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AN ABSTRACT OF THE THESIS OF

Malak Hassan Dayeh for Master of Science
Major: Chemistry

Title: Experimental and theoretical investigation of the transition from bands to 2d
squares/hexagons and 3d Turing patterns in the cadmium sulfide precipitation
reaction-diffusion system

Spatiotemporal pattern formation in precipitation reaction-diffusion (RD) sys-
tems was first observed as concentric rings by R. E. Liesegang in 1896. Later on, other
structures have been reported, including: directly spaced rings, the unusual revert spacing,
secondary structures, fractals, spirals (2D), helices (3D) and other features.

In our work, we study for the first time the formation of new precipitation pat-
terns in two and three dimensions. Our system consists of diffusing sodium sulfide into a
gel matrix containing dissolved cadmium (II) ions. When performed in a planar reactor
(2D), the white cadmium hydroxide Cd(OH)2 precipitation occurs parallel to the diffusion
front and takes the form of spaced dots with squared/hexagonal symmetry. A yellow back
front follows the evolution of the system due to the formation of the yellow cadmium sul-
fide CdS resulting from the anionic exchange between OH� and S2� ions. On the other
hand, in (3D) the system exhibits more complex patterns due to the stacking of layers
of the (2D) patterns along the third dimension. These (3D) patterns exhibit Turing-like
behavior.

We intend to study the effect of different variables on the morphology of the
patterns, including the concentration of inner and outer electrolytes, temperature, thick-
ness of the gel, addition of capping agents, variation of ionic strength, and application
of a static electric field. We also plan to investigate theoretically and numerically the
spatiotemporal dynamics of the obtained patterns. In that regard, we will invoke the
Cahn-Hilliard equation in the description of the precipitate pattern formation whereby the
colloidal product resulting from the reaction of the diffusing electrolytes undergo spinodal
decomposition followed by an Ostwald ripening scenario. The resulting evolution equa-
tions will be solved numerically using the Finite Element Method (FEM), which provides
flexibility to solve these equations on domains with complex geometries.
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CHAPTER I

INTRODUCTION

A. Introduction

Pattern formation in self-organizing systems has been a subject of extensive re-

search in many fields of science[1] and over a wide range of length scales[2]. It can

be defined as the appearance of an array of organized macroscopic structures repeating

with a defined or undefined symmetry[1], without the intervention of externally imposed

conditions. This beautiful phenomenon has long intrigued scientists and triggered their

curiosity to search for analogies in the real natural world (Fig. 1). It is broadly observed

in chemistry (e.g. oscillating reactions and precipitating patterns)[3, 4, 5], physics (e.g.

structure formation in astrophysics and convective patterns in fluids)[6, 7], biology (e.g.

pattern formation in cells, nerve and cardiac systems, calcium waves)[8, 9, 10, 11], and

geology (e.g. bands observed in a wide variety of rocks and the stratifications in the agate

structure)[12, 13, 14]. Such organized patterns normally arise in open systems maintained

far from equilibrium[15], and their study constitutes a new branch of research known as

“Nonlinear Science”.

An interesting example of self-organization in systems far from equilibrium is

the periodic precipitation patterns formed in the wake of a moving chemical reaction

front. This exciting observation was first discovered by the German chemist, Raphael Ed-

uard Liesegang in 1896[16, 17], when he accidentally dropped a solution of silver nitrate

(AgNO3) on a thin layer of gelatin containing potassium dichromate (K2Cr2O7). After a

few hours, concentric rings of silver dichromate were produced[18] (Fig. 2). Although

Liesegang realized that the formation of these patterns was related to the movement of

molecules or ions with respect to one another, yet he was unable to explain the origin
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of this surprising aspect, and his finding remained a scientific curiosity. Inspired by this

result, scientists then tried other scarcely soluble electrolytes[19, 20], and different struc-

tures have been experimentally observed and reported; these include: bands with direct

spacing[21], the unusual bands with revert spacing[22, 23, 24], bands with secondary

structures[25], fractals[26], spirals[27], and 3D helices[28] (Fig. 3).

Figure 1: Examples of patterns obtained in nature that can be described in reaction-
diffusion systems: (A) Turing patterns on a leopard [11]. (B) Jeita grotto stalactites
(Courtesy of jeitagrotto.com). (C) Growth of a bacterial colony [2]. (D) A polished
cross-section of a fortificated agate (Courtesy of agatelady.com). (E) Fractals formation
on limestone [29]. (F) Patterns formed by reaction-diffusion on the seashell [30].

The ability to recreate life-like behavior in a test tube aroused the interest of

chemists, biologists, physicists, mathematicians and engineers who teamed up to ex-

plore new type of reactions in motion[32]. Many theoretical studies then caught up, and

new fields of science, particularly nonlinear chemical dynamics and kinetics, flourished.

Computational resources and mathematical tools became also available to explain and

model many puzzling phenomena, such as cave stalactites[33, 34], stripes or spots on an-

imal surfaces[35], layered texture of agates [36], bacterial colonies[37], and several body

activities including calcium signals travelling within cells and impulses within nervous

system[11]. Such advances made reaction-diffusion systems a key element to the world

evolution, and they were no more considered as a scientific oddity.
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Figure 2: Periodic Liesegang rings appearing in silver dichromate system in gelatin
gel[31].

Despite all this undeniable success, pattern formation in chemical systems has

not been widely applied in modern technology due to the difficulty in bringing them

under experimental control, especially at small scales. Reaction-diffusion systems have

the ability to design new constructions and generate structures with significantly small

dimensions, which makes them very suitable to be applied in micro- and nanotechnology.

Therefore, applying and controlling chemistry in motion in a suitable way allows not

only discoveries of new phenomena, but also designing practically important micro- and

nano-structures without the interference of humans.

Although the interest in self-organization and pattern formation has been signif-

icantly increasing, and it has become a challenging task for scientists to present mech-

anisms to explain the dynamic laws governing their behavior, some scientists were not

convinced. For them, the self-organization property of non-equilibrium systems consti-

tutes a violation to the second law of thermodynamics, which states that the universe

3



Figure 3: Different Liesegang patterns grown in gels for several sparingly soluble salts:
(A) Direct spacing in Ni(OH)2 system; (B) Revert spacing in CdS system; (C) Fractals
in La2(C2O4)3 system; (D) Helicoidal pattern in CuCrO4. (E) Spirals and (F) Ripples in
HgI2 system.

evolves towards a state of maximum entropy after any spontaneous change:

DStotal = DSsystem +DSsurroundings > 0. (1)

In an attempt to explain the non-equilibrium behavior of chemical systems, Prigogine and

his coworkers[15] in Brussels showed that self-organization phenomena are governed by

the laws of non-equilibrium thermodynamics[5]. They pointed out that open systems

exhibiting spontaneous self-organization are said to be dissipative systems due to the con-

stant dissipation of free energy to the surroundings[38]. Hence, spatiotemporal patterns

that form in an ordered fashion are called dissipative structures. The decrease in entropy

of a system due to self-organization is therefore overcompensated by increasing the en-
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tropy of the surroundings, and this refutes the doubt about the validity of the second law.

A wide spectrum of theoretical investigations was then proposed to study the evo-

lution of Liesegang patterns. It can generally be classified into classes: the pre-nucleation

and the post-nucleation theories. Both scenarios involve the essential processes of diffu-

sion and precipitation, but each has its advantages and limitations.

B. Theories Governing Liesegang Phenomena

Many theories have been tailored to investigate the mechanism behind periodic

precipitation phenomena and its complex dynamics; yet, there has never been any single

universal theory able to explain comprehensively every experimental finding. However, it

is possible to regroup the most thoroughly discussed theories into two main categories:

• Pre-nucleation theories based on Ostwald’s supersaturation theory[39, 40, 41, 42]

• Post-nucleation theories based on Ostwald ripening[24, 43, 44]

1. Pre-Nucleation Theories

In 1897, shortly after the appearance of Liesegang’s original paper[16], the first

model attempting to explain periodic precipitation mechanism was published by the fa-

mous German chemist, Wilhelm Ostwald[45]. This model considers band formation as

a spatially discontinuous nucleation process, whereby the interdiffusing reagents yield

precipitation bands without the formation of any intermediate compound (A+B ! P).

According to this theory, precipitation is not an equilibrium process, and it does not form

immediately upon the diffusion of the outer electrolyte (A) into the gel containing the

inner electrolyte (B), until the solution is supersaturated. This means that at a certain

position (x), the local concentration product of the reactants a(x, t)b(x, t) has to reach the
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so-called solubility product (Ksp) or the nucleation threshold of precipitation, p⇤. The

resulting equation from the supersaturation assumption at time t and position x can be

written as follows:

a(x, t)b(x, t)� p⇤ (2)

After supersaturation, nucleation of the precipitate P is initiated, and the nucleated par-

ticles grow and deplete the electrolytes A and B in the surroundings, thus allowing the

formation of the first precipitate band and leaving a free space around it. Consequently,

the local concentration product (ab) drops in the vicinity of the band, and nucleation

is suppressed. As time proceeds, the diffusion of A continues until it again surpasses

the threshold value at a certain position and triggers the formation of a new band. The

repetition of this scenario, known as the Ostwald supersaturation-nucleation-depletion

cycle, leads to the alternation of precipitate filled and precipitate void domains with in-

creasing band spacing due to the dilution of the diffusing outer electrolyte (A) with time.

Calculations based on Ostwald’s supersaturation theory were carried out by Wagner[46],

whose model was able to reproduce the obtained rhythmic precipitation banding and the

spacing law to be described in the coming section. However, the first coherent mathe-

matical formulations and semianalytical investigations of the problem were performed by

Prager[39], and later reformulated and simplified by Zeldovich[47], as well as by An-

tal and Rácz[48]. A simple reaction-diffusion model resulting from the supersaturation

assumption given in (1.2) can be described by the following evolution equations:

∂a
∂ t

= Da
∂

2a
∂x2 � kq (ab� p⇤)�labp, (3)

∂b
∂ t

= Db
∂

2b
∂x2 � kq (ab� p⇤)�labp, (4)

∂ p
∂ t

= kq (ab� p⇤)+labp, (5)
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where Da and Db are the diffusion constants of A and B, q (x) is the step function de-

scribing an infinitely sharp threshold for precipitation with rate constant k, and l is the

rate constant of aggregation having large values to deplete B after a precipitation band

formation.

The concentration profiles can be approximated as follows:

a(x, t) = a0

✓
1� xp

2Dat

◆
, (6)

b(x, t) =
b0p

2Db (t � tn)
(x� xn) , (7)

where xn is the position of the band n, and tn is the time required for its appearance. Figure

4 represents the concentration profiles of a and b, and their ion-product concentration ab

after the appearance of the nth band, and just prior the formation of the (n+1)th band.

Figure 4: Computer simulation of the concentration profiles of a,b and the ion-product
concentration ab in the supersaturation theory of the Liesegang banding. p⇤ represents
the precipitation threshold, and xn is the position of the band n[48].
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At a first glance, Ostwald-Wagner-Prager theory appears to agree very well with

the experimental observations, and it has been widely considered as the most accepted

theory explaining Liesegang phenomena. However, some experimental observations in

a broad class of precipitation systems raised some questions about its validity and ap-

plicability. One of the drawbacks in this theory is that it is unable to predict secondary

banding[25] (rings break up into thinner ones) and to explain revert spacing[24] (decrease

in band spacing away from the origin of an imposed gradient). Also it fails to explain the

pattern formation obtained from an initially uniform dispersion of a precipitate in a gel

medium[49].

2. Post-Nucleation Theories

a. Competitive Particle Growth

In order to overcome the difficulties outlined in the previous section, Feinn et

al.[43, 50] proposed a new model based on chemical instability, generally referred to

as the Competitive Particle Growth model (CPG). In this theory, the obtained sol after

diffusion evolves through a competing mechanism between particles of different sizes,

whereby large particles grow at the expense of smaller ones. This stems from the fact that

small particles are more soluble than larger particles due to their higher surface energy.

Thus, they tend to dissolve and diffuse towards the larger particles to decrease the total

energy of the system. The evolution of the system will end up in a state of larger but fewer

particles, and this is known as the Ostwald ripening scenario[45, 51]. The formation of

periodic precipitation bands occurs through a focusing mechanism[52], where large par-

ticles aggregate, leaving clear zones that are depleted in small particles in the surrounding

regions. In 1961, Lifshitz and Slyozov[51] provided a mathematical approach for the ob-

tained phenomena in an attempt to find the average drop size of the growing particles.
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The equation shows that the radius of the particle grows as one-third power of time:

R(t)⇠ (Dgt)1/3 , (8)

where R(t) is the average radius of the particle, D represents the diffusion coefficient, g

is the interfacial tension of the particle, and t is the time.

b. Nucleation and Growth

Another often-applied theory in the post-nucleation mechanism is known as the

theory of Nucleation and Growth[48]. The sequence of events proposed by this mecha-

nism is that after the diffusion of the outer electrolyte (A) into the gel medium containing

the inner electrolyte (B), and when the local concentration product a(x, t)b(x, t) is greater

than the solubility product (Ksp), the formation of a spatially homogeneous colloidal set

of particles (C) takes place. The formation of colloids was also confirmed by Hedges and

Henley[53] for many interacting salt systems. These created C molecules are then free to

move until their local concentration c reaches a threshold value c⇤. After that, nucleation

starts, followed by the aggregation of C into an immobile precipitate P (A+B !C ! P).

Precipitation continues until the concentration of C drops below another threshold p⇤.

This model is therefore characterized by two thresholds; one for nucleation and the other

for droplet growth.

Although the mechanism of Liesegang pattern is explained based on the above-

mentioned theories, Müller and Polezhaev[54, 55] proposed a model that takes into con-

sideration all the processes of supersaturation, competition of nucleation rates, and the

growth of large particles at the expense of dissolution of smaller ones. The strength of

this model lies in its ability to explain non-trivial patterns obtained experimentally, such as

radial dislocations of ring structures in a Petri dish[56], spirals[27] or helical patterns[28],

and “Saturn-rings” in a test tube[39]. However, it fails to explain the formation of sec-
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ondary structures within already formed bands and the stochastic pattern formation for

low initial concentrations.

c. Turing Instability

Based on the same concept of nucleation of colloids prior to pattern formation,

the Autocatalytic Growth model[24] was set forth by Flicker and Ross. They assumed

that prior to band formation, a homogeneous solution of colloidal particles surrounded by

electric double layers is obtained. The process can be summarized as:

pA+qB
k1
�C (9)

where p and q are integers. Once C particles are formed they become charged. The pri-

mary charge of C is then neutralized by a diffuse layer of ions predominantly of a sign

opposite to that of the primary layer, in addition to some ions with similar charges result-

ing from the interpenetrating distribution of ions. Using primes to symbolize colloidal

particles with different ionic environments, the process can be written as:

C+B
k2
�
k�2

C0 (10)

C+A
k3
�
k�3

C00 (11)

For simplification, the charged and uncharged colloidal particles are approximated by C.

Due to the interaction of the double layers of the colloids, the concentration of ions in

the double layer increases. In addition, there is evidence that ions within the double layer

have diffusion coefficients lower than that in the bulk[57]. Both of these effects lead to

the increase of the density of the colloidal particles until it surpasses a certain critical

value. As a result, these particles auto-catalyze their own growth and the formation of
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new colloidal particles[58]:

C+ p0A+q0B
k4
� 2C (12)

where p0 and q0 are integers. Coupling the kinetics of this autocatalytic growth model to

diffusion leads to equations that give rise to the possibility of the growth of macroscopic

structures even in the absence of external gradients[50, 59]. The entire set of reaction-

diffusion processes can be represented by:

∂C
∂ t

= Dc
∂

2C
∂x2 + k1ApBq + k4Ap0Bq0C (13)

∂A
∂ t

= Da
∂

2A
∂x2 � pk1ApBq � p0k4Ap0Bq0C� k3CA+ k�3C (14)

∂B
∂ t

= Db
∂

2B
∂x2 �qk1ApBq �q0k4Ap0Bq0C� k2CB+ k�2C (15)

The analysis of the reaction-diffusion equations postulates that imposing an external gra-

dient might alter the shape of the spatial structure, but it is not the main reason for the for-

mation of that structure. These predictions were confirmed by experiments performed on

lead iodide (PbI2)[60]. The colloidal formation mechanism could also prove successfully

the secondary structures of precipitating bands, and the revert spacing in some systems

such as ferrous ferricyanide (Fe3[Fe(CN)6]2)[24], silver iodide (AgI)[23], and cadmium

sulfide (CdS)[61].

As most of the systems in Liesegang phenomena exhibit spatially static pat-

terns, in the sense that they are locked in space once they are formed, Ross and co-

workers[24, 60, 62] considered Liesegang structures as a physical example of Turing-

type patterns[63]. The latter are stationary periodic concentration structures originat-

ing in the sole coupling of reaction and diffusion processes without the interference of

convection[38]. The word “stationary” in Turing’s work does not necessarily require

the obtained pattern to be stationary in time, but rather in space. Experiments indicate
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evidences for developing time-dependent[24] and time-independent[64, 65] Turing struc-

tures. Besides, for a pattern to qualify as a Turing pattern, the system must have a spatially

uniform steady state that is stable to any spatially homogeneous infinitesimal perturba-

tion, but allows certain spatially nonuniform perturbations of particular symmetry to grow

rather than decay. Therefore, the formation of a Turing pattern is a symmetry-breaking

phenomenon.

In 1952, Alan Turing[63] suggested a possible connection between patterns in bi-

ological systems and patterns that could form spontaneously in chemical reaction-diffusion

systems. He established the theoretical possibility that chemical systems with an autocat-

alytic step (or feedback–retroaction loop) in their reaction mechanism[66], having ap-

propriate nonlinear kinetics, and containing activator and inhibitor species diffusing with

different mobilities, might give rise to spontaneous pattern formation of the type encoun-

tered in living organisms. Examples of such Turing patterns include the formation of

spots or stripes on animal coat (zebras, giraffes, tigers, seashells, tropical fish [11, 35]),

the division and differentiation of spherically symmetric fertilized egg into many differ-

ent kinds of cells present in an adult organism, the classification of right and left-handed

organisms with bilateral or left-right symmetry, the arrangement of leaves on the stems of

plants [63], etc. . . .

Turing’s main goal was not to describe morphogenesis quantitatively, but rather

to discover a clear plausible mechanism that could teach scientists how to think about

pattern formation and complex phenomena. Despite the profound effect Turing’s the-

ory had, and the huge theoretical work it stimulated, the experimental confirmation of

this phenomena didn’t appear until the year 1990, when De Kepper and colleagues in

Bordeaux reported the first evidence of a Turing structure in the well-known chlorite-

iodide-malonic acid (CIMA) reaction[64, 67, 68]. A rich variety of the stationary spatial

structures – hexagonal arrays of spots, labyrinthine arrangements of stripes, and mixed

states – were observed[68] ( Fig. 5). These patterns possess an intrinsic wavelength that
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Figure 5: Turing structures obtained in the CIMA reaction[68]: (A) Hexagons (B) Stripes
(C) Mixed state.

depends only on the diffusion coefficients, kinetic constants, and concentration of some

control species in the reaction, and not on the geometry of the system. Later on, this work

was extended and verified using different reactor configurations[69, 70, 71].

The difficulty in satisfying all the criteria required for pattern formation is the

reason why it took chemists nearly four decades to produce Turing patterns. The devel-

opment of Turing patterns requires that the two species (inhibitor and activator) diffuse

at different rates, with the inhibitor being faster than the activator. Since small molecules

in aqueous solution have approximately similar diffusion coefficients, reaction-diffusion

systems didn’t generate Turing patterns. In the CIMA reaction however, the effective dif-

fusion of iodide, the activator, could be retarded by adding starch indicator which forms

an immobilized complex with I� and I2 present. On the other hand, attempts to generate

Turing patterns in the Belousov-Zhabotinsky (BZ)[72, 73] reaction were unsuccessful be-

cause no complexing agent was available to interact with the bromous acid, which serves

as the activator in this case. By running the BZ reaction in AOT microemulsion[74], the

diffusion of polar species is slowed down, allowing the inhibitor, Br2, to diffuse signifi-

cantly faster than the bromous acid, thus satisfying Turing criterion for pattern formation.
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d. Spinodal Decomposition

Another important mean-field theory that has gained a particular interest in re-

cent years is the spinodal decomposition scenario adapted to precipitation pattern formation[75,

76]. It is a powerful postnucleation model that is shown to be suited to describe both: the

regular[21] and the inverse banding[22, 23] in Liesegang-type precipitation patterns, and

to reproduce many experimentally observed spacing laws such as the Matalon-Packter

law[48, 77], without using artificial thresholds for nucleation and growth. In the discus-

sion of the mechanism of spinodal decomposition for the formation of Liesegang patterns,

the interpreters of the theory restricted themselves to the intermediate compound theories.

They assume that due to the reaction of the outer electrolyte (A) and the inner electrolyte

(B), an intermediate compound (C) is formed. For a broad class of reactions, this com-

pound has a constant density (c0) behind the diffusion front of the outer electrolyte[48],

and it can move only by diffusion due to the presence of the gel. As time progresses, small

clusters of the intermediate particles (C) nucleate and aggregate behind the front. This

mechanism is known as nucleation and growth described in the previous section. How-

ever, if the characteristic time scale for nucleation is much larger than the time needed by

the front to put out the local concentration c0, the system reaches the unstable region, and

phase separation or Liesegang band formation takes place on a short time scale. This band

acts as a sink for the particles and, in the vicinity of the band, the local concentration of

the particles decreases and the front is no longer in the unstable state of the phase space.

When the front moves far enough, the depleting effect of the band diminishes. Thus the

concentration of the particles grows again and the process repeats, leading to the forma-

tion of Liesegang patterns. In short, the new feature of this scenario is the assumption that

the state of the front is quasi periodically driven into the unstable states domain.

The dynamics of the propagating front (A+B ! C) and the production of C

in the reaction diffusion process have been solved[78]. The new aspect of the spinodal

decomposition theory is therefore to describe the dynamics of their phase separation,

14



which can be approximated by the non-linear, so called Cahn–Hilliard (CH) equation[79,

80]:
∂j

∂ t
=�lD(ej � gj

3 +sDj)+ kab, (16)

where D is the 2D Laplacian operator, and j is the shifted and rescaled concentration

defined as:

j = (2c� ch � cl)/(ch � cl), (17)

where cl and ch being the low- and high-density phases of C. s and l are the rescaled

surface tension and kinetic constant characterizing the dynamics of C respectively, while

e and g are positive constants that define the boundaries between the stable, metastable,

and unstable regions. The reaction term (kab) provides the source for the precipitation of

C, which takes the form of a diffusing front whose position, width, and shape are fully

characterized[78].

C. Scaling Laws of Periodic Precipitation

The spatiotemporal dynamics of the precipitation patterns obtained in Liesegang

phenomena proved to obey several scaling laws irrespective of the geometry of the sys-

tem and the chosen salt pairs. Four main empirical laws have been defined: the spacing

law[81], the Matalon-Packter law[77], the time law[82], and the width law[83].

1. Spacing law

The spacing law was first described by Jablczynski in 1923[81], when he realized

that for a certain periodic precipitating system, the ratio of the spatial positions of succes-

sive precipitation bands (xn and xn+1) measured form the gel surface, form a geometrical

series as follows:

xn+1 = rxn. (18)
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Here r is constant for large values of n, and it is known as the “spacing coefficient” usually

expressed as: r = 1+ p, where p ranges between 0.05 and 0.4[48]. In general, the spacing

between consecutive bands tends to increase as the distance from the interface between

the gel and the solution increases[48]. This is known as the normal or the direct spacing.

On the other hand, there are some Liesegang systems that exhibit revert spacing, whereby

the distance between bands decreases upon moving away from the interface. Silver iodide

(AgI)[23], Ferrous Ferricyanide Fe3[Fe(CN)6]2[24], and lead chromate (PbCrO4)[22], are

all examples of precipitating systems displaying this feature.

2. Matalon-Packter law

A better description of the spacing law was made possible by Matalon and

Packter[77]. They noted that the spacing coefficient r = 1+ p is not a universal quan-

tity, but depends mainly on the initial concentrations a0 and b0 of the outer and inner

electrolytes respectively:

p = F(b0)+
G(b0)

a0
, (19)

where F and G are decreasing functions of b0. For different systems, they found that

F(b0)⇠ b�g

0 with g ranging as 0.2  g  2.7, and the function G(b0) decreases generally

with b0 but it is less known.

3. Time law

The time law given by Morse and Pierce[82] relates the position of the nth band

(xn) to the time required for its formation (tn):

xn = at
1
2
n +b , (20)
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where a and b are constants, and the ratio x2
n/t approaches a constant value as n increases.

The comparison between this relation and the diffusion coefficient definition directly re-

flects the diffusion-controlled nature of the obtained phenomena.

4. Width law

The width law[83] for Liesegang patterns describes how the thickness (wn) of the

precipitating zone varies with its position (xn). Experiments show that the width increases

with n and obeys the following linear relation[84, 85]:

wn = exn, (21)

where e is a constant. Moreover, it has been confirmed experimentally and theoretically

that the ratio of the widths of two consecutive bands is constant wn+1 = q wn.

D. Cadmium Sulfide System

After Liesegang observed the well-defined visible bands in silver dichromate

system, a number of investigations were carried out on different weakly soluble salts, and

various spatial patterns were reported. These include bands, fractals, spirals, etc. . . . For

systems that exhibit parallel Liesegang bands, two different trends might be observed: the

direct spacing where the distance between two consecutive bands increases as the bands

get further away from the interface, and the revert spacing where the distance decreases.

In the cadmium sulfide system, a ‘Direct’ type of periodic precipitation has been

observed by Daus and Tower[86] upon mixing sodium sulfide of 0.4 to 1N in agar gel

and using 0.8 to 2N of cadmium chloride as an outer electrolyte. Later on, Kant et al.

(1970) studied Liesegang rings of cadmium sulfide in three gel media: gelatin, agar agar,

and starch[87]. A similar ‘Direct’ spatial pattern of cadmium sulfide in agar agar was
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obtained, whereas for the gelatin and starch media, they detected both ‘Direct’ and ‘Re-

vert’ type of rings, depending whether the cadmium ions are allowed to diffuse into the

gel containing sulfide or vice versa. In 1985, Ramasamy and his coworkers[88] reported

a new observation made in cadmium sulfide salt that produces revert followed by direct

system in the same tube under certain specific pH ranges. That is, the distance between

successive bands goes on decreasing (revert type), reaches a minimum, and then increases

with the increasing order of the ring (direct type). Although Kanniah et al. have reported

similar observations in the case of silver iodide system in 1981[23], they did not observe

such conversion for a semiconducting substance like cadmium sulfide. The experimental

conditions of the pattern transformation from revert to direct were explained on the basis

of autocatalytic reaction coupled to diffusion[24].

E. Aims of the Present Work

In the present work, we report for the first time the formation of a new pre-

cipitation pattern observed in the cadmium sulfide/hydroxide system, which displays a

transition from parallel rings to spots with square/hexagonal symmetry. The transition

threshold, the prevalence of spots versus rings, the wavelength of the selected pattern,

the size of the resulting spots, and the percentage of their coverage are shown to be con-

trollable by adjusting the concentrations of the inner and outer electrolytes, temperature,

gel thickness, capping agent addition, ionic strength variation, and direct electric field

application. The aims can be summarized as follows:

1. Study the spatiotemporal evolution of the new square/hexagonal precipitation pat-

tern obtained in the cadmium sulfide/hydroxide precipitation system in two dimen-

sions.

2. Explore the effects of different parameters on the morphology and the dynamics of

the obtained pattern.

18



3. Carry out computational study using the spinodal decomposition scenario to inves-

tigate theoretically the dynamics of the obtained pattern, and demonstrate that this

model corresponds mathematically to the well-known Cahn-Hilliard equation for

phase separation. The resulting evolution equations are solved numerically using

the Finite Element Method (FEM).

4. Study the Turing patterns obtained in three dimensions due to the stacking of layers

of the two dimensional patterns and include 3D simulation.
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CHAPTER II

TWO-DIMENSIONAL PATTERNS

A. Introduction

The similarity between precipitation structures in reaction-diffusion systems and

naturally obtained patterns have motivated scientists to mimic nature and learn from its

ability to reproduce chemically generated patterns programmed in space and time to per-

form desired tasks[32, 89]. For instance, these patterns are expected to have wide appli-

cations in bottom-up fabrications[2, 89], thereby competing with the traditional top-down

methods, and opening possibilities for new technological processes[90]. However, the

major obstacle to successful implementation of reaction-diffusion phenomena in modern

technologies has been the lack of control over their progress. The idea of controlling spa-

tiotemporal patterns in reaction-diffusion systems has therefore become one of the most

challenging problems in materials science. This paves the way for better understanding

the underlying dynamics, which in turn is a key element to display any desired pattern by

imposing a relatively weak external perturbation.

Several studies have been made on different systems in an attempt to control

pattern formation. It is well known that the variation of some conditions and experi-

mental parameters, under which Liesegang precipitation patterns are formed, can to some

extent control the characteristics of the pattern as well as its dynamical properties. For

example, the appropriate choice of the concentrations of the reagents and the temperature

has a direct influence on the morphological features of the resulting pattern[20, 77, 91].

Moreover, the nature of the gel used and its concentration[20, 92], the dimensions of the

system, and the process followed can also have an impact on the obtained structures. For

instance, wet stamping method has been used recently to fabricate various precipitation
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structures of micro- and nanoarchitectures which could be technologically useful[2, 93].

Further studies have also shown that the formation of patterns and the motion of the prop-

agating fronts could be altered by the application of an electric field[94, 95, 96]. Thus,

the above methods of control play a crucial role in developing an effective and powerful

scope for architecting the desired pattern, depending on the experimental conditions used.

Similar to other rhythmic precipitates, the macroscopic evolution and the char-

acteristics of the obtained spots in the cadmium sulfide/hydroxide system can be altered

by a proper control of the experimental conditions; these include the concentrations of the

inner and outer electrolytes, temperature, concentration of the gel, use of a capping agent,

variation of ionic strength, and application of a static electric field. The effect of each

parameter on the dynamical properties and the characteristics of the resulting spots will

be discussed in this chapter. SEM images exhibiting the transition from bands to spots

and their morphological features are also presented.

B. Experimental Procedure

A sample of cadmium chloride monohydrate CdCl2.H2O (Mallinckrodt) is weighed

to the nearest 0.0001 g using an analytical balance and dissolved in double distilled water

to obtain the required concentration. After salt dissolution, 5% per volume of powdered

gelatin (Difco) is added to the solution. The mixture is then heated with continuous

stirring for a few minutes until the entire solid gel material dissolves. The resulting ho-

mogenous hot solution is then immediately transferred into a circular Plexiglass reactor

(diameter = 15 cm) and is covered with a transparent Plexiglas cover (diameter = 12 cm)

equipped with spacers in order to have a homogeneous gel thickness of 0.7 mm. The

cover is connected to a small cylindrical reservoir (diameter = 3 cm) in the center for the

outer solution addition. The gel is left in the reactor for 24 hours at room temperature to

rest and polymerize. After that, the gel is neatly removed from the bottom of the pouring
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Figure 6: A sketch of the experimental setup. The gelled Cd2+ is sandwiched between the
dish bottom and its cover and the outer electrolyte S2� is added to the central reservoir.
Photographs are taken using a Canon digital camera interfaced with a computer.

cylindrical reservoir and the outer electrolyte, sodium chloride nonahydrate Na2S.9H2O

(Alfa Aesar), is gently added. The plate is then left in an air thermostat chamber at 22.0

± 0.1 �C. The diffusion of the sulfide ions through the cadmium-doped gel, as well as the

formation of the precipitates are monitored over a period of two days. The patterns and

their evolution are captured by a mounted CCD digital camera equipped with a Macro

lens and controlled by a computer as shown in Figure 6.

C. Pattern Evolution

The spatiotemporal evolution of the system is initiated directly after the sul-

fide solution is diffused into the cadmium-doped gel. The dissolution process of sodium

sulfide in water, described in (R1), releases hydroxide ions (OH�). Since the diffusion

coefficient of the hydroxide ions is about four times greater than that of the hydrogen sul-

fide ions (HS�), a white precipitate is formed at the liquid-gel interface first, indicating a

spontaneous reaction between the diffusing hydroxide ions and the cadmium ions (Cd2+)
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Figure 7: Transition from Rings to Spots. (A) t = 6 hrs; (B) t = 18 hrs; (C) t = 26 hrs. The
inset figures are the 2D power spectra of the displayed patterns. The purple color indicates
highest modes expressed in the pattern. Transition from stripes (A) to hexagonal pattern
(C) is reflected in the power spectrum where the aligned wavenumbers along qy in (A) are
changed into 6 wavenumbers in (C) with a hexagonal symmetry.

existing in the pores of the gel (R2). For a given set of initial outer and inner concentra-

tions, the precipitation of Cd(OH)2 exhibits concentric rings (Fig. 7A) at early times of

evolution. As time progresses, white spots start appearing as defects among the rings in

several locations as shown in Figure 7A. They start multiplying and propagating in the

direction of the diffusion front (Fig. 7B). Eventually, the whole domain of the reactor

is invaded with such an unexpected pattern as shown in Figure 7C. The investigation of

the time evolution of the power spectra of the patterns in Figure 7 (insets) reveals the

transition from bands to spots possessing a mixture of square and hexagonal symmetry.

It is noticeable that in the resulting pattern the distance between consecutive

spots seems to increase as the distance from the center of the reactor increases towards

its boundaries. Moreover, the spatial evolution of the white solid is followed by a yellow

back-front resulting from the formation of yellow cadmium sulfide CdS due to the anionic

exchange between OH� and S2� (R3). The latter is due to the higher thermodynamic

stability of the sulfide, where the solubility product constant of CdS
�
Ksp = 10�28� is

much lower than that of the precipitating Cd(OH)2
�
Ksp = 10�14�. Therefore, the more

soluble Cd(OH)2 is converted into CdS during the reaction[97]. All underlying chemical
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reactions are summarized as follows:

Na2S(s) H2O! 2Na+(aq)+HS�(aq)+OH�(aq) (R1)

Cd2+(gel)+2OH�(aq)!Cd(OH)2(s) (R2)

Cd(OH)2(s)+S2�(aq)!CdS(s)+2OH�(aq) (R3)

The ion exchange process is shown to be diffusion-limited, where the yellow

front travels linearly proportional to the square root of time
⇣

d = t1/2
⌘

when the reaction-

diffusion is performed in 1-D test tube. According to Gálfi and Rácz[78], for a simple

bimolecular system (A+B ! C) in which the transport of the reagents is dominated by

diffusion and the reaction kinetics is of second order, the dependence of the distance

travelled by the pulse on time exhibits a diffusion-like profile of the form d ⇠ tb , where

b = 1/2. In an attempt to detect whether the white and the yellow fronts for the propa-

gating Cd(OH)2 and CdS follow this diffusion profile in 2-D, a log-log fit of the distance

travelled by each pulse versus time is plotted for a plate with 80 mM inner concentra-

tion and 400 mM outer concentration. The exponent of the diffusion profile b , extracted

as the slope of the log-log fit is determined to be ⇡ 1/3 for both, the white and yellow

pulses, as shown in Figure 8. This indicates that the precipitation of Cd(OH)2 and CdS

in 2-D is sub-diffusive. The reason why the exponent b is slightly different than 1/2 as

compared to 1-D could be attributed to the anomalous diffusion resulting from the gel

porosity, thus allowing the diffusion to take place with spatial defects that could lower the

value of b [98].
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Figure 8: Log-log plots of the white front displacement (dw) and the yellow front dis-
placement (dy) as a function of time (t). Left plot represents the white front and the right
plot represents the yellow front. Initial conditions: outer, [S2�]0 = 400 mM. A range of
different initial inner concentrations in 5% per volume of gelatin gel are tested: [Cd2+]0 =
50, 60, 80 and 90 mM.

D. Effect of Inner and Outer Concentration

To detect the effect of the concentrations of the inner and outer electrolytes on the

pattern morphology, five sets of different outer concentrations (varying between 200 mM

and 400 mM) are prepared, each containing 14 reactors at different inner concentrations

(varying between 10 mM and 140 mM), using the same experimental procedure described

above. The emerging patterns are then grouped in the phase diagram shown in Figure

9. At low cadmium concentration (less than 20 mM), only a continuous precipitating

white front of Cd(OH)2 is obtained without rings or spots. A diffusing yellow back-front

indicating the formation of CdS then follows. This regime is denoted by ‘C’. When the

inner concentration is increased from 10 mM to 20 mM for all outer concentrations in

the aforementioned range, clearly separated thin rings of a white/yellow precipitate are

observed. This regime is denoted by ‘R’. Upon increasing the concentration of cadmium

from 30 mM to 60 mM, numerous well-resolved spots with square/hexagonal symmetry

emerge just after the formation of a few rings. This region is labeled ‘S’. When the

inner concentration increases beyond 60 mM, the structure of the phase diagram gets

more complex, resulting in a mixture of predominating rings and some spots (denoted
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Figure 9: Phase diagram representing the different morphologies obtained upon varying
the inner and outer concentrations. C = continuous precipitation band; R = precipitation
rings; S = spots. The R+s (lowercase s) on the phase diagram indicates occurrence of
rings with some spots.

as ‘R+s’) for outer concentrations ranging between 200 mM and 250 mM, and around

350 mM. For inner concentration between 120 mM and 130 mM, we get back to the ‘R’

regime but with thicker and fewer rings than what is obtained on the left-hand side of the

phase diagram. For concentrations higher than 130 mM, we go back to the continuous

precipitation zone ‘C’.

The effect of inner and outer concentrations is further investigated. If we move

horizontally across the phase diagram at a fixed outer concentration [S2�]0= 400 mM, as

shown in Figure 10, starting at an inner concentration [Cd2+]0 = 30 mM, well-resolved

thin rings are obtained (Fig. 10A). By increasing the inner concentration from 30 mM

to 60 mM, a transition from thin rings to spots is clearly exhibited in Figure 10B, and

the resulting pattern after 48 hours is clearly dominated by spots with a square/hexagonal

symmetry. Further increase in the inner concentration to 90 mM (Fig. 10C) and to 110

mM (Fig. 10D) results in the formation of larger and closer spots until they all merge
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Figure 10: The evolution of precipitation patterns within 48 hours at constant outer con-
centration [S2�]0 = 400 mM and various inner concentrations [Cd2+]0: (A) = 30 mM;
(B) = 60 mM; (C) = 90 mM; (D) = 110 mM; Gelatin = 5%; Temp = 22 �C.

together at a concentration beyond 130 mM to form a continuous band as shown in the

phase diagram.

In analogy to Liesegang rings, the obtained spots are labeled by their number

(n) along a special line of symmetry chosen to pass through them and starting at the first

spot appearing in the system. To quantify, the size of a spot is given in terms of the

measured area (A) it occupies. The plot of A versus n represented in Figure 11 shows

that the size of the spots changes almost linearly along the diffusion flux away from the

interface, with larger sizes obtained at higher concentrations. In the case of Figure 10B,

the spot size ranges from 0.1 mm2 to 0.32 mm2, whereas in the case of Figure 10C, the

spot size ranges from 0.45 mm2 to 1.44 mm2, and from 0.91 mm2 to 2.6 mm2 in the case

of Figure 10D. Therefore, the spots are shown to increase in size with the increase of the

inner concentration.

On the other hand, moving vertically in the phase diagram, the effect of varying

the outer concentration does not noticeably affect the spot size, but it directly influences

the spacing between spots and the distance they cover. Figure 12 shows that the increase
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Figure 11: Plot displaying the area (A) occupied by each spot versus the spot number (n).
The concentration of the outer electrolyte [S2�]0 is fixed at 400 mM while the concentra-
tion of the inner electrolyte [Cd2+]0 varies from 50 mM to 110 mM. The temperature is
maintained constant at 22 �C and the concentration of gelatin used is 5% per volume.

in the outer concentration at a fixed inner concentration ([Cd2+]0 = 60 mM) results in a

faster reaction-diffusion process, thus allowing the precipitation and formation of closer

spots that cover larger distances.

In order to shed more light on the control of the spots, the spacing between con-

secutive spots is measured for two sets of plates: Set (I) is prepared at constant outer

concentration [S2�]0 = 250 mM. with different inner concentrations [Cd2+]0 ranging be-

tween 40 mM and 80 mM. Set (II) is prepared at constant inner concentration ([Cd2+]0

= 60 mM) with different outer concentrations [S2�]0 ranging between 200 mM and 350

mM. The spacing in a given pattern with spots is defined as ln = xn+1 � xn where xn and
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Figure 12: The evolution of precipitation patterns within 48 hours at constant inner con-
centration [Cd2+]0 = 60 mM and various outer concentrations [S2�]0: (A) = 200 mM;
(B) = 250 mM; (C) = 350 mM; (D) = 400 mM; Gelatin = 5%; Temp = 22 �C.

xn+1 are the locations of spot n and the following one, n+ 1. Consequently, for Set (I),

the obtained five curves in Figure 13A for ln versus n exhibit a linear relationship with a

positive slope that increases with a decrease of the inner concentration. As for Set (II), a

linear direct spacing law is also obtained as shown in Figure 13B, with a positive slope in-

creasing with a decrease in the outer concentration. Moreover, a spacing law for spots can

be verified by computing the ratio r = xn+1
xn

, where r is the spacing coefficient expressed

as 1+ p, with p ranging between 0.09 and 0.16 for Set (I) and between 0.13 and 0.08 for

Set (II).

This observation is similar to the direct spacing law encountered in Liesegang

banding systems[21, 77], whereby the rate of diffusion increases with the increase of the

outer electrolyte concentration[96], thus resulting in spots forming at closer distances than

those with a lower outer concentration. On the other hand, the increase in the spot size

with the increase in the inner concentration results in the formation of closer and bigger

spots until they merge, which leads to smaller values of p. On that account, the initial

concentrations of reactants provide suitable spatial control parameters for the spots. By
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Figure 13: Plots of the spacing between two consecutive spots ln versus the spot number
(n). (A) represents Set (I) with fixed outer concentration [S2�]0 = 250 mM and different
inner concentrations. (B) represents Set (II) with fixed inner concentration [Cd2+]0 = 60
mM and different outer concentrations. The coefficient p for each case is also shown.

the same token, a time law[82] is also observed, whereby the ratio of x2
n/tn, tn being the

time elapsed until the formation of the nth band, is found to lead to a constant value at

large n for all initial inner and outer concentrations (Fig. 14).

E. Effect of Temperature

Temperature is one of the main parameters that influence the kinetics and the

evolution of the patterns. In the case of chemical reactions, it is well-known that rates

can eventually change upon varying the temperature – and in most cases, the higher the

temperature is, the faster the reaction. In reaction-diffusion systems, however, the tem-

perature variation can greatly alter the precipitate solubility and the diffusion velocity of

the invading electrolyte.

To check the effect of temperature on the formation of spots, a preparation

method similar to the ones described in previous parts is followed. Three plates are pre-

pared, each containing 80 mM cadmium chloride and 400 mM sodium sulfide. The first
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Figure 14: Plot displaying the ratio
�
x2

n
�
/tn vs. n for different inner concentrations (A)

and outer concentrations (B). At high values of n, the ratio approaches a constant value.

plate is placed in a thermostat where the temperature is maintained at 22.0 ± 0.1 �C,

while the other two are placed in a refrigerator at a temperature of 2.0 and 10.0 ± 0.1 �C,

respectively. The experiment is also performed at higher temperatures, but it is difficult

to monitor the evolution due to the deformation of the gel. The obtained patterns are rep-

resented in Figure 15, which clearly shows that after 24 and 48 hours, the transition from

bands to spots occurs at a lower rate when the reaction is performed at lower temperatures

(2.0 and 10.0 �C) compared to that at a higher temperature (22.0 �C).

In order to gain more quantitative insight into this progression, the front distances

traveled by the white and yellow bands for a certain period of time, as well as the distances

of the first and the last spots from the interface, are measured after 24 and 48 hours for the

three plates. Results show that as the temperature increases, both the precipitation reaction
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Figure 15: The evolution of precipitation patterns at different temperatures: After 24
hours of reaction-diffusion: (A) at 2 �C; (C) at 10 �C; (E) at 22 �C. After 48 hours
of reaction-diffusion: (B) at 2 �C; (D) at 10 �C; (F) at 22 �C. Initial conditions: Inner
[Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM; Gelatin = 5%.
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giving the white Cd(OH)2 and the ion exchange process producing the yellow CdS, are

faster when the reaction-diffusion takes place at a higher temperature. Moreover, after 24

hours, the first spot appears at a distance of 0.8 cm from the interface for the case of 22

�C, while it appears at 1.5 cm for the case of 10 �C. In the case of 2 �C, there is only

formation of rings and no transition to spots is noticed. Similarly, the last spot formed

after 48 hours is farther away from the interface at 22 �C (2.5 cm) as opposed to that at

10 �C (2.0 cm) and 2 �C (1.7 cm). On the other hand, we intend to measure the whole

area covered by the formed precipitate (bands and spots) and that covered solely by the

spots for each plate after 48 hours using Photoshop software. The ratio of spots area to the

total precipitation area is then calculated. The obtained results are displayed in Figure 16,

which clearly reveals that the percentage of spots coverage increases with the increase in

the temperature due to the higher transition rate. All these results show that the diffusion

process at a higher temperature proceeds faster, thus allowing the precipitation process

to cover larger distances and resulting in more spots whose formation starts at an earlier

time.

F. Effect of Gel Concentration

Liesegang experiments are usually performed in gel media in order to prevent

convection and sedimentation which would destroy the resulting patterns. Gels, moreover,

provide a suitable medium for the diffusion of electrolytes and create a stable regime of

concentration gradients. However, the nature of the gel used and its concentration can

greatly affect the morphology of the precipitating pattern and can even suppress pattern

formation in some cases[20].

In an attempt to detect the effect of varying the gel thickness on the obtained

spots in the cadmium sulfide/hydroxide system, three plates, each containing 80 mM of

cadmium chloride, are prepared at ambient temperature. A certain mass of gelatin is then
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Figure 16: Histogram representing the percentage of the area covered by the spots with
respect to the total area covered by the precipitate as the temperature varies between 2 �C
and 22 �C and after 48 hours of reaction-diffusion. Initial conditions: Inner [Cd2+]0 = 80
mM; Outer [S2�]0 = 400 mM; Gelatin = 5%.

added into each plate in such a way to obtain the following gel concentrations: 3%, 5%,

and 7% per volume. After complete gelation, the same solution of sodium sulfide (400

mM) is added to the three plates. The obtained results are displayed in Figure 17.

In order to compare the resulting patterns, the ratio of the area covered by the

spots is measured with respect to the total area covered by the precipitate after 48 hours.

Figure 18 shows that the thick spots obtained when the concentration of gelatin is 3%

occupy about 35% of the total precipitation area. This percentage increases to 70% when

the concentration of gelatin reaches 5% per volume. At higher gel concentration (7%),

the formation of bands is predominant and the percentage of spots coverage decreases to

reach 24%.

Moreover, the spacing between two consecutive spots (ln) is measured in each
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Figure 17: The evolution of precipitation patterns at 48 hours using different gel concen-
trations: (A) = 3%; (B) = 5%; (C) = 7%. Initial conditions: Inner [Cd2+]0 = 80 mM;
Outer [S2�]0 = 400 mM; Temp = 22 �C.

plate. Figure 19 depicts a plot of ln versus the spot number (n) for the three different

gel concentrations used. All three curves show an increasing trend, which is typical for

a system showing direct spacing, and the higher gel concentration curves lie above the

lower concentration ones. These observations agree with the results already mentioned in

the literature about Liesegang bands[22]. According to Schacht et al., increasing gelatin

concentration leads to a higher number of pores of smaller size due to an increase in

the nucleation rate[99]. Moreover, the diffusion coefficient of the diffusing ions in the

gel medium is reduced upon increasing the gel concentration[96]. Hence, the rate of

diffusion of the sulfide/hydroxide ions is decreased, contributing to an increase in the

spacing between the spots.

G. Effect of Capping

Capping agents have physical or chemical affinity to the surface of nanoparticles

and another unreactive part that extends towards the environment to impede the agglom-
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Figure 18: Histogram representing the percentage of the area covered by the spots with
respect to the total area covered by the precipitate as the concentration of gelatin gel varies
between 3% and 7%. Initial conditions: Inner [Cd2+]0 = 80 mM; Outer [S2�]0 = 400
mM; Temp = 22 �C.

eration of nanoparticles and control their growth[100]. In particular, b�mercaptoethanol

(HO�CH2 �CH2 � SH) is used as a stabilizing agent to control the size of monodis-

persed CdS nanoparticles[101]. To investigate the sensitivity of the pattern formation to

the addition of the capping agent, b�mercaptoethanol (b�ME), five solutions of cad-

mium chloride with a concentration of 80 mM are prepared in 5% per volume gelatin

gel. After heating the mixture, different concentrations (2, 4, 6, 8, and 10 mM) of b�ME

(Acros) are added to each solution and then homogenized. When the mixture gels in the

reactor, sodium sulfide solution (400 mM) prepared in doubly distilled water and contain-

ing b�ME is introduced to the reservoir of each plate. It is important to note that the

concentration of b�ME inside the gel and above is kept the same to prevent the diffusion

of the capping agent. The obtained results are compared to a control plate that has the

same concentrations of the inner and outer electrolytes (80 and 400 mM respectively), but
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Figure 19: Plot of the spacing between two consecutive spots (ln) versus the spot number
(n) for the different gel concentrations used: 3%; 5%; and 7%. Initial conditions: Inner
[Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM; Temp = 22 �C.

free of b�ME.

Results show that the presence of ME favors the formation of bands over the

formation of spots, and this observation becomes more pronounced as the concentration

of the ME is increased (Fig. 20). Quantitatively, the precipitation area covered only by

the spots is measured with respect to the total area covered by the whole precipitate after

48 hours. Results in Figure 21 show that the spots formation is gradually suppressed upon

increasing the concentration of ME.
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Figure 20: The evolution of precipitation patterns at 48 hours for different b�ME con-
centrations: (A) = 0 mM; (B) = 2 mM; (C) = 4 mM; (D) = 6 mM; (E) = 8 mM; (F) = 10
mM. Initial conditions: Inner [Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM; Gelatin= 5%;
Temp = 22 �C
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Figure 21: Plot representing the percentage of the area covered by the spots with respect
to the total area covered by the precipitate as the concentration of b�ME varies between
0 mM and 10 mM. Initial conditions: Inner [Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM;
Gelatin = 5%; Temp = 22 �C.

H. Effect of Ionic Strength

To find out the effect of varying the ionic strength of the inner electrolyte on

the pattern morphology, the spatiotemporal evolution of the reaction at different concen-

trations of sodium chloride is monitored. Four solutions of cadmium chloride with a

concentration of 80 mM are prepared in 5% per volume gelatin. When the mixtures are

heated, different concentrations (50, 100, and 200 mM) of sodium chloride (Merck), are

added to each solution and then homogenized. After complete gelation, sodium sulfide

solution (400 mM) is poured to the reservoir of each plate. A control dish (0 mM NaCl, 80

mM Cd2+, and 400 mM S2�) is used to compare the change in the pattern. The obtained

results are represented in Figure 22.

The ionic strength of the solution can be calculated using the following relation:
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Figure 22: The evolution of precipitation patterns within 48 hours after NaCl addition:
(A) = 0 mM; (B) = 50 mM; (C) = 100 mM; (D) = 200 mM. Initial conditions: Inner
[Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM; Gelatin = 5%; Temp = 22 �C.

I = 1
2ÂCi(Zi)2 where I is the ionic strength (M), Ci is the concentration of the present

ions (M), and Zi is the charge of the ion. For the control plate, it is found that I = 0.24

M. Upon adding NaCl, the value of I increases to reach 0.29,0.34,and 0.44 M when

the concentration of NaCl used is 50, 100 and 200 mM respectively. As confirmed by

Figure 23, the increase in the ionic strength of the inner electrolyte due to NaCl addition

suppresses the formation of spots and results in the formation of thick rings.

I. Effect of Electric Field

The effect of applying a static electric field across the reaction-diffusion medium

is another parameter of particular interest. When an electric field is applied, the spatial

distribution of the precipitation pattern and the motion of the reaction zone are altered.

This influence on the properties of the pattern occurs because ionic species are involved in

the system of diffusion and chemical reactions. The coupling between reaction, diffusion,
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Figure 23: Histogram representing the percentage of the area covered by the spots with
respect to the total area covered by the precipitate as the concentration of NaCl varies
between 0 mM and 200 mM. Initial conditions: Inner [Cd2+]0 = 80 mM; Outer [S2�]0 =
400 mM; Gelatin = 5%; Temp = 22 �C.

and applied electric field in chemical systems has been closely examined in many studies

of different Liesegang systems which exhibit band formation[102, 103, 104]. It has been

established that the band spacing depends on both the intensity and direction of the applied

field[94]. For instance, applying a positive electric field among the Co(OH)2 system is

shown to accelerate the front propagation and causes an increase in the band spacing, and

the latter increases with the increase of the field strength[104]. On the other hand, Das et

al.[105] demonstrate that the precipitation of the yellow HgI2 is retarded in the presence

of a reversed electric field, which is opposite to that of the diffusion front (negative field),

and that the velocity of propagation decreases as the field strength increases.

In order to study the effect of applying a static electric field on the formation of

spots in the cadmium sulfide/hydroxide system, two dishes are prepared under the normal

conditions: 80 mM inner concentration dissolved in 5% per volume of gelatin gel and 400
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mM outer concentration. The first plate is used as a control plate on which no electric field

is applied. For the second plate, on which the electric field is to be applied, a circular-

shaped tungsten wire (ALDRICH, 356972-18.9G) of 0.5 mm cross-sectional diameter is

placed in the peripheral cavity of the Petri-dish cover. A straight wire electrode of the

same material is placed vertically in the cylindrical tube to be filled later with sodium

sulfide. In the case of a direct positive field, the outer circular electrode is connected to

negative pole (cathode) of a power supply, and the inner straight electrode to the positive

pole (anode). The opposite connections (outer electrode to the positive pole and the inner

electrode to the negative pole) are set when a negative field is applied. The potential

differences applied across the reaction medium are as follows: 0.5 V, 1.0 V, 1.5 V, and 2.0

V, but higher voltages were difficult to apply because the gel is deformed.

Results (Figs. 24 and 25) reveal that, upon applying a positive field of 0.5 V

among the plate for 48 hours, the spots formation is slightly suppressed. Upon applying

1.0 V and 1.5 V for 48 hours, the formation of spots completely disappears, and the

precipitation results in the formation of very thin rings and continuous bands respectively.

2.0 V marks a turning point, since the spot formation reappears but in a less prominent

manner than when no electric field is applied. On the other hand, after a negative field is

applied for 48 hours, the formation of spots is enhanced for the cases of 0.5 V and 1.0 V.

Similarly, after 1.5 V is applied for 24 hours, more spots are formed as compared to the

plate on which no electric field is applied. Note here that the plates are compared after

24 hours because the gel is deformed after 48 hours of electric field application. Again,

2.0 V marks a turning point since the formation of spots disappears completely. The

percentage of the area covered by the spots with respect to the total area covered by the

precipitate is measured for each plate after 48 hours in both, the positive and the negative

field application. The obtained results are displayed in Figure 26 and 27
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Figure 24: The evolution of precipitation patterns within 48 upon applying positive elec-
tric field: (A) = 0 V; (B) = 0.5 V; (C) = 1.0 V; (D) = 1.5 V; (E) = 2.0 V . Initial conditions:
Inner [Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM; Gelatin = 5%; Temp = 22 �C.

J. Microscopic Approach

In order to inspect more the actual structure of the new precipitation pattern ob-

tained, we employ Scanning Electron Microscopy (MIRA TESCAN) technique which

allows us to examine the size and the shape of the precipitating bands and spots. To pre-

pare the sample, a portion of the gel containing the precipitation pattern is cut cautiously

from inside the reactor and placed on a glass slide. The sample is then dried using freeze-

drying machine to form a dried-up thin film of the gel with the bands and spots trapped

inside. The film is then placed on a carbon tape and coated with a few nanometers of

platinum to be observed under SEM with SE and Inbeam detectors. Figures 28, 29, and
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Figure 25: The evolution of precipitation patterns upon applying negative electric field:
(A) = 0 V after 24 hours; (B) = 0 V after 48 hours; (C) = 0.5 V after 48 hours; (D) = 1.0
V after 48 hours; (E) = 1.5 V after 24 hours; (F) = 2.0 V after 18 hours. Initial conditions:
Inner [Cd2+]0 = 80 mM; Outer [S2�]0 = 400 mM; Gelatin = 5%; Temp = 22 �C.
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Figure 26: Histogram representing the percentage of the area covered by the spots with
respect to the total area covered by the precipitate as the applied positive electric field
varies between 0.0 V mM and 2.0 V. Initial conditions: Inner [Cd2+]0 = 80 mM; Outer
[S2�]0 = 400 mM; Gelatin = 5%; Temp = 22 �C.

30 represent a panel of the captured images that display various attractive morphological

structures of the bands and spots.

The obtained micrographs clearly show the morphology of the precipitation pat-

tern. The spots have spherical or oval shapes with an average diameter of 120 µm. They

are thick and compact solids sticking out of the thin film of gel and exhibiting a porous

structure. On a higher magnification, the inside structure of the pores appears to be formed

of agglomerated spherules of 0.4 µm in diameter. On the other hand, the precipitation

bands are also protruding structures of about 55 µm thickness and clearly shaped walls

that are 100 µm in height. On a closer view, the bands show small aggregated spheres

of 0.4 µm. Between the spots an area of thinner and nearly transparent structure is seen

which corresponds to the depletion zone in the gel medium.
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Figure 27: Histogram representing the percentage of the area covered by the spots with re-
spect to the total area covered by the precipitate as the applied negative electric field varies
between 0.0 V and 2.0 V. Initial conditions: Inner [Cd2+]0 = 80 mM; Outer [S2�]0 = 400
mM; Gelatin = 5%; Temp = 22 �C.

Figure 28: (A) SEM image representing the transition from bands to spots. Initial condi-
tions: inner, [Cd2+]0 = 80 mM in 5% per volume gelatin gel, outer, [S2�]0 = 400 mM.
(B) A magnified image displaying the protruding structure of the bands and spots.
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Figure 29: Panel showing several SEM micrographs captured for various regions of the
precipitation bands. Initial conditions: inner, [Cd2+]0 = 80 mM in 5% per volume gelatin
gel, outer, [S2�]0 = 400 mM. (A) and (B) display the height and the width of the band
calculated to be 100 µm and 55 µm respectively. (C) and (D) represent a magnified image
for the band consisting of small agglomerated spheres with a diameter of 0.4 µm.
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Figure 30: SEM micrographs of the dried gel containing the spots pattern. Initial con-
ditions: inner, [Cd2+]0 = 80 mM in 5% per volume gelatin gel, outer, [S2�]0 = 400
mM. (A) represents the hexagonal symmetry of the precipitating spots and the empty sur-
rounding corresponding to the depletion zone. (B) and (C) show a closer and outer view
of the spots with a diameter of 120 µm. (D) displays a higher magnification for the spot
consisting of small aggregated spherules with a diameter of 0.4 µm.
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CHAPTER III

THEORETICAL STUDY

A. Introduction

Spinodal decomposition scenario is an important mean-field theory that was first

described in 1999 by Antal, Droz, Magnin and Rácz[75, 76] in an attempt to model the for-

mation of Liesegang patterns. It is a standard model for phase transition and it has several

applications to phase transition in binary mixtures[106], alloys[107], liquid crystals[108],

vapor condensation[109], and formation of sand ripples[110]. In reaction-diffusion sys-

tems, this model has also proved its power by describing regular patterns and, furthermore,

by explaining how those patterns can be influenced by the concentration of the outer and

inner electrolytes[76], and by an external electric field[94].

In this chapter, a scenario analogous to spinodal decomposition using the Cahn-

Hilliard (CH) equation is shown to reproduce the transition from bands to spots obtained

in the cadmium sulfide/hydroxide precipitation system. We try to alter the initial condi-

tions and other space parameters to investigate the threshold beyond which such a tran-

sition is suppressed. We also carry out a linear stability analysis to detect the stable and

unstable modes of the system.

B. Spinodal Decomposition Scenario

According to the spinodal decomposition model, the two electrolytes A and B re-

act to produce a constant density of colloidal particles C, denoted by c0[48], which might

subsequently undergo a phase separation[111, 112]. The value of c0 can be determined

from the initial concentration of A and B, a0 and b0, and their diffusion coefficients Da
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and Db assumed to be equal (Da = Db = D)[78]:

c0 ⇡ 0.85Ka0

q
D/D f , (22)

where K = (1+b0/a0)(2
p

p)�1 exp
�
�D f /D

�
with the diffusion constant D f derived

from the following equation:

erf
⇣q

D f /2D
⌘
= (a0 �b0)/(a0 +b0) .

The properties of the front and the production of C are known[78]. Namely, the

front moves diffusively with its position given by:

x f (t) =
p

2D f t, (23)

and the production of C is restricted to a slowly widening narrow interval whose width

in three dimensions shows the following behavior: w f (t) ⇠ t
1
6 k around x f ,k being the

reaction rate of the A+B ! C process. The rate of production (S (x, t) = kab) of C can

be approximated by a Gaussian:

S (x, t) =
S0

t2/3 exp

2

4�

h
x� x f (t)2

i

2w2
f (t)

3

5 , (24)

where S0 represents the amplitude of the source, and it is a function of the initial condi-

tions and proportional to the reaction rate k[76].

Having a description of the production of C, it is time to move to the dynamics

of their phase separation. Since the emerging pattern is macroscopic, the phase sepa-

ration can be described by the CH equation[79, 80], which is considered the simplest

hydrodynamical equation that respects the conservation of C. However, the CH equation

requires the knowledge of the free-energy density functional F [c] of the system. In a ho-
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mogeneous equilibrium state, F [c] should have two minima corresponding to the low (cl)

concentrations of C (no precipitate) and high (ch) concentrations of C (precipitate). As

a convenient form with minimal number of parameters, one can take F in the Ginzburg-

Landau form[75] which is symmetric about c̄ = (ch + cl)/2 :

F [c] =�1
2

e(c� c̄)2 +
1
4

g(c� c̄)4 +
1
2

s0 (—c)2 , (25)

where e,g, and s0 are phenomenological parameters, and the minima of F [c] are fixed

at ch and cl by setting
p

e/g = (ch + cl)/2 ⇡ ch/2, due to the fact that ch � cl, i.e.

the gaps between the precipitation zones have very low steady-state concentration of C.

This function can be rewritten in terms of a shifted and rescaled concentration field j =

(2c� ch � cl)/(ch � cl) over the spatial domain W :

F [j] =
Z

W

✓
�1

2
ej

2 +
1
4

gj

4 +
1
2

s (—j)2
◆

dW. (26)

Here s is the rescaled surface tension, while e and g are the positive constants that define

the boundary between the stable and metastable regions
⇣

j =±
p

e/g

⌘
and the spinodal

line between the metastable and unstable regions
⇣

j =±
p

e/3g

⌘
.

By including the source term, the CH equation takes the following form:

∂c
∂ t

=�l0D(dF/dc)+ kab, (27)

where l0 is a kinetic coefficient.

In principle, the CH equation should contain two noise terms. The first is the

thermal noise and the other is a noise in the source term (S). Both of these terms are

neglected here. The reason for omitting the first is the low effective temperature of the

phase separation, whereas the second is dropped because the properties of the A+B !C

type reaction fronts have been shown to be mean-field like above dimension two[113],

which is considered as an indication that the noise in the source term (S) can be neglected.
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Figure 31 represents a schematic diagram of the free energy curve F plotted as a

function of the rescaled concentration j at temperature T2. cl and ch correspond to the free

energy minima, that is where the second derivative of the free energy F [j] with respect

to composition is positive [∂

2F
∂

2c > 0]. By joining these two minimal points by a common

tangent, the region of phase separation, known as the miscibility gap, is defined. For

any homogeneous solution brought into the miscibility gap, the phase separated system

is energetically favorable. The locus of cl and ch as the temperature varies is known as

the coexistence or the binodal curve. Within the binodal is a region called the spinodal,

which is characterized by a negative curvature on the free energy curve [∂

2F
∂

2c < 0], and

it lies within the inflection points of the curve [∂

2F
∂

2c = 0] that are called the spinodes

(pointed by S1 and S2 on figure 31). The binodal and spinodal lines meet at a critical

point defined by the condition ∂

3F
∂

3c = 0, and the corresponding temperature is called the

critical temperature Tc.

As the concentration of the produced C particles increases, the system crosses

the binodal curve to the metastable region, which has a higher free energy than the phase

separated state. Although the mixed state is no longer thermodynamically favored, there

is an energy barrier that must be overcome to achieve phase separation. Therefore, large

fluctuations in composition (nuclei) are necessary to overcome the energy barrier separat-

ing the local free energy minimum of the mixed state from the global minimum associated

with the phase-separated state. In periodic precipitation, this process is described by nu-

cleation and growth mechanism, in which nucleation occurs when the local concentration

of C reaches some threshold value c⇤. Importantly, there is a characteristic rate associated

with nucleation. If this rate of nucleation is very small compared to the rate at which C

particles are produced, a very fast transition, often called a quench, moves the system di-

rectly from the single stable regime to the spinodal region before forming any nuclei, and

the initially dispersed C particles in the solution tend to decompose into C-rich (i.e., the

precipitation zone) and C-deficient regions (i.e., the empty regions between successive

precipitating zones); a process known as the spinodal decomposition. A homogeneous
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Figure 31: (a) Theoretical phase diagram for the spinodal decomposition model. (b) The
free energy F as a function of the rescaled concentration field j . The green line indicates
the binodal curve separating the stable and the metastable states, with the green binodal
points corresponding to the boundaries of the miscibility gap. The red curve defines the
spinodal line that separates the metastable and the linearly unstable regions, and the red
points S1 and S2 represent the spinodes.

53



solution within the spinodal region is unstable against infinitesimal linear perturbations,

and any small local change in composition is amplified. Moreover, within the spinodal

line there is no thermodynamic barrier for the reaction to proceed, and the phase separa-

tion is driven solely by diffusion. The separation process therefore starts with microscopic

fluctuations in the chemical composition, and it proceeds with a net reduction in the free

energy.

It is worth to mention here that in spinodal decomposition, material flows from

regions of low concentration to regions of high concentration, a process known as uphill

diffusion. This is the inverse of the regular situation, in which materials diffuses from

regions of high concentration to regions of low concentration to avoid concentration gra-

dients and reach uniform spatial distributions. This is because the main quantity that has

to be uniform at equilibrium is the chemical potential (µ), not the concentration. The

material will therefore diffuse according to the chemical potential gradient, from regions

of high chemical potential to regions of low chemical potential. The chemical poten-

tial, however, is defined as the partial derivative of the Gibbs’ free energy F with respect

to the concentration of the species: µ = ∂F
∂c . So if the second derivative of free energy

with respect to concentration is positive
⇣

∂

2F
∂

2c > 0
⌘

, then chemical potential gradient has

the same sign as the concentration gradient, and the material flows from region of high

concentration to region of low concentration-downhill diffusion. Nevertheless, inside the

spinodal region, ∂

2F
∂

2c < 0 , this means that low concentration regions have high chemical

potential and the diffusion is reversed-uphill diffusion (Fig. 32).

C. Theoretical Modeling

The transition from bands to spots in the cadmium sulfide/hydroxide precipita-

tion system is explained on the basis of this aforementioned spinodal decomposition sce-

nario. First, the reaction front emerges due to the inhomogeneous initial distribution of
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Figure 32: Schematic concentration profiles illustrating the different development of
phase decomposition by nucleation and growth and by spinodal decomposition. The ar-
rows indicate the direction of diffusion. During nucleation and growth, there is a sharp
interface between the nucleating phase and the parent phase; the precipitate at all stages
of its existence has the required equilibrium composition; the diffusion is always down a
concentration gradient. In contrast, during spinodal decomposition, an initially homoge-
neous solution develops fluctuation of chemical composition when it reaches the spinodal
region, these fluctuations are at first small in amplitude but grow with time until there are
identifiable precipitates of equilibrium composition; the diffusion is up against a concen-
tration gradient.

the electrolytes A and B. The concentration of the outer electrolyte [a(x < 0, t = 0) = a0]

is considered to be much larger than that of the inner electrolyte [b(x > 0, t = 0) = b0 with

a0 � b0] at a fixed point x = 0. Assuming an irreversible mean-field reaction, the elec-

trolytes A and B yield the reaction product C (A+B !C). Since the process takes place

in a gel, no convection is present, and thereby it can be modeled as a simple reaction-
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diffusion process:

∂a
∂ t

= DaDa � kab, (28)

∂b
∂ t

= DbDb � kab, (29)

where a and b denote the concentrations of the inner cadmium and outer hydroxide ions

respectively, Da and Db are their respective diffusion coefficients, D is the 2D Laplacian

operator, and k is the precipitation reaction rate constant. We also assume that the reaction

of cadmium ions with the hydroxide ions (R2) is bimolecular. We do not attempt in this

model to incorporate the yellow back-front due to ion exchange in (R3) as it can be simply

described as a diffusion-controlled process, independent of the precipitation reaction.

To simplify things further, unitless time and concentration variables are defined:

a = aA; b = bB;

(30)

t = tT ; x = x L.

where a and b are the rescaled concentrations; and t and x are the rescaled time and

distance respectively.

After substituting equations (30) into (28) and (29) , and multiplying through

by T/A and T/B for equations (28) and (29) respectively, the following dimensionless

equations are obtained:

∂a

∂t

= D
a

� kab , (31)

∂b

∂t

= DD
b

� kab , (32)
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where 1/Da = T/L2; 1/B = kT ; D = Db/Da, A is assumed to be equal to B, and k is taken

to be equal to 1 with appropriate choice of time and length scales.

Similarly, the CH equation is solved for the dimensionless variables:

c̄ =
ch + cl

2
; ĉ = ch � cl

2
⇡ ch

2
; (33)

j = (2c� ch � cl)/(ch � cl) =
c� c̄

ĉ
⇡ c

ĉ
�1; (34)

t = tT ; x = x L; (35)

along with the dimensionless free energy:

F [j] =
Z

W
F [j] =

✓
�1

2
ej

2 +
1
4

gj

4 +
1
2

s (—j)2
◆

dW. (36)

The following simple CH equation of dimensionless form is obtained:

∂j

∂t

=�lD(ej � gj

3 +sDj)+ kab , (37)

where the parameters l and s are the rescaled kinetic coefficient and surface tension,

respectively[76] [l = l0T/L2 and s = s0/L2]. The ratio s/l defines a characteristic

time scale of the growth of unstable modes in precipitation. In general, comparing this

time scale with the time it takes for the front to pass through a certain region determines

whether slow nucleation-and-growth (metastable region) or fast spinodal decomposition

(unstable region) dominates the pattern formation[114], especially in the presence of in-

ternal fluctuations.

Equations (31, 32, and 37) are solved numerically using a vertex-based finite

volume method on unstructured meshes, whereby the spatial discretization is carried out

using the control volume finite element method (CVFEM). The resulting nonlinear dif-

ferential equations are successfully integrated using a fast and robust scheme based on

operator splitting and a line search Jacobian-free Newton-Krylov method[115]. The struc-
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Figure 33: Time evolution of the field j exhibiting rings formation. (A) t = 1000 (B)
t = 1500; (C) t = 2500; (D) t = 3000. Parameters are k = 1, Da = 1, Db = 1, s = 3,
l = 0.1, e = 1, g = 0.15. Initial conditions: a0 = 200, b0 = 0.5, j0 =�1 perturbed with
1% random noise. No-flux boundary conditions are applied at the external boundaries.
The radius of the large circle is taken to be 8 times greater than that of the small circle.
Number of elements is 11456.

tureless mesh, which is generated by the open source software Triangle[116], is suitable

to reproduce the complex geometry of our circular reactor (Fig. 6). The initial conditions

for a, b and j are chosen such that a0 = a(t = 0)� b0 = b(t = 0) and j0 =j(t = 0)=�1,

where a0 is maintained at the inner circular boundary, and no-flux boundary conditions

along the outer circular boundary are applied. In Figure 33, for a given set of parame-

ters, the numerical solution reveals the formation of Liesegang rings only throughout the

whole evolution.

When the initial conditions are altered, the simulation results depict the forma-

tion of Liesegang rings at the early stages of evolution (Fig. 34A) in the wake of a well-

localized front that moves diffusively forward. The transition to spots takes place after

the formation of a few rings (Fig. 34B) until the whole domain is filled with spots that

coarsen with time in agreement with the experiment (compare Fig. 34C-D with Fig. 7).
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Figure 34: Time evolution of the field j exhibiting transition from rings to spots. (A) t =
10; (B) t = 20; (C) t = 33; (D) t = 37. Parameters are k = 1, Da = 1, Db = 1, s = 1.5,
l = 0.15, e = 1, g = 0.15. Initial conditions: a0 = 100, b0 = 0.5, j0 =�1 perturbed with
1% random noise. No-flux boundary conditions are applied at the external boundaries.
The radius of the large circle is taken to be 8 times greater than that of the small circle.
Number of elements is 11456.

D. Linear Stability Analysis

In order to study the stability conditions of the CH equation against a small

perturbation, the following perturbation equation is used:

j = j0 +j

0, (38)

where j

0 is the perturbation term. By substituting this equation into (37), and linearizing

it around j0 (i.e. neglecting the nonlinear terms), the following linearized CH equation

with perturbation terms is obtained:

∂j

0

∂t

=�lD(ej

0+sDj

0). (39)

The system is considered to be symmetric (all variations in q direction are ne-

glected), and all effects are occurring in the radial direction (r). Considering j as a sum
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of the Fourier modes:

j = Â
q

jqeiq.r+wt , (40)

where jq is the Fourier coefficient at t = 0, the following amplification factor w (q) is

obtained (Fig. 35):

w = q2
sl

h
e

s

�q2
i
. (41)

This shows immediately that for w = 0 and e > 0, the system is linearly stable, whereas a

band of Fourier modes are unstable for w > 0 and e > 0, because in this case �
q

el

2

s

<

q <
q

el

2

s

, and the temporal part of equation (40) grows exponentially. When q >
q

el

2

s

and q < �
q

el

2

s

, w < 0 which means that the system is stable. Moreover, the most

unstable mode is for qC�H =
q

e

2s

.

Figure 35: Dispersion relation between w and q with s ,l , and e are taken to be equal to
1.

This wave number of maximum amplification factor will dominate during the

first stage of the dynamics and this explains the reason why the homogeneous domains
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appear at length scales close to L = lC�H/2 = p/qC�H , half the wave length associated

with the instability. For longer times, interfaces separating each domain interact through

Ostwald ripening, causing L to change slowly towards higher values.

E. Numerical Results

The parameter space is then explored in order to locate a possible threshold be-

yond which the transition from bands to spots is suppressed. It is noticeable that if the

estimated j0 generated by the reaction front is in the unstable region but close to the spin-

odal line, only rings are obtained. On the other hand, the deeper the system penetrates into

the unstable region away from the spinodal line, the faster the transition to spots occurs.

In the case of Figure 34, the threshold value is obtained for e = 1 and g ⇡ 0.15. This

could be attributed to strong nonlinear coupling and interactions between unstable modes

that can be expressed as patterns that are more complex than regular bands. Moreover, we

investigate the effect of varying different parameters on the morphology of the theoretical

pattern obtained. The simulation results confirm the transition from bands to spots when

the concentration field j0 lies in the unstable regime for a fixed a0 and b0 (Fig. 36). As

the inner concentration b0 is increased, the concentration field j0[76] increases too. This

corresponds to moving horizontally on the phase diagram at a given outer concentration

(Fig. 37). For high values of b0, the obtained spots start to coarsen and then merge to form

thicker bands as confirmed experimentally by the phase diagram represented in Figure 9.

Furthermore, we study the effect of varying the rescaled surface tension s and

the kinetic constant l . The numerical solutions are represented in Figure 38 and 39,

which reveals that the increase in s or the decrease in l results in a total suppression of

spots.
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Figure 36: Time evolution of the field j exhibiting transition from rings to spots at dif-
ferent b0. Parameters are k = 1, Da = 1, Db = 1, s = 1.5, l = 0.15, e = 1, g = 0.15.
Initial conditions: a0 = 70, j0 =�1 perturbed with 1% random noise. No-flux boundary
conditions are applied at the external boundaries. The radius of the large circle is taken
to be 8 times greater than that of the small circle. Number of elements is 11456. As the
concentration of b0 increases, the obtained spots start to merge to form thicker bands as
confirmed by the phase diagram.

Figure 37: Phase diagram for spinodal decomposition representing the direction of the
concentration field j0 as the initial concentration of the inner electrolyte b0 is increased.
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Figure 38: Time evolution of the field j exhibiting transition from rings to spots at differ-
ent s . Parameters are k = 1, Da = 1, Db = 1, l = 0.15, e = 1, g = 0.15. Initial conditions:
a0 = 60, b0 = 0.3, j0 = �1 perturbed with 1% random noise. No-flux boundary condi-
tions are applied at the external boundaries. The radius of the large circle is taken to be 8
times greater than that of the small circle. Number of elements is 11456.
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Figure 39: Time evolution of the field j exhibiting transition from rings to spots at differ-
ent l . Parameters are k = 1, Da = 1, Db = 1, s = 1.5, e = 1, g = 0.15. Initial conditions:
a0 = 80 b0 = 0.3, j0 = �1 perturbed with 1% random noise. No-flux boundary condi-
tions are applied at the external boundaries. The radius of the large circle is taken to be 8
times greater than that of the small circle. Number of elements is 11456.

64



F. Discussion

As mentioned before, the simulation results reveal that the transition from bands

to spots takes place only when the front brings the system into the unstable region,

whereas if the front is in the unstable region but close to the spinodal line, only rings

are obtained. A theoretical phase diagram representing the numerical patterns obtained

upon moving along a line at T2 is represented in Figure 40. The trend of the resulting

theoretical patterns, ‘C’, ‘R’, ‘S’, ‘R’, and ‘C’, is in very good agreement with the trend

observed along a horizontal line on the experimental phase diagram displayed in Figure 9,

with the exception of the ‘R+s’ region, which might require the inclusion of fluctuations

in the diffusion coefficients of the species to imitate the static disorder in the gel[117].

Based on these results, the suppression of spots and the formation of more rings obtained

upon varying some experimental parameters and their effect on the density of the formed

colloids will be discussed.

Figure 40: Theoretical phase diagram for spinodal decomposition representing the nu-
merical patterns obtained after simulation. (C) = continuous precipitation band; (R) =
precipitation rings; (S) = spots.
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1. Effect of Inner and Outer Concentration

The phase diagram represented in Figure 9 shows that the initial concentrations

of the inner and outer electrolytes provide a suitable spatial control for the morphology

of the obtained pattern. Theoretically, it is assumed that at low inner and outer concen-

trations, the diffusion of the sulfide/hydroxide ions produces a low density of colloids.

This allows the system to stay near the spinodal line where clearly separated thin rings, in

agreement with the theoretical results, are formed (Fig. 10A). As the concentration of the

electrolytes increases, a higher density of colloids is generated, which corresponds to an

increase in the concentration field j0[76]. The system therefore crosses the metastable re-

gion and moves directly to the unstable state where the transition from rings to spots takes

place (Fig. 10B). This corresponds to the state ‘S’ on the theoretical phase diagram (Fig.

40). A further increase in the concentration of the electrolytes results in the formation of

thick rings with few spots in some cases (Fig. 9). The prevalence of rings versus spots in

this case could be attributed to the high density of colloids produced upon increasing the

inner and outer concentrations, which moves the front again around the metastable state

where the formation of spots is less favored and the theoretical ‘R’ state dominates.

2. Effect of Gel Concentration

In order to detect the effect of gel on the size of the CdS colloids, a study was

conducted by Mokalled et al. [118], which compares the absorption spectra of the front

regions for two tubes having the same cadmium and sulfide concentrations, but one with

5% gelatin (tube 1), and the other with 1% agar (tube 2). The calculations of the size of

the particles show that those in tube 1 are smaller than those in tube 2, which demonstrates

that gelatin itself might play the role of a capping agent, thus preventing the agglomeration

of CdS particles. Moreover, many publications have highlighted the use of gelatin to

control the nucleation process and the size of the nanoparticles, because it is characterized
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by a wide variety of functional groups that act as binding sites to Cd2+ ions, which in turn

controls the growth of the CdS particles[119, 120].

In Figure 17, it is clear that upon increasing the gel concentration from 5% to 7%,

the formation of rings predominates and the percentage of spots coverage decreases. This

could be attributed to the limited growth of colloids resulting from high concentration of

gelatin, which keeps the system around the spinodal line rather than going deep to the

unstable region where spots are normally obtained.

3. Effect of Capping

Capping agents are generally added to protect the surface of the nanoparticles.

This is due to the fact that favorable interactions between the capping agents and the sol-

vents provide the energy barrier to overcome the Van der Waals attractions between the

nanoparticles[121]. In particular, b�ME stabilizes the colloidal suspension of CdS pro-

duced in the bulk of the gel against aggregation or coagulation to maintain nanoparticles[101].

The capping occurs through the mercapto group, which covalently binds to the surface of

the cadmium ions[122]. In an attempt to check the effect of ME on the front propagation

and the growth of particles in CdS system, a recent study was conducted by Mokalled et

al.[118]. Results show that the presence of the capping agent b�ME results in a faster

front propagation because ME tends to compete against gelatin and bind to Cd ions, thus

freeing the Cd-gelatin binding sites. Moreover, the absorbance spectra obtained for the

front regions show that the size of the CdS nanoparticles in the presence of ME is smaller.

This clearly reveals the role of ME in reducing the agglomeration and thus controlling

the size of the particles. Therefore, the addition of ME to the cadmium sulfide/hydroxide

system contributes to the formation of smaller CdS clusters, and the increase in the con-

centration of ME results in more capping and less agglomeration. Hence, a lower density

of colloids is formed and the system goes near the spinodal line where rings are more
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favored. This assumption is based on the comparison between the theoretical pattern ‘R’

resulting at low density of colloids (Fig. 40), and the thin rings obtained experimentally

at low colloid concentration (Fig. 9), which matches the appearance of thin rings with a

gradual suppression in spots when the concentration of ME gets higher (Fig. 20).

4. Effect of Ionic Strength

The suppression of spots formation upon increasing the ionic strength is ex-

plained again on the basis of colloidal growth. In 2010, a study was conducted by Mul-

laugh et al.[123] to detect the effect of the ionic strength on the diameter of CdS nanopar-

ticles measured by Dynamic Light Scattering (DLS). Results show that, at high ionic

strength, CdS nanoparticles tend to aggregate as the concentration of the salt becomes

higher due to the diminishing electrostatic repulsion between the nanoparticles. There-

fore, aggregates of the nanoparticles diffuse more slowly in the solution than individual

nanoparticles; as such, the hydrodynamic diameter determined by DLS reflects the size

of the aggregate rather than the primary size of the nanoparticle. A similar study was

also done in 2010 by Tai et al.[124] which presents similar results of CdS nanoparticles

agglomeration at increased NaCl concentrations based on XRD and photoluminescence

spectra analysis. This shows that the formation of thick rings at high ionic strength (Fig.

22 C and D) could be attributed to the fact that the presence of a strong electrolyte such as

NaCl allows the aggregation of the CdS nanoparticles, thus bringing the front again near

the spinodal line due to the high concentration of colloids, and therefore the formation of

spots is suppressed. This result is confirmed by the similar thick rings formed experimen-

tally at high inner and outer concentration of electrolytes (Fig. 9) and the dominance of

the state ‘R’ theoretically at high density of colloids (Fig. 40).

Based on these results, we can conclude that the formation of spots taking place

deep inside the unstable region requires a critical density of colloids, beyond and above
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which no transition to spots takes place. Therefore, any factor that would influence the

concentration of colloids such as the increase in the gel concentration, the addition of ME

or the variation of the ionic strength will have a direct effect on the morphology of the

obtained pattern.
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CHAPTER IV

THREE-DIMENSIONAL PATTERNS

A. Introduction

The idea that reaction diffusion phenomena are essential to the functioning of bi-

ological processes[125, 126] and living organisms[127, 128] appears to be quite intuitive.

Astonishingly, however, a clear-cut evidence that links reaction diffusion to living systems

and natural patterns is relatively fresh, and dates back only to the 1940’s, when the British

mathematician, Alan Turing, proposed a mechanism for morphogenesis in biological sys-

tems based on chemical reactions coupled to diffusion[63]. At that time, nobody had an

idea which fundamental evolution equations to use in order to describe morphogenesis,

and it was expected that any suggested mathematical model would be very complicated

due to the known complexity of cells and their interaction with one another. In his famous

paper, entitled “The Chemical Basis of Morphogenesis”, Turing suggested that while dif-

fusion alone tends to create uniform spatial distribution, it could lead to the formation of

cellular structures and nonuniform spatially extended patterns when coupled to chemical

reactions with nonlinear chemical kinetics. Turing’s 1952 paper was his only published

venture into chemistry, and it was not provided with any quantitative details, yet it sug-

gested the idea that morphogenesis could have a simple origin, and it had a profound

effect on the way scientists thought about pattern formation and complex phenomena.

Due to the difficulty in satisfying all the requirements for their formation, the

first clear-cut experimental observation of Turing patterns occurred nearly 40 years af-

ter their theoretical prediction, when De Kepper and co-workers realized stationary peri-

odic concentration structures in a variant of chlorite-iodide reaction in a gel reactor[64].

These Turing structures are characterized by an intrinsic wavelength (l ), which depends
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only on the kinetic and the diffusion constants. Depending on how this l compares to

the other dimensions (the distance between the critical Turing planes D, the length L,

and the height h), two-dimensional[64, 129] (hexagonal arrays of dots and parallel stripe

patterns) or three-dimensional patterns[130, 131] (lamella, hexagonal prisms and body

centered cubic arrays) can develop. However, most of the previous investigations were

restricted to two-dimensions, and only a few research groups were interested in Turing

structures in three dimensions[130, 132]. This is because the numerical simulations of

three-dimensional structures in reaction diffusion systems were technically demanding

and time consuming, and many researchers thought that two-dimensional patterns could

be sufficient to understand the general properties of these dissipative structures.

In the present work, three-dimensional Turing-like patterns are obtained when

the diffusion of sulfide/hydroxide ions into the cadmium-doped gel is performed in a 3D

reactor. The effect of the inner and outer electrolyte concentrations on the morphology of

the obtained pattern is investigated, and the results are compared to the patterns obtained

in 2D.

B. Experimental Procedure

To attain the exact concentration of cadmium (II) solution, varying amounts of

cadmium chloride monohydrate CdCl2.H2O (Mallinckrodt) corresponding to concentra-

tions that range from 40 mM to 120 mM are dissolved in a 50.0 ml beaker containing

25.0 ml of double distilled water. 1.2500 g of gelatin powder (Difco) are then added to

each salt mixture to make a 5% gelatin solution. After thorough mixing and heating at 80

�C, homogeneous clear solutions are obtained. The mixtures in the beakers are then cov-

ered with parafilm papers and allowed to stand for 24 hours at room temperature. After

complete gelation, sodium sulfide nonahydrate Na2S.9H2O (Alfa Aesar) of concentration

ranging from 200 mM to 400 mM is taken over the surface of five sets of gel. The beakers
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are then covered with parafilm and left in a thermostatic chamber at 22.0 ± 0.1 �C. The

diffusion of the sulfide/hydroxide ions to the cadmium-doped gel and the pattern forma-

tion are monitored over a period of 24 hours. The beaker is attached to a clamp stand and

photographs are taken from the bottom side of the beaker using a CCD camera (Fig. 41).

The obtained pictures show a bottom view of the newly formed layer of precipitate.

C. Results and Discussion

At the moment the sulfide solution is introduced to the cadmium-doped gel, a

white precipitate is formed at the liquid-solid interface, indicating a spontaneous reaction

between the diffusing hydroxide ions OH� and the cadmium ions Cd2+ embedded in the

gel. When the control parameters are switched into a regime where patterns arise, chaotic

pseudo-stationary spatial patterns in the form of cracks start to emerge spontaneously

from the uniform white gel surface. Within a few hours, these cracks grow slowly and

evolve with time until the system settles down to a nearly stationary state of Turing-like

patterns. The obtained results are represented in Figure 42. It is noticeable that pattern

formation starts to grow on the white surface of the precipitated Cd(OH)2, however, its

evolution ends up on a yellow background. This results from the anionic exchange process

between OH� and S2� to form the yellow CdS as explained previously.

The transition from the uniform state to Turing-like patterns is studied using the

concentrations of the inner and outer electrolytes as a control parameter. A phase dia-

gram delineating the various patterns obtained is presented in Figure 43, and the resulting

morphologies are displayed in Figure 44. At low cadmium concentration (40 mM), sta-

tionary labyrinthine structure (Fig. 45) appears initially at the grain boundaries, and then

gradually spreads out to cover the whole domain. This common type of Turing patterns

is observed at different wavelengths for any outer concentration in the used range. When

the inner concentration is increased from 40 mM to 60 mM, the system exhibits two new
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Figure 41: Schematic representation of the experimental setup under which the snap-
shots of the reaction are captured using a computer-controlled CCD and transferred to the
computer for display. The outer sulfide is added to gelatin gel containing the cadmium
ions. The screen on the right display a bottom view of the patterns as appearing in the
white/yellow front parallel to the gel interface. The diameter of the reactor is D = 4.0 cm
and the width of the gel d = 3.0 cm.

Figure 42: The evolution of Turing structures in cadmium sulfide/hydroxide system with
time in three dimensions (bottom view). Initial conditions: Gelatin = 5%; Inner [Cd2+]0 =
40 mM; outer [S2�]0 = 300 mM; Temp = 22 �C. (A) t = 5 hrs; (B) t = 12 hrs; (C) t = 16
hrs; (D) t = 21 hrs. The scale bar represents 1 cm.
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morphologies depending on the concentration of the outer electrolyte being used. At low

outer concentration (200 M), we observe stationary island-like pattern (Fig. 46) that ap-

pears just like smudged points whose boundaries are not well defined and characterized by

some randomness. At higher outer concentrations (250-350 mM) however, a mixed state

of stripes and spots (Fig. 47) is obtained. Further increase in the cadmium concentration

(80 mM) results in the formation of spatially distributed small spots with more or less

defined shapes (Fig. 48) that gradually emerge and occupy homogeneously the initially

unstructured area when the outer concentration is between 300 and 350 mM, whereas at

lower sulfide concentrations (200-250 mM), the stationary island-like pattern is resumed.

This latter appears to be a common pattern in most cases when the concentration of the

doped cations reaches 120 mM. The obtained patterns are maintained for days without

much change except for a very slow motion of the grain boundaries separating different

domains, and therefore they are described as stationary Turing-like patterns. Beyond the

critical values of the control parameters no pattern would emerge.
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Figure 43: Phase diagram as a function of the inner [Cd2+]0 and the outer [S2�]0 showing
the most probable type of self-organized patterns appearing in 3D reactor at every pair of
inner/outer concentrations. (L) denotes labyrinth, (M) mixed state, (S) spots, (I) island.
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Figure 44: Different morphologies of Turing-like patterns obtained in a 3D reactor upon
varying the inner and outer concentrations.
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Figure 45: Labyrinthine pattern obtained at 40 mM [Cd2+]0 and 200 mM [S2�]0. Gelatin
= 5%; Temp = 22 �C.
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Figure 46: Stationary island-like pattern obtained at 60 mM [Cd2+]0 and 200 mM [S2�]0.
Gelatin = 5%; Temp = 22 �C.
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Figure 47: Mixed state of stripes and spots obtained at 60 mM [Cd2+]0 and 350 mM
[S2�]0. Gelatin = 5%; Temp = 22 �C.
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Figure 48: Spot-like pattern obtained at 80 mM [Cd2+]0 and 300 mM [S2�]0. Gelatin =
5%; Temp = 22 �C.
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D. Relation between 2D and 3D Patterns

The formation of Turing-like patterns in a 3D reactor results from the stacking of

layers of the 2D patterns along the third dimension. This gives rise to the complex patterns

obtained due to one more degree of freedom. In order to show the correlation between

the rings and spots formed in the 2D circular reactor and the 3D structures resulting in

the beaker, a vertical sectional view of the pattern inside the beaker is captured. To do

so, a glass slide is used to cut the gel perpendicularly to the precipitation front layer. A

picture is then taken for the lateral cut to show the relation between the two dimensions.

The obtained results are gathered in Figure 49. The sectional view of the Labyrinthine

pattern (A) shows parallel tied bands similar to the periodic rings obtained in 2D, whereas

the sectional view of the spot-like pattern (B) depicts the transition from parallel lines to

spots with square/hexagonal symmetry.

Figure 49: Sectional view of the different precipitation patterns obtained in a 3D reactor
upon varying the inner and outer concentrations. (A) displays the sectional view of a
labyrinthine pattern obtained when [Cd2+]0 = 40 mM and [S2�]0 = 250 mM; (B) displays
the sectional view of the spot-like pattern obtained when [Cd2+]0 = 80 mM and [S2�]0 =
300 mM. The scale bar represents 1.0 cm.

Moreover, we intend to investigate theoretically the evolution of the Turing-like

patterns in 3D. A numerical simulation using the CH equation is carried out. The obtained
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Figure 50: Three dimensional simulation representing the evolution of Turing-like pat-
terns. (A) shows a lateral view for the resulting pattern whereas (B) displays a transversal
view corresponding to the different stages obtained before reaching the stationary struc-
ture. The parameters used: k = 1, Da = 1, Db = 1, s = 0.15, l = 1, e = 1, g = 0.15.
Initial conditions: a0 = 60, b0 = 0.3.

results are displayed in Figure 50, which represents transversal and lateral views at five

different positions among the obtained pattern. The lateral layers (A) correspond to the

lateral cuts as shown in Figure 49, while the transversal layers (B) correspond to the

bottom view of the stationary precipitation front at different times during evolution (Fig.

42). The obtained model appears to match the experimental results, where the transversal

layers show a mixed state of stripes and spots, and the lateral layers exhibit spots with

hexagonal symmetry.
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CHAPTER V

CONCLUSION

In this work, we carry out reaction-diffusion experiments that result in the for-

mation of a new precipitation pattern in the cadmium sulfide/hydroxide system. The

process takes place in gelatin gel media using the co-precipitates cadmium chloride and

sodium sulfide. The first solution is placed in the gel medium and serves as the inner

electrolyte and the second forms the outer electrolyte. The macroscopic evolution of the

system consists of a leading white front reflecting the formation of cadmium hydroxide

Cd(OH)2 precipitate followed by the yellow back front designating the transformation to

the cadmium sulfide CdS due to the ionic exchange process.

First, the system is studied in a two dimensional setup, which produces a tran-

sition from parallel rings to spots with square/hexagonal symmetry. A phase diagram

delineating the onset of the transition and the regions of various patterns obtained upon

varying the initial concentrations of the inner and outer electrolytes is presented. The

inner cadmium concentration imposes a significant effect on both, the obtained morphol-

ogy and the size of the resulting spots. As the concentration of cadmium increases, the

system exhibits a transition from thin rings to spots whose size increases gradually with

a decreasing wavelength until they all merge together to form a continuous band. On the

other hand, the effect of varying the outer sulfide concentration shows no direct influence

on the spot size, but it rather alters the distance covered by the spots and the spacing be-

tween them. As the concentration of the outer increases, the reaction-diffusion process

proceeds faster, thus resulting in more spots whose formation occurs at closer distance.

SEM images displaying the morphology and the size of the obtained bands and spots are

also presented.

Second, the effect of varying other initial reaction conditions is investigated;
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these include the variation of the temperature, gel thickness, capping agent addition, ionic

strength, and electric field application. Results show that the wavelength of the resulting

spots tends to increase as the concentration of the gel is increased. Moreover, the diffusion

process at higher temperatures appears to proceed faster, thus allowing the precipitation

and the diffusion of the white/yellow fronts to cover larger distances, and resulting in

more spots whose formation starts at an earlier time. On the other hand, prevalence of

rings versus spots is obtained upon increasing both, the concentration of the capping

agent (b -ME) and the ionic strength of the inner electrolyte. The suppression of spots

is also noticed upon applying a positive static electric field (0-1.5 V) along the reaction-

diffusion system, whereas when a negative electric field is applied, the formation of spots

is enhanced.

Third, the system is studied in a three-dimensional reactor, in which an interest-

ing collection of self-organized patterns that are similar to Turing patterns are observed.

The nucleated patterns represented by a bottom view of the reaction medium include:

labyrinthine structure, island-like pattern, a mixed state of stripes and spots, and spatially

distributed spots. A phase diagram representing these different structures obtained upon

varying the concentration of the inner and outer electrolytes is also provided.

Finally, we carry out a theoretical study based on spinodal decomposition model

to investigate the spatiotemporal dynamics of the obtained patterns in two and three di-

mensions. The gist of this theory is based on a phase separation scenario of colloidal

particles that are first produced by the reaction. Under suitable conditions, these col-

loidal particles could subsequently phase separate into regions of low concentration (no

precipitate) and high concentration (precipitate) leading to precipitation patterns. Such

dynamics is described by the nonlinear Cahn-Hilliard equation which is shown to capture

the experimental results.
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