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AN ABSTRACT OF THE THESIS OF

Amani Ibrahim Zalzali for Master of Science
Major: Physics

Title: Dynamics of Thin Rotating Flows Subject to Electric and Magnetic Fields

We investigate the properties of thin rotating flows subject to a Lorentz force. The height
of the fluid in motion is ten times smaller than its diameter allowing two-dimensional
theory to be applied. This study is motivated by fundamental problems in nature related
to geophysical flows, namely polar vortices and to accretion disks around black holes. In
all of these areas, the main topic is the interplay between turbulence and average rotation.
Using the Navier-Stokes equations with external Lorentz force, along with the appropriate
boundary conditions, the base flow is found. Stability analysis using perturbation theory
in slab geometry allows us to predict the unstable region of the flow. Experimentally, the
fluid is a thin layer of Galinstan (liquid metal) placed in a cylindrical container. At its
edge eight electrodes are biased with respect to a middle one in order to draw a current
among them. A strong axial magnetic field is applied by permanent magnets. Using
laser diagnostic technique, velocity fluctuations are measured versus several controlling
parameters. It is shown that the fluid becomes unstable in absence of magnetic field
fluctuations. This instability occurs in the (r,q )-plane and this is observed for the first
time.
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A. Motivation

Understanding the fundamental physics behind rotating flows is important for

early predictions in geophysical fluid dynamics and understanding the mysteries of the

universe in astrophysics. Cyclones in the atmosphere, circulations in the ocean, and ac-

cretion disks in the universe are all essentially rotating flows.

The dynamics of rotating flows are studied in a thin layer of liquid metal that is

subject to a radial electric current and axial external magnetic field. The resulting Lorentz

force caused by the electric and magnetic fields rotates the fluid. The thickness of the

fluid layer is kept small to ensure the applicability of two dimensional theory. We treat

this problem analytically by introducing external forcing to Navier Stokes equations. An

experiment is conducted in order to study the characteristics of the flow as well as the

onset of two dimensional non-axisymmetric centrifugal instability (2D-NACI).

This study has wide applications in naturally occurring rotating flows such as

astrophysical and geophysical fluid dynamics. It also contributes to the development of

mechanical designs of hydrodynamical systems. In the next section, we present the fields

of application.

1. Accretion Disks

An accretion disk is a flow of gas, plasma, dust or particles around any astronom-

ical object. This object can be a white drawrf, a neutron star, or a black holes in which the

material orbiting in the gravitational field of the object loses energy and angular momen-

tum due to turbulence and viscosity. This dissipation of energy causes the orbits of the

disk to acquire a spiral nature as shown in Fig.(1)). Experiments that simulate the fluid

motion in an accretion disks in a laboratory help astrophysicists bring theoretical models

of accretion disks closer to reality.
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Figure 1: Left: Event horizon, accretion disk and gamma ray jets of a black hole (Source:
Internet Encyclopedia of Science. Credit Astronomy: Roen Kelly). Right: Accretion disc
and jet in a proto-star HH30 observed by the Hubble Space Telescope: the jet (in red) is
perpendicular to the accretion disc. (Source: Burrows, STSci/ESA, WFPC2, NASA))

The formation of an accretion disk starts when matter possesses enough angular

momentum such that it cannot simply fall towards the central accretor in a straight line.

Because rotation resists the inflow of matter, the flow flattens in the direction perpendicu-

lar to the rotation axis therefore giving it a disk shape structure. In the direction parallel to

the rotator axis, thermal pressure and gravitaional force balance each other. This contracts

the disk and reduces its thickness to become thin. This geometry allows us to consider

the flow of particles in an accretion disk quasi-two dimensional.

It was observed that the rates of accretion in these disks are so high that the

molecular viscosity of astrophysical gases and plasma is not insufficient to explain the

high rates. The need to conduct laboratory experiment is then necessary. Several studies

were inspired by the Taylor-Couette experiments, to be introduced in this chapter, to study

the possible instabilities arising in accretion disks. However, the exact type of instability

leading to the high accretion rates is still debatable.
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In this thesis, we study the hydrodynamic instability arising in a fluid of similar

geometry a thin accretion disk, which helps us understand the dynamics of the accretion

disk flow. Of greater importance, the study of linear growth phase and saturation of the

instability provides much needed insight and useful benchmarks against which to compare

simulations of accretion disks around black holes.

2. Geophysical Fluid Dynamics

Without its atmosphere and oceans, our planet would not sustain life. The nat-

ural fluid motion occurring in these systems is then of vital importance and their study

is essential. Laboratory experiments, such as the one conducted in this research work,

are considered as idealized environments of complicated dynamics of geophysical struc-

tures. Thanks to advances in geophysical fluid dynamics, the ability to predict the path

of tornadoes and hurricanes has improved tremendously over the past decades. Fig. (2)

shows Hurricane Katrina which was the costliest natural disaster, as well as one of the five

deadliest hurricanes, in the history of the United States taking over 1600 lives [1]. Fig.(2)

also shows Elie, the strongest confirmed tornado in Canadian history [2].
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Figure 2: Left: A tornado approaching the town of Elie, Manitoba, Canada on June 22,
2007. It caused $39 million in damage. Right: Hurricane Katrina which was the

deadliest and most destructive Atlantic tropical cyclone of the 2005 Atlantic hurricane
season. The total property damage was estimated at $81 billion.

The motion observed in both the oceans and the atmosphere exhibit a wide range

of scales and depend on an interplay of many parameters. In order to avoid an exces-

sive degree of complexity, most laboratory experiments isolate a single process in order

to study in detail. Therefore, the design of independent experiments then strongly con-

tributes to the overall picture of understanding geophysical flows.

Although it is difficult to set an exact thickness to the atmosphere of the Earth

(due to the lack of definite boundary layer) 30 km above the Earth surface encompass

99% of its atmospheric mass. The radius of the Earth is around 6400 km, so the at-

mosphere is less than 1% of the Earth radius. Therefore, the dynamics occurring in the

atmosphere, like horizontal rotations of tornadoes and hurricanes are considered to be

quasi two dimensional flows. Similarly, the oceans thickness is less than 10 km thus al-

lowing circulations parallel to the surface the to become far larger than the rotations in

the perpendicular plane, which are suppressed. This thesis studies instabilities in two di-
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mensional rotating flows. Hence, the instabilities developing in the experient conducted

in this thesis are similar to those occuring in the oceans and atmosphere.

Shallow Water Equations (SWE), adopted from geophysical fluid dynamics, pro-

vide us with a method in the diagnostics chapter to extract properties of the fluctuations

of the velocity of the fluid.

3. Mechanical Engineering Applications

Rotating flows are also encountered in engineering designs. For higher efficiency

of mechanical systems with rotating fluids, the understanding of rotating flows is highly

beneficial. For example, in a gas turbine engine such as the one shown in Fig.(3), station-

ary discs in cylindrical geometries are surrounded by empty cavities filled with air.

Figure 3: Schematic cutaway of the Rolls Royce Trent 1000 engine for the Boeing 787
Dreamliner, illustrating the bladed discs of the compressor and turbine.

The cavity formed contains a rotating disc adjacent to a stationary disc (wheelspace

or rotor-stator disc cavity to mechanical engineers). Cooling this air reduces the thermal

load on the disc and prevents the entry of hot mainstream gas from the blade path into

the cavity. However, the use of this air is harmful to engine cyclic performance. Tur-
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bine efficiency can be also adversely affected by the seal air efflux into the main annulus.

The lifetime of the rotor, and the cyclic and component performance of the engine are

therefore dependent on the efficiency with which the cavity is purged of hot gases[3].

To determine the power required to overcome frictional drag, local flow charac-

teristics, and associated heat transfer, scientists and engineers were motivation to investi-

gate a number of rotor-stator disc configurations. Therefore, the study of rotating flows in

laboratory experiments contributes to optimizing the best design with the most convenient

parameters.

B. Definitions

In order to generalize different experimental results in fluid mechanics, dimen-

sionless parameters are introduced:

• Reynolds number (Re) is a dimensionless number that gives a measure of the ratio of

inertial forces to viscous forces and consequently quantifies the relative importance

of these two types of forces for a given flow. The higher the Reynolds number is,

the more turbulent the flow is:

Re ⇠ u.(—u)
µ—2u

⇠ uL
n

(1)

where L is the characteristic length of the fluid container, u is the velocity of the

fluid and n is the kinematic viscosity of the fluid.

• Hartman number (Ha) is dimensionless number that gives the ratio of the electro-

magnetic force to the viscous force.
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Ha2 ⇠ j⇥B
µ—2u

⇠ s 4V B
µu

+
sB2L2

µ
(2)

where B is the magnetic field, s is the electric conductivity.

• Prandtl number (Pr) is a dimensionless parameter of the ratio of conduction to . It

can be used to determine which process will win. If a fluid is more viscous, the

Prandtl number is greater and the heat transfer will be less convective.

Pr =
n
k

(3)

where k is the thermal diffusivity.

• Ekman number (Ek) is a dimensionless number used in describing geophysical phe-

nomena in the oceans and atmosphere. It characterizes the ratio of viscous forces

in a fluid to the fictitious forces arising from planetary rotation.

Ek =
n

WL2 (4)

C. Previous Work

Experiments which aim at studying rotating flow belong to several areas of re-

search. In this section, we distinguish three main areas: Unmagnetized Taylor-Couette

flows, Magnetized Taylor-Couette flows, and laboratory quasi two dimensional flows.

1. Unmagnetized Taylor-Couette Flows

Mallock and Couette both independently developed a method to accurately mea-

sure the viscosity of several fluids using two differentially rotating concentric cylinders
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[4, 5], now known as a Taylor-Couette flow.

Figure 4: Schematic drawings of the magnetized and unmagnetized Taylor Couette
setups. A fluid is placed inside the gap between two concentric rotating cylinders with

angular velocities W1 and W2. The angular velocity of the fluid is W.

A circular Couette system, shown in Fig.(4), is characterized by the several con-

trol parameters: the radius ratio h = R1/R2, where R1 and R2 are the inner- and outer-

cylinder radii; the aspect ratio G = H/(R2 �R1) , where H is the height of the fluid; the

inner- and outer-cylinder Reynolds numbers Re1,2 = R1(R2 �R1)W1,2/n where n is the

kinematic viscosity of the fluid, W1 and W2 are the angular velocities of the inner and the

outer cylinders respectively.

When Mallock rotated the inner cylinder keeping the outer cylinder fixed in his

experiment, vortices developed in the flow bringing the attention of instability to Lord

Rayleigh in 1895. While Rayleigh’s analysis in 1916 explained the physical origin of

the vortical structure [6], it was not until 1923, that G. I. Taylor was able to relate the
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theory to the experiment for stability in cylindrical Couette flow. His investigation was a

key development in the modern study of fluid dynamics. It offered convincing proof that

the Navier-Stokes equations indeed accurately describe the flow of a Newtonian fluid, not

just at the base flow level, but also for the analysis of secondary flows and instabilities.

Furthermore, it was the first successful application of linear stability analysis that accu-

rately predicted experimental results, namely the transition from stable flow to vortical

Taylor-Couette flow [7].

Figure 5: Flow Regimes observed in Taylor-Couette apparatus in terms of inner and
outer cylinder Reynolds numbers Ri and Ro. The dashed lines in the figure indicate the

transition boundaries. Dotted lines indicate the expected, but not yet observed,
continuation of several boundaries.

Many scientists continue to investigate the motion in a Taylor-Couette setup. In

1965, Coles realized that the azimuthal flow between counter-rotating cylinders was un-

stable to non-axisymmetric spiral vortices. In his remarkable study of flows between both

counter- and co-rotating cylinders, Coles discovered several distinctive flows including
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intermittent turbulent bursts and spiral turbulence [8]. In 1968, Snyder compared his ob-

servations of the most unstable wavenumber of spiral vortices between counter-rotating

cylinders with the predictions of Krueger, Gross & DiPrima [9, 10, 11]. In 1970, Snyder

found that for h = R1/R2 = 0.2,0.5,0.8 and 0.959 a variety of waveforms occur for small

Re in both counter- and co-rotating cylinders [12]. In 1983, Andereck et al. reported

the observation of five new flows occurring between co-rotating cylinders[13]. The un-

derstanding of flow regimes in terms of the Reynolds numbers of the inner and outer

cylinders has developed over the years to enclose most of the possible combinations of

inner and outer Reynolds numbers. These achievements are summarized in Fig.(5).

Most of the studies of Taylor-Couette system of fluid motion is done in narrow

gap limit, or in other words large aspect ratios. In this limit, the vertical boundaries (or

end-caps) between the cylinders do not have a dynamical role, even with finite viscosity

[14].

Studies of Taylor-Couette flows can be applied to geophysical flows with axial

symmetry such as the rotations arising near the equator of the Earth as shown in 6. To-

wards the poles, polar vortices develop giving rise to non-axisymmetric instabilities. In

this thesis, we study two dimensional non-axsisymmetric centrifugal instabilities in a thin

rotating layer of fluid.
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Figure 6: Left: The flow between concentric spheres with counter-rotating produces
axisymmetric Taylor vortices. It is comparable to the vortices arising on the equator of

the Earth. Near the poles, non-axisymmetric vortices arise. Right. Schematic drawing of
Taylor-Couette setup showing counter rotating wavy vortices.

2. Magnetized Taylor-Couette Flows

Taylor-Couette flows are commonly used to study instabilities leading to turbu-

lence. In presence of an external magnetic field, the fluid becomes magnetized and the

growth rates of instabilities are affected. In this thesis, we distinguish between two types

of instabilities: Magnetorotational Instability (MRI) and Rayleigh centrifugal instability.

Magnetorotational instability (MRI) was discovered by Velikhov in 1959 in the

context of vertically magnetized Taylor-Couette flow. His analysis was generalized by

Chandrasekhar in 1960 using a variational principle. Gases or liquids containing mobile

electrical charges are subject to the influence of a magnetic field. In addition to hydrody-

namical forces such as pressure and gravity, an element of magnetized fluid also feels the

Lorentz force J ⇥B , where J is the current density and B is the magnetic field vector. If

the fluid is in a state of differential rotation about a fixed origin, this Lorentz force can be

surprisingly disruptive, even if the magnetic field is very weak. This process is known as
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the Magnetorotational Instability, or MRI. [15]

Centrifugal instability is due to the imbalance between the the radial pressure

gradient gives and the centrifugal force in a rotating fluid. In 1917, Rayleigh stated a

necessary condition for the existence of a centrifugal instability:

∂ (r2W)2

∂ r
< 0

where W is the angular velocity.

Assuming that W ⇠ rd , stability analysis of the distribution of angular velocity

leads to the conclusion that for d >�2 Couette-like hydrodynamic flows are unstable.

a. Balbus MRI

Balbus and Hawely published a pioneering work in 1991 showing that a broad

class of astrophysical accretion disks is dynamically unstable to axisymmetric distur-

bances in the presence of a weak magnetic field [16]. Axisymmetric large wavenumber

Eulerian perturbations with space-time dependence exp(i(krr+ kzz+wt)), with a vertical

magnetic field Bz(r,z)ẑ and an azimuthal magnetic field BF(r,z)f̂ have led to led to show

the existence of very powerful shearing instability imposed by a weak magnetic field,

which they called the magnetorotational instability. The fluctuations in the magnetic field

(dBr,dBF,dBz) are necessary ingredients in the stability analysis to derive the criterion

showing the destabilizing effect of the magnetic field.

b. Princeton MRI

The theoretical explanation provided by Balbus and Hawley has inspired sev-

eral experiments to use rotating liquid metals in magnetized Taylor-Couette setups to
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induce MRI in the laboratory. The group at Princeton University has been active in this

field, highly contributing to the progress of the topic through experimental and numerical

achievements. The setup is shown in Fig.(7).

Figure 7: Experimental Setup of Princeton Experiment.

A challenge for the Princeton experiment was to set up an initial rotation profile

that is stable to the Taylor-Couette instability (TCI) while unstable to the magnetorota-

tional instability (MRI) when an appropriate magnetic field is applied. The results were

compared to simulations and it was found that after turning vertically along the inner

cylinder, these flows converge at the midplane and depart the boundary in a radial jet [17].

The authors investigated the reason and attributed this phenomena to Ekamn circulation.

In Ref.[18], local WKB methods to survey the MRI regime for realistic materials

and laboratory parameters showed that the most unstable modes have wavelengths twice

as large as the apparatus, so that WKB methods are not to be trusted apriori. In their sec-

ond paper, the authors apply global linear analysis. They integrate the full set of viscous
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and resistive equations via an initial-value scheme to obtain numerical growth rates for

cases that would be stable by Rayleigh’s criterion.

c. Helical Magnetorotational Instability (HMRI)

It was shown by Hollerbach et al. that the threshold for the onset of the mag-

netorotational instability in a Taylor-Couette flows can be dramatically reduced if an

azimuthal magnetic fields is imposed on the flow. In agreement with this prediction,

Stefani et al. presented results of their Taylor-Couette experiment with the liquid metal

alloy (GaInSn), showing evidence for the existence of the magnetorotational instability

at Reynolds numbers of the order of 1000 and Hartmann numbers of the order of 10.

Promise facility, the Taylor-Couette setup, is a cylindrical vessel made of copper which is

filled with a liquid metal called Galinstan (Fig. 8). Liu et al. presented a WKB analysis

of the helical magnetorotational instability HMRI, and claimed that it does not exist for

Keplerian rotation profiles [19]. Later, Hollerbach et al. showed that if radial boundary

conditions are included, the HMRI can exist even for rotation profiles as flat as Keplerian,

provided only that at least one of the boundaries is sufficiently conducting [20].
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Figure 8: Sketch (left) and photograph (right) showing the central module of the
PROMISE facility.

3. Laboratory Quasi Two Dimensional Flows

Two dimensional turbulence phenomena can be observed in the atmosphere and

oceans, such as the inverse energy cascade and zonal flows, which can be reproduced and

studied in simple laboratory experiments [21]. These experiments provide a valuable tool

to develop models to simulate critical properties of the atmospheric and oceanic activities

for a better prediction of the climate [22].

To study quasi two dimensional turbulence, several authors [21, 23, 24, 25, 26]

have carried out experiments in an electromagnetically forced thin fluid layer in a square

Plexiglass container. A schematic drawing of the setup is shown in Fig.( 9). The container

is filled with a conducting fluid. At the sidewalls, electrodes are placed and connected to

a current supply. Below the fluid, a set of permanent magnets are placed in a geometry

depending on the vortex structures desired to be produced by the Lorentz force F = j⇥B.

Van Heijst et al. studied the effects of solid boundaries on confined two dimen-

sional decaying turbulence. The experiments were carried out in a square container of
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Figure 9: (a) Schematic representation of the experiment and (b) cross section of the
experiment.

dimensions (100 ⇥ 100 ⇥ 30 )cm3 which was filled with a two-layer salt stratification,

consisting of a layer of fresh water on top of a layer of salty water, separated by an in-

terfacial layer of typically a few centimetres depth [27]. A typical sequence of streak

images taken during an experiment with approximately zero initial angular momentum

(L0 ⇡ 0) is shown in Fig.(10). In the early stage of the flow evolution, the small-scale

motions introduced by the moving grid are clearly visible. It also shows how the flow

becomes gradually dominated by larger vortex structures. At a later stage (at t = 55 min)

the flow consists of one large circulation cell and a small cell of opposite circulation. This

double-cell structure was rather persistent, and continued to revolve until in the very late

final state it has changed into one single cell filling the domain completely [27].

In Ref.[24], forced shear flows in a thin layer of an incompressible viscous fluid

were studied. Photographs were used to obtain the stream function of vortical flow pat-

terns arising after the primary shear flow loses stability. Various flow characteristics are

determined and results are compared to the stability theory of quasi-two-dimensional

flows. The applicability of the quasi-two-dimensional approximation is directly verified

and the possibility of reconstruction of the driving force from the secondary flow pattern

is demonstrated.
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Figure 10: Decaying Turbulence: Sequence of streak images of a laboratory experiment
in a square tank. The fluid motion was initialized by towing a rake horizontally through
the fluid from one side to the opposite side. The images are taken from 10 s until 55 min
after towing the rake through the fluid. The initial state (at t = 10 s) is characterized by
L0 ⇡ 0 and Re⇤ = 5000. The tails of the streaks are generated after digital processing of

the images.

One of the main features of the dynamics of the viscous global geophysical flows

is that the dissipation of their kinetic energy is mainly due to friction of free atmosphere

over so called geophysical boundary layers (GBL). In Ref. [25], the role of bottom fric-

tion in shallow fluid layers is studied in the experimental setup as described above. In

particular, the power-law behavior of the kinetic energy and the bottom-drag coefficient

are investigated. For further details, two excellent review articles are by Tabeling (2002)

[28] and a more recent one by Clercx and van Heijst (2009)[29].
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D. Thesis Plan

In the next chapter, the base flow of a fluid in a Taylor-Couette setup is derived.

Also, the base flow of a thin layer of conducting fluid subject to electric and magnetic

fields is derived using Navier�Stokes equations in a cylindrical symmetry with an exter-

nal Lorentz force.

Chapter III includes the stability analysis of the thin rotating flow. Perturbation

theory leads to the determination of the onset of instability of the flow versus several

parameters.

Chapter IV describes the experimental apparatus as well as the experimental

methods which we have developed to extract wave properties of the fluid. Using laser

diagnostics, we study the dynamics of the flow.

Chapter V displays the experimental results which we have collected using the

methods described in the chapter IV. Several experiments were performed to determine the

onset of the instability. It also presents the results of image processing and data analysis.

Chapter VI includes a summary of the thesis, final remarks on the experimental

methods and a vision of future work.
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CHAPTER II
BASE FLOW

A. Introduction

In fluid mechanics, a flow may experience a transition from a laminar to turbulent

regime. A laminar flow is the time-reversible behavior of particles traveling smoothly in

streamlines. Flow properties such as velocity and pressure remain constant as function of

time. A turbulent flow is the time-dependent chaotic behavior of particles. In a turbulent

flow, the velocity at a given point varies unpredictably in magnitude and direction. In

Fig.(11), an example of laminar versus turbulent flow is shown.

Figure 11: In the laminar case, fluid particles travel in a straight line such that the
velocity of the fluid remains constant in magnitude and direction. In the turbulent case,
fluid particles start to swirl and move laterally leading to mixing in all directions such

that the velocity becomes unpredictable.

In this chapter, we study the laminar flow of a thin rotating layer of conducting

liquid metal subject to electric and magnetic fields. As we have seen in the introduction,

this study is closely related to the study of liquids situated between two rotating cylin-

ders. Thus, we derive the expression of the azimuthal velocity in the laminar case of a

20



fluid rotating between two concentric cylinders (Taylor-Couette Flow) and then apply the

same steps to obtain the azimuthal velocity of a thin rotating flow (TRF). The velocity

is expressed in terms of geometrical and experimental parameters such as the size of the

container, height of the fluid, magnitude of the magnetic field, current density and fluid

viscosity. Finally, the velocities of both flows are compared.

B. The Navier-Stokes Equations

The equations governing the motion of fluids are called the Navier-Stokes equa-

tions:

r( ∂u
∂ t|{z}

Acceleration

+ u ·—u| {z }
Convective Term

) = �—p|{z}
Pressure Gradient

+ µ—2u| {z }
Viscosity

+ f|{z}
External Forces

(5)

The continuity equation is:

∂r
∂ t

+r(— ·u) = 0 (6)

where r is the density of the fluid, u is the velocity, p is the pressure, µ is the

dynamic viscosity of the fluid and f is the sum of all external forces.

Inertiaİ is the property of an object to remain at a constant velocity, unless an

outside force acts on it. The above equation is a balance between the inertia terms on one

side and the divergence of stress along with the external body forces on the another side.

An object with a large inertia will resist strongly to a change in velocity. However, an

object with a small inertia will almost instantaneously move when acted upon by a force.

The inertia of fluid flows is caused by non-linear interactions within the flow field. These

non-linearities may cause instabilities in the flow to grow, and therefore the flow can get

turbulent when inertial effects are dominant.

The terms in the Navier-Stokes equations can be explained as follows:
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• ∂u/∂ t represents the acceleration. When this equation is equal to zero, it means

that the velocity at a given point is not changing over time.

• (u ·—u) represents the convective term of the flow field. It is the non linear effect of

the acceleration of a fluid with respect to space.

• —p is the spatial gradient of pressure. It is the effect of stresses such as pressure

and shear stress in the fluid.

• f represents the vector field of the sum of all external forces, such as gravitational

or electromagnetic forces.

• (µ—2u) is an internal force, which is due to the fact that in a flowing fluid, there can

be a shearing stress. This is called the viscous force.

The continuity equation in fluid dynamics states that in any steady state process,

the rate at which mass enters a system is equal to the rate at which mass leaves the system.

If r is a constant, as in the case of incompressible flow, the mass continuity equation

simplifies to — ·u = 0.

C. Base Flow of Taylor-Couette Flow (TCF)

In this section, we derive the expression of azimuthal velocity of TCF. Taylor-

Couette flow corresponds to the motion of viscous fluid confined between two rotating

cylinders as shown in Fig.(12). Neglecting gravity, the remaining forcing terms acting on

the fluid are the gradient of pressure and viscosity.
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Figure 12: Schematic drawing of Taylor-Couette apparatus. Two concentric cylinders
with radii R1 and R2 rotate with angular velocity W1 and W2.

Following the symmetry of the problem, the projection of the Navier-Stokes

equation in cylindrical coordinates gives:

r-projection:

∂ur

∂ t
+(u ·—)ur �

u2
q
r

=� 1
r

∂ p
∂ r

+n(—2ur �
ur

r2 �
2
r2

∂uq
∂q

) (7)

q -projection:

∂uq
∂ t

+(u ·—)uq +
uq ur

r
=� 1

rr
∂ p
∂q

+n(—2uq �
uq
r2 +

2
r2

∂uq
∂q

) (8)

z-projection:

∂uz

∂ t
+(u ·—)uz =� 1

r
∂ p
∂ z

+n(—2uz) (9)

where

(u ·—) = ur
∂
∂ r

+
uq
r

∂
∂q

+uz
∂
∂ z

(10)
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and

—2 =
∂ 2

∂ r2 +
1
r

∂
∂ r

+
1
r2

∂ 2

∂q 2 +
∂ 2

∂ z2 (11)

The continuity equation of an incompressible flow in cylindrical coordinates

reads:

∂ur

∂ r
+

ur

r
+

1
r

∂uq
∂q

+
∂uz

∂ z
= 0 (12)

The fluid rotates between two long concentric cylinders. Neglecting the upper

and lower endcaps of the cylinders allows us assume that the velocity has an azimuthal

component (uq )only, the continuity equation becomes:

∂uq
∂q

= 0 (13)

The above equation dictates an axi-symmetry of the problem. This symmetry

also means:

∂
∂q

= 0

The projection in the r-direction reduces to:

u2
q
r

=
∂ p
rdr

(14)

This is a balance between the centrifugal force and the pressure term. Similarly,

the projection in the q -direction reduces to:

0 = n(∂ 2uq
∂ r2 +

1
r

∂uq
∂ r

� uq
r2 ) (15)

The above equation is a second order differential equation in r. The solution is

given by:
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uqTC(r) = Ar+
B
r

(16)

where A and B are constants determined by the boundary conditions.

The angular velocity is related to uq by

W(r) =
uq (r)

r

For the case of TCF:

WTC(r) = A+
B
r2 (17)

To simplify the solution, we introduce dimensionless parameters:

µW = W2/W1

and

h = R1/R2

.

We apply the necessary boundary conditions to obtain A and B:

• W(r = R1) = W1

• W(r = R2) = W2

) A =�W1h2 1�µW/h2

1�h2 (18)

) B = W1R2
1

1�µW
1�h2 (19)
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We have determined the expression of the velocity in the q direction up to the 0th

order. The moving boundary conditions have imposed the expressions on the constants

A and B. In the next section, we apply the same steps to derive the expression of uqT RF

corresponding to the velocity of Thin Rotating Flow in the q direction.

D. Base Flow of Thin Rotating Flow (TRF)

We study the laminar flow of a thin layer of viscous fluid subject to an external

Lorentz force in the azimuthal direction f = j⇥B in a fixed cylindrical container.

Figure 13: Schematic drawing of Thin Rotating Flow. A thin layer of a viscous and
conducting fluid is situated in an axial magnetic field B and a radial current density j.

The resulting Lorentz force, f = j⇥B, in the azimuthal direction rotates the fluid.

The magnetic field is axial with an expression of B = (0,0,B0ẑ). The height of

the fluid is denoted by z. The current density, j = jr̂, where j is the ratio of total current I

and the area A(r) = 2pzr.

j(r) =
I

2pz
1
r

r̂ (20)
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In cylindrical coordinates (r,q ,z), the projection of Navier-Stokes equations in

the q -direction alone with the external Lorentz force is given by:

∂uq
∂ t

+(u ·—)uq +
uq ur

r
=� 1

rr
∂ p
∂q

+n(—2uq �
uq
r2 +

2
r2

∂uq
∂q

)+
j(r)B0

r
(21)

Assuming ur = 0 and uz = 0, and supposing that the variations in the angular and

vertical motion are negligible, (∂/∂q = 0, and ∂/∂ z=0) we can reduce the projection in

the q direction to obtain a non homogeneous second order differential equation of non-

constant coefficients of the form:

∂ 2uq
∂ r2 +

1
r

∂uq
∂ r

� uq
r2 =� j(r)B0

µ
(22)

where µ = nr . Let a =�IB0/2pzµ . The solution of the differential equation is

given by:

uq = Gr+
F
r
� a

2
rln(r) (23)

uq/r = W:

WT RF = G+
F
r2 �

a
2

ln(r) (24)

where G and F are constants determined by boundary conditions. The cylindri-

cal container in TRF is not rotating. As a consequence, the velocities at the boundaries

vanish. Let a be the radius of the middle electrode, and R be the radius of the cylinder,

the boundary conditions are given by:
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(1) At r = a, we have

uq = Ga+
F
a
� a

2
aln(a) = 0 (25)

(2) At r = R, we have

uq = GR+
F
R
� a

2
Rln(R) = 0 (26)

With h = R/a we obtain:

G =
a
2
{h2ln(a)� ln(R)

h2 �1
} (27)

and

F =
a
2
{a2ln(h)

1�h2 } (28)

The solution of the velocity profile is dependent on the value of a . In other

words, it is dependent on the magnetic field B, current density j, density r as well as the

dynamic viscosity of the fluid µ . The plot of velocity profile for several values of electric

current is shown in Fig.(14). The form of the velocity is nearly parabolic vanishing at the

boundaries a and R. The highest magnitude of the velocity is reached where r/a is almost

8 independently of the magnitude of the current. The magnitude of velocity increases

with increasing current.

28



Figure 14: Velocity profiles versus normalized radius for several values of the electric
current (a = 150,450,750,1000,135). As the current density increases, the maximum

value of the velocity increases.

E. Comparison Between TCF and TRF

In this section, we highlight the differences between the TCF and TRF setups.

The origin of rotation of the fluid in the TRF is the Lorentz force, whereas the origin of

rotation in TCF experiment is the rotation of the two concentric cylinders. In TCF, the

non-vanishing boundary conditions are caused by the rotations W1 and W2 of the inner

and outer cylinders. In TRF, the cylinder is fixed forcing vanishing boundary conditions.

In the TRF setup, the fluid height is kept small to promote the growth of the

two dimensional non-axisymmetric instability in the (r,q)-plane. On the contrary, the

fluid in TCF height is taken to be large as compared to that of the radius of the outer

cylinder to promote the instability in the (r,z)-plane. Table (1) summarizes these ideas.

The velocities of TRF and TCF are plotted versus normalized radius r/a in Fig.(15).
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Figure 15: Comparison of velocity profiles for TCF and TRF in arbitrary units. In the
TC flow, W1 = 4000s�1 and W2 = 533/2s�1 according to one of the PRINCETON

experiments. In TRF a = 3.

Table 1: Comparison between TCF and TRF

Taylor-Couette Flow Magnetized Shallow Rotating Flow

Thick layer of fluid Thin layer of conducing fluid

Promotes TCI in (r,z) Suppresses TCI in (r,z)

Studies MRI in (r,z) Studies 2D-NACI in (r,q )

Moving boundaries Fixed boundaries

Fluid rotation due to the rotation
of the cylinders (W1 and W2) Fluid rotation due to Lorentz force
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F. Conclusion

In this chapter, the 0th order velocity of the TCF and TRF are derived using

the Navier-Stokes equations and the continuity equation in cylindrical coordinates. The

necessary boundary conditions are applied to obtain the full expression of velocity. We

will see that the base flow is a key element in the study of stability of the flow. In the

end the, velocities of both flows were plotted and compared. Below are the results of the

derivation of angular velocity:

WTC(r) = A+
B
r2 , (29)

WT RF = G+
F
r2 �

a
2

ln(r). (30)
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CHAPTER III
STABILITY ANALYSIS

32



A. Introduction

The primary purpose of this research work is to explore the behavior of a system

of rotating flow around its equilibrium state. In simple words, the way to study the stabil-

ity of the rotating fluid is to give its equilibrium state a small kick and analyze whether the

system goes back to its stable position or escapes into an unstable orbit as time evolves.

This is a simplified description of what is called perturbation theory.

Perturbation theory leads to an expression of the perturbed quantity in terms of a

small parameter, or the kick that we have mentioned earlier, known as perturbation series.

This term quantifies the deviation from the exactly solvable problem. The leading term

in this power series is the exact solution of base flow, while the other terms describe the

deviation in the solution from the initial problem. Fig.(16) shows the difference between

a stable and an unstable equilibrium.

Figure 16: (a) A perturbation to the system in a stable equilibrium results in the return to
the stable position. (b) A perturbation in the unstable equilibrium results in the escape

away from stable position.

In this chapter, we study the stability of a thin rotating fluid subject an external

Lorentz force by applying perturbation theory.

The instability of rotating flows was first considered by Rayleigh. He considered
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a basic swirling flow of an inviscid fluid rotating with an angular velocity W(r). Rayleigh’s

circulation criterion states that a necessary and sufficient condition for the stability of a

flow to axisymmetric disturbances is that the square of the circulation does not decrease

anywhere [6]. In other words, he states that F � 0 everywhere in the field of the flow,

where F is the Rayleigh discriminant defined by:

F =
1
r3

d
dr

(r2W)2 (31)

B. Axisymmetric Disturbances of Taylor-Couete Flow

In this section, we discuss the argument behind Rayleigh’s criterion for the stabil-

ity of Couette flow. Navier-Stokes equations in cylindrical coordinates (r,q ,z) neglecting

the viscous effects can be written as:

Dur

Dt
�

u2
q
r

=� 1
r

∂ p
∂ r

(32)

Duq
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+
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(33)

Duz
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(34)

D
Dt

=
∂
∂ t

+ur
∂
∂ r

+
uq
r

∂
∂q

+uz
∂
∂ z

(35)

These equations allow for a steady basic solution of the form ur = uz = 0 and

uq = uq0 where uq0 = rW is the azimuthal velocity determined by the solution of the base

flow. The pressure distribution is given by:
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p0(r) = r
Z u2

q0

r
dr (36)

To study the stability of the steady flow given by the above conditions, we seek

to distinguish between stable and unstable distributions of basic angular velocity.

Rayleigh first considered axisymmetric disturbances by setting

∂/∂q = 0

.

The equations are then reduced to

D0ur

Dt 0
�

u2
q
r

=� 1
r

∂ p
∂ r

(37)

D0uq
Dt 0

+
uq ur

r
= 0 (38)

D0uz

Dt 0
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r
∂ p
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(39)

D0

Dt 0
=

∂
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+ur
∂
∂ r

+uz
∂
∂ z

(40)

and the continuity equation reduces to

∂ur

∂ r
+

ur

r
+

∂uz

∂ z
= 0 (41)

The reduced equation in the q -direction can be written in the form

∂uq
∂ t

+
uq ur

r
= r

∂uq
∂ t

+uq
∂ r
∂ t

=
d
dt
(ruq ) =

d
dt
(r2W) = 0
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By Kelvin’s circulation theorem, one can see from the above equation, that the

angular momentum L = r2W of a fluid element per unit of mass is conserved.

Figure 17: Sketch of Taylor-Couette Flow, An interchange of fluid between two rings
means a change in angular momentum.

Since L is a constant of motion, we associate with this force a potential energy:

Ep =
rL2

2r2

If we take two elementary rings of equal heights and masses at r = r1 and r = r2,

the equality of their masses requires:

2pr1dr1 = 2pr2dr2 = dS

If we interchange the fluid contained in dr1 and dr2, the change in kinetic energy is equal

to the change in potential energy because the angular momentum is conserved. Therefore,

the change in kinetic energy is proportional to:

Ek µ {(
L2

2
r2

1
+

L2
1

r2
2
)� (

L2
1

r2
1
+

L2
2

r2
2
)}dS = (L2

2 �L2
1)(

1
r2

1
� 1

r2
2
)dS
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If r2 > r1, one can see that this is a positive quantity for L2
2 > L2

1 and negative for

L2
2 < L2

1. If L2 is monotonically increasing with r, there will be no possible interchange of

fluid on the rings as we have imagined without a source of energy, this signifies a stable

flow. If L2 is monotonically decreasing with r, then the interchange of fluid on the rings

will result in a liberation of energy, this indicated the existence of an instability.

It must be emphasized that if L2 is non-decreasing then the inference of stability

applies only to axisymmetric disturbances. Furthermore, the flow might be unstable to

other types of disturbances.

For a general base flow angular velocity W, such as the form that we have deter-

mined in the previous chapter for thin rotating flow with external Lorentz force, Rayleigh

criterion is known to be invalid for non-axisymmetric disturbances. Howard and Gupta

have studied the non-axisymmetric case and concluded that no general stability criterion

was determined [30].

C. Non-Axisymmetric Distrurbances by Slab Approximation (TRF)

The application of axisymmetric disturbances, studied by many authors (Chan-

drasekhar [31], Howard and Gupta [30] , Balbus and Hawely [16] , and H. Ji et al. [32]

), corresponds to the introduction of a perturbed term of the velocity of a fluid while as-

suming there are no variations in the angular direction (∂/∂q = 0). In this section, we

introduce a non-axisymmetric disturbance to the azimuthal component of the velocity of

the flow and analyze the obtained dispersion relation.
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Figure 18: Left. Axisymmetric Disturbances in the (r,z)-plane. Right. Nonaxisymmetric
Disturbances in the (r,q)-plane.

The slab approximation method is characterized by a transformation between the

cylindrical coordinates (r,q ,z) and the Cartesian coordinates (x,y,z). In this method, r is

transformed into x, and q is transformed into y. In the remaining part of this chapter, we

use Cartesian coordinates of Navier Stokes equations. Fig.(19) shows the relation between

the two systems of coordinates. The determination of instability in the (r,q) plane for the

magnetized rotating flow is performed by applying nine steps that we outline as follows:
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Figure 19: Slab Approximation. The r-direction is becomes the x coordinate, and the
q -direction becomes the y coordinate.

1. Full Navier-Stokes Equations with Lorentz Force

We begin with writing the full Navier-Stokes Equations in Cartesian Coordinates

with viscosity and external Lorentz force only in the y direction:

∂u
∂ t

+u
∂u
∂x

+ v
∂u
∂y

+w
∂u
∂ z

=� 1
r

∂ p
∂x

+n(u∂ 2u
∂x2 + v

∂ 2u
∂y2 +w

∂ 2u
∂ z2 ) (42)

∂v
∂ t

+u
∂v
∂x

+ v
∂v
∂y

+w
∂v
∂ z

=� 1
r

∂ p
∂y

+n(u∂ 2v
∂x2 + v

∂ 2v
∂y2 +w

∂ 2v
∂ z2 )+

jB
r

(43)

∂w
∂ t

+u
∂w
∂x

+ v
∂w
∂y

+w
∂w
∂ z

=� 1
r

∂ p
∂ z

+n(u∂ 2w
∂x2 + v

∂ 2w
∂y2 +w

∂ 2w
∂ z2 ) (44)

Continuity equation is given by

∂u
∂x

+
∂v
∂y

+
∂w
∂ z

= 0 (45)
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where (u,v,w) are the velocity components in Cartesian coordinates.

2. Form of Perturbation

Next, we consider an infinitesimal perturbation of the basic flow. This perturba-

tion is non-axisymmetric and two dimensional since the height of the fluid is very small

as compared to its diameter. We describe the perturbed flow in the (x,y) direction by

u =

8
><

>:

ũ(x,y, t)
v0 + ṽ(x,y, t)
0

(46)

p = p0 + p̃(x,y, t) (47)

where the steady base flow solution is given by u = w = 0, p = p0 and v = v0

3. Steady State and Inviscid Limit

From 0th order in the r direction, that we have derived in the previous chapter,

we have the equality of the following terms,

(uq )
2

r
=

1
r

∂ p0

∂ r
(48)

Then we can drop the term p0.

Similarly, from 0th order in the q direction, we have the equality of the following

terms,

n(—2uq �
uq
r2 +

2
r2

∂uq
∂q

) =� j(r)B0

r
(49)

Therefore, the force cancels out with the viscosity term.
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4. Linearization

Performing a linearization significantly simplifies the problem. By dropping sec-

ond order terms, we still obtain an expression which is rich with information about the

stability of the flow up to the first order.

The linearized equations are given by:

Linearized x direction:

∂ ũ
∂ t

+ v0
∂ ũ
∂y

=� 1
r

∂ p̃
∂x

(50)

Linearized y direction:

∂ ṽ
∂ t

+
∂v0

∂x
ũ+ v0

∂ ṽ
∂y

=� 1
r

∂ p
∂y

(51)

5. Pressure Elimination and Coupling by Continuity

A common trick to reduce the above two equations of two unknowns (ũ and ṽ)

to one equation of two unknowns is to apply the vorticity equation; (∂/∂y of x- direction

- ∂/∂x y-direction). With this method, the pressure dependency can be removed.

∂
∂ t

[
∂ ũ
∂y

� ∂ ṽ
∂x

]

+v0
∂ 2ũ
∂y2 � ∂

∂x
(ũ

∂v0

∂x
)� ∂

∂x
(v0

∂ ṽ
∂y

)) = 0

To reduce the above equation of one equation of two unknowns (ũ and ṽ), to one

equation of one unknown(ũ) is through the continuity equation.
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The reduced linearized form of continuity:

∂ ũ
∂x

+
∂ ṽ
∂y

= 0 (52)

6. Fourier Modes Analysis

In accordance with the general procedure of treating these problems, we analyze

the disturbance into normal modes. In the present instance, it is natural to suppose that

the various quantities describing the perturbations have a (x,y, t) dependence given by:

ũ(x,y, t) = u(x)eimy�iwt (53)

ṽ(x,y, t) = v(x)eimy�iwt (54)

where u(x) and v(x) are arbitrary functions of x; they represents amplitude of the

normal modes.

Applying Fourier Modes to continuity equation, we obtain:

ṽ =
i
m

∂ ũ
∂x

(55)

Applying Fourier Modes to the resultant of the pressure elimination equation

and replacing (ṽ) by its equivalent from continuity equation, we obtain the following

dispersion relation.

muw +m�1üw �m2v0u� v̈0u+ v0ü = 0 (56)

where ü = ∂ 2u/∂x2 and v̈0 = ∂ 2v0/∂x2

Solving for w , we obtain a dispersion relation:

42



w =
m2v0u+ v̈0u� v0ü

mu+m�1ü
(57)

7. Stability Conditions

The wavenumber w is a function of m. If m is real, then w is real. If w = 0, then

m can be complex. The expression of m2 is given by:

m2 =
�v̈0u+ v0ü

v0u
=

�v̈0 � v0kx
2

v0
(58)

According to the above expression, m2 depends to the form of u. The boundary

conditions characterized by fixed walls force the velocity u to take a certain form that

vanishes at r = a and r = R. Let us suppose that:

u(x) = sin(kxx)

where kx = np/R then,

ü(x) =�k2
xsin(kxx) =�k2

xu

Since v0 is always positive, the sign of m2 is governed by the numerator. If the

numerator is negative, then m2 is imaginary and exp(imy) is a an oscillatory function.

The flow in this case is stable. However, if the numerator is positive, then m2 is real and

exp(imy) could be an exponentially growing function. In this case, the flow is unstable.

This is summarized in Fig.(20)
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Figure 20: The methodology of analyzing the dispersion relation

To explore the behavior of m2 for n = 1,2,3,4, and 5, we plot m2 versus r/a

as shown in Fig. 21. The form of m2 is parabolic in shape starting with a high positive

magnitude until it reaches a particular value ra . For ra < r/a < rR, m2 is negative with

the highest negative value at r/a is 8. For rR < r/a < 20, m2 becomes slightly positive.

As n decreases ra increases and rR decreases. The same trend occurs for all values of

n. To understand the variation of m2 with increasing total current, we plot m2 versus r/a

for several currents (I = 2,4,6 and 8 A) at n = 2. The form of m2 is parabolic in shape

starting with a high positive magnitude until it reaches a particular value rI1 = 3.7 at all

values of I. For rI1 < r/a < rI2 , m2 is negative. The value of rI2 = 19.5 for all I. For

r > rI2 , m2 The same trend occurs for all values of n.

According to Fig.(21), m2 is more negative towards the central electrode. This

indicates that the flow is unstable in this region. It is shown that m2 is positive near r = a
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and r = R indicating a relatively small stable zone. Furthermore, one can deduce that the

unstable region expands as n increases. This implies that the higher the oscillations of

u(x), the more unstable the flow is. According to Fig.(22), m2 is more negative towards

the central electrode. One can deduce that the unstable region doesn’t vary as function of

current.

The previous interpretation is open to modifications and further analysis. We

have based our interpretation on a particular form of the amplitude of the amplitude.

Many other forms of u(x) are also valid. In reference to the interpretation done by Balbus

in Ref.([33]), we have analyzed the spatial perturbation of the flow and obtained condi-

tions of stability according to the waves in the spatial direction y. We haven’t obtained

a temporal expression of the complex component of w . Therefore, we do not predict the

evolution of the perturbation with time.

Figure 21: Plot of m2 versus r/a for n = 1,2, ..5 for I = 1 A.
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Figure 22: Plot of m2 versus r/a for I = 2,4,6, and 8 A for n = 2.

D. Conclusion

In this chapter, the dynamics of the flow are investiagted. For TCF, we study

Rayleigh criterion with axisymmetric disturbance. The stability of TRF is studied by per-

turbation theory in a slab geometry. First, non-axisymmetric disturbances of exponential

dependence are applied to the velocity of the base flow. Using linearized Navier-Stokes

equations, the motion in the inviscid limit is studied. Applying the vorticity equation

eliminates the pressure dependence. By using Fourier modes, a dispersion relation is de-

termined in terms of the wavenumber in the y-direction. In accordance with boundary

conditions, the radial velocity is assumed to have a sinusoidal form with a wavenumber

kx = np/R. The variations of m2 versus normalized radius for several values of n are

plotted. Analysis of the plot allows us to conclude:

• The flow is conditionally unstable.
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• The region near the central electrode is unstable.

• The region in the middle of the cylindrical container is stable.

• The region near the outer electrode is unstable.

• The onset of instability versus radius is independent of current.

• The unstable region increases with increasing n.
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CHAPTER IV
THE EXPERIMENT AND LASER DIAGNOSTIC
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A. Introduction

In this thesis, a tabletop experiment is designed to investigate the properties of

the fluid motion in a thin rotating flow. Instabilities in rotating flows are studied in axially

magnetized Taylor-Couette experiments in cylindrical geometry such that the instability

develops in the (r,z)-plane [34, 35]. They are also studied in Taylor-Couette experiments

with helical magnetic field such that the instability develops in the (r,q) plane as shown in

Fig.(23). Unlike magnetized Taylor-Couette experiments, we aim at suppressing the con-

ventional instability by reducing the height of the fluid to few millimeters. This promotes

the growth of the a hydrodynamic instability in the (r,q)-plane.

In this chapter, we introduce the experimental setup. We describe the fluid char-

acteristics, the external magnetic field applied to the fluid, the current density inside the

fluid, and the induced magnetic field due to the rotation of the fluid. At this stage, we aim

at studying the flow experimentally. We design an experimental procedure to obtain the

velocity variations in the fluid motion. The measurements which are collected from the

experiment are linked to the velocity components via a set of equations called Shallow

Water Equations.
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Figure 23: Instabilities were studied in magnetized Taylor-Couette apparatus with axial
magnetic field in Ref.[32, 36]. In the aw Dynamo experiment, the instability is also
studied in the (r,z)-plane using liquid sodium. In the Promise experiment, a helical

magnetic field leads to the development of the instability.

B. The Experimental Apparatus

A thin layer of liquid metal is placed in a cylindrical Plexiglas container. The

side wall of the container is grooved to install eight stainless-steel electrodes, of diameter

5 mm and height 5 cm each. The dimensions of the experimental setup are listed in table

(2). The electrodes are all connected to the negative terminal of a power supply. At the

center of the container, another electrode is installed and connected to the ground terminal

of the power supply. A photograph of the experiment is shown in Fig.(24).
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Figure 24: Experimental setup of rotating liquid metal. Eight outer electrodes are
installed on the outer wall of a cylindrical container. A middle electrode is installed in

the center of the container. The container is placed inside a set of two permanent
magnets which generate an axial magnetic field.

The container is placed in the middle of a set of two permanent magnets pro-

viding a magnetic field the axial direction which is discussed in the next section. As the

power supply is switched on, the outer electrodes are biased with respect to the inner elec-

trode, allowing for an electric current to flow inside the fluid in the radial direction. With

the magnetic field in the axial direction and the electric current in the radial direction,

a Lorentz force is generated in the q direction. The fluid starts to rotate as soon as the

power supply is switched on.

C. Fluid Characteristics

The fluid used in the experiment is Galinstan . It is an alloy of (Gallium (Ga),

Indium (In) and Tin(Sn)). It is a non toxic liquid metal, easier to manipulate than mercury

which is highly toxic and has a high vapor pressure. It is also better to use than lithium
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Table 2: Setup Dimensions

Property Value
Outer Cylinder Radius (R) 50 mm
Inner Cylinder Radius (a) 2.5 mm

Height of the Fluid (h) 5 mm
Gap Width (w) R�2a = 45 mm

Aspect Ratio (G) G = H/(R�a) = 0.1
Radius Ratio (h) h = a/R = 0.05

and sodium, which are reactive with water. Galinstan is not chemically reactive like

liquid Gallium. Its melting point is -19�C. It is compatible with most metals and plastics.

Its viscosity is almost one third the viscosity of water. Galinstan is six times denser

than water and 1010 times more electrically conductive. Its surface tension is five times

that of water. Galinstan is characterized by a reflective shinning surface as shown in

Fig. (25). When GaInSn is exposed to oxygen, it slowly oxidizes to form a protective

layer of Ga2O3 on its surface [37]. This layer is carefully removed during the process of

collecting measurements. Properties of Galinstan and water are given in table (3).

Figure 25: Rotating Galinstan in a cylindrical container under the effect of Lorentz force.
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Table 3: Properties of Galinstan and Water

Composition Ga67 In20.5 Sn 12.5 Water

Viscosity (m2s�1) 2.98⇥10�7 8.9⇥10�7

Density (Kg m�3) 6360 1000
Surface Tension (Nm�1) 0.533 0.073

Electric Conductivity (W�1m�1) 3.1⇥106 10�4

Melting Temperature (�C) �19 0

D. External Magnetic Field

The cylindrical container is placed in the middle of two axially magnetized

Neodymium ring magnets, each of inner diameter 10 cm of thickness 2 cm. The two

magnets are held together through screws to control the separation between them. Dur-

ing the experiment, they are tightly squeezed such that the separation is 4 mm. Using

a teslameter equipped with a probe based on Hall Effect as shown in Fig.(26), we mea-

sure the external magnetic field. In these measurements, the axis perpendicular to the

probe is taken to be the r -direction, while the axis parallel to the probe is taken to be the

z-direction.
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Figure 26: Two ring magnets provide the external magnetic field. Measuring the external
magnetic field using teslameter based on Hall Effect.

In the measurements reported in Fig.(27), the magnetic field is measured versus

the r-direction. The curve of magnetic field is parabolic starting with -200 mT near the

outer electrodes. The magnitude of the filed decreases to reach a minimum of -90 mT

at the center (around r/a= 9). A curve fit is applied to the experimental date so that a

polynomial as function of r is obtained:

B(r) =�7r2 +70r�258 (59)

The measurements reported in Fig.(28) correspond to the magnetic field versus

the z direction at four radial positions denoted by r0,r1,r2,r3, and r4, such that the distance

between two consecutive positions is 1 cm. The curve of the field is parabolic with its

lowest value, Bmax, at the center of the two magnets. The minimum value Bmin mT is near

the boundaries. A thin layer of Galinstan of thickness 5 mm is poured in the container at

height z corresponding to B =�90 mT.
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Figure 27: Magnetic field measurements and a polynomial fit.

E. Current Density

In this section, we determine the expression of current density in the flow.

Consider two concentric conducting cylinders with radii (R < a)such that the

space between the two conductors is filled with a fluid with resistivity re. If we consider

the current passing through a sequence of cylindrical shells of radius r and thickness dr,

then each shell has a resistance dR given by:

dR =
re

2pz
dr
r

(60)

Integrating from r = a and r = R to find the total resistance, we obtain:

R(r) =
Z R

a
dR =

Z R

a

re

2pz
dr
r

=
r

2pz
ln(

r
a
) (61)

The current density is the total current I per unit area, therefore, j at a distance r

from the center can be written as :
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Figure 28: Plot of magnetic field versus height for four different positions inside the
inner diameter of the permanent magnets r0,r1,r2,r3, and r4, where the distance between

two consecutive positions is 5 cm. The magnetic field is measured backwards and
forwards.

j =
I

2pzr
(62)

The total current can be related to the resistance via Ohm’s law:

4V = R(r)I(r) (63)

where 4V is the potential difference between the middle electrode and the outer

electrodes. Substituting I in the expression of current density, we have:
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j =
4V/R(r)

2pzr
(64)

F. Induced Magnetic Field

In this section, we derive the expression of induced magnetic field in the flow

due to the rotation of the fluid. The external axial magnetic field and the radial electric

field give rise to Lorentz force j⇥B which is applied to the electrons and as well as the

ions. In the fluid, the number of electrons is equal to the number of ions. The velocity

of the electrons is almost equal to the velocity of ions. Therefore the potential difference

generated is very small leading to a negligible electric field.

Ampere’s Law states that:

I
B ·dl = µ0I (65)

where dl is an infinitesimal element (a differential) of an amperian loop, µ0 is

the permeability of free space, and I is the total current enclosed in this loop. Ohm’s Law

states that the current in a closed loop generates an induced magnetic field, which we

will call Bind . Since the electric field is negligible, the current is negligible and thus the

induced magnetic field is very small.

Using a teslameter equipped with two types of probes, we measured the mag-

netic field. One of the probes has a flattened tip to measure the magnetic field parallel to

the probe. Another probe has a cylindrical shape to measure the magnetic field perpen-

dicular to the probe. In both cases, the induced magnetic field was found to be null. We

also measured low magnetic field corresponding to the magnetic field fluctuations. No

fluctuations appeared to exist. This is an important experimental measurement, verified
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by theory. Magnetic fluctuations are a necessary ingredient in magnetorotational instabil-

ity as defined by Balbus [15]. This showes that the instability of this experiment is purely

hydrodynamical.

G. Laser Diagnostics

The aim of the experiment is to obtain information about the dynamics of the

flow by measuring properties of the fluid velocity. As we have stated before, the Lorentz

force is proportional to the magnitude of electric current. As the Lorentz force increases,

the fluid angular rotation W increases.

Figure 29: Experimental setup for data collection. A: He-Ne Laser B: Mirror 1 C: Mirror
2 D: Rotating Mirror E: Permanent Magnets F: Electrodes G: Liquid Metal H: Power

Supply I: Plexy Glass Cylinder J: Optical Table.

Galinstan has a reflective surface. Laser reflection and optical equipment are

used in the experiment in compliance with the reflective feature of the fluid. A set of three
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mirrors are used to direct a He-Ne laser beam of diameter 0.47 mm and a wavelength of

633 nm to the reflective surface of the fluid. The first two mirrors are kept fixed, while

the third mirror is attached to an automated rotator. The automated mirror is managed

through PRM1Z8, which is a precision motorized rotation mount. Rotation is driven via

a DC001 DC servo controller equipped with high ratio gearbox (67:1). This controller is

a companion of PRM1Z8 for achieving smooth continuous motion. The rotation of the

mirror is managed either through the software interface APTuser or by using a Vernier

dial. The precision DC motor actuator provides 1 arcsecond resolution over the 360’

rotation. Each angular rotation of the rotator mirror corresponds to a radial translation

of the laser spot on the surface of the fluid. Laser reflections on the ceiling are captured

by USB CMOS Color Camera at a chosen rate (for example, 35 frames/second). Videos

of the laser spot position on the screen are collected to be analyzed. The data processing

method and the experimental results are presented in the next chapter.

Figure 30: Schematic drawing showing the idea behind the experimental method.
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H. Fluid Distortions

Rotation of the fluid causes a variation in the height of the fluid. In this section,

we find the relation between the distances between laser reflections that are captured on

camera and angles of distortion. When the fluid is at rest, a laser beam shinning on

the surface is reflected to a screen at point P. A distortion of the surface in the parallel

direction moves P(x0,y0) to S(yk,xk). The angle between the fluid surface and the plane

parallel to the plane of the laser beam is denoted by ak. A distortion of the surface in the

perpendicular direction moves P to Q(x?,y?). The angle between the fluid surface and

the plane perpendicular to the plane of the laser beam is denoted by a?. One can easily

see that y0 = yk and x? = xk. By simple geometric interpretation, we can determine a?

by measuring xk on the screen:

tanak =
xk
D

(66)

If the laser beam is directed on the fluid at a distance d , and the fluid height is h,

one can see that:

tanak =
xk
D

=
d
D

∂h
∂ r

I. Shallow Water Equations

The Shallow Water Equations (SWE) form a 3-by-3 system of variables (ur,uq ,h).

We will show that this set of equations can be used in order to determine the velocity in

the q -direction of a rotating reflective fluid by simply measuring the variations of h.

∂ur

∂ t
� f uq =�g

∂h
∂ r

(67)
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Figure 31: An incident beam of the laser falling on the surface is reflected by the fluid to
point P on the screen. When a passing wave deflects the surface by an angle a?, the

beam is reflected to point S on the screen. When a passing wave deflects the surface by
an angle ak, the beam is reflected to point Q on the screen.

∂uq
∂ t

+ f ur =�g
r

∂h
∂q

(68)

∂h
∂ t

=�z(
∂ur

∂ r
+

1
r

∂uq
∂q

) (69)

where f is the Coriolis coefficient associated with the Coriolis force, on Earth

equal to 2Wsin(f ), where W is the angular rotation and f is the latitude.

For the steady state solution and for f = p/2, f = 2W = 2uq/r:

u2
q =

gr
2

∂h
∂ r

(70)

The above equation relates the velocity in the q -direction to ∂h/∂ r.

By shinning a laser beam at the surface of the fluid at a distance d from the
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center, we obtain a laser reflection on the screen. The planar variations of the position of

the laser reflection point on the screen are denoted by xtotal and ytotal . Since the surface of

the fluid can move by two angles, a? and ak as shown in Fig.(33) and (34), we associate

with these angles two position variations; yk and y?, where ytotal = y?+yk. However, the

variation in the x-axis is unidirectional such that x? = xk. By geometric interpretation, it

was found that xk/D = tan(ak). Therefore, by capturing the variations of the laser spot

on video and performing data processing procedure, xk can be determine. As a result of

finding xk, ak can be obtained by calculation. Then we relate ak to the variation of the

height in the r-direction. This variation is linked to ak via tanak=(d/D)∂h/∂ r. Through

shallow water equations we relate the variations in height to the velocity component in

the q -direction, u2
q = gr/2(∂h/∂ r). Fig.(32) summarizes these ideas.

Figure 32: Experimental method to find the azimuthal velocity.
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Figure 33: Laser shinning on the surface of the fluid showing the surface deflection
perpendicular to the plane of the laser beam.

Figure 34: Laser shinning on the surface of the fluid showing the surface deflection
parallel to the plane of the laser beam.
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J. Dimensionless Numbers

Dimensionless parameters are calculated in order to compare experimental re-

sults. Reynolds number is found to be 104. This signifies that the inertial forces are much

higher than the viscous force. Hartmann number is equal to 105 +163. This implies that

the electromagnetic forces dominate over the viscous force. Prandtl number is found to be

106 which means that conduction in the flow is much larger than convection of heat. The

Hatrman layer as found to be 10�4 which is less than 2% of the radius of the container.

The Ekman number was found to be 10�5 which is less than 0.2% of the radius of the

container. The dimensionless parameters of the TRF are given in Table (4).

Table 4: Dimensionless Numbers TRF

Critical Number Symbol Expression Value

Reynolds Number Re V R/n 104

Prandtl Number Pr n/k 106

Hartman Number Ha
p

s 4V B/µu+
p

sB2L2/u 105 +163

Hartman Layer [m] HaL µ/
p

sB2 10�4

Ekman Number Ek n/(WR2) 10�5

Ekman Layer[m] d
p

n/W 10�4
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K. Conclusion

• The experimental apparatus and its setup dimensions are introduced. The character-

istics of the fluid used as well as its physical properties are explained and compared

to water.

• The external magnetic field dependence on r. was found to be B(r) =�7r2+70r�

258.

• The current density dependency on r is determined.

• The rotation of the conducting fluid results in an induced current density. The

induced magnetic field is found to be negligible.

• An experimental diagnostic tool using a laser and a set of mirrors is developed. The

method relates the laser reflections to the variations of the height of the fluid as it

becomes distorted.

• The velocity in the q -direction is related to the height via a set of equations called

Shallow Water Equationss.

• Dimensionless parameters of the fluid are also specified.
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CHAPTER V
EXPERIMENTAL RESULTS
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A. Introduction

Two types of experiments are conducted to understand the dynamics of a thin

rotating flow. The experiments distinguish between two types of motion. The first type is

a large scale motion due to the rotation of the fluid as shown in Fig.(35). The second type

is a small scale motion caused by an instability of the flow.

Figure 35: Distortion of the fluid surface caused by the rotation of the flow leads to large
scale motion. Perturbation of the distorted surface due to instabilities leads to small scale

motion.

In the first experiment, we focus on probing the fluid surface at fixed positions as

function of current. Analysis of the collected data allows us to determine the unstable re-

gion of the flow. We also determine the onset of instability as function of electric current.

In the second experiment, we aim at understanding the dynamics of the flow by probing
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the fluid surface along the radius for a fixed electric current. Using this experiment, we

determine the onset of instability as function of radial position. In this chapter, we de-

scribe the method of data collection, the analysis procedure and the experimental results

and plots.

B. Experiment I: Motion as function of Electric Current

In order to study the dynamics at different positions as a function of the current,

the laser spot on the flow is set and the current is increased. Four different positions are

chosen, they are at 0.7,2,3 and 4 cm away from the central electrode. As pointed out

earlier, the fluctuations appear to be important for distances close to the central electrode.

For each position and current, a movie of the reflected beam from the flow surface is

recorded. The number of frames per movie is 2000 recorded at a resolution of 1024x768

pixels and at a rate of 30 frames/second. Each frame is then analyzed by a Matlab code

written to detect accurately the maximum of the laser intensity on the screen.

Figure 36: In the first experiment, measurements at four different positions of the fluid
surface are collected. At each position, measurements of eleven values of the current are

taken.
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A plot of light intensity in each frame indicates the location in pixels of the laser

spot. The highest intensity of light in each image is the indicator of the center of the laser

reflection. In a plot of intensity of light, the black screen is shown to be blue correspond-

ing to lowest intensity and the red laser spot is shown to be brown corresponding to the

highest intensity. Between the two extremes lies a spectra of gradual increase from lowest

to highest intensity of light. The laser spot reflection has highest intensity at the middle of

the spot. To further increase the fine variations of the intensity of light, a filter is applied

to each frame. The resulting image is shown Fig.(37).

Figure 37: The laser reflection on the screen is analyzed by MATLAB as the point of
highest intensity. A filter is applied to sharpen the image.

The position is denoted by (Xmax,Ymax). Now, by following the behavior of the

laser position as a function of time, one can deduce whether a turbulent regime has taken

place. For laminar flows, the position of the laser beam does not deviate from its position;
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When turbulence occurs, the laser spot on the screen vibrates and its position variation

reflects the onset of eddies which are rotating with the mean flow. Fig.(38) shows the

position of the laser spot on the screen, represented by Xmax and Ymax in arbitrary units for

increasing total current in the flow. The laser is at 2 cm from the inner electrodes. At low

values of the current, I = 3 A, the 2000 points, reflecting the position the laser for 2000

frames are packed together. The deviation from the average position is small of the order

of the modifications when no current is applied to the flow. As the current is increased

from 3 to 4 A, the deviation from the average position has increased but not enough to

indicate the presence of turbulence. The cloud representing the laser spot position as a

function of time, dramatically increase in the area occupied for a current of 5 A. This

tendency continues when increasing the current even more reaching 8 A. At this level,

the deviation from the average position is now important, clearly reflecting the onset of

turbulent fluctuations. From this figure, one can safely deduce that the flow becomes

turbulent with increasing current at positions close to the inner electrode.
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Figure 38: Plot of laser reflections as function of current showing an increase of the
distances between them as an indication of growing instability.

We turn now into quantifying this deviation from the average position as a func-

tion of current and for different positions of the laser on the flow surface. For this pur-

pose, we determine the average position and subtract each position from the average one

in a way that we have the fluctuating part around 0. Next, the standard deviation of the

distance to the center is determined. The values of s are plotted as a function of I for dif-

ferent positions in Fig.(39). For positions of the laser at 4 cm from the inner electrode, the

standard deviation remains almost unchanged with increasing current. It remains close

to 5 independently of the current value. One can safely deduce that this part of the fluid

remains laminar even at a total current of 8 A. At 3 cm, represented by the crosses, the

value of s remains unchanged up to I = 7 A where a small increase is detected and it

will deviate even more for I = 8 A. For the position of the laser even closer, at r = 2 cm,

the standard deviation increases at low currents, around 2-3 A but one can show that this
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increase is partly caused by that of the laser spot size on the screen. For I > 6 A, we

detect a systematic increase. One is thus tempted to deduce that the flow closer to the

inner electrode are unstable whereas far the perturbation is still small. Consequently, a

strong radial gradient exists in this flow. This is made even clearer when the laser spot

is brought to 1.5 cm from the inner electrode. The standard deviation increases similarly

as at r = 2.5 cm for low currents but a clear difference is reported for I > 5 A where the

standard deviation increases with the current. One may thus deduce from Fig.(39) two

conclusions. It appears that the onset of turbulence takes place close to the electrode and

that there exist a strong radial gradient which reflects a decrease of the fluctuations with

increasing distance to the inner electrode.

Figure 39: Plot of standard deviations versus current at four different positions of the
fluid.

C. Experiment II: Motion as function of Radial Position

In the previous experiment, we could deduce that the region near the inner elec-

trode is unstable. To obtain a more precise interpretation, the current is fixed and the

radius is varied. In (x,y) coordinates, the starting point of the measurement is a point
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A(x0,ystart) near the outer electrode. The laser beam is directed via the rotator mirror to

probe the surface in a straight line until it reaches a point B(x0,yend) as shown in Fig.(40).

The laser beam is reflected by the surface to reach the screen situated parallel to the fluid

surface.

Figure 40: In the second experiment, the laser beam probes the surface of the fluid. This
measurement is collected for eight different values of the current.

1. Steady State

The radius is probed from one outer electrode to another in a video of 100 frames.

For eight values of the current, videos of the laser reflection are recorded and analyzed. In

each frame, the position of the laser reflection is determined. It is denoted by (Xmax,Ymax).

An overlay of the maxima produces a trajectory of the laser reflection. By following the

change in trajectory as function of current as shown in Fig.(41), one can understand the

motion taking place on the fluid surface. For low currents, the trajectory follows a hill

near the central electrode. For I = 3 A and above, the trajectory continues to increase but

73



instead of decreasing back, the trajectory rotates in an oval shape. This takes place near

the central electrode. And the oval enlarges with increasing current.

Figure 41: Trajectory of laser reflection for several currents between 1 and 7 A.

Furthermore, we notice that there is an offset between the starting points of the

trajectories. This happens even though the rotator mirror returns the laser light back to

the same point on the fluid for all currents.

The fluid rotates around the central electrode due to Lorentz force. This rotation

deflects the surface such that the fluid near the outer electrode is at a higher level than

the fluid near the inner electrode. As the force increases, the surface of the fluid becomes

more sharply deflected. The angle of deflection can be projected is due to ak and a?.
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This leads to large scale motion of the laser reflection on the screen.

Also the distortion is caused by perturbations due to instabilities in the flow. We

can imagine the perturbation as a wave passing on the surface of the fluid. This wave also

distorts the already deflected fluid surface. Thus, it also changes the position of the laser

reflection on the screen. However, the magnitude of the perturbation is small, giving rise

to small scale motion of the laser.

We can conclude from Fig.(41) that the angles of deflection a? and ak increase

with increasing current. Furthermore, the trajectory followed by the laser beam is due

to two types of motion that are inseparable at this stage. In order to distinguish between

the two types of motion, we probe the motion along the radius versus time in the next

experiment.

2. Unsteady State

In the previous section, the dynamics were studied versus radius. In this section,

we study the dynamics versus time. For this purpose, a measurement of the laser reflection

versus radius was repeated five times. Three videos of 600 frames each were recorded

such that the radius is probed from A to B and two videos were recorded such that the laser

beam moves from B to A. This is done to ensure that there is no variation in the choice of

motion. Although the videos start from a specific radial point, it is not guaranteed that the

first frame captures this point. Therefore, the offset in frames was taken into consideration

iduring the image processing using Matlab. After determining the maximum point in each

frame of the five trajectories corresponding to five measurements an average trajectory is

calculated. Error bars of the average were also found. Fig.(42) is a plot of the average

along with its error bars. It is worth mentioning that the two strong deviations between 270

and 280 and between 315 and320 are experimental errors. It was confirmed by reviewing
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the video that these deviations are not related to the actual dynamics of the fluid.

Each point of the curve shown in Fig.(42) is the summation of horizontal and

vertical displacement of the laser spot on the plane of the screen. If we plot the vertical

component only of each of the five measurements as well as the vertical component of the

average, we obtain the upper curve in Fig.(43). The measurements perfectly fit with slight

variation from the average. The curve shows that the value of y increases to reach a max-

imum of at 180 pixels and then decreases back to almost the same value.This increases

makes the trajectory turn as function of x. The position of the maximum is the center of

the cylindrical container which will appear to be important for the next analysis. At this

stage, the onset of instability in not clear.

Next, the standard deviation of the y-component is plotted versus position in pix-

els for the 600 frames of the 5 videos. Here, we start to see a pattern.As we have indicated

from the upper plot of Fig.( 31), the center is at around 180 pixels. The standard deviation

is found to be high between 180 and 280 pixels, and then it encounters a sharp decreases

until 360 pixels. One can safely conclude that the region near the central electrode is

higher standard deviation. This is an indication of the instability. This allows us to de-

termine the unstable region. However, the region is obtained in terms of pixels. Since a

video is recorded, the radial position of the laser beam can help us determine the onset in

centimeters.
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Figure 42: An average trajectory along with error bars of the same measurement of
probing the surface at fixed current repeated 5 times.

Figure 43: Up: The average Y component (red line) along with the Y components of the
five measurements (blue). Down: Standard deviation of the Y component (blue) and

smoothing of the curve(red).

As the above data has given us an idea of the region of instability. We proceed
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further by trying to find a relation between the position in pixels in the image and the

actual radial position of the onset of instability. While probing the fluid surface, a certain

distance d f luid is covered. Also the distance which encloses the trajectory followed by

the laser reflection can be obtained from the image. Let us denote it by dpixels. The

ratio d f luid/dpixels allows us to construct a vector that transforms the image from pixels

to centimeters. Plotting the standard deviation versus this vector is the curve obtained

in Fig.(44). It is the variation of the y-component versus radius in cm. The standard

deviation for 0 < r < 1.5 is around 1.4. At r = 1.5, the standard deviation is reduced by

half and continues to be around 0.6 until 3 cm. This is a strong indication of the onset of

the instability at r = 1.5 cm.

Figure 44: Plot of the standard deviation of the y-component of the position of the laser
reflection versus radius.

D. Conclusion

Two types of experiments were conducted. The first experiment studies the dy-

namics of the flow as function of current. Analysis of the captured videos determines the
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coordinates of the point of maximum intensity in each frame of the video. An overlay

of the position (Xmax,Ymax) of all maxima allows us to visualize the distances between

the point. The plot of maxima versus current shows that the distances between maxima

increases with increasing current. These distances are a measure of the velocity fluctu-

ations of the flow. Furthermore, the standard deviation of each individual maxima from

the average is determined and plotted versus current. For the positions away from the

center, the standard deviation was found to be small. However, for the position closest to

the middle electrode, the standard deviation shows a sudden increase at I = 6 A giving an

evidence of the onset of the instability.

The second type of experiment investigates the dynamics of the fluid as function

of radius. In the first part, measurements were recorded for several values of the current.

The trajectory of the laser beam was reported. Two types of motion were discussed. In

the second part, the motion is studied versus time. A plot of the standard deviation for

5 measurements allowed us to deduce that the region near the middle electrode is stable.

Furthermore, a plot of standard deviation versus radius allows us to accurately determine

the onset of the instability as function of radius.
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CHAPTER VI
CONCLUSION
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A. Personal Achievements

• Determined the base flow of the Thin Rotating Flow and compared the result to the

base flow of Taylor-Couette Flow.

• Applied stability analysis by introducing a perturbation term to the azimuthal com-

ponent of the velocity.

• Analyzed the resulting dispersion relation and obtained a stability condition for the

flow.

• Built an experimental setup using a liquid metal, Galinstan, to test the theoretical

predictions.

• Developed the laser diagnostic technique and executed the experiment.

• Analyzed the result and determined the onset of instability versus current and radial

position.

B. Future Work

The theoretical development of this thesis expanded during the course of under-

standing the properties of the flow. The experimental work gained more perspective with

a theoretical foundation. When we turned to explore the theory, we learned that hydro-

dynamic instabilities are extensively studied in the (r,z)-plane of cylindrical setups. In

order to derive the conditions of stability(r,q)-plane, we performed a stability analysis

with an assumption that the height of the fluid is very small and that the perturbation of

the velocity takes place in the q -direction.

TIn the future, the stability analysis can be performed in the cylindrical geometry.

Certain mathematical challenges will arise, but approximations can be applied. Further-
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more, the assumptions of the perturbation method can be reduced.

Some simulations were done for this experiment. This has inspired us with ways

to advance the experiment. By simulation methods, it was found that the velocity profile

of continuous conductors at the boundary of the setup is close to the eight-electrode con-

figuration. However, it would be interesting to experimentally examine the difference. A

thin sheet of metal can be assembled into a cylinder with exact dimensions of the plexy-

glass container. It can replace the eight electrodes.

Although the fluid used in this thesis has distinctive properties, another conduc-

tive fluid can be used. However, the laser diagnostics method only applies for reflective

surfaces. Furthermore, the height of the plexiglass container can be reduced for better

laser diagnostics. The distance between the fluid surface and the screen was dictated by

the height of the laboratory room. This presented a challenge for experimental measure-

ments. Other possible geometric configurations of the experiment could be investigated.

82



BIBLIOGRAPHY

[1] Ronald C Kessler, Sandro Galea, Russell T Jones, and Holly A Parker. Mental illness

and suicidality after hurricane katrina. Bulletin of the World Health Organization,

84(12):930–939, 2006.

[2] Patrick J McCarthy. Elie, manitoba, canada, june 22, 2007: Canada’s first f5 tornado.

In 24th Conference on Severe Local Storms, 2008.

[3] Peter RN Childs. Rotating flow. Access Online via Elsevier, 2010.

[4] A Mallock. Experiments on fluid viscosity. Philosophical Transactions of the Royal

Society of London. Series A, Containing Papers of a Mathematical or Physical Char-

acter, 187:41–56, 1896.

[5] Maurice Frédéric Alfred Couette. Etudes sur le frottement des liquides. PhD thesis,

1890.

[6] Lord Rayleigh. On the dynamics of revolving fluids. Proceedings of the Royal

Society of London. Series A, 93(648):148–154, 1917.

[7] Russell J Donnelly. Taylor-couette flow: the early days. Phys. Today, 44(11):32–39,

1991.

[8] Donald Coles. Transition in circular couette flow. Journal of Fluid Mechanics,

21(03):385–425, 1965.

83



[9] HA Snyder. Stability of rotating couette flow. i. asymmetric waveforms. Physics of

Fluids, 11:728, 1968.

[10] ER Krueger, A Gross, and RC Di Prima. On the relative importance of taylor-vortex

and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech,

24(3):521–538, 1966.

[11] Lee Paul Graves, James C. McWilliams, and Michael T. Montgomery. Vortex evo-

lution due to straining: a mechanism for dominance of strong, interior anticyclones.

Geophysical Astrophysical Fluid Dynamics, 100(3):151–183, 2006.

[12] HA Snyder. Waveforms in rotating couette flow. International Journal of Non-

Linear Mechanics, 5(4):659–685, 1970.

[13] C David Andereck, R Dickman, and Harry L Swinney. New flows in a circular

couette system with co-rotating cylinders. Physics of Fluids, 26:1395, 1983.

[14] MJ Burin, H Ji, E Schartman, R Cutler, P Heitzenroeder, W Liu, L Morris, and

S Raftopolous. Reduction of ekman circulation within taylor-couette flow. Experi-

ments in fluids, 40(6):962–966, 2006.

[15] Steven A Balbus. Magnetorotational instability. Scholarpedia, 4(7):2409, 2009.

[16] Steven A Balbus and John F Hawley. A powerful local shear instability in weakly

magnetized disks. i-linear analysis. ii-nonlinear evolution. The Astrophysical Jour-

nal, 376:214–233, 1991.

[17] Akira Kageyama, Hantao Ji, Jeremy Goodman, Fei Chen, and Ethan Shoshan.

Numerical and experimental investigation of circulation in short cylinders. arXiv

preprint physics/0405123, 2004.

84



[18] Jeremy Goodman and Hantao Ji. Magnetorotational instability of dissipative couette

flow. Journal of Fluid Mechanics, 462:365–382, 2002.

[19] Wei Liu, Jeremy Goodman, Isom Herron, and Hantao Ji. Helical magnetorotational

instability in magnetized taylor-couette flow. Physical Review E, 74(5):056302,

2006.

[20] G Rudiger and R Hollerbach. Comment on“helical magnetorotational instability in

magnetized taylor-couette flow”. PHYSICAL REVIEW-SERIES E-, 76(6):068301,

2007.

[21] J Sommeria. Experimental study of the two-dimensional inverse energy cascade in

a square box. Journal of fluid mechanics, 170:139–168, 1986.

[22] VM Canuto, A Howard, Y Cheng, and MS Dubovikov. Ocean turbulence. part

i: One-point closure model-momentum and heat vertical diffusivities. Journal of

Physical Oceanography, 31(6):1413–1426, 2001.

[23] P Tabeling, S Burkhart, O Cardoso, and H Willaime. Experimental study of freely

decaying two-dimensional turbulence. Physical review letters, 67(27):3772–3775,

1991.

[24] Sergey Danilov, FV Dolzhanskii, VA Dovzhenko, and VA Krymov. Experi-

ments on free decay of quasi-two-dimensional turbulent flows. Physical Review

E, 65(3):036316, 2002.

[25] HJH Clercx, GJF Van Heijst, and ML Zoeteweij. Quasi-two-dimensional turbulence

in shallow fluid layers: the role of bottom friction and fluid layer depth. Physical

review E, 67(6):066303, 2003.

85



[26] LM Moubarak and GY Antar. Dynamics of a two-dimensional flow subject to steady

electromagnetic forces. Experiments in fluids, 53(5):1627–1636, 2012.

[27] GJF Van Heijst, HJH Clercx, and D Molenaar. The effects of solid boundaries on

confined two-dimensional turbulence. Journal of Fluid Mechanics, 554:411–432,

2006.

[28] Patrick Tabeling. Two-dimensional turbulence: a physicist approach. Physics Re-

ports, 362(1):1–62, 2002.

[29] HJH Clercx and GJF van Heijst. Two-dimensional navier-stokes turbulence in

bounded domains. 2009.

[30] Louis N Howard and AS Gupta. On the hydrodynamic and hydromagnetic stability

of swirling flows. Journal of Fluid Mechanics, 14(03):463–476, 1962.

[31] S Chandrasekhar. The stability of non-dissipative couette flow in hydromagnetics.

Proceedings of the National Academy of Sciences of the United States of America,

46(2):253, 1960.

[32] Hantao Ji, Jeremy Goodman, and Akira Kageyama. Magnetorotational instability in

a rotating liquid metal annulus. Monthly Notices of the Royal Astronomical Society,

325(2):L1–L5, 2001.

[33] Steven A Balbus and John F Hawley. Instability, turbulence, and enhanced transport

in accretion disks. Reviews of modern physics, 70(1):1, 1998.

[34] Wei Liu, Jeremy Goodman, Isom Herron, and Hantao Ji. Helical magnetorotational

instability in magnetized taylor-couette flow. Physical Review E, 74(5):056302,

2006.

86



[35] Hantao Ji, Jeremy Goodman, Akira Kageyama, Michael Burin, Ethan Schartman,

and Wei Liu. Magnetorotational instability in a short couette flow of liquid gallium.

In AIP Conference Proceedings, volume 733, page 21, 2004.

[36] K Noguchi, VI Pariev, SA Colgate, HF Beckley, and J Nordhaus. Magnetorotational

instability in liquid metal couette flow. The Astrophysical Journal, 575(2):1151,

2002.

[37] NB Morley, J Burris, LC Cadwallader, and MD Nornberg. Gainsn usage in the

research laboratory. Review of Scientific Instruments, 79(5):056107–056107, 2008.

87




	AKNOWLEDGEMENTS
	ABSTRACT
	LIST OF ILLUSTRATIONS
	LIST OF TABLES
	Introduction
	Motivation
	Accretion Disks
	Geophysical Fluid Dynamics
	Mechanical Engineering Applications

	Definitions
	Previous Work
	Unmagnetized Taylor-Couette Flows
	Magnetized Taylor-Couette Flows
	Balbus MRI
	Princeton MRI
	Helical Magnetorotational Instability (HMRI)

	Laboratory Quasi Two Dimensional Flows 

	Thesis Plan

	Base Flow
	Introduction
	The Navier-Stokes Equations
	Base Flow of Taylor-Couette Flow (TCF)
	Base Flow of Thin Rotating Flow (TRF)
	Comparison Between TCF and TRF
	Conclusion

	Stability Analysis
	Introduction
	Axisymmetric Disturbances of Taylor-Couete Flow
	Non-Axisymmetric Distrurbances by Slab Approximation (TRF) 
	Full Navier-Stokes Equations with Lorentz Force
	Form of Perturbation 
	Steady State and Inviscid Limit 
	Linearization
	Pressure Elimination and Coupling by Continuity
	Fourier Modes Analysis
	Stability Conditions

	Conclusion

	The Experiment and Laser Diagnostic
	Introduction 
	The Experimental Apparatus
	Fluid Characteristics
	External Magnetic Field
	Current Density
	Induced Magnetic Field
	Laser Diagnostics
	Fluid Distortions
	Shallow Water Equations
	Dimensionless Numbers
	Conclusion

	Experimental Results
	Introduction
	Experiment I: Motion as function of Electric Current
	Experiment II: Motion as function of Radial Position
	Steady State
	Unsteady State

	Conclusion

	Conclusion
	Personal Achievements
	Future Work

	Bibliography



