
AMERICAN UNIVERSITY OF BEIRUT

MODEL REPAIR VIA SAT SOLVING

by

Mouhammad Issam Sakr

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences

at the American University of Beirut

Beirut, Lebanon

September 2014



AMERICAN UNIVERSITY OF BEIRUT

MODEL REPAIR VIA SAT SOLVING

( by

Mouhammad Issam Sakr

Approved by:

Dr. Paul Attie, Associate Professor

Computer Science

Dr. Mohamad Jaber, Assistant Professor

Computer Science

Dr. Fadi Zaraket, Assistant Professor

Electrical and Computer Engineering

Date of thesis defense: September 16, 2014

Member of Committee

'~L ~
Member of Committee



AMERICAN UNIVERSITY OF BEIRUT

THESISj DISSERTATIONj PROJECT RELEASE FORM

Student Name: r8KR.
Last

czyM:asters Thesis

J1{lu H!ltt;vfa 0
First

o Masters Project

-rSS8/l1
Middle

o Doctoral Dissertation

. ~authorize the American University of Beirut to: (a) reproduce hard or electronic
copies of my thesis, dissertation, or project; (b) include such copies in the archives
and digital repositories of the University; and (c) make freely available such copies
to third parties for research or educational purposes.

o I authorize the American University of Beirut, three years after the date of
submitting my thesis, to: (a) reproduce hard or electronic copies of it; (b) in-
clude such copies in the archives and digital repositories of the University; and (c)
make freely available such copies to third parties for research or educational pur-
poses.

Signature Date



An Abstract of the Thesis of

Mouhammad Issam Sakr for Masters of Science
Major: Computer Science

Title: Model Repair via SAT Solving

We consider the following model repair problem: given a finite Kripke structure
M and a specification formula η in some modal or temporal logic, determine ifM contains
a sub-structureM ′ that satisfies η. That is, canM be repaired to satisfy the specification
η by deleting some transitions? We map an instance (M, η) of model repair to a boolean
formula repair(M, η) such that (M, η) has a solution iff repair(M, η) is satisfiable. Fur-
thermore, a satisfying assignment determines which transitions must be removed from
M to generate a model M ′ of η. Thus, we can use any SAT solver to repair Kripke
structures. Furthermore, using a complete SAT solver yields a complete algorithm: it
always finds a repair if one exists. We augment the basic method by adding state-space
reduction methods, and also a method to repair hierarchical Kripke strucutres.



Contents

1 Introduction and Motivation 7

2 Preliminaries 10

3 The model repair problem 12

3.1 Complexity of the model repair problem . . . . . . . . . . . . . . . . . . 12

4 CTL model repair using SAT solvers 14

5 Repair with state-space Reductions 18

5.1 Reductions w.r.t. atomic propositions . . . . . . . . . . . . . . . . . . . . 19

5.2 Reduction w.r.t. sub-formulae . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Inverting the reduction to repair the original structure . . . . . . . . . . 22

6 Repair of hierarchical Kripke structures 24

6.1 Hierarchical model checking . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 CTL decision procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Implementation 26

7.1 User interface and user manual . . . . . . . . . . . . . . . . . . . . . . . 27

7.1.1 State creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.1.2 Transition creation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.1.3 Kripke structures visualization . . . . . . . . . . . . . . . . . . . . 28

7.1.4 Kripke structure saving . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1.5 Model checking, model repairing and state-space reductions . . . 30

7.1.6 Hierarchical model checking . . . . . . . . . . . . . . . . . . . . . 31



7.2 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2.1 Main modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7.2.2 CTL parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.3 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.2.4 Model repairer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.2.5 Model optimizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2.6 SAT solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2.7 Decision procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Case studies 49

8.1 Mutual exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2 Barrier synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8.3 Phone call system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

9 Conclusions and future work 59

10 Bibliography 60



List of Figures

4.1 The model repair algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 17

5.1 Reduction by atomic propositions . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Reduction by sub-formulae . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.1 Tool’s main screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.2 States screen for mutex problem . . . . . . . . . . . . . . . . . . . . . . . 27

7.3 Transitions screen for mutex problem . . . . . . . . . . . . . . . . . . . . 28

7.4 Kripke structure for mutex problem . . . . . . . . . . . . . . . . . . . . . 29

7.5 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.6 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7.7 Saved file for mutex problem . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.8 Model check and repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.9 Kripke sub-structure screen . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.10 CTL decision procedure screen . . . . . . . . . . . . . . . . . . . . . . . . 32

7.11 Tool main modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.12 User interface module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.13 Model repairer module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7.14 The model repair algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.15 Formula propagation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.16 Initializing repair(M, η) . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.17 Adding a conjunct to repair(M, η) . . . . . . . . . . . . . . . . . . . . . . 44

7.18 Kripke optimizer module . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.19 SAT solver module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.20 Decision procedure module . . . . . . . . . . . . . . . . . . . . . . . . . . 48



8.1 States screen for mutex problem . . . . . . . . . . . . . . . . . . . . . . . 50

8.2 Repaired model for mutex problem . . . . . . . . . . . . . . . . . . . . . 51

8.3 Reduction w.r.t. atomic propositions . . . . . . . . . . . . . . . . . . . . 51

8.4 Repaired model using reduction w.r.t. atomic propositions . . . . . . . . 52

8.5 Barrier synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.6 Repaired barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.7 Reduction w.r.t. sub-formulae . . . . . . . . . . . . . . . . . . . . . . . . 54

8.8 Repaired model using reduction w.r.t. sub-formulae . . . . . . . . . . . . 55

8.9 Phone call system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.10 Phone calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.11 Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



Listings

5.1 Repair initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

7.1 CTL BNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7.2 Convert to CNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.3 Repair() method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.4 Repairer utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7.5 Tarjan’s strongly connected components algorithm . . . . . . . . . . . . . 46



Chapter 1

Introduction and Motivation

Finite-state machines(FSM) serve as operational specifications for concurrent and dis-
tributed systems, e.g., in UML. These specifications must admit desirable behaviours
and prohibit undesirable ones. Writing operational specifications that are correct is dif-
ficult and complex. We attack the problem of writing good specifications by checking an
operational specification with respect to a non-operational one, in particular a temporal
logic formula. Temporal logic extends propositional logic with temporal modalities, where
the truth of a formula in a state depends on other states. In practice, a temporal logic
specification is a long conjunction of small formulae, and hence is easier to write than
a single complex finite-state machine. In order to check if a system or model does not
violate temporal logic specifications, we use model checking Emerson, Clarke and Sistla
[9], Quielle and Sifakis [20]. If a model fails to satisfy a spefication, then a model checker
typically generates a single counterexample, which is an example behavior that violates
the formula being checked, and so facilitates debugging the model. However, there could
be many counterexamples, and they may have to be dealt with by making different fixes
manually, thus increasing debugging effort. In this thesis we deal with all counterexam-
ples at once, by “repairing” the model: we present a method for automatically fixing
Kripke structures with respect to CTL [13] specifications.

Our contribution. We first present a “subtractive” repair algorithm: fix a Kripke
structure only by removing transitions and states (roughly speaking, those transitions
and states that “cause” violation of the specification). If the initial state is not deleted,
then the resulting structure (or program) satisfies the specification. We show that this
algorithm is sound and relatively complete. An advantage of subtractive repair is that
it does not introduce new behaviors, and thus any missing (i.e., not part of the formula
being repaired against) conjuncts of the specification that are expressible in a universal
temporal logic (no existential path quantifier) are still satisfied (if they originally were).
Hence we can fix w.r.t. incomplete specifications.

We also present reduction strategies that work on minimizing Kripke structures state-
space before repairing them, and we extend the repair method to deak with hierarchical



Kripke structures [1].

Formally, we consider the model repair problem: given a Kripke structure M and a CTL
formula η, does there exist a substructure M ′ of M (obtained by removing transitions
and states from M) such that M ′ satisfies η? In this case, we say that M is repairable
w.r.t, η, or that a repair exists.

Our algorithm computes (in deterministic time polynomial in the size of M times the
size of η) a propositional formula repair(M, η) such that repair(M, η) is satisfiable iff
M contains a substructure M ′ that satisfies η. Furthermore, a satisfying assignment
for repair(M, η) determines which transitions must be removed from M to produce M ′.
Thus, a single run of a complete SAT solver is sufficient to find a repair, if one exists.
Our approach leverages the research investment in SAT solvers to attack the model repair
problem.

Soundness of our repair algorithm means that the resulting M ′ (if it exists) satisfies η.
Completeness means that if the initial structure M contains a substructure that satisfies
η, then our algorithm will find such a substructure, provided that a complete SAT solver
is used to check satisfaction of repair(M, η).

While our method has a worst case running time exponential in the number of global
states, this occurs only if the underlying SAT solver uses exponential time. SAT-solvers
have proved to be efficient in practice, as demonstrated by the success of SAT-solver
based tools such as Alloy, NuSMV, and Isabelle/HOL. The success of SAT solvers in
practice indicates that our method will be applicable to reasonable size models, just as,
for example, Alloy [16] is.

Related work. The use of transition deletion to repair Kripke structures was suggested
in [4, 5] in the context of atomicity refinement: a large grain concurrent program is refined
naively (e.g., by replacing a test and set by the test, followed nonatomically by the set).
In general, this may introduce new computations (corresponding to “bad interleavings”)
that violate the specification. These are removed by deleting some transitions.

The use of model checking to generate counterexamples was suggested by Clarke et. al. [10]
and Hojati et. al. [15]. [10] presents an algorithm for generating counterexamples for
symbolic model checking. [15] presents BDD-based algorithms for generating counterex-
amples (“error traces”) for both language containment and fair CTL model checking.
Game-based model checking [24, 21] provides a method for extracting counterexamples
from a model checking run. The core idea is a coloring algorithm that colors nodes in the
model-checking game graph that contribute to violation of the formula being checked.

The idea of generating a propositional formula from a model checking problem was pre-
sented in [6]. That paper considers LTL specifications and bounded model checking:
given an LTL formula f , a propositional formula is generated that is satisfiable iff f can
be verified within a fixed number k of transitions along some path (Ef). By setting f to
the negation of the required property, counterexamples can be generated. Repair is not
discussed.

Some authors [17, 23, 22] have considered algorithms for solving the repair problem: given
a program (or circuit), and a specification, how to automatically modify the program (or



circuit), so that the specification is satisfied. There appears to be no automatic repair
method that is (1) complete (i.e., if a repair exists, then find a repair) for a full temporal
logic (e.g., CTL, LTL), and (2) repairs all faults in a single run, i.e., deals implicitly with
all counterexamples “at once.” For example, Jobstmann et. al. [17] considers only one
repair at a time, and their method is complete only for invariants. In [22], the approach
of [17] is extended so that multiple faults are considered at once, but at the price of
exponential complexity in the number of faults.

In [7] the repair problem for CTL is considered and solved using adductive reasoning.
The method generates repair suggestions that must then be verified by model checking,
one at a time. In contrast, we fix all faults at once.

Antoniotti [2] has shown that the related problem of discrete event supervisory control
is also NP-complete.

Ding and Zhang [11] proposed five primitive operations that capture the basic update of
the CTL model, and then they define the minimal change criteria for CTL model update
based on these primitive operations.

Abstract Model Repair was discussed in [8] where they present a framework for model
repair that uses abstraction refinement.

The rest of this thesis is as follows. Chapter 2 provides brief technical preliminaries.
Chapter 3 states the model repair problem. Chapter 4 presents our model repair method
for CTL. Chapter 5 presents several state-space reduction strategies. Chapter 6 extends
the repair method to hierarchical Kripke structures. Chapter 7 discusses our implementa-
tion, and a user manual. Chapter 8 presents several example applications of the method.
Chapter 9 discusses our conclusions and presents future work.



Chapter 2

Preliminaries

Let AP be a set of atomic propositions including the constants true and false. We use
true, false as “constant” propositions whose interpretation is always the truth values tt ,
ff , respectively. The logic CTL [13] is given by the following grammar:

ϕ ::= true | false | p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | A[ϕVϕ] | E[ϕVϕ]

where p ∈ AP .

The semantics of formulae are defined with respect to a Kripke structure.

Definition 1. A Kripke structure is a tuple M = (S0, S, R, L) where S is a finite state

of states, S0 ⊆ S is the set of initial states, R ⊆ S × S is a transition relation, and

L : S 7→ 2AP is a labeling function that associates each state s ∈ S with a subset of

atomic propositions, namely those that hold in the state.

We assume that a Kripke structure M = (S0, S, R, L) is total, i.e., ∀s ∈ S, ∃s′ ∈ S :
(s, s′) ∈ R. A path in M is a (finite or infinite) sequence of states, π = s0, s1, . . . such
that ∀i ≥ 0 : (si, si+1) ∈ R. A fullpath is an infinite path.

Definition 2. M, s |= ϕ means that formula ϕ is true in state s of structure M and

M, s 6|= ϕ means that formula ϕ is false in state s of structureM . We define |= inductively

as usual:

• M, s |= true

• M, s 6|= false



• M, s |= p iff p ∈ L(s) where atomic proposition p ∈ AP

• M, s |= ¬ϕ iff M, s 6|= ϕ

• M, s |= ϕ ∧ ψ iff M, s |= ϕ and M, s |= ψ

• M, s |= ϕ ∨ ψ iff M, s |= ϕ or M, s |= ψ

• M, s |= AXϕ iff for all t such that (s, t) ∈ R : (M, t) |= ϕ

• M, s |= EXϕ iff there exists t such that (s, t) ∈ R and (M, t) |= ϕ

• M, s |= A[ϕVψ] iff for all fullpaths π = s0, s1, . . . starting from s = s0:

∀k ≥ 0 : (∀j < k :M, sj 6|= ϕ) implies M, sk |= ψ

• M, s |= E[ϕVψ] iff for some fullpath π = s0, s1, . . . starting from s = s0:

∀k ≥ 0 : (∀j < k :M, sj 6|= ϕ) implies M, sk |= ψ

We use M |= ϕ to abbreviate ∀s ∈ S0 : M, s |= ϕ. We introduce the abbreviations
A[φUψ] for ¬E[¬ϕV¬ψ], E[φUψ] for ¬A[¬ϕV¬ψ], AFϕ for A[trueUϕ], EFϕ for E[trueUϕ],
AGϕ for A[falseVϕ], EGϕ for E[falseVϕ].

Definition 3 (Formula expansion). Given a CTL formula ϕ, its set of subformulae

sub(ϕ) is defined as follows:

• sub(p) = p where p is true, false, or an atomic proposition

• sub(¬ϕ) = {¬ϕ} ∪ sub(ϕ)

• sub(ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(AXϕ) = {AXϕ} ∪ sub(ϕ)

• sub(EXϕ) = {EXϕ} ∪ sub(ϕ)

• sub(A[ϕVψ]) = {A[ϕVψ], ϕ, ψ} ∪ sub(ϕ) ∪ sub(ψ)

• sub(E[ϕVψ]) = {E[ϕVψ], ϕ, ψ} ∪ sub(ϕ) ∪ sub(ψ)



Chapter 3

The model repair problem

Given Kripke structure M and a specification formula ϕ, we consider the problem of
removing parts of M , resulting in a substructure M ′ such that M ′ |= ϕ.

Definition 4 (Substructure). Given a Kripke structureM = (S0, S, R, L) and a structure

M ′ = (S ′
0, S

′, R′, L′) we say that M ′ ⊆M iff S ′ ⊆ S, S ′
0 ⊆ S0, R ⊆ R′, and L′ = L � S ′.

Definition 5 (Repairable). Given Kripke structure M = (S0, S, R, L) and a formula η.

M is repairable with respect to η if there exists a Kripke structure M ′ = (S ′
0, S

′, R′, L′)

such that M ′ is total, M ′ ⊆M , and M ′, s0 |= η.

Recall that a Kripke strucutre is total iff every state has at least one outgoing transition.

Definition 6 (Model Repair Problem). Given a Kripke structure M = (S0, S, R, L), and

a formula η, the repair problem is to decide if M is repairable with respect to η.

The model repair problem is defined for any temporal or modal logic for which the |=
relation is defined, e.g µ-calculus , CTL*, CTL, etc. So, for example, we speak of the
model repair problem for CTL (CTL model repair for short). An instance of model repair
is then the pair (M,ϕ).

3.1 Complexity of the model repair problem

Theorem 1 ([3]). The model repair problem for CTL is NP-complete.



Corollary 1 ([3]). Let L be any temporal logic interpreted in Kripke structures such that

(1) model checking for L is in polynomial time, and (2) there exists a polynomial time

reduction from CTL model checking to L model checking. Then the model repair problem

for L is NP-complete.

See Attie and Saklawi [3] for proofs.



Chapter 4

CTL model repair using SAT solvers

Given an instance of model repair (M, η), whereM = (S0, S, R, L) and η is a CTL formula,
we define a propositional formula repair(M, η) such that repair(M, η) is satisfiable iff
(M, η) has a solution. repair(M, η) is defined over the following propositions:

1. Es,t : (s, t) ∈ R

2. Xs : s ∈ S

3. Xs,ψ : s ∈ S, ψ ∈ sub(η)

4. Xn
s,ψ : s ∈ S, 0 ≤ n ≤ |S|, and ψ ∈ sub(η) has the form A[ϕVϕ′] or E[ϕVϕ′]

The meaning of Es,t is that the transition (s, t) is retained in the fixed model M ′ iff Es,t
is assigned tt (“true”) by the satisfying valuation V for repair(M, η). The meaning of Xs

is that state s is retained in the fixed model M ′. The meaning of Xs,ψ is that ψ holds in
state s. Xn

s,ψ is used to propagate release formula (AV or EV) for as long as necessary to
determine their truth, i.e., |S| in the worst case.

A solution for satisfiability of repair(M, η), e.g., as given by a SAT solver, gives directly
a solution to model repair. Denote this solution by model(M,V). Then model(M,V) =
(S ′

0, S
′, R′, L′), where R′ = {(s, t)|V(Es,t) = tt}, S ′ consists of all states reachable from S0

via paths of transitions in R′, and L′ = L � S ′. Note that model(M,V) does not depend
directly on η.

Essentially, repair(M, η) encodes all of the usual local constraints, e.g., AXϕ holds in s
iff ϕ holds in all successors of s. We modify these however, to take transition deletion
into account. So, the local constraint for AX becomes AXϕ holds in s iff ϕ holds in all
successors of s after transitions have been deleted (to effect the repair). More precisely,
instead of Xs,AXϕ ≡

∧
t|s→tXt,ϕ, we have Xs,AXϕ ≡

∧
t|s→t(Es,t ⇒ Xt,ϕ). Here s → t

abbreviates (s, t) ∈ R, i.e., t is a successor of s. The other modalities (EX,AV,EV) are
treated similarly. We deal with AU,EU by reducing them to EV,AV using duality. We



require that the repaired structure M ′ be total by requiring that every state has at least
one outgoing transition.

Definition 7 (repair(M, η)). Let M = (S0, S, R, L) be a Kripke structure and η a CTL

formula. Let s → t abbreviate (s, t) ∈ R. repair(M, η) is the conjunction of all the

propositional formulae listed below. These are grouped into sections, where each section

deals with one issue, e.g., propositional consistency. s, t implicitly range over S. Other

ranges are explicitly given.

1. some initial state s0 is not deleted

∨
s0∈S0

Xs0

2. M ′ satisfies η, i.e., all undeleted initial states satisfy η

for all s ∈ S0: Xs0 ⇒ Xs0,η

3. M ′ is total, i.e., each retained state has at least one outgoing transition, to some

other retained state

for all s ∈ S : Xs ≡
∨
t|s→t(Es,t ∧Xt)

4. If an edge is retained then both its source and target states are retained

for all (s, t) ∈ R : Es,t ⇒ (Xs ∧Xt)

5. Propositional labeling

for all p ∈ AP ∩ L(s): Xs,p

for all p ∈ AP − L(s) : ¬Xs,p

6. Propositional consistency

for all ¬ϕ ∈ sub(η): Xs,¬ϕ ≡ ¬Xs,ϕ

for all ϕ ∨ ψ ∈ sub(η): Xs,ϕ∨ψ ≡ Xs,ϕ ∨Xs,ψ

for all ϕ ∧ ψ ∈ sub(η): Xs,ϕ∧ψ ≡ Xs,ϕ ∧Xs,ψ

7. Nexttime formulae

for all AXϕ ∈ sub(η): Xs,AXϕ ≡
∧
t|s→t(Es,t ⇒ Xt,ϕ)

for all EXϕ ∈ sub(η): Xs,EXϕ ≡
∨
t|s→t(Es,t ∧Xt,ϕ)



8. Release formulae. Let n = |S|, i.e., the number of states in M .

for all A[ϕVψ] ∈ sub(η), m ∈ {1...n}:

Xs,A[ϕVψ] ≡ Xn
s,A[ϕVψ]

Xm
s,A[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨

∧
t|s→t(Es,t ⇒ Xm−1

t,A[ϕVψ]))

X0
s,A[ϕVψ] ≡ Xs,ψ

for all E[ϕVψ] ∈ sub(η), m ∈ {1...n}:

Xs,E[ϕVψ] ≡ Xn
s,E[ϕVψ]

Xm
s,E[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨

∨
t|s→t(Es,t ∧X

m−1
t,E[ϕVψ]))

for all E[ϕVψ] ∈ sub(η): X0
s,E[ϕVψ] ≡ Xs,ψ

We handle the “ϕ releases ψ” modality [ϕVψ] as follows. Along each path, either (1)
a state is reached where [ϕVψ] is discharged (ϕ ∧ ψ), or (2) [ϕVψ] is shown to be false
(¬ϕ ∧ ¬ψ), or (3) some state eventually repeats. In case (3), we know that release also
holds along this path. Thus, by expanding the release modality up to n times, where n
is the number of states in the original structure M , we ensure that the third case holds
if the first two have not yet resolved the truth of (ϕVψ) along the path in question.
To carry out the expansion correctly, we use a version of Xs,A[ϕVψ] that is superscripted
with an integer between 0 and n. This imposes a “well foundedness” on the Xm

s,A[ϕVψ]

propositions, and prevents for example, a cycle along which ψ holds in all states and yet
the Xs,A[ϕVψ] are assigned false in all states s along the cycle.

Note that the above requires all states, even those rendered unreachable by transition
deletion, to have some outgoing transition. This “extra” requirement on the unreachable
states does not affect the method however, since there will actually remain a satisfying
assignment which allows unreachable state to retain all their outgoing transitions, if some
M ′ ⊆ M exists that satisfies η. For s unreachable from s0 in M ′, assign the value to
Xs,ϕ that results from model checkingM ′, s |= ϕ. This gives a consistent assignment that
satsifies repair(M, η). Clearly, Xs,ϕ does not affect Xs0,η since s is unreachable from s0.

In each state s ∈ S, there are O(|η| × |S|) formulae to check, each of which has length
O(d), where d is the maximum number of succesors that any state in S has. The sum of
lengths of all these formulae is O(|η|×|S|2×d). The propositional labelling formulae add
O(|S| × |AP|) length, and so the size of repair(M,ϕ) is O(|η| × |S|2 × d + |S| × |AP|),
and so is polynomial in the size of (M, η). Clearly, repair(M, η) can be constructed in
polynomial time. Figure 4.1 presents our model repair algorithm, Repair(M,ϕ), which we
show is sound, and complete provided that a complete SAT-solver is used. Recall that we
use model(M,V) to denote the structure M ′ derived from the repair of M w.r.t. η, i.e.,
M ′ = (S ′

0, S
′, R′, L′), where R′ = {(s, t)|V(Es,t) = tt}, S ′ consists of all states reachable

from s0 via paths of transitions in R′, and L′ = L � S ′.

Theorem 2 (Soundness). Let M = (S0, S, R, L) be a Kripke structure, η a CTL formula,



and n = |S|. Suppose that repair(M, η) is satisfiable and that V is a satisfying truth

assignment for it. Let M ′ = model(M,V), Then for all reachable states s ∈ S ′ and CTL

formulae ξ ∈ sub(η):

V(Xs,ξ) = tt iff M ′, s |= ξ and

for m ∈ {1...n} : V(Xm
s,ξ) = tt iff M ′, s |= ξ.

Corollary 2 (Soundness). If Repair(M, η) returns a structure M ′ = (S ′
0, S

′, R′, L′), then

(1) M ′ is total, (2) M ′ ⊆M , (3) M ′, s0 |= η, and (4) M is repairable.

Theorem 3 (Completness). IfM is repairable with respect to η then Repair(M, η) returns

a Kripke structure M ′′ such that M ′′ is total, M ′′ ⊆M , and M ′′, s0 |= η.

Since M ′ results by removing transitions and unreachable states from M , the relation
mapping each state in M ′ to “itself” in M is a simulation relation [14] from M ′ to M .
Hence the following, where ACTL∗ [14] is the universal fragment (no existential path
quantifier) of CTL∗, and clause (2) follows from [14].

Proposition 1. If Repair(M, η) returns a structure M ′, then (1) there is a simulation

relation from M ′ to M , and (2) for all ACTL∗ formulae f , M |= f implies M ′ |= f .

Repair(M, η):

model check M, s0 |= η;
if successful, then return M
else

compute repair(M, η) as given in Section 3;
submit repair(M, η) to a sound and complete SAT-solver;
if the SAT-solver returns “not satisfiable” then

return “failure”
else

the solver returns a satisfying assignment V ;
return M ′ = model(M,V)

Figure 4.1: The model repair algorithm.



Chapter 5

Repair with state-space Reductions

Our repair algorithm faces a difficulty when repairing large Kripke structures because
the generated repair formula will be huge since its length is quadratic in |M |. Another
difficulty is that after repairing a model, the generated repaired model could lose impor-
tant features and could delete important transitions that are essential in a correct model,
although the best case scenario would be to delete only transitions that are the reason
behind the failed model check. We will use the mutex problem as a running example in
this chapter in order to clarify the reduction scenarios.

In this section we introduce four types of State-Space reduction:

1. Reduction with respect to atomic propositions in the specification formula while
taking adjacency of states into consideration

2. Reduction with respect to atomic propositions in the specification formula without
taking states adjacency into consideration

3. Reduction with respect to user predefined boolean expressions that are sub-formulae
of the specification formulae while taking adjacency of states into consideration

4. Reduction with respect to user predefined boolean expressions that are sub-formulae
of the specification formulae without taking state adjacency into consideration

We define these reductions as equivalence relations over the states of M . The reduced
structure is obtained as the quotient of M by the equivalence relations. Since the re-
sulting repair can always be model-checked at no significant algorithmic expense, we use
reductions that are not necessarily correctness-preserving, since we can, in many cases,
obtain larger reductions in the state-space than if we used only correctness-preserving
reductions.

For any equivalence relation ≡, we define the equivalence class of a state s as [s] , {t | s ≡
t}.



5.1 Reductions w.r.t. atomic propositions

In order to reduce our model with respect to atomic propositions we start by defining
two equivalence relations, ≡p,a and ≡p. Let APη be the set of atomic propositions that
occur in η.

The first equivalence relation represents a reduction strategy which takes adjacency of
states into consideration.

Definition 8 (Adjacency-respecting propositional reduction, ≡p,a). Given a Kripke struc-

ture M = (S0, S, R, L) and a CTL formula η, we define an equivalence relation ≡p,a over

S as follows:

• s ≈p,a t , (L(s) ∩ APη = L(t) ∩ APη) ∧ ((s, t) ∈ R ∨ (t, s) ∈ R)

• s ≡p,a t , ≈∗
p,a

that is, s ≈p,a t iff s and t agree on all of the atomic propositions of η, and there is a

transition from s to t or vice-versa, and ≡p,a is the transitive closure of ≈p,a

The next equivalence relation, ≡p, ignores adjancency of states. This can result in the
removal of existing cycles, or the introduction of new ones.

Definition 9 (Adjacency-ignoring propositonal reduction, ≡p). Given a Kripke structure

M = (S0, S, R, L) and a specification formula η, we define an equivalence relation ≡p as

follows:

• s ≡p t , L(s) ∩ APη = L(t) ∩ APη

that is, s ≡p t iff s and t agree on all of the atomic propositions of η.

Both ≡p,a and ≡p are equivalence relations over S, and they also preserve the values of
all the atomic propositions in η. Hence, we can define a quotient of M by these relations
as usual.

Definition 10 (Reduced Model). Let ≡ ∈ {≡p,a,≡p}. Given a Kripke structure M =

(S0, S, R, L) and a specification formula η, we define the reduced model M = M/ ≡ as

follows:



1. S = {[s] | s ∈ S}

2. S0 = {[s0] | s0 ∈ S0}

3. R = {([s], [t]) | (s, t) ∈ R}

4. L : S → AP is given by L([s]) = L(s) ∩ APη

(a) Mutex: Initial Model (b) Mutex: Reduced Model

Figure 5.1: Reduction by atomic propositions

Consider the Mutex problem as an example in Figure 5.1. Text inside states represents
the name of the state and its labels between brackets. Figure 5.1a depicts mutex initial
model, and Figure 5.1b depicts mutex reduced model with respect to atomic propositions.
As per Definition 9 the states N1N2, N1T2, T1N2, and T1T2 in Figure 5.1a are equivalent
to state none 1 in 5.1b. The same applies to the other states where states C1N2 and C1T2
are equivalent to C1 state, states N1C2 and T1C2 are equivalent to state C2, and state
C1C2 is equivalent to state C1 C2. Note that the number of states was reduced from
nine states in the initial model to four states in the reduced model. Note that cycles are
preserved in this reduction in one direction.

5.2 Reduction w.r.t. sub-formulae

We can obtain larger reductions by dropping the requirement that we preserve the values
of all the atomic propositions in η. In some cases, it may be necessary only to preserve
the values of some propositional subformulae in η. For example, in mutual exclusion,
only the value of C1 ∧ C2 is of interest.

Let AS η be a set of propositional sub-formulae of η that is specified by the user. Let
SUB(t) ⊆ AS η be the set of sub-formulae in AS η that are satisfied by the state t.



• SUB(t) , f | f ∈ AS η and M, t |= f

Definition 11 (Adjacency-respecting subformlua reduction, ≡s,a). Given a Kripke struc-

ture M = (S0, S, R, L) and a CTL formula η, we define an equivalence relation ≡s,a over

S as follows:

• s ≈s,a t , (SUB(s) ∩ AS η = SUB(t) ∩ AS η) ∧ ((s, t) ∈ R ∨ (t, s) ∈ R)

• ≡s,a , ≈∗
s,a

that is, s ≡s,a t iff s and t agree on all of the sub-formulae, and there is a transition from s

to t or vice-versa and ≡s,a is the transitive closure of ≈s,a We also define [s] , {t | s ≡ t}.

Definition 12 (Adjacency-ignoring subformula reduction, ≡s,p). Given a Kripke struc-

ture M = (S0, S, R, L) and a CTL formula η, we define an equivalence relation ≡s,p over

S as follows:

• s ≡s,p t , SUB(s) ∩ AS η = SUB(t) ∩ AS η

that is, s ≡s,p t iff s and t agree on all of the sub-formulae in AS η.

Definition 13 (Reduced model). Let ≡ ∈ {≡s,a,≡s,p}. Given a Kripke structure M =

(S0, S, R, L) and a specification formula η, we define the reduced model M = M/ ≡ as

follows:

1. S = {[s] | s ∈ S}

2. S0 = {[s0] | s0 ∈ S0}

3. R = {([s], [t]) | (s, t) ∈ R}

4. L : S → AP is given by L([s]) =
⋂
t∈[s] L(t). That is, the label consists of the atomic

propositions, if any, that hold in all states of [s].



(a) Mutex: Initial Model (b) Mutex: Reduced Model

Figure 5.2: Reduction by sub-formulae

Consider Mutex problem as an example in Figure 5.2. Figure 5.2a depicts mutex initial
model, and Figure 5.2b depicts mutex reduced model with respect to sub-formulae (C1∧
C2). As per Definition 12 the states N1N2, N1T2, T1N2, T1T2, C1T2, and T1C2 in
Figure 5.2a are equivalent to state none 1 in 5.2b. Note that the number of state was
reduced from nine states in the initial model to 2 states in the reduced model. Note that
cycles are preserved in this reduction which explains the self transition on none 1.

5.3 Inverting the reduction to repair the original struc-

ture

The objective is to repair the original structureM . Given a repair to a reduced structure
M , we construct a repair of M as in Listing 5.1



Listing 5.1: Repair initial model

1 RepairInitialModel( KripkeStructure initialModel)
2 {
3 //the reduction can implement one of the
4 //equivalece relations described earlier
5 KripkeStructure reducedModel = initialModel.Reduce();
6 List<Transition> deletedTransition = reducedModel.Repair();
7 // the transitions to be deleted in initial
8 //model in order to become repaired
9 List<Transition> transitionsTobeDeleted;
10 List<KripkeState> statesList = reducedModel.getStates();
11 for (KripkeState state : statesList ) {
12 //if the state is the result of merging multiple states
13 if (state instanceof KripkeReplacedState){
14 Map<Transition, List<Transition>> replacedTransitions =

state.getReplacedTransitions();
15 for (Transition trns : replacedTransitions .keySet()) {
16 if (deletedTransition .contains(trns)){
17 transitionsTobeDeleted.addAll(replacedTransitions.get(trns)) ;
18 }
19 }
20 }
21 }
22 initialModel . deleteTransitions (transitionsTobeDeleted);
23 return initialModel ;
24 }

The reduction algorithm keeps a Map data structure that maps a transition in the reduced
Kripke structure to a list of transitions in the initial structure, therefore after repairing
the reduced structure and identifying the transitions to be deleted, using this map we can
identify easily transitions to be deleted in the initial Kripke structure in order to become
repaired.



Chapter 6

Repair of hierarchical Kripke

structures

In this chapter we explain hierarchical model checking that is used to avoid exponential
blow up in the number of states. We start by introducing hierarchical state machine and
model checking of hierarchical state machine, then we introduce CTL decision procedure
and then we present our implementation.

6.1 Hierarchical model checking

Model checking of hierarchical state machines was introduced in [1]. They present the
model checking of sequential hierarchical (nested) systems, where these systems or models
are Kripke structures that contain “boxes” that are themselves structures. This method
works as follows:

• Model check a box (substructure) B w.r.t. a specification formula ηB

• Model check M (initial model) w.r.t. “coupling spec” ϕ that states how M uses B

• Check validity of ϕ ∧ ηB ⇒ η using CTL decision procedure

6.2 CTL decision procedure

CTL decision Procedure is Tableau based decision procedure for satisfiability of CTL
formulae. This method takes as input a CTL formula f and returns true iff f is satisfiable.

It works roughly as follows:



1. Builds tableau, a finite AND/OR graph that encodes potential models of f .

2. Test tableau for consistency by deleting inconsistent portions. If root is not deleted
then f is satisfiable.



Chapter 7

Implementation

In this chapter we explain in details about the tool where we implemented our repairing
algorithm and our reduction algorithms. We start by explaining the tool interface and
how to use it and then we explain the software architecture by showing the different
modules, the class structures, and the BNF for our CTL language.

Figure 7.1: Tool’s main screen



7.1 User interface and user manual

In this section we describe the tool’s user interface and how to use all its features. This
tool allow users to create and manage Kripke structures easily and then model check,
and repair them if necessary and therefore the interface main screen is divided into five
sections:

• State Creation

• Transition Creation

• Kripke Structure Visualization

• Kripke Structure Saving

• Model Checking, Model Repairing and State-space Reductions

7.1.1 State creation

The interface first section on the top left of the main screen allows users to add, edit, and
delete states as well as to manage their label (atomic propositions).

Figure 7.2: States screen for mutex problem

To create a state, the user first enters the state name, the associated labels in a comma
separated fashion (i.e. p1, p2, p3, ...pn), and specifies whether this state is initial or not.
When the user clicks add the state will be displayed in the states table as in Figure 7.2.
All the states in the table are editable, the user can edit states’ name, labels, intial flag,



and can delete the state by checking the corresponding delete checkbox. The retain flag
is used in the repair algorithm in order to deny the deletion of the state and to mark
it as necessary for the correctness of the repaired model. State’s name must be unique
therefore if the user enters a name that already exists a warning message will be displayed.

7.1.2 Transition creation

The second section in our interface on the bottom left of the main screen is the Transition
Creation section that allows the management of states transitions.

Figure 7.3: Transitions screen for mutex problem

To create a transition, user should specify a name, select a start state and an end state.
Start states and end states are selected from dropdown lists that are bound to the already
created states in the previous section. When the user clicks the Add button the newly
created transition will be displayed in the transitions’ table as in Figure 7.3. These
Transitions are not editable but the user can delete them by checking the corresponding
delete checkbox. The retain flag is used in the repair algorithm in order to deny the
deletion of the transition and to mark it as necessary for the correctness of the repaired
model. Transition’s name is unique, therefore if the user enters a name that already exists
a warning message will be displayed and the transition will not be created.

7.1.3 Kripke structures visualization

Created Kripke structures are displayed in the bottom right section of the tool’s main
screen.



Figure 7.4: Kripke structure for mutex problem

Whenever the user makes changes to the states tables or the transitions table these
changes will directly take effect on the displayed Kripke structure. For instance if the
user creates two states S1 and S2 Figure 7.5 will be displayed. Green states are initial
states. After adding a transition from S1 to S2 Figure 7.6 will be displayed.

Figure 7.5: State

Figure 7.6: Transition



7.1.4 Kripke structure saving

The tool allows users to save their work in a text file and then reload it from that file at
any time. Users might need to save their work to complete later or to keep several versions
of the targeted model. Under the transitions table at the bottom left corner of the main
screen there are three buttons that allow users to save their model, load a previous model

or clear model. .

When a user clicks on Save button a pop up will be displayed to select a file location and
a name for this file. If the user clicks on Load button a pop up will appear to allow user
to browse saved files and load the saved models. Clear button will clear all tables in order
to create a new model.

Figure 7.7: Saved file for mutex problem

Figure 7.7 shows the saved file structure. the file has to parts separated by ***. The first
part is for states where each line describe a single state as follows: State Name : Labels
comma separated : is initial state; . The second part is for transitions where each line
describe a single transition as follows: Transition Name : Start State : End State; .

7.1.5 Model checking, model repairing and state-space reduc-

tions

After creating the model, the user can now model check the Kripke structure, repair it if
necessary, and optimize it to reduce state space.



Figure 7.8: Model check and repair

Once the user completes his Kripke structure, he now can enter the CTL formula. The
entered formula should respect our CTL parser rules explained in the next section. The
user can choose to save his formulae by clicking the Save button on the top left corner of
the repair section. Saved formulas can later on be selected from the CTL dropdownlist
to avoid reentering complicated formulas. To model check the designed Kripke structure,
the user has to click the model check button which implements the Clarke, Emerson, and
Sistla [9] algorithm. The result of model checking will be displayed as a text message
informing the user whether his model is correct or not. If the result was negative, the
user can repair it by clicking on Repair button which implements our repair algorithm.
If the model can be repaired, the displayed Kripke structure image will be changed by
marking transitions to be deleted as dashed edges. On the other hand if we need to
reduce the Kripke structure state space or to have a more accurate result, user can make
use of our state-space feature. The by label checkbox implements Definition 8. Once
checked a reduced Kripke structure will be displayed and the user can now model check
or repair the new Kripke structure. After repairing the reduced model, the result can
be projected on the initial model by clicking on the Apply to full Model button. The
checkbox by formula can be used in the same way by label checkbox is used but they
differ in the reduction algorithm they implement where by formula checkbox implements
Definition 11. However Definition 11 needs as input a set of subformulae that are either
extracted automatically from the CTL formula or extracted from the textbox where user
can enter them in a comma seperated fashion. The checkbox grouping can be checked once
by label or by formulae checkbox are checked. Grouping checkbox with by label check box
implements Definition 9 and Grouping checkbox with by formulae check box implements
Definition 12. The checkbox Full Model will reload the full model that will replace all
reductions. Another important and useful feature in our too is that whenever the user
chooses to reduce his model by using either the by label or by formulae checkbox, in
addition to the ability to reduce or repair the reduced model, the states and transitions
table on the left of the main screen will display states and transitions of the reduced
model allowing users to edit these models, but then there will be no possibility to apply
these changes to the initial model as the reduced model has been changed per user choice.

7.1.6 Hierarchical model checking

The tool allow the user to create substructures either starting from scratch or starting
from existing initial model. If the user opt to create these substructures starting from
an existing initial model, the tool provides a screen 7.9 that display all the initial model
states and allow the user to select those states that form the substructure, once the states
selection is done, the tool manages on its own the transitions(taken from initial model),
and generates two new models: the substructure (based on user selection) and another



model that is the same as the initial models but all the selected states are now represented
as a single box(machine). Moreover, the ”Exist” flag is used to allow the user to keep
some states in the initial model as there are important transitions going out of them.
If the user opts to create the substructures starting from scratch he will need to create
them as any other model described in 7.1. To make use of the CTL decision procedure,
the tool provides a screen 7.10 that allows the user to enter the three fromulae ηB, ϕ,
and η and displays a message if satisfiable or not.

Figure 7.9: Kripke sub-structure screen

Figure 7.10: CTL decision procedure screen

7.2 Software architecture

An overall description of the tool’s architecture is discussed in this section. We will
start with a brief descriptions of tool’s main modules and how they interact with each
other. In later sections, we will discuss each module with its inputs, outputs, imple-
mented algorithms, classes structure and interactions with other modules. The tool is



implemented using Java programming language, and it uses the library javax.swing for
GUI and Graphviz [12] for Kripke structures visualization

7.2.1 Main modules

The following is a concise definition of our tool’s main modules:

• CTL Parser: parses a CTL formula φ to generate a CTLParsedTree object which
is a tree data structure representing φ.

• User Interface: implements GUI interface between user and the other modules.

• Model Checker: takes as input a Kripke structure M = (S0, S, R, L), and a CTL
formula φ and verifies if M satisfies φ.

• Model Repairer: takes as input a Kripke structure M and a CTL formulae φ and
return a repaired model with respect to φ.

• Model Optimizer: reduces the state space of created Kripke structures. It imple-
ments the state-space reduction methods in section 5.

• SAT Solver: takes as input a CNF file and return a flag that specifies whether
the CNF formulae is satisfiable or not. In case it is satisfiable it also returns the
satisfying valuation.

• Decision Procedure: this module implements the CTL decision procedure described
in 6.2



Figure 7.11: Tool main modules

Figure 7.11 depicts our main module dependency diagram and how the modules interact
with each other.

7.2.2 CTL parser

Our CTL parser is implemented using ANTLR parser generator [19]. ANTLR generates
code for parsers based on BNF grammar. As the Tool’s BNF contains a lot of details
that are specific to ANTLR which are not of our interest at this point, we will discuss the
simplified BNF grammar defined in Listing 7.1. The base predicate is an atomic predicate
defined at lines 67 -75. Atomic predicates are either a boolean constant, a boolean variable
or arithmetic comparisons on variables and constants. A variable’s syntax is defined as an
arbitrary combination of lower case letters, upper case letters, ”, and ”̇ (line 24). Boolean
constants are either true or false as defined at line 22. Finally atomic predicates could
also be arithmetic comparisons that evaluate to either true or false as defined at lines
71 - 75. Arithmetic comparisons are either between two variables or between a variable
and a constant. A constant can either be numeric or a String. A numeric constant is a
sequence of at least a single digit that could be prefixed by the negative sign ’-’ as defined
at line 7. On the other hand, string constants are any sequence of letters surrounded by
single quotes.

After defining the base atomic predicates that form a CTL formula, we will discuss CTL
and propositional operators:



1. Propositional operators: are the main propositional connectives supported by our
BNF grammar. These operators are divided into two groups by the arity of the
operator.

(a) Binary operators: operate on two operands left and right

i. | : is the logical or operator.

ii. & : is the logical and operator.

iii. → : is the logical implies operator.

iv. ↔ : is the logical equivalent operator.

(b) Unary operators: operate on one operand.

i. !: is the logical negation or not operator.

2. CTL modalities: CTL modalities are divided into three types:

(a) CTL path quantifiers:

i. A: all possible paths (along all paths)

ii. E: at least one path (along at least one path)

(b) CTL binary linear time modality:

i. U: the until operator.

ii. V: the releases operator.

(c) CTL unary linear time modality:

i. X: the next time path operator.

ii. F: the eventually path operator.

iii. G: the always path operator.

The remaining of the BNF in Listing 7.1 defines the rules for building CTL formulas from
the base atomic predicates and the CTL connectives.

1. CTL state formula (line 50): states that a CTL state formula is a sequence of one
or more CTL state sub formula separated by propositional connectives.

2. CTL state sub formula (line 53): a CTL state sub formula is well-formed in one of
the following three conditions:

(a) A not connective followed by a CTL state formula between opening and closing
parenthesis !(CTL state formula).

(b) A CTL branch operator followed by a CTL path formula between opening and
closing brackets such as A[CTL path operator] or E[CTL path operator].

(c) An atomic formula.

3. CTL path formula: a CTL path formula is valid in one of the following two condi-
tions:



(a) A CTL path operator followed by a CTL state formula between opening and
closing brackets

(b) A binary operation where the right and left operands are CTL state formula
between opening and closing parenthesis, and the operator is CTL path con-
nective.

Listing 7.1: CTL BNF

1 //propositional operators

2 PROPOSITIONAL_CONNECTIVE : ’|’ | ’&’ | ’=>’ | ’<=>’;

3

4 //arithmetic

5 COMPARISON_OPERATOR : ’<’ | ’<=’ | ’>’ | ’>=’ | ’==’ | ’!=’;

6 NEGATIVE_SIGN : ’-’;

7 CONSTANT : (NEGATIVE_SIGN)? (DIGIT)+ ;

8

9 NOT_CONNECTIVE : ’!’;

10 LEFT_PARANTHESIS : ’(’;

11 RIGHT_PARANTHESIS : ’)’;

12 LEFT_BRACKET : ’[’;

13 RIGHT_BRACKET : ’]’;

14

15 //CTL

16 CTL_BRANCH_OP : ’A’ | ’E’;

17 CTL_PATH_CONNECTIVE : ’U’ | ’V’ |’W’ ;

18 CTL_PATH_OP : (’X’ | ’F’ | ’G’) ;

19

20 BOOLEAN : ’true’ | ’false’;

21 STRING : ’\’’ (LETTER|DIGIT)* ’\’’;

22

23 //variables

24 VAR : (LETTER|DIGIT|’_’|’.’)+;

25

26 fragment CAPS_LETTER

27 : ’A’..’Z’;



28

29 fragment SMALL_LETTER

30 : ’a’..’z’;

31

32 fragment LETTER

33 : SMALL_LETTER

34 | CAPS_LETTER;

35

36 fragment DIGIT

37 : ’0’..’9’;

38

39 fragment NOTHING

40 : ’#’;

41

42 WS : (’ ’|’\r’|’\t’|’\u000C’|’\n’) {_channel=99;};

43

44

45

46 ctl_formula

47 : ctl_state_formula EOF!;

48

49

50 ctl_state_formula

51 : ctl_state_sub_formula (PROPOSITIONAL_CONNECTIVE ctl_state_sub_formula)*;

52

53 ctl_state_sub_formula

54 : ctl_neg_sub_formula

55 | CTL_BRANCH_OP LEFT_BRACKET ctl_path_formula RIGHT_BRACKET

56 | atomic_formula ;

57

58

59

60 ctl_neg_sub_formula



61 : (NOT_CONNECTIVE)? LEFT_PARANTHESIS ctl_state_formula RIGHT_PARANTHESIS ;

62

63 ctl_path_formula

64 : CTL_PATH_OP LEFT_PARANTHESIS ctl_state_formula RIGHT_PARANTHESIS

65 | LEFT_PARANTHESIS ctl_state_formula RIGHT_PARANTHESIS CTL_PATH_CONNECTIVE

LEFT_PARANTHESIS ctl_state_formula RIGHT_PARANTHESIS;

66

67 atomic_formula

68 : var_expression

69 | BOOLEAN

70

71 var_expression

72 : var1=VAR COMPARISON_OPERATOR var2=VAR

73 | VAR COMPARISON_OPERATOR CONSTANT

74 | VAR COMPARISON_OPERATOR STRING

75 | VAR;

7.2.3 User interface

User Interface Module is the start up module of the tool, and represents the gateway of
all other modules. It contains three main classes as explained below.

Figure 7.12: User interface module

1. FullFrame: full frame class is the main screen of the tool and contains all the



controls used by the tool

2. FullFrameEvents: this class contains all event handlers for the controls inside full
frame class

3. DrawingTool: this class is responsible of drawing the Kripke structures. It uses
Graphviz [12] as a drawing tool.

7.2.4 Model repairer

The Model Repairer module is responsible for repairing Kripke structures by implement-
ing the algorithm in Figure 4.1. Figure 7.13 shows the main classes of this package.

Figure 7.13: Model repairer module

ModelRepairer class has a constructor and two main methods, Repair() and GetTransi-
tionsToDelete().

• the Constructor takes as input a Kripke structure, a CTL formulae, list of transi-
tions to retain, and list of states to retain to initilize the repairer members.

• Repair() method (Figure 7.13) uses the repairer members to repair the Kripke struc-
ture. The method first generates the repair formula by implementing Definition 7,
converts this formula into a CNF formula by implementing the algorithm in Listing
7.2, and then sends the CNF formulae to the sat solver to check if it is satisfiable
or not.



• GetTransitionsToDelete method checks first if the model was repaired and returns
the set of transitions to be deleted to have a correct model.

Listing 7.2: Convert to CNF

1 CONVERT(f)
2 {
3
4 If f is an atomic proposition then:
5 return ;
6
7 If f has the form P ˆ Q, then:
8 return CONVERT(P) ˆ CONVERT(Q);
9
10 If f has the form P v Q, then:
11 let Z be a new atomic proposition;
12 CONVERT((Z −> P) ˆ (˜Z −> Q));
13
14 If f is a negation formulae then:
15 If f has the form ˜A for some atomic proposition A, then: return f ;
16 If f has the form ˜(˜P), then:
17 return CONVERT(P);
18 If f has the form ˜(P ˆ Q), then:
19 return CONVERT(˜P v ˜Q);
20 If f has the form ˜(P v Q), then:
21 return CONVERT(˜P ˆ ˜Q);
22
23 }

Listing 7.3: Repair() method

1 OptimizedFormulaeGenerator formulaGenerator = new
OptimizedFormulaeGenerator(modelKripke, specFormulae);

2 PredicateFormula CNFFormula =
formulaGenerator.ComputegeneratedFormula(transitionsToRetain,
statesToRetain);

3 formulaStringList = formulaGenerator.getVariableList();
4 SAT4jSolver satSolver = new SAT4jSolver(CNFFormula, formulaStringList);
5 boolean success = satSolver. isSatisfiable () ;



Listing 7.4: Repairer utilization

1 ModelRepairer repairer = new ModelRepairer(Kripke, spec, transitionsToRetain,
statesToRetain);

2 boolean isRepaired = repairer. repair () ;
3 if (isRepaired)
4 {
5 List<Transition> deletedTransitions =

GetTransitionsTobeDeleted(list);
6 DoDrawDiagram(kripke, deletedTransitions);
7 }

Algorithm for computing repair(M, η)

Figure 7.15 gives an algorithm that computes repair(M, η) from M = (S0, S, R, L) and
η. The algorithm operates as follows. We introduce a label L(s) for each state s in M .
L(s) is a subset of sub(η). Initially, L(s0) = η, and L(s) = ∅ for all s ∈ S − {s0}. The
algorithm propagates formulae from the label of some state s to the labels of all successor
states t of s. This propagation is performed according to Definition 7, so that if, for some
CTL formula ϕ, ϕ ∈ L(s), and Definition 7 requires that some other CTL formula ψ
(related to ϕ) be evaluated in every successor t, then we add ψ to L(t). For example,
suppose A[ϕVψ] ∈ L(s). Then, for every successor t of s, we must add ϕ, ψ, and A[ϕVψ]
to L(t). Note that for each ξ ∈ L(s), we propagate at most one formula to the successors
of s. Once ξ ∈ L(s) has been processed in this manner, we “mark” it, so that we do not
repreat the propagation. We introduce a boolean array marked(s, ϕ) for this purpose.
When a propagation is performed, the appropriate conjunct is added to repair(M, η).
For the release modality, we include the index with the propagated formulae, so that we
can “count down” properly. We summarize the data structures used:

• repair(M, η): a string, which accumulates the repair formula which is being com-
puted

• L(s): a subset of sub(η). Contains the formulae which have been propagated to s,
and whose truth in s affects the truth of η in s0.

• marked(s, ξ): a boolean array, initially all false. An entry is set to true when
formula ξ ∈ L(s) has been processed.

Figure 7.14 gives the overall algorithm ComputeRepairFormula. We initialize repair(M, η)
by invoking InitializeRepairFormula(,) which sets repair(M, η) to the conjunction of Clause 2–
5 of Definition 7. These clauses do not depend on the transitions in M , and so can be
computed without traversingM . Figure 7.15 gives the propagation step propagate, which
propagates formulae from the label L(s) of s to the labels of the sucessor states t ∈ R[s]
of s. When a propagation is performed, propagateinvokes conjoin(given in Figure 7.17),
which updates repair(M, η), according to Definition 7, by conjoining the appropriate
clause.



ComputeRepairFormula(repair(M, η))

InitializeRepairFormula(M, η);
forall s0 ∈ S0 : new(s) := {η} endfor ; //η must hold in all initial states
repeat until no change

select some state s in M and some ξ ∈ new(s);
propagate(s, ξ)

Figure 7.14: The model repair algorithm.



propagate(s, ξ)

if ξ ∈ old(s) then //ξ has already been processed
new(s) := new(s)− ξ;
return

//already checked for larger index
if ξ = A[ϕVψ]m and A[ϕVψ]m

′

∈ old(s) for some m′ ≥ m then

new(s) := new(s)− ξ;
return

//already checked for larger index
if ξ = E[ϕVψ]m and E[ϕVψ]m

′

∈ old(s) for some m′ ≥ m then

new(s) := new(s)− ξ;
return

case ξ: //ξ has not been processed

ξ = ¬ϕ:
new(s) := new(s) ∪ {ϕ};
conjoin(“Xs,¬ϕ ≡ ¬Xs,ϕ”);

ξ = ϕ ∨ ψ:
new(s) := new(s) ∪ {ϕ, ψ};
conjoin(“Xs,ϕ∨ψ ≡ Xs,ϕ ∨Xs,ψ”);

ξ = ϕ ∧ ψ:
new(s) := new(s) ∪ {ϕ, ψ};
conjoin(“Xs,ϕ∧ψ ≡ Xs,ϕ ∧Xs,ψ”);

ξ = AXϕ:
forall t ∈ R[s] : new(t) := new(t) ∪ {ϕ} endfor ;
conjoin(“

∧
t∈R[s](Es,t ⇒ Xt,ϕ)”)

ξ = EXϕ:
forall t ∈ R[s] : new(t) := new(t) ∪ {ϕ} endfor ;
conjoin(“

∨
t∈R[s](Es,t ⇒ Xt,ϕ)”)

ξ = A[ϕVψ]:
new(s) := new(s) ∪ {A[ϕVψ]n};
conjoin(“Xs,A[ϕVψ] ≡ Xn

s,A[ϕVψ]”);

ξ = A[ϕVψ]m, m ∈ {1...n}:
new(s) := new(s) ∪ {ϕ, ψ};
forall t ∈ R[s] : new(t) := new(t) ∪ {A[ϕVψ]m−1};
conjoin(“Xm

s,A[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨
∧
t∈R[s](Es,t ⇒ Xm−1

t,A[ϕVψ]))”)

ξ = A[ϕVψ]0:
new(s) := new(s) ∪ {ψ};
conjoin(“X0

s,A[ϕVψ] ≡ Xs,ψ”)

ξ = E[ϕVψ]:
new(s) := new(s) ∪ {E[ϕVψ]n};
conjoin(“Xs,E[ϕVψ] ≡ Xn

s,E[ϕVψ]”);

ξ = E[ϕVψ]m, m ∈ {1...n}:
new(s) := new(s) ∪ {ϕ, ψ};
forall t ∈ R[s] : new(t) := new(t) ∪ {A[ϕVψ]m−1};
conjoin(“Xm

s,E[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨
∨
t∈R[s](Es,t ⇒ Xm−1

t,E[ϕVψ]))”)

ξ = E[ϕVψ]0:
new(s) := new(s) ∪ {ψ};
conjoin(“X0

s,E[ϕVψ] ≡ Xs,ψ”)

endcase ;
new(s) := new(s)− {ξ}; //remove ξ from new since it has been processed



InitializeRepairFormula(M, η)

repair(M, η) := true;
conjoin(“

∨
s0∈S0

Xs0”); Clause 1
forall s ∈ S0 : conjoin(“Xs0 ⇒ Xs0,η”); Clause 2
forall s ∈ S : conjoin(“Xs ≡

∨
t∈R[s](Es,t ∧Xt)”) Clause 3

forall (s, t) ∈ R : conjoin(“Es,t ⇒ (Xs ∧Xt)”) Clause 4
forall s ∈ S, p ∈ AP ∩ L(s) : conjoin(“Xs,p”); Clause 5
forall s ∈ S, p ∈ AP − L(s) : conjoin(“¬Xs,p”); Clause 5

Figure 7.16: Initializing repair(M, η)

conjoin(f)

g := “”;
case f :

f does not contain either of
∧
t∈R[s],

∨
t∈R[s]

g := f ;
f = “

∧
t∈R[s](Es,t ⇒ Xt,ϕ)”

forall t ∈ R[s] : g := g _ “ ∧ (Es,t ⇒ Xt,ϕ)”
f = “

∨
t∈R[s](Es,t ⇒ Xt,ϕ)”

forall t ∈ R[s] : g := g _ “ ∨ (Es,t ⇒ Xt,ϕ)”
f = “Xm

s,A[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨
∧
t∈R[s](Es,t ⇒ Xm−1

t,A[ϕVψ]))”

forall t ∈ R[s] : g := g _ “ ∧ (Es,t ⇒ Xm−1
t,A[ϕVψ])”;

g := “Xm
s,A[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨ ”_ g _ “)”

f = “Xm
s,E[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨

∨
t∈R[s](Es,t ⇒ Xm−1

t,E[ϕVψ]))”

forall t ∈ R[s] : g := g _ “ ∨ (Es,t ⇒ Xm−1
t,E[ϕVψ])”;

g := “Xm
s,E[ϕVψ] ≡ Xs,ψ ∧ (Xs,ϕ ∨ ”_ g _ “)”

endcase ;
repair(M, η) := repair(M, η)_ g

Figure 7.17: Adding a conjunct to repair(M, η)



7.2.5 Model optimizer

This module is responsible for generating smaller Kripke structures. Given a Kripke
structureM and a CTL formula η we reduce the state space ofM and generate a smaller
Structure M

Figure 7.18: Kripke optimizer module

This module contains classes that are responsible for state space reduction of a Kripke
structure given a CTL formula. Below are a brief description for each class. All the
reductions use Tarjan’s strongly connected components algorithm [25], Listing 7.5.

1. AbstractReduceKripke Class: abstract class for all Kripke structures optimizers

2. KripkeByLabel Class: Reduce Kripke structure state space according to atomic
propositions of the CTL formula while taking the adjacency of the states into con-
sideration. It implements Definition 8.

3. KripkeByLblWithGrouping Class: Reduce Kripke structure state space according
to atomic propositions of the CTL formula without taking the adjacency of the
states into consideration. It implements Definition 9.

4. KripkeByFormula Class: Reduce Kripke structure state space with respecct to sub-
formulae of the CTL formula while taking the adjacency of the states into consid-
eration. It implements Definition 11.

5. KripkeByFrmlWithGrouping Class: Reduce Kripke structure state space with re-
spect to sub-formulae of the CTL formula without taking the adjacency of the states
into consideration. It implements Definition 12.



Listing 7.5: Tarjan’s strongly connected components algorithm

1
2 function DetectCycles(G = (V, E))
3
4 index := 0
5 Stack := empty
6 for each v in V do
7 if (!v.isMarked) then
8 DFS(v)
9 end if
10 end for
11
12 function DFS(v)
13 v.isMarked := true
14 v.index := index
15 v.low := index
16 index := index + 1
17 Stack.push(v)
18
19 for each (v, w) in E do
20 if (!w.isMarked) then
21 DFS(w)
22 v.low := min(v.low, w.low)
23 else if (w is in Stack) then
24 v.low := min(v.low, w.low)
25 end if
26 end for
27
28 if (v.low = v.index) then
29 start a new strongly connected component
30 repeat
31 w := Stack.pop()
32 add w to current strongly connected component
33 until (w = v)
34 output the current strongly connected component
35 end if
36 end function

7.2.6 SAT solver

After a failed Model Check, A repair formula in CNF form is generated and is sent to
SAT solver to specify if the model can be repaired or not. Our tool uses SAT4jSolver [18]
to check formulas satisfiability.



Figure 7.19: SAT solver module

To check if a formula is statisfiable the CNF formula is transformed into a CNF file which
can be read by SAT4J solver to check satisfiability.

(a) CNF (b) SAT Solver Solution

The CNF file is a text file in which the first line specifies the number of variables used and
the number of disjunction clauses. The remainder of the file contains lines defining the
disjunction boolean expressions of the CNF formula where the number 0 specifies the end
of the line. For instance, in Figure 7.20a, the first line states that it contains 167 variables
and 406 disjunction clauses. The Third line is the disjunction clause ¬x106 ∨ x136.

If the SAT Solver identify a CNF formula as satisfiable, it returns an array of integers



where each integer represent the boolean variable index, and if the integer is negative that
means that the corresponding boolean variable should be equal to false and other wise it
is true. Figure 7.20b shows an example of SAT4J solution for Mutex problem. Note that
each boolean variable is either Es,t or Xs,α . If the boolean variable corresponds to an
Es,t = false that means the transition from s to t should be deleted to repair the model.

7.2.7 Decision procedure

The Decision Procedure Module is responsible for creating substructures and for imple-
menting the CTL decision Procedure.

Figure 7.20: Decision procedure module

This Module contains two main classes that interact with other classes in order to ac-
complish their jobs. These two classes are:

• KripkeSubStructGenerator class: this class is responsible of creating sub-structures
starting form an initial model, and then updates the initial model to treat all the
states of the sub-structure as a single box.

• DecisionProcedure class:this class is responsible of checking the satisfiability of a
CTL formula. First it generates an and/or graph (DPGraph), then it deletes all
inconsistent nodes (optimizeTable) and at last it check if the initial state of the
graph is preserved it return a flag that indicates that the CTL formula is satisfiable.



Chapter 8

Case studies

In this chapter, We will show three case studies that were conducted on three known
problems in concurrent programming.

1. Mutual exclusion

2. Barrier synchronization

3. Phone call system

For each case study we will give a small description for the problem, display the corre-
sponding initial model, model check it and repair it with respect to a specification formula,
display the repaired model, and apply all reduction strategies explained in chapter three.

8.1 Mutual exclusion

Mutual exclusion problem is a common problem in concurrent programming when multi-
ple processes are sharing a resource and trying to have exclusive access to this resource. A
successful algorithm for this problem is to make sure that no two processes are in critical
section(accessing a shared resource) at the same time.



Figure 8.1: States screen for mutex problem

Figure 8.1 depicts a model where two processes P1 and P2 are trying to have an exclusive
access to a shared resource. The model’s state are named according to the labels they
have. Each state has a text inside it that specifies its name and between brackets its
labels. The labels are defined as follows:

• Ni states that the process Pi is in an idle state

• Ti states that the process Pi in in ”Trying” state (trying to have access).

• Ci states that the process Pi is accessing the shared resource.

Therefore state ”N1T2” means that process P1 is idle and process P2 is in trying to have
access and state ”T1C2” means that process P1 is trying to have access and process P2 is
having access. When model checking this model with respect to the following specification
formula : AG((C1 & C2)), we get this message: ”The model is incorrect and needs to
be repaired”. the model check failed as the initial model in Figure 8.1 has a state C1C2
which has the labels C1 and C2.

Figure 8.2 the result of repairing the initial model in Figure 8.1 with respect to
AG((C1 & C2)) CTL formula. Dashed arrows denote arrows to be deleted in order to
correct the model.



Figure 8.2: Repaired model for mutex problem

As we can see in Figure 8.2 a lot of transitions were deleted, but also a lot of other
solutions exists with less deleted transitions. Reductions explained in chapter three in
addition to state-space reduction, they give us better solutions. Figure 8.3a shows a
reduced model with respect to atomic propositions in the specification formula(C1 and
C2) whereas Figure 8.3b shows a the result of repairing the reduced model. Note that in
this example if we apply definition 3.1 or definition 3.2 we will have the same result as
all states that have the same common atomic proposition with our specification formula
are adjacent.

(a) Reduced Model (b) Repaired Reduced Model

Figure 8.3: Reduction w.r.t. atomic propositions

Figure 8.3b shows a repaired model after reduction but we still need to repair the initial



model which can be done by reverting the reduction algorithm on the repaired reduced
model as in Figure 8.4.

Figure 8.4: Repaired model using reduction w.r.t. atomic propositions

8.2 Barrier synchronization

Barrier is a synchronization method in parallel computing where a thread or a process
in a program stops at a point and cannot continue until other threads or processes reach
this point. Once all have arrived, each thread or process is allowed to proceed.



Figure 8.5: Barrier synchronization

Figure 8.6 the result of repairing the initial model in Figure 8.5 with respect to
A[G((sa1&sb2))]&A[G((sa2&sb1))])&(A[G((ea1&eb2))]&A[G((ea2&eb1))] CTL formula. Dashed
arrows denote arrows to be deleted in order to correct the model.



Figure 8.6: Repaired barrier

Figure 8.7a shows a reduced model with respect to Sub-Formulae in the CTL formula
AG(¬(SA1∧SB2))∧AG(¬(SA2∧SB1))∧AG(¬(EA1∧EB2))∧AG(¬(EA2∧EB1)) whereas
Figure 8.7b shows a the result of repairing the reduced model. Note that in this example
if we apply definition 3.3 or definition 3.4 we will have the same result as all states that
have the same common sub-formulae with our CTL formula are adjacent.

(a) Reduced Model (b) Repaired Reduced Model

Figure 8.7: Reduction w.r.t. sub-formulae

Figure 8.8 depicts the result of projecting the result of the repaired reduced model on the
initial model.



Figure 8.8: Repaired model using reduction w.r.t. sub-formulae



8.3 Phone call system

We describe here the phone call system in order to show how the tool can be used to
make use of Hierarchical Model Checking and the CTL decision procedure. The phone
call system model Figure 8.9 depicts two attempts to make a call, if the first attempt
fails another trial is done and if both fail the phone call fails. On the other hand if any
attempt succeeds then the phone call is competed successfully.

Figure 8.9: Phone call system

The states s0 to s5 represent the first attempt and the states t0 to t5 represent the second
attempt as follows:

• 0: Send (s0 and t0)

• 1: Wait (s1 and t1)

• 2: Timeout (s2 and t2)

• 3: Acknowledge (s3 and t3)

• 4: Fail (s4 and t4)

• 5: Ok (s5 and t5)



Figure 8.10 depicts two substructures that represents the two phone call attempts. The
tool allows the user to extract these two substructures from the initial model and then
the user can check or repair them alone.

(a) Reduced Model (b) Repaired Reduced Model

Figure 8.10: Phone calls

After extracting the two substructures, they will be replaced by a single box in the initial
model with additional boe for every transition out of this substructure. Figure 8.11
depicts the resulted model after replacing the substructures of the phone call attempts.
Notice that the first attempt substructure is represented in the new model by three states
(Call1, s4, s4) . The states s4 and s4 remains in the new system as there are transitions
out of these states that needs to remain in the resulted model as per user selection (the
user chose to keep these transitions as explained in section 7.1.6).



Figure 8.11: Hierarchical



Chapter 9

Conclusions and future work

In this thesis, we presented and implemented a method for the repair of Kripke structures.
We demonstrated our method on several case studies: mutual exclusion, barrier synchro-
nization, and phone call. Our implementation allows experimentation and adjustment of
the repair until an optimal repair is obtained. We also presented state-space reduction
techniques, which work to both reduce the complexity of the method, and to improve the
quality of the repair. In our case studies, the state-space reduction methods resulted in
optimal repairs. Finally, we extended the method to hierarchical Kripke structures, and
demonstrated the application to a phone call system.

Future work includes (1) more ambitious case studies, (2) extending the current state-
space reduction methods to make them more flexible, e.g., by using temporal sub-formulae
(as opposed to propositional ones) to define the equivalence relations, and (3) extending
the repair method to concurrent Kripke structures.



Chapter 10

Bibliography

[1] Rajeev Alur and Mihalis Yannakakis. Model checking of hierarchical state machines.
ACM SIGSOFT Software Engineering Notes, 23(6):175–188, 1998.

[2] M. Antoniotti and B. Mishra. Np-completeness of the supervisor synthesis problem
for unrestricted ctl specifications. In Workshop on Discrete Event Systems (WODES
96), 1996.

[3] Paul C. Attie and Jad Saklawi. Model and program repair via sat solvers. CoRR,
abs/0710.3332, 2007.

[4] P.C. Attie and E.A. Emerson. Synthesis of concurrent systems for an atomic read /
atomic write model of computation (extended abstract). In PODC, 1996.

[5] P.C. Attie and E.A. Emerson. Synthesis of concurrent programs for an atomic read-
/write model of computation. TOPLAS, 23(2):187–242, 2001.

[6] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic Model Checking without
BDDs. In TACAS’99, LNCS number 1579, 1999.

[7] F. Buccafurri, T. Eiter, G. Gottlob, and N. Leone. Enhancing model checking in
verification by AI techniques. Artif. Intell., 1999.

[8] George Chatzieleftheriou, Borzoo Bonakdarpour, Scott A Smolka, and Panagio-
tis Katsaros. Abstract model repair. In NASA Formal Methods, pages 341–355.
Springer, 2012.

[9] E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. TOPLAS, 1986.

[10] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao. Efficient generation of
counterexamples and witnesses in symbolic model checking. In Design Automation
Conference. ACM Press, 1995.



[11] Yulin Ding and Yan Zhang. Ctl model update: Semantics, computations and imple-
mentation. In ECAI, pages 362–366, 2006.

[12] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphvizopen source graph drawing tools. In Graph Drawing, pages
483–484. Springer, 2002.

[13] E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.

[14] O Grumberg and D.E. Long. Model checking and modular verification. TOPLAS,
16(3):843–871, 1994.

[15] R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of design using
language containment and fair ctl. In CAV ’93, 1993. Springer LNCS no. 697.

[16] D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology, 11(2):256–290, 2002.

[17] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV,
pages 226–238, 2005.

[18] Daniel Le Berre, Anne Parrain, et al. The sat4j library, release 2.2, system de-
scription. Journal on Satisfiability, Boolean Modeling and Computation, 7:59–64,
2010.

[19] Terence Parr. The definitive ANTLR reference: building domain-specific languages.
Pragmatic Bookshelf, 2007.

[20] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent
systems in cesar. In International Symposium on Programming, pages 337–351.
Springer, 1982.

[21] S Shoham and O Grumberg. A game-based framework for ctl counterexamples and
3-valued abstraction-refinement. In CAV, pages 275–287, 2003.

[22] S. Staber, B. Jobstmann, and R. Bloem. Diagnosis is repair. In Intl. Workshop on
Principles of Diagnosis, June 2005.

[23] S. Staber, B. Jobstmann, and R. Bloem. Finding and fixing faults. In CHARME
’05, 2005. Springer LNCS no. 3725.

[24] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. Theor.
Comput. Sci., 89(1), 1991.

[25] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on
computing, 1(2):146–160, 1972.


	00000001
	00000001

