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AN ABSTRACT OF THE THESIS OF

Fatima Moussa Maziad for Master of Science

Major: Mathematics

Title: On the fixed points of the Berezin transform

Abstract

The Bergman space A%(€2) consists of functions analytic and square integrable on a region
Q of the complex plane.The Berezin transform T of a function ¢ in this space is defined as
the Berezin transform of the Toeplitz operator having ¢ as its symbol.A question of
interest is to determine fixed points of the Berezin transform.

In this thesis, we present a partial study of work done on this question.We first consider
the case where €2 is the open unit disk D and present conditions for which Tu = u and

Tu > u, where u is integrable.We then consider the more difficult case where € is an
annulus centered at the origin. In the case of a radial function, we present conditions

implying either Tu > u, or Tu < u.

vi



Chapter 1. Preliminaries

1.1 Introduction

In this chapter we introduce preliminary material that will be needed later on in this
thesis. We start by defining Bergman spaces and develop some properties of functions
belonging to them. We then consider a very special functional defined on A?(§2), namely
the evaluation functional, and obtain its representation via the Riesz Representation
theorem. This gives us the Bergman kernel, which will be used to define the Berezin
transform. We develop some properties of the kernel, and end the chapter by examining
the connection between the Bergman kernal and the green’s function of €2 with a review of

some of the properties of the Green’s function.

1.2 Bergman spaces

Definition

Let €2 = C be an open connected set in the complex plane. For 1 < p < o0 , the Bergman

space AP(£2) consists of all functions f analytic in Q for which

17 = (] 1rraac) < =



where dA is the Lebesgue measure in C. We shall use the notation AP when reference to
the underlying domain €2 is not necessary. AP is a normed vector space: | f|, is the norm
of the function f.

In the case p = 2,the set A? can be endowed with an inner product as follows:

If f,ge A2, define
(f.9) = Lﬂz)ﬁdma.

Then under this inner product, A? becomes a complete inner product space, i.e. a Hilbert
space. Historically the pioneering work of Stefan Bergman (1895-1977) deals mainly with
the case p=2, and consideration of p spaces followed after. If {2 is a bounded domain, any
bounded analytic function in {2 belongs to all these spaces, in particular all polynomials,

and so, naturally there will be interest in unbounded functions that still belong to A%. The

1
1—z

example f(z) =

Q) = D indicates that for an unbounded analytic function, some
bound on its growth must be placed in order to guarantee its membership in A% Indeed, if
0 <R <1, and Dg = {2z : |2| < R}, then for =, a straightforward computation gives

J b GA(z) = —2rlog (1— R?) — . R — 1—,
D

. I1— z]2

so that —=— does not belong to A%(D).

This last example, shows that functions in a Bergman space cannot grow too rapidly near
the boundary, so that some kind of growth condition must be available to guarantee that
the function f is in the space.The following theorem provides an upper bound on the

growth of functions in AP(€2).

Theorem 1. [1] Point-evaluation is bounded in each Bergman space AP (Q)). More

specifically, each function f € AP(Q) has the property

1f(2)] < W_l/pd(z)_Q/prHp, z €,
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where §(z) = dist(z,d(2) is the distance from z to the boundary.

Proof. Fix a point z and let § = d(z). Then the disk
D={CeC:|(—z <6}

lies in 2. The integrals
21
J |f(z + re®)Pd

0

are nondecreasing functions of r, so it follows that

1 2

|f(z)|p<% . |f(z+re®)Pdo, 0<r <.

Another integration gives

9 2w
7r<52\f(z)|p < J f ]f(z+7“ei9)|pd07"dr
0 Jo

- er@)\PdA
< L|f(<)|pdA=|f§,

which is the stated result. O
A consequence of Theorem 1 is the fact that A%(f2) is a closed subspace of L?*(2).

Corollary 2. The Bergman space A?(D) is a closed subspace of the Hilbert space L*(D) =
{ f:D— C, fis measurable and §_ | f(z)]?dA(z) < 0}

Proof. Let f, € A*(D), |fn — f|. — 0 in L*(D), then 3 a subsequence {f,, } — f almost

everywhere in D.Let K < D be compact, then 30 < R < 1, K < {|z| < R}. But f,



converges to f in norm then f, is a Cauchy sequence in norm, so by Theorem 1,

1 1
|fn(z)_fm(z)| < ﬁ1_|Z|an_me2
11
supl(fo = ) ()| € —=—1fu — ful — 0

Jil—R

so f, is a uniform Cauchy sequence on D, so f, converges uniformly to f on compact
subsets of D, and since each f,, is holomorphic, it follows that f is an analytic function and

so it belongs to A?(D). O

In general, for an open connected set Q , A%(Q) is a closed subspace of L?(2), and this is
shown by taking K < Q to be compact, then 3 n > 0, such that for every z € K, §(z) < n

and then the result follows by the same reasoning discussed in the case where Q) = D.

It follows that A2(2) is a Hilbert space as stated in the introduction. The fact that A2 is a
Hilbert space leads naturally to a search for an orthonormal basis, and this will be taken
up in the next 2 chapters.

In this thesis we shall consider two major cases where €2 is the open unit disk D, or an
open annulus & centered at the origin. Since both are bounded domains, the Bergman
space of the first contains all monomials {2" : n € N}, while the Bergmann space of the
second contains all monomials {z" : n € Z} . These sets will serve, respectively, as the

building blocks for the orthonormal sets in each of those spaces.

1.3 Evaluation functional

We now recall the Riesz representation theorem in the form needed for our purposes.



Theorem 3. Riesz Representation. If H be a Hilbert space over C and T is a bounded

linear functional on H, then there exists g € H such that for every f e H we have

T(f)=<f,g>.

Moreover,|T|| = ||g|, where |T| is the operator norm of T, |g| is the Hilbert norm of g.

We shall apply the Riesz representation theorem to a very special functional defined on
A?(S2), namely the evaluation functional.

Let z9 € D. To each f € A%(Q), we associate the complex number f(z) through the map
k., from A*(£2) to C.

It is immediate that k,, (f + g) = k., (f) + ks (9), and k., (cf) = ck.,(f), so that k., is a
linear functional on A*(f2.

The norms |k,,(f)| and | f|2 are connected through the inequality establish in Theorem 1 :

[k (F)] = [f(20) [ £12

N \ )

Therefore, k., is a bounded linear functional on A%(2). Thus, A?(Q2) being a Hilbert space
and

d:AXQ) - C, D(f) = f(2)

a bounded linear functional,then the Riesz Representation theorem guarantees the

existence of an element in A2(Q), call it k, such that

(f) = f(z) = = Jo F(C) k=(C) dA(Q).




Properties of the kernel function

1. The kernel function is a reproducing kernel also called the Bergman kernel because it
has the following property:

f(z) = < fk(z,.) > = o f(Q) k(2,Q) dAQ), =€,
for each function f e A*(9) .

2. The kernel function is uniquely determined by its reproducing property:
Suppose there is a function I(z, () € A5(£2) that has the reproducing property, then
f(z) = < f,l(z,.) > and so < f,k(z,.) —l(z,.) >=0 for every f € A%(2), but this
implies k(z,.) —I(z,.) = 0 so that k(z,() = I(z, ().

3. The kernel function is symmetric:

Taking f(¢) = k(w, () for some w € Q, then, k(w,z) = {;, k(w,() k(z,¢) dA(() =
k(z,w).

Thus, the Kernel function has the symmetry property k(z,() = k(¢, z).This shows

that k(z,() is analytic in z and anti-analytic in .

1. k(z,2)=1 k(z O dAQ)= k()]

5. Applying the Cauchy Schwarz inequality to f(z) = (f,k(z,.)) = {, f({) k(z,¢) dA()
we get,

[F(2)] < A/k(z:2) [ fl2



1.4 Toeplitz Operator

Definition

For ¢ € L*(2), the Toeplitz operator T, with symbol ¢ , is the operator defined by T,(f) =
P(¢f), where P is the orthogonal projection of the Hilbert space onto the Bergman space

(this is possible by Corollary 2). [3]

PiIXQ) — AXQ)
T, A2(Q) — AX(Q)

f= Ty(f) = P(of)

We now give an explicit formula for the orthogonal projection.

L
If f € L3(Q) , then f = fi + fo, where fi € A2(2), f» € (A2(Q)) cand < g, fo > = 0 for
all g € A2(§2). This is true since A2(£2) is a closed subspace of the Hilbert space L?(12).

Fix z € Q, since k(z,() € A2(£2), then < k(z,.), fo > = 0, which yields
< fik(z,.) >=< f1,k(z,.) > + < fo,k(z,.) >=< f1,k(z,.) >= fi(2).

Hence,

fi(z) = Lf@)k(z,c)dA(c) ~ P(f(2).



1.5 Berezin Transform

Definition

The Berezin transform associates smooth functions with operators on Hilbert spaces of
analytic functions. [2]

For T a bounded operator on the Hilbert space, the Berezin Transform of 7', denoted 1", is
the complex valued function on §2 defined by

T'(z) = < Tk,, k, >, where k, is the Bergman kernel function of {2

The Berezin Transform has been most successful as tool to study operators on the
Bergman space, and we will restrict attention from now on to that area [2].

The Berezin Transform of the function ¢ denoted B¢, is defined to be the Berezin

transform of the toeplitz operator T}, more precisely the Berezin transform of a function ¢

e L*(Q) is defined by

r

(Bo)(2) =< Tyk(z,.),k(z,.) > = s N (w)k(z, w)dA(w)

Q(T¢k’(2’
- ; (L o(t)k(z, t)k(w, t)dA(t))k(z, w)dA(w)

- . o(t)k(z, t)dA(t)

- J; O(t)k(z, t)dA(t) L k(z, w)k(z, w)dA(w)

_ mqs(t)k(z,t)k(z,t)d/l(t)
— | s)kz 0 PaAw

JQ




1.6 Connection with Green’s function

We start by recalling the definition of the Green’s function. For € {2, The Green’s
function G(z,() is the function harmonic in €2 except at ¢, where it has a logarithmic
singularity, i.e G(z,() - log ﬁ is harmonic in a neighborhood of (. Moreover, it has

boundary values G(z,() = 0 for all z € 0.

Theorem 4. [1] Let Q be a finitely connected bounded domain, and let G(z,() be the

Green’s function of €. Then the Bergman kernel function is

2%
T 020

K(z,¢) = 2 #C

Proof. Green’s function has the form: G(z,() = log ﬁ + h(z,() , in some neighborhood

of ¢, where h(z,{) is a harmonic function of z. Thus,

oG 1 1 oh
E(%C) = _§z—g‘+%(z’ )
and
G %h
=\~ = =\~ #
azag(z ¢) azag(z () z#¢

We will make use of the Cauchy-Green theorem

J F(2)dz — 2i J Py Fec@
o0 Q 0%



Suppose f is analytic in € and continuous in € and let

Qe = Q-{[z-(I<¢

e = {lz=(¢l=¢}

Since GG and therefore also % vanishes for ¢ on 0 €, and taking the boundary of €2 in the

counter-clockwise direction, and I'. in the clockwise direction, the Cauchy-Green theorem

then gives
Le - Lge B J:?Q+r€
therefore,
1 oG *G
% Feg(z, O f(C)d¢ = — . azaZ(Z’Of(OdA(O

The Cauchy formula then yields,

[ Feoroi = [ (-5 + Fe0)io

) (72 B 52 —C oz
1 1 oh
_ f O | T E0s0
= mif(z),

Since the last integral involving the partial derivative of h is 0, because the 2 functions f
and h are both harmonic and so bounded in €2 and therefore when taking the limit as €

tends to 0, the integral will go to 0. Therefore, it follows that when taking the limit as €

10



approaches 0, we get,

1 . *G
2 [ °G
10 = 2 | 0500

for functions f analytic in © and continuous in Q. Now, recall that

G h
ot 9 = e

(2,0),

where h is a harmonic function.It follows that the partial derivative of the function G of
second order, is analytic.

Taking f(z) = K(z,n), the above formula gives,

2 0’G
2 L S B OK(CAAQ) = K(=m)

but by the reproducing property of the kernel function, the integral is equal to

2%
T 020

(z,n).

11



Chapter 2. Fixed points of the Berezin

transform (I)

We have seen that A%(2) becomes a Hilbert space under the inner product,

< fig>= Lf(z)MdA, f.ge AXQ)

In this Hilbert space setting, we showed in the previous chapter the existence of a kernel
function, and we discussed the kernel’s main property, namely its reproducing property. In
this chapter, we specialize to the case where {2 = D, where D is the open unit disk, and
obtain an explicit formula for the corresponding kernel function. We then consider the
Berezin transform on D and discuss the relations between harmonic functions and fixed
points of the Berezin transform. In addition, we consider possible analogues of the result,

when the property of harmonicity is replaced by that of subharmonicity.

12



2.1 The Kernel function of the unit disk

We start by determining an orthonormal set of functions {¢,} in A?(D).

Observe that the monomials 1,z,2%,23,... form an orthogonal set in A?(D). Indeed,

27 ; It
<" "> = J "ZmdA(z J J ntm ein=m)0 . qr.q = ————Onm-
n+m+2

21
<" "> = J f "l drdd =

Thus, the functions

1
bn(2) = A/ 22m n=0,1,2,3...
e

are orthonormal in A?(D).To show that they form a basis, we show that they span the

space. Equivalently, we show that the Parseval’s identity holds for every f e A?(D).

Ml<fidn> =113
n=0

But this is equivalent to showing the following identity

B [o's) ’a'n‘2 B 0
|!f§—7rn§_]0n+1, f(2) = 3 ane

n=0

which is easily established.
Therefore,the set {¢,} is an orthonormal basis in A2. The Kernel function K (z,() being
an analytic function in ( is thus expressible as a series in this basis. Using the reproducing

property of the kernel, we find that

13



Theorem 4. [1] The Kernel function of the unit disk has the following representation

K(2,¢) = > 6,(2)a(C),

Proof. Since {¢,} is an orthonormal basis, then each function f € A?(D) has a unique

expansion in the form,
a0

FQ) =D endn(C)

n=1
Fix z € D, take f(¢) = K(z,¢) then we have K(2,¢) = >, ¢u(2) ¢n(C). Using the

reproducing property of the kernel,

on(Q)K(20) = ). ca(2)0n()dm(C)

n=0

We integrate with respect to (,

& (2) | b
Pm(2)

hSS

S

&
I

)
3
—~
I\
~—
[

n=0
o n+l_ n+1
- 7;) T : T ¢
1 o0
=~ Y+ )E)”
n=0
11
T o (1-320)2



We next normalize the kernel function obtained and from now on the kernel function

K(z,() will be denoted by

11—z
BRI (s

2.2 Berezin transform on the unit disk

Definition

For each z € D, we have the biholomorphic involution ¢, : D — D given by, ¢.(() = 12:54;“

[3]. These involutions provide an alternative form of transform of a function. So we can

define the Berezin transform T of any u € L'(dA), by

Tu(z) = 1 [ wosudd = | won()aa),

™ D

We show that the above definition is equivalent to the one presented in the previous

chapter, by performing a simple change of variable. [3]

Proposition 5.

Tu(z) = jDu<<>|K<z,<>|2dA<o
O RR [ w(©)
] R R

Proof. Recall that the function ¢, is a biholomorphic convolution. Let

C = ¢z(y)

15



Then,

Thus,

2.3 Harmonicity and fixed points

Theorem 6. If u is harmonic in D, and u € L*(D) then Tu(z) = u(z), ¥V z € D.

Proof. Let ¢ = re®, then

Tu(z) = lf uo ¢,dA

™ Jp
1 1 27 )

= —JJ u o ¢, (re)rdrdd.
™ Jo Jo

¢, is a biholomorphic convolution in ¢, and u is harmonic,thus u o ¢, is harmonic.

The mean value property for harmonic functions gives us that

1 27

Dy ) uo¢,(zo + rew)de =10 ¢,(20),

and so we get

Tu(z) = f w(.(0))2rdr = u((0)) = u(z).

0

The converse of Theorem 6, runs very deep and has been the subject of a number of

16



investigations, culminating finally in a result of [4]. Because of its importance we devote

the next section to a detailed review of it.

2.3.1 From fixed point to harmonicity

Theorem 7. [/] If u € L'(D), with Tu= u then u must be harmonic

Proof. for f € LY(D) , 2 € D, k=0,1,2... , define the Toeplitz operators by

F(Q)dA(C).

T = (k1) | (1 221 — [¢?)

D |1 _ Zz|2(k;+2)

Note that T f(z) represents the original Toeplitz operator T f(z) that we are working with
in this paper.

We define further, M = { f e LY(D) / Tof = [ }.

We note that M is a closed subspace of L!'(D). Next, we establish a relation between the
Laplacian of f belonging to M and the Toeplitz operators and we obtain the following

relation,

ApTif = 8(Thf — Tt f) (*)

and so, for all f € M we get,

AMf = AMTof = S(Tof - Tlf) = S(f - T1f>-

This shows that the map Ay, : M — LY(D) is bounded since f € L'(D) and T} is a
bounded operator.

Using the fact that the Toeplitz operators commute for £k = 0 and k =1 i.e TyT) = 1Ty we

17



get7
ToAyf =8(Tof — ToThf) = 8(f —TiTof) = 8(f =T f) = Auf

Thus Ay carries M into M, so it is a bounded linear operator. Rewriting (*) in the

following way,
Ay

TS = (1 CAk(1+ k)

)Tk—lf (%)

we get by induction that for f € M
Thf = GeaAuTof

where

A

1_+
45(1 + 4)

—.

Grai(\) =

j=1
As k — oo, the functions Gy ; converge uniformly to G;(\) = H;Czl (1- m) on compact
subsets of C. It can then be shown that limy_o, |f — T f| = 0 and so we conclude that as

k — oo, (#x) becomes

f=Gi(Am)f

and so G1(Ayy) is the identity operator on M.
In the next step of the proof, let A € C be such that A = —45(1 — 3), we define then the

following sets,

18



21,1 = {BEC—1<R€B<1}
Ql,l = {BEC : R@B < 8}
Xy = {feLl'D): Ayf=\f}

El = {)\ € 9171 . Gl()\) = 1}

We note that the reason behind choosing the set ¥y ; is that X, n L*(D) # 0 if and only if
B € X1, and the set €y ; is the image of >; ; under the map that takes 8 — A.
We claim that the set E; is the set of all eigenvalues of Ay, i.e if Ay f = Af then A € Ej.
Next, we let () be the monic polynomial that has a simple zero at every point of the set F;
and no other zeros in C, since G (\) # 0 in € then there is an entire function H
satisfying

HNQA) = Gi(A) -1

and H(\) # 0 at every \ € Fj.

We define the spectrum of an operator A, denoted by o(A) to be the set of all eigenvalues
of A, so in our case Fy = o(Ajys). From this, we see that H(o(Ay)) does not contain 0.
We apply the Spectral mapping theorem to conclude that 0 ¢ o(H(Ay,)), and thus, it
follows that H(Ay,) is 1-1.

Using the fact that G;(Ajy) is the identity operator on M we get,

H(An)Q(Ay) = Gi(AM) =1 =0

This means that the range of Q(Ayy) is in the null-space of H(A) which as we just

showed equals to 0. We conclude that Q(Aj;) = 0 on M. Finally we state a lemma and a

19



proposition and make use of them to finish the proof.

Lemma 8. [}/ Suppose that
1. X is a vector space over C,
2. T : X — X is linear,
3. Q0N =TI, A—ai), s € C, ; # a, if i # 7,
4. Q(T) =

5. Y, is the null-space of (T — oy1) .
Then X = X1 @ ... Y.

Proposition 9. [5] The function G1 — 1 does not vanish on Y, = {z€ C:0 < Rez < 1}

Proof. G1(\) = ngé( , where A = -4 § (1-5).

Since G1(0) = G1(1) = 1, it suffices to show that G; — 1 does not vanish in Y —{0, 1}.

Using the product expansion of sine, we have

=105 =10 g )

k=1

\_/

The function 8 — B(1 — ) maps >, onto the parabolic region

P ={zeC: Re(z) = (Im(2))*}

20



Let z € >} and denote s = z(1 — z) € P. Suppose s = x + iy and y = Im(s) > 0. Then

y/k(k+1) Y
0 < arct < tan —
arctan 1+x/k(k+1) arctan k(1 + k) + y?
< arctan —k2 i/r y2
< —y
k2 + y?

so 1+ 2(1—2)/k(k + 1) = Rgei®, for some Ry > 0 and 0 < 0, < y/(k® + y?). It follows

that sin(nz)/m2(1 — z) = Re? for some R > 0 and

Y y “ oy
0<6< < + dk
kz::lk2+y2 1+ y? L k% + y?
y T
= + — — arctan —
1+9y2 2 Y
< 7

Particularly, Re® # 1. Similarly, sin(72)/(72)(1 —2) # 1if s = 2(1 — 2) € P and Im(s) <

0. Finally, if s€e P n R = [0, +0), we get

ﬁ( k+1) ﬁ I<:+1)>_1

k=1 k=1

with equality occurring only when s = 0, i.e when z = 0, or s = 1. [

We apply lemma 8 to the space M and the operator A,;. Then every f € M is a sum

f=> h

)\EEl

proposition 10 shows that £; = 0, hence Q(\) = A and we reach the conclusion that Ay, =

0 for every f e M i.e, Tyf = f implies that f is harmonic. [

21



It is important to point out that with more stringent conditions on the function u, e.g u €
C?(D), a much simpler proof of theorem 6 may be obtained. This proof relies on a formula

that relates the Laplacian of a function u € C?(D) to its Berezin transform on a disk.
Proposition 10. /3] Suppose u € C*(D) and 0 < r < 1, Then

u(0) = %Lﬂu(re”)clﬁ %L< Au(C)log = <l dA(C)

Proof. Starting with Green’s theorem,

fde+Ndy—fJ Z—N——>dA
N0 Oy

where D, is the circle with radius r and circumference C, along with the following identity,

JJDT (Au)dA = Z—uds

where n is the outernormal, and so

ou - . Ty 1
— = (VU).7i = (ug, uy).M = (ux,uy).(;, ;) = ;(xux + yuy).

With these 2 equations, taking N=u, , and M=—u, we get,

d
ff (U + Uyy)dA = f Uz dy + uydr = J (ru, + yuy)—s
\ c c

-
In polar coordinates,

u(z,y) = u(rcosh,rsind) = U(r, )

oU ou ou ou
r—— = r—=—cost + r—sint) = ru, + yu, = ra—,
n

or ox oy
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o _a
on  or’

Note that the Laplacian we used is Au(z,y) = ‘;272‘ + 22775 =4 ;j{;‘g = 4Au(z), therefore,

ou T oU o ("
JJ T 4(Au)dA = JCT 8_nd8 =) @ rdf = S ) U(r,8)d6.

Let p be the radius of D, such that p < r, then the same formula obtained above can be

written in terms of p, so

EJJ sawda = 2 (o0
pJ Jp, ap Jo B

Integrate with respect to p on [0, 7],

l«r %(JJDF) A(u)dA)dp = LQ’T U, H)dQ‘Z:) _ rw U(r,0)do — 27U (0)

0
and so this yields:

1 2w

) U(r,0)do — U(0) = %JO %(fpo(Au)dA)dp-
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We now work the right hand side of the last equality obtained,

% f%( f JDP(Au)dA)dp _ 2 PZWdH(% L " L p(Au)(sew)sds>dp

p=r

el
¢

NS

[ eni [ s

2T
r

| || Tz @) ) e

27
r

df(logr) J (Au)(se)sds

0

SHES

2T

p .
4 Tim (log | ) J (Au)(se?)sds
J p0 o

2T
T

2 ,
= 2| o [ costoau)iotoan
L 0

We next compute the limit above as follows, by continuity of (Au)

105 o j " (Au)(s)sds| < |loglo] J " (Au) (5 | sds|

P 2
< \l0g|pHJ Msds=M\log]pH%—>0 as p—0
0
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So the limit is 0, the equality above becomes then,

] o -

(21T
rr

do | (logr)(Au)(pe”)pdp

JO

3
[

2T
rr

df | (log|pl)(Au)(pe)pdp

JO

|
3w

[
S

2T
rr

do | (logr — log |p|)(Au)(pe™)pdp
JO

3w

[
S

2T

A .

df | (Au)(pe”)log ‘T—|pdp
P

JO

-~

SERCEEEEY
[

[

Au(p) log - dA(p)

|p|<r |p|

Finally, we get

r

A

w(0) = — J w(re®)do + 2 J' | Au(p)log

0 s
[

Next, we multiply both sides of the equation derived by 2r and integrate on r from 0 to 1.

We obtain

(Tu)(0) — u(0) = jl | BUKG)AR) ()
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where

2

Next, we check what conditions are required on u so that the above equality is satisfied.

We look at the Kernel K obtained, this is mainly done in [3].

Let f(x) =log+ — (1 — ), then application of Taylor’s formula with remainder shows that

f(z)
1 (x—1)2
22

Then f(z) > 0for 0 <z < 1.

Since t < 1 and for 0 < x < 1 we get

FO+ M@ =1)+ (1)

1

ﬁ(w - 1)27

Andfor%<x<1wehavet>%andsoweget

fl2) <201 — 2y’

Thus, (+#) holds for u € C*(D) and for

ol

[u(p)|dA(p) < o

26
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and,

fl 1B aAlp) <

Apply now (xx) with u o ¢, instead of u, and get

Tu(z) - u(z) = f A6 DK p)A()

_ j | (D)6

and so we restate the results of Proposition 10 in the form of a theorem,

Theorem 11. [3] For u € C?*(D),

u(p)|dA(p) < o

ol

and,
fl B0~ PV AG) <o
Then
(Tu)(0) — u(0) = fl AU G A
where

K(z.p) = [ g 1 = (1= [0:0)P)

Note that K (z, p) is obtained by setting w = ¢,(p) then dw = |¢.(p)|* dA(p) and so

A(uo¢.)(p)K(p)dA(p)

lol<1

becomes

j AU (= )dA()
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Proposition 12. [3/ The kernel K(z,() obtained in the previous theorem, satisfies

Lr(l=[=)1=1¢*)?
Kz = 5| 1= |

and,

i (LRI

27(1 [P0 JcP)ye 1
| T-=P 2

(2)

Before proving the 2 inequalities, we prove the following equation and we make use of it to

prove proposition 12.

1= oo = S=EEZKD

Starting with the left hand side, a simple calculation yields

_ (z-9QF-0
1—[o.(QF = 1_W
_ 1_|Z’2—ZZ—C3+|C’2
1 =2z
I e e e e (4
- 1 —2z¢
A=A —eP)
11 —=z¢

Proof. we start by proving the first inequality (1) .We have seen that for a function f
defined by f(z) =log - (1 — ) , the following holds,

1

fl@) =log— = (1—2) = 5(1 — )"

N[ —
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So applying this inequality to the function K (z, () we prove (1) as follows,

1 1 ,
K(z,¢) = ;[logm—(l—l@(ol )]
> (1= [P
L=z = [¢)7?
> 5 TEEE |-

where the last last step follows by (3).
To prove (2) we also refer back to the function f(z) =log® - (1 — ) discussed previously,

and we have seen that the following holds,
1 9 1
flz)=log——(1—12) <2(1—2x) §<x<1
x

So applying this inequality to the function K(z,¢) , with z replaced by |¢.(¢)[* we get (2) ,

K(z0) = +[loa g — 1= 1.0
< 20 -10-OPY
20 (1 |20~ )2
< - e |

where the last step also follows by (3).(2) holds for < [¢.(¢)]* < 1, that is

-6 OF < =
thus
(1— )1 — [¢]?)
1-=p T2
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as specified in the theorem. O

Having found that a function u is a fixed point of the Berezin transform if it is harmonic, it
is natural to consider possible analogues of this when the function is subharmonic. It turns
out that subharmonicity of u implies the inequality 7w > u. However the converse of this

statement turns out not to be true globally.

2.4 Subharmonicity and fixed points

Proposition 13. If u is subharmonic, uw € L*(D), then Tu = u in D.

Proof. Tt is known that if u € C* () then u is subharmonic if and only if Au > 0. Since

A(uo ¢:) = ((Au) 0 ¢.)|¢]*] = 0,

it follows that, if u is subharmonic in D then u o ¢, is subharmonic in D.

Using the mean value inequality for subharmonic functions we obtain

1
0

Tu(z) - % L 1 L T o 6. (v yrdrdd > f 2 (10 6.)(0)dr — u(2)

We next show that the converse of the proposition

13 does not hold, by providing a function u that is not subharmonic but that satisfies T'u > u.
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Example [3]

Define a continuous function G by,

Gla) = | [0,

Note that G(0) = 2, so there exists § > 0 such that G(a) > 3 if |a| < 4.

Let u be any strictly convex function that is continuous and integrable on [0,1) such that
u(0) = u(er) = 0 for 0< a < 3, then u(r) < 0 for 0< r < o, and u has a minimum at a
unique point [.

We further assume that 8 < ¢, and regard u as a radial function on D. We next prove that
any such u satisfies Tu > wu :

First suppose that |a| < 5, then u(a) = u(|a|) < 0 because |a| < f < o and u(r) < 0 for 0

<r<oao.

On the other hand, G(a) = §, |¢.] %4 > 1 > a.

By Jensen’s inequality;,

o[ 16D < [ wos

™

Hence Tu(a) = u(a) in this case.

The second case is for |a| > (3, we have

a = fﬁba%
D T

dA

a < f 1622
D T
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The equality above is shown by use of the mean value property on the disk,

flz0) = — f(2)dA(2).

mr? D(zg,r)
Therefore u(a) < u(§|@q|%) because u is strictly increasing on (3,1), then by Jensen’s

u(a) < u(f wo gba%).

D m

And so also, Tu(a) = u(a) in this case.

Clearly, u is not subharmonic because u(0) = 0 and

1 21

o ), u(re®)df = u(r) <0, 0<r<a.

While it is not true that the condition 7w > u implies subharmonicity of u, it does imply
some subharmonicity near the boundary. We consider this next, but in order to do so, we
will need some estimates on integrals. The following lemma is stated in [3] without proof.

Because of its importance, we supply a proof below.

Lemma 14. [3] There exists ¢co > 0 such that

(1—[¢)? 1
~— >’ dA > ¢l
Lkl T =g Al > colos 77

Proof. 1. We show that

o |L—ae?lt (1—la?)*

J‘“ df (1+ |al?)
Let z = € then df = ‘Z—j

11— ae”* = (1 —a2)?(1 —@2)® = (1 — za)*(1 — 3)2

32



It follows that

=

-1 1—az (1—19)2

J~27r d9 B J*
o |1 —ae?* i Jp.
.

a € {|z] < 1} where as 1 ¢ {|z| <1} , so by Cauchy formula,

1 zdz 1 f(z) ) = z

i jz:l (1—az)2(z—a)? i J|2|=1 (z —a)? (f( ) (1-— Ez)2>
= %2%2’]”(5)

(1 —lal*)

(1 —faf?)?

(1 +al*)

(1= af?)?

S| =

1 1—az z—a)

= 27

= 27

2. We show that the following holds for |z| <1

f 0= g _ o f r(L= )2+ e
¢ 0

<1 11 —ZC[* (1 —[rzl?)?

So,

a-lgp?, f f -
Jou o5 = [ e

do
- 1— 7
L ( )’ L |1 — Zre?|

1 . 2)2 2
_ 27TJ r(1 r)(1+|rz|)dr
0 (1—[rz[?)?

33



3. We try to determine the right hand side of the equation obtained in part 2,

2 i: n
2(1 + ) - 0 n+1
Goap Gl e e 20 e

I
(N}
_l_
s

[(n +3)(n +2)2" + (n+2)(n + 1):6"“]

3
Il
(=]

— 2+

18

Pf”%n+2f]

S
Il
o

Replacing z in the above by r?|z|?,

1+ 722|? o
=1+ r n+2(n + 2)2|Z|2n+2
EErEE )

multiplying the above by r (1 — r?)?

r(1—7r2)%(1 + r?z%)

2/,.2n+3 2n+5 2n+2
A= r2) (n+2)%(r —2r + )

RgE

=(r—2r*+7°) +

and finally integrating the last equation from 0 to 1 we get,

1 2\2 2 2 _ o0
r(1—7r*)*(1+ r?|z|%) 1 1 5, 1 2 1 _—
2 dr = 2m|=+ = +2 — + ”*]
L - r)r "6 2;;” Vo2 e tas P
118 2
B 9)2 2n+2(
7T_6+2HZ_;)(TLJr VI (n+2)(n+3)(n+4)
1 G (n+2)]z)? 2
= or ¢ ]
"6 T;)(n—ki’))(n—i—él)

Now it is easily observed that




Therefore it follows by parts 1, 2 , and 3

[P e (e (Kl
0

I¢]<1 1 —=(|* (L —r2z2)?

0 2n+2

—|—2
by3 [ Z (n E ]
= (n+3)(n+4)

100 Z‘2n
> (g EZ[ |
T 1

= —(1+21
gL+ 2loa—py)
27T10 1
3 P14

2T

Thus, the lemma is proved for ¢y = =F

Previously, we provided a counterexample showing that for Tu > u , u need not be
subharmonic. The next theorem shows that the condition Tu > u does imply some sort of
an almost subharmonicity near the boundary, i.e we show that limsup Au > 0 given that

Tu > u.

Theorem 15. [3] Suppose that u € C*(D),

S|g|<1 u(Q)[dA(C) <
Ser [Au(QI(1 = [¢]*)?dA(¢) < o0,

and that limsup Au(z) < 0 for some (o € 0D. Then there exists § > 0 such that Tu(z) <

z2—(o

u(z) for all z € D such that |z — (| < 0.
Proof. we assume that (o = 1.There exists a > 0 and € > 0 such that if z € D and |z — 1] <

35



€ then Au(z) < —a.
Let D(1,e) = {2z € D:|z — 1| < ¢} and D(1,¢)’ = {D/{D(1,€)} } , then we have

LAu@)K(z,g)dA(g) = L(l )Au(c)K(Z,C)dA(C)

b ARG,
D(1,e)
We start with the second integral,so for |z — 1| < § and ¢ € D(1,¢€)’,

(L= ERO=KP) _ oy
=GP

DN —

if (1—|z|?) is sufficiently small, and so by the inequality (2) in proposition 12, we have that
K(z,¢) < C(1 — |2]*)3(1 — |¢|?, which yields

| auOKE Qa0 <= PR [ a0l - oPRaA)
D(1L,e) D(1L,e)

Note that this is O((1 — |z]?)).

Next, we deal with the first integral,

JD@ DUOK( Q) < f K(2,O)dA(C)
o J K(: J K (2, Q)dA(C)
D(1,e)
—a [ (1- PP - [CP)
) %L o 0
2a [ (Pl
+ - L(Lé) TpaT dA(C)
< ~Cual1 - ) log T+ O((1 = )
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Therefore,

Tu(z) —u(z) < —Coa(l — |z]*)?*log +O((1 = |2]*)?),

1 -]

which becomes negative as z approaches 1.
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Chapter 3. Fixed points of the Berezin

transform (II)

In this chapter, we consider analogues of results in Chapter 2, where the disk is replaced by
an annulus 7. We start by obtaining the Bergman Kernel function for the annulus and we
define the Berezin transform of the annulus in terms of the kernel function, then we
consider the main problem in this chapter which is to determine the fixed points of the
Berezin transform in the annulus. This problem remains open at present, but we are able to

give some necessary conditions for a function u to be a fixed point of the berezin transform.

We recall that the reproducing kernel K, is the unique function in L?(.7) such that for

every f e A2,

< f K. >= f(2) = f FORTDAA).

3.1 The kernel function of the annulus

We start by determining an orthogonal set of functions {¢,} in A?(«).

Observe that the monomials {2" : n € Z} form an orthogonal set in A%(.«).
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Indeed,

r on(1 — Rntm+2
<z""> = J 2"ZmdA(z J J ntm i(n=—m)0,. 1. 10 _ m( )5nm_
o n+m+2 '
m(l - R

r2m rl 2n+2
- R
<z "> = J J "l drdh = ) n#—1

0 R n+1

11 rl r27 11 1
<—,-> = J f —drd9=27rf —dr = 2mlog — n=-—1
rJo T rRT R

Thus the functions

Zn4 / —ntl n # -1
7r(1—R2" 2)

1
27 log

1% n=-—1
R

are orthonormal in A?(«/). To show that they form a basis, we show that they span the
space, by showing that Parseval’s identity holds for every f € A?(«/).And this is equivalent

to showing the following identity holds

+00 o2n+2 +00
7T(1 - R ) 2 o n
Z n |an| ) f(Z) - Z anz

n=—0u n=—au

|£1* =

which is easily established. Therefore the set {¢,} is an orthonormal basis in A?(.). Next
we make use of the reproducing property of the kernel function to derive a representation

for the kernel function of the annulus, and finally obtain its formula explicitly.

Theorem 15. The kernel function of the annulus has the following representation

> on(Q)on(2)

n=—0u

We omit the proof of this theorem for it is identical to the case of the unit disk which is

established and proved in the previous chapter.
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Therefore, the Kernel function of the annulus is given by

K('Z)C) = ¢—( +Z¢n an

- 27‘(‘ IOg R R2n+2 R2n+2

n+1 (3¢
B 27rlogR Z R2”+2

where the sum is taken over all n # —1.

From now on, K,, will denote the normalized kernel function of the annulus, for w € 7.

3.2 The Annulus mean value property

Lemma 16. [6] Suppose that u(z) = f(2) + g(z) + log|z| is a harmonic functions in
L*(a), with f and g analytic on <. Then f and g belong to L2 ().

Proof. without loss of generality, we assume that u is a real valued harmonic function.

Hence u = ReF + clog|z| for some analytic function F.

If we express F' as a Laurent series, F(z) = >, 2 a,z" , then u has the form
1 -
u(z) = 3 (F(z) + F(z)) + cloglz|

Let z = re? | replace F(z) by its Laurent series, evaluate F(z), and replace n by —n, we get
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n=—0oo

, 1, & , = .
u(re?) = 5( Z 2a,r"e™ + Z QE_nr_"e’”9> + clogr
n=—0o0
o0

u(re?) = Z (ant™ + @pr~™)e™ + clogr.

n=—o
Since

27 ) da
J (e 222 (|eliogr + 2Re(ao))?

2
, de
+ Z Z L (anr™ 4+ a_pyr™ ") (@mr™ + a_mr_m)el("_m)eg

[n|=1 |m|=1

it follows that,

1 r2m
0 > J lu(2)|?dA(z) = K + f J < Z |an|?r*™ + |a_n*r™?" + apa_, + d_ndn> rdfdr (*)
o R Jo

In|=1

where k is a positive constant.We need to show that F' € L2(«/), so we make use of the last

inequality,

do

Jl 2, (men) = Llc fo%( 2 am%me)( 2 a—mr_me_img)g

Rp>1 In|>1 Im|>1
1 1 pr27 ] 2 6

= = F(re®y — F ()) -
4LL(<re> 0) 5

SO S;Z‘n|>1(ana,n) converges, since F' is analytic on 7. Therefore, from (*) it follows that

1
f 2 |a,|*r*"dr < oo,

Rpj=1

and so as claimed, F(2) =Y 2a, 2" € L2(«) O

n=—0a
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3.3 Berezin transform on the annulus

For an integrable function u, we introduce its Berezin transform Tu on the annulus by

Tu(z) = Lu@)u@(orm(o

We recall from the first chapter that the Toeplitz operator with symbol ¢, denoted T} can
be defined by Ty f = P (¢f), where P is the orthogonal projection from L?*(2) onto
A?%(Q), for all ¢ belonging to L®(2).

Proposition 17. [6] If ¢ = fi + f» and ¢ = g1 + G are bounded harmonic functions on

o satisfying TyTy, = T,T, then the function u = figs - G1.f> must satisfy Tu = u in <.

Proof. TyT, = TyTs implies that

< TQpKw,TEKw > = < T¢T¢Kw, Kw >
= < TwT(wa, Kw >

= < T¢Kw7TEKw >

for all z € &.
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Now, we express T, K., and T3K,, in terms of the functions g; , g» and the kernel.

TyKy = PYK)(2)
= P(g +72)Ku(2)
= 01(2) Ky + P(g204)(2)
= g1(z2)Ky+ < P(zKy), K, >

= gl(z)Kw+ < Kwag2Kz >

= g(2)Ky+ < @K, K, >

= g(2)Ky + g2(w) Ky (2).

Similarly, we find that T5K,, = f2(2)Ku(2) + fi(w) Ky(z2), so that

<T¢Kw,T$Kw > = J Td,KqugK_wdA(Z)
of

:mem+ﬂ@m@]M@m@+mwm@wm>

= L{ ’Kw(Z)P(gl(Z)W + 91(2) fr(w) + g2(w) f2(2) + gg(w)fl(w)>dA(z)

But,

Lm@MMWMWM®==MM<W%&m
= A (w)Kau(w)
= Rw)g (W) Ko

= filw)gi(w)
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and so finally,

< Ty 5K, > = Lgl(Z)WWw(Z)FdA(Z)+f1(w)91(w)

+ fi(w)ga(w) + fo(w)ga(w) — (¥)

by interchanging i) and ¢ and using commutativity, we get
< TwKw,Tng >=< TqﬁKwaTEKw >
The last equality along with (x) gives,

L(f@— 0172) (2) [ El2) PAA(2) = (i35 — 01 o) (w)

for all w e o7 .
Therefore the function u satisfies Tu = u and so it is a fixed point of the Berezin

transform. 0

The functions u satisfying T'u = u are said to have the annulus mean value property. We
have seen in the previous chapter that Tu = w in D implies that u is harmonic on D for all
functions integrable on D. One may naturally wonder if the same holds true for functions
integrable on 7. To start with, we look for harmonic functions that have the annulus

mean value property.

Proposition 18. [6] If u is a harmonic function in L*(&/), then Tu = u in & if and only

if u = f+9, where f and g are analytic functions on < .

Proof. Tt u(z) = f(2) + g(z) € L?*(«/), then by Lemma 16, it is easily seen that T'f = f
and Tg = g.

Suppose now that Tu = u € &/ and suppose that u = f + g + log|z| . In [6] the author
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points out a communication to him by Ahern, to the effect that log|z| does not have the
annulus mean value property and therefore the function u cannot have the logarithmic

term log |z| if it satisfies Tu = u. O

Now we strengthen the assumption on u by assuming it is continuous on the closure of .o/
and we try to see whether with this condition, harmonicity can be obtained from the

annulus mean value property of u.

Proposition 19. [6] Ifu € C(</). Then Tu = u and

JQﬂu(Rew)@ _ J @)X

0 2  Jo 2m
if and only if u = f + 7, where f and g are analytic on < .

Proof. Suppose that the averages of v on both circles are the same. Then the poisson
extension of u|s. is a harmonic function v in . We denote by v again its continuous
extension to the boundary. Applying proposition 18 to the function v, we get that Tv = v
in .o/, and so T'(u — v) = (u—v).

We now show that if w = u—v = 0 on 0./, and w satisfies Tw = w then w = 0 on & i.e u
=von .

We recall that the Kernel is a normalized function and so,

L%MWM@=1

Tw = w implies the following

Tu(z) = | wOIROPIAQ) = w(e) = | w@lk(OFAQ
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and so we get

| [ - wenoraa0 =0 ¢

for all z € 7. We show that this last equality implies that w(z) = 0 for all z € <.

Since w is continuous on <7, it attains its maximum /minimum value at a point z € o If
29 € 0.7, then the maximum value is 0, and the minimum value is also 0 so the function in
this case must be identically 0 inside o7 as well as on the boundary.

If 29 ¢ 0/, s0 2y € &/ then we can apply (+)

| 1) = weallin(©P Q) =0

So, [w(¢) — w(20)]|k=, (¢)]? is a continuous function of ¢ which is < 0 for all ¢ and its
integral equals to 0, therefore it must be identically 0, so w = 0 and therefore v = v on <.
It follows that u is a harmonic function since v is harmonic, and so u = f + g for some

functions f and ¢ analytic on 7.

Conversely, if u = f + g€ C(«), then f and g belong to the Hardy space H*(«) by
Lemma 16. Cauchy’s theorem guarantees that the averages of u on both boundaries are the

same. 0

For L, (z) = 2" for n € Z, we define the following function

(uxLy)(z) = f ’ u(ze”"ﬁ)Ln(ei‘b)@

0 2m
Lemma 20. /6] Ifu e C(&/) ,L,(z) = 2", n # 0, and Tu = u then
1. (uxL,)e C()
2. T(usLy) =ux Ly

3. Averagesp, (u+l,) = 0 = Averagesp (u* Ly,)
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4. u = Ly, 1s a harmonic function.
5. Au is a radial function on < .

Proof. 1. Since u € C(</) and L,(z) is a continuous function, it follows that (u * L,) €
C (o).

2. From the Laurent series expansion of the kernel function obtained before,

we see that

1
2rlog R

i n+1 Cid— i
K pio(we ™) = —Z iz (we™"Ze?) —

= K.(w)

(we™"9ze™)

where the sum is taken over all n # —1.Therefore,

T(uxLn)(z) = fﬂ [Jﬂu(w€i¢)|Kz(w)‘2dA(’w)]Ln(ei¢)@

0 2m

B f Sz )L () 5

0 2m
= wu=*Ly(2)

3. We write explicitly the average of the function u = L, (z) on the boundary of the unit
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disk as well as on the disk of radius R, using Fubini’s theorem.

r2m L df
Averagesp, = (u ln)(R@w)%
Jo

r2m r2m ] ) d¢ d@
_ 0=, ()2 ) 2
0 <J0 u(Re V(e )27r>27r
r2m r2m ] do ] d(b
= RN ) L, (") —
. <j0 u(Re )271') ()5

r27 r2T—ao dt

B Jo <J U(Reit>27r)Ln<ei¢)d¢

. o

= ([ ) (f) i)

The last equality follows since,

27 27
f Ln(ew)@ _ f R’nei'nﬂ@ =0

0 2m 0 2

Similarly, we get the same result when R = 1, i.e on the boundary of the unit disk.

Therefore the averages on both circles are equal to 0.

4. Since the function (u = [,,) has the annulus mean value property (7'(u * Ly,) = u * Ly,
by part 2) and has equal average on both circles (by part 3) then Proposition 19

implies that (u = [,) is a harmonic function.
5. (u = L,) being harmonic by part 4, we get

Aur L)) = | Alutze #)Lue)52 = [ (Bu)ze)emd? <o

0 2m 0 2T
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Let z = re?, and make a change of variable to get,

2
J (Au)(rei‘z’)emd’@ =0
2m

0

for all n different from 0. Thus Aw is a radial function on the annulus.

We next show that under these conditions, the function « is the sum of a radial and a

harmonic function on &7, but first we state a lemma that will be used later on.

Lemma 21. [6] Ifu e C(), then A(%#(u)) = Z(Au), where
B(u)(w) = — f " (e w)do

is the radicalization of u.

Corollary 22. [6] If u € C(/) and Au is a radial function, then u can be expressed as the

sum of a radial function plus a harmonic function.

Proof. lemma 21 gives,

AR (u)) = Z(Au) = Au,

where the last equality follows since Aw is itself a radial function. And so,
A(u— Z(u)) = 0, which means that v — Z(u) is harmonic. Therefore, u can be written as

a radial function plus a harmonic function in the following way,

u=2%u)+ (u—%u)),
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Using the fact that 2(u(z)) = (u* Lo)(2), it follows that if If u € C(&/) satisfies Tu = u in

of , then u = Z(u) + f + g, where f and g are analytic functions on <7.[6]

3.4 Convex radial functions and fixed points

In attempting to determine the fixed points of the Berezin transform, it is natural to
consider radial functions. But even in this case, difficulties occur. In this section, we
present sufficient conditions on a radial function w that guarantees that Tu > w or that Tu

< u.

Proposition 23. Suppose f: [R,1] — R is a convex increasing function. If u: o — R is
defined by u(z) = f(|z|), then Tu = w. If instead, f is a concave decreasing function, then

Tu < u.

Proof. Fix z € o and write du(C) = [k.(¢)[*dA(¢). Then, §_ du(¢) = 1. Since f is convex,

an application of Jensen’s inequality followed by use of the increasing nature of f gives

(Tu)(z) = Lu@)m(ofdfx(o
_ f £ (<)
> 1( ] wano

> 1(1] drtoraa)
= £ = ut2).

A similar proof can be supplied when f is concave decreasing. O

Remark: One reason why the function logr presents some difficulties in deciding that it is
not a fixed point of the Berezin transform on the annulus, is that it is concave but

increasing.
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