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In this thesis we study the paper Recursive Formulas for Welschinger Invariants of the
Projective Plane by Arroyo, Brugallé and López de Medrano. In this paper the authors give
a recursive formula to compute Welschinger invariants of generic subsets of the complex
projective plane that are invariant under complex conjugation. They do this by reducing
the problem to a purely combinatorial one that involves enumerating certain graphs called
marked floor diagrams and giving a recursive algorithm for generating these diagrams.
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Chapter 1

Introduction

In this thesis we study the paper [?] in which the authors give a recursive formula for

computing Welschinger invariants of the projective plane. These invariants give a lower

bound for the number of real curves of degree d passing through a generic collection of

3d− 1 points in CP2 that is invariant under complex conjugation. Welschinger invariants

can be considered as real analogues of Gromov-Witten invariants which enumerate complex

curves satisfying certain conditions. Before defining these invariants, we will begin by

setting some notations.

Convention 1.1. We will use the following notation:

• N = {n ∈ Z| n ≥ 0} denotes the set of natural numbers.

• N∗ = {n ∈ Z| n > 0} denotes the set of natural numbers without zero.
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• N∞ denotes the set of sequences of elements in N having only finitely many non zero

terms.

• ei denotes the vector in N∞ whose ith coordinate is equal to 1 and the remaining

coordinates are equal to zero.

• (α)i denotes the ith coordinate of vector α ∈ N∞.

• If a and b are two integer numbers,
(
a
b

)
denotes the binomial coefficient

(
a

b

)
=


a!

b!(a− b)!
if 0 ≤ b ≤ a

0 otherwise.

• If a and b1, b2, . . . , bk are integer numbers

(
a

b1, b2, . . . , bk

)
2



denotes the multinomial coefficient

(
a

b1, b2, . . . , bk

)
=

k∏
i=1

(a− i−1∑
j=1

bj

bi

)

• If α, α1, . . . , αl are vectors in N∞, then

(
α

α1, . . . , αl

)
=
∞∏
i=1

(
(α)i

(α1)i, . . . , (αl)i

)

In addition;

• |α| =
∞∑
i=1

(α)i

• Iα =
∞∑
i=1

i(α)i

• Iα =
∞∏
i=1

i(α)i

and for vectors α and β in N∞, we say α ≥ β if (α)i ≥ (β)i ∀ i.

Our interest is to find the number of curves passing through a given set of points with
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certain conditions.

Let w={p1, p2, . . . , p3d−1} be a generic collection of 3d− 1 points in CP2. Let C(w) be the

set of all irreducible complex rational curves of degree d in CP2 passing through w. The

cardinality of C(w) is independent of w as long as the points of w are in generic position.

The cardinality of C(w) is called the genus 0 Gromov −Wittten invariant of degree d.

To define the relative Gromov−Witten invariants we fix a line L in CP2, an integer degree

d ≥ 1, and two vectors α and β in N∞ such that Iα + Iβ = d. We let

w = {p1, . . . , p2d−1+|β|} be a collection of 2d− 1 + |β| points in CP2 and let

wL = {p1
1, . . . , p

1
(α)1

, p2
1, . . . , p

2
(α)2

, . . . , pk1, . . . , p
k
(α)k

, . . . } be a collection of |α| points on L.

Let C(w, α, β) be the set of all irreducible complex rational curves of degree d in CP2

passing through the points of w having no singular points on L and intersecting the line L

at the points pji ∈ wL with multiplicity j for all i and j, and intersecting L at (β)j other

points with multiplicity j for all j. The cardinality of C(w, α, β) is independent of the

choice of points in w and wL provided that the number of points is fixed and the points are
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in general position. The Relative Gromov Witten invariant of degree d with respect to α, β

is the cardinality of C(w, α, β) and is denoted by Nα,β(d).

We want to consider the real case of the same problem.

Fix a degree d ≥ 1 let w = {p1, . . . , p3d−1} be a subset of CP2 that is invariant under

complex conjugation. Let RC(w) be the set of all irreducible real rational curves of degree

d in CP2 passing through the points of w. The cardinality of RC(w) is not independent of

w and it could vary with the variation of the points in w. Welschinger [?] discovered that

we can get an invariant if we count the curves in RC(w) with the appropriate sign. Let

W (C) be the number of all nodes on the real algebraic nodal curve C in CP2 such that if

we map the neighborhood of this point to the origin we will get the equation X2 + Y 2 = 0.

The Welschinger invariant is the number

∑
C∈RC(w)

(−1)W (C)

It only depends on the degree d and the number of pairs of complex conjugate points in w.
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It is denoted by W2(d, r) where r is the number of pairs of complex conjugate points in w.

Through Mikhalkin’s correspondence theorem [?] and Brugallé and Mikhalkin’s floor

diagrams [?], the computation of Gromov-Witten and Welschinger invariants has been

reduced to a purely combinatorial problem involving certain graphs called marked floor

diagrams.
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Chapter 2

Marked Floor Diagrams

In this chapter we will define floor diagrams and state their relation with Welschinger and

Gromov Witten invariants of CP2.

Definition 2.1. Some graph theoretic notions:

• An oriented graph Γ is a pair of finite sets V ert(Γ), the set of vertices of Γ and

Edge(Γ), the set of edges of Γ. An element e of Edge(Γ) is an oriented pair (v1, v2)

of vertices of Γ. We say e is adjacent to v1 and to v2 and is outgoing from v1 and

incoming to v2.

• A source is a vertex of Γ all of whose adjacent edges are outgoing. We denote by

V ert∞(Γ) the set of sources of Γ, and we put V ert(Γ) = V ert(Γ)\V ert∞(Γ) and

denote by Edge∞(Γ) the set of edges adjacent to a source.
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• An oriented graph Γ is connected if for any two elements v1 and v2 of V ert(Γ), there

exists a sequence s1 = v1, s2, . . . , sk−1, sk = v2 of elements of V ert(Γ) such that

(si, si+1) ∈ Edge(Γ) or (si+1, si) ∈ Edge(Γ)∀i.

• A cycle is a sequence s1, s2, . . . , sk of elements of V ert(Γ) such that

(si, si+1) ∈ Edge(Γ) or (si+1, si) ∈ Edge(Γ)∀i and s1, . . . , sk−1 are distinct, sk = s1.

• An oriented tree is a connected oriented graph with no cycles. In an oriented tree Γ,

#V ert(Γ)−#Edge(Γ) = 1.

An oriented tree Γ is naturally enhanced with a partial ordering. Let v, w ∈ V ert(Γ),

we say v ≤ w if there is a sequence v1, . . . , vk of vertices of Γ such that v1 = v, vk = w

and (vi, vi+1) ∈ Edge(Γ) with 1 ≤ i < k.

• A weighted graph is a graph Γ enhanced with a function w:Edge(Γ)→ N∗.

w(e) is called the weight of the edge e.

• The divergence at a vertex v of Γ, denoted by div(v), is the sum of the weights of all

incoming edges to v minus the sum of the weights of all outgoing edges from v.
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Definition 2.2. A floor diagram D of genus 0 and degree d is a connected weighted

oriented tree with the following conditions satisfied:

• For any v ∈ V ert(D) one has div(v) = 1.

• Each source has a unique adjacent edge.

• One has
∑

v∈V ert∞
div(v)= -d.

From this definition one can conclude that the set V ert(D) has exactly d elements. The

following lemma and corollary prove this.

Lemma 2.3. Let D be a directed graph with vertex set V = V ert(D) and edge set

E = Edge(D). Then,

∑
v∈V

div(v) = 0.

Proof:

For v ∈ V , let I(v) be the set of all incoming edges to v and let O(v) be the set of all

outgoing edges from v. Note that every edge e ∈ E belongs to I(v) for exactly one v ∈ V
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and belongs to O(v) for exactly one v ∈ V .

∑
v∈V

div(v) =
∑
v∈V

∑
e∈I(v)

w(e)−
∑
e∈O(v)

w(e)


=

∑
v∈V

∑
e∈I(v)

w(e)−
∑
v∈V

∑
e∈O(v)

w(e)

=
∑
e∈E

w(e)−
∑
e∈E

w(e)

= 0. �

Corollary 2.4. If D is a floor diagram of genus zero and degree d then #(V ert(D)) = d.

Proof: If v ∈ V ert(D) then div(v) = 1. By lemma 2.3, we have

0 =
∑

v∈V ert(D)

div(v)

=
∑

v∈V ert(D)

div(v) +
∑

v∈V ert∞(D)

div(v)

= |V ert(D)| − d. �
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Sketching of floor diagrams:

• Elements of V ert∞(D) are represented by small horizontal segments.

• Elements of V ert(D) are represented by ellipses.

• Elements of Edge(D) are represented by vertical lines.

The orientation is implicitly from down to up.

When the weight is not mentioned this means that the edge is of weight equals to one.

Example 2.5.

Some floor diagrams of degree 4 and genus 0 are:

(2)

(2)(2)

11



(3)

(2)

(4)

(2)

(2)

(3)(4)
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(3)

(2)

(2)

(3)

(2)

(3)

(3)

(2)

(2) (2)

(3)

(2)
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To find Gromov −Witten and Welschinger invariants using floor diagrams we first need a

marking of a floor diagram.

Let α, β, γ, δ be four vectors in N∞, and define n = 2d− 1 + |α + β + 2γ + 2δ| and

P = {1, . . . , n}.

Definition 2.6. Let M : P −→ D be a function mapping P to V ert(D) ∪ Edge(D).

The map M is called a marking of D of type (α, β, γ, δ) if the following conditions are

satisfied :

1. the floor diagram D is of genus 0 and of degree Iα + Iβ + 2Iγ + 2Iδ ,

2. the map M is injective, i.e. two distinct elements of P have distinct images in D,

3. if M(i) > M(j), then i > j,

4. if
k−1∑
j=1

(α)j + 1 ≤ i ≤
k∑
j=1

(α)j or |α| + 2
k−1∑
j=1

(γ)j + 1 ≤ i ≤ |α| + 2
k∑
j=1

(γ)j, then M(i) is

a source with divergence -k,

5. for any k ≥ 1,there are exactly (β)k + 2(δ)k elements of Edge∞(D) with weight k in the
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image of M,

6. If e is an edge of D adjacent to a source v, then exactly one of the two elements v or e

is in the image of M.

A marked floor diagram of type (α, β, γ, δ) is a floor diagram coupled with a marking of

type (α, β, γ, δ).

Example 2.7.

Here is an example to clarify more about a marking M of a floor diagram D:

Given the following floor diagram We are going to define a marking of type (e1, 2e1, 0, 0) on

it.

(2)
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n= 2d− 1 + |α + β + 2γ + 2δ| = 8 and P = {1, . . . , 8}

The given diagram is of genus 0 and of degree 3 which is equal to Iα + Iβ + 2Iγ + 2Iδ.

Condition 4 tells us that, M(1) is a source with divergence -1, and this is the only source

that is marked. Condition 5 tells us that, since β is equal to 2e1 and δ is equal to zero

there are two elements of Edge∞(D) with weight 1 in the image of M. Condition 6 tells us

that these two edges are not adjacent to the marked source. Finally, we use condition 3 to

complete the marking.

4

2 3

1

6

7

(2)5

8

Two marked floor diagrams (D,M) and (D′ ,M′
) are equivalent if there is a

homeomorphism of oriented weighted graphs Ψ : (D,M) −→ (D′ ,M′
) such that

Ψ(M(i)) = M
′
(i).
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Proposition 2.8. If M is a marking of D, then any vertex in V ert(D) and any edge which

is not adjacent to a source is in the image of M.

Proof: Let M be a marking of D. We know that n = 2d− 1 + |α+ β + 2γ + 2δ| is the total

number of marked elements in D, |α+ 2γ| is the number of sources marked, and |β + 2δ| is

the number of marked edges adjacent to sources. We want to show that

#V ert(D) + #(Edge(D)\Edge∞(D)) = 2d− 1 .

Since D is a tree, #V ert(Γ)−#Edge(Γ) = 1.

Let M be the number of edges that are not adjacent to a source, F the number of edges

adjacent to a source, N the number of vertices that are not sources, and S the number of

sources.

Then, #V ert(Γ)−#Edge(Γ) =(N + S)−(M + F) = 1.

By lemma 2.3, we have

∑
v∈V

div(v) =
∑

v∈V ert(D)

div(v) +
∑

v∈V ert∞(D)

div(v) = 0,
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which gives N = d.

By definition of a floor diagram, each source has a unique edge in Edge∞ connected to it,

which means S = F and M = d− 1.

So we can conclude that M + N = 2d− 1. �

Now, we are going to define the complex multiplicity and r-real multiplicity that are

assigned to any marked floor diagram.

Definition 2.9. The complex multiplicity of a marked floor diagram D of type (α, β, γ, δ)

is denoted by µC(D) and is defined as

µC(D) = I−2α−β−4γ−2δ
∏

e∈Edge(D)

w(e)2.

Note that the complex multiplicity does not depend on the marking.

Using the above definition we can now state the Brugallé-Mikhalkin theorem that allows us

to find the Gromov-Witten invariants :
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Theorem 2.10. [?]

For any α and β in N∞, and d = Iα + Iβ, one has

Nα,β(d) =
∑

µC(D),

where the sum is taken over all marked floor diagrams of degree d, genus 0 and type

(α, β, 0, 0).

Taking the sum over all marked floor diagrams of degree d, genus 0 and of type (α, β, γ, δ),

corresponds to evaluating Nα+2γ,β+2δ(d). To prove this, let α
′
= α + 2γ, β

′
= β + 2δ. Since

(β)k + 2(δ)k = (β + 2δ)k = (β
′
+ 2δ

′
)k, both floor diagrams have the same number of

marked edges of weight k in Edge∞. Similarly, since α+ 2γ = α
′
, both floor diagrams have

the same number of marked sources of divergence −k ∀k ≥ 0. So there is a bijection

between the set of all marked floor diagrams of type (α, β, γ, δ) and those of type

(α + 2γ, β + 2δ, 0, 0).

To define the r − real multiplicity of a floor diagram D we need to define what is an
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r − real floor diagram.

Let D be a floor diagram of type (α, β, γ, δ) marked by M. Let r be a positive integer such

that 2d− 1 + |β + 2δ| − 2r ≥ 0. If i = |α|+ 2k − 1 with 1 ≤ k ≤ |γ| or i = n− 2k + 1 with

1 ≤ k ≤ r, then the set {i, i+ 1} is called an r − pair.

Let F(D,M, r) be the union of all sets {M(i),M(i+ 1)} where {i, i+ 1} is an r − pair and

M(i) and M(i+ 1) are not adjacent.

Note that as r increases, so does the number of r − pairs.

Let ρD,M,r : D −→ D be the bijection defined as:

ρD,M,r(M(i)) =


M(i) if M(i) ∈ D\F(D,M, r)

M(j) if {i, j} is an r−pair and {M(i),M(j)} ⊂ F(D,M, r)

The map ρD,M,r is an involution, that is, the inverse of ρ is itself.

20



Definition 2.11. We say a marked floor diagram D of type (α, β, γ, δ) is r − real if :

• (D,M) and (D, ρD,M,r ◦M) are equivalent, and

• Exactly 2(δ)k edges of weight k are in Edge∞(D)
⋂

F(D,M, r) for any k ≥ 1.

Now we have all the tools to give the formula of r − real multiplicity which is denoted by

µR
r (D,M).

Definition 2.12. Let (D,M) be an r− real marked floor diagram of type (α, β, γ, δ). If all

edges of D having even weight are in F(D,M, r), then

µR
r (D,M) = (−1)

#(V ert(D)
⋂

F(D,M,r))
2 I−δ

∏
e∈Edge(D)∩M({n−2r+1,...,n})

w(e).

If there exists an edge of even weight that does not belong to F(D,M, r), then

µR
r (D,M) = 0.

If (D,M) is not r − real then µR
r (D,M) = 0.

21



Note that when r = 0 and γ = 0 the 0-real multiplicity of a 0− real marked floor diagram

does not depend on the marking. In this case, F(D,M, 0) is empty and Edge(D)

⊂M({1, . . . , n}). So, if D has an edge of even weight, then µR
0 (D,M) = 0. Otherwise,

µR
0 (D,M) = I−δ.

When r = 0 and γ 6= 0, the union of all 0− pairs is the set S = {|α|+ 1, . . . , |α|+ 2|γ|}.

By definition of the marking, each element of S is mapped to a source so the multiplicity

depends on the marking.

Example 2.13.

Let D be the floor diagram of type (e1, 0, e1, 0) given by:

Let M and M
′

be two markings on D given by:

22



(D,M)

6

5

4

1 2 3

7

8

and

(D,M′
)

6

5

4

2 3 1

7

8

For r = 0, {2, 3} is the only 0− pair so ρ(D,M) and ρ(D,M′
) are:

(D, ρD,M,0 ◦M)

6

5

4

1 3 2

7

8

and

(D, ρD,M′ ,0 ◦M
′
)

6

5

4

3 2 1

7

8

(D,M) and (D, ρD,M,0 ◦M) are not equivalent so (D,M) is not 0− real and its 0− real

multiplicity is zero. On the other hand, (D,M′
) and (D, ρD,M′ ,0 ◦M

′
) are equivalent so

(D,M′
) is 0− real and its 0− real multiplicity is 1.
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For r ≥ 1, the r − real multiplicity of an r − real marked floor diagram depends not only

on the underlying floor diagram but also on the marking.

Example 2.14.

Let (D,M) and (D,M′
) be given by:

(D,M)

4

1 2 3

6

8

5

7

(D,M′
)

4

1 2 3

7

8

5

6

The underlying floor diagram D is of degree 3, genus 0 and type (0, 3e1, 0, 0). So, for r = 1,

there is only one 1− pair,{7, 8}. For the marking M, F(D,M, 1) = {M(7),M(8)} and

ρ(D,M) is not equivalent to (D,M), so (D,M) is not 1-real. For M
′
, M

′
(7) and M

′
(8) are

adjacent, so F(D,M′
, 1) = φ and (D,M′

) is 1− real with 1− real multiplicity equal to 1.

Theorem 2.15. [?] For any d ≥ 1 and any r ≥ 0 such that 3d− 1− 2r ≥ 0, one has

24



W2(d, r) =
∑

µR
r (D,M)

where the sum is taken over all r − real marked floor diagrams of degree d, genus 0 and of

type (0, (d− 2i)e1, 0, ie1) with 0 ≤ i ≤ d
2
.
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Chapter 3

Recursive Formulas

Definition 3.1. Given two integers l ≥ 0 and d ≥ 0 and two vectors α, β ∈ N∞, let

S(d,l,α,β) be the set of vectors (d1,. . . ,dl,k1,. . . ,kl,α1,. . . ,αl,β1,. . . ,βl) ∈ (N∗)2l × (N∞)2l

satisfying:

• ∀i, (di, ki, αi, βi) ≤ (di+1, ki+1, αi+1, βi+1) for the lexicographic order,

•
∑
di = d− 1,

•
∑
αi ≤ α,

• ∀i, βi ≥ eki,

•
∑

(βi − eki) = β,

26



• ∀i, Iαi + Iβi = di.

For s ∈ S(d,l,α,β), let 's be the equivalence relation on the set {1, . . . , l} defined by

i 's j ⇔ (di, ki, αi, βi) = (dj, kj, αj, βj).

For each of the equivalence classes of 's, evaluate the factorial of its cardinality, and

denote by σ(s) the product of these factorials.

Theorem 3.2. [?] Caporaso-Harris

The numbers Nα,β(d) are given by the initial value N e1,0(1)=1 and the relation

Nα,β(d) =
∑

k/β≥ek

kNα+ek,β−ek(d) +

∑
l≥0,s∈S(d,l,α,β)

[
1

σ(s)

(
2d− 2 + |β|

2d1 − 1 + |β1|, . . . , 2dl − 1 + |βl|

)(
α

α1, . . . , αl

) l∏
i=1

(βi)kikiN
αi,βi(di)

]
.

Now, we are going to state a recursive formula that allows us to compute the numbers

W2(d, r). This recursive formula does not explicitly involve the numbers W2(d, r), but some

related numbers defined as follows.
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Given four vectors α, β, γ and δ in N∞, let d = Iα + Iβ + 2Iγ + 2Iδ and let r be a

non-negative integer such that 2d− 1 + |β + 2δ| − 2r ≥ 0. Let

Cα,β,γ,δ(d, r) =
∑

µR
r (D,M)

where the sum is taken over all marked floor diagrams of type (α, β, γ, δ).

Recall that if (D,M) is not r − real then µR
r (D,M)=0.

For any d ≥ 1 and 0 ≤ r ≤ 3d−1
2

, Theorem 2.15 states that

W2(d, r) =

d
2∑
i=0

C0,(d−2i)e1,0,ie1(d, r)

A vector α ∈ N∞ is said to be odd if (α)2i = 0 for all i ≥ 1.

Proposition 3.3. If α or β is not odd, then Cα,β,γ,δ(d, r) = 0.

Proof:

Let (D,M) be a marked floor diagram of type (α, β, γ, δ). If α is not odd then (α)2i 6= 0 for
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some i ≥ 1. As a result we will obtain a marked source of divergence −2i. This means that

the edge adjacent to this source is of even weight, and is not in F(D,M, r) since it is

unmarked. Therefore µR
r (D,M) = 0 and consequently Cα,β,γ,δ(d, r) = 0. If (β)2i 6= 0 for

some i ≥ 1, then D has (β)2i + 2(δ)2i edges in Edge∞(D) of weight 2i, but only 2(δ)2i of

them belong to F(D,M, r). Therefore (D,M) is not r − real and its multiplicity is zero.

We need some definitions to state the next theorem.

Definition 3.4. Given three integer numbers l ≥ 0, m ≥ 0 and r ≥ 0 and four vectors

α, β, γ and δ in N∞, let Sw(l,m, r, α, β, γ, δ) be the set of vectors

(d1, . . . , dl, k1, . . . , kl, γ1, . . . , γl, δ1, . . . , δl, d
′
1, . . . , d

′
m, k

′
1, . . . , k

′
m, r

′
1, . . . , r

′
m, α

′
1, . . . , α

′
m,

β
′
1, . . . , β

′
m, γ

′
1, . . . , γ

′
m, δ

′
1, . . . , δ

′
m) in (N∗)2l × (N∞)2l × (N∗)2m × Nm × (N∞)4m satisfying :

• ∀i, (d′i, k
′
i, r
′
i, α

′
i, β

′
i, γ

′
i, δ

′
i) ≤ (d

′
i+1, k

′
i+1, r

′
i+1, α

′
i+1, β

′
i+1, γ

′
i+1, δ

′
i+1) for the lexicographic

order,

•
∑

α
′

i ≤ α,

• ∀i, k′i is odd,
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• ∀i, β ′i ≥ ek′i
,

•
∑

(β
′

i − ek′i) = β,

•
∑

γ
′

i ≤ γ,

•
∑

δ
′

i ≤ δ,

• ∀i, Iα′i + Iβ
′
i + 2Iγ

′
i + 2Iδ

′
i = d

′
i,

• (d1, . . . , dl, k1, . . . , kl, γ1, . . . , γl, δ1, . . . , δl) ∈ S(
d−

∑
d
′
i+1

2
, l, γ −

∑
γ
′
i, δ −

∑
δ
′
i),

•
∑

(2di − 1 + |δi|) +
∑

r
′

i = r,

• ∀i, 2d′i − 1 + |β ′i + 2δ
′
i| − r

′
i ≥ 0.

By definition any element s of Sw(l,m, r, α, β, γ, δ) defines an element s
′

of

S(
d−

∑
d
′
i+1

2
, l, γ −

∑
γ
′
i, δ −

∑
δ
′
i). We denote by σ(s) the integer σ(s

′
) given in definition

3.1. For s ∈ Sw(l,m, r, α, β, γ, δ), let E(s) be the set of all j in {1, . . . ,m} such that

β
′
j ≥ ek′j

and 2d
′
j − 1 + |β ′j + 2δ

′
j| − r

′
j = 1. Given an element j ∈ {1, . . . ,m}, we denote by

'js the restriction to {1, . . . ,m}\{j} of the equivalence relation 's. For each of the
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equivalent classes of 'js, evaluate the factorial of its cardinality, and denote by σ
′
(s, j) the

product of these factorials.

Definition 3.5. Given two integer numbers l ≥ 0 and r ≥ 0 and four vectors α, β, γ and δ

in N∞, let S̃w(l, r, α, β, γ, δ) be the set of vectors

(d1, . . . , dl, k1, . . . , kl, γ1, . . . , γl, δ1, . . . , δl, d
′
1, k

′
1, r

′
1, γ

′
1, δ

′
1) in

(N∗)2l × (N∞)2l × (N∗)2 × N× (N∞)2 satisfying:

• γ′1 ≤ γ,

• 0 ≤ δ
′
1 − ek′1 ≤ δ,

• Iα + Iβ + 2Iδ
′
1 + 2Iδ

′
1 = d

′
1,

• (d1, . . . , dl, k1, . . . , kl, γ1, . . . , γl, δ1, . . . , δl) ∈ S(
d−d′1

2
, l, γ − γ′1, δ − δ

′
1 + ek′1

),

•
∑

(2di − 1 + |δi|) + r
′

1 = r,

• 2d
′
1 − 1 + |β + 2δ

′
1| − r

′
1 ≥ 0.
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By definition, any element s of S̃w(l, r, α, β, γ, δ) defines an element s
′

of

S(
d−d′1

2
, l, γ − γ′1, δ − δ

′
1 + ek′1

). We denote by σ(s) the integer σ(s
′
) given in definition 3.1.

Given an element s of Sw(l,m, r, α, β, γ, δ) or S̃w(l, r, α, β, γ, δ), we put

Θ(s) =

(
r

2d1−1+|δ1|,...,2dl−1+|δl|,r
′
1,...,r

′
m

)(
α

α
′
1,...,α

′
m

)( γ

γ1,...,γl,γ
′
1,...,γ

′
m

) l∏
i=1

(−1)di(δi)kiki2
2di−2+|δi+γi|Nγi,δi(di)

where if s is in S̃w(l, r, α, β, γ, δ), then there are no α
′
i elements and we set the value of the

corresponding multinomial coefficient equal to 1.

Theorem 3.6. The numbers Cα,β,γ,δ(d, r), with α and β odd, are given by the initial values

Ce1,0,0,0(0, 1) = C0,e1,0,0(1, 1) = 1 and the relations:

• Case I: if 2d− 1 + |β + 2δ| − 2r > 0, then

Cα,β,γ,δ(d, r) =
∑

kodd|β≥ek

Cα+ek,β−ek,γ,δ(d, r) +
∑

l,m≥0s∈Sw(l,m,r,α,β,γ,δ)[
Θ(s)

σ(s)σ′ (s)

m∏
i=1

(β
′
i)k′i

Cα
′
i,β
′
i ,γ
′
i ,δ
′
i(d

′
i, r
′
i)
( 2d−2+|β+2δ|−2r

2d
′
1−1+|β′1+2δ

′
1|−2r

′
1,...,2d

′
m−1+|β′m+2δ′m|−2r′m

)]
;

• Case II : if 2d− 1 + |β + 2δ| − 2r = 0, then

Cα,β,γ,δ(d, r) =
∑
k|δ≥ek

kCα,β,γ+ek,δ−ek(d, r − 1) +
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∑
l,m≥0,Kodd|β≥eK,s∈Sw(l,m,r−1,α,β−eK,γ,δ)

KΘ(s)

σ(s)σ′ (s)

m∏
i=1

(β
′
i)k′i

Cα
′
i,β
′
i ,γ
′
i ,δ
′
i(d

′
i, r
′
i) +

∑
l,m≥0,s∈Sw(l,m,r−1,α,β,γ,δ),j∈E(s)

Θ(s)k
′
jC

α
′
j+ek

′
j

,β
′
j−ek′

j

,γ
′
j ,δ
′
j

(d
′
j ,r
′
j)

σ(s)σ̃′ (s,j)

m∏
i=1,i 6=j

(β
′
i)k′i

Cα
′
i,β
′
i ,γ
′
i ,δ
′
i(d

′
i, r
′
i)−

∑
l≥0,s∈S̃w(l,r−1,α,β,γ,δ)

Θ(s)
σ(s)

2|γ−γ
′
1−

∑l
i=1 |+1(δ

′
1)k′1

k
′
1C

α,β,δ
′
1,δ
′
1(d

′
1, r

′
1)

Proof of theorem 3.6:

Let r ≥ 0 and d > 0 and let α, β, γ and δ be four vectors in N∞ with α and β odd. We will

consider two cases.

Case I: when 2d− 1 + |β + 2δ| − 2r > 0.

Recall that

Cα,β,γ,δ(d, r) =
∑

(D,M)

µR
r (D,M)

where the sum is taken over all marked floor diagrams of type (α, β, γ, δ). Note that

M(|α + 2γ|+ 1) is not a source, because the maximum number assigned to a source is

equal to |α+ 2γ|. So |α+ 2γ|+ 1 is assigned either to an edge (adjacent to a source or not)

or to a vertex which is not a source. The option of having M(|α + 2γ|+ 1) as an edge

which is not adjacent to a source is discarded because if this was the case then condition 3
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in definition 2.6 would fail. Condition 3 in definition 2.6 also implies that if

M(|α + 2γ|+ 1) = v ∈ V ert(D), then v must be adjacent to at least one unmarked edge in

Edge∞(D) and cannot be adjacent to any marked edge in Edge∞(D). So one can write:

Cα,β,γ,δ(d, r) =
∑

(D,M)∈A

µR
r (D,M) +

∑
(D,M)∈B

µR
r (D,M)

where

A is the set of all r− real marked floor diagrams of degree d and type (α, β, γ, δ) such that

M(|α + 2γ|+ 1) ∈ Edge∞(D), and

B is the set of all r − real marked floor diagrams of degree d and type (α, β, γ, δ) such that

M(|α + 2γ|+ 1) ∈ V ert(D).

Case I-A: Marked floor diagrams in A.

Let K = {k : β ≥ ek} and let Ak be the set of all r − real marked floor diagrams of degree

d and type (α + ek, β − ek, γ, δ). Let Φ : A→
⋃
k∈K Ak be the bijection defined as follows:

If (D,M) ∈ A and k is the weight of the edge M(|α + 2γ|+ 1), let
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Φ(D,M) = (D,M′
)

where M
′

is the marking of D of type (α + ek, β − ek, γ, δ) defined as follows.

• M
′
(i)=M(i) if i ≤

k∑
j=1

(α)j or i ≥ |α + 2γ|+ 2;

• M
′

(
k∑
j=1

(α)j + 1

)
is the source adjacent to M (|α + 2γ|+ 1);

• M
′
(i) = M(i− 1) if

k∑
j=1

(α)j + 2 ≤ i ≤ |α + 2γ|+ 1;

Note that n− 2r + 1 > |α + 2γ|+ 1 since 2d− 1 + |β + 2δ| − 2r > 0. So

M(i) = M
′
(i)∀i ≥ n− 2r + 1. Moreover, the elements in F(D,M, r) are exactly the

same elements of F(D,M′
, r). And clearly, the weight of the edges and the vector δ

never change. So,

µR
r (D,M) = (−1)

#(V ert(D)
⋂

F(D,M,r))
2 I−δ

∏
e∈Edge(D)∩M({n−2r+1,...,n})

w(e) = µR
r (D,M′

).

Therefore,

∑
(D,M)∈A

µR
r (D,M) =

∑
k|β≥ek

∑
(D,M′ )∈Ak

µR
r (D,M′

)
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Note that since β is odd, k must be odd, hence one has

∑
(D,M)∈A

µR
r (D,M) =

∑
kodd|β≥ek

Cα+ek,β−ek,γ,δ(d, r).

Example 3.7.

Let (D,M) be the following 2− real marked floor diagram of degree 3, genus 0 and type

(0, e1, e1, 0).

6

5

4

1 2

3

7

8

First, 2d− 1 + |β + 2δ| − 2r = 2 > 0, so we are in case I. Second, M(|α + 2γ|+ 1) = M(3)

is an edge adjacent to a source, so we are in set A.

The 2-pairs are {1, 2}, {5, 6} and {7, 8}. Since M(5) is adjacent to M(6), and M(7) is
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adjacent to M(8), but M(1) is not adjacent to M(2), F(D,M, 2) = {M(1),M(2)}. All

edges in M({5, 6, 7, 8}) have weight 1. Applying the formula of r− real multiplicity, we get

µR
2 (D,M)=1.

Applying the new marking M
′

on D, we will obtain:

6

5

4

2 3 1

7

8

M
′
(1) is the source adjacent to M(3). M

′
(2) = M(1), M

′
(3) = M(2) and M

′
(i) = M(i) for

i > 3. To find µR
2 (D,M′

): Note that (D,M′
) is of type (e1, 0, e1, 0),

F(D,M′
, 2) = {M(2),M(3)}. All edges in M({5, 6, 7, 8}) have weight 1. So µR

2 (D,M′
)=1.

Case I-B: Marked floor diagrams in B.

Let l and m be two non-negative integer numbers such that the set Sw(l,m, r, α, β, γ, δ) is

not empty. For each s in Sw(l,m, r, α, β, γ, δ), let B(s) be the set of all 2l +m-tuples,
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(
(D1,M1), . . . , (D2l,M2l), (D

′
1,M

′
1), . . . , (D′m,M

′
m)
)

where (D2i−1,M2i−1) and (D2i,M2i)

are two equivalent marked floor diagrams of degree di and type (γi, δi, 0, 0), and (D′i,M
′
i) is

an r
′
i − real marked floor diagram of degree d

′
i and type (α

′
i, β

′
i, γ

′
i, δ

′
i). Let

Φi : (D2i−1,M2i−1) −→ (D2i,M2i) be a homeomorphism establishing the equivalence of the

two diagrams.

To construct several elements of B, take an element of B(s) and proceed in the following

way:

1. For all i in {1, . . . , l} choose an element ai of Edge∞(D2i−1) which is in the image of

M2i−1 and of weight ki. Since δi ≥ eki , it is always possible to choose such an ai.

The total number of ways of selecting (a1, . . . , al) is
l∏

i=1

(δi)ki .

2. For all i in {1, . . . ,m} choose an element a
′
i of Edge∞(D′i) which is in the image of M

′
i

but not in F(D′i,M
′
i, r
′
i), and of weight k

′
i. Since β

′
i ≥ ek′i

, it is always possible to choose

such an a
′
i.

The total number of ways of selecting (a
′
1, . . . , a

′
m) is

m∏
i=1

(β
′
i)ki .
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3. Construct a new oriented tree D̃ out of

(D1,M1), . . . , (D2l,M2l), (D
′
1,M

′
1), . . . , (D′m,M

′
m) by identifying all the sources adjacent

to the edges ai, φ(ai), and a
′
j. Denote this vertex by v.

4. By adding sources and edges adjacent to the vertex v, complete D̃ into a unique floor

diagram D of degree d, genus 0, with (α)j + (β)j + 2(γ)j + 2(δ)j edges in Edge∞(D) of

weight j for all j ≥ 1. Denote by v1, . . . , vt the sources added.

5. Define α
′
m+1=α−

∑m
i=1 α

′
i and γ

′
m+1 = γ −

∑l
i=1 γi −

∑m
i=1 γ

′
i.

6. For all j ≥ 1, choose a partition (Iji )1≤i≤m+1 of the set {1, . . . , (α)j} such that

#Iji = (α
′
i)j for all i.

The number of possible choices is
∞∏
j=1

( (α)j

(α
′
1)j ,...,(α

′
m)j

)
=
(

α
α
′
1,...,α

′
m

)
.

7. For all j ≥ 1, choose a partition (Îji )1≤i≤l ∪ (Ĩji )1≤i≤m+1 of the set {1, . . . , (γ)j} such that

#Îji = (γi)j and #Ĩji = (γ
′
i)j for all i.

The number of possible choices is
( γ

γ1,...,γl,γ
′
1,...,γ

′
m

)
.
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8. Choose a partition (Ji)1≤i≤m of the set {1, . . . , 2d− 2 + |β + 2δ| − 2r} such that

#Ji = 2d
′
i − 1 + |β ′i + 2δ

′
i| − 2r

′
i for all i.

The number of possible choices is
( 2d−2+|β+2δ|−2r

2d
′
1−1+|β′1+2δ

′
1|−2r

′
1,...,2d

′
m−1+|β′m+2δ′m|−2r′m

)
.

9. Choose a partition (Ĵi)1≤i≤l ∪ (J̃i)1≤i≤m of the set {1, . . . , r} such that

#Ĵi = 2di − 1 + |δi| and #J̃i = r
′
i for all i.

The number of possible choices is
(

r
2d1−1+|δ1|,...,2dl−1+|δl|,r

′
1,...,r

′
m

)
.

10. For all i in {1, . . . , l}, choose a vector Ei in {0, 1}2di−1+|γi+δi|.

The number of possible choices is
l∏

i=1

2di−1+|γi+δi| = 2l
l∏

i=1

22di−2+|γi+δi|.

11. Choose a marking M of D of type (α, β, γ, δ) such that

a- M(|α|+ 2|γ|+ 1) = v,

b- for all j ≥ 1 and all k in Ijm+1,M

(
j−1∑
i=1

(α)t + k

)
is a source vq (see step (4)) of D of

divergence −j. Note that different choices of vq produce equivalent marked floor

diagrams,
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c- for all j ≥ 1 and all k in Ĩjm+1, M(|α|+ 2

j−1∑
t=1

(γ)t + 2k − 1) and

M(|α|+ 2

j−1∑
t=1

(γ)t + 2k) are two sources vq and vq′ of D of divergence −j. Note that

different choices of vq and vq′ produce equivalent floor diagrams,

d- for all j ≥ 1 and all i in {1, . . . ,m}, if k is the h-th element (for the natural ordering

of Iji ) of Iji , then

M

(
j−1∑
t=1

(α)t + k

)
= M

′

j

(
j−1∑
t=1

(α
′

j)t + h

)

Since Iji ⊂ {1, . . . , (α)j} and the cardinality of Iji is (α
′
i)j, 1 ≤ h ≤ (α

′
i)j and

1 ≤ k ≤ (α)j. So we get the following inequalities:

1 ≤
j−1∑
t=1

(α)t + k ≤ |α|, these correspond to sources in (D,M).

1 ≤
j−1∑
t=1

(α
′

j)t + h ≤ |α′i|, these correspond to sources in (D′i,M
′
i).

e- for all j ≥ 1 and all i in {1, . . . , l}, if k is the h-th element of Îji , then
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M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k − 1 + (Ei)∑j−1
t=1 (γi)t+h

)
= M2i−1

(
j−1∑
t=1

(γi)t + h

)

and

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k − (Ei)∑j−1
t=1 (γi)t+h

)
= φi ◦M2i−1

(
j−1∑
t=1

(γi)t + h

)
.

Since Îji ⊂ {1, . . . , (γ)j} and the cardinality is #Îji = (γi)j, 1 ≤ h ≤ (γi)j and

1 ≤ k ≤ (γ)j, we get the following inequalities:

|α|+ 1 ≤ |α|+ 2

j−1∑
t=1

(γ)t + 2k − 1 + (Ei)∑j−1
t=1 (γi)t+h

≤ |α|+ 2|γ|, these correspond to

marked sources in (D,M).

1 ≤
j−1∑
t=1

(γi)t + h ≤ |γi|, these correspond to all the marked sources in (D2i−1,M2i−1).

1 + |α| ≤ |α|+ 2

j−1∑
t=1

(γ)t + 2k− (E)∑j−1
t=1 (γi)t+h

≤ |α|+ 2|γ|, these correspond to marked

sources in (D,M).

1 ≤
j−1∑
t=1

(γi)t + h ≤ |γi|, these correspond to all the marked sources in (D2i,M2i).

We can conclude that there are exactly (γi)j marked sources of divergence j in
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(D,M) corresponding to the marked sources in (D2i−1,M2i−1). The edges adjacent to

these marked sources contribute to µC(D2i−1) but not to µR(D2i−1,M2i−1). The

product of the weights of these edges is Iγi . The same is true for (D2i,M2i).

Moreover, if M2i−1(c) is a marked source in (D2i−1,M2i−1) then M2i−1(c) and

φ ◦M2i−1(c) correspond to images of an r− pair in (D,M) and belong to F(D,M, r).

f- for all j ≥ 1 and all i in {1, . . . ,m}, if k is the h-th element of Ĩji , then

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k − 1

)
= M

′

i

(
|α′i|+ 2

j−1∑
t=1

(γ
′

i)t + 2h− 1

)

and

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k

)
= M

′

i

(
|α′i|+ 2

j−1∑
t=1

(γ
′

i)t + 2h

)
.

Since Ĩji ⊂ {1, . . . , (γ)j} and the cardinality of Ĩji is #Ĩji = (γ
′
i)j, 1 ≤ h ≤ (γ

′
i)j and

1 ≤ k ≤ (γ)j.So we get the following inequalities:

43



|α|+ 1 ≤ |α|+ 2

j−1∑
t=1

(γ)t + 2k − 1 ≤ |α|+ 2|γ| − 1

|α|+ 2 ≤ |α|+ 2

j−1∑
t=1

(γ)t + 2k ≤ |α|+ 2|γ|

All these correspond to marked sources of (D,M) that belong to F(D,M, r).

|α′i|+ 1 ≤ |α′i|+ 2

j−1∑
t=1

(γ
′

i)t + 2h− 1 ≤ |α′i|+ 2|γ′i| − 1

|α′i|+ 2 ≤ |α′i|+ 2

j−1∑
t=1

(γ
′

i)t + 2h ≤ |α′i|+ 2|γ′i|

These correspond to all the marked sources of (D′i,M
′
i) that belong to F(D′i,M

′
i, r
′
i).

g- for all i in {1, . . . ,m}, if k is the h-th element of Ji, then

M (|α|+ 2|γ|+ k + 1) = M
′
i

(
|α′i|+ 2|γ′i|+ h

)
.

Since Ji ⊂ {1, . . . , 2d− 2 + |β + 2δ| − 2r} and the cardinality

#Ji = 2d
′
i − 1 + |β ′i + 2δ

′
i| − 2r

′
i; 1 ≤ h ≤ 2d

′
i − 1 + |β ′i + 2δ

′
i| − 2r

′
i and

1 ≤ k ≤ 2d− 2 + |β + 2δ| − 2r, we get the following inequalities:

|α|+ 2|γ|+ 2 ≤ |α|+ 2|γ|+ k + 1 ≤ |α|+ 2|γ|+ 2d− 2 + |β + 2δ| − 2r + 1 = n− 2r

|α′i|+ 2|γ′i|+ 1 ≤ |α′i|+ 2|γ′i|+ h ≤ |α′i|+ 2|γ′i|+ 2d
′
i − 1 + |β ′i + 2δ

′
i| − 2r

′
i = n

′
i − 2r

′
i.
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h- for all i in {1, . . . , l}, if k is the h-th element of Ĵi, then (recall that

n = 2d− 1 + |α + β + 2γ + 2δ|)

M(n− 2k + 1 + (Ei)|γi|+h) = M2i−1(2di + |γi|+ |δi| − h)

and

M(n− 2k + 2− (Ei)|γi|+h) = φi ◦M2i−1(2di + |γi|+ |δi| − h)

Since Ĵi ⊂ {1, . . . , r} and has cardinality #Ĵi = 2di − 1 + |δi|,1 ≤ h ≤ 2di − 1 + |δi|,

we get the following inequality:

|γi|+ 1 ≤ 2di + |γi|+ |δi| − h ≤ 2di + |γi|+ |δi| − 1 = ni.

This shows that M2i−1(2di + |γi|+ |δi| − h) is not a source.

Also, since Ĵi ⊂ {1, . . . , r} and k ∈ Ĵi, we get the following inequalities:

n− 2r + 1 ≤ n− 2k + 1 + (Ei)|γi|+h ≤ n

n− 2r + 2 ≤ n− 2k + 2 + (Ei)|γi|+h ≤ n+ 1.
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This shows that all marked elements of (D2i,M2i) and (D2i−1,M2i−1) that are not

sources correspond to elements in D marked by a number greater than n− 2r.

Furthermore, for these elements, M2i−1(j) and φi ◦M2i−1(j) is an r− pair in (D,M).

i- for all i in {1, . . . ,m}, if k is the h-the element of J̃i, then

M(n− 2k + 1) = M
′

i(n
′

i − 2h+ 1)

and

M(n− 2k + 2) = M
′

i(n
′

i − 2h+ 2)

Since J̃i ⊂ {1, . . . , r} and the cardinality, #J̃i = r
′
i, 1 ≤ h ≤ r

′
i and 1 ≤ k ≤ r, we get

the following inequalities:

n
′
i − 2r

′
i + 1 ≤ n

′
i − 2h+ 1 ≤ n

′
i − 1,

n
′
i − 2r

′
i + 2 ≤ n

′
i − 2h+ 2 ≤ n

′
i,

n− 2r + 1 ≤ n− 2k + 1 ≤ n− 1, and
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n− 2r + 2 ≤ n− 2k + 2 ≤ n.

By (d), (f), (g) and (i) we can say that the edges in D′i corresponding to edges in D

marked by a number in the set {1, . . . , n− 2r} are precisely the elements of

M
′
i(1, . . . , n

′
i − 2r

′
i).

This gives us several elements of B.

Proposition 3.8. For each element (D,M) constructed above:

µR
r (D,M) =

l∏
i=1

(−1)dikiµ
C(D2i,M2i)

m∏
i=1

µR
r
′
i
(D′i,M

′

i).

Proof: Recall that

µR
r (D,M) = (−1)

#(V ert(D)
⋂

F(D,M,r))
2 I−δ

∏
e∈Edge(D)∩M({n−2r+1,...,n})

w(e).

The factor I−δ can be written as:
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I−δ = I−
∑
δ
′
i .I−(δ−

∑
δ
′
i)

= I−
∑m
i=1 δ

′
i .I

∑l
i=1(eki−δi)

= I−
∑m
i=1 δ

′
i

l∏
i=1

Ieki .I−δi

= I−
∑m
i=1 δ

′
i

l∏
i=1

kiI
−δi .

On the other hand, #(V ert(D) ∩ F(D,M, r)) =
l∑

i=1

#(V ert(D2i) ∩ F(D,M, r)) +

l∑
i=1

#(V ert(D2i−1) ∩ F(D,M, r)) +
m∑
i=1

#(V ert(D′i) ∩ F(D,M, r)).

From step (h) of the algorithm, we have that V ert(D2i) ∩ F(D,M, r) = V ert(D2i). By

Corollary 2.4 ,#V ert(D2i) = di. Similarly, #(V ert(D2i−1) ∩ F(D,M, r) = di.

From step (f), #(V ert(D′i) ∩ F(D,M, r)) = #(V ert(D′i) ∩ F(D′i,M
′
i, r
′
i)). Therefore,

(−1)
#(V ert(D)

⋂
F(D,M,r))

2 = (−1)
∑m
i=1

#(V ert(D
′
i)∩F(D

′
i,M
′
i,r
′
i))

2

l∏
i=1

(−1)di .

Now, we want to treat
∏

e∈Edge(D)∩M({n−2r+1,...,n})
w(e).

∏
e∈Edge(D)∩M({n−2r+1,...,n})

w(e) =
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l∏
i=1

∏
e∈Edge(D2i)∩M({n−2r+1,...,n})

w(e)2
m∏
i=1

∏
e∈Edge(D′i)∩M({n−2r+1,...,n})

w(e).

From (h), the first part of the product is equal to
l∏

i=1

∏
e∈Edge(D2i)∩M({1,...,n})

w(e)2 which is

equal to
l∏

i=1

[ ∏
e∈Edge(D2i)∩M({1,...,n})

w(e)2
∏

e∈Edge(D2i)\M({1,...,n})
w(e)2I−2γi

]
by (e).

From (d), (f), (g) and (i) the second factor is equal to
m∏
i=1

∏
e∈Edge(D′i)∩M

′
i({n

′
i−2r

′
i+1,...,n

′
i})
w(e).

So µR
r (D,M) =

l∏
i=1

(−1)di
l∏

i=1

[ ∏
e∈Edge(D2i)∩M({1,...,n})

w(e)2
∏

e∈Edge(D2i)\M({1,...,n})
w(e)2I−2γi

]
l∏

i=1

kiI
−δi

(−1)
∑m
i=1

#(V ert(D
′
i)∩F(D

′
i,M
′
i,r
′
i))

2 I−
∑m
i=1 δ

′
i

m∏
i=1

∏
e∈Edge(D′i)∩M({n−2r+1,...,n})

w(e)

=
l∏

i=1

(−1)dikiµ
C(D2i,M2i)

m∏
i=1

µR
r
′
i

(D′i,M
′
i). �

The total number of, not necessarily distinct, marked floor diagrams generated by the

algorithm is equal to

2l
l∏

i=1

(δi)ki2
2di−2+|γi+δi|

m∏
i=1

(β
′
i)k′i

(
α

α
′
1,...,α

′
m

)( γ

γ1,...,γl,γ
′
1,...,γ

′
m

)( 2d−2+|β+2δ|−2r

2d
′
1−1+|β′1+2δ

′
1|−2r

′
1,...,2d

′
m−1+|β′m+2δ′m|−2r′m

)
(

r
2d1−1+|δ1|,...,2d−1+|δl|,r

′
1,...,r

′
m

)
.

Each marked floor diagram is generated 2lσ(s)σ
′
(s) times.

The factor 2l comes from the equivalence between the floor diagrams D2i−1 and D2i.

49



σ(s) comes from the equivalence relation (di, ki, αi, βi) = (dj, kj, αj, βj)⇔ i 's j given in

definition 3.1. Similarly for σ
′
(s).

Dividing by 2lσ(s)σ
′
(s) then summing up over all s ∈ Sw(l,m, r, α, β, γ, δ) we get what is

required.

Example 3.9.

Let s = (1, 1, 0, e1, 2, 1, 0, 0, 2e1, 0, 0) ∈ Sw(1, 1, 2, 4e1, e1, 0, 0) and consider the element

∆ = ((D1,M1), (D2,M2), (D′1,M
′
1)) of B(s) given by:

1

2

(D1,M1); (D2,M2)

1 2

4

3

5

(D′1,M
′
1)

The non-equivalent elements of B obtained from ∆ are:
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321

5

4

14

1112

13

6

8

7

9

10

32

6

1

5

4

14

12

13

11

8

7

9

10

321

5

4

13

8

6

9

10

11

14

7
12

321

5

4

10

9

6

7

8

13

11 12

14
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Case II: when 2d− 1 + |β + 2δ| − 2r = 0.

In this case, if (D,M) is an r − real marked floor diagram of degree d and type (α, β, γ, δ),

then {|α + 2γ|+ 1, |α + 2γ|+ 2}is an r − pair of (D,M). The four terms in the right hand

side of the formula in Theorem 3.6, equation (2), come from consideration of four sub

cases, Let A
′
,B

′
,C

′
and D

′
be the sets of all r − real marked floor diagrams of degree d

and type (α, β, γ, δ) satisfying respectively

• both M(|α + 2γ|+ 1) and M(|α + 2γ|+ 2) are in Edge∞(Γ),

• M(|α + 2γ|+ 1) is in Edge∞(Γ) and M(|α + 2γ|+ 2) is in V ert(Γ),

• M(|α + 2γ|+ 1) is in V ert(Γ) and M(α + 2γ|+ 2) is in Edge(Γ),

• both M(|α + 2γ|+ 1) and M(|α + 2γ|+ 2) are in V ert(Γ).

Case II-A’: Marked floor diagrams in A
′
.

There exists a bijection Φ
′

from the set A
′

to the union of all (r − 1)− real marked floor

diagrams of degree d and type (α, β, γ + ek, δ − ek) for k such that δ ≥ ek. If (D,M) is a
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marked floor diagram in A
′

and k is the weight of the edge M(|α + 2γ|+ 1), we define

Φ
′
(D,M)=(D,M′

) where

• M
′
(i) = M(i) if i ≤ |α|+ 2

k∑
j=1

γj or i ≥ |α + 2γ|+ 3,

• M
′
(|α|+ 2

k∑
j=1

γj + 1) is the source adjacent to M(|α + 2γ|+ 1),

• M
′
(|α + 2

k∑
j=1

γj + 2) is the source adjacent to M(|α + 2γ|+ 2),

• M
′
(i)=M(i− 2) if |α|+ 2

k∑
j=1

γj + 3 ≤ i ≤ |α + 2γ|+ 2.

Note that n− 2r = 2d− 1 + |α + β + 2γ + 2δ| − 2r = |α + β|. So

{|α + 2γ|+ 1, |α + 2γ|+ 2} is an r − pair. Since (D,M) is r − real, M(|α + 2γ|+ 1) and

M(|α + 2γ|+ 2) have the same weight. Also note that F(D,M′
, r − 1) = F(D,M, r) so

(D,M′
) is (r − 1)-real and v ∈ V ert(D) ∩ F(D,M, r)⇔ v ∈ V ert(D) ∩ F(D,M′

, r − 1).

∏
e∈M({n−2r+1,...,n})

w(e) = k2
∏

e∈M({n−2r+3,...,n})
w(e) = k2

∏
e∈M′ ({n−2(r−1),...,n})

w(e)

I−δ = I−(δ−ek)−ek = 1
k
I−(δ−ek)

Therefore µR
r (D,M) = kµR

r−1(D,M′
). Note that since (D,M) is r − real, the weight of the

edges M(|α + 2γ|+ 1) and M(|α + 2γ|+ 2) is the same. One has µR
r (D,M) = kµR

r (D,M′
),
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hence the first sum of the right-hand side of the formula in Theorem 3.6, equation (2), is

given by
∑

(D,M)∈A′
µR
r (D,M).

Case II-B’: Marked floor diagrams in B
′
.

Choose K ≥ 1 such that β ≥ eK . Let l and m be two non-negative integers such that the

set Sw(l,m, d, k, r− 1, α, β − eK , γ, δ) is not empty, and let B(s) be as in Case I-B for any s

in Sw(l,m, d, k, r − 1, α, β − eK , γ, δ). Starting from an element of B(s), construct several

elements of B′ as in the step (1)-(11) of Case I-B, except for the following modifications:

(8B
′
) define Ji= φ for all i in {1, . . . ,m},

(9B
′
) Choose a partition (Ĵi)1≤i≤m ∪ (J̃i)1≤i≤m of the set {1, . . . , r − 1} such that

#Ĵi = 2di − 1 + |δi| and #J̃i = r
′
i for all i.

(11B
′
)(a) M(|α+ 2|γ|+ 2) = v, and M(|α|+ 2|γ|+ 1) is an edge in Edge∞(D) of weight K

adjacent to v.

By construction, one has

µR
r (D,M) = K

l∏
i=1

(−1)dikiµ
C(D2i,M2i)

m∏
i=1

µR
r
′
i

(D′i,M
′
i).
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Now, the second sum in the right-hand side of the formula in 3.6, equation (2), follows

from all possible choices in our construction.

Case II-C’: Marked floor diagrams in C
′
.

Let l and m be two non-negative integers such that the set Sw(l,m, d, k, r − 1, α, β, γ, δ) is

not empty, and define the set B(s) as in Case I-B for any s in Sw(l,m, d, k, r− 1, α, β, γ, δ).

Then, starting from an element of B(s) we construct several elements of C
′

as in the step

(1)-(11) of Case I-B, except for the following modifications

(0C
′
) Choose j in {1, . . . ,m} such that βj ≥ k

′
j, the weight of M

′
j(|α

′
j|+ 2|γ′j|+ 1) is k

′
j,

and 2d
′
j − 1 + |β ′j + 2γ

′
j| − 2r

′
j=1.

(2C
′
) For all 1 ≤ i ≤ m, i 6= j, choose an element a

′
i of Edges∞(D′i) which is in the image

of M
′
i but not in F(D′i,M

′
, r
′
i), and of weight k

′
i.

(8C
′
) Define Ji = φ for all i in {1, . . . ,m}.

(9C
′
) Choose a partition (Ĵi)1≤i≤m ∪ (J̃i)1≤i≤m of the set {1, . . . , r − 1} such that

#Ĵi = 2di − 1 + |δi| and #J̃i = r
′
i for all i.
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(11C
′
) (a) M(|α + 2|γ|+ 1) = v, and M(|α|+ 2|γ|+ 2) = M

′
j(α

′
j|+ 2|γ′j|+ 1).

By construction, one has

µR
r (D,M) = k

′

j

l∏
i=1

(−1)dikiµ
C(D2i,M2i)

m∏
i=1

µR
r
′
i
(D′i,M

′

i).

Now, the third sum in the the right-hand side of the formula in 3.6, equation (2), follows

from all possible choices in our construction.

Case II-D’: Marked floor diagrams in D
′
.

In this case, by ”cutting” the vertices M(|α+ 2|γ|+ 1) and M(|α|+ 2|γ|+ 2) from (D), one

obtains several marked floor diagrams of genus 0 and of lower degrees. Since (D) is a tree

and is r − real, exactly one of these marked floor diagrams is adjacent to both cut vertices,

and all the other are naturally coupled in pairs by the map ρD,M,r. Moreover, any edge in

Edge∞(D) adjacent to the vertex M(|α|+ 2|γ|+ 2) since the diagram is r − real. In

particular, both edges have the same weight.

Let l be a non-negative integer such that the set S̃w(l, r − 1, α, β, γ, δ) is not empty. For s
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in this set, define the set B(s) as in Case I-B with m = 1.

Starting from an element of B(s), we construct several elements of D′ in the following way

1. For all 0 ≤ i ≤ l choose an element ai of Edge∞(D2i−1) which is in the image of M2i−1

and of weight ki.

2. Choose an edge a
′
1 of D′1 in Edge∞(D′1) ∩ F(D′1,M

′
1, r

′
1) of weight k

′
1.

3. Construct a new oriented tree D̃ out of

(D1,M1), . . . , (D2l,M2l), (D
′
1,M

′
1), . . . , (D′m,M

′
m) by identifying

all the sources adjacent to the edges ai and a
′
1, and all the sources adjacent to the edges

φi(ai) and ρD′1,M
′
1,r
′
1
(a
′
1). Denote by v and v

′
the 2 vertices added.

4. Construct a degree d and genus 0 floor diagram D out of D̃ by adding sources

v1, . . . , vt, v
′
1, . . . , v

′
t and edges (v1, v), . . . , (vt, v), (v

′
1, v

′
), . . . , (v

′
t, v

′
), such that D has

(α)j + (β)j + 2(γ)j + 2(δ)j edges in Edge∞(D) of weight j for all j ≥ 1, and such that

there are as many edges (vi, v) of weight j as edges (v
′
i, v

′
) of weight j for all j ≥ 1.
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5. Define γ
′
2 = γ −

∑l
i=1 γi − γ

′
1.

6. For all j ≥ 1, choose a partition (Îji )1≤i≤l ∪ (Ĩj1) ∪ (J̃ j2) of the set {1, . . . , (γ)j} such that

#Îji = (γi)j and #Ĩji = (γ
′
i)j.

7. Choose a partition (Ĵi)1≤i≤l ∪ (J̃1) of the set {1, . . . , r− 1} such that #Ĵi = 2di − 1 + |δi|

and #J̃1 = r
′
1.

8. Choose a vector E in {0, 1}|γ
′
2|.

9. For all i in {1, . . . , l}, choose a vector Ei in {0, 1}2di−1+|γi+δi|.

10. Choose a marking M of D of type (α, β, γ, δ) such that

(a) M(|α + 2|γ|+ 1) = v, and M(|α|+ 2|γ|+ 2) = v
′
,

(b) For all j ≥ 1 and if k is the h− th element of Îj2 , then

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k + (E)∑j−1
t=1 (γ

′
i )t+h

)
and

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k − (E)∑j−1
t=1 (γ

′
i )t+h

)
are respectively a source vq and v

′
q of

divergence −j,
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(c) If 1 ≤ i ≤ |α|,M(i) = M
′
1(j),

(d) for all j ≥ 1 and all i in {1, . . . , l}, if k is the h− th element of Îji , then

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k − 1 + (Ei)∑j−1
t=1 (γi)t+h

)
= M2i−1

(
j−1∑
t=1

(γi)t + h

)

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k + (Ei)∑j−1
t=1 (γi)t+h

)
= φi ◦M2i−1

(
j−1∑
t=1

(γi)t + h

)

(e) for all j ≥ 1, if k is the h− th element of Ĩji , then

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k − 1

)
= M

′

1

(
|α′1|+ 2

j−1∑
t=1

(γ
′

1)t + 2h− 1

)

M

(
|α|+ 2

j−1∑
t=1

(γ)t + 2k

)
= M

′

1

(
|α′1|+ 2

j−1∑
t=1

(γ
′

1)t + 2h

)

(f) for all i in {1, . . . , l}, if k is the h-th element of Ĵi, then

M(n− 2k + 1 + (Ei)|γi|+h) = M2i−1(2di − |γi|+ |δi| − h)
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M(n− 2k + 2 + (Ei)|γi|+h) = φi ◦M2i−1(2di − |γi|+ |δi| − h)

(g) if k is the h-the element of J̃1, then

M(n− 2k + 1) = M
′

1(n
′

1 − 2h+ 1)

M(n− 2k + 2) = M
′

1(n
′

1 − 2h+ 2)

In this way, we construct all marked floor diagrams in D′ . Moreover, any element of D′ is

obtained exactly σ(s)σ(s)
′

times for some s in S̃w(l, r − 1, α, βγ, δ).

By construction, one has

µR
r (D,M) = −k′1µR

r
′
1
(D′1,M

′

1)
l∏

i=1

(−1)dikiµ
C(D2i,M2i)

Now, the fourth sum in the right-hand side of the formula in 3.6, equation (2), follows from

all possible choices in our construction.
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