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Chapter 1

Introduction

1.1 Path Integral Formulation of Quantum Filed

Theory

The path integral formulation is based on the partition function which is the

expression of the form,

Z =

�
Dφe

iS(φ)

where S is an action and Dφ is a formal, rigorously undefined, measure on the

space of fields (i.e functions from the manifold to some space).

1.1.1 Feynman diagrams

Feynman diagrams are diagrammatic notations for specific expressions which

appear in the expansion of the partition function. Such diagrams are used in

quantum field theory to give us a simple image of interaction between subatomic

particles. For example, the following figure [5] describes the interaction between

an electron and a positron. The 2 particles collide to produce a photon γ that

break to a quark and anti-quark pair after radiating a gluon g.
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Figure 1.1: Feynman diagram

1.2 Background Field Theory

The BF theory is a topological field theory where the variables of this theory are:

• an SU(2) connection, denoted byA.

• an su(2)-valued 1-form, denoted B,

where the action is given by

S(B,A,M) =

�

M

Tr(B ∧ F (A))

for a manifold M, where F (A) is a 2-form representing the curvature of A, and

the trace is taken in the adjoint representation. The BF theory can be quantized

[3] by the path integral formulation:

Z(M) =

�
DB DAe

iS(B,A,M)

In order to make mathematical sense of the above integral we have to do a

discretization by introducing a triangulation of the manifold M, ∆ and its

topological dual ∆∗, as well as dicretize the fields. We do this by considering the

manifold as a collection of tetrahedra glued together. ∆∗ isdefined to be the

2-complex where
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• every vertex of ∆∗ corresponds to a tetrahedron.

• every dual edge corresponds to a face in ∆.

• every dual face corresponds to an edge in ∆.

The discretization of the fields is done in the following way:

• integrate the field B over the edges of our triangulation to get an su(2)

element for every edge.

• integrate the field F over the dual faces to get an su(2) element for every

dual face of the ∆∗.

The discretized curvature F can be defined through the holonomy around the

boundary of the dual face that it is discretized on. That is, if we use the relation

Holonomy = I+ F + ...., we get tr(B(I+ F + ....)) = tr(BF ).1 Therefore the

discretized theory has the following set of variables:

• an su(2) element Xe corresponding to every edge e in the triangulation ∆.

• an SU(2) element g∗e corresponding to every dual edge e
∗.

The product of all the ge∗ around a dual face corresponding to the edge e will be

denoted by Ge. The discretization above gives the following action:

S =
�

edges

Tr(XeGe)

1B is self adjoint and so Tr(B)=0
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Thus the discretized partition function becomes2

Z =
�

e

�
dXe

�

e∗

�
dg

∗
e

�

e

(1 + �(Ge))

2
e
i(
�

e Tr(XeGe)

The integrals over Xe can be done, and give

Z =
�

e∗

�
dg

∗
e

�

e

δ(Ge)

The above deals with the situation where no particles are present. Let us

describe the modification required if there are particles moving in M. Let Γ be a

sub-graph of the 1-skeleton ∆ where edges of Γ are thought of as world-lines of

the particles moving on the edges of the Feynman diagram. We discretize the

fields [6] in the following action,

S =

�

M

Tr(B ∧ F (A))−
�

i

�
Tr(Bpi)

where
�

i

�
Tr(Bpi) is taken over over the distinct edges of Γ, to get

S =
�

edges/∈Γ

Tr(XeGe) +
�

edges∈Γ

Tr(XeGeue
−1
e
(meJ0)ue)

where ue
−1
e
(meJ0)ue is an SU(2) element corresponding to the su(2) element

meuJ0u
−1 and me is the mass of the edge e ∈ Γ. Note that there is one u for

every edge of Γ.

2The factor
(1 + �(Ge))

2
is introduced in order to get a delta function in our integral because

otherwise we will get δ(G) and δ(−G). See appendix A.
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Now the partition function becomes,

Z =
�

e

�
dXe

�

e∗

�
dg

∗
e

�

e

(1 + �(Ge))

2

�

e∈Γ

�
duee

i(
�

e/∈Γ Tr(XeGe)+
�

e∈Γ Tr(XeGeue
−1e(meJ0)ue)

We can integrate over Xe to get

Z =
�

e∗

�
dg

∗
e

�

e∈Γ

�
due

�

e/∈Γ

δ(Ge)
�

e∈Γ

δ(Geueheu
−1
e )

This expression is formally divergent. We consider the following change of

variables, g =

�
1− κ2

����P
���
2
+ κ�P . �J where P is the non-commutative momenta in

the 3-ball Bκ(R3) of radius
1

κ
= 4πG, and G is the Newton’s constant. Using the

gauge fixing procedure [6] is done in lattice gauge theory,3 the above expression

becomes

Z =

� �

e∈Γ

κ
3
d
3 �Pe

π2

�

e∈Γ

δ

� ��� �Pe

���
2
− sin2(meκ)

κ2

��

e∈Γ

δ

�
⊕e∈∂v �Pe

�

By refining our triangulation we have assumed that there is one dual edge with

non zero group element for each edge of Γ. In other words, the terms

δ(Geueheu
−1
e ) and δ(Ge) combined with Bianchi identity 4 become δ(⊕e∈∂v �Pe)

and δ
� ��� �Pe

���
2
− sin2(meκ)

κ2

�
respectively. This integral then is asymptotic to the

amplitude given by the Feynman diagram corresponding to the standard action

3The gauge fixing is done by selecting a maximal tree in the dual complex and then using
gauge invariance freedom at the vertices of the tree to make all the g’s on its edges equal to the
identity. see [8] for details.

4The Bianchi identity in the discrete corresponds to the fact that the product of G’s for all
edges which meet at a vertex is equal to the identity.
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in scalar field theory as κ → 0. So the question now is, does there exist an action

S
� such that the value of the above integral is equal to

�
Dφe

iS�(φ) for finite

fixed κ?

It can be shown [4] that such an action exists and is given by,

S(φ) =
1

8πκ3

� �
1

2

�
φ �

��− sin2(km)
κ2√

1− κ2∂2

�
φ(x)

�
+

λ

3!

�
φ � φ � φ

�
(x)

�
d
3
x

where we have defined the Fourier transform from functions defined on SU(2) to

functions on R3 by f(X) =

�
e

i
2κTr(Xg)

f(g) dg, where the � product is the

non-commutative product e
i
2κTr(Xg1) � e

i
2κTr(Xg2) = e

i
2κTr(Xg1g2), � is the

Laplacian on R3.

Thus it is important to study the Fourier transform on functions defined on

SU(2) and the corresponding inverse Fourier transform of functions defined on

the Lie algebra su(2) where we utilized the fact that su(2) ∼= R3.

6



Chapter 2

Schwartz space

2.1 Functions of "Rapid Decrease" on S
1

Let us begin with the case of function on the circle S
1. The set of functions that

we will be interested in is the set of smooth functions. We shall denote it by

S(S1). Note that this is the the collection of smooth (i.e.

infinitely-differentiable), complex-valued functions φ which clearly satisfy

||φ||n = supx∈S1 |Dn
φ(x)| < ∞ ∀n ∈ N1

.

It would be very convenient if we could replace the norms above with

integral-squared ones as then we would be able to employ orthogonality

arguments in our analysis. This leads us to define the family of norms

||φ||n,2 =
�

S1

|Dn
φ|2.

1We use here the convention where N includes the zero.
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Now given two collection of seminorms {||.||n}n∈N, {||.||n,2}n∈N we can talk about

their equivalence, i.e. whether they define the same topology on the (locally

convex) vector space. It can be shown[1] that they do, provided that one can find

a collection of constants {Cn,m}∞m=0, only finitely many of which nonzero, such

that for any φ ∈ S(S1) we have

||φ||n ≤
∞�

m=0

Cn,m||φ||m,2,

with a similar inequality going in the other direction.

We now have the following

Lemma 2.1.1. The two families of norms {||.||n}n∈N and {||.||n,2}n∈N are

equivalent.

Proof. For one direction we have

||φ||n,2 = ||Dn
φ||2

=
��

|Dn
φ(x)|2

�1/2

≤
��

||φ||2n
�1/2

= 2π ||φ||n

The other direction is a little more tricky. Let D
n
φ(x0,n) = minx∈S1D

n
φ(x).
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Then

|Dn
φ(x)| =

�����D
n
φ(x0,n) +

� x

x0,n

D
n+1

φ(x) dx

�����

≤ |Dn
φ(x0,n)|+

�����

� x

x0,n

D
n+1

φ(x) dx

�����

≤ C1 ||Dn
φ(x)||2 + C2

�� x

x0,n

��Dn+1
φ(x)

��2
�1/2

= C1 ||φ(x)||n,2 + C2 ||φ||n+1,2

=⇒ ||φ(x)||n ≤ C1 ||φ(x)||n,2 + C2 ||φ||n+1,2

Therefore, the two families are equivalent.

Preposition 2.1.2. The set Ak =

�
e
ikx

√
2π

, k ∈ N
�

is an orthonormal basis for

L
2(S1).

Proof. To prove orthonormality, we will take the inner product between two basis

elements. Consider

(ek, em) =

� 2π

0

e
−ikx

.e
imx

2π
dx

=

� 2π

0

e
i(m−k)x

2π
dx

=






0, if m �= k

1, if m = k

Therefore, {ek, k ∈ N} are orthonormal. To show that {ek}k∈N is a basis, note

that the set of linear combinations of ek’s is an algebra of continuous functions

on S
1 that separates points, which vanishes nowhere, so by Stone-Weistrass
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theorem we get that this set is dense in C(S1), the set of continuous functions on

S
1. So any function f ∈ C(S1) is the uniform limit of some sequence {gk}k∈N in

this algebra. But C(S1) is dense in L
2(S1), this implies that for any f ∈ L

2(S1),

f = lim
n→∞

n�

k=0

ak,nek, but we want to find some coefficients ak’s that are related to

f and independent of n. We claim that such ak’s are the Fourier coefficients of f .

To see this, let ak =< f, ek > and notice that

�����

�����f −
n�

k=0

ak,nek

�����

�����

2

=

�����

�����f −
n�

k=0

ak,nek +
n�

k=0

akek −
n�

k=0

akek

�����

�����

2

=

�����

�����f −
n�

k=0

akek +
n�

k=0

(ak − ak,n)ek

�����

�����

2

=

�����

�����f −
n�

k=0

akek

�����

�����

2

+

�����

�����

n�

k=0

(ak − ak,n)ek

�����

�����

2

+ 2Re
�
< f −

n�

k=0

akek,

n�

l=0

(al − al,n)el >
�

But we have,

< f −
n�

k=0

akek,

n�

l=0

(al − al,n)el > =< f,

n�

l=0

(al − al,n)el >

− <

n�

k=0

akek,

n�

l=0

(al − al,n)el >

=
n�

l=0

(al − al,n)al −
n�

k=0

ak(ak − ak,n)

= 0

10



Thus,

�����

�����f −
n�

k=0

akek

�����

����� ≤

�����

�����f −
n�

k=0

ak,nek

�����

�����

Any function f ∈ L
2(S1) can be written as, f =

∞�

k=o

akek where ak =< f, ek >,

and the sum converges in the L
2 sense. Note that this is the Fourier series of a

continuously differentiable function on the circle which means that the series is

absolutely convergent. Note that the derivatives of f can also be represented by

their Fourier series for the same reasoning above. Therefore using integration by

parts we get D
m
f =

∞�

k=o

ak(ik)
m
ek, and this sum should converge because

f ∈ S(S1). Therefore we get that
∞�

k=o

a
2
kk

2m
< ∞. In particular we have that,

sup
k

|akkm| < ∞.

Now we will prove that the map that takes the function f to a sequence of its

Fourier coefficients is an ismorphism.

Theorem 2.1.3. Let sk be the set of sequences {ak}k∈N with the property

sup
k∈N

|ak| |km| < ∞, for each m. We topologize sk with

||{ak}k∈N||m =

����
∞�

k=0

k2m |ak|2.Then the map φ : S(S1) → sk given by

φ(f) = {ak} is an isomorphism.

11



Proof. To see that the map φ is continuous, Note that

||φ(f)||m = ||{ak}||m

=

����
∞�

k=0

k2m |ak|2

= ||Dm
f ||2

Let f1, f2 ∈ S(S1) and c ∈ R such that f1 =
∞�

k=0

akek and f2 =
∞�

k=0

bkek.We start

by showing that φ is linear,

φ(cf1 + f2) = φ(c
∞�

k=0

akek +
∞�

k=0

bkek)

= φ(
∞�

n=0

(cak + bkek)

= {cak + bk}

= c{ak}+ {bk}

= cφ(f1) + φ(f2)

To see that φ is one-to-one, note that
φ(f1) = φ(f2)

=⇒ ak = bk

=⇒ ak = bk ∀k ∈ N

=⇒ f1 =
∞�

k=0

akek

=
∞�

k=0

bkek

= f2

12



Hence, φ is one-to-one.To prove that φ is onto, consider a sequence {ak} ∈ sk.

We claim that the function g =
∞�

n=0

akek is in S(S1). Note that this sum

converges in the L
2 sense and therefore we can exchange integration and

summation when integrating such sums. For this, consider

||g||n,2 =
��

(Dn
g)2

� 1
2

=

��
(
�

akD
n
ek)

2

� 1
2

=

��
(
�

ak(ik)
n
ek)

2

� 1
2

=

��
(

�
(a2k(ik)

2n
e
2
k)

� 1
2

=

��
a
2
k(ik)

2n

� 1
2

But since sup
k∈N

|ak| |k|m < ∞, then the series
��

a
2
k(ik)

2n

� 1
2

converges.Therefore

g is in the Schwatrz space over S1.

As a consequence of this theorem, every function in the S(S1) space can be

represented as a rapidly decreasing sequence of real numbers. We will show that

a similar result applies for distributions on S
1. A "Schwartz" distribution on S

1

is a linear continuous functional that takes smooth functions on S
1 to R. We will

denote the set of "Schwartz" distributions by S �(S1).

Theorem 2.1.4. Consider the distribution T ∈ S �(S1).Let bk = T (ek)∀k ∈ N.

Then for some m ∈ N, |bk| ≤ Ck
m
. Conversely if |bk| ≤ Ck

m
for some m and for

all k there is a unique T ∈ S �
with T (ek) = bk.

13



Proof. Since T ∈ S �(S1), we have |T (ek)| ≤
L�

j=0

Cj ||ek||mj
. But

||ek||mj
= k

mj ||ek|| = k
mj . Let m = max

j
(mj), then |T (ek)| = |bk| ≤ Ck

m for

some constant C.

Now suppose |bk| ≤ Ck
mfor all k. For any sequence {ak} satisfying

sup
k∈N

|ak| |k|m < ∞, define B({ak}) =
∞�

k=0

bkak. Then

|B({ak})| ≤
∞�

k=0

|bk| |ak|

≤ C

∞�

k=0

k
m |ak|

≤ C

� ∞�

k=0

k
2m+2 |ak|2

� 1
2
� ∞�

k=0

1

k2

� 1
2

≤ C
π
2

6
||ak||m+1

Thus B defines a linear continuous functional on sequences {ak} that satisfies the

above property. We have proved that any Schwartz function on S
1 can be

represented with such sequences. Therefore, there is T ∈ S � with

T (
∞�

k=0

akek) =
∞�

k=0

akbk where T (ek) = bk. To see that T is unique, let T1 be

another distribution such that T1(ek) = bk. Note that T and T1 are equal when

acting on finite sums like
N�

k=0

ckek, but any function f ∈ S(S1) can be written as

f =
∞�

k=0

akek where this sum converges uniformly to f. Then T = T1, and thus T

is unique.
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2.2 Schwartz functions on R3

Now we will talk about functions of rapid decrease on R3. The set of such

functions is denoted by S(R3).

Definition 2.2.1. A complex-valued smooth function f is said to be a Schwartz

function on R3
if it satisfies

||φ||m,n = supx∈R3 |xm
D

n
φ(x)| < ∞ ∀m,n ∈ N

Hence, the Schwartz functions are those functions that decrease along with their

derivatives faster than the inverse of any polynomial. It can be shown [1] that

the similar results as above apply for the the Schwartz space S(R3) and its dual

space, i.e both the Schwartz space and its dual can be represented by rapidly

decreasing sequences. Our concern now is to prove that S(R3) maps to itself

under the Fourier transform.

Definition 2.2.2. Let f ∈ S(R3). The Fourier transform of f is the function

F(f) and is given by

F(f) =
1

(2π)
3
2

�

R3

e
−iξ.x

f(x) dx

where ξ.x = ξ1x1 + ξ2x2 + ξ3x3.

15



Note that

|F(f)| = 1

(2π)
3
2

����
�

R3

e
−iξ.x

f(x) dx

����

≤ 1

(2π)
3
2

�

R3

��e−iξ.x
f(x)

�� dx

=
1

(2π)
3
2

�

R3

|f(x)| dx

< ∞

Thus the above integral makes sense since every Schwartz function f is in

L
1(R3). This will allow us to define the inverse Fourier transform of a function

f ∈ S(R3) by

F−1(f) =
1

(2π)
3
2

�

R3

e
iξ.x

f(x) dx

Note that the above definition makes sense because,

��F−1(f)
�� ≤ 1

(2π)
3
2

�

R3

|f(x)| 1 + x
2

1 + x2
dx

≤ sup
x∈R3

(1 + x
2) |f(x)| 1

(2π)
3
2

�

R3

1

1 + x2
dx

≤ ∞

Our goal now is to prove that F and F−1 are the inverses of each other.

Lemma 2.2.3. The map F is a linear continuous function from S(R3) to S(R3).

Proof. The fact that F is linear follows from the linearity of the integral. to

16



prove that F(f) ∈ S(R3), note that

ξ
m
D

n
ξF(f) = ξ

m
D

n 1

(2π)
3
2

�

R3

e
−iξ.x

f(x) dx

=
1

(2π)
3
2

�

R3

ξ
m
D

n
ξ e

−iξ.x
f(x) dx

=
1

(2π)
3
2

�

R3

ξ
m(−ix)ne−iξ.x

f(x) dx

=
1

(2π)
3
2

�

R3

(−ix)n

(−i)m
(−iξ)me−iξ.x

f(x) dx

=
(−i)m

(2π)
3
2

�

R3

(Dm
x e

−iξ.x)(−ix)nf(x) dx

Using integration by parts we get,

ξ
m
D

n
ξF(f) =

(−i)m

(2π)
3
2

�

R3

e
−iξ.x

D
m
x ((−ix)nf(x)) dx

Therefore, we have

||F(f)||m,n = sup
x

�����
(−i)m

(2π)
3
2

�

R3

e
−iξ.x

D
m
x ((−ix)nf(x)) dx

�����

≤ 1

(2π)
3
2

�

R3

|Dm
x ((−ix)nf(x))| dx

< ∞

17



Note that we have exchanged differentiation and integration because we have,

∂

∂ξj

�

R3

e
−iξ.x

f(x) dx = lim
h→0

�
R3 e

−i(ξ+h).x
f(x) dx−

�
R3 e

−iξ.x
f(x) dx

h

= lim
h→0

�

R3

f(x)
(e−i(ξ+h).x − e

−iξ.x) dx

h

≤ lim
h→0

�

R3

|xf(x)| dx

In the last step we used the mean value theorem, and we have that

f(x)
(e−i(ξ+h).x − e

−iξ.x)

h
is dominated by |xf(x)| which is an integrable function.

Therefore we can bring the limit inside the integral by the dominated convergence

theorem, and thus we can interchange differentiation and integration.

Hence, F takes S(R3) to S(R3). Moreover, we have that

||F(f)||m,n ≤ 1

(2π)
3
2

�

R3

(1 + x
2)k

(1 + x2)k
|Dm

x ((−ix)nf(x))| dx

≤ 1

(2π)
3
2

sup
x

(1 + x)k |Dm
x ((−ix)nf(x))|

�

R3

1

(1 + x2)k
dx

Choosing k large enough so that
�

R3

1

(1 + x2)k
dx < ∞, we get that the function

F is continuous since

||F(f)||m,n ≤
L�

j=1

Cj ||f ||mj ,nj

where Cj, mj, and nj are some constants.

Theorem 2.2.4. The function F(f) is a bijection from S(R3) to S(R3).
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Proof. Any Schwartz function on R3 can be represented [1] as,

f =
∞�

k=0

akφk

where ak’s are the Hermite coefficients, φk’s are Hermite functions, and the sum

converges in the L
2 sense. The Hermite functions are given by

φk = (−1)ne
1
2x

2

�
d

dx

�n

e
−x2

where φk =

�
x− d

dx

�
φk−1. Now we will show that the Fourier transform of a

Hermite function is another Hermite function. We claim that F(φk) = (i)kφk.

For this, notice that

F(φ0) =
1√
2π

�

R
e
−iξx

e
− 1

2x
2
dx

=
1√
2π

�

R
e
− (x−iξx)2

2 − ξ2

2 dx

= e
− ξ2

2

Assume that F(φk) = (i)kφk, and consider

F(φk+1) =
1√
2π

�

R
e
−iξx

�
x− d

dx

�
φk dx

=
1√
2π

��

R
e
−iξx

xφk dx−
�

R
e
−iξx

φ
�

k dx

�

=
1√
2π

��

R
−(−i)

d

dξ
e
−iξx

φk dx−
�
e
−iξx

φk

�∞

−∞
−

�

R
iξe

−iξx
φk dx

�

= −i(ξ − d

dξ
)F(φk)

= −i
k+1

φk+1
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Here we have computed the integral over R, but the same result follows over R3

because the integral can be split into 3 integrals, each over R. To show

smoothness, Consider

∂

∂ξj
F(f) =

1

(2π)
3
2

∂

∂ξj

�

R3

e
−iξ.x

f(x) dx

=
1

(2π)
3
2

�

R3

∂

∂ξj
e
−iξ.x

f(x) dx

=
1

(2π)
3
2

�

R3

(−ixj)e
−iξ.x

f(x) dx

=
1

(2π)
3
2

�

R3

e
−iξ.x((−ixj)f(x)) dx

= F(−ixjf)

But xjf is a Schwartz function, hence F(f) is a bijection.

Similar results follow for the map F−1. Therefore, S(R3) maps onto under the

Fourier transform.
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Chapter 3

The Lie Group SU(2)

3.1 SU(2) and su(2)

Definition 3.1.1. SU(2) is the group of all 2x2 complex unitary matrices of

determinant equal to one.

SU(2) = {A ∈ GL(2,C)|det(A) = 1, AA∗ = A
∗
A = I}

where A
∗

is the complex conjugate of the transpose matrix of A. i.e




a b

c d





∗

=




ā c̄

b̄ d̄





Definition 3.1.2. The Lie algebra of SU(2) is the vector space tangent to SU(2)

at the identity. It is defined [2] by

su(2) = {X ∈ GL(2,C)|etX ∈ SU(2)}
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So we have

e
tX
.(etX)∗ = e

t(X+X∗) = I ∀t ∈ R

=⇒ X = −X
∗

Also we have that

det(etX) = 1

=⇒ e
tr(X) = 1

=⇒ tr(X) = 0

Therefore su(2) is the set of all traceless 2× 2 skew-Hermitian complex matrices:

su(2) = {X ∈ GL(2,C)|X = −X
∗
, tr(X) = 0}

The following matrices

σ1 =




0 1

1 0



 σ2 =




0 −i

i 0



 σ3 =




1 0

0 −1





are called the Pauli matrices where {iσj, j = 1, 2, 3} form a basis [2] for the Lie

algebra su(2). The Lie algebra structure is given via the commutator

[X, Y ] = XY − Y X

Therefore, any vector in su(2) can be written as
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X = i�a.�σ = ia1σ1 + ia2σ2 + ia3σ3 where �a = (a1, a2, a3) ∈ R3.

Theorem 3.1.3. SU(2) is homeomorphic to the 3-sphere S
3
.

Proof. Let X = a�n.�σ ∈ su(2), and Jk = iσk where �n is the normal vector of

�a = (a1, a2, a3) and a its magnitude.First note that (�n.�σ)n =






I if n is even

�n.�σ if n is odd
Now consider

e
a�n. �J =

�

n

(a�n. �J)n

n!

=
∞�

n=0

(a�n. �J)2n

(2n)!
+

∞�

n=0

(a�n. �J)2n+1

(2n+ 1)!

= I
∞�

n=0

(−1)n(a)2n

(2n)!
+

∞�

n=0

(−1)n(a)2n+1

(2n+ 1)!

= I cos a+ �n. �J sin a

= I cos a+ i�n.�σ sin a

Thus

x0 = cos a x1 = n1 sin a x2 = n2 sin a x3 = n3 sin a

and

x
2
0+x

2
1 + x

2
2 + x

2
3 = 1

Therefore, we have that SU(2) is homeomorphic to the 3-sphere S
3.

Here we used the fact that the exponential function is surjective [2] so that every
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element in SU(2) can be written as e
tX where X ∈ su(2) and t ∈ R. Here is a

direct proof for the theorem above not using this fact.

Proof. Any 2× 2 complex matrix can be written as

A = c0I+ ic1σ1 + ic2σ2 + ic3σ3, where c0, c1, c2, and c3 ∈ C. This can be seen

easily since

c0I+ ic1σ1 + ic2σ2 + ic3σ3 = c0




1 0

0 1



+ ic1




0 1

1 0



+ ic2




0 −i

i 0





+ ic3




1 0

0 −1





=




c0 + ic3 ic1 + c2

ic1 − c2 c0 − ic3





So if A =




a b

c d



 is any 2× 2 complex matrix, then we have




a b

c d



 =




c0 + ic3 ic1 + c2

ic1 − c2 c0 − c3





=⇒






a = c0 + ic3

b = ic1 + c2

c = ic1 − c2

d = c0 − ic3

=⇒






c0 =
a+ d

2

c1 =
b+ c

2i

c2 =
b− c

2

c3 =
a− d

2i

Now, let A ∈ SU(2), then we have A = c0I+ ic1σ1 + ic2σ2 + ic3σ3, det(A) = 1,
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and AA
∗ = A

∗
A = I. Note that if

A = c0I+ ic1σ1 + ic2σ2 + ic3σ3 =




c0 + ic3 ic1 + c2

ic1 − c2 c0 − ic3



, then

A
∗ =




c̄0 − ic̄3 −ic̄1 − c̄2

−ic̄1 + c̄2 c̄0 + ic̄3



 = c̄0I− ic̄1σ1 − ic̄2σ2 − ic̄3σ3. Write A = c0I+ i�c.�σ,

and A
∗ = c̄0I− i�̄a.σ, where �c = (c1, c2, c3) and �̄c = (c̄1, c̄2, c̄3). Note first that

(�a.�σ)(�b.�σ) = (a1σ1 + a2σ2 + a3σ3)(b1σ1 + b2σ2 + b3σ3)

= a1b1I+ ia1b2σ3 − ia1b3σ2 − ia2b1σ3 + a2b2I+ ia2b3σ1

+ ia3b1σ2 − ia3b2σ1 + a3b3I

= (�a.�b)I+ i((a2b3 − a3b2)σ1 − (a1b3 − a3b1)σ2 + (a1b2 − a2b1)σ3)

= (�a.�b)I+ i(a× b).�σ

Then

AA
∗ = (c0I+ i�c.�σ)(c̄0I− i�̄a.σ) = (||c0||2 + ||c||2)I+ i(c̄0�c− c0�̄c+ (�c× �̄c)).σ = I

Therefore, ||c0||2 + �c.�̄c = 1, and c̄0�c− c0�̄c+ (�c× �̄c) = 0. But we know that

�c× �̄c+ c̄0�c− c0�̄c = 0 if and only if �c× �̄c = 0 since �c× �̄c is orthogonal to both �c

and �e. Thus, �c and �̄c are parallel and we have �c = e
iθ
�̄c for some θ ∈ R.Then we

will have e
−i θ2�c = �x is real. Also we have

c̄0�c− c0�̄c = 0 =⇒ c̄0e
iθ
�̄c− c0�̄c = 0 =⇒ c0 = e

iθ
c̄0 =⇒ e

−i θ2 c0 = x0 is real .

and

||c0||2 + ||�c||2 = 1 =⇒ x
2
0 + x

2
1 + x

2
2 + x

2
3 = 1.
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Hence, A = c0I+ i�c.�σ = e
i θ2 (x0 + i�x.σ). But det(A) = 1 =⇒ det

e
i θ2




x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3



 = e
iθ(x2

0 + x
2
1 + x

2
2 + x

2
3) = e

iθ = 1 =⇒ θ = 2kπ, k ∈ Z.

Therefore,

SU(2) = {x0I+ i�x.�σ| (x0, x1.x2.x3) ∈ R4
, x

2
0 + x

2
1 + x

2
2 + x

2
3 = 1}

3.2 Haar Measure on SU(2)

Haar measure is used to define integrals of functions defined on locally compact

groups. A function f defined on a group G is said to be compactly supported if it

vanishes outside a compact set. Denote by F0(G) the space of all continuous

compactly supported functions on the group G. For every f ∈ F0(G) we assign

the integral
�

G

f(g) dg. We say that this integration is left invariant if the

following holds

�

G

f(g) dg =

�

G

f(a−1
g) dg

for all f ∈ F0(G) and all a ∈ G. Every compact group has a unique invariant

measure and the integral
�

G

1 dg is finite. SU(2) is a compact Lie group and

therefore [2] it has a unique invariant measure. So our job is to find this integral

so we can integrate functions defined on the Lie group SU(2).

Lemma 3.2.1. The Haar measure on SU(2) is dg =
1

2π
sin2

θ sinψdθ ∧ dψ ∧ dφ.
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This expression is an invariant 3-form, the measure is obtained in the usual way

from this volume form.

Proof. We have seen that every element g ∈ SU(2) can written as,

g =




a b

−b̄ ā





where ||a||2 + ||b||2 = 1. We claim that g−1
dg is left invariant where dg is 2× 2

matrix of differential forms of SU(2), i.e

dg =




da db

−db̄ dā





Here we say that the matrix g
−1
dg is left invariant if each of its entries is left

invariant. Consider the function f(g) = g
−1
dg, and let h be a constant element of

SU(2). Note that

f(h−1
g) = (h−1

g)−1
d(h−1

g)

= g
−1
hh

−1
dg

= g
−1
dg

= f(g)
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So,

g
−1
dg =




ā −b

b̄ a








da db

−db̄ dā





=




āda+ bdb̄ ādb− bdā

b̄da− adb̄ b̄db+ adā





Now let us find the wedge product of the second entry, third entry, and the

fourth one

(ādb− bdā) ∧ (b̄db+ adā) ∧ (b̄da− adb̄) = (aā+ bb̄)db ∧ dā ∧ (b̄da− adb̄)

= db ∧ dā ∧ (b̄da− adb̄)

Note that aā+ b̄b = 1. So, if we differentiate this equation we get

adā+ āda+ bdb̄+ b̄db = 0

=⇒ db̄ = −1

b
(adā+ āda+ b̄db)

Putting db̄ back in the wedge product above, we get that

(adā+ bdb̄) ∧ (−adb+ bda) ∧ (ādb̄− b̄dā) = db ∧ dā ∧ (b̄da− adb̄)

= db ∧ dā ∧ (b̄da+
a

b
(adā+ āda+ b̄db)

=
bb̄+ aā

b
db ∧ dā ∧ da

is the left invariant form that we are trying to find. Let us compute this wedge

28



product in spherical coordinates. We have proved above that

g =




x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3



, where

x0 = cos θ

x1 = sin θ cosψ

x2 = sin θ sinψ cosφ

x3 = sin θ sinψ sinφ

where 0 ≤ θ ≤ π, 0 ≤ ψ ≤ π, and 0 ≤ φ ≤ 2π. So, we get

a = cos θ + i sin θ sinψ sinφ b = sin θ sinψ cosφ+ i sin θ cosψ

Then,
db ∧ dā ∧ da = db ∧ d(cos θ − i sin θ sinψ sinφ) ∧ d(cos θ + i sin θ sinψ sinφ)

= db ∧ (−2id(cos θ) ∧ d(sin θ sinψ sinφ))

= db ∧ (−2i((− sin2
θ cosψ sinφ)dθ ∧ dψ − (sin2

θ sinψ cosφ)dθ ∧ dφ))

= 2i sin2
θd(sin θ sinψ cosφ+ i sin θ cosψ)

∧ (cosψ sinφdθ ∧ dψ + sinψ cosφdθ ∧ dφ)

= 2i sin2
θ((sin θ sinψ cosψ sin2

φ)dφ ∧ dθ ∧ dψ

+ (sin θ cosψ sinψ cos2 φ)dψ ∧ dθ ∧ dφ+ (−i sin θ sin2
ψ cosφ)dψdθdφ)

= 2i sin2
θ sinψ(sin θ cosφ(sin2

φ+ cos2 φ)− i sin θ sinψ cosφ)dφ ∧ dθ ∧ dψ

= 2i sin2
θ sinψ(ib)dφ ∧ dθ ∧ dψ
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Hence,

1

b
db ∧ dā ∧ da = 2 sin2

θ sinψdφ ∧ dθ ∧ dψ

= 2 sin2
θ sinψdθ ∧ dψ ∧ dφ

We multiply the measure by
1

4π2
so we can have

�

G

1 dg = 1. Therefore the Haar

measure on SU(2) is given by dg =
1

2π
sin2

θ sinψdθ ∧ dψ ∧ dφ.

Note here that if the function f depends only on θ, then we have

�

G

f(g) dg =

�
f(θ)

1

2π
sin2

θ sinψdθdψdφ

= 2(2π)
1

2π2

�
f(θ) sin2

θdθ

=
2

π

�
f(θ) sin2

θdθ

We can find the Haar measure on SU(2) in a simpler way. Since every element in

SU(2) can be written as

g =




x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3





Then we will have

�

G

f(g) dg =
1

2π2

�
f(x0, x1, x2, x3)

∂(x0, x1, x2, x3)

∂(r, θ.ψ,φ)
dx

=
1

2π2

�
f(x0, x1, x2, x3) sin

2
θ sinψ dθdψdφ

Here we also multiplied the integral on the right by
1

2π2
in order to normalize the
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measure.
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Chapter 4

Non-Commutative Fourier

Transform

We have seen that X ∈ su(2) can be written as X = i�a.�σ and g ∈ SU(2) can be

written as g = cos θI+ i�n.�σ sin θ. We will calculate the trace of Xg which is the

character of our transform.

Xg = (i�a.�σ)(cos θI+ i�n.�σ sin θ)

= cos θ(i�a.�σ)I+ i(i�a.�σ)(�n.�σ)

= cos θ(i�a.�σ)I+ i[(i�a.�n)I+ i(�a× �n).�σ] sin θ

Since σi’s are traceless, then we have

tr(Xg) = tr(−(�a.�n) sin θI) = −(�a.�n) sin θ.
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Definition 4.0.2. The Fourier transform of functions from R3
to SU(2) is given

via

F (g) =

�
e
iα(tr(Xg))

f(X) dX

where X = �x.�σ, �x = (x1, x2, x3), and α ∈ N.

For example, consider the function f(x) = e
−|x|2 . The Fourier transform of this

function would be

F (�n, θ) =

�
e
iα(tr(Xg)

e
−|X|2

dX

=

�
e
−iα(�x.�n) sin θ

e
−|X|2

dX

=

�
e
−iα(x1n1) sin θ

e
−|x1|2 dx1.

�
e
−iα(x2n2) sin θ

e
−|x2|2 dx2.

�
e
−iα(x3n3) sin θ

e
−|x3|2 dx3

=

�
e
−(x1+

αn1 sin θ
2 )2

e
−α2n2

1 sin
2 θ

dx1

�
e
−(x2+

αn2 sin θ
2 )2

e
−α2n2

2 sin
2 θ

dx2

�
e
−(x3+

αn3 sin θ
2 )2

e
−α2n2

3 sin
2 θ

dx3

=
√
πe

−α2n2
1 sin

2 θ
e
−α2n2

2 sin
2 θ
e
−α2n2

3 sin
2 θ

=
√
πe

−α2 sin2 θ

Consider the map

Fα : S(R3) → S(SU(2))

f(x) →
�

R3

e
iα(tr(Xg)

f(x) dx

where S(R3) and S(SU(2)) are the sets of smooth functions on R3 and SU(2)

respectively. This map takes the function f(x) defined on R3 to the function
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Fα(f) on SU(2).

Preposition 4.0.3. Fα is a non invertible map for a fixed α.

Proof. We will show this by proving that Fα is not injective. Let ξ = �n sin θ, then

we have Tr(Xg) = −(�x.�n) sin θ = −�x.�ξ. Consider the function e
iα�x.�ξ0 where

ξ0 /∈ S
3, and take its image under Fα

Fα(e
iα�x.�ξ0) =

�

R3

e
iα(tr(Xg)

e
iα�x.�ξ0 dx

=

�

R3

e
−iα�x.�ξ

e
iα�x.�ξ0 dx

=

�

R3

e
−iα�x.(�ξ−�ξ0) dx

= δ(ξ − ξ0)

= 0 on S
3 since ξ0 /∈ S

3
.

Therefore, Fα is not injective since e
iα�x.�ξ0 �= 0 on R3.

Theorem 4.0.4. The map ψ : f → {Fα(f)}α∈N where f is Schwartz, is

invertible.

Proof. Consider the set Uα = {Fα(f), f is schwartz } and the map παβ : Uβ → Uα

for α < β with the following properties:

• παα : Uα → Uα is the identity map.

• παβ : Uβ → Uα is the projection of the map Fβ on the smaller sphere.

• παβ ◦ πβγ = παγ for all α < β < γ.

We claim that the Schwartz space over R3 is the inverse limit of the system

((Uα)α∈N, πij).Note that
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lim←−Uα = {F (f) ∈
�

α∈N

Uα | παβ(Fβ(f)) = Fα(f) ∀ β ≥ α in N. Now consider the

map

φ : S(R3) → lim←−Uα

f → (Fα1(f), Fα2(f), .................)

The map φ is linear and a bijection.

φ(f1 + f2) = (Fα1(f1) + Fα1(f2), Fα2(f) + Fα2(f2), .................)

= (Fα1(f1), Fα2(f1), .................) + (Fα1(f2), Fα2(f2), .................)

= φ(f1) + φ(f2)

φ is surjective by construction so it remains to show that φ is injective. Let

f ∈ S(R3) such that φ(f) = 0. This implies that
�

R3

e
−iα�x.�ξ

f(x) dx = 0 ∀ α ∈ N.

So the usual Fourier transform of f will vanish, and thus f = 0. Therefore we

have S(R3) is isomorphic to lim←−Uα. So gluing all the Uα’s together will give us

the Schwartz space over R3.

In other words, if we vary α over N, then α sin θ�n will vary over R3. Therefore,

we can treat the map Fα, where α is arbitrary, as the regular Fourier transform.

We know that the Schwartz space is invariant under the regular Fourier

transform and F(S(R3)) = S(R3) is an isomorphism.

Preposition 4.0.5. f is Schwartz =⇒ Fα(f) is smooth and decays faster than

any polynomial as α → ∞.
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Proof. First note that

∂

∂θ
Fα(f) =

∂

∂θ

�

R3

e
iα(tr(Xg)

f(x) dx

=
∂

∂θ

�

R3

e
−iα(�x.�n) sin θ

f(x) dx

=

�

R3

∂

∂θ
e
−iα(�x.�n) sin θ

f(x) dx

= −iα

�

R3

�x.�n cos θe−iα(�x.�n) sin θ
f(x) dx

= −iα cos θFα(�x.�nf)

and

∂

∂n1
Fα(f) =

∂

∂n1

�

R3

e
iα(tr(Xg)

f(x) dx

=
∂

∂n1

�

R3

e
−iα(�x.�n) sin θ

f(x) dx

=

�

R3

∂

∂n1
e
−iα(�x.�n) sin θ

f(x) dx

= −iα sin θ

�

R3

e
−iα(�x.�n) sin θ

x1f(x) dx

= −iα sin θFα(x1f)

The chart above does not work for all values of θ, so we have to use some other

chart to guarantee that Fα is differentialble for all values of θ and n. We write

here �n sin θ in Cartesian coordinates =⇒ �ξ = (ξ1, ξ2, ξ3) = �n sin θ. Then we have
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∂

∂ξj
Fα(f) =

∂

∂ξj

�

R3

e
iα(tr(Xg)

f(x) dx

=
∂

∂ξj

�

R3

e
−iα(�x.�n) sin θ

f(x) dx

=

�

R3

∂

∂ξj
e
−iα(�x.�ξ)

f(x) dx

= −iα

�

R3

xje
−iα(�x.�ξ)

f(x) dx

= −iαFα(xjf)

Here we can interchange the partial derivative and the integral because
��e−iα(�x.�n) sin θ

f(x)
�� ≤ |f(x)| and f(x) is integrable over R3 since f is Schwartz.

Therefore by Lebesgue dominated convergence theorem, we can interchange

differentiation and integration. Also note that if f is Schwartz, then xjf is also

Schwartz. So it follow that the function Fα is smooth. Sending α to infinity is

the same as sending ξ to infinity and the resulting function will be Schwartz

function. Thus it will decrease faster than the inverse of any polynomial.

We have seen that the Schwartz space S(R3) is invariant under the usual Fourier

transform. That is, on S(R3), we can deal with the transform of a function and

its inverse transform in the same way. On the other hand, we have seen that we

have to know the Fourier transform of a function f ∈ S(R3) for all α ∈ N, in

order to define the inverse Fourier transform from "Schwartz" functions on

SU(2) to S(R3). Therefore, knowledge of the function on SU(2) is not enough to

recover the original function that was transformed because there would other

functions that will give the same result under the Fourier transform. The same

result was attained via different route in [7].
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Appendix A

Identity for the Delta function on

SU(2)

Below we will show the following Delta function identity,

�
e
iT r(Xg) (1 + �(g))

8π
d
3
x = δ(g)

where X ∈ su(2), g ∈ SU(2), and �(g) = sign(cos(θ)).

Note that :

�
e
iT r(Xg)

d
3
x =

�
e
i�x.�n. sin θ

d
3
x = (2π)3δ(�n sin θ)
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Notice that

�
f(x, y, z)

δ(|�x|)
4π |�x|2

dxdydz =

�
f(r, θ,φ)

δ(r)

4πr2
∂(x, y, z)

∂(r, θ,φ)
drdθdφ

=
1

4π

�
f(0, θ,φ) sinφ dθdφ

But we know that f(0, θ,φ) in spherical coordinates is equal to f(0, 0, 0) in

cartesian coordinates.Therefore, integrating over θ and φ

1

4π

�
f(0, θ,φ) sinφ dθdφ =

1

4π
f(0, 0, 0)

�
sinφ dθdφ

= f(0, 0, 0)

We also know that
�

f(x)δ(�x) dxdydz = f(0, 0, 0). Therefore we get the

identity:δ( �X) =
δ(
��� �X

���)

4πX2
.

Then

(2π)3δ(�n sin θ) =
2π2

(sin2(θ))

�

n∈Z

δ(θ − nπ)
1

|cos(θ)|

But θ ∈ [0, π], thus

(2π)3δ(�n sin θ) =
2π2

(sin2(θ))
(δ(θ) + δ(θ − π))
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Now we claim that
2π2

(sin2(θ))
δ(θ) = δ(g). We know that the normalized Haar

measure on SU(2) is given by

dg =
1

2π2
sin2

θ sinψ dθdψdφ

where 0 ≤ θ ≤ π, 0 ≤ ψ ≤ π, and 0 ≤ φ ≤ 2π. Notice that

�
f(g)

2π2

(sin2(θ))
δ(θ) dg =

�
f(n, θ)

2π2

(sin2(θ))
δ(θ)

1

2π2
sin2

θ sinψ dθdψdφ

=

�
f(n, 0) sinψ dψdφ

But g = cos θI+ i�n.�σ sin θ, so for θ = 0 we get g = I. Thus

�
f(n, 0) sinψ dψdφ = f(I)

�
sinψ dψdφ

= 4πf(I)

= 4π

�
f(g)δ(g) dg

Therefore we get 4πδ(g) =
2π2

(sin2(θ))
δ(θ). Similarly we have

4πδ(−g) =
2π2

(sin2(θ))
δ(θ − π). Similarly we get,

�
e
iT r(Xg)

�(g) d3x = 4π(δ(g)− δ(−g))

Thus

�
e
iT r(Xg) (1 + �(g))

8π
d
3
x = δ(g)

40



Bibliography

[1] M. Reed, B. Simon, "Methods of Modern Mathematical Physics”, Academic

Press, 1980.

[2] S. Sternberg, "Group Theory and Physics", Cambridge University Press,

1994.

[3] T.Tlas, Daniel Oriti, " Causality and matter propagation in 3d spin foam

quantum gravity", Phys.Rev.D74:104021 (2006).[arXiv:gr-qc/0608116]

[4] L. Freidel, E. Livine, "3d Quantum Gravity and Effective Non-Commutative

Quantum Field Theory", Phys. Rev. Lett. 96 :221301(2006). [arXiv:

hep-th/0512113]

[5] "Feynman Diagram." Wikipedia. Wikimedia Foundation, 18 Apr. 2014.

Web. 24 Apr. 2014.

[6] L. Freidel, D. Louapre, "Ponzano-Regge model revisited. I: Gauge fixing,

observables and interacting spinning particles",Class. Quant. Grav.21, 5685

(2004) [arXiv: hep-th/0401076]

41



[7] L. Freidel, S. Majid, ‘Noncommutative harmonic analysis, sampling theory

and the Duflo map in 2+1 quantum gravity’, Class. Quant. Grav. 25 (2008)

045006.

[8] L. Freidel, E. Livine, ‘Spin networks for noncompact groups’, J. Math. Phys.

44 (2003) 1322-1356.

42




