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AN ABSTRACT OF THE THESIS OF

Fatima Moussa Maziad for Master of Science

Major: Mathematics

Title: On the fixed points of the Berezin transform

Abstract

The Bergman space A2(⌦) consists of functions analytic and square integrable on a region

⌦ of the complex plane.The Berezin transform T of a function ' in this space is defined as

the Berezin transform of the Toeplitz operator having ' as its symbol.A question of

interest is to determine fixed points of the Berezin transform.

In this thesis, we present a partial study of work done on this question.We first consider

the case where ⌦ is the open unit disk D and present conditions for which Tu “ u and

Tu • u, where u is integrable.We then consider the more di�cult case where ⌦ is an

annulus centered at the origin. In the case of a radial function, we present conditions

implying either Tu • u, or Tu § u.

vi



Chapter 1. Preliminaries

1.1 Introduction

In this chapter we introduce preliminary material that will be needed later on in this

thesis. We start by defining Bergman spaces and develop some properties of functions

belonging to them. We then consider a very special functional defined on A2(⌦), namely

the evaluation functional, and obtain its representation via the Riesz Representation

theorem. This gives us the Bergman kernel, which will be used to define the Berezin

transform. We develop some properties of the kernel, and end the chapter by examining

the connection between the Bergman kernal and the green’s function of ⌦ with a review of

some of the properties of the Green’s function.

1.2 Bergman spaces

Definition

Let ⌦ Ä C be an open connected set in the complex plane. For 1 § p § 8 , the Bergman

space Ap(⌦) consists of all functions f analytic in ⌦ for which

}f}
p

“
´ ª

⌦

|fpzq|pdApzq
¯
1{p

† 8,
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where dA is the Lebesgue measure in C. We shall use the notation Ap when reference to

the underlying domain ⌦ is not necessary. Ap is a normed vector space: }f}
p

is the norm

of the function f .

In the case p “ 2,the set A2 can be endowed with an inner product as follows:

If f, g P A2, define

pf, gq “
ª

⌦

fpzqgpzqdApzq.

Then under this inner product, A2 becomes a complete inner product space, i.e. a Hilbert

space. Historically the pioneering work of Stefan Bergman (1895-1977) deals mainly with

the case p=2, and consideration of p spaces followed after. If ⌦ is a bounded domain, any

bounded analytic function in ⌦ belongs to all these spaces, in particular all polynomials,

and so, naturally there will be interest in unbounded functions that still belong to A2.The

example fpzq “ 1

1´z

, ⌦ “ D indicates that for an unbounded analytic function, some

bound on its growth must be placed in order to guarantee its membership in A2.Indeed, if

0 † R † 1, and D
R

“ tz : |z| † Ru, then for 1

1´z

, a straightforward computation gives

ª

DR

1

|1 ´ z|2dApzq “ ´2⇡ log p1 ´ R2q Ñ 8,R Ñ 1´,

so that 1

1´z

does not belong to A2pDq.

This last example, shows that functions in a Bergman space cannot grow too rapidly near

the boundary, so that some kind of growth condition must be available to guarantee that

the function f is in the space.The following theorem provides an upper bound on the

growth of functions in App⌦q.

Theorem 1. [1] Point-evaluation is bounded in each Bergman space Ap(⌦). More

specifically, each function f P Ap(⌦) has the property

|fpzq| § ⇡´1{p�pzq´2{p}f}
p

, z P ⌦,
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where �pzq = dist(z,d⌦) is the distance from z to the boundary.

Proof. Fix a point z and let � = �(z). Then the disk

D “ t⇣ P C : |⇣ ´ z| † �u

lies in ⌦.The integrals ª
2⇡

0

|fpz ` rei✓q|pd✓

are nondecreasing functions of r, so it follows that

|fpzq|p § 1

2⇡

ª
2⇡

0

|fpz ` rei✓q|pd✓, 0 § r † �.

Another integration gives

⇡�2|fpzq|p §
ª
�

0

ª
2⇡

0

|fpz ` rei✓q|pd✓rdr

“
ª

D

|fp⇣q|pdA

§
ª

⌦

|fp⇣q|pdA “ }f}p
p

,

which is the stated result.

A consequence of Theorem 1 is the fact that A2p⌦q is a closed subspace of L2p⌦q.

Corollary 2. The Bergman space A2pDq is a closed subspace of the Hilbert space L2pDq =

{ f : D Ñ C , f is measurable and
≥
D

|fpzq|2dApzq † 8}

Proof. Let f
n

P A2pDq , }f
n

´ f}
2

Ñ 0 in L2pDq, then D a subsequence tf
nk

u Ñ f almost

everywhere in D.Let K Ñ D be compact, then D 0 † R † 1, K Ñ t|z| § Ru. But f
n

3



converges to f in norm then f
n

is a Cauchy sequence in norm, so by Theorem 1,

|f
n

pzq ´ f
m

pzq| § 1?
⇡

1

1 ´ |z|}fn ´ f
m

}
2

§ 1?
⇡

1

1 ´ R
}f

n

´ f
m

}
2

sup|pf
n

´ f
m

qpzq| § 1?
⇡

1

1 ´ R
}f

n

´ f
m

}
2

Ñ 0

so f
n

is a uniform Cauchy sequence on D, so f
n

converges uniformly to f on compact

subsets of D, and since each f
n

is holomorphic, it follows that f is an analytic function and

so it belongs to A2pDq.

In general, for an open connected set ⌦ , A2p⌦q is a closed subspace of L2p⌦q, and this is

shown by taking K Ñ ⌦ to be compact, then D ⌘ ° 0, such that for every z P K, �pzq § ⌘

and then the result follows by the same reasoning discussed in the case where ⌦ = D.

It follows that A2p⌦q is a Hilbert space as stated in the introduction. The fact that A2 is a

Hilbert space leads naturally to a search for an orthonormal basis, and this will be taken

up in the next 2 chapters.

In this thesis we shall consider two major cases where ⌦ is the open unit disk D, or an

open annulus A centered at the origin. Since both are bounded domains, the Bergman

space of the first contains all monomials tzn : n P Nu, while the Bergmann space of the

second contains all monomials tzn : n P Zu . These sets will serve, respectively, as the

building blocks for the orthonormal sets in each of those spaces.

1.3 Evaluation functional

We now recall the Riesz representation theorem in the form needed for our purposes.
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Theorem 3. Riesz Representation. If H be a Hilbert space over C and T is a bounded

linear functional on H, then there exists g P H such that for every f P H we have

T pfq “† f, g ° .

Moreover,}T } = }g}, where }T } is the operator norm of T, }g} is the Hilbert norm of g.

We shall apply the Riesz representation theorem to a very special functional defined on

A2p⌦q, namely the evaluation functional.

Let z
0

P D. To each f P A2p⌦q, we associate the complex number fpz
0

q through the map

k
z0 from A2p⌦q to C.

A2p⌦q kz0››Ñ C

f
kz0››Ñ fpz

0

q

It is immediate that k
z0 pf ` gq = k

z0pfq + k
z0pgq, and k

z0 pcfq = ck
z0pfq, so that k

z0 is a

linear functional on A2p⌦.

The norms |k
z0pfq| and }f}

2

are connected through the inequality establish in Theorem 1 :

|k
z0pfq| “ |fpz

0

q| § 1?
⇡

1

1 ´ |z
0

|}f}
2

Therefore, k
z0 is a bounded linear functional on A2p⌦q. Thus, A2p⌦q being a Hilbert space

and

� : A2p⌦q Ñ C, �pfq “ fpzq

a bounded linear functional,then the Riesz Representation theorem guarantees the

existence of an element in A2p⌦q, call it k
z

such that

�pfq = fpzq = pf, k
z

q =
≥
⌦

fp⇣q k
z

p⇣q dAp⇣q.

5



Properties of the kernel function

1. The kernel function is a reproducing kernel also called the Bergman kernel because it

has the following property:

fpzq = † f, kpz, .q ° =
≥
⌦

fp⇣q kpz, ⇣q dAp⇣q, z P ⌦,

for each function f P A2p⌦q .

2. The kernel function is uniquely determined by its reproducing property:

Suppose there is a function lpz, ⇣q P A
2

p⌦q that has the reproducing property, then

fpzq = † f, lpz, .q ° and so † f, kpz, .q ´ lpz, .q °=0 for every f P A2p⌦q, but this

implies kpz, .q ´ lpz, .q = 0 so that kpz, ⇣q = lpz, ⇣q.

3. The kernel function is symmetric:

Taking fp⇣q = kpw, ⇣q for some w P ⌦, then, kpw, zq =
≥
⌦

kpw, ⇣q kpz, ⇣q dAp⇣q =

kpz, wq.

Thus, the Kernel function has the symmetry property kpz, ⇣q = kp⇣, zq.This shows

that kpz, ⇣q is analytic in z and anti-analytic in ⇣.

4. kpz, zq=
≥
⌦

|kpz, ⇣q|2 dAp⇣q= }kpzq}2
2

.

5. Applying the Cauchy Schwarz inequality to fpzq = pf, kpz, .qq =
≥
⌦

fp⇣q kpz, ⇣q dAp⇣q

we get,

|fpzq| §
a
kpz, zq }f}

2

6



1.4 Toeplitz Operator

Definition

For � P L2p⌦q, the Toeplitz operator T
�

with symbol � , is the operator defined by T
�

pfq =

P p�fq, where P is the orthogonal projection of the Hilbert space onto the Bergman space

(this is possible by Corollary 2). [3]

P : L2p⌦q Ñ A2p⌦q

T
�

: A2p⌦q Ñ A2p⌦q

f Ñ T
�

pfq “ P p�fq

We now give an explicit formula for the orthogonal projection.

If f P L2p⌦q , then f = f
1

+ f
2

, where f
1

P A2p⌦q, f
2

P
´
A2p⌦q

¯K
, and † g, f

2

° = 0 for

all g P A2p⌦q. This is true since A2p⌦q is a closed subspace of the Hilbert space L2p⌦q.

Fix z P ⌦, since kpz, ⇣q P A2p⌦q, then † kpz, .q, f
2

° = 0, which yields

† f, kpz, .q °“† f
1

, kpz, .q ° ` † f
2

, kpz, .q °“† f
1

, kpz, .q °“ f
1

pzq.

Hence,

f
1

pzq “
ª

⌦

fp⇣qkpz, ⇣qdAp⇣q “ P pfpzqq.

7



1.5 Berezin Transform

Definition

The Berezin transform associates smooth functions with operators on Hilbert spaces of

analytic functions. [2]

For T a bounded operator on the Hilbert space, the Berezin Transform of T , denoted T 1, is

the complex valued function on ⌦ defined by

T 1pzq = † Tk
z

, k
z

°, where k
z

is the Bergman kernel function of ⌦

The Berezin Transform has been most successful as tool to study operators on the

Bergman space, and we will restrict attention from now on to that area [2].

The Berezin Transform of the function � denoted B�, is defined to be the Berezin

transform of the toeplitz operator T
�

, more precisely the Berezin transform of a function �

P L8p⌦q is defined by

pB�qpzq “† T
�

kpz, .q, kpz, .q ° “
ª

⌦

pT
�

kpz, .qqpwqkpz, wqdApwq

“
ª

⌦

´ ª

⌦

�ptqkpz, tqkpw, tqdAptq
¯
kpz, wqdApwq

“
ª

⌦

�ptqkpz, tqdAptq
ª

⌦

kpw, tqkpz, wqdApwq

“
ª

⌦

�ptqkpz, tqdAptq
ª

⌦

kpz, wqkpz, wqdApwq

“
ª

⌦

�ptqkpz, tqkpz, tqdAptq

“
ª

⌦

�ptq|kpz, tq|2dAptq

8



1.6 Connection with Green’s function

We start by recalling the definition of the Green’s function. For ⇣ P ⌦, The Green’s

function Gpz, ⇣q is the function harmonic in ⌦ except at ⇣, where it has a logarithmic

singularity, i.e Gpz, ⇣q - log 1

|z´⇣| is harmonic in a neighborhood of ⇣. Moreover, it has

boundary values Gpz, ⇣q = 0 for all z P B⌦.

Theorem 4. [1] Let ⌦ be a finitely connected bounded domain, and let Gpz, ⇣q be the

Green’s function of ⌦. Then the Bergman kernel function is

Kpz, ⇣q “ ´ 2

⇡

B2G

BzB⇣ , z ‰ ⇣

Proof. Green’s function has the form: G(z,⇣) = log 1

|z´⇣| + h(z,⇣) , in some neighborhood

of ⇣, where h(z,⇣) is a harmonic function of z. Thus,

BG
Bz pz, ⇣q “ ´1

2

1

z ´ ⇣
` Bh

Bz pz, ⇣q

and

B2G

BzB⇣ pz, ⇣q “ B2h

BzB⇣ pz, ⇣q z ‰ ⇣

We will make use of the Cauchy-Green theorem

ª

B⌦
F pzqdz “ 2i

ª

⌦

BF
Bz dA F P C1p⌦q

9



Suppose f is analytic in ⌦ and continuous in ⌦ and let

⌦
✏

“ ⌦ ´ t|z ´ ⇣| § ✏u

�
✏

“ t|z ´ ⇣| “ ✏u

Since G and therefore also BG
Bz vanishes for ⇣ on B ⌦, and taking the boundary of ⌦ in the

counter-clockwise direction, and �
✏

in the clockwise direction, the Cauchy-Green theorem

then gives

ª

⌦✏

“
ª

B⌦✏

“
ª

B⌦`�✏

therefore,
1

2i

ª

�✏

BG
Bz pz, ⇣qfp⇣qd⇣ “ ´

ª

⌦✏

B2G

BzB⇣ pz, ⇣qfp⇣qdAp⇣q

The Cauchy formula then yields,

ª

�✏

BG
Bz pz, ⇣qfp⇣qd⇣ “

ª

�✏

´
´ 1

2

1

z ´ ⇣
` Bh

Bz pz, ⇣q
¯
fp⇣qd⇣

“
ª

�✏

´1

2

1

z ´ ⇣
fp⇣qd⇣ `

ª

�✏

Bh
Bz pz, ⇣qfp⇣qd⇣

“ ⇡ifpzq,

Since the last integral involving the partial derivative of h is 0, because the 2 functions f

and h are both harmonic and so bounded in ⌦ and therefore when taking the limit as ✏

tends to 0, the integral will go to 0. Therefore, it follows that when taking the limit as ✏

10



approaches 0, we get,

1

2i
⇡ifpzq “ ´

ª

⌦✏

B2G

BzB⇣ pz, ⇣qfp⇣qdAp⇣q

fpzq “ ´ 2

⇡

ª

⌦

B2G

BzB⇣ pz, ⇣qfp⇣qdAp⇣q

for functions f analytic in ⌦ and continuous in ⌦. Now, recall that

B2G

BzB⇣ pz, ⇣q “ B2h

BzB⇣ pz, ⇣q,

where h is a harmonic function.It follows that the partial derivative of the function G of

second order, is analytic.

Taking fpzq = Kpz, ⌘q, the above formula gives,

´ 2

⇡

ª

⌦

B2G

BzB⇣ pz, ⇣qKp⇣, ⌘qdAp⇣q “ Kpz, ⌘q

but by the reproducing property of the kernel function, the integral is equal to

´ 2

⇡

B2G

BzB⇣ pz, ⌘q.

11



Chapter 2. Fixed points of the Berezin

transform (I)

We have seen that A2(⌦) becomes a Hilbert space under the inner product,

† f, g °“
ª

⌦

fpzqgpzqdA, f, g P A2p⌦q

In this Hilbert space setting, we showed in the previous chapter the existence of a kernel

function, and we discussed the kernel’s main property, namely its reproducing property. In

this chapter, we specialize to the case where ⌦ = D, where D is the open unit disk, and

obtain an explicit formula for the corresponding kernel function. We then consider the

Berezin transform on D and discuss the relations between harmonic functions and fixed

points of the Berezin transform. In addition, we consider possible analogues of the result,

when the property of harmonicity is replaced by that of subharmonicity.

12



2.1 The Kernel function of the unit disk

We start by determining an orthonormal set of functions {�
n

} in A2(D).

Observe that the monomials 1,z,z2,z3,... form an orthogonal set in A2(D). Indeed,

† zn, zm ° “
ª

D

znzmdApzq “
ª

2⇡

0

ª
1

0

rn`meipn´mq✓rdrd✓ “ 2⇡

n ` m ` 2
�
n,m

.

† zn, zn ° “
ª

2⇡

0

ª
1

0

r2n`1drd✓ “ ⇡

n ` 1
.

Thus, the functions

�
n

pzq “
c

n ` 1

⇡
zn, n “ 0, 1, 2, 3...

are orthonormal in A2(D).To show that they form a basis, we show that they span the

space. Equivalently, we show that the Parseval’s identity holds for every f P A2(D).

8ÿ

n“0

| † f,�
n

° |2 “ }f}2
2

But this is equivalent to showing the following identity

}f}2
2

“ ⇡
8ÿ

n“0

|a
n

|2
n ` 1

, fpzq “
8ÿ

n“0

a
n

zn,

which is easily established.

Therefore,the set {�
n

} is an orthonormal basis in A2. The Kernel function Kpz, ⇣q being

an analytic function in ⇣ is thus expressible as a series in this basis. Using the reproducing

property of the kernel, we find that

13



Theorem 4. [1] The Kernel function of the unit disk has the following representation

Kpz, ⇣q “
8ÿ

n“0

�
n

pzq�
n

p⇣q,

Proof. Since {�
n

} is an orthonormal basis, then each function f P A2(D) has a unique

expansion in the form,

fp⇣q “
8ÿ

n“1

c
n

�
n

p⇣q

Fix z P D, take fp⇣q = Kpz, ⇣q then we have Kpz, ⇣q =
∞8

n“0

c
n

pzq �
n

p⇣q. Using the

reproducing property of the kernel,

�
m

p⇣qKpz, ⇣q “
8ÿ

n“0

c
n

pzq�
n

p⇣q�
m

p⇣q

We integrate with respect to ⇣,

�
m

pzq “ c
m

pzq}�
m

}2

c
m

pzq “ �
m

pzq

Since �
n

pzq=
b

n`1

⇡

zn , we get

Kpz, ⇣q “
8ÿ

n“0

�
n

pzq�
n

p⇣q

“
8ÿ

n“0

c
n ` 1

⇡
zn

c
n ` 1

⇡
⇣n

“ 1

⇡

8ÿ

n“0

pn ` 1qpz⇣qn

“ 1

⇡

1

p1 ´ z⇣q2

14



We next normalize the kernel function obtained and from now on the kernel function

Kpz, ⇣q will be denoted by

Kpz, ⇣q “ 1?
⇡

1 ´ |z|2
p1 ´ z⇣q2

2.2 Berezin transform on the unit disk

Definition

For each z P D, we have the biholomorphic involution �
z

: D Ñ D given by, �
z

p⇣q = z´⇣
1´z⇣

[3]. These involutions provide an alternative form of transform of a function. So we can

define the Berezin transform Tu of any u P L1pdAq, by

Tupzq “ 1

⇡

ª

D

u ˝ �
z

dA “ 1

⇡

ª

D

u ˝ �
z

p⇣qdAp⇣q.

We show that the above definition is equivalent to the one presented in the previous

chapter, by performing a simple change of variable. [3]

Proposition 5.

Tupzq “
ª

D

up⇣q|Kpz, ⇣q|2dAp⇣q

“ p1 ´ |z|2q2
⇡

ª

D

up⇣q
|1 ´ ⇣z|4dAp⇣q r3s

Proof. Recall that the function �
z

is a biholomorphic convolution. Let

y “ �
z

p⇣q

⇣ “ �
z

pyq

15



Then,

dApyq “ |�1
z

p⇣q|2dAp⇣q “ p1 ´ |z|2q2
|1 ´ z⇣|4 dAp⇣q.

Thus,

Tupzq “
ª

D

up⇣qp1 ´ |z|2q2
|1 ´ z⇣|4 dAp⇣q “

ª

D

u ˝ �
z

pyqdApyq

2.3 Harmonicity and fixed points

Theorem 6. If u is harmonic in D, and u P L1pDq then Tupzq = upzq, @ z P D.

Proof. Let ⇣ = rei✓, then

Tupzq “ 1

⇡

ª

D

u ˝ �
z

dA

“ 1

⇡

ª
1

0

ª
2⇡

0

u ˝ �
z

prei✓qrdrd✓.

�
z

is a biholomorphic convolution in ⇣, and u is harmonic,thus u ˝ �
z

is harmonic.

The mean value property for harmonic functions gives us that

1

2⇡

ª
2⇡

0

u ˝ �
z

pz
0

` rei✓qd✓ “ u ˝ �
z

pz
0

q,

and so we get

Tupzq “
ª

1

0

up�
z

p0qq2rdr “ up�
z

p0qq “ upzq.

The converse of Theorem 6, runs very deep and has been the subject of a number of
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investigations, culminating finally in a result of [4]. Because of its importance we devote

the next section to a detailed review of it.

2.3.1 From fixed point to harmonicity

Theorem 7. [4] If u P L1pDq, with Tu= u then u must be harmonic

Proof. for f P L1pDq , z P D, k “ 0, 1, 2... , define the Toeplitz operators by

pT
k

fqpzq “ pk ` 1q
ª

D

p1 ´ |z|2qk`2p1 ´ |⇣|2qk
|1 ´ z⇣|2pk`2q fp⇣qdAp⇣q.

Note that T
0

fpzq represents the original Toeplitz operator Tfpzq that we are working with

in this paper.

We define further, M = t f P L1pDq / T
0

f = f u.

We note that M is a closed subspace of L1pDq. Next, we establish a relation between the

Laplacian of f belonging to M and the Toeplitz operators and we obtain the following

relation,

�
M

T
k

f “ 8pT
k

f ´ T
k`1

fq p˚q

and so, for all f P M we get,

�
M

f “ �
M

T
0

f “ 8pT
0

f ´ T
1

fq “ 8pf ´ T
1

fq.

This shows that the map �
M

: M Ñ L1pDq is bounded since f P L1pDq and T
1

is a

bounded operator.

Using the fact that the Toeplitz operators commute for k “ 0 and k “ 1 i.e T
0

T
1

= T
1

T
0

we

17



get,

T
0

�
M

f “ 8pT
0

f ´ T
0

T
1

fq “ 8pf ´ T
1

T
0

fq “ 8pf ´ T
1

fq “ �
M

f

Thus �
M

carries M into M , so it is a bounded linear operator. Rewriting p˚q in the

following way,

T
k

f “
´
1 ´ �

M

4kp1 ` kq
¯
T
k´1

f p˚˚q

we get by induction that for f P M

T
k

f “ G
k,1

�
M

T
0

f

where

G
k,1

p�q “
kπ

j“1

1 ´ �

4jp1 ` jq

As k Ñ 8, the functions G
k,1

converge uniformly to G
1

p�q =
±8

j“1

(1- �

4jp1`jqq on compact

subsets of C. It can then be shown that lim
kÑ8 }f ´ T

k

f} = 0 and so we conclude that as

k Ñ 8, p˚˚q becomes

f “ G
1

p�
M

qf

and so G
1

p�
M

q is the identity operator on M .

In the next step of the proof, let � P C be such that � = ´4�p1 ´ �q, we define then the

following sets,

18



⌃
1,1

“ t� P C : ´1 † Re� † 1u

⌦
1,1

“ t� P C : Re� † 8u

X
�

“ tf P L1pDq : �
M

f “ �fu

E
1

“ t� P ⌦
1,1

: G
1

p�q “ 1u

We note that the reason behind choosing the set ⌃
1,1

is that X
�

X L1pDq ‰ 0 if and only if

� P ⌃
1,1

, and the set ⌦
1,1

is the image of ⌃
1,1

under the map that takes � Ñ �.

We claim that the set E
1

is the set of all eigenvalues of �
M

, i.e if �
M

f = �f then � P E
1

.

Next, we let Q be the monic polynomial that has a simple zero at every point of the set E
1

and no other zeros in C, since G1
1

p�q ‰ 0 in ⌦
1,1

then there is an entire function H

satisfying

Hp�qQp�q “ G
1

p�q ´ 1

and Hp�q ‰ 0 at every � P E
1

.

We define the spectrum of an operator A, denoted by �pAq to be the set of all eigenvalues

of A, so in our case E
1

= �p�
M

q. From this, we see that Hp�p�
M

qq does not contain 0.

We apply the Spectral mapping theorem to conclude that 0 R �pHp�
M

qq, and thus, it

follows that Hp�
M

q is 1-1.

Using the fact that G
1

p�
M

q is the identity operator on M we get,

Hp�
M

qQp�
M

q “ G
1

p�Mq ´ I “ 0

This means that the range of Qp�
M

q is in the null-space of Hp�
M

q which as we just

showed equals to 0. We conclude that Qp�
M

q = 0 on M . Finally we state a lemma and a
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proposition and make use of them to finish the proof.

Lemma 8. [4] Suppose that

1. X is a vector space over C,

2. T : X Ñ X is linear,

3. Qp�q =
±

N

i“1

p� ´ ↵
i

q, ↵
i

P C, ↵
i

‰ ↵
j

, if i ‰ j,

4. QpT q = 0,

5. Y
i

is the null-space of (T ´ ↵
i

I) .

Then X = X
1

À
...

À
Y
N

.

Proposition 9. [5] The function G
1

´ 1 does not vanish on
∞

= tz P C : 0 § Rez § 1u

Proof. G
1

p�q = sinp⇡�q
⇡�p1´�q , where � = -4 � (1-�).

Since G
1

p0q = G
1

p1q = 1, it su�ces to show that G
1

´ 1 does not vanish in
∞ ´t0, 1u.

Using the product expansion of sine, we have

sinp⇡�q
⇡�p1 ´ �q “

8π

k“2

´
1 ´ �p1 ´ �q

kp1 ´ kq
¯

“
8π

k“1

´
1 ` �p1 ´ �q

kp1 ` kq
¯
.

The function � Ñ �p1 ´ �q maps
∞

onto the parabolic region

P “ tz P C : Repzq • pImpzqq2u
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Let z P ∞
and denote s = zp1 ´ zq P P . Suppose s = x ` iy and y “ Impsq ° 0. Then

0 † arctan
y{kpk ` 1q

1 ` x{kpk ` 1q § arctan
y

kp1 ` kq ` y2

§ arctan
y

k2 ` y2

§ y

k2 ` y2

so 1 ` zp1 ´ zq{kpk ` 1q = R
k

ei✓k , for some R
k

° 0 and 0 † ✓
k

§ y{pk2 ` y2q. It follows

that sinp⇡zq{⇡zp1 ´ zq = Rei✓ for some R • 0 and

0 † ✓ §
8ÿ

k“1

y

k2 ` y2
§ y

1 ` y2
`

ª 8

1

y

k2 ` y2
dk

“ y

1 ` y2
` ⇡

2
´ arctan

1

y

† ⇡

Particularly, Rei✓ ‰ 1. Similarly, sinp⇡zq{p⇡zqp1 ´ zq ‰ 1 if s = zp1 ´ zq P P and Impsq †

0. Finally, if s P P X R = r0,`8q, we get

8π

k“1

´
1 ` s

kpk ` 1q
¯

•
8π

k“1

`
1 ` 0

kpk ` 1q
¯

“ 1.

with equality occurring only when s = 0, i.e when z = 0, or s = 1.

We apply lemma 8 to the space M and the operator �
M

. Then every f P M is a sum

f “
ÿ

�PE1

f
�

in which f
i

P M
ì

X
i

.

proposition 10 shows that E
1

= 0, hence Qp�q = � and we reach the conclusion that �
M

=

0 for every f P M i.e, T
0

f “ f implies that f is harmonic.
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It is important to point out that with more stringent conditions on the function u, e.g u P

C2pDq, a much simpler proof of theorem 6 may be obtained. This proof relies on a formula

that relates the Laplacian of a function u P C2pDq to its Berezin transform on a disk.

Proposition 10. [3] Suppose u P C2pDq and 0 † r † 1, Then

up0q “ 1

2⇡

ª
2⇡

0

uprei✓qd✓ ` 2

⇡

ª

|⇣|§r

�up⇣q log |⇣|
r
dAp⇣q

Proof. Starting with Green’s theorem,

ª

C

Mdx ` Ndy “
ª ª

Dr

´BN
Bx ´ BM

By
¯
dA,

where D
r

is the circle with radius r and circumference C, along with the following identity,

ª ª

Dr

p�uqdA “
ª

C

Bu
Bnds,

where n is the outernormal, and so

Bu
Bn “ pO~uq.~n “ pu

x

, u
y

q.~n “ pu
x

, u
y

q.px
r
,
y

r
q “ 1

r
pxu

x

` yu
y

q.

With these 2 equations, taking N=u
x

, and M=´u
y

we get,

ª ª

Dr

pu
xx

` u
yy

qdA “
ª

C

u
x

dy ` u
y

dx “
ª

C

pxu
x

` yu
y

qds
r
.

In polar coordinates,

upx, yq “ uprcos✓, rsin✓q “ Upr, ✓q

r
BU
Br “ r

Bu
Bxcos✓ ` r

Bu
By sin✓ “ xu

x

` yu
y

“ r
Bu
Bn.
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Bu
Bn “ BU

Br .

Note that the Laplacian we used is �upx, yq = B2
u

Bx2 + B2
u

By2 = 4 B2
u

BzBz = 4�upzq, therefore,

ª ª

Dr

4p�uqdA “
ª

Cr

Bu
Bnds “

ª
2⇡

0

BU
Br rd✓ “ r

B
Br

ª
2⇡

0

Upr, ✓qd✓.

Let ⇢ be the radius of D
⇢

such that ⇢ † r, then the same formula obtained above can be

written in terms of ⇢, so

1

⇢

ª ª

D⇢

4p�uqdA “ B
B⇢

ª
2⇡

0

Up⇢, ✓qd✓.

Integrate with respect to ⇢ on r0, rs ,
ª

r

0

1

⇢

` ª ª

D⇢

4p�uqdA
˘
d⇢ “

ª
2⇡

0

Up⇢, ✓qd✓
ˇ̌
ˇ
⇢“r

⇢“0

“
ª

2⇡

0

Upr, ✓qd✓ ´ 2⇡Up0q

and so this yields:

1

2⇡

ª
2⇡

0

Upr, ✓qd✓ ´ Up0q “ 2

⇡

ª
r

0

1

⇢

` ª ª

D⇢

p�uqdA
˘
d⇢.
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We now work the right hand side of the last equality obtained,

2

⇡

ª
r

0

1

⇢

` ª ª

D⇢

p�uqdA
˘
d⇢ “ 2

⇡

ª
2⇡

0

d✓
´1

⇢

ª
2⇡

0

ª
⇢

0

p�uqpsei✓qsds
¯
d⇢

“ 2

⇡

ª
2⇡

0

d✓
´
log |⇢|

ª
⇢

0

p�uqpsei✓qsds
¯ˇ̌

ˇ
⇢“r

⇢“0

´ 2

⇡

ª
2⇡

0

d✓
´ ª

r

0

log |⇢|p�uqp⇢ei✓q
¯
⇢d⇢

“ 2

⇡

ª
2⇡

0

d✓plog rq
ª

r

0

p�uqpsei✓qsds

´ 2

⇡

ª
2⇡

0

d✓ lim
⇢Ñ0

plog |⇢|q
ª
⇢

0

p�uqpsei✓qsds

´ 2

⇡

ª
2⇡

0

d✓

ª
r

0

plog |⇢|qp�uqp⇢ei✓⇢d⇢

We next compute the limit above as follows, by continuity of p�uq

ˇ̌
ˇ log |⇢|

ª
⇢

0

p�uqpsei✓qsds
ˇ̌
ˇ § |log|⇢||

ª
⇢

0

|p�uqpsei✓q||sds|

§ |log|⇢||
ª
⇢

0

Msds “ M | log |⇢||⇢
2

2
Ñ 0 as ⇢ Ñ 0
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So the limit is 0, the equality above becomes then,

2

⇡

ª
r

0

1

⇢

` ª ª

D⇢

p�uqdA
˘
d⇢ “ 2

⇡

ª
2⇡

0

d✓

ª
r

0

plog rqp�uqp⇢ei✓q⇢d⇢

´ 2

⇡

ª
2⇡

0

d✓

ª
r

0

plog |⇢|qp�uqp⇢ei✓q⇢d⇢

“ 2

⇡

ª
2⇡

0

d✓

ª
r

0

plog r ´ log |⇢|qp�uqp⇢ei✓q⇢d⇢

“ 2

⇡

ª
2⇡

0

d✓

ª
r

0

p�uqp⇢ei✓q log r

|⇢|⇢d⇢

“ 2

⇡

ª

|⇢|§r

�up⇢q log r

|⇢|dAp⇢q

Finally, we get

up0q “ 1

2⇡

ª
2⇡

0

uprei✓qd✓ ` 2

⇡

ª

|⇢|§r

�up⇢q log r

|⇢|dAp⇢q.

Next, we multiply both sides of the equation derived by 2r and integrate on r from 0 to 1.

We obtain

pTuqp0q ´ up0q “
ª

|⇢|†1

�up⇢qKp⇢qdAp⇢q p˚˚q
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where

Kp⇢q “ 4

⇡

ª
1

|⇢|
r log

r

|⇢|dr “ 4

⇡

r2

2
log

r

|⇢|
ˇ̌
ˇ
1

|⇢|
´ 4

⇡

ª
1

|⇢|

r

2
dr

“ 2

⇡
log

1

|⇢| ´ r2

⇡

ˇ̌
ˇ
1

|⇢|

“ 1

⇡

”
log

1

|⇢|2 ´ p1 ´ |⇢|2q
ı
.

Next, we check what conditions are required on u so that the above equality is satisfied.

We look at the Kernel K obtained, this is mainly done in [3].

Let fpxq = log 1

x

´ p1 ´ xq, then application of Taylor’s formula with remainder shows that

fpxq “ fp1q ` f 1p1qpx ´ 1q ` f 2ptqpx ´ 1q2
2!

, x † t † 1

“ 1

t2
px ´ 1q2

2!
“ 1

2t2
px ´ 1q2, 0 † x † t † 1

Then fpxq • 0 for 0 † x † 1.

Since t † 1 and for 0 † x † 1 we get

fpxq • 1

2
p1 ´ xq2

And for 1

2

† x † 1 we have t ° 1

4

and so we get

fpxq § 2p1 ´ xq2

Thus,p˚˚q holds for u P C2pDq and for

ª

|⇢|
|up⇢q|dAp⇢q † 8
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and, ª

|⇢|†1

|�up⇢q|p1 ´ |⇢|2q2dAp⇢q † 8

Apply now p˚˚q with u ˝ �
z

instead of u, and get

Tupzq ´ upzq “
ª

|⇢|†1

�pu ˝ �
z

qp⇢qKp⇢qdAp⇢q

“
ª

|⇢|†1

p�uqp�
z

p⇢qq|�1
z

p⇢q|2

and so we restate the results of Proposition 10 in the form of a theorem,

Theorem 11. [3] For u P C2pDq,

ª

|⇢|
|up⇢q|dAp⇢q † 8

and, ª

|⇢|†1

|�up⇢q|p1 ´ |⇢|2q2dAp⇢q † 8

Then

pTuqp0q ´ up0q “
ª

|⇢|†1

�up⇢qKpz, ⇢qdAp⇢q

where

Kpz, ⇢q “ 1

⇡

”
log

1

|�
z

p⇢q|2 ´ p1 ´ |�
z

p⇢q|2q
ı

Note that Kpz, ⇢q is obtained by setting w = �
z

p⇢q then dw = |�1
z

p⇢q|2 dAp⇢q and so

ª

|⇢|†1

�pu ˝ �
z

qp⇢qKp⇢qdAp⇢q

becomes ª

|⇢|†1

�up⇢qKpz, ⇢qdAp⇢q
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Proposition 12. [3] The kernel Kpz, ⇣q obtained in the previous theorem, satisfies

Kpz, ⇣q • 1

2⇡

”p1 ´ |z|2qp1 ´ |⇣|2q2
|1 ´ z⇣|2

ı
p1q

and,

Kpz, ⇣q § 2

⇡

”p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ z⇣|2

ı
2

, if
p1 ´ |z|2qp1 ´ |⇣|2q

|1 ´ z⇣|2 † 1

2
p2q

Before proving the 2 inequalities, we prove the following equation and we make use of it to

prove proposition 12.

1 ´ |�
z

p⇣q|2 “ p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ z⇣|2 p3q

Starting with the left hand side, a simple calculation yields

1 ´ |�
z

p⇣q|2 “ 1 ´ pz ´ ⇣qpz ´ ⇣q
|1 ´ z⇣|2

“ 1 ´ |z|2 ´ z⇣ ´ ⇣z ` |⇣|2
|1 ´ z⇣|2

“ 1 ´ |⇣|2 ´ |z|2 ` |z|2|⇣|2
|1 ´ z⇣|2

“ p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ z⇣|2

Proof. we start by proving the first inequality p1q .We have seen that for a function f

defined by fpxq = log 1

x

- p1 ´ xq , the following holds,

fpxq “ log
1

x
´ p1 ´ xq • 1

2
p1 ´ xq2
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So applying this inequality to the function Kpz, ⇣q we prove p1q as follows,

Kpz, ⇣q “ 1

⇡

”
log

1

|�
z

p⇣q|2 ´ p1 ´ |�
z

p⇣q|2q
ı

• 1

2⇡
p1 ´ |�

z

p⇣q|2q2

• 1

2⇡

”p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ z⇣|2

ı
2

,

where the last last step follows by p3q.

To prove p2q we also refer back to the function fpxq = log 1

x

- p1 ´ xq discussed previously,

and we have seen that the following holds,

fpxq “ log
1

x
´ p1 ´ xq § 2p1 ´ xq2, 1

2
† x † 1

So applying this inequality to the function Kpz, ⇣q , with x replaced by |�
z

p⇣q|2 we get p2q ,

Kpz, ⇣q “ 1

⇡

”
log

1

|�
z

p⇣q|2 ´ p1 ´ |�
z

p⇣q|2q
ı

§ 2

⇡
p1 ´ |�

z

p⇣q|2q2

§ 2

⇡

”p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ z⇣|2

ı
2

where the last step also follows by p3q.p2q holds for 1

2

† |�
z

p⇣q|2 † 1 , that is

1 ´ |�
z

p⇣q|2 † 1

2

thus

p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ z⇣|2 † 1

2
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as specified in the theorem.

Having found that a function u is a fixed point of the Berezin transform if it is harmonic, it

is natural to consider possible analogues of this when the function is subharmonic. It turns

out that subharmonicity of u implies the inequality Tu • u. However the converse of this

statement turns out not to be true globally.

2.4 Subharmonicity and fixed points

Proposition 13. If u is subharmonic, u P L1pDq, then Tu • u in D.

Proof. It is known that if u P C2 p⌦q then u is subharmonic if and only if �u • 0. Since

�pu ˝ �
z

q “
`
p�uq ˝ �

z

˘
|�1

z

|2| • 0,

it follows that, if u is subharmonic in D then u ˝ �
z

is subharmonic in D.

Using the mean value inequality for subharmonic functions we obtain

Tupzq “ 1

⇡

ª
1

0

ª
2⇡

0

u ˝ �
z

prei✓qrdrd✓ •
ª

1

0

2rpu ˝ �
z

qp0qdr “ upzq

We next show that the converse of the proposition

13 does not hold, by providing a function u that is not subharmonic but that satisfies Tu • u.
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Example [3]

Define a continuous function G by,

Gpaq “
ª

D

|�
a

|dA
⇡

.

Note that Gp0q = 2

3

, so there exists � ° 0 such that Gpaq ° 1

2

if |a| † �.

Let u be any strictly convex function that is continuous and integrable on [0,1) such that

up0q = up↵q = 0 for 0† ↵ † 1

2

, then uprq † 0 for 0† r † ↵, and u has a minimum at a

unique point �.

We further assume that � † �, and regard u as a radial function on D. We next prove that

any such u satisfies Tu • u :

First suppose that |a| § � , then upaq = up|a|q † 0 because |a| § � § ↵ and uprq † 0 for 0

† r † ↵.

On the other hand, Gpaq =
≥
D

|�
a

| dA

⇡

• 1

2

° ↵.

By Jensen’s inequality,

up
ª

D

|�
a

|dA
⇡

q §
ª

D

u ˝ �
a

dA

⇡
.

Hence Tupaq • upaq in this case.

The second case is for |a| ° �, we have

a “
ª

D

�
a

dA

⇡

|a| §
ª

D

|�
a

|dA
⇡
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The equality above is shown by use of the mean value property on the disk,

fpz
0

q “ 1

⇡r2

ª

Dpz0,rq
fpzqdApzq.

Therefore upaq § up
≥

|�
a

|dA
⇡

q because u is strictly increasing on (�,1), then by Jensen’s

upaq § up
ª

D

u ˝ �
a

dA

⇡
q.

And so also, Tupaq • upaq in this case.

Clearly, u is not subharmonic because up0q = 0 and

1

2⇡

ª
2⇡

0

uprei✓qd✓ “ uprq † 0, 0 † r † ↵.

While it is not true that the condition Tu • u implies subharmonicity of u, it does imply

some subharmonicity near the boundary. We consider this next, but in order to do so, we

will need some estimates on integrals. The following lemma is stated in [3] without proof.

Because of its importance, we supply a proof below.

Lemma 14. [3] There exists c
0

° 0 such that

ª

|⇣|†1

p1 ´ |⇣|2q2
|1 ´ z⇣|4 dAp⇣q • c

0

log
1

1 ´ |z|

Proof. 1. We show that ª
2⇡

0

d✓

|1 ´ aei✓|4 “ 2⇡
p1 ` |a|2q
p1 ´ |a|2q3 .

Let z = ei✓ then d✓ = dz

iz

|1 ´ aei✓|4 “ p1 ´ azq2p1 ´ azq2 “ p1 ´ zaq2p1 ´ a

z
q2
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It follows that

ª
2⇡

0

d✓

|1 ´ aei✓|4 “ 1

i

ª

|z|“1

1

z

dz

p1 ´ azq2p1 ´ a

z

q2

“ 1

i

ª

|z|“1

zdz

p1 ´ azq2pz ´ aq2

a P t|z| † 1u where as 1

a

R t|z| † 1u , so by Cauchy formula,

1

i

ª

|z|“1

zdz

p1 ´ azq2pz ´ aq2 “ 1

i

ª

|z|“1

fpzq
pz ´ aq2

´
fpzq “ z

p1 ´ azq2
¯

“ 1

i
2⇡if 1paq

“ 2⇡
p1 ´ |a|4q
p1 ´ |a|2q4

“ 2⇡
p1 ` |a|2q
p1 ´ |a|2q3

2. We show that the following holds for |z| † 1

ª

|⇣|†1

p1 ´ |⇣|2q2
|1 ´ z⇣|4 d⇣ “ 2⇡

ª
1

0

rp1 ´ r2q2p1 ` |rz|2q
p1 ´ |rz|2q3 dr

So,

ª

|⇣|†1

p1 ´ |⇣|2q2
|1 ´ z⇣|4 d⇣ “

ª
1

0

ª
2⇡

0

p1 ´ r2q2
|1 ´ zrei✓|4 rdrd✓

“
ª

1

0

rp1 ´ r2q2
ª

2⇡

0

d✓

|1 ´ zrei✓|4

“ 2⇡

ª
1

0

rp1 ´ r2q2p1 ` |rz|2q
p1 ´ |rz|2q3 dr
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3. We try to determine the right hand side of the equation obtained in part 2,

2

p1 ´ xq3 “
8ÿ

n“0

pn ` 2qpn ` 1qxn

2p1 ` xq
p1 ´ xq3 “

8ÿ

n“0

”
pn ` 2qpn ` 1qxn ` pn ` 2qpn ` 1qxn`1

ı

“ 2 `
8ÿ

n“0

”
pn ` 3qpn ` 2qxn`1 ` pn ` 2qpn ` 1qxn`1

ı

“ 2 `
8ÿ

n“0

”
2xn`1pn ` 2q2

ı

Replacing x in the above by r2|z|2,

1 ` r2|z|2
p1 ´ r2|z|2q3 “ 1 `

8ÿ

n“0

r2n`2pn ` 2q2|z|2n`2

multiplying the above by r p1 ´ r2q2,

rp1 ´ r2q2p1 ` r2|z|2q
p1 ´ r2|z|2q3 “ pr ´ 2r3 ` r5q `

8ÿ

n“0

pn ` 2q2pr2n`3 ´ 2r2n`5 ` r2n`2q

and finally integrating the last equation from 0 to 1 we get,

2⇡

ª
1

0

rp1 ´ r2q2p1 ` r2|z|2q
p1 ´ r2|z|2q3 dr “ 2⇡

”1
6

` 1

2

8ÿ

n“0

pn ` 2q2p 1

n ` 2
´ 2

n ` 3
` 1

n ` 4
q|z|2n`2

ı

“ 2⇡
”1
6

` 1

2

8ÿ

n“0

pn ` 2q2|z|2n`2

´ 2

pn ` 2qpn ` 3qpn ` 4q
¯ı

“ 2⇡
”1
6

`
8ÿ

n“0

pn ` 2q|z|2n`2

pn ` 3qpn ` 4q
ı

Now it is easily observed that

n ` 1

pn ` 2qpn ` 3q • 1

6n
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Therefore it follows by parts 1, 2 , and 3

ª

|⇣|†1

p1 ´ |⇣|2q2
|1 ´ z⇣|4 d⇣

by1&2“ 2⇡

ª
1

0

rp1 ´ r2q2p1 ` r2|z|2q
p1 ´ r2|z|2q3 dr

by3“ 2⇡
”1
6

`
8ÿ

n“0

pn ` 2q|z|2n`2

pn ` 3qpn ` 4q
ı

• 2⇡p1
6

` 1

6

8ÿ

n“0

” |z|2n
n

ı

“ ⇡

3
p1 ` 2 log

1

1 ´ |z| q

• 2⇡

3
log

1

1 ´ |z|

Thus, the lemma is proved for c
0

= 2⇡

3

Previously, we provided a counterexample showing that for Tu • u , u need not be

subharmonic. The next theorem shows that the condition Tu • u does imply some sort of

an almost subharmonicity near the boundary, i.e we show that limsup �u • 0 given that

Tu • u.

Theorem 15. [3] Suppose that u P C2pDq,

≥
|⇣|†1

|up⇣q|dAp⇣q † 8,

≥
|⇣|†1

|�up⇣q|p1 ´ |⇣|2q2dAp⇣q † 8,

and that lim sup
zÑ⇣0

�upzq † 0 for some ⇣
0

P BD. Then there exists � ° 0 such that Tupzq †

upzq for all z P D such that |z ´ ⇣
0

| † �.

Proof. we assume that ⇣
0

= 1.There exists a ° 0 and ✏ ° 0 such that if z P D and |z ´ 1| †
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✏ then �upzq § ´a.

Let Dp1, ✏q = {z P D:|z ´ 1| † ✏} and Dp1, ✏q1 = {D/{Dp1, ✏q} } , then we have

ª

D

�up⇣qKpz, ⇣qdAp⇣q “
ª

Dp1,✏q
�up⇣qKpz, ⇣qdAp⇣q

`
ª

Dp1,✏q1
�up⇣qKpz, ⇣qdAp⇣q.

We start with the second integral,so for |z ´ 1| † ✏

2

and ⇣ P Dp1, ✏q1,

p1 ´ |z|2qp1 ´ |⇣|2q
|1 ´ ⇣z|2 § Cp1 ´ |z|2q † 1

2

if p1 ´ |z|2q is su�ciently small, and so by the inequality p2q in proposition 12, we have that

Kpz, ⇣q § Cp1 ´ |z|2q2p1 ´ |⇣|2, which yields

ˇ̌
ˇ
ª

Dp1,✏q1
�up⇣qKpz, ⇣qdAp⇣q

ˇ̌
ˇ § Cp1 ´ |z|2q2

ª

Dp1,✏q1
|�up⇣q|p1 ´ |⇣|2q2dAp⇣q.

Note that this is Opp1 ´ |z|2qq.

Next, we deal with the first integral,

ª

Dp1,✏q
�up⇣qKpz, ⇣qdAp⇣q § ´a

ª

Dp1,✏q
Kpz, ⇣qdAp⇣q

“ ´a

ª

D

Kpz, ⇣qdAp⇣q ` a

ª

Dp1,✏q1
Kpz, ⇣qdAp⇣q

§ ´a

2⇡

ª

D

p1 ´ |z|2q2p1 ´ |⇣|2q2
|1 ´ ⇣z|4 dAp⇣q

` 2a

⇡

ª

Dp1,✏q1

p1 ´ |z|2q2p1 ´ |⇣|2q2
|1 ´ ⇣z|4 dAp⇣q

§ ´C
0

ap1 ´ |z|2q2 log 1

1 ´ |z| ` Opp1 ´ |z|2q2q
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Therefore,

Tupzq ´ upzq § ´C
0

ap1 ´ |z|2q2 log 1

1 ´ |z| ` Opp1 ´ |z|2q2q,

which becomes negative as z approaches 1.
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Chapter 3. Fixed points of the Berezin

transform (II)

In this chapter, we consider analogues of results in Chapter 2, where the disk is replaced by

an annulus A . We start by obtaining the Bergman Kernel function for the annulus and we

define the Berezin transform of the annulus in terms of the kernel function, then we

consider the main problem in this chapter which is to determine the fixed points of the

Berezin transform in the annulus. This problem remains open at present, but we are able to

give some necessary conditions for a function u to be a fixed point of the berezin transform.

We recall that the reproducing kernel K
z

is the unique function in L2

a

pA q such that for

every f P A2,

† f,K
z

°“ fpzq “
ª

⌦

fp⇣qK
z

p⇣qdAp⇣q.

3.1 The kernel function of the annulus

We start by determining an orthogonal set of functions t�
n

u in A2pA q.

Observe that the monomials tzn : n P Zu form an orthogonal set in A2pA q.
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Indeed,

† zn, zm ° “
ª

A
znzmdApzq “

ª
2⇡

0

ª
1

R

rn`meipn´mq✓rdrd✓ “ 2⇡p1 ´ Rn`m`2q
n ` m ` 2

�
n,m

.

† zn, zn ° “
ª

2⇡

0

ª
1

R

r2n`1drd✓ “ ⇡p1 ´ R2n`2q
n ` 1

n ‰ ´1

† 1

z
,
1

z
° “

ª
1

R

ª
2⇡

0

1

r
drd✓ “ 2⇡

ª
1

R

1

r
dr “ 2⇡ log

1

R
n “ ´1

Thus the functions

�
n

pzq “

$
’&

’%

zn
b

n`1

⇡p1´R

2n`2q : n ‰ ´1
b

1

2⇡ log

1
R

1

z

: n “ ´1

are orthonormal in A2pA q. To show that they form a basis, we show that they span the

space, by showing that Parseval’s identity holds for every f P A2pA q.And this is equivalent

to showing the following identity holds

}f}2 “
`8ÿ

n“´8

⇡p1 ´ R2n`2q
n ` 1

|a
n

|2, fpzq “
`8ÿ

n“´8
a
n

zn,

which is easily established. Therefore the set t�
n

u is an orthonormal basis in A2pA q. Next

we make use of the reproducing property of the kernel function to derive a representation

for the kernel function of the annulus, and finally obtain its formula explicitly.

Theorem 15. The kernel function of the annulus has the following representation

Kpz, ⇣q “
`8ÿ

n“´8
�
n

p⇣q�
n

pzq

We omit the proof of this theorem for it is identical to the case of the unit disk which is

established and proved in the previous chapter.
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Therefore, the Kernel function of the annulus is given by

Kpz, ⇣q “ �´1

pzq�
1

p⇣q `
ÿ

�
n

pzq�
n

p⇣q

“ ´ 1

2⇡ logR
pz⇣q´1 `

ÿ
d

n ` 1

⇡p1 ´ R2n`2qz
n

d
n ` 1

⇡p1 ´ R2n`2q⇣
n

“ ´ 1

2⇡ logR
pz⇣q´1 ` 1

⇡

ÿ pn ` 1q
1 ´ R2n`2

pz⇣qn

where the sum is taken over all n ‰ ´1.

From now on, K
w

will denote the normalized kernel function of the annulus, for w P A .

3.2 The Annulus mean value property

Lemma 16. [6] Suppose that upzq = fpzq + gpzq + log |z| is a harmonic functions in

L2pA q, with f and g analytic on A . Then f and g belong to L2

a

pA q.

Proof. without loss of generality, we assume that u is a real valued harmonic function.

Hence u = ReF + c log |z| for some analytic function F .

If we express F as a Laurent series, F pzq =
∞8

n“´8 2 a
n

zn , then u has the form

upzq “ 1

2

´
F pzq ` F pzq

¯
` c log |z|

Let z = rei✓ , replace F pzq by its Laurent series, evaluate F pzq, and replace n by ´n, we get
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uprei✓q “ 1

2

´ 8ÿ

n“´8
2a

n

rnein✓ `
8ÿ

n“´8
2a´n

r´nein✓
¯

` c log r

uprei✓q “
8ÿ

n“´8
pa

n

rn ` a
n

r´nqein✓ ` c log r.

Since

ª
2⇡

0

|uprei✓q|2 d✓
2⇡

“ p|c|logr ` 2Repa
0

qq2

`
ÿ

|n|•1

ÿ

|m|•1

ª
2⇡

0

pa
n

rn ` a´n

r´nqpa
m

rm ` a´m

r´mqeipn´mq✓ d✓
2⇡

it follows that,

8 °
ª

A
|upzq|2dApzq “ K `

ª
1

R

ª
2⇡

0

´ ÿ

|n|•1

|a
n

|2r2n ` |a´n

|2r´2n ` a
n

a´n

` a´n

a
n

¯
rd✓dr p˚q

where k is a positive constant.We need to show that F P L2

a

pA q, so we make use of the last

inequality,

ª
1

R

ÿ

|n|•1

pa
n

a´n

q “
ª

1

R

ª
2⇡

0

´ ÿ

|n|•1

a
n

rnein✓
¯´ ÿ

|m|•1

a´m

r´me´im✓

¯d✓

2⇡

“ 1

4

ª
1

R

ª
2⇡

0

´
F prei✓q ´ F p0q

¯
2 d✓

2⇡
,

so
≥
1

R

∞
|n|•1

pa
n

a´n

q converges, since F is analytic on A . Therefore, from p˚q it follows that

ª
1

R

ÿ

|n|•1

|a
n

|2r2n`1dr † 8,

and so as claimed, F pzq =
∞8

n“´8 2 a
n

zn P L2

a

pA q
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3.3 Berezin transform on the annulus

For an integrable function u, we introduce its Berezin transform Tu on the annulus by

Tupzq “
ª

A
up⇣q|K

z

p⇣q|2dAp⇣q

We recall from the first chapter that the Toeplitz operator with symbol �, denoted T
�

can

be defined by T
�

f = P p�fq, where P is the orthogonal projection from L2p⌦q onto

A2p⌦q, for all � belonging to L8p⌦q.

Proposition 17. [6] If � = f
1

+ f
2

and  = g
1

+ g
2

are bounded harmonic functions on

A satisfying T
�

T
 

= T
 

T
�

then the function u = f
1

g
2

- g
1

f
2

must satisfy Tu = u in A .

Proof. T
�

T
 

= T
 

T
�

implies that

† T
 

K
w

, T
�

K
w

° “ † T
�

T
 

K
w

, K
w

°

“ † T
 

T
�

K
w

, K
w

°

“ † T
�

K
w

, T
 

K
w

°

for all z P A .
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Now, we express T
 

K
w

and T
�

K
w

in terms of the functions g
1

, g
2

and the kernel.

T
 

K
w

“ P p K
w

qpzq

“ P pg
1

` g
2

qK
w

pzq

“ g
1

pzqK
w

` P pg
2

K
w

qpzq

“ g
1

pzqK
w

` † P pg
2

K
w

q, K
z

°

“ g
1

pzqK
w

` † K
w

, g
2

K
z

°

“ g
1

pzqK
w

` † g
2

K
z

, K
w

°

“ g
1

pzqK
w

` g
2

pwqK
w

pzq.

Similarly, we find that T
�

K
w

= f
2

pzqK
w

pzq + f
1

pwq K
w

pzq, so that

† T
 

K
w

, T
�

K
w

° “
ª

A
T
 

K
w

T
�

K
w

dApzq

“
ª

A
rg

1

pzqK
w

` g
2

pwqK
w

pzqs rf
2

pzqK
w

pzq ` f
1

pwqK
w

pzqsdApzq

“
ª

A
|K

w

pzq|2
´
g
1

pzqf
2

pzq ` g
1

pzqf
1

pwq ` g
2

pwqf
2

pzq ` g
2

pwqf
1

pwq
¯
dApzq

But,

ª

A
g
1

pzqf
1

pwq|K
w

pzq|2dApzq “ f
1

pwq † g
1

K
w

, K
w

°

“ f
1

pwqg
1

pwqK
w

pwq

“ f
1

pwqg
1

pwq}K
w

}2

“ f
1

pwqg
1

pwq
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and so finally,

† T
 

K
w

, T
�

K
w

° “
ª

A
g
1

pzqf
2

pzq|K
w

pzq|2dApzq ` f
1

pwqg
1

pwq

` f
1

pwqg
2

pwq ` f
2

pwqg
2

pwq p˚q

by interchanging  and � and using commutativity, we get

† T
 

K
w

, T
�

K
w

°“† T
�

K
w

, T
 

K
w

°

The last equality along with p˚q gives,

ª

A
pf

1

g
2

´ g
1

f
2

qpzq|K
w

pzq|2dApzq “ pf
1

g
2

´ g
1

f
2

qpwq

for all w P A .

Therefore the function u satisfies Tu = u and so it is a fixed point of the Berezin

transform.

The functions u satisfying Tu = u are said to have the annulus mean value property. We

have seen in the previous chapter that Tu = u in D implies that u is harmonic on D for all

functions integrable on D. One may naturally wonder if the same holds true for functions

integrable on A . To start with, we look for harmonic functions that have the annulus

mean value property.

Proposition 18. [6] If u is a harmonic function in L2pA q, then Tu “ u in A if and only

if u = f ` g, where f and g are analytic functions on A .

Proof. If upzq = fpzq + gpzq P L2pA q, then by Lemma 16, it is easily seen that Tf = f

and Tg = g.

Suppose now that Tu = u P A and suppose that u = f + g + log |z| . In [6] the author
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points out a communication to him by Ahern, to the e↵ect that log |z| does not have the

annulus mean value property and therefore the function u cannot have the logarithmic

term log |z| if it satisfies Tu = u.

Now we strengthen the assumption on u by assuming it is continuous on the closure of A

and we try to see whether with this condition, harmonicity can be obtained from the

annulus mean value property of u.

Proposition 19. [6] If u P CpA q. Then Tu = u and

ª
2⇡

0

upRei✓qd✓
2⇡

“
ª

2⇡

0

upei✓qd✓
2⇡

if and only if u = f ` g, where f and g are analytic on A .

Proof. Suppose that the averages of u on both circles are the same. Then the poisson

extension of u|BA is a harmonic function v in A . We denote by v again its continuous

extension to the boundary. Applying proposition 18 to the function v, we get that Tv = v

in A , and so T pu ´ vq = pu ´ vq.

We now show that if w = u ´ v = 0 on BA , and w satisfies Tw = w then w = 0 on A i.e u

= v on A .

We recall that the Kernel is a normalized function and so,

ª

A
|k

z

p⇣q|2dAp⇣q “ 1

Tw “ w implies the following

Twpzq “
ª

A
wp⇣q|k

z

p⇣q|2dAp⇣q “ wpzq “
ª

A
wpzq|k

z

p⇣q|2dAp⇣q
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and so we get ª

A
rwp⇣q ´ wpzqs|k

z

p⇣q|2dAp⇣q “ 0 p˚q

for all z P A . We show that this last equality implies that wpzq = 0 for all z P A .

Since w is continuous on A , it attains its maximum/minimum value at a point z
0

P A . If

z
0

P BA , then the maximum value is 0, and the minimum value is also 0 so the function in

this case must be identically 0 inside A as well as on the boundary.

If z
0

R BA , so z
0

P A then we can apply p˚q

ª

A
rwp⇣q ´ wpz

0

qs|k
z0p⇣q|2dAp⇣q “ 0

So, rwp⇣q ´ wpz
0

qs|k
z0p⇣q|2 is a continuous function of ⇣ which is § 0 for all ⇣ and its

integral equals to 0, therefore it must be identically 0, so w = 0 and therefore u = v on A .

It follows that u is a harmonic function since v is harmonic, and so u = f + g for some

functions f and g analytic on A .

Conversely, if u = f + g P CpA q, then f and g belong to the Hardy space H2pA q by

Lemma 16. Cauchy’s theorem guarantees that the averages of u on both boundaries are the

same.

For L
n

pzq = zn for n P Z, we define the following function

pu ˚ L
n

qpzq “
ª

2⇡

0

upze´i�qL
n

pei�qd�
2⇡

Lemma 20. [6] If u P CpA q ,L
n

pzq = zn, n ‰ 0, and Tu = u then

1. (u ˚ L
n

) P CpA q

2. T pu ˚ L
n

q = u ˚ L
n

3. AverageBDR pu ˚ l
n

q = 0 = AverageBD pu ˚ L
n

q
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4. u ˚ L
n

is a harmonic function.

5. �u is a radial function on A .

Proof. 1. Since u P CpA q and L
n

pzq is a continuous function, it follows that (u ˚ L
n

) P

CpA q.

2. From the Laurent series expansion of the kernel function obtained before,

Kpz, ⇣q “ 1

⇡

ÿ pn ` 1q
1 ´ R2n`2

pz⇣qn ´ 1

2⇡ logR
pz⇣q´1

we see that

K
ze

i�pwe´i�q “ 1

⇡

ÿ n ` 1

1 ´ R2n`2

pwe´i�zei�q ´ 1

2⇡ logR
ppwe´i�zei�q

“ K
z

pwq

where the sum is taken over all n ‰ ´1.Therefore,

T pu ˚ L
n

qpzq “
ª

2⇡

0

” ª

A
upwei�q|K

z

pwq|2dApwq
ı
L
n

pei�qd�
2⇡

“
ª

2⇡

0

upze´i�qL
n

pei�qd�
2⇡

“ u ˚ L
n

pzq

3. We write explicitly the average of the function u ˚ L
n

pzq on the boundary of the unit
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disk as well as on the disk of radius R, using Fubini’s theorem.

AverageBDR “
ª

2⇡

0

pu ˚ l
n

qpRei✓qd✓
2⇡

“
ª

2⇡

0

´ ª
2⇡

0

upReip✓´�qqL
n

pei�qd�
2⇡

¯d✓

2⇡

“
ª

2⇡

0

´ ª
2⇡

0

upReip✓´�qqd✓
2⇡

¯
L
n

pei�qd�
2⇡

“
ª

2⇡

0

´ ª
2⇡´�

´�
upReitq dt

2⇡

¯
L
n

pei�qd�
2⇡

pt “ ✓ ´ �q

“
´ ª

2⇡

0

upReitq dt
2⇡

¯´ ª
2⇡

0

L
n

pei�qd�
2⇡

¯

“ 0

The last equality follows since,

ª
2⇡

0

L
n

pei�qd�
2⇡

“
ª

2⇡

0

Rnein✓
d�

2⇡
“ 0

Similarly, we get the same result when R = 1, i.e on the boundary of the unit disk.

Therefore the averages on both circles are equal to 0.

4. Since the function (u ˚ l
n

) has the annulus mean value property (T pu ˚ L
n

q = u ˚ L
n

by part 2) and has equal average on both circles (by part 3) then Proposition 19

implies that (u ˚ l
n

) is a harmonic function.

5. pu ˚ L
n

q being harmonic by part 4, we get

�pu ˚ L
n

qpzq “
ª

2⇡

0

�rupze´i�qsL
n

pei�qd�
2⇡

“
ª

2⇡

0

p�uqpze´i�qein�d�
2⇡

“ 0
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Let z = rei✓, and make a change of variable to get,

ª
2⇡

0

p�uqprei�qein�d�
2⇡

“ 0

for all n di↵erent from 0. Thus �u is a radial function on the annulus.

We next show that under these conditions, the function u is the sum of a radial and a

harmonic function on A , but first we state a lemma that will be used later on.

Lemma 21. [6] If u P CpA q, then �pRpuqq = Rp�uq, where

Rpuqpwq “ 1

2⇡

ª
2⇡

0

upei✓wqd✓

is the radicalization of u.

Corollary 22. [6] If u P CpA q and �u is a radial function, then u can be expressed as the

sum of a radial function plus a harmonic function.

Proof. lemma 21 gives,

�pRpuqq “ Rp�uq “ �u,

where the last equality follows since �u is itself a radial function. And so,

�pu ´ Rpuqq “ 0, which means that u ´ Rpuq is harmonic. Therefore, u can be written as

a radial function plus a harmonic function in the following way,

u “ Rpuq ` pu ´ Rpuqq,
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Using the fact that Rpupzqq = pu ˚ L
0

qpzq, it follows that if If u P CpA q satisfies Tu = u in

A , then u = Rpuq + f + g, where f and g are analytic functions on A .[6]

3.4 Convex radial functions and fixed points

In attempting to determine the fixed points of the Berezin transform, it is natural to

consider radial functions. But even in this case, di�culties occur. In this section, we

present su�cient conditions on a radial function u that guarantees that Tu • u or that Tu

§ u.

Proposition 23. Suppose f : rR, 1s Ñ R is a convex increasing function. If u: A Ñ R is

defined by upzq = fp|z|q, then Tu • u. If instead, f is a concave decreasing function, then

Tu § u.

Proof. Fix z P A and write dµp⇣q = |k
z

p⇣q|2dAp⇣q. Then,
≥
A dµp⇣q = 1. Since f is convex,

an application of Jensen’s inequality followed by use of the increasing nature of f gives

pTuqpzq “
ª

A
up⇣q|k

z

p⇣q|2dAp⇣q

“
ª

A
fp|⇣|qdµp⇣q

• f
´ ª

A
|⇣|dµp⇣q

¯

• f
´

|
ª

A
⇣|k

z

p⇣q|2dAp⇣q|
¯

“ fp|z|q “ upzq.

A similar proof can be supplied when f is concave decreasing.

Remark: One reason why the function log r presents some di�culties in deciding that it is

not a fixed point of the Berezin transform on the annulus, is that it is concave but

increasing.

50



Bibliography

[1] Peter Duren and Alexander Schuster, Bergman Spaces, American Mathematical Society,

Vol. 100, (1935).

[2] Sheldon Axler, Berezin transform, Encyclopedia of Mathematics, Supplement Volume

III, Kluwer (2001), 67-68.
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