
AMERICAN UNIVERSITY OF BEIRUT

REAL TIME QOS CONTROL FOR VIDEO TRACKING

by

LEA S. BOUTROS

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
May 2014

ACKNOWLEDGEMENTS

I would like, first of all, to thank my advisor Dr. Mohamad Jaber who played a
major role in the accomplishment of my thesis.
I would also like to express my gratitude to the committee members, whose help
and advices where vital and essential. Special thanks to Dr. Wassim El Hajj for
his precious help.

In addition, a thank you to Dr. George Turkiyyah, for the help and effort he
has put during my master years at AUB. Also, my special appreciation goes to Mr.
Mike Hamam, always present through both good and bad times, he was always
ready and happy to offer his help in any way.

Finally I cant find words to describe how thankful I am for the support my family
gave me. Without the constant encouragement and the strength they gave me all
along, none of this would be happening.

iii

AN ABSTRACT OF THE THESIS OF

Lea S. Boutros for Master of Science
Major: Computer Science

Title: Real Time QoS Control For Video Tracking

In this thesis, we propose a method to match a set of logos in a video in real time
without degrading the quality of the video. The matching algorithm should take
into account frame rate standard so that we avoid skipping frames which drastically
reduces the quality of a video.

The contribution of the thesis is two-fold. First, we propose a solution based on
fine grain Quality of Service (QoS) control so that to increase predictability of exe-
cution times. Our method allows adapting matching logo algorithm by adequately
setting quality level parameters for it. The objective of the quality management
policy is to meet QoS requirements while maximizing the utilization of available
time budget. This allows us to match a set of logos by adapting the quality of the
matching algorithm depending on the available deadline. Depending on the progress
of the computation (actual time), our method uses a quality manager that chooses
the next quality level parameter. Second, we use multithreading in order to paral-
lelize matching of different set of logos, and hence maximize the number of logos
that could be matched within the deadline.

Our method is fully implemented using C++ and OpenCV library. We present
experimental results showing that using our method we can match more logos while
respecting the frame rate of a video.

iv

CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF FIGURES . vii

LIST OF TABLES . ix

1 INTRODUCTION . 1
1.1 Background . 2
1.2 Problem Statement . 2
1.3 Solution Proposed . 3
1.4 Thesis Outline . 3

2 PRELIMINARIES . 5
2.1 Matching Algorithm . 5

2.1.1 Keypoints Extraction . 5
2.1.2 Descriptors Extraction . 10
2.1.3 FLANN Based Matcher . 12
2.1.4 Homography Matrix . 13

2.2 Quality of Service . 15

3 RELATED WORK . 17
3.1 Matching Algorithm . 17
3.2 QoS controller . 19
3.3 Our Contribution . 21

4 MATCHING ALGORITHM . 22
4.1 Introduction . 22
4.2 Algorithm . 22
4.3 Example . 26
4.4 Conclusion . 29

5 QUALITY CONTROL . 30
5.1 Introduction . 30
5.2 Quality Selection . 31
5.3 Algorithm . 35
5.4 Experimental Results . 40

6 PARALLELIZE OUR ALGORITHM USING PTHREADS 44
6.1 Introduction . 44
6.2 Algorithm . 45
6.3 Experimental Results . 47

v

7 CONCLUSION . 52

vi

LIST OF FIGURES

2.1 An image convolved with a Gaussian function under different scales. . 7
2.2 Scale space of an image. We can see 3 different octaves containing

the convolved images with different parameter. The size of the image
decreases for every octave. At the right we can see the difference of
Gaussian of these images. 9

2.3 Images represented by their pixel values 11
2.4 Entry value of pixel (x, y) in the original image I and the integral

image IΣ . 11
2.5 Controller architecture . 15

3.1 The DoG applied for every two consecutive images convolved with a
Gaussian function with scale kσ . 18

3.2 Three consecutive DoG images. We take the candidate interest point
(marked with ×) and take its 26 neighbors (marked with circles) in
the same scale and in adjacent scales (3 × 3) and check if it is a
maxima or minima. 18

3.3 Instead of iteratively reducing the image size (left), the use of integral
images allows the up-scaling of the filter at constant cost (right). . . . 19

4.1 We want to match these two images. The goal is to find the logo in
the commercial image. 26

4.2 Red circles around keypoints found in the commercial image and the
logo . 27

4.3 Matches between the frame and the logo. 27
4.4 Matches (denoted in red) between the keypoints in the frame and he

ones in the logo. 28
4.5 The logo is found in the commercial image. 29

5.1 The better the quality is, the more time it needs to execute. 30
5.2 Coca-cola commercial with different determinant of hessian threshold.

We notice that when we increase the threshold, we get less keypoints
and therefore we miss the logo in the image. 32

5.3 Controller architecture . 37
5.4 Number of occurrences of every quality chosen by the quality manager

while matching a video to a set of 3 logos. 41
5.5 Number of occurrences of every quality chosen by the quality manager

while matching a video to a set of 6 logos. 42
5.6 Screenshot of the resulting video using the quality manager 43
5.7 Screenshot of the resulting video using the fixed quality q2 43

6.1 Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 3 logos using one thread. 48

vii

6.2 Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 6 logos using 2 threads. 49

6.3 Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 6 logos using 1 thread. 49

6.4 Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 9 logos. 50

6.5 Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 12 logos. 51

viii

LIST OF TABLES

5.1 Table representing the average execution time (in ms) of the matching
algorithm with different threshold values and decreasing the number
of keypoints. 33

5.2 Table representing the average execution time (in ms) of the matching
algorithm with different threshold values and decreasing the number
of keypoints. 34

5.3 Table representing the average execution time (in ms) of the matching
algorithm with different threshold values and decreasing the number
of keypoints. 34

5.4 Table describing the different quality values chosen for our algorithm. 35

6.1 Table representing the average execution time of a frame matched
with the specified number of logos using 1, 2, 3 or 4 threads. 48

ix

CHAPTER 1

INTRODUCTION

The technology revolutionized the world we live in since the creation of the first

computer in 1946. Back then, the computer was over 30 tons and had only one func-

tionality. Half a century later, this computer can fit in your pocket and it provides a

multitude of functionalities. Some might say that technology took over our human-

ity by introducing this new virtual world. This might be true, however it should

be a mean to make us move forward. Information should come to us when needed,

and with the introduction of augmented reality (AR) we are closer to this goal. AR

is a technology which consists in overlaying digital information onto the real world.

Its main goal is to make our surrounding environment interactive by adding useful

information to it. The applications are quite wide and appealing. Tourism is one

example where such technology becomes handy and desirable, because when you are

in a new environment, you are more curious and eager for information. For instance,

if we are standing in front of a monument and we want to know its history we could

use the camera of our phone. The needed information will be added to the real

time video that we are seeing. What will actually happen is that the camera will

take snapshots of the monument and send them to a server. A matching algorithm

will recognize the monument and give back the respective information that will be

displayed on the image itself. Masking logos in a video is another major example

where augmented reality can be used. This system needs to recognize and localize

logo in real time to be able to mask them while not affecting the quality of the video.

The augmented information in this case is the application of a blurred mask on the

logo found.

Augmented reality is the future of the virtual world because its main purpose is

to enhance our perception of the real world. A lot of work has been done in this

1

field such as mobile and desktop applications.

1.1 Background

Google goggles [Google] is a snapshot recognition system, based on image search.

By taking a photo of a well-known landmark, you obtain information about it.

However, this system does not overlay the information on the picture.

Layar Quintin and Maarten [2009] is a phone application that uses the GPS

location to retrieve information about the area we are located in. For instance, we

can retrieve the restaurants around us. We can also look at a building and know

its history from Wikipedia. Wikitude [Herdina et al.] is a GPS based MAR system

like layar. These two systems give information about the users surroundings by

augmenting them on the camera view. These techniques rely on the phones sensor

data.

A 3D mobile augmented reality system for urban scenes is presented in Wu et al.

[2011]. In order to get accurate results, this system does not only use the mobiles

sensor data, it also leverages the visual information by extracting the features from

the live video frames and compare them to the images database. Additionally, it

augments the retrieved data with the correct perspective by matching the query to

the 3D models in the database.

1.2 Problem Statement

We aim to implement a system that recognizes and localizes logos in a video and

provides relevant information to the user, such as advertisement or blurred masks.

This application aims at obtaining and augmenting the information on the video.

On the first hand, a video runs at a rate of 30 frames per second, i.e. every

frame is displayed for 33 ms. Therefore, the matching process should take less than

33 ms otherwise the quality of the video will drastically be reduced. In fact, the

video will still be composed of the same number of frames but, the display time will

2

be bigger. Moreover, our goal is to match a video to more than one logo within the

same deadline, this makes our task more challenging.

On the other hand, executions times for matching algorithm may considerably

vary over time as they depend on the size and quality of the logo and frame. Fur-

thermore, non predictability on the underlying platform is an additional factor of

uncertainty.

1.3 Solution Proposed

In order to match a maximum number of logos without degrading the quality

of a video, we propose a solution based on fine grain Quality of Service (QoS)

control so that to increase predictability of execution times. Our method allows

adapting matching logo algorithm by adequately setting quality level parameters

for it. The objective of the quality management policy is to meet QoS requirements

while maximizing of the utilization of available time budget. This allows to match

a set of logos by adapting the quality of the matching algorithm depending on the

available deadline. Depending on the progress of the computation (actual time), our

method uses a quality manager chooses the next quality level parameter.

Moreover, our method uses multithreading in order to parallelize matching of

different set of logos. In this thesis we will discuss in detail how we merge those

techniques in order to match the maximum number of logos without reducing the

quality of a video (i.e., skipping some frames).

Our method is fully implemented using C++ and OpenCV library [2006] which

is an open source library for computer vision. We present experimental results using

different case studies.

1.4 Thesis Outline

The rest of the thesis consists of 6 chapters. In Chapter 2 we present some

preliminaries. Then, in Chapter 3 we discuss related works. In Chapter 4, we

3

present a matching algorithm based on SURF features. In Chapter 5, we present the

first solution based on fine grain Quality of Service control to manage the execution

times. In Chapter 6, we present the second solution based on multithreading in order

to parallelize matching of different set of logos. Finally, Chapter 7 draws conclusion

and future work.

4

CHAPTER 2

PRELIMINARIES

2.1 Matching Algorithm

Finding correspondences between two images has a large field of applications.

Image matching is one of them. There are three major parts to find point corre-

spondences between two images. First, we have to find “interest points”. Then we

take the points that lie in the neighborhood of every interest point and compute a

vector, it is called the “descriptor”. Finally, we match the descriptors of different

images based on Euclidean distance.

The matching Algorithm that we used is based on SURF (Speed-Up Robust

Features) [Bay et al., 2008] features.

2.1.1 Keypoints Extraction

Keypoints Extraction is one of the major parts of image recognition. Moreover, it

has a wide range of other applications (e.g., face recognition, motion tracking and 3D

reconstruction). Keypoints extraction requires to identify the major characteristics

of an interest point. An interest point is a point in an image that is recognizable in

any variation of this image or in a slight change of perspective. A feature detector

is responsible for extracting these points. For this, the feature detector should be

repeatable, i.e. it should find the same interest points under different views.

In an image we can find four types of regions and just two of them are unique

enough to be distinguished out of their environments. For example, a region centered

around a point in a flat area cannot be considered as a feature, because it is similar to

its environment. So, if we move the rectangular area around this point and compare

it to the one that we had before, we can clearly see that they are similar. If we

take an edge, for example, we can notice the contrast between the two sides of the

5

edge. However, if we move the region along the edge, we will notice that there is no

difference. Corners and blobs are considered to be good features because they are

unique. If we move the rectangular area around them and compare them we find a

really big difference.

Consider a small rectangular area of pixels around a candidate feature (x0, y0).

Suppose that we move the box by a vector (u, v) so the point (x0, y0) becomes

(x0 + u, y0 + v). For the feature to be a good one, we should find a difference

between the 2 boxes. So we compute the sum of squared differences of every pixel

(see equation 2.2).

C(u, v) =
∑

(x,y)∈Box
(I(x, y)− I(x+ u, y + v))2 (2.1)

This cost function should be large for all (u, v), for (x0, y0) to be a good feature. If

we expand C(u, v) in a taylor series at (u, v) = (0, 0), we get the following equation.

C(u, v) ≈
∑

(x,y)∈Box
(I(x, y)− (I(x, y) + u

∂I

∂x
+ v

∂I

∂y
))2

=
∑

u2 ∂I

∂x

2

+ 2uv
∂I

∂x

∂I

∂y
+ v2∂I

∂y

2

=

u
v


T

H

u
v


(2.2)

with H being the Harris Matrix (see equation 2.4).

H =


∑ ∂I

∂x

2 ∑ ∂I

∂x

∂I

∂x∑ ∂I

∂x

∂I

∂x

∑ ∂I

∂y

2

 (2.3)

We want the cost function to be high for the candidate feature to be a good one.

This means that we want the eigenvalues of H to be large. However, for computation

reasons, we compute det(H)−Ktrace(H). It is small when one or both eigenvalues

6

Figure 2.1: An image convolved with a Gaussian function under different scales.

are small, and it is high otherwise. However, we get better results when smoothing

the image, especially when it is centered around the candidate interest point since

we give it more weight.

H =


∑ ∂I

∂x

2 ∑ ∂I

∂x

∂I

∂x∑ ∂I

∂x

∂I

∂x

∑ ∂I

∂y

2

 ∗ weight (2.4)

To smooth the image we convolute it with a Gaussian function centered at the

candidate point (x0, y0) with a scale σ.

L(x, y, σ) = g(x, y, σ) ∗ I(x, y) (2.5)

Thus the weight function used in this case is the Gaussian function and we get

the following equation:

7

H =


∑ ∂I

∂x

2 ∑ ∂I

∂x

∂I

∂x∑ ∂I

∂x

∂I

∂x

∑ ∂I

∂y

2

 ∗ g(x, y, σ) (2.6)

Derivative of Gaussian

We use the derivative of Gaussian to smooth the image and give more weight to

the candidate feature point.

∂I

∂x
≈ I(x, y) ∗ ∂G(x, y, σ)

dx
(2.7)

We use Gaussian derivatives as feature detector because of its rotation and trans-

lation invariance.

Lxmyn(x, y, σ) =
∂m+n

∂xm∂yn
g(x, y, σ) ∗ f(x, y) (2.8)

Hessian of Gaussian

H(x, y, σ) =

Lxx(x, y, σ) Lxy(x, y, σ)

Lxy(x, y, σ) Lyy(x, y, σ)

 (2.9)

In order to get more precise results we assume that a point is a keypoint if it

is still recognizable under different modifications. For this, we construct the scale

space of the image.

Scale Space

A scale space of an image, in computer vision, is a collection of variation of this

image. It is done by repeatedly smoothing the image, i.e. by applying a linear

(Gaussian) filter with different parameters σ (see equation 2.5). The image I(x, y)

is subjected to a set of linear transformation L(x, y, σ) with varying scale σ. So for

8

Figure 2.2: Scale space of an image. We can see 3 different octaves containing the
convolved images with different parameter. The size of the image decreases for every
octave. At the right we can see the difference of Gaussian of these images.

a given fixed scale σ, the new image will be a convolution of the image I(x, y) with

the Gaussian function g(x, y, σ) (see equation 2.10)

g(x, y, σ) =
1

2πσ
e−(x2+y2)/2σ (2.10)

A lot of methods have been used to create the scale space of an image, however,

the Gaussian kernel is the most appropriate filter for image recognition. In fact, it

is scale invariant, shift invariant and more importantly, it doesn’t create inexistent

structures when passing from a fine image to any coarser one.

The scale space is composed of several octaves, each of which contains the con-

volved image with parameter {σ0, kσ0, k2σ0, k3σ0}. To keep the same Gaussian

parameters for every octave, it has been shown that reducing the resolution of the

image is equivalent to changing the parameters. Thus, for every octave the original

image size is decreased. This is done for computational purposes, because convolv-

ing a smaller image is done faster. Lowe used this method to extract its feature

points. However, in 2008, with the introduction of SURF [Bay et al., 2008], it has

been shown that the scale space can be computed with the original size in a constant

9

execution time using integral images.

Integral Images

Integral image, which is also called summed area table, was introduced in the

computer vision field in 2001 by Viola and Jones [Viola and Jones, 2001]. Integral

images are used to compute the sum of pixel values in a given image or in a rect-

angular area of this image, in a quick way. It computes it in four memory accesses

independently of the size of the image.

Suppose that we have an image I represented as a matrix where every entry (x,

y) contains the pixel value at this corresponding position, as shown in Figure 2.3a.

The integral image IΣ is a matrix where every entry (x, y) contains the sum of the

pixel values of the left top corner of the original image I including the value at the

(x, y) position (see figure 2.4a). Figure 2.3b is the integral image of figure 2.3a.

IΣ(x, y) =
x∑
i=0

y∑
j=0

I(i, j) (2.11)

We can compute the integral image in only one pass over the original image. So the

previous equation can be replaced by equation 2.12.

IΣ(x, y) = I(x, y) + IΣ(x− 1, y) + IΣ(x, y − 1)− IΣ(x− 1, y − 1) (2.12)

For any rectangular area in the integral image, it takes only 3 operations to find

the sum of its intensity. So, the integral image reduces the computation time to

O(1), which is independent of its size.

2.1.2 Descriptors Extraction

The descriptors are used to describe the interest points. In SURF, the descrip-

tors describe the distribution of the intensity around the interest point. They are

10

4 3 6 3

5 6 2 2

9 5 2 3

4 1 6 5

(a) Original Image I

4 7 13 16

9 18 26 31

18 32 42 50

22 37 53 66

(b) Integral Image IΣ

Figure 2.3: Images represented by their pixel values

I(x, y)

(a) Original image I

IΣ(x-1, y)

IΣ(x-1,y-1)

IΣ(x, y)

IΣ(x, y-1)

(b) Integral image IΣ

Figure 2.4: Entry value of pixel (x, y) in the original image I and the integral image
IΣ

11

extracted using the first order Haar wavelets.

Orientation Vector

This step is done to ensure that our descriptor is rotation invariant. For each

interest point we want to find its orientation vector. For this, we take a set of sliding

windows around the point and calculate the Haar wavelet responses in both x and

y directions. We add the horizontal and vertical responses. Then, the sum of these

two responses gives us the local orientation vector of this sliding window. After

repeating this process for all windows around this point, we compare the resulting

vectors. The longest one defines the orientation vector of this interest point.

Extraction of Descriptor

First, we take a squared region around the interest point and oriented along

the vector that we previously computed. Then, we split this region into 4x4 boxes.

For every sub-region, we calculate the Haar wavelet responses in both directions

horizontally and vertically that we call dx and dy respectively. We also compute the

absolute values of these responses | dx | and | dy |. Hence, each sub-region has a 4

dimensional vector v = (
∑
dx,
∑
dy,
∑
| dx |,

∑
| dy |).

The squared regions around the interest point is composed of 4 × 4 such sub-

regions, i.e. 16 boxes that can be described by v. So, we concatenate v for all the

16 sub-regions and we get a 64 dimensional vector. This vector is the descriptor of

the interest point.

2.1.3 FLANN Based Matcher

FLANN [Muja and Lowe, 2012] is a library for Fast Approximate Nearest Neigh-

bor algorithms. This library encloses several matching algorithms with different

data structures. We are interested in Kd-trees for image matching techniques. A

Kd-tree is a balanced binary tree where every node has k dimensions. The data is

12

split according to the axes (x, y, z, ...). Assume that we have 4 dimensional data,

every node is of the form (x1, x2, x3, x4). We first split the data according to x1,

i.e. the nodes are compared according to the values of x1. The elements that are

less than the node are in the left subtree and the elements that are higher than the

node are in the right subtree. Then this process is repeated until all the data has

its position in the tree. At every level of the tree the data is classified according to

one of the 4 dimensions.

Kd-trees are efficient in low dimensions. In order to operate in high dimensions

we have to use multiple randomized Kd-tree instead.

We construct the trees for one of the images, then we compare every descriptor

to the trees and find the best two matches. For all descriptors in the query image,

we have the two best matching descriptors of the second image. To know if a match

is a good one, it should be unique. This means that the distance between the best

match and the query descriptor should be far from the distance between the second

best and the query.

2.1.4 Homography Matrix

A Homography matrix can be considered as a projection matrix that projects

a point from the source image to its matching point in the destination image. It

is composed of a translation vector t =
(t1
t2

)
and a rotation matrix R =

(R1 R2
R3 R4

)
.

Suppose that we have a point (x, y) in the source image, then its corresponding point

(X, Y) in the destination image can be found solving the following set of equation.


a

b

c

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1


with

x = a/c

y = b/c

(2.13)

13

In our case, we do not have the homography matrix, however, we have the two

images that we are trying to match and the set of matching points of these images.

Using the set of matching points we need to find the homography matrix which

transforms the first set of points into their corresponding points in the second one.

The Homography matrix is a 3x3 matrix, so it has 9 entries. The system has

9 unknowns so we need 3 pair of points (9 equations) in order to solve it and

find the matrix. Some of the pairs of point are false positive matches, hence we

cannot randomly choose three points out of the set to solve the system. Therefore,

we use the RANSAC (RANdom SAmple Consensus) [Fischler and Bolles, 1981]

algorithm. This consists in choosing 3 pairs of points randomly and in computing

the Homography matrix.


a

b

c

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1


Known Unknown Known

(2.14)

Then, using this matrix and the set of points coming from the original image, we

recalculate all the matching points.


a′

b′

c′

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33



x

y

1


Unknown Known Known

(2.15)

After getting the new set of points, we calculate the difference between the

old points (x, y) and the new ones (x′, y′). The sum of squared differences is the

error that this homography produces. We store both the error and its corresponding

14

matrix. We repeat this whole process a multitude of times and then the Homography

matrix with the smallest error is selected as the best one. All pairs of points that do

not give a good result when multiplied by H are considered as outliers. Otherwise,

we call them inliers.

2.2 Quality of Service

In this thesis we present a method that applies SURF matching algorithm under

a controlled software. This is done to control the execution time of our parameterized

system. The controlled software is composed of the initial algorithm and a controller.

The main purpose of the controller is to control the execution of a cycle and then

choose the appropriate following action to run with its quality. To do so, it has two

main components: the quality manager and the scheduler. In our case we do not

need the scheduler, since our algorithm is composed of a single sequence of cycles,

without different options.

Controller

Quality Manager

Scheduler

Parameterized System

Figure 2.5: Controller architecture

Let Q = {q1, q2, q3, . . . , qm} be the set of all qualities such that q1 is the best

quality. Suppose that we want to run our algorithm k times without exceeding the

deadline D1. The main purpose is to find the best combination of qualities that

allows us to run k times our program within the deadline. Before executing the

nth cycle, we need to know which quality is going to be used. The controller is the

responsible for finding the suitable quality according to the remaining time. First,

15

the quality manager calculates the new deadline Dn which is the remaining time to

run the k − n + 1 cycles. It takes as parameter the old deadline and the execution

time of the previous cycle.

Dn = Dn−1 − En−1 (2.16)

After getting the new deadline, it should find the best quality that can be used in the

following cycle such that all remaining cycles can still be executed with the lowest

quality without exceeding the deadline. For this, the quality manager assumes that

the following k−n cycles will be executed with the lowest quality qm and computes

the average time needed to do so. Then, it subtracts this time from the deadline

Dn of the current cycle. This difference represents the time available to execute the

nth cycle and it is used to choose the best quality which satisfies it.

16

CHAPTER 3

RELATED WORK

3.1 Matching Algorithm

Matching two images has a wide range of applications. Therefore, lot of work has

been done in this area so that all aspects can be covered. There are several methods

to match images depending on their nature (face, hand, logo, . . .). In our case we

are working on logo detection and recognition in a video. However, our detector

should be scale and rotation invariant. Most importantly the features should be

invariant to illumination or noise.

SIFT

The Scale Invariant Feature Transform (SIFT) has been introduced by David G.

Lowe in 1999 Lowe [1999]. The Harris corner detector is very sensitive to changes

in image scale, so it not efficient for matching images of different sizes. The first

work done by Lowe [1999] extended the previous feature detector to insure scale

invariance. This method works primarily with the difference of Gaussian (DoG)

which is an approximation of the Laplacian. Previous methods used to work with

the Lapacian of Gaussian (which is described in the preliminaries chapter).

In figure 3.1, we can see the constructed scale space of the convoluted images by

the Gaussian function with different scales kσ, for every octave. Then for every two

consecutive images the DoG has been computed. The next step is to find the local

extrema. For every point we need to check if it is a maxima or minima among its

26 neighbors (see figure 3.3). Only the points that are found to be local extrema

are selected.

17

Figure 3.1: The DoG applied for every two consecutive images convolved with a
Gaussian function with scale kσ

Figure 3.2: Three consecutive DoG images. We take the candidate interest point
(marked with ×) and take its 26 neighbors (marked with circles) in the same scale
and in adjacent scales (3× 3) and check if it is a maxima or minima.

18

Figure 3.3: Instead of iteratively reducing the image size (left), the use of integral
images allows the up-scaling of the filter at constant cost (right).

SURF

Speed-Up Robust Features (SURF) has been introduced in 2008 Bay et al. [2008].

Its goal is to find invariant features is a faster way without loosing performance. The

feature detector is based on the hessian matrix.

H(x, y, σ) =

Lxx(x, y, σ) Lxy(x, y, σ)

Lyx(x, y, σ) Lyy(x, y, σ)

 (3.1)

SURF creates its scale space without resizing and reducing the resolution of the

images as going up the pyramid. On the contrary it keeps all images of the same

original size, since it uses integral image which allows a faster computation (around

constant time) of the sum of the pixel in a rectangular box. So it computes a

box-filter approximation of the second order Gaussian partial derivatives Bay et al.

[2008].

The two algorithms have been tested and it has been shown in Panchal et al.

[2013] that SURF is faster than SIFT. In fact it detects less feature points and leads

to a faster matching process.

3.2 QoS controller

Wust et al. [2004] propose two solutions to achieve a soft real-time execution

for high quality video processing that are based on a Markov decision process and

19

reinforcement learning.

Buttazzo et al. [1998] describe an elastic task model where every task is repre-

sented as a spring with elastic coefficients. A task can change its coefficients in order

to control its execution time and the other tasks will adapt so that the time period

is respected.

Koren and Shasha [1996] deal with tasks where the deadline can be missed con-

sidering that most of the deadlines are met. They proved that using skip techniques

optimally is NP-hard. They worked with two skip-over algorithms: Earliest Deadline

First (EDF) and Rate Monotonic scheduling (RM), setting some periodic bounds.

EDF is used for dynamic scheduling whereas RM is used for static scheduling, where

we have complete knowledge about the properties and execution time of the tasks.

Rajkumar et al. [1997] describe a QoS based Resource Allocation Model (Q-

RAM). The model is a framework containing several applications that can be run

with different level of qualities, depending on the available resources. The main

purpose is to assign resources to the different applications such that the overall

utility is maximized, while minimizing the need of every application.

Combaz et al. [2005b] propose a method where the quality levels can be set

adequately so that the following QoS requirements are respected:

• Safety - No deadline is missed

• Optimality - Maximize the available time

• Smoothness of quality levels

In this paper, they tested their results on a MPEG video encoder.

Combaz et al. [2008] improve the results of Combaz et al. [2005b] in two direc-

tions: Symbolic quality management and computation of optimal schedule. Sym-

bolic quality management improvements:

20

• They introduced the use of speed diagrams. The controlled system is repre-

sented as a two dimensional graph. One dimension represents the actual time

and the other one describes the virtual time.

• For every state in the diagram there are two kind of speed:

1. Ideal speed: speed if all the remaining actions are run with fixed quality

level q.

2. Optimal speed: best use of the available time without missing any dead-

line.

Computation of optimal schedule improvements:

• Create functions that manages uncertainty (due to the difference between aver-

age and worst-case execution time) and fall-back ability (due to the difference

between average and worst-case execution time for the worst quality).

• They show that for dynamic scheduling, EDF is not an optimal algorithm.

Therefore, they proposed two functions to reach optimality using EDF sched-

ules.

3.3 Our Contribution

We aim to implement a system that takes a video as input and finds the logos

in every frame, in real-time and display the frames. Therefore, we are going to

use a combination of (1) SURF features to describe and match our images, (2) the

real-time system that we previously described and (3) parallel programing in order

to improve real-time execution.

21

CHAPTER 4

MATCHING ALGORITHM

4.1 Introduction

The goal of this thesis is to detect logos in a video, which makes the matching

algorithm one of its major parts. Our main goal is to match every frame of the

video to a database of logos. So, it is not a simple one-to-one matching. There are

several ways to solve this issue. The straightforward solution is to match the image

to the set of logos one-to-one successively. For simplicity, assume that our database

contains one logo. We will describe the algorithm of matching a video to one logo

in the following section using SURF features.

4.2 Algorithm

The program takes as input a video from the user and should return the video

with the detected logos as shown in algorithm 2. We know that a video is a succession

of frames. This means that we have to decompose the video into frames and then

apply the matching algorithm 1 to every frame.

First, before loading the video, the features of the logo are extracted and the

tree is created. This is the first step to be executed because it is computationally

inefficient to do it for every frame. This part can be done once for the database

since the descriptors and keypoints of the images are fixed. So this part should be

run only once and can also be done offline.

Suppose that we extracted offline the k keypoints from the logo and consequently

their k corresponding descriptors. The keypoints and descriptors are stored in vec-

tors KLogo and DLogo respectively.

22

KLogo =



KL1

KL2

...

KLk


(4.1)

DLogo =



DL1

DL2

...

DLk


(4.2)

After loading the video, every frame undergoes the same following process as

shown in algorithm 1. We first extract the SURF keypoints of the image, i.e. the

‘interest points’ of the image. Then, we extract the descriptor for every keypoint.

After getting the descriptors of the frame, they are matched to the logo’s descriptors,

and these matches are used to compute the homography matrix.

For a specific frame, we extract the keypoints and descriptors of the frame and

store them in Kframe and Dframe respectively.

Kframe =



K1

K2

...

Kn


(4.3)

Dframe =



D1

D2

...

Dn


(4.4)

For every descriptors in Dframe we want to find the best 2 matching descriptors

from the logo DLogo. We perform a K-nearest neighbor search for every descriptor

23

using the index tree that we created. The value of K is 2 in this case since we

want to find the best 2 matches. This is done by calling the OpenCV function

“flannIndex.knnSearch()” which will return two matrices. One containing the indices

of the two best matches found for every descriptor.

indices =



I11 (best match for D1) I21 (2nd best match for D1)

I12 (best match for D2) I22 (2nd best match for D2)

...
...

I1n (best match for Dn) I2n (2nd best match for Dn)


(4.5)

The second one contains the Euclidean distances, d and d′, between every descriptor

and its best match and second best match. This means that d1 is the distance

between D1 and its best matching descriptor in the logo (which is the I11 element

in DLogo) and d′1 represents the distance between D1 and its second best match in

the logo (which is the I21 element in DLogo).

dist =



d1 d′1

d2 d′2
...

...

dn d′n


(4.6)

After getting the distances for all the descriptors, we have to decide which ones are

good matches. To do so, for every descriptor we compare the two distances. If the

distances are close we consider that the best match is not a good one because it

doesn’t stand out. If the ratio d/d′ is greater than 0.6 this means that the distances

are close, so it isn’t a good match. Otherwise, it is a good one, and we store the

24

descriptor with its best match in a matrix.

results =



D1 DLI11

D4 DLI14
...

...

Dz DLI1z


(4.7)

We apply this for all the descriptors and filter them to keep only the best matches.

After getting the best matches, we need to construct the homography matrix, which

transforms the set of points from the logo to their matches in the frame. To compute

the homography matrix we use the “cv::findHomography” function which is based

on the RANSAC algorithm and use it to find the corners of the logo found in the

frame.

Input : Frame image, logo keypoints, logo descriptors and the trees that we

constructed based on the logo descriptors: flannIndex

Output: The frame image with the logo detected and found.

1 frame keypoints← extractKeypoints(frame);

2 frame descriptors← extractDescriptors(frame);

3 [frame match logo match]←

match(frame keypoints, frame descriptors, flannIndex);

4 H← getHomography(frame match, logo match);

5 dst corners← getCorners(src corners, H);

Algorithm 1: Matching Algorithm for two images (matchImage)

25

Input : Video and a logo

Output: The video with the logo detected and found.

1 logo keypoints← extractKeypoints(logo);

2 logo descriptors← extractDescriptors(logo);

3 flannIndex← flannIndex.build(logo descriptors,

cv::flann::KDTreeIndexParams(), cvflann::FLANN DIST EUCLIDEAN);

4 while not finished do

5 frame← video.getframe();

6 matchImage(frame, logo keypoints, logo descriptors, flannIndex);

7 display(frame);

8 end

Algorithm 2: Matching Algorithm for a video

4.3 Example

For example, we chose a Coca-Cola commercial, where the logo is visible in most

of the frames, to test our matching algorithm. We select one particular frame of this

video containing the logo and the logo itself, see figure 4.1 and then match these

two images using the algorithm that we described in the previous section.

(a) Coca-cola commercial

(b) Coca-cola logo

Figure 4.1: We want to match these two images. The goal is to find the logo in the
commercial image.

26

We extract the keypoints and descriptors for the frame and the logo, as shown in

figure 4.2.

(a) Coca-cola commercial with keypoints de-
tected.

(b) Coca-cola logo with keypoints detected.

Figure 4.2: Red circles around keypoints found in the commercial image and the
logo

Then we find the best matches between the two images, see figure 4.3 and use them

to compute the homography matrix H.

Figure 4.3: Matches between the frame and the logo.

H =


0 0.66 246

−0.58 0 391

0 0 1

 (4.8)

As we can see, the 3rd row in H is
(

0 0 1
)

which shows that we are working in 2D.

27


X

Y

Z

 =


0 0.66 246

−0.58 0 391

0 0 1



x

y

1

 (4.9)

The system that we get from the previous equation is the following:

X = 0× x+ 0.66× y + 246

Y = −0.58× x+ 0× y + 391

Z = 0× x+ 0× y + 1

(4.10)

Using this system we can know which matches are the ones satisfying it and we

denote them as inliers. We draw the matches between the two images as shown in

figure 4.4.

Figure 4.4: Matches (denoted in red) between the keypoints in the frame and he
ones in the logo.

We use the homography matrix and the corners of the logo to find their matches in

the commercial image.

28

Figure 4.5: The logo is found in the commercial image.

Matching the commercial frame to the coca-cola logo took 75 ms to execute using

a computer which integrates Intel Core i5-2410M @ 2.29 GHz (4 cores).

4.4 Conclusion

The main issue is that we need this algorithm to operate in real-time. We know

that a video runs at a rate of 30 frames per second. Every frame is displayed for

33 ms, this is the time available to run the matching algorithm for the following

frame. It is nearly impossible to execute this algorithm in 33 ms. However, every

6 consecutive frames in a video can be considered as similar, so we can execute

the algorithm once every 6 frames. Thus, saving some time. Therefore, we get

6× 33 = 198 ms for every execution.

For this particular case, 75 ms per frame is enough. But, how can we insure that

we do not cross this deadline when running this algorithm?

29

CHAPTER 5

QUALITY CONTROL

5.1 Introduction

The controller is used to control the execution time of our algorithm and to make

sure that the deadline D = 198 ms is not being crossed. It is composed of the quality

manager which is used as a quality measure. This means that it finds the quality

that can be used having a certain amount of time. The main issue in our system is

the uncertainty of our algorithm’s execution time. Therefore, it is judicious to use

QoS, because it makes sure that the deadline is not being crossed.

To do so, we need to understand the notion of quality. We have to find a

parameter that varies the quality of the results and the execution time, in the same

direction. This means that to get a better result this implies that it takes more

time to compute the algorithm. The better the quality is, the more time it needs to

execute, as we can see in figure 5.1. The error function used to measure the quality

of the result is based on the difference between the features of the original logo and

the features of the logo found in the frame.

Good Quality
Execution Time: 115 ms
Error Function: 15%

Bad Quality
Execution Time: 35 ms
Error Function: 20%

Figure 5.1: The better the quality is, the more time it needs to execute.

30

5.2 Quality Selection

How do we select appropriate qualities for our matching algorithm? First, we

need to make sure that our algorithm depends on some parameters that can affect

the quality of the results and the execution time. The matching algorithm execution

time depends on the size of the image, the number of keypoints extracted, the length

of the descriptor vector (64 or 128) and the number of matches.

We decide to decrease the resolution of the image and fix its size. We also adjudi-

cate to set the size of the descriptor vector to be 64. These choices have been made

because they favor a speedup in the execution time without reducing the quality

of the results. This leaves us with two more factors, the number of keypoints and

the number of matches. We cannot control the latter manually, however, it closely

depends on the former. So the only characteristic left that affects the running time

is the number of keypoints extracted. We can control indirectly the number of inter-

est points detected from an image using the opencv datatype cv::FeatureDetector.

We create an object of this type and pass to the constructor a number which repre-

sents the threshold of the determinant of the Hessian. This means that during the

extraction of the keypoints, only the features, with the determinant of the hessian

higher than the threshold, are selected. The higher we set the threshold, the less

keypoints we will have. The quality of the matching algorithm is directly affected

by the number of keypoints extracted. If we have a lot of keypoints the match is

going be finer. However if we filter these keypoints and use only a part of them, we

might miss the logo in the image.

For example, in figure 5.2, we have 2 identical images except for the fact that

in the first one the keypoints are extracted with a threshold of 500, whereas, n the

second one they are extracted with a threshold of 5000. As we can notice, the first

image has more keypoints than the second one. Also, after increasing the threshold

to 5000, the keypoints are still visible on the image but not on the logo itself which

makes it impossible to recognize it.

31

(a) Coca-cola commercial with a threshold of 500(b) Coca-cola commercial with a threshold of 5000

Figure 5.2: Coca-cola commercial with different determinant of hessian threshold.
We notice that when we increase the threshold, we get less keypoints and therefore
we miss the logo in the image.

If we were to summarize what has just been said, the quality that changes the

running time of our algorithm is the threshold of the determinant of the hessian.

We need to run some tests to learn the behavior of the execution time depending on

the quality. And more importantly, we need to set some fixed qualities and know

their average running time as we can see in tables 5.1, 5.2 and 5.3.

32

Table 5.1: Table representing the average execution time (in ms) of the matching
algorithm with different threshold values and decreasing the number of keypoints.

Threshold Div Keypoints Average Execution Time Error(%)

300

1 648 133 15

2 324 102 16

3 216 86 16

500

1 513 116 16

2 256 86 16

3 171 82 16

750

1 415 106 17

2 207 81 16

3 138 74 16

1000

1 338 95 16

2 169 75 16

3 112 70 16

2000

1 194 72 16

2 97 64 16

3 64 61 17

5000

1 89 62 16

2 44 57 20

3 29 not enough matches

33

Table 5.2: Table representing the average execution time (in ms) of the matching
algorithm with different threshold values and decreasing the number of keypoints.

Threshold Div Keypoints Average Execution Time Error(%)

300

1 380 99 12.2

2 190 81 11.9

3 126 70 11.9

1000

1 320 87 12

2 160 68 11.8

3 106 61 11.9

5000

1 210 67 11.8

2 105 56 11.9

3 70 53 11.9

Table 5.3: Table representing the average execution time (in ms) of the matching
algorithm with different threshold values and decreasing the number of keypoints.

Threshold Div Keypoints Average Execution Time Error(%)

300

1 964 138 18

2 482 93 21

3 322 88 24

1000

1 552 111 19

2 276 71 21

3 184 66 23

5000

1 162 55 28

2 81 42 28

3 54 no result

We chose 3 quality levels with their corresponding average time. These qualities are

described in table 5.4.

34

Table 5.4: Table describing the different quality values chosen for our algorithm.

Quality Level Quality Value 1 Quality Value 2 Quality time

q1 300 3 85

q2 1000 2 70

q3 5000 1 55

The table is composed of four entries. The quality level tells us the rank of the

quality that we are using. The quality level ‘1’ stands for the best quality which

implies the slowest running time and ‘3’ is the worst quality, however it speeds up

the program. The quality time is the average running time of the algorithm using a

certain quality. Then, we have two quality values. In fact, our quality depends on

two factors. The first one is the threshold of the determinant of the hessian, that we

previously discussed. The second one, “quality value 2”, also decreases the number

of keypoints used. However, it does so after extracting them. This quality can take

three values {1, 2, 3} which represents the number by which we are going to divide

the number of keypoints previously extracted.

The last entry of the table is the percentage of error produced by this algorithm.

The error function calculates the destination points (in the frame) of every match

using the homography matrix computed. Then, it subtracts the calculated coordi-

nates from the original ones and squares the results. This process is done for every

match and the results are summed. The error returned is the square root of the

result.

5.3 Algorithm

Suppose that we want to match our frame to m logos. This means that we

have to repeat our algorithm m times for the same frame. However our deadline is

fixed regardless of the number of logos that we have. In order to stay within the

35

deadline, knowing that we have to match the image to all the logos, we use the

QoS system which is composed of the controller and the parameterized system. The

controller, composed of the quality manager, is responsible for determining the most

suitable quality for running our algorithm in the following cycle, using the running

time of the previous cycle. The quality chosen should be the best quality such that

we can still run all the remaining cycles with the worst quality without crossing

the deadline. The parameterized system, in our case, is the successive calls of the

matching algorithm of the current frame with the different logos, as we can see in

figure 5.3.

First, we set the deadline D = 198 ms which represents the available time to

execute the matching between a frame and the logos. In the first cycle, the deadline

is still D. The parameterized system sends D to the controller. The quality manager

returns the best quality that can be used if all the following m − 1 cycles can still

be the lowest executed with the lowest quality and not cross the deadline D.

A cycle k, is the kth call of the matching algorithm with logo k. Before executing

cycle k, the parameterized system passes the execution time of the previous cycle

tk−1 to the controller and waits for the quality chosen to be used in cycle k.

Once the controller receives tk−1, it calculates the new deadline dk which repre-

sents the remaining time for executing the m− k cycles left.

dk = dk−1 − tk−1 (5.1)

Then, it calls the quality manager passing the new deadline as argument, see algo-

rithm 11. First, the quality manager calculate the available time ta to execute this

cycle (k), if we decide to run all other cycles (m− k) with the worst quality.

ta = dk − (m− k)× time(q3) (5.2)

Then, it compares the available time generated ta to the time of the best quality

36

Figure 5.3: Controller architecture

time(q1). If ta ≥ time(q1) then this means that there is enough time to run our

algorithm with this quality, so q1 is chosen and passed to the parameterized system.

If ta ≤ time(q1) then we elimination this option and compare the available time to

the following quality. This process is continued until a quality is chosen. If the time

ta is less than the worst quality average time, this means there is not enough time

to run this cycle with any available qualities. However, we choose the worst quality,

because it is important to run our program even if this means that we cross our

deadline.

37

Input : Deadline d and Remaining number of logos m-k

Output: Quality q for cycle k

1 ta ← d− (m− k)× q3.time;

2 if ta ≥ q1.time then

3 q1 is selected;

4 exit;

5 else if ta ≥ q2.time then

6 q2 is selected;

7 exit;

8 else

9 q3 is selected;

10 exit;

11 end

Algorithm 3: Quality Manager
Algorithm 10 first loads the database of logos, extracts their respective keypoints

and descriptors and constructs the flannIndex for every logo. Then, it captures every

six frames of the video and calls algorithm 12 which is responsible for matching a

frame to the set of m logos. For every logo algorithm 12 calls the quality manager

function (algorithm 11) passing the new deadline and the number of remaining

logos as parameters and expects the quality to be used in return. Then, it calls

the matching function to match the frame to a logo with the chosen quality. We

calculate the executing time of this function and we deduct it from the deadline.

This process is done for all the logos.

38

Input : The frame, logos, number of logos m

Output: The frame with the detected logos

1 current deadline← deadline;

2 current numOfLogo← m;

3 while current numOfLogo 6= 0 do

4 q← getQuality(current deadline, current numOfLogo);

5 index← m - current numOfLogo;

6 startTime;

7 matchImage(frame, logo[index], flannIndex[index], q);

8 endTime;

9 time← endTime - startTime;

10 current deadline = current deadline - time;

11 current numOfLogo−−;

12 end

Algorithm 4: Decides which quality to use and call the matching algorithm

with the quality chosen.

39

Input : Video and a logo

Output: The video with the logo detected and found.

1 for i← 0 to m do

2 logo keypoints[i]← extractKeypoints(logo[i]);

3 logo descriptors[i]← extractDescriptors(logo[i]);

4 flannIndex[i]← flannIndex.build(logo descriptors[i],

cv::flann::KDTreeIndexParams(), cvflann::FLANN DIST EUCLIDEAN);

5 end

6 while not finished do

7 frame← video.getframe();

8 matchImageToLogos(frame, logo, m);

9 display(frame);

10 end

Algorithm 5: Matching Algorithm for a video

5.4 Experimental Results

In order to check if the quality manager is selecting different qualities for the

different logos while respecting the deadline, we test our algorithm first, by using a

dataset consisting of 3 logos and second, using a dataset of 6 logos.

Dataset of 3 logos

We match every 6 frames of a video to 3 logos and we count the number of

occurrences of every quality chosen by the quality manager. The results are shown

in figure 5.4. As we can see, the quality manager chose the first quality q1 (best

quality) most of the time.

40

 0

 50

 100

 150

 200

 250

1 2 3

Fr
eq

ue
nc

y

Quality

Figure 5.4: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 3 logos.

The goal is to test the performance of the quality manager. Therefore, we com-

pare the execution times of our program using the quality manager to a program

using a fixed average quality q2. In both cases, the deadline hasn’t been crossed,

however, the program using the quality manager takes more time to execute than the

one using the fixed quality q2. This result was expected since the quality manager

is choosing the best quality most of the time. This clearly shows that the quality

manager is maximizing the quality of the results while respecting the deadline.

Dataset of 6 logos

We match every 6 frames of a video to 6 logos and we count the number of

occurrences of every quality chosen by the quality manager. The results are shown

in figure 5.5. As we can see, the quality manager chose the worst quality q3 most of

the time.

41

Figure 5.5: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 6 logos.

We test our algorithm based on the quality manager by trying to find 6 logos in

the video. We calculate the execution time of matching every frame to the 6 logos,

then we compute their average. This is done for the program using the quality

manager and it is also done for the program using a fixed quality. We choose this

quality to be q2 which represents the average quality.

We want to compare the execution time of both algorithms. In the first case

(program using the quality manager), we didn’t cross the deadline; instead we still

have 11 ms left.

D − ExecutionT ime(qualitymanager) = 11 (5.3)

Whereas, in the second case (program with the fixed quality), we crossed the deadline

by 83 ms.

D − ExecutionT ime(q2) = −83 (5.4)

These results show the importance of the quality manager. In fact, while using

the quality manager, we managed to match every frame to the set of logos without

crossing the deadline. The resulting speedup isn’t at the cost of performance as we

42

can see in figure 5.6 and 5.7. The quality manager chose the worst quality (q3) 98%

of the time.

Figure 5.6: Screenshot of the resulting video using the quality manager

Figure 5.7: Screenshot of the resulting video using the fixed quality q2

Figure 5.6 shows the results using the quality manager while figure 5.7 shows

the results using the fixed average quality. We can clearly see that the results are

similar in both images.

43

CHAPTER 6

PARALLELIZE OUR ALGORITHM USING PTHREADS

6.1 Introduction

The introduction of the notion of quality helped us manage real-time execution.

However, if we are skipping 5 frames, this means that our deadline for the execution

of one frame is D = 198 ms. If we consider that we are matching our frame to every

logo using the worst quality (60 ms), this implies that we can work with at most 3

logos (198/60 = 3.3). We would like to be able to match our frame to more than 3

logos. This can be done if we match every 3 logos in parallel.

Parallelism can be done in two ways: threads and processes. A thread is a set

of instructions that can be run independently from the operating system. Usually a

program being multi-threaded is a program that has several threads that can be run

simultaneously. Different threads that are part of the same process share resources.

This means that if one thread makes changes to this shared data, changes will be

seen by all other threads. It is also known as shared memory parallel programming,

whereas, a process is known as non-shared memory parallel programing. Despite

what we just stated, a process has its own private memory. Since processes don’t

have a shared memory as threads, the only way for them to share information is by

passing messages. It is also called message passing parallel programming.

Creating and destroying processes are more expensive then creating and destroy-

ing threads. They are also found to have a longer life than threads. However, they

are not dynamic unlike threads which can be destroyed and created as needed. Since,

we are going to create n threads for every 5 frames of the video, it is most suitable

to use threads.

44

6.2 Algorithm

Our main goal is to match our frame to more than 3 logos. For this, we create

several threads in parallel, each of which matches our frame to 3 logos. Suppose

that we have n threads and m logos. This means that every thread, will have n
m

logos to match to the main frame.

Input : Video, logos and number of threads n.

Output: The video with the logos detected and found.

1 for i← 0 to m do

2 logo keypoints[i]← extractKeypoints(logo[i]);

3 logo descriptors[i]← extractDescriptors(logo[i]);

4 flannIndex[i]← flannIndex.build(logo descriptors[i],

cv::flann::KDTreeIndexParams(), cvflann::FLANN DIST EUCLIDEAN);

5 end

6 while not finished do

7 frame← video.getframe();

8 for t← 0 to n do

9 thread parameter[t].start← t×m/n;

10 thread parameter[t].img← &frame;

11 pthread create(&tid[t], NULL, FindLogo, &thread parameter[t]);

12 end

13 for t← 0 to n do

14 pthread join(tid[t], NULL);

15 end

16 display(frame);

17 end

Algorithm 6: Matching Algorithm for a video

After loading the frame, we usually used to call the function FindLogo() which

matches the frame to all m logos respecting the deadline D as possible. However,

45

we introduced threads to divide the work to be done by n, in order not to cross the

deadline. In Algorithm 6, we create n threads, as we can see on line 11, by calling

the following function pthread create(). It takes 4 arguments as parameters:

1. The first parameter is a pointer to the thread id. Every thread should have

an id in order to be able to distinguish it from other threads.

2. The second one is the thread’s attributes.

3. The third one is the name of the function that will be executed by the thread.

In our case, it is FindLogo.

4. The forth one is the arguments that the function takes. In this case, instead of

passing all the logos to the function we are only passing the needed logos. We

have n threads and m logos, this means that we have m/n logos per thread.

So, thread 1 will match the frame to the first m/n logos, thread 2 will match

the frame to the following m/n logos, . . . , thread n will match the frame to

the last m/n logos.

We call pthread join() in order to make sure that all the threads are completed

before displaying the resulting image.

46

Input : The frame, logos, number of logos m

Output: The frame with the detected logos

1 current deadline← deadline;

2 current numOfLogo← m/n;

3 while current numOfLogo 6= 0 do

4 q← getQuality(current deadline, current numOfLogo);

5 index← parameter.start + m/n - current numOfLogo;

6 frame← parameter.img;

7 startTime;

8 matchImage(frame, logo[index], flannIndex[index], q);

9 endTime;

10 time← endTime - startTime;

11 current deadline = current deadline - time;

12 current numOfLogo−−;

13 end

Algorithm 7: Decides which quality to use and call the matching algorithm

with the quality chosen (FindLogo).

6.3 Experimental Results

We run our algorithm several times using one to four threads as shown in ta-

ble 6.1. We tested our algorithm first, by using 3 logos and we varied the number

of threads. It took 150 ms on average to match a frame to 3 logos using one thread.

As we described earlier, the quality manager used the best quality most of the time,

see figure 6.1. The results are similar when matching a frame to 3 logos using 2, 3

or 4 threads.

47

Figure 6.1: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 3 logos using one thread.

Table 6.1: Table representing the average execution time of a frame matched with
the specified number of logos using 1, 2, 3 or 4 threads.

Number of Logos 1 Thread 2 Threads 3 Threads 4 Threads

3 150 169 160 160
6 187 165 187 190
9 272 297 194 200
12 362 354 354 236

Second, we tested our algorithm by matching a frame to 6 logos while varying

the number of threads. As we can see in figure 6.2, the quality manager chose the

best quality most of the time while matching a frame to 6 logos with two threads.

48

Figure 6.2: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 6 logos using 2 threads.

It takes 165 ms to execute which is less than the execution time of matching 6

logos with one thread (187 ms). We get this speedup with a gain in quality. In

fact, in figure 6.3 we can see that the quality manager only used the worst quality

to match the 6 logos, whereas using two threads we notice that it is using the best

quality most of the time.

Figure 6.3: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 6 logos using 1 thread.

We get similar results when matching 9 (figure 6.4) and 12 (figure 6.5) logos to

49

(a) 1 Thread (b) 2 Threads

Figure 6.4: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 9 logos.

the video. The results have been made using a computer that integrates Intel Core

i5-2410M @ 2.29 GHz (4 Cores). This computer can run up to 4 threads in parallel,

this means that we can match a video up to 12 logos without exceeding the deadline.

Having more cores would lead us to match a video to a bigger set of logos.

50

(a) 1 Thread (b) 2 Threads

(c) 3 Threads (d) 4 Threads

Figure 6.5: Number of occurrences of every quality chosen by the quality manager
while matching a video to a set of 12 logos.

51

CHAPTER 7

CONCLUSION

The goal of this thesis was to recognize and localize logos in a video in real-time.

However, this task was hard to accomplish since every frame has only 33 ms to

be matched to the set of logos. Because successive frames are mostly similar, we

extended this deadline by six. Thus, we apply the matching algorithm every six

frames. With the use of the controller and the introduction of different qualities, we

managed to control the execution time of the algorithm. The most important part

was to respect the deadline set for the matching process and to maximize the use

of the time budget (i.e. use the best quality possible within the time constraints).

Using the quality manager, we were able to match a video to 3 logos, on average, in

real time. Finally, we parallelized our code in order to be able to match our video

to a larger set of logos.

The tests have been done on a computer which integrates Intel Core i5-2410M @

2.29 GHz (4 cores). This means that it can only run 4 threads in parallel. Therefore,

we can find up to 12 logos in a video in real-time using this computer. With more

powerful machines, we can match our video to a larger set of logos (in real-time),

using more threads.

Future Work

Every brand has a set of nuances of the same logo. Sometimes the colors are

different if the product is “diet”, or the colors are switched depending on the back-

ground color. However, the matching algorithm used does not take these cases into

consideration. Therefore, a logo with these nuances will not be found. As future

work, we could create an index for each logo based on the set of nuances of this logo.

52

So instead of matching our image to one variance of the logo we are matching it to

a set of logos.

In order to enlarge our dataset of logos, we could also create several indices (one

for every logo) and run the FLANN index matcher in parallel on these trees. This

would also require a more powerful machine to extend the number of threads that

can be run in parallel.

We implemented our quality manager using a safe scenario algorithm that favors

the first logos. For future work we could use a function that will distribute the

qualities equitably.

This program can be easily integrated on Android and IOS devices. Moreover,

it can be added as a YouTube plugin for advertisement purposes.

53

REFERENCES

October 2006. URL http://www.opencv.org.

Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust

features. Elsevier, September 2008.

Giorgio C. Buttazzo, Giuseppe Lipari, and Luca Abeni. Elastic task model for

adaptive rate control. RTSS, pages 286–295, 1998.

Jacques Combaz, Jean-Claude Fernandez, Thierry Lepley, and Joseph Sifakis. Qos

control for optimality and safety. Proceedings of the 5th Conference on Embedded

Software, September 2005b.

Jacques Combaz, Jean-Claude Fernandez, Joseph Sifakis, and Loic Strus. Symbolic

quality control for multimedia applications. October 2008.

M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model

fitting with applications to image analysis and automated cartography. Commu-

nications of the ACM, pages 381–395, 1981.

Google. Google glass. URL http://www.google.com/glass/start/.

Martin Herdina, Andy Gstoll, and Martin Lechner. Wikitude. URL

http://www.wikitude.com/.

Gilad Koren and Dennis Shasha. Skip-over: Algorithms and complexity for over-

loaded systems that allow skips. Technical Report, TR1996-715, 1996.

T. Lindeberg. Feature detection with automatic scale selection. IJCV, pages 79–116,

1998.

David G. Lowe. Object recognition from local scale-invariant features. International

Conference on Computer Vision, pages 1150–1157, September 1999.

54

Chenyang Lu, John A. Stankovic, Gang Tao, and Sang H. Son. Feedback control

real-time scheduling: Framework, modeling, and algorithms. Journal of Real-Time

Systems, Special Issue on Control-Theoretical Approaches to Real-Time Comput-

ing, 23:85–88, 2002.

J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from

maximally stable extremal regions. BMVC, pages 384–393, 2002.

K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. ECCV,

pages 128–142, 2002.

K. Mikolajczyk and C. Schmid. Scale and affine invariant interest point detectors.

IJCV, (63-86), 2004.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. PAMI,

pages 1615–1630, 2005.

Marius Muja and David G. Lowe. Fast approximate nearest neighbors with au-

tomatic algorithm configuration. International Conference on Computer Vision

Theory and Application VISSAPP’09), pages 331–340, 2009.

Marius Muja and David G. Lowe. Fast matching of binary features. Computer and

Robot Vision (CRV), pages 404–410, 2012.

Edouard Oyallon and Julien Rabin. An analysis and implementation of the surf

method, and its comparison to sift. Image Processing On Line, February 2013.

P. M. Panchal, S. R. Panchal, and S. K. Shah. A comparison of sift and surf.

International Journal of Innovative Research in Computer and Communication

Engineering, 1(2), April 2013.

Quintin and Maarten. Layar, Summer 2009. URL https://www.layar.com/.

55

Ragunathan Rajkumar, Chen Lee, John Lehoczky, and Dan Siewiorek. A resource

allocation model for qos management. EEE Real-Time Systems Symposium, pages

298–307, December 1997.

R.I.Davis, K.W.Tindell, and A.Burns. Scheduling slack time in fixed priority pre-

emptive systems. Proceeding of the IEEE Real-Time Systems Symposium, pages

222–231, 1993.

S. Se, H.K. Ng, P. Jasiobedzki, and T.J. Moyung. Vision based modeling and local-

ization for planetary exploration rovers. Proceedings of International Astronautical

Congress, 2004.

T. Tuytelaars and L. Van Gool. Wide baseline stereo based on local, affinely invariant

regions. BMVC, pages 412–422, 2000.

Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. CVRP, pages 511–518, 2001.

Y. Wu, M. El Choubassi, and I. Kozintsev. Augmenting 3d urban environment using

mobile devices. IEEE International Symposium on Mixed and Augmented Reality

(ISMAR), October 2011.

Clemens C. Wust, Liesbeth Steffens, Wim F.J. Verhaegh, Reinder J. Bril, and Chris-

tian Hentschel. Qos control strategies for high-quality video processing. Euromicro

Conference on Real-Time Systems, pages 3–12, 2004.

56

