

al., 1997). iNOS , however, appears to be expressed only upon demand, in response to 

certain cytokines in almost all nucleated cells  (Griffith & Stuehr,1995), and was found to 

possess a Ca2+ independent activity (ladecola et al.,1995). 

Unlike other signaling molecules , no membrane receptors have yet been identified for 

NO  due to its small size and solubility in both water and lipids (Pacher et al.,2007), NO 

can passively diffuse in and out of the cells to act in a paracrine or autocrine manner 

(Shah&MacCarthy,2000). Once in the cytosol, NO activates the soluble guanylyl cyclase 

to trigger the cGMP –dependent and PKG-dependent signaling pathways that mediate its 

various cell-specific effects (Downey et al., 2007). 
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In general, the activity of all NOS is limited by the availability of their substrates and 

cofactors, their localization, and their interaction with the CAM protein. Nonetheless, 

these enzymes are more acutely regulated by several different pre- and post translational 

mechanisms.  

The majority of the iNOS regulation seems to occur at the level of  its expression as 

revealed by DNA sequencing experiments which identified several promoter regulatory 

elements (Chartrainet al.,1994 , Janssen-Heiningeret al., 2000) specific to cytokine –

induced transcription factors ,such as NF-kB,AP-1 ,HIF, and STAT1-α just to name a few 

(Kleinert et al.,2004) . Furthermore, iNOS mRNA was shown to be unstable in the 

absence of HuR, an mRNA binding protein (Rodriguez-Pascual et al., 2000). There is 

accumulating evidence, however, that iNOS activity can also be controlled and stabilized 

via protein phosphorylation either directly by ERK on Ser745 (Zhang et al., 2007) and Src 

on Y151 (Hauselet al., 2005) and Y1055 (Tyryshkinet al., 2010), or indirectly by PKC-

dependent MAPKs phosphorylation and subsequent activation of NF-kB   (Wen et al., 

2011). 

Similarly, a variety of protein kinases were identified as modulators of nNOS and eNOS 

activity. Phosphorylation of eNOS at S1179 by PKB (Dimmeleret al.,1999), PKA (Boo et 

al.,2002),PKG (Butt et al.,2000),AMPK (Chen et al.,1999),CAMKII (Fleming et 

al.,2001) , and at S116 by PKC (Kou et al.,2002) was shown to increase the activity of 

eNOS . On the other hand, its phosphorylation at S635 by PKA (Boo et al., 2002), and 

T497 by AMPK (Chen et al., 1999) and PKC (Fleming et al., 2001), decreased the 

activity of eNOS.  
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An inhibitory role for tyrosine kinases such as Src was proposed in the regulation of 

eNOS.  Nonetheless, little is known about the specific sites and its effect on the activity 

(Boo & Jo, 2003). 

The effect of phosphorylation of nNOS is less studied with various phosphorylation sites 

for PKA (Brune&Lapetina,1991), PKG (Dinerman et al.,1994), PKC ,and CAM –

dependent kinases identified (Nakane et al.,1991). The significance of such a 

phosphorylation is still controversial with scarce evidence supporting a negative role for 

these kinases in the regulation of nNOS activity (Nakane et al., 1991&Dinermanet al., 

1994).  

 

1. Nitric oxide and the Na+/K+-ATPase 

Nitric oxide modulates the Na+/K+-ATPase activity in a tissue-dependent manner. NO 

inhibited the pump  in M441 pulmonary epithelial cells (Althaus et al.,2011) ,Porcine 

cerebral cortex (Sato et al.,1997), and lipopolysaccharide –treated guinea pig liver and 

kidney cells(Seven et al.,2005&Cimen et al.,2004). Furthermore, NO/cGMP pathway was 

found to act as a negative modulator of the  pump in alveolar type II cells (Guo et 

al.,1998) , opossum kidney monolayers (Liang &Knox,1999), and Angiotensin II and 

carbachol incubated rat proximal tubule (Zhang & Mayeux,2001; Hakam&Hussain,2006) 

and choroid plexus (Ellis et al.,2000) respectively. Similarly NO, in MTAL cells 

overexpressing NOS, inhibited the transcription of the α1 subunit of the Na+/K+-ATPase 

and consequently decreased its activity (Kone & Higham, 1999). 
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On the other hand, Positive regulatory effects of NO on the Na+/K+-ATPase were 

observed in cardiac myocytes (White et al.,2008) , proximal segment of rat trachea 

(Akiciet al.,2000) , and SH-sY5Y human neuroblastoma cells (Inada et al.,1995). 

 

2. Nitric Oxide and catecholamines 

Since both NO and catecholamines act as potent effectors of the cardiovascular system, 

scientists suspected a possible crosstalk between NO and adrenergic pathways. Indeed , 

several publications supported this notion and established the regulation of NO by 

catecholamines via the different subtypes of the α (Jones et al.,1993,Thorin et al.,1998) 

and β (Gauthier et al.,1998, Ferro et al.,2004 ,& Chen et al.,2007) adrenoceptors.  

The direction of this regulation and its underlying signaling players varied between 

different tissues. While epinephrine activated eNOS in BAEC cells via β3AR stimulation 

and the sequential activation of Rac1,PKA, and Akt (Kou et al.,2007), it decreased the 

production of NO in macrophages through a β1/ β2 ARs (Sigola et al.,2000) , IL-10, and 

TNF-α mediated pathway(Zinyamaet al.,2001).Likewise, the binding of norepinephrine to 

its β-ARs and consequent increase in  cAMP/PKA levels enhanced NOS activity in 

cardiac myocytes (Kanai et al.,1997) and macrophages(Chi et al.,2003) , but not in 

hepatocytes (Collins et al.,2001). 

 

D. G-proteins   

Both PGE2 and epinephrine act via guanine nucleotide binding proteins, known as G-

proteins, which are heterotrimers of three subunits, α, β, and γ, and act as signal mediators 
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of extracellular chemical and physical stimuli.  They are cyclically regulated by the 

association of the α-subunit with GTP/GDP. The binding of the receptor to its specific 

ligand will trigger the G-protein to exchange the α-bound -GDP with GTP.  The active α-

GTP subunit will dissociate from the βγ complex and both will further interact with 

downstream effectors  to transduce the initial signal .The hydrolysis of the GTP back to 

GDP will initiate the deactivation process upon which the three subunits will associate to 

render the G-protein inactive again (Hepler & Gilman,1992). 

G-proteins are divided into different families based on structural and sequence 

similarities. Gs is classified as stimulatory G-protein due to its ability to stimulate 

adenylyl cyclase (AC) enzyme responsible for the cyclization of ATP to cAMP which in 

turn will activate protein kinase A (PKA) (Gilman, 1987).Gi or inhibitory G-proteins, 

however, act opposite to Gs to inhibit AC and downregulate cAMP (Taussig et al., 

1993).Interestingly, both α and βγ subunits of Gi were shown to communicate signals. 

While Gαi is mainly responsible for AC inhibition (Taussig et al., 1993), Gβγi are capable 

of directly regulating effectors such as PLC-β, K+ channels, PI3K, and even AC (Neves et 

al., 2002).  

Gq and Go, although of distinct categories, work via the same signaling molecules which 

were first identified to be the classical pathway for calcium-mobilizing hormones (Ghosh 

et al., 1996). 

Both Gαq/o will stimulate PLC to cleave PIP2 into IP3 and DAG. IP3, consequently, will 

bind and open IP3-sensitive Ca2+ channels in the endoplasmic reticulum to induce the 
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release of Ca2+ from the ER lumen. DAG, on the other hand, will stay bound to the 

cytosolic face of the cell membrane and will recruit and activate PKC (Lukas, 2004). 

A less defined family of G-proteins is the G12 / G13 family; despite extensive studies, 

little is known about the signaling effects of G12 and G13 proteins. Nonetheless, it was 

reported that Gα12 might be involved in the activation of c-Src, PKC, and members of the 

MAPK family (Neves et al., 2002). Similarly, Gα13 was shown to activate Rho by 

directly binding to and stimulating its guanine –nucleotide exchange factor that promotes 

the hydrolysis of Rho-GDP into Rho-GTP (Neves et al., 2002). 

 

E. Mitogen Activated Protein Kinases (MAPKs) 

Mitogen activated protein kineases (MAPKs) are a family of evolutionary conserved 

serine/threonine kinases that serve as focal points in several cellular responses such as cell 

proliferation (Zhang & Liu,2002),survival (Bonni et al.,1999), differentiation (Laprise et 

al.,2002) , motility(Krueger et al.,2001),and immunity (Garcia-Garcia et al.,2008). To 

date, three MAPK pathways have been identified in eukaryotic cells based on the 

respective classification of the MAPKs into three different subgroups: extracellular 

signal-regulated kinases (ERK), c-jun N-terminal kinases, and p38 kinases (Cargnello & 

Roux, 2011). Each pathway is composed of a set of three sequentially acting kinases: 

MAPKK kinase (MAPKKK), MAPK kinase (MAPKK), and MAP kinase (MAPK) 

(Hommeset al., 2003). The activation of MAPKKKs by their phosphorylation or 

interaction with GTP-binding proteins of the Rho/Ras family, will allow them to 

phosphorylate and activate MAPKKs which, in turn, will phosphorylate MAPKs at their 
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two unusual sites threonine and tyrosine. Active MAPKs can then phosphorylate 

cytoplasmic or nuclear proteins to modulate their activity (Pearson et al., 2001).  

 

1. ERK properties  

The ERK module includes Raf-1, A-Raf, or B-Raf as MAPKKK, MEK1 and MEK2 as 

MAPKK, and ERK 1 and ERK2 isoforms as MAPK (Cargnello & Roux,2011).ERK 

proteins were shown to be activated in response to cytokines (Lejeune et al.,2002), 

osmotic stress (Kim et al.,2000), cytoskeleton disorganization (Kawamura et al.,2003), 

and the stimulation of receptor tyrosine kinases (Boulton et al.,1991) and GPCR 

(Sugden&Clerk,1997). 

ERK modulation by GPCR depends on the nature of their cognate G-proteins. Gαs-

induced cAMP was shown to decrease or increase the activity of ERK1/2 in a cell-specific 

manner (Zheng et al., 2000, Norum et al., 2003& Keiper et al., 2004). ERK inhibition by 

cAMP is thought to be due to the decreased interaction between c-Raf and Ras following 

c-Raf phosphorylation at Ser 43 and 621 by PKA (Yip-Schneider et al., 2000; Volonte & 

Greene, 1990). On the other hand , elevated cAMP can result in ERK stimulation by 

either  activating Ras , Rap-1/B-Raf  via the guanine nucleotide exchange factor  

EPAC(Vossler et al.,1997; Daakra et al.,1997), or Src (tyrosine kinase) to phosphorylate 

and activate c-Raf (Maudsley et al.,2000).Paradoxically, cAMP appears to  play a less 

important role in heart where β-adrenergic stimulation of ERK is more likely dependent 

on the elevation of intracellular Ca2+ instead (Bogoyvitch et al.,1996). 
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In vivo studies indicated that Gαi coupled receptors can increase the activity of ERK by 

one of two mechanisms. By down- regulating cAMP, Gαi will relieve the inhibitory effect 

of PKA on c-Raf and consequently render ERK active (Radhika & Dhanasekaran, 2001). 

Alternatively, incubation with βγ sequestering peptide (Lopez-Ilasaca et al., 1997) and the 

overexpression of the βγ subunit (Della Rocca et al., 1999) showed that this complex is 

necessary for Gi –induced ERK stimulation, probably via a pathway involving PI3K, 

PLC, and/or Src (Daub et al., 1996; Li et al., 1998). Experiments on transfected HEK-293 

cells expressing Gi-coupled α2 –adrenergic receptors led to the conclusion that the 

released βγ subunit activates PLC to induce an IP3-dependent increase in cytosolic Ca2+. 

Ca2+ elevation will trigger a Ca2+-calmodulin mediated stimulation of Pyk2 kinase 

followed by the subsequent activation of Src, Ras, and the MAPK cascade (Lev et al., 

1995; Dikic et al., 1996; Luttrell et al., 1996; Della Rocca et al., 1997). In addition, others 

reported that the βγ subunit can act to induce the tyrosine phosphorylation of the adaptor 

protein Shc which in turn will associate with Grb2 and SOS to increase GTP-binding to 

Ras. GTP-Ras can then activate Raf and the subsequent ERK module (Kranenburg et al., 

1999b). 

Analysis of Gq Erk –mediated signaling revealed that Gαq can stimulate ERK by different 

pathways. Gαq coupled muscarininc receptors in Cos-7 and CHO cells activate ERK via 

PKC-c Raf signaling axis (Hawes et al., 1995). In contrast, Lysophospholipid receptors 

ERK activation is mediated by calcium-calmodulin complex, Pyk2 kinase, Src, and Ras 

(Dikic et al.,1996). Furthermore, α1-adrenergic signaling in HEK293 cells appears to 
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employ both PKC and Ca2+-calmodulin pathways for the induction of ERK (Della Rocca 

et al., 1997). 

In contrast to other G-proteins, little is known about G12/13 MAPK modulation except 

that it seems to act as negative regulator to attenuate ERK’s activity (Voyno-

Yasenetskaya et al., 1996). Although the underlying mechanism of such attenuation is not 

fully understood, it is believed that PP5, a Raf-1 phosphatase, might be involved (Von 

Kriegsheim et al., 2006). 

 

  2. ERK and Na+/K+-ATPase 

MAP kinases have been implicated as regulators of the Na+/K+-ATPase .Dopamine like 

receptor activation , in kidney proximal tubule cells, increased Na+/K+-ATPase activity by 

means of  the ERK –pathway (Narkar et al.,2002).Angiotensin II mediated ERK-

induction upregulated α1 subunit gene transcription and consequently Na+/K+-ATPase 

activity in vascular smooth muscle cells (Isenovic et al.,2004). Moreover, ERK activation 

by C-peptide and fibroblast growth factor resulted in the phosphorylation of the α subunit 

and the short-term stimulation of the Na+/K+-ATPase in human renal tubular cells and 

alveolar epithelial cells respectively (Upadhyay et al., 2003, Zhong et al., 2004). 

 

   3. ERK and PGE2 

Different studies reported MAPK as a potent effector of COX-2/PGE2 axis in response to 

various stimuli in several cell lines: IL-1β stimulated fibroblast -PGE2 synthase and 

endometrial COX-2 through ERK and p38 MAPK respectively (Kida et al., 2005; Huang 
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et al., 2013). TGF-β –induced ERK/p38 MAPK/PI3K pathway increased COX-2 

expression and PGE2 levels in HMC cells (Rodriguez-Barbero et al., 2006).NSAID pro-

apoptotic effects in colorectal carcinoma cells resulted from ERK-mediated COX-2 

overexpression (Elder et al., 2002), and the stimulation of ERK signaling in response to 

ceramide up-regulated COX-2 synthesis via c-Jun and cAMP in mammary epithelial cells 

(Subbaramaiah et al., 1998).  

Nonetheless, accumulating evidence indicated that PGE2 can also itself act upstream of 

ERK to control its activity, as observed in rabbit corneal epithelial cells whereby EGF-

induced PGE2 activated PKA to inhibit Raf-1 and ERK cascade (Kang et al., 2000). In 

contrast , PGE2 up-regulated ERK in human colon cancer cells (Sheng et al.,1998),  lung 

carcinoma cells via a Ca2+ dependent route (Krysanet al.,2005), dendritic cells through 

cAMP/PKA/PI3k pathway (Yen et al.,2011), and endothelial cells via PKC (Corti et al., 

2013). 

 

4. ERK and NO 

Similar to PGE2, there exists a reciprocal relationship between ERK and NO, probably as 

a part of a feedback loop regulatory mechanism.  

While still controversial, Ser 114 residue, in the oxygenase domain of eNOS, was 

identified as a potential target site for ERK phosphorylation (Fleming et al., 2003). 

Whether such a phosphorylation would affect eNOS activity remains to be elucidated. 

Nonetheless, Increasing ERK, in response to VEGF, in glomerular  endothelial cells, was 

shown to phosphorylate eNOS at Ser 1177 and up-regulate its activity (Fliers et 
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al.,2005).Chrestensen et al. further demonstrated that ERK-2 can strongly bind and inhibit 

eNOS (2012). ERK regulation of NOS can also take place at the transcriptional and post-

transcriptional levels as observed in endotoxin-stimulated glial cells (Bhat et al., 1998). 

In addition to functioning as an upstream regulator, ERK was shown to mediate some of 

the cellular effects of NO. NO induced ERK- activation promoted cell survival and 

dedifferentiation of chondrocytes (Kim et al.,2002).The addition of NOS inhibitor 

prevented hypoxia-dependent ERK phosphorylation in cortex of newborn piglets (Mishra 

et al.,2004), suggesting that this phosphorylation is NO mediated . Moreover, the 

NO/cGMP axis was shown to promote synaptic plasticity by the regulation of ERK and 

ERK-induced gene expression at pre- and postsynaptic sites of amygdala and thalamus 

nuclei following long term potentiation (Ping & Schafe, 2002).
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CHAPTER III 

MATERIALS AND METHODS 

 

  A. Materials 

Dulbecco’s Minimal Essential Medium (DMEM) with 4500mg glucose/L and pyridoxine 

HCl , Fetal Bovine Serum(FBS), Trypsin-EDTA , Penicillin/Streptomycin(PS) ,10x 

Phosphate Buffered Saline (PBS) without calcium and magnesium , (-)-Epinephrine, L-

Ascorbic Acid, N6,2′-O-Dibutyryladenosine 3′,5′-cyclic monophosphate sodium salt 

(dbcAMP) , Adenosine 5′-triphosphate disodium salt(ATP), 

Ouabain, Prostaglandin E2 (PGE2) ,  Indomethacin  , DL-Propranolol , Butoxamine-HCL 

,Prazosin , and Yohimbine were  purchased from Sigma,Chemical Co,St. Louis Missouri 

,USA.  

Phorbol-12-myristate-13-acetate (PMA), PD98059, and Calphostin C were purchased 

from CALBIOCHEM, San Diago, USA. 

Glyco-SNAP1, Carboxy-PTIO, and SC 19220 were purchased from Santa Cruz 

Biotechnology, CA, USA. 

Protease inhibitor cocktail tablets were bought from Boehringer Mannheim, Germany.  

Biorad assay protein reagent was purchased from Biorad, CA, USA. 

The human colon carcinoma cell line (CaCo-2) from a Caucasian male was bought from 

American Type Culture Collection (ATCC), VA, USA. 

All other chemicals were purchased from Sigma, Chemical Co, St. Louis Missouri. 

 



25 

B. Methods  

 

1. Cell Culture of CaCo-2 cells  

CaCo-2 cells were used at passages 25-32. They were grown, at a density of 120,000 

cells/ml , on 100mm culture dishes in DMEM  containing 4500 mg L-1 Glucose, sodium 

pyruvate, 1% Penicillin (100 μg mL-1), streptomycin (100 μg mL-1), 10% FBS, in a 

humidified incubator (95% O2, 5% CO2) at 37°C. Cells were always treated at 90-100% 

confluence. 

 

2. Treatment of CaCo-2 cells  

a. Effect of Epinephrine on the activity of the Na+/K+-ATPase 

The effect of epinephrine on the pump was studied by treating the cells with 0.5mM 

epinephrine dissolved in 0.5M of ascorbic acid. The positive and negative control groups 

were incubated with and without ascorbic acid respectively. 

 

b.Protein Extraction and Determination 

          At the end of the treatment  period, cultured cells were washed twice with 1x PBS solution 

( 5.16g NaCl, 1.5g Na2HPO4, 1.09 g KH2PO4 in 1L H2O ; pH 7.3) and lysed with 300 µl 

Histidine lysis buffer (  9.9ml of 150mM Histidine (pH7.4), 400µl protease inhibitor(1 

tablet/  2 ml H2O), 100µl Triton-X(1mg/ml H2O) , then scraped , and homogenized at 4°C 

in  a polytron at 22,000rpm . Proteins were quantified colorimetrically at a wavelength of 

595nm using the Bradford Biorad assay. 
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          c. Na+/K+-ATPase Activity Assay:  

Protein concentration of each sample was adjusted to 0.5µg/µl using histidine buffer 

(150mM, pH 7.4). To a sample volume of 65µl, 17 µl of 1% saponin and 13µl of 

phosphatase inhibitor cocktail (300µl of 200mM glycerophosphate, 300µl of 200mM 

pyrophosphate, 400µl H2O) were added. 

The mixture was incubated at room temperature for 30 minutes. 

Aliquots from each sample were then withdrawn and suspended in a buffer containing the 

substrates NaCl (1240mM), KCl (200mM), MgCl2 (40mM), and ATP (30mM) and 

incubated in presence and absence of ouabain (15mM) as shown in the table below, for a 

period of 30 minutes at 37°C . 

 µl µl 

NaCl (1240mM) 10          10 

KCl (200mM) 10 10 

MgCl2(40mM) 10 10 

Histidine (150mM,pH7.4) 20 20 

H2O 30 0 

Homogenate 12 12 

ATP(30mM) 10 10 

Ouabain(15mM) 0 30 

Total Volume  102 102 

 

The reaction was then stopped by the addition of 10 µl of 50% tricholoacetic acid solution 

to each sample  



27 

The samples were then spun at 14000 rpm for 5 minutes and the amount of inorganic 

phosphate liberated in the supernatant was measured colorimetrically, in the presence of 

Ferrous sulfate –molybdate reagent (0.5g Ferrous sulfate, 1 ml Ammonium molybdate      

( 0.1g/L of 10N H2SO4) , 9ml H2O) at a wavelength of 750nm. Each well contained 100 

µl of the supernatant and 80µl of ferrous sulfate molybdate reagent. 

 

3. The signaling pathway 

a. Determination of the type of adrenergic receptors involved 

The type of adrenergic receptors mediating the effect of  epinephrine on the pump  was 

determined by pre-treating the cells , 20 minutes prior to the addition of epinephrine ,  

with the following  antagonists: 0.1 mM Yohimbine (α2 adrenergic antagonist) or 

0.03mM Propranolol (non-selective β-adrenergic blocker). 

The nature of the G-protein coupled to the respective adrenergic receptor was determined 

by incubating the cells for 20 minutes RpcAMP (30µM), a PKA inhibitor.  The vehicle 

was always added to the control in the same amount and for the same time. 

 

b. Identifying the signaling mediators involved 

The involvement of PGE2,NO,  PKC, and MAPK/ERK was suspected and investigated 

by pre-treating the cells, 20 min prior to the addition of epinephrine , with their respective 

inhibitors : indomethacin (100µM) (COX-inhibitor) , PTIO (30µM ) (NOS inhibitor) ,  

calphostin C(50nM, dissolved in DMSO) ( PKC inhibitor),and  PD98059 (50 µM 

dissolved in DMSO ,MEK/ERK inhibitor)  



28 

To investigate further the role of  PGE2, NO, and PKC in the modulation of the Na+/K+ 

ATPase activity, the cells were treated with exogenous PGE2 ( 1nM) of 2µM of Glycol-

SNAP1(NO generator) , and PMA(100nM,  dissolved in DMSO,(PKC activator). 

Since PKC is activated by EP1 receptors, the possibility that PGE2 might be acting 

through these receptors was examined by pre-incubating the cells, 20 minutes prior to the 

addition of epinephrine, with the EP1 selective antagonist SC19220 (100µM dissolved in 

DMSO). The vehicle was added to the control at the same concentration. 

 

c. Locating the different mediators in the pathway 

Locating the mediators with respect to each other was determined via a similar procedure 

as the previous treatments; the location of PKC was investigated by pre-treating the cells 

with indomethacin and PTIO for 20minutes, prior to the addition of PMA, an activator of 

PKC. Similarly, to determine the location of PGE2 the cells were treated with exogenous 

PGE2 in the presence of PTIO or Calphostin C. 

 

 4. Statistical Analysis 

Results are reported as means±SEM and are tested for statistical significance by a one-

way Analysis of Variance (ANOVA) followed by Tukey-Kramer multiple comparisons 

test using Instat and Excel Softwares. The results were considered significant at P<0.05. 
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CHAPTER IV 

RESULTS 

 

A. Effect of epinephrine on the activity of the Na+/K+-ATPase  

CaCo-2 cells treated with 0.5mM of epinephrine (dissolved in ascorbic acid) for 20 

minutes exhibited a 50 % decrease in the activity of the Na+/K+-ATPase. Ascorbic acid 

however, added at a concentration of 0.5M had no significant effect on the activity of the 

pump as seen in figure (1). 
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Figure 1: Effect of Epinephrine and Ascorbic Acid on the activity of Na+/K+-
ATPase in CaCo-2 cells.  Values are means±SEM. N=20.  Bars not sharing a 
common superscript are considered significantly different from each other at 
P<0.01. 
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B.Alpha-2 adrenergic receptors mediate the effect of epinephrine on the pump 

The inhibitory effect of epinephrine on the Na+/K+-ATPase persisted when the cells were 

pre- incubated with of 0.03 mM Propranolol (non selective β-adrenergic blocker)  , but 

was no longer apparent in the  presence  0.1mM  Yohimbine , the selective α2- adrenergic 

antagonist (fig2a,b,), suggesting that epinephrine exerts its effect by exclusively binding 

to  its α2-adrenergic receptors.  
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Figure 2a: The effect of epinephrine,propranolol ,and propranolol+epinephrine on the 
activity of the Na+/K+-ATPase. Values are means±SEM .N=3.  Bars not sharing a 
common superscript are considered significantly different from each other at P<0.05 
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It is well known that α2-adrenergic receptors are coupled to Gi which acts to down-

regulate cAMP and inhibit PKA. Treating the cells with   RpcAMP (30µM), a cell 

permeable PKA inhibitor alone mimicked the inhibitory effect of epinephrine on the 

Na+/K+-ATPase, and didn’t result in any additive inhibition when added simultaneously 

with epinephrine (fig3)   
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Figure 2b: The effect of yohimbine on the inhibitory effect of epinephrine on  the 
activity of the Na+/K+-ATPase. Values are means ± SEM. N=3. Bars not sharing a 
common superscript are considered significantly different from each other at 
P<0.05. 
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   C. Determination of the mediators involved 

To test the possibility that epinephrine might be signaling through PGE2, NO, PKC, and 

MEK/ERK, CaCo-2 cells were treated with epinephrine in the presence of their 

respective inhibitors: Indomethacin, PTIO, CalphostinC, and PD 98059.  

The addition of the inhibitors abolished the effect of epinephrine and restored the 

activity of the Na+/K+-ATPase back to control levels (fig4, 5, 6, 7). 

The treatment with any of the inhibitors alone didn’t cause any significant change in the 

activity of the Na+/K+-ATPase (fig 4, 5, 6, 7). 
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Figure 3: Effect of epinephrine and RpcAMP on the activity of the Na+/K+-
ATPase. Values are means±SEM. N=3. Bars not sharing a common superscript 
are considered significantly different from each other at P<0.01 
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Figure 4: Effect on epinephrine in presence of indomethacin, on the activity of 
the Na+/K+-ATPase .Values are means±SEM. N=5. Bars not sharing a common 
superscript and are considered significantly different from each other at P<0.05. 
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Figure 5: Effect on epinephrine in presence of PTIO, on the activity of the 
Na+/K+-ATPase .Values are means±SEM. N=5. Bars not sharing a common 
superscript are considered significantly different from each other at P<0.01  
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Figure 6: Effect on epinephrine in presence of calphostinC, on the activity of the 
Na+/K+-ATPase .Values are means±SEM. N=6. Bars not sharing a common 
superscript are considered significantly different from each other   at P<0.05. 
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To confirm the involvement of PGE2 in the effect of epinephrine on the pump,   the cells 

were treated with exogenous PGE2 (1nM). The prostaglandin mimicked the effect of 

epinephrine and reduced significantly the activity of the ATPase (fig 8). A similar 

inhibitory effect to that of epinephrine was also observed when the cells were  treated with 

SNAP1 , a nitric oxide  generator or  PMA, a  PKC activator (fig9,10). 
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Figure 7: Effect on epinephrine in presence of PD98059 on the activity of the Na+/K+-
ATPase .Values are means±SEM. N=3. Bars not sharing a common superscript are 
considered significantly different from each other at P<0.01. 
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Figure 8: Effect of PGE2 on the activity of the Na+/K+-ATPase .Values are means ± 
SEM. N=6. Bars not sharing a common superscript are considered significantly 
different from each other at P<0.05. 
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Figure 9: Effect of SNAP-1 on the activity of the Na+/K+-ATPase .Values 
Are means ± SEM. N=5. Bars not sharing a common superscript are considered 
significantly different from each other at P<0.05. 
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Taken together, these findings confirm that PGE2, NO, PKC, and MEK /ERK are 

mediators in the pathway through which epinephrine inhibits the Na+/K+-ATPase.  

The involvement of PKC, led us to suspect that PGE2 acts by binding to its EP1 receptor. 

This hypothesis was confirmed when the effect of epinephrine completely disappeared in 

Figure 9: Effect of SNAP-1 on the activity of the Na+/K+-ATPase .Values 
aremeans±SEM. N=3. Bars not sharing a common superscript are considered significantly 
different from  each other  at P<0.05 . 
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Figure 10: Effect of PMA on the activity of the Na+/K+-ATPase .Values are  means ± 
SEM. N=4. Bars not sharing a common superscript are considered significantly 
different from each other at P<0.05. 
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the presence of SC19220, a selective EP1 antagonist.  The antagonist alone had no effect 

on the activity of the Na+/K+-ATPase. (Fig 11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    D. Positioning the mediators with respect to each other in the pathway 

Inhibiting PKC with calphostin abolished completely the effect of PGE2 on the pump. 

Similarly, in presence of PTIO, a nitric oxide scavenger, the inhibitory effect of 

PGE2was not manifested (fig12). 
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Figure 11: Effect on epinephrine in presence of SC19220 on the activity of the 
Na+/K+-ATPase .Values are means±SEM. N=4. Bars not sharing a common 
superscript are considered significantly different from each other at P<0.05. 
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The effect of PMA on the ATPase disappeared also in presence of PTIO,   but     persisted 

in presence of indomethacin.  (fig13) 
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Figure 12: Effect of PTIO and calphostin on PGE2 action on the pump. Values are 
means±SEM. N=3. Bars not sharing a common superscript  are considered 
significantly different from each other  at P<0.01. 
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Figure 13: Effect of PMA  in presence of  ,indomethacin or PTIO , on the activity of the 
Na+/K+-ATPase .Values are means±SEM. N=3. Bars not sharing a common superscript  are 
considered significantly different from  each other  at P< 0.01 
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CHAPTER V 

DISCUSSION 

 

While norepinephrine has been established as a regulator of the Na+/K+-ATPase in 

different cell lines (Adam-Vizi et al., 1979; Ohtomo et al., 1994; Perez-Vizcaino et al., 

1999), very few studies so far reported such a role for its derivative epinephrine. 

Epinephrine was   shown to stimulate the Na+/K+-pump in rat jejunal crypt cells 

(Kreydiyyeh, 2000) and skeletal muscles (James et al., 1999), but its mechanism of action 

was not fully defined. Our work is the first to demonstrate a significant inhibitory effect of 

epinephrine on the Na+/K+-ATPase in Caco-2 cells (Fig1) and to elucidate the signaling 

pathway involved. 

Treatment of CaCo-2 cells with epinephrine for 20 minutes resulted in almost a 50% 

decrease in the activity of the Na+/K+-ATPase. 

This negative effect of epinephrine appears to be mediated by   α2-adrenergic receptors 

since it only disappeared in the presence of yohimbine, the specific α2 adrenergic blocker 

(Fig2a), but persisted when epinephrine was simultaneously added with other adrenergic 

antagonists (Fig2b). Epinephrine’s preferential binding to α2-adrenergic receptors can be 

attributed to α2 –receptors’ higher cell surface density, higher affinity to epinephrine, or 

both, when compared to other types of adrenergic receptors. The differential 

characteristics of adrenergic receptors in CaCo-2 cells haven’t been addressed before; 
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nonetheless, α2- receptors, individually, were shown to be highly expressed in a similar 

adenocarcinoma cell line, HT-29, and to have the highest affinity to epinephrine among 

other adrenergic agonists (Bouscarel et al., 1984). 

In accordance with the widely accepted notion that α2-adrenergic receptors are coupled to 

inhibitory G-proteins (Gi) and act to down-regulate the production of cAMP and 

consequently PKA (Taussig et al., 1993), RpcAMP treated cells exhibited the same 

decrease in Na+/K+-ATPase as those treated with epinephrine, and the simultaneous 

addition of epinephrine and RpcAMP didn’t result in an additive inhibition (Fig 3), 

indicating that epinephrine exerts its effects by inhibiting PKA. 

 PGE2, NO, PKC, and ERK are familiar regulators of the Na+/K+-ATPase. PGE2 and NO 

were shown to decrease the activity of Na+/K+-pump in several tissues including heart 

(Skayian & Kreydiyyeh, 2006), liver (Kreydiyyeh et al., 2007; Seven et al., 2005), and 

kidneys (Ominato et al., 1996; Cimen et al., 2004).   PKC, via direct or indirect 

phosphorylation, was observed to lower the affinity of the Na+/K+-ATPase to its substrates 

and to affect the translocation of its subunits to the plasma membrane (Feraille et al., 2000; 

Dada & Sznajder,1999).Moreover, ERK  was reported to  contribute to short and long term 

regulation of Na+/K+-ATPase in smooth muscle cells (Isenovic et al.,2004), alveolar cells 

(Zhong et al., 2004), and renal tubule cells (Upadhyay et al.,2003). 

All four mediators are also known to act downstream of α2-adrenergic receptors. PGE2 

was identified as a second messenger for α2-receptor-dependent urea transport and 

hyperthermic response  in rat IMCD (Rouch&Kudo,2000) and guinea pigs (Feleder et 
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al.,2004) respectively. α 2-adrenergic stimulation increased NO synthesis in renal 

circulation (Zou&Cowely,2000),intestinal smooth muscles (Kreiss et al.,2004), and thick 

ascending limb (Plato&Garvin,2000) , and induced ERK phosphorylation in PC12 cells 

(Karkoulias et al.,2005),astrocytes (Peng et al.,2003), and proximal tubule cells (Cussac et 

al.,2001).In addition, PKC coupling to α2-adrenergic activation was detected during  

platelet aggregation(Siess&Lapetina,1989) and vascular smooth muscle contractions 

(Jinsi-Parimo&Deth,2000).  

We therefore hypothesized that the inhibitory effect of epinephrine on the Na+/K+-ATPase 

is mediated by PGE2,NO,PKC, and ERK..The incubation of cells with epinephrine in the 

presence of inhibitors of these four mediators completely abrogated its effect (Fig4, 5, 6, 

7). In addition, treatment with PGE2, SNAP-1, or PMA alone mimicked the inhibitory 

effect of epinephrine on the Na+/K+-ATPase (fig 8,9, 10). Collectively, these results 

confirmed the involvement of PGE2, NO, PKC, and ERK in the pathway induced by 

epinephrine.  

Next we attempted to locate the mediators with respect to each other in the pathway.PGE2 

was found to act upstream of PKC and NO since its negative effect was no longer apparent 

when it was added in the presence of Calphostin C and PTIO respectively(Fig 12). The 

effect of PMA, however, only disappeared when added with PTIO, but persisted in the 

presence of indomethacin (Fig13). These results indicate that PKC acts upstream of NO 

and further validate its position downstream of PGE2. 
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The obtained order of the mediators (PGE2→PKC→NO) is in line with previous reports 

in the literature. Hori et al (2000) and Uno et al., (2004) demonstrated that PGE2 enhances 

the release of NO via the activation of NOS in rat intestinal macrophages and gastric 

mucosa respectively. More importantly, the PGE2 induced increase in NOS activity and 

NO/cGMP production in rat submandibular gland was found to be mediated by PLC and 

PKC (Borda et al., 2002). A tissue-specific role of PKC in the regulation of the different 

NOS isoforms was reported in several studies and was attributed to either direct 

phosphorylation at certain residues (Vasilets,1997& Efendiev et al.,2000) or indirect 

phosphorylation via the activation of the mitogen-activated protein kinase cascade(Wen et 

al.,2011). 

Pharmacological studies have revealed that PGE2 is capable of binding to four subtypes of 

G-protein coupled E-prostanoid receptors (EP1-4) (Bose et al., 2004). Upon the 

stimulation of EP1 Gq-coupled  receptor, Gαq is released to activate PLC –dependent PIP2 

hydrolysis  and increase intracellular Ca2+ concentrations and PKC activity via IP3 and 

DAG respectively (Herbert et al.,1990 ).The fact that PGE2 was found to induce the 

activation of PKC in the pathway hinted that PGE2 is signaling by binding to its EP1 

receptor. Indeed, the incubation of the cells with SC 19220 (selective blocker of EP1) , 

prior to the treatment of epinephrine, completely abolished the inhibitory effect of 

epinephrine on the Na+/K+-ATPase (Fig11), thus verifying that PGE2 mediates the effect 

of epinephrine by selectively binding to EP1 receptor. 
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 NO was found to be  the most downstream mediator in the pathway; nonetheless, its  

mechanism in the regulation of the Na+/K+-ATPase remains to be determined. Two modes 

of NO-related Na+/K+-ATPase regulation have been described: cGMP-dependent and 

cGMP-independent regulation.  

Soluble guanylyl cyclase (sGC) is the most well recognized physiological receptor for NO 

(Lucas et al., 2000). The binding of NO to the heme group of sGC will induce its ability to 

synthesize cGMP, a potent activator of PKG (Martin et al., 2005). cGMP/PKG was 

reported to reduce the activity of the Na+/K+-ATPase in various cell lines including,  

mouse proximal tubule epithelial cells (Guzman et al.,1995), opossum kidney cells (Liang 

& Knox,1999),renal medulla (Beltowski et al.,2003), and non-pigmented ciliary 

epithelium of porcine eye (Shahidullah & Delamere, 2006). Whether PKG however, alters 

the activity of the Na+/K+-ATPase directly via α-subunit phosphorylation or indirectly by 

the phosphorylation of other regulatory proteins is still under investigation. 

Structural analysis revealed that PKA and PKG share common phosphorylation consensus 

sequences in substrate proteins (Wood et al., 1996). Since PKA is  known to directly target 

the Na+/K+-ATPase (Feschenkoet al., 1995),  PKG, therefore, should be capable of 

interacting with and phosphorylating the Na+/K+-ATPase; nonetheless, to our knowledge , 

very few  studies  so far supported such a function whereby PKG was reported to 

phosphorylate the α- 1 subunit of Na+/K+-ATPase  purified from the dog, sheep , pig, rat 

kidney , and Xenopus Oocyte  at unidentified residues (Fotis et al.,1999). This 
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phosphorylation, however, resulted in the stimulation rather than the inhibition of the 

Na+/K+-ATPase. 

PKG-indirect regulation of the Na+/K+-ATPase, on the other hand, is better understood and 

was shown to involve a variety of signaling mediators.  cGMP/PKG elicited the 

phosphorylation and activation  of DARPP-32 and protein phosphatase inhibitor -1(I-1) to 

inhibit protein phosphatase-1  and reduce the activity of the Na+/K+-ATPase in tubular  

(Meister et al.,1989) and kidney cells (Li et al.,1995). Furthermore, NO-dependent 

decrease in aqueous humor secretion in porcine eye was shown to be a consequence of 

cGMP/PKG- mediated ERK1/2 and p38-MAPK induction, and subsequent Na+/K+-

ATPase inhibition following its phosphorylation at Tyr-10 (Shahidullah et al., 2014). 

Other cGMP-dependent mechanisms in the modulation of the Na+/K+-ATPase include the 

regulation of phosphodiesterases such PDE2 and PDE3.cGMP was shown to stimulate 

PDE 2 and inhibit PDE3 to down-regulate and up-regulate intracellular cAMP respectively 

(Beltowski et al.,2003). NO inhibited Na+/K+-ATPase in leptin-treated renal cells by the 

subsequent stimulation of  cGMP, activation of PDE2 , and decrease in cAMP 

concentrations (Beltowski et al.,2007). Likewise,an increase in cAMP was also reported to 

negatively affect the Na+/K+-ATPase, as observed in rat renal cortex (Berterello et 

al.,1991& Fisoni et al.,1994)  and mice hippocampus neurons (Wu et al.,2006) ,  but via a 

mechanism independent of PDE3 ; nonetheless, the possibility that PDE3 can be 

responsible for such effects in other tissues can’t be ruled out.  
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A far less common mode of NO-mediated Na+/K+-ATPase regulation is through cGMP-

independent mechanisms. By interacting with other endogenously produced anions, such 

as superoxide, NO has the potential to generate free radical compounds that were shown to 

cause lipid oxidation and disrupt protein functions mainly by nitrosylating or nitrating 

critical amino acid residues (Beckman & Crow, 1993 & Lipton et al., 1993). Guzman et 

al. reported a role for peroxynitrite in the NO-induced inhibition of Na+/K+-ATPase in 

mouse proximal tubule epithelial cells (1995). Moreover, nitrosylation of Na+/K+-ATPae 

cysteine residues and thiol groups significantly reduced its activity in NO-treated brain and 

kidney tissues (Boldyrev et al., 1997). Other modification may include phosphorylation by 

NO-activated PKC as observed in OK cells that exhibited a PKG-independent but PKC-

dependent decrease in Na+/K+-pump activity upon incubation with the NO generator SNP 

(Liang & Knox, 1999). 

In conclusion, our work demonstrated for the first time the effect of epinephrine on the 

Na+/K+-ATPase in CaCo-2 cells, and described its mechanism of action by elucidating the 

underlying signaling pathway.  

The colon, or the large intestine, constitutes the major site for water and electrolyte 

absorption. The rate of colonic water absorption is directly dependent on the rate of Na+ 

influx, whereby the uptake of Na+ by the cells will cause water to follow by osmosis 

(Sandle GI., 1998). The Na+/K+-ATPase is responsible for maintaining a low intracellular 

concentration of Na+ ions in colon cells, thus providing a driving force for the passive 

entry of Na+ from the lumen into the cytosol (Kunzelmann & Mall, 2002). A decrease in 
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the activity of the Na+/K+-ATPase is very likely to result in a decrease in colonic water 

absorption. Whether epinephrine, via the described pathway, could affect water movement 

in the colon is the aim of future investigations. 

Figure 14 below summarizes the signaling pathway of epinephrine on the Na+/K+-ATPase  

 

 

 
Figure14: Proposed signaling pathway for the action of epinephrine on the 
Na+/K+-ATPase .Arrows with pointed ends: stimulatory effect; arrows with blunt 
end: inhibitory effect. 
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