
AMERICAN UNIVERSITY OF BEIRUT

Parallel Time Methods for Computing a

Satellite's Trajectory

by

SAMAH WAHID KARIM

A thesis
submitted in partial ful�llment of the requirements

for the degree of Master of Science in Computational Science
of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
May 2014







Acknowledgements

I would like to express my gratitude to my advisor Professor Nabil Nassif
who has been a mentor to me for many years now. I would like to thank him
for introducing me to Computational Science and encouraging me to pursue
graduate studies in this �eld. Thank you for proposing this problem for my
Master's thesis and for guiding me all along the way.

I also want to express my appreciation to the Committee members Pro-
fessor Khalil Bitar and Professor Leonid Klushin for their useful feedback
and discussions.

I want to thank my �ancé Mohammad Noureddine for being my compan-
ion on this journey. Thank you for being my rock and my anchor. Thank you
for your unconditional love and support. I could not have done this without
you.

I also want to thank my family, my father Wahid, my mother Mariam,
my brothers Mohammad and Ali, for believing in me and encouraging me to
pursue my dreams. A special thank you to Mariam who has always been my
number 1 fan.

Last but not least, I cannot but thank God for absolutely everything.
Thank you for giving me my wonderful �ancé and family. Thank you for
guiding me to �nd a �eld that I am very passionate about: Computational
Science.

v



AN ABSTRACT OF THE THESIS OF

SAMAH WAHID KARIM for Master of Science
Major: Computational Science

Title: Parallel Time Methods for Computing a Satellite's Trajectory

Solving time dependent ordinary di�erential equations in a time-parallel
way was thought to be impossible since time integration is inherently se-
quential. However in recent years, several predictor-corrector schemes have
been proposed in order to solve time dependent di�erential equations. The
most prominent of these algorithms is the well known Parareal algorithm
(Lions et al 2001,Gander et al 2007) and more recently the Adaptive Par-
allel Time Integration algorithm �APTI�(Nassif et al 2005). Such method
has been successfully applied to the problem that models the motion of a
membrane element linked to a spring (Karam, Nassif, Erhel 2013).

In this thesis, we implement APTI in order to calculate the trajectory
of a satellite, governed by a perturbed Keplerian model. We present also a
modi�ed version of the Parareal algorithm that utilizes the convergence of
some slices prior to the global convergence, in order to enhance execution
time. In order to test the e�ciency of APTI, we compare its results with
those obtained by Parareal and Modi�ed Parareal. We show speed-ups as
well as deviation from trajectories computed on the basis of a sequential
algorithm, indicating the e�ciency of the APTI approach for relatively large
periods of time.
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Chapter 1

Introduction

In space missions, one needs to account for the orbit of satellites whether
natural or manmade. Thus one needs to solve a system of second order
di�erential equations for the orbit of the satellite and needs to be updated
about its solution, all along the mission (see [10],[9]). In order to do so, it
is required to perform a mass of expensive computations due to the many
elements that need to be taken into account.

In that context and given the complexities that the mathematical model
may reach, one needs to devise a way through which the time consumption
of the required computations is reduced. Usually, integration of a time-
dependent system of ordinary di�erential equation is by default sequential in
nature. However in recent years due to the development of parallel computer
architectures with thousands of processors, several authors have proposed
parallel schemes to solve a time-dependent di�erential equation. In 1998, S.
Rault proposed a multiple shooting method to solve this sort of equations in
a parallel way [9].

More generally in 2001, Lions, Maday and Turinici proposed a new ap-
proach to solve in parallel time-dependent problems in [23]. Their �parareal
algorithm� received great attention and has been subject to many implemen-
tations and developments, as in [4],[11],[25],[24],[30]. Other contributions to
this algorithm can also be found in [32], [3], [13], [17], [31], [32].

As the parareal algorithm uses a restrictive regular coarse grid, another
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parallel approach to solve time-dependent problems has been also devised in
[27] and [22]. It is based on a sliced-time approach found in [26] and was suc-
cessfully implemented to unbounded solutions appearing in reaction di�usion
problems and oscillating membranes. One of the main features of the method
is its �adaptive� character. Speci�cally, by allowing for automatic generation
of non-uniform coarse grids, it reduces the time of executing sequential pro-
cesses necessary to predict solution values on future periods of times. Such
method has been referred to as �Adaptive Parallel Time Integration (APTI)�.

In this thesis, we propose to apply APTI to a simpli�ed model of the
satellite problem. We also implement the Parareal algorithm to the problem
and compare the results given by the above procedures.

This thesis is organised as follows. In chapter 2, we describe the satellite
trajectory problem and derive the key equations that need to be solved for
the simpli�ed J2-model. In chapter 3, we describe the APTI algorithm and
the main steps involved in it. In chapter 4, we discuss the Parareal algorithm
and compare it with the APTI algorithm. In chapter 5 we present the re-
sults of applying both algorithms to the satellite problem, for di�erent initial
conditions and integration periods. In chapter 6, we conclude and suggest
future work.
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Chapter 2

Satellite Trajectory

2.1 Derivation of a Simpli�ed Satellite Model

Our main reference for the analysis of the satellite trajectory problem is that
of O.Zarrouati [34].
General Equation of a Satellite's Trajectory:
Newton's laws govern the motion of the satellites in space. In fact New-
ton's second law is the starting classical mechanical law used to obtain a
mathematical model for the satellite's orbit:

~F = m~̈r (2.1)

where:
m is the mass of the satellite,
~r is the position-vector of the satellite with respect to the center of the

earth
~̈r is the acceleration vector of the satellite, and
~F is the force vector applied on the satellite.

Keplerian Motion:
The central gravitational attraction is considered the only force that is ap-
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plied to the satellite in the proximity of the earth:

~F = −GM m

‖~r‖3
~r = −µ m

‖~r‖3
~r (2.2)

where G is the universal gravitational constant, M the earth's mass and

µ = GM = 3986005× 108m3/s2. (2.3)

Then, equation (2.1) reduces to the following system of di�erential equations:

~̈r = − µ

‖~r‖3
~r. (2.4)

• Kepler's �rst law states that the satellite moves in a �xed plane along
an ellipse having the center of the earth as one focus. One can de�ne
this �Keplerian plane� using the initial position and velocity vectors of
the satellite solely.
If a and b denote the semi-major and semi-minor axes respectively, then
the eccentricity of the elliptical orbit is e =

√
a2−b2
a

, and its semi-latus
rectum is p = b2

a
= a(1− e2). The polar equation of the ellipse is given

by:
r =

p

1 + e cos θ
,

where r and θ are the polar coordinates from the center of the earth
to the satellite and θ = 0 along the major axis directed toward the
perigee,

• Kepler's second law states that the satellite revolves so that the line
joining it to the center of the earth sweeps out equal areas in equal
time intervals. It implies: r2θ̇ =

√
µa(1− e2),

• Kepler's third law states that the motion of the satellite is periodic of
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period:

P = 2π

√
a3

µ
. (2.5)

It gives: n2a3 = µ, where n = 2π
P

is the mean motion of the satellite
(i.e. mean angular velocity) and P is the period of the the satellite.

Perturbing Forces:
But in actuality, the orbit of the satellite is not Keplerian as many other
forces perturb the central gravitational attraction.
Some of these perturbations are surface forces for instance solar pressure,
friction force, while others result from gravitational potentials of other plan-
ets, of the earth itself, of other satellites.
Rault detailed these forces in [9] and compared their order of magnitude to
that of the central attraction of the earth as follows:

Solar pressure : 10−9

The sun's gravitational attraction : 10−8

The moon's gravitational attraction : 10−7

Atmospheric friction : 10−9 to 10−5

Force due to the �attening of the earth : 10−3

Central gravitational attraction of the earth : 1

In this thesis, we will only consider the perturbative force caused by the
�attening of the earth since it is by far the most signi�cant perturbation to
the motion of the satellite.

However, the algorithms we will be using to solve this problem, can ac-
count for other perturbing forces.

General Gravitational Potential of The Earth:
The gravitational potential of the earth can be expanded into a series of
spherical harmonics:

U = −µ
r

{
1 +

∑∞
n=1

( req
r

)n
JnPn(sinϕ)+∑∞

n=1

∑n
m=1

( req
r

)n
[Cnm cos(mλ) + Snm sin(mλ)]Pnm(sinϕ)

}
(2.6)

where r is the magnitude of the position vector ~r, req the equatorial radius,
ϕ the geocentric latitude, λ the longitude,
Pk the Legendre polynomials of degree k,
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Pn,m the Legendre functions of degree n and order m,
Jn the zonal harmonics of order n (with J1 = 0),
Snm and Cnm the tesseral harmonics of degree n and order m.

The earth's �attening expresses itself in the zonal harmonic J2 which
makes the earth shaped like an ellipsoid rather than a sphere.

But in fact the earth is shaped like a pear rather than a perfect ellipsoid.
This pear shape is due to the spherical harmonic J3.

One notes that only zonal harmonics such as J2, J3, J4,... will cause
signi�cant changes to the orbit of the satellite.

And amongst the above mentioned, the zonal harmonic J2 has the the
biggest contribution to the deviation of the earth's force �eld from that of a
sphere.

The J2-Perturbed Gravitational Potential of The Earth:
Therefore, the J2-model for the satellite trajectory takes into consideration
the central gravitational attraction of the earth along with the most dominant
perturbation, which is due to the �attening of the earth, while neglecting all
other perturbations forces.
According to this model, the gravitational potential of the earth is expressed
as:

u(J2) = −µ
r

{
1 +

(req
r

)2
J2P2(sinϕ)

}
, (2.7)

where:
µ = 3986005× 108m3/s2, as given in (2.3),
the equatorial radius req is equal to:

req = 6378.137km, (2.8)

the zonal harmonic J2 is:
J2 = −11.10−4, (2.9)

r = ‖~r‖2 is the norm of the position vector ~r,
P2(sinϕ) is the Legendre polynomial of degree 2, in the variable sinϕ , where
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ϕ is the latitude:

P2(sinϕ) =
3

2
sin2 ϕ− 1

2
, (2.10)

Principal Di�erential Equation for the J2-model:
The force per unit mass deriving from the potential u(J2) (2.7) is equal
to −~∇u(J2). Therefore the force applied to the satellite is expressed as:
~F = −m~∇u(J2), and the general equation of motion (2.1) reduces to a
second-order di�erential equation:

~̈r = −~∇u(J2) (2.11)

In order to fully determine the trajectory of the satellite, one needs to specify
a set of initial conditions.

2.2 Reference Coordinate Systems

2.2.1 Classical Coordinate Systems

Two classical coordinate systems that are usually used for this problem are
presented below.

• Earth Centered Inertial Coordinate Frame (ECI):

This frame is a cartesian coordinate system
(
O,~i,~j,~k

)
, which is cen-

tered on the earth and where:

� The X-axis goes from the center of the Earth through the earth's
equator at the �the vernal equinox�, also called �the �rst point in
Aries�. This point is where the sun crosses the equator of the great
celestial sphere, going north. We can also de�ne this axis to be the
intersection between the Earth's equatorial plane and the ecliptic
plane(the plane orthogonal to the Earth's axis of rotation),

� The Z-axis is parallel to the Earth's axis of rotation, and
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� The Y-axis is obtained by applying the right-hand rule, i.e. ~j =
~k ×~i.

These axes are �xed in space, therefore all the points on Earth, except
for the poles, rotate 360◦ around the z-axis of the ECI frame every 24
hours. Moreover, the origin of this coordinate frame which is the center
of the Earth, is not actually �xed in space, since the Earth is moving
around the Sun. Therefore, the ECI frame is a moving coordinate sys-
tem and thus is not inertial (��xed�). That is why it is called an Earth
Centered Inertial coordinate system. Note that it can be considered
truly inertial in the proximity of the Earth. For the purpose of the
problem we are dealing with, and since satellites that orbit the Earth
are always near the Earth, we can treat this coordinate frame as truly
�xed in space without loss of accuracy.

Figure 2.1: Earth Centered Inertial Coordinate Frame (ECI)

• Perifocal Coordinate Frame (PQW):

8



This is a cartesian coordinate system
(
O, ~P , ~Q, ~W

)
that is based on

both the Earth and the satellite, where:

� the X-axis (O, ~P ) points from the center of the Earth toward the
location of the perigee, which is the closest point on the elliptical
orbit to the center of the Earth,

� the Y-axis (O, ~Q) points from the center of the Earth in a direction
that is orthogonal to the X-axis in the Keplerian elliptical place,

� the Z-axis (O, ~W ) points from the center of the earth in a direction
that is orthogonal to the elliptical orbital plane, following the right
hand rule for the triad ~P , ~Q, ~W , i.e. ~W = ~P × ~Q.

One ought to note that in a Keplerian motion, the PQW-frame is an
inertial reference frame since the elliptical orbit is �xed in space. But
when the motion is perturbed, the orbital plane will be moving. The
PQW-frame is then de�ned instantaneously by

(
~r(t), ~̇r(t)

)
, so that ~P

and ~Q lie in the instantaneous elliptical plane, i.e. the resultant ellipse
if all perturbations would cease at that instant, while ~W is normal to
it.

Figure 2.2: Perifocal Coordinate Frame (PQW)
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2.2.2 Our Coordinate System: Initially Perifocal Coor-

dinate Frame (IPQW-Frame)

If the gravitational attraction of the earth was centered, then the gravita-
tional potential would have been reduced to its �rst term µ/r and the satellite
would have moved, in a Keplerian motion, in a �xed plane called the Keple-
rian plane, which is completely de�ned by ~r0 and ~V0.
However when a perturbation is added, the satellite will not follow a closed
elliptic path anymore. Instead it will follow a trajectory that is always tan-
gential to an instantaneous ellipse, which is non other than the osculating
ellipse. This ellipse is de�ned by the instantaneous values of the orbital ele-
ments.This means that the perturbed physical trajectory would coincide with
the Keplerian orbit that the satellite would follow if the perturbing force was
to cease instantaneously.
Since the osculating ellipse does not remain constant, it is convenient to use
a �xed reference orbit - for instance, the osculating ellipse at the initial time
t0.
Thus we introduce a new coordinate frame, the IPQW-frame, which is the
PQW-frame corresponding to the initial conditions and keep it �xed
with respect to time.

2.3 Variables of the Motion

To fully describe the trajectory of the satellite, 6 independent variables are
needed. There are 2 choices for these variables: either the classical Cartesian
coordinates or the Keplerian orbital elements [19]. Normally, analytic anal-
ysis of this problem tend to always use the Keplerian orbital elemets, while
numerical analysis tend to use Cartesian variables.
Note that in our computations, we will use the orbital elements for the sole
purpose of de�ning the initial conditions.

• Cartesian variables:

The set of Cartesian parameters (x, y, z, ẋ, ẏ, ż), made of the compo-
nents (x, y, z) of the position vector ~r and the components (ẋ, ẏ, ż) of
the velocity vector ~̇r.
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• Orbital Elements: The set of Keplerian orbital elements (a, e, i, ω,Ω,M),
where:

� a: semi-major axis of the elliptical orbit,

� e: eccentricity of the elliptical orbit,

� i: inclination of the orbit, i.e. the angle between the orbital plane
and the earth's equatorial plane,

� Ω: longitude of the ascending node, i.e. the angle measured in
the equatorial plane between the ascending node of the orbit and
the x-axis. The ascending node is de�ned to be the intersection
between the Earth's equatorial plane and the satellite's orbit as it
goes from the southern hemisphere to the northern one,

� ω: argument of perigee, i.e. the angle between the perigee and
the ascending node, measured in the orbital plane, and

� M: the mean anomaly, i.e. the time that has passed since the
last passage at perigee, as a function of the orbital period, and
expressed as an angle. It is one of the three anomalies including
the eccentric anomaly E and the true anomaly θ which can be used
instead. They are related by Kepler's equation M = E − e. sinE
and by the relation cos θ = cosE−e

1−e. cosE .

In a Keplerian motion with no perturbation, the mean anomaly is the
only orbital elements that varies with respect to time:

M = M0 + n(t− T0).

2.4 Coordinate Transformations

Orbital Elements −→ PQW-coordinates:
Initial conditions given in the form of orbital elements (a, e, i,Ω, ω,M) can be
converted to Cartesian variables in the PQW-frame using a simple coordinate
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Figure 2.3: Satellite Orbital Elements (a, e, E, θ)

Figure 2.4: Satellite Orbital Elements (i, ω, Ω)
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transformation given in [34]. The position and velocity vectors are thus:

~rPQW =

 a(cosE − e)
a
√

1− e2 sinE
0

 and ~̇rPQW =

 − na sinE
1−e cosE

na
√
1−e2 cosE

1−e cosE
0

 (2.12)

PQW-coordinates ←→ ECI-coordinates:
The following three rotations are needed to go from the ECI-frame to the
PQW-frame:

• rZ(Ω): rotate by Ω about the Z-axis,

• rX(i): rotate by i about the new X-axis,

• rZ(ω): rotate by ω about the new Z-axis.

These rotations are characterized by three rotation matrices, namely, RZ(Ω),
RX(i) and RZ(ω), respectively.

The base vectors of the PQW-frame
(
~P , ~Q, ~W

)
are given in terms of the

base vectore of the ECI-frame
(
~i,~j,~k

)
:

 ~P
~Q
~W

 = A

 ~i
~j
~k

 (2.13)

where A is the transformation matrix, whose entries are given in terms of
the orbital elements:

A =

 cosω. cos Ω− sinω. cos i. sin Ω cosω. sin Ω + sinω. cos i. cos Ω sinω. sin i
− sinω. cos Ω− cosω. cos i. sin Ω − sinω. sin Ω + cosω. cos i. cos Ω sin i. cosω

sin i. sin Ω − sin i. cos Ω cos i

 .

(2.14)
Note that the transformation matrix A is orthogonal (A−1 = AT ).
Therefore one can go from the cartesian coordinates (x1, y1, z1) in the ECI-
frame to the cartesian coordinates (x2, y2, z2) in the PQW-frame by using
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the following relation:

 x2
y2
z2


PQW

= A

 x1
y1
z1


ECI

(2.15)

Alternatively, one can go from the cartesian coordinates (x2, y2, z2) in the
PQW-frame to the cartesian coordinates (x1, y1, z1) in the ECI-frame using:

 x1
y1
z1


ECI

= AT

 x2
y2
z2


PQW

(2.16)

Orbital Elements −→ ECI-coordinates:
Using (2.12) and (2.13), one gets the expressions of the position and velocity
vectors in the ECI-frame given the orbital elements:

{
~rECI = a(cosE − e) ~PECI + a

√
1− e2 sinE ~QECI

~̇rECI = − na sinE
1−e cosE

~PECI + na
√
1−e2 cosE

1−e cosE
~QECI

(2.17)

where ~PECI , ~QECI and ~WECI are found using (2.13).
ECI-coordinates −→ Orbital Elements

Given the position and velocity vectors: ~rECI =

 x
y
z

 =

 r1
r2
r3

 and

~̇rECI =

 ẋ
ẏ
ż

 =

 ṙ1
ṙ2
ṙ3


The semi-major axis a is computed using:

1

a
=

2

r
− v2

µ
(2.18)
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Where: r2 = x2 + y2 + z2 and v2 = ẋ2 + ẏ2 + ż2

The eccentricity e and the eccentric anomaly E are computed using the fol-
lowing system of equations:

{
e cosE = t1 = rv2

µ
− 1

e sinE = t2 =
‖~r‖‖~̇r‖
√
µa

(2.19)

Therefore: {
e =

√
t21 + t22

E = tan−1 t2
t1

(2.20)

The mean anomaly M can also be computed: M = E − e sinE = E − t2.
Consequently, the above calculated orbital elements are used in order to �nd
for i = 1,2,3: Pi = ri

r
cosE − ṙi

√
a
µ

sinE

Qi =
ri
r
sinE+ṙi

√
a
µ
(cosE−e)

√
1−e2

At this stage, the inclination i, the argument of the perigee ω and the longi-
tude of the ascending node Ω are calculated:


i = tan−1

√
P 2
3+Q

2
3

P1Q2−P2Q1

ω = tan−1 P3

Q3

Ω = tan−1 P2Q3−P3Q2

P1Q3−P3Q1

(2.21)
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2.5 J2-perturbed Motion as a System of ODE's

2.5.1 Expression of ~∇U in the ECI-frame

Explicit Expression of U :

Let ~r =

 x
y
z

, ~̇r =

 ẋ
ẏ
ż

 and ~̈r =

 ẍ
ÿ
z̈

.

The gravitational potential is given by (2.7):

U = u(J2) = −µ
r

{
1 +

(req
r

)2
J2P2(sinϕ)

}
.

where: r =
√
x2 + y2 + z2.

First of all, we note that this potential U = u(J2) is the sum of a �Kep-
lerian term�, which is the term corresponding to centeral component of the
Earth's gravitational force �eld, and a second term which is due to the J2-
perturbation:

U = UK + UP , (2.22)

where:
UK = −µ

r
, (2.23)

and:
UP = −µ

r

(req
r

)2
J2P2(sinϕ). (2.24)

Recall that µ, req and J2 are constants given by (2.3), (2.8) and (2.9) respec-
tively.

In order to get an expression of UP in terms of (x, y, z), it is necessary to
express the geocentric latitude ϕ in terms of these coordinates. ϕ is the angle
that the line connecting the center of the Earth and the satellite, makes with
the Earth's equatorial plane. Note that the north latitude is positive, while
the south latitude is negative.
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And since the xy-plane of the ECI frame is in fact the equatorial plane, it
follows that sinϕ is expressed in the ECI-frame as follows:

sinϕ =
[z
r

]
ECI

,

and thus:

P2(sinϕ) =
3

2
sin2 ϕ− 1

2
=

[
3

2

z2

r2
− 1

2

]
ECI

.

Therefore:

UP = −
[

3µJ2r
2
eq

2

z2

r5
−
µJ2r

2
eq

2

1

r3

]
ECI

. (2.25)

Expression of ~∇U :
Note that:

~∇U = ~∇UK + ~∇UP ,

and let:
~fK (~r) = −~∇UK

and:
~fP (~r) = −~∇UP ,

therefore:
− ~∇U = ~fK(~r) + ~fP (~r), (2.26)

In a coordinate system where ~r =

 x
y
z

 and r =
√
x2 + y2 + z2, one can

express −~∇UK as:

~fK (~r) = ~fK

 x
y
z

 =

 ∂UK
∂x
∂UK
∂y
∂UK
∂z

 =

 −µ x
r3

−µ y
r3

−µ z
r3

 . (2.27)

17



And one can obtain -~∇UP in the ECI-frame, where the explicit expression
for UP is given by (2.25):

 ~fP
 x

y
z


ECI


ECI

=

 ∂UP
∂x
∂UP
∂y
∂UP
∂z


ECI

=


3µJ2r2eq

2

(
1− 5 z

2

r2

)
x
r5

3µJ2r2eq
2

(
1− 5 z

2

r2

)
y
r5

3µJ2r2eq
2

(
3− 5 z

2

r2

)
z
r5


ECI
(2.28)

2.5.2 Equivalent System of First Order ODE's

The di�erential equation (2.11) modelizing the J2 problem along with a set
of initial conditions, yields a second-order initial value problem, in which one
seeks ~r where:


~̈r(t) = ~f (~r) , t > 0, (2.29.1)
~r(0) = ~r0, (2.29.2)
~̇r(0) = ~̇r0, (2.29.3)

(2.29)

with:
~f (~r) = −~∇U. (2.30)

Lowering the Order of the Di�erential Equation:
De�ne:

~r1(t) = ~r(t) and ~r2(t) = ~̇r(t).

Thus solving the second order problem (2.29) would be equivalent to solving
the following �rst order problem for ~r1, ~r2:


d~r1
dt

= ~r2, t > 0, (2.31.1)
d~r2
dt

= ~f (~r1) , t > 0, (2.31.2)
~r1(0) = ~r0, (2.31.3)
~r2(0) = ~̇r0. (2.31.4)

(2.31)
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Let:

Y =

(
~r1
~r2

)
∈ R6, Y0 =

(
~r1(0)
~r2(0)

)
=

(
~r0
~̇r0

)
∈ R6.

Thus one can rewrite problem (2.31) as a �rst-order initial value problem
of dimension 6, of the general form (S), in which one seeks Y : [0,∞)→ R6

which satis�es: {
dY
dt

= F (Y ) , t > 0,
Y (0) = Y0

(2.32)

where:

F (Y ) =

(
~r2

~f (~r1)

)
∈ R6.

Since U = UK +UP (2.22), it implies that one can also split F (Y ) into a sum
of two terms, a Keplerian term and a perturbing term:

F (Y ) = FK(Y ) + FP (Y ), (2.33)

with:

FK(Y ) =

(
~r2

~fK (~r1)

)
, (2.34)

FP (Y ) =

(
~0

~fP (~r1)

)
. (2.35)

Explicit Expression of F (Y ), in the ECI-frame:

[~r]ECI =

 x
y
z

 and
[
~̇r
]
ECI

=

 ẋ
ẏ
ż

 yield: [Y ]ECI =


Y1
Y2
Y3
Y4
Y5
Y6

 =


x
y
z
ẋ
ẏ
ż

.

One deduces then, using (2.27) and (2.28) that:

[F (Y )]ECI = [FK(Y )]ECI + [FP (Y )]ECI ,
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where:

[FK(Y )]ECI =


Y4
Y5
Y6

−µ 1
R3

 Y1
Y2
Y3



 (2.36)

and:

[FP (Y )]ECI =
3µJ2r

2
eq

2



0
0
0

3µJ2r2eq
2

(
1− 5

Y 2
3

R2

)
Y1
R5

3µJ2r2eq
2

(
1− 5

Y 2
3

R2

)
Y2
R5

3µJ2r2eq
2

(
3− 5

Y 2
3

R2

)
Y3
R5


(2.37)

with R = r =
√
Y 2
1 + Y 2

2 + Y 2
3 .

Note that R = ‖~r‖2 is the distance between the position of the satellite and
the earth's center and therefore, R is independent of the coordinates system
in which is expressed ~r = (Y1, Y2, Y3).
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Chapter 3

Adaptive Parallel Time

Integration

3.1 Sequential Solvers

If we consider the �rst order initial value problem:

(S)

{
dY
dt

= F (Y ), 0 < T0 < t ≤ T,
Y (T0) = Y0,

(3.1)

where one seeks to �nd the solution Y : [T0, T ] → Rk. Assuming that
the existence and uniqueness of the solution is established on [0,∞], we
aim in this thesis to solve Eq. 3.1 using parallel time methods. We start
�rst by examining the traditional approaches to solve such IVPs. Numerical
algorithms for IVPs discretize the time interval [T0, T ] by time steps of τ ,
then proceed by one-step or multi-step discretization which lead to a discrete
set of points {Yi|i = 0...n} at time {Ti = T0 + iτ |i = 0...n} with Tn = T . For
instance, the Euler explicit algorithm proceeds as shown in Algorithm 1.
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Algorithm 1 Euler Explicit
Input: Y0, T0, Tmax, F
counter = 1;
Y (counter) = Y0;
t(counter) = T0;
while t(counter) < Tmax do

K1 = Taux× F (Y (counter));
counter = counter + 1;
Y (counter) = Y (counter − 1) +K1;
t(counter) = t(counter − 1) + Taux;

end while

Note that this method has �rst order convergence where:

max
1≤i≤n

|Y (Ti)− Yi| = O(τ)

On the other hand, the most popular method used to solve Eq. 3.1 is the
fourth order Runge-Kutta which follows the procedure shown in Algorithm 2.

Algorithm 2 Runge-Kutta of order 4
Input: Y0, T0, Tmax, F
counter = 1;
Y (counter) = Y0;
t(counter) = T0;
while t(counter) < Tmax do

temp = Y (counter);
K1 = Taux× F (temp);
K2 = Taux× F (temp+ 1

2
K1);

K3 = Taux× F (temp+ 1
2
K2);

K4 = Taux× F (temp+K3);
temp = temp+ 1

6
× (K1 + 2×K2 + 2×K3 +K4);

counter = counter + 1;
Y (counter) = temp;
t(counter) = t(counter − 1) + Taux;

end while
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This Runge-Kutta method has fourth order convergence rate, where:

max
1≤i≤n

|Y (Ti)− Yi| = O(τ 4)

There are also implicit schemes such as the Euler-implicit scheme which
solves a non-linear system at every time step, namely

{
Yi+1 − τF (Yi+1) = Yi
Y (0) = Y0

(3.2)

3.2 Parallel Solvers

In the context of integrating an ordinary di�erential equation, there is no
natural parallelism one can use. However in recent years, many attempts
have been made to try and take advantage of parallel computer architectures
in order to speed up the computations required in such a problem. Even
though the di�erent methods di�er substantially but they can be organized
in three categories as shown in [6], [18] and [1]:

• Parallelism across the method:

These methods attempt to split the computations to be performed in
one integration step, among many parallel computing units. This ap-
proach requires the redesign of the original sequential code in order to
be more suiting to the parallel architecture used. At the basic level,
these methods can make use of concurrent function evaluations within
a single integration step, for example in the case of Runge-Kutta meth-
ods. This route may prove itself useful when the function evaluations
are costly. These methods may on the other hand employ computing
blocks of values simultaneously which can be done for instance by block
predictor-corrector methods. But this route is more e�cient when us-
ing a few powerful processors because of communication constraints.

• Parallelism across the system: These methods rely on the decom-
position of the problem, to be solved, into smaller sub-problems which
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can be solved in parallel at that stage. One of the simplest temporal
iterative approaches is the Picard method according to [5]. Consider
a problem of size k, this method generates a sequence of iterative so-
lutions in the region of integration which allows for a very natural
parallelism by decoupling the problem into k independent problems.

• Parallelism across time(across the steps): These methods at-
tempt to perform many integration steps simultaneously. This ap-
proach requires the redesign of the original sequential code in order
to be more suiting to the parallel architecture used. In fact, time par-
allelism has not received much attention in the literature because of
the inherent sequential nature of the time integration process. Hence
space parallelism has always been more popular than time parallelism
according to [12]. But when space parallelism is not possible, time
parallelism becomes of great importance especially when:

� The number of spatial degrees of freedom in the problem is small.

� The solution's time advancing needs to be in real time.

� The problem cannot take advantage of all the available processors.

In this thesis, we are concerned with parallelism across time.

3.2.1 Time Parallelism

Time parallelism is somewhat counter-intuitive since traditional sequential
solvers start from the initial value Y0 at time T0 and use it in order to advance
to another value Y1 at time T1 = T0+τ using a certain procedure. Afterwards
the resulting value Y1 at time T1 is used in order to get to value Y2 at time
T2 = T1+τ . And this procedure continues until the �nal time in the interval T
is reached. Hence, computations cannot be carried out in the third time slice
for instance unless the results for the �rst and second slices are calculated.

The novelty here is to employ multiple shooting approaches for the pur-
pose of time parallelism. These approaches are based on the concept of time
domain decomposition and have been investigated thoroughly in [29], [7],
[23],[9] and [12]. As a �rst step the time interval [T0, T ] is discretized into N
time slices, which constitutes a coarse grid. Then the solution is predicted at
these coarse grid points, and these predictions are used as initial conditions

24



Figure 3.1: Multiple shooting method

for each independent slice hence turning the original problem into N inde-
pendent problems. Subsequently, these N problems can be solved in parallel
starting at the initial value at each time slice in order to get to a �nal value at
the end of this time slice. This brings about discrepancies or "gaps" between
the predicted values and the computed values at the coarse grid points as
shown in Fig. 3.1. At that stage, a corrective step is carried through to im-
prove the prediction seeds and minimize the gaps until continuity is achieved.
At that point global convergence of the algorithm is attained.

General Steps of Multiple-Shooting Methods

1. Coarse grid discretization: The interval of integration [T0, T ] is de-
composed into N time slices, resulting into a set of time values
[T0...TN ] which constitutes the coarse time grid.

2. Initial Prediction: Initial prediction of the values of the solution
{Y p

n } at every time grid point.
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3. Iterative process: Do until convergence of all slices:

• Parallel integration: on each of the time slices [Tn−1, Tn], using
a �ne grid to solve the independent initial value sub-problems:

{
dY
dt

= F (Y ), Tn−1 < t ≤ Tn,
Y (Tn−1) = Y p

n−1.

This process leads to a computed value of the solution Y c
n at

the end of each time slice [Tn−1, Tn].

• Check for convergence: on every time slice by evaluating the
"gaps" between the predicted values {Y p

n } and the computed
values {Y c

n} at every coarse time grid point.
If the gaps are acceptable within a certain tolerance, then the
iterative process stops and convergence is achieved.
Else the iterations continue.

• Corrective process: executed in order to update the predicted
values at the onset of each time slice.

One of these time-parallel approaches used to solve time-dependent prob-
lems is the �Adaptive Parallel Time Integration" (APTI) that was devised
in [27] and [22].

3.3 Adaptive Parallel Time Integration

APTI is a predictor-corrector scheme that has been devised in [27] and [21].
It is based on a sliced-time approach found in [26] and was successfully im-
plemented to unbounded solutions appearing in reaction di�usion problems
and oscillating membranes in [33], [20] and [28].

The novelty in this approach is brought about by:

• The automatic generation of time-slices by using an EndOf Slice(EOS)
condition to terminate the time slice.
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• Detecting a ratio property.

• Rescaling the problem.

• Making ratio-based predictions and corrections.

3.3.1 Automatic Generation of Time-Slices: End Of Slice

(EOS) Condition

As in all previous time parallel approaches, the APTI procedure divides the
time interval [T0, T ] into sub-intervals or time slices [Ti−1, Ti] such that:

⋃
i=1...N

[Ti−1, Ti] = [T0, T ] (3.3)

But these time slices are not uniform but are rather generated automatically
by the APTI algorithm. It does so by using a stopping criterion in order to
produce the coarse grid, made up of slices which satisfy 3.3. We shall call
this criterion the EOS condition, which is of the form:

E(Y (t)) = 0 (3.4)

Therefore, the coarse grid is generated such that the end of slice values
{Yi|i = 1, ..., N} satisfy Equation 3.4. The coarse grid starts o� by containing
only {T0} and then it is built incrementally from that point on. As a �rst
step, that is on the 1st slice starting from the initial value of Y0 at time T0,
we seek {Y1, T1} using the following procedure:

• Start solving the system:

{
dY
dt

= F (Y ), T0 < t ≤ T1,
Y (T0) = Y0,

(3.5)
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• Keep stepping forward in time until a value of Y(t) is reached such that
the EOS condition E(Y (t)) = 0 is reached for the �rst time.

At that point we record that time value T1 as a coarse time grid value. Thus
the coarse grid comprises now of {T0, T1}.
In general, on the ith slice starting from the initial value of Yi−1 at time Ti−1,
we seek {Yi, Ti} using the following procedure:

• Start solving the system:

{
dY
dt

= F (Y ), Ti−1 < t,
Y (Ti−1) = Yi−1,

(3.6)

• Keep stepping forward in time until a value of Y(t) is reached such that
the EOS condition is reached for the �rst time since being satis�ed at
Ti−1.

At that point we record that time value Ti as a coarse time grid value and
update the coarse grid to {T0, T1, ..., Ti}. And so on for the rest of the slices
until we reach TN .

Therefore we get end of slice values (Ti, Yi = Y (Ti)) such that for all
0 < i ≤ N : {

At t = Ti, E(Y (Ti)) = 0,
∀t ∈]Ti−1, Ti[, E(Y (t)) 6= 0.

(3.7)

3.3.2 Selection of an EOS condition

The selection of the function {E} should be made such that the End of Slice
condition 3.4 is satis�ed in�nitely many times, hence yielding a unique coarse
grid. Therefore, this selection is in fact problem-dependant and takes into
consideration the global behaviour of the solution.

Thus far two cases of existence of a function {E} have been established
according to [22]:

• Oscillating Solutions
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This case is applicable when the general behaviour of the solution {Y }
is oscillatory, over a long period of time. That is when there exists a
two-dimensional plane P in Rk on which the projection of {Y } rotates
about a �xed center q. Therefore the EOS condition is chosen to be at
the instance when the solution {Y } executes a full rotation about q in
the plane P.

For instance, let Y = [xy]t. Consider the trivial periodic problem:

{
dY
dt

= Y p

Y (T0) = Y0
(3.8)

where Y > 0 and p ∈ R.
Here the solution {Y } is periodic in the phase plane. Hence a good
choice would be to end each of the slices when the polar angle θ returns
to its initial value θ0 modulo 2π. Thus the EOS condition would be:

atan2(yi, xi)− atan2(y0, x0) = 0 (3.9)

That produces a coarse grid of equal time slices with size δT equal to
the period of the solution {Y }, and equal EOS values of Y: Yi

Yi−1
= 1.

• Explosive Solutions
This case applies to problems when lim

t→∞
||Y ||∞ = 0. Here we need to

choose the stopping condition in a way to prevent the relative growth
of Yi with respect to Yi−1 from surpassing a certain threshold S. Hence,
we choose to end each slice at time Ti such that:

||Yi./Yi−1||∞ = 1 + S (3.10)

Note that the operator �./" denotes the component-wise division.
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In the case where Y is a scalar, the EOS condition is formulated as:

Yi
Yi−1

− (1 + S) = 0 (3.11)

Equivalent Initial Value Shooting Problems
The enforcement of a coarse grid on the time interval transforms the Ini-

tial Value Problem 3.1 into an equivalent sequence of Initial Value Shooting
Problems where one seeks on the ith slice [Ti−1, Ti] the EOS solution value Yi
and the EOS time Ti such that:

(Si)


dY
dt

= F (Y ), Ti−1 < t ≤ Ti
Y (Ti−1) = Yi−1,
E(Y (Ti)) = 0, and ∀t ∈]Ti−1, Ti[, E(Y (t)) 6= 0

(3.12)

3.3.3 Ratio vectors and Ratio property

On the ith slice [Ti−1, Ti], we de�ne the ratio vector Ri to be the ratio of the
end of slice value of the solution to the starting value at the beginning of this
slice, namely:

Ri =


Ri,1
...

Ri,j
...

Ri,k

 (3.13)

Where the components of the vector are de�ned as:

Ri,j =
Yi,j
Yi−1,j

∀ 1 ≤ j ≤ k (3.14)

We assume without loss of generality that the solution sequence {Yi}
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satis�es the following condition:

∀i,∀j : 1 ≤ j ≤ k, Yi,j 6= 0 (3.15)

Where Yi,j is the jth component of the solution vector Yi at time Ti.
Therefore, we deduce that:

∀i ≥ 1, Yi = Ri. ∗ Yi−1 (3.16)

Where �.*" is the component wise multiplication. Thus we can formulate the
following recurrence relation:

Yi = Ri. ∗Ri−1. ∗ . . . . ∗R1. ∗ Y0 (3.17)

Thus the initial prediction of the values {Yi} can be obtained from the the
prediction of the ratio values {Ri}, which is possible when the EOS values
exhibit a ratio property as de�ned below.

Ratio Property

The solution values {Yi} of the initial value shooting problems 3.12 exhibit
a ratio property if:

∃i0,∀i > i0, ||Ri+1 −Ri||∞ < ε (3.18)

Where ε is some tolerance.
There are many categories of the ratio property.

• Perfect Ratio Property: A sequence of solution values {Yi} are said
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to have this property if there exists a ratio vector R1 such that:

∀i > 0, Ri = R1.

• Asymptotic Ratio Property: A sequence of solution values {Yi} are
said to have this property if the sequence of ratio vectors {Ri} converge
to a certain vector RL:

lim
i→∞

Ri = RL

• Weak Ratio Property: A sequence of solution values {Yi} are said
to have this property if the sequence of ratio vectors {Ri} satisfy the
following condition on np consecutive slices:

∀i ∈ {i0 + 1, ..., i0 + np}, ||Ri −Ri−1||∞ < ε

When the sequence of values exhibit a ratio property then one can make
good ratio-based predictions as we shall later see. This property is very much
dependant on the choice of an EOS condition.

3.3.4 Change of variables

At the core of the APTI method lies a rescaling methodology which allows
the performance of parallel computations, even when the initial time of a
time slice is not known in advance.

On every time slice, the solution Y and the time variable t are changed
into a rescaled solution Zi and a rescaled time s respectively, using the fol-
lowing transformation: {

t = Ti−1 + βis, βi > 0
Y (t) = Yi−1 +DiZi(s),

(3.19)

Where:
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• βi is a time rescaling factor which is chosen in such a way that the
solution can be controlled. And the computation on the rescaled system
is therefore equivalent or "similar", that is they are solved using the
same numerical solver with identical rescaled time steps. It is only at
the end of the slices that the rescaled time steps are adjusted in order
to reach the EOS condition. Note that βi modulates the �xed rescaled
time steps(in terms of s) to produce adaptive real time steps(in terms
of t).

• Yi−1 = Y (Ti−1) ∈ RK

• Di = diag(αi) ∈ RK×K is a diagonal matrix where the diagonal entries
are the elements in the vector αi ∈ RK , which are de�ned as follows:

αi[j] =

{
Yi−1[j], ifYi−1[j] 6= 0
1, ifYi−1[j] = 0

(3.20)

In fact the diagonal entries αi[j] are de�ned in Eq. 3.20 to insure that
the matrix Di is invertible. Hence on every time slice, we have the rescaled
solution vector:

Zi(s) = Di
−1(Y (t)− Yi−1) (3.21)

That is for j ∈ {1, 2, ..., K}:

Zi(s)[j] =

{
Yi(t)−Yi−1[j]

Yi−1[j]
, ifYi−1[j] 6= 0

Yi(t), ifYi−1[j] = 0
(3.22)

And the rescaled time is given by s = t−T i−1
βi

.
Note that in the rescaled systems, the rescaled solution Zi(s) and the

rescaled time s are both set to 0 at the beginning of every slice. Therefore
every initial value shooting problem (Si) can be solved locally as shown in
Fig. 3.2.

Note also that the end of slice rescaled time which corresponds to Ti is:
si = Ti−Ti−1

βi
. Therefore si is the size of the ith rescaled slice, since the rescaled

time s = 0 at the beginning of the slice.
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Figure 3.2: Solving rescaled systems locally

End of slice invariances:

The solution function Zi surely depends on the choice of βi, but the following
end of slice invariances are valid independently of βi. From the change of
variables 3.19, we have at the end of the ith slice:

•
∀βi, Ti = Ti−1 + βisi, (3.23)

therefore:
∀βi,∆Ti = Ti − Ti−1 = βisi. (3.24)

That is, the product βisi is independent of the choice of βi, and is equal
to the size of the ith slice ∆Ti.

•
∀βi, Yi = Yi−1 +DiZi(si), (3.25)

therefore:
∀βi, Zi(si) = D−1i (Yi − Yi−1). (3.26)

That is, rescaled solution end of slice values Zi(si) are independent of
βi.
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These end of slice invariance identities are at the core of our prediction
model that will discussed later on in this chapter, where if the choice of βi
are such that the behavior of {si, Zi(si)} can be accurately predicted, then
the pair {Ti, Yi} can be obtained from 3.23 and 3.25 respectively.

Case of Nonzeroness:

In general the choice of the EOS condition is made in order to satisfy the
following non-zeroness condition:

∀i,∀j : 1 ≤ i ≤ K,Yi[j] 6= 0. (3.27)

Therefore αi = Yi−1, and thus the change of variables is:{
t = Ti−1 + βis, βi > 0
Yi = Di(1 + Zi(si)),

(3.28)

Where Di is a diagonal matrix having Yi−1 on its diagonal, and 1 is a
vector of ones of dimension K. Therefore:

Zi(si) = D−1i Yi − 1 (3.29)

Note that in this case Zi(si) can be expressed in terms of the ratio vector
Ri = D−1i Yi = Yn./Yn−1. So the bahavior of Zi(si) is equivalent to that of
Ri.

Also note that the general choice of αi 3.20 allows to tackle problems
where there are some zero components in the solution vector {Yi}.

Resulting Rescaled Systems

The original Initial Value Problem (S) is equivalent to a sequence of rescaled
Initial Value Shooting Problems where one seeks the rescaled solution func-
tion Zi(si) and the end of slice rescaled time si on the slice [Ti−1, Ti], in the
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form:

(S ′i)


dZi
ds

= Gi(Zi), 0 < t ≤ si
Zi(0) = 0,
H(Zi(si)) = 0, and ∀s < si, Hi(Zi(s)) 6= 0

(3.30)

where
Gi(Zi) = βiD

−1
i F (Yi−1 +DiZi)

Note that the functions Gi depends on the starting values Ti−1 and Yi−1.

Properties of the Rescaled Initial Value Shooting Prob-

lems:

All the rescaled initial value shooting problems start at an initial solution
value of zero and end at the same EOS condition. These problems have
some similarity properties:

• Invariance:
The rescaled problems (S ′n)3.30 are invariant if the EOS functions {H}
are invariant and the functions {Gi} are also invariant given the choice
of a critical rescaling parameter {βi}, that is:

∀n, Gi(.) = G1(.) (3.31)

In this case all the rescaled Initial Value Problems (S ′i) will be in the
form: 

dZ1

ds
= G1(Z1), 0 < s ≤ s1

Z1(0) = 0,
H(Z1(s1)) = 0 ∀s < s1, H(Z1(s)) 6= 0

(3.32)

Thus all the rescaled systems will have the same solution {s1, Z1(s1)}.
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This is the ideal case of similarity according to [21]. One needs to solve
the problem on only one time slice and get the solution on all time-
slices through a change of variables. But note that rescaling does not
guarantee invariance.

An interesting case of invariance is the problem of calculating a satel-
lite's orbit in a Keplerian motion.

• Asymptotic Similarity:

The systems (S ′n) are asymptotically similar if the rescaling parameters
{βi} are chosen such that the functions {Gi} converge uniformly to a
certain function GL, as well as if the rescaled EOS functions {H} are
invariant:

lim
i→∞
||Gi(W )−GL(W )||∞ = 0 (3.33)

Where GL de�nes a limit shooting value problem:


dZL
ds

= GL(ZL), 0 < t ≤ sL
ZL(0) = 0,
H(ZL(sL)) = 0, and ∀s < sL, H(ZL(s)) 6= 0

(3.34)

Whose solution pair {sL, ZL(sL)} is such that: lim
i→∞
{si, Zi(si)} = {sL, ZL(sL)}.

In this case we can use rescaling 3.2 for prediction purposes after run-
ning a sequential solver on a certain number of slices ns. At that point
we have:

max
i>ns
{max{|si − si−1|, ||Zi(si)− Zi−1(si−1)||}} ≤ tol (3.35)

where tol is a tolerance set by the user.

• Numerical Similarity:

This case can be used when there is no proof of invariance or asymptotic
similarity.

The rescaled systems 3.30 present numerical �weak" similarity on nr
consecutive slices starting at slice n0 if the EOS functions {H} are
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invariant and if :

max
n0≤i≤n0+nr

{max{|si − si−1|, ||Zi(si)− Zi−1(si−1)||}} ≤ tol (3.36)

In this case we let ns = n0 + nr.

This case of weak similarity is encountered in the perturbed motion of a
satellite.

3.3.5 Ratio-Based Prediction and Correction Procedures

Ratio-Based Prediction

We can deduce from the recurrence relation 3.17 that the prediction of the
ratio vectors Ri can be utilized for the prediction of the solution Yi at Ti in
terms of any previous EOS solution value Yl such that l < i, by using the
following formula:

Yi[j] = Yl[j] ∗ (Rl+1[j]) ∗ (Rl+2[j])... ∗ (Ri[j]) (3.37)

We might encounter two cases for the ratio vectors, perfect and non-
prefect.

• Perfect Ratio Property:

This is the case when the ratio vectors are invariant, that is

∀i, Ri = R0.

In this case the sequential computations need to be done on a single
slice in order to make exact predications:

∀i, ∀j, Yi[j] = Y0[j] ∗R0[j].
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• Non-Prefect Ratio Property:

This is the case when the ratio vectors are not invariant, hence the
prediction process requires us to run a preliminary sequential procedure
on ns slices, where ns is small relative to the number of slices N.

If the ratios stabilize when we reach the ns slice, up to a desired toler-
ance, then the last ratio Rns is used in order to predict the subsequent
Yi:

Y p
i [j] = Yns [j] ∗Ri−ns

ns [j], ∀i > ns,∀j. (3.38)

Where Y p denotes the predicted value of the solution Y .
Otherwise if the ratios do not stabilize by the ns slice, then we need to run

a backward analysis on the exact ratios calculated on the �rst ns slices and
then use a mathematical model, namely extrapolation, that approximates the
sequence {Ri} , (i ≤ ns). This model is then used in order to predict ratios
{Rp

i } (i > ns). Once that is done we can predict the next initial solution
values {Y p

i } using the recurrence relation 3.17:

Y p
i [j] = Yns[j] ∗ (Rp

ns+1[j]) ∗ (Rp
ns+2[j]) ∗ ... ∗ (Rp

i [j]). (3.39)

Ratio-Based Correction Procedure

The correction procedure is similar to the prediction procedure, but with
�rst updating ns with the number of the converged slices at the previous
iteration. Then the same process discussed above is employed. In the next
section, we introduce the APTI algorithm in details.

3.4 APTI Algorithm

At the basis on any parallel in time algorithm, lies the following relation:

max

{
||Yi−1 − Y p

i−1||
||Yi−1||

,
|Ti−1 − T pi−1|
|Ti−1|

}
= O(tol)⇒ max

{
||Yi − Y c

i ||
||Yi||

,
|Ti − T ci |
|Ti|

}
= O(tol)

(3.40)
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Theorem 1. Assuming 3.40 is satis�ed, then:


max

{
||Yi−1−Y pi−1||
||Yi−1|| ,

|Ti−1−T pi−1|
|Ti−1|

}
= O(tol)

max
{
||Y pi −Y

c
i ||

||Y pi ||
,
|T pi −T

c
i |

|T pi |

}
= O(tol)



⇒


max

{
||Yi−Y pi ||
||Yi||

}
max

{
|Ti−T pi |
|Ti|

}
 = O(tol)

Therefore an iterative procedure can now be initiated using a parallel
architecture with P processors.

The Adaptive Parallel Time Integration procedure features the following
steps according to [21]:

• Step 1: Preliminary Sequential Run

Every processor solves the �rst ns slices of the rescaled shooting value
problems and computes the successive ratio vectors {Ri} = {Yi./Yi−1},
and keeps going until the detection of a ratio property, that is when
the ratios stabilize up to a certain tolerance εR.

• Step 2: Iterative Process

� 2.1: Predict
On the slices i > ns, every processor �ts the last few ratios into
an appropriate mathematical model then extrapolates in order to
compute predicted solution values Y p

i .

� 2.2: Parallel Run on the Remaining Slices
The remaining slices, that is for slices numbered i, where i > ns are
assigned to the processors available based on a cyclic distribution.
For instance, if there are two available processors, one takes on
the computations on the odd numbered slices and the other takes
the even numbered slices. If one has 4 available processors, the
�rst processor will be assigned slices numbered n such that n mod
4 is equal to 1. The second processor will be as shown in Fig.
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3.3. And so on... Given np processors, the kth processor will be
assigned slices: k, k + np, k + 2np, ... and will solve the ith slice
starting with the predicted solution value Y p

i−1 to get a calculated
value Y c

i , with a computational tolerance εtol.

� 2.3: Calculate the Gaps
Each processor reaches the end of every slice by calculating Y c

i .
It now calculates the di�erence between Y c

i and the value Y p
i that

was predicted in Step (2.1). It now calculates the sequence of
relative gaps at the end of the ith slice, for i > ns as follows:

Gi =
Y c
i − Y

p
i

max(|Y c
i |, |Y

p
i |)

(3.41)

Every processor now �nds ||Gi||∞, and checks if ||Gi||∞ ≤ εG
where εG is some chosen tolerance on the relative gaps, then the
processor proceeds to solve slice numbered i + np. That is every
processor checks if the relative di�erence between the predicted
value Y p and the calculated value Y c at the end of every slice, it
continues on to solve the next slice assigned to it until it has solved
all slices assigned to it. Note that this step is done in parallel on
all processors but with every processor solving di�erent slices. See
Fig. 3.4.

� 2.4: Broadcast nlast and Ynlast
If the relative gap ||Gi||∞ was larger than εG, this indicates that
the predicted values Y p

i were not su�ciently accurate. Therefore
we need to do a correction on these predicted values. In order to
do that, every processor should send the number of the last few
slices that converged nlast and the values corresponding to these
slices Ynlast , to all other processors.

� 2.5: Update ns Each processor now:

∗ Calculates the number of the last slice that has converged
nconv = max1≤j≤np{nlast}j, i.e. nconv is the maximum of nlast
values collected from all processors.
∗ Updates ns by nconv.
∗ Repeats Step (2) until convergence of all slices.
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Figure 3.3: Cyclic Distribution of Slices Among 4 Processors

• Step 3: Broadcast Time Vector

When all the slices have converged, every processor then broadcasts
the sizes of its time slices according to [20] to all other processors. This
allows the calculation of the global time vector. This step is necessary
since as we mentioned before time is set to zero at the beginning of every
rescaled time slice, in order to allow the processor to start solving a slice
even though the starting time of that slice is not known in advance since
the previous slice is assigned to another processor.

When Step (3) is complete, every processor will have the global solution Y (t).

3.5 Increase Speed-Up through a Duplication

Approach

A duplication approach lies in executing sequential procedures simultane-
ously on all available processors within a parallel algorithm. The alternative
"classical" approach would be to let one processor execute these sequential
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Figure 3.4: Gaps Between Calculated and Predicted Values of the Solution

procedures and then communicate the results to all remaining processors.
But this approach of course involves a communication cost that is not present
in the duplication approach since all the processors would do the same work
at the same time, hence at the end they will all have the results needed
without needing to communicate among them, as shown in Fig 3.5. Using
the duplication approach would of course decrease the communication over-
head according to [21] and hence reduce the time of parallel execution of the
algorithm, thus increasing speed-up and e�ciency. Additionally, one would
avoid idle time on any processor.
Note that in the APTI algorithm, the sequential parts of the algorithm are
Steps (1: Preliminary Sequential Run) and (2.1: Prediction).

In the "classical" implementation of the APTI algorithm displayed in Fig
3.5, a single processor �nds the predicted values Y p

i then sends them to all
other processors. Then every processor solves in parallel the slices assigned
to it in order to �nd the computed values Y c

i . Afterwards all the processors
send the computed values to the master processor and wait until it computes
the new predictions and sends these predictions back to all other processors.
This process is repeated until convergence of all slices.

While in the duplication approach, the sequential predictions are done by
all the processors at the same time hence one needs only 1 communication
step in each iteration rather than 2.
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Figure 3.5: Classical versus Duplication Approach for APTI
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Chapter 4

The Parareal Algorithm: Parallel

in Real Time

4.1 Related Work

In 1964, Nievergelt proposed the �rst parallel time integration method in
[29]. This method led to the multiple shooting method which solve systems
of di�erential equations of the form:

u′ = f(u), u(0) = u0, t ∈ [0, T ] (4.1)

The �rst step of these methods is in dividing the time interval [0, T ] into
N subintervals 0 = T0 < T1 < ... < TN−1 < TN = T of size δT = T

N
and thus

ending up with N independent Initial Value Problems:{
u′n = f(un), ∀n = 0, 1, ..., N,
un(Tn−1) = Un−1, where Un = u(Tn)

(4.2)
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Then continuity conditions at then end of the subintervals are applied:



U0 − U0 = 0,
U1 − u1(T1) = 0,
...
UN−1 − uN−1(TN−1) = 0,
UN − uN(TN = T ) = 0.

(4.3)

This takes the form of a system of a nonlinear equations:

F (U) = 0, U = (U0, U1, ..., UN)T (4.4)

Chartier and Philippe in [8], as well as Erhel and Rault [9], used an
iterative Newton procedure to solve 4.4. This procedure involves solving:

JF (Uk)[Uk+1 − Uk] = −F (Uk), k = 0, 1, ... (4.5)

Where JF is the Jacobian of the function F de�ned in 4.3. This procedure
is stopped when it reaches a given accuracy.

Rearranging Eq 4.5 gives the following update equation:

Uk+1 = Uk − J−1F (Uk)F (Uk) (4.6)

Exploiting the structure of Eq 4.3, one can rewrite the update term
J−1F (Uk)F (Uk) in the form:


I

− ∂u0
∂U0

(t1, U
k
0 ) I

− ∂u1
∂U1

(t2, U
k
1 ) I

. . . . . .
− ∂uN−1

∂UN−1
(tn−1, U

k
N−1) I



−1
Uk
0 − u0

Uk
1 − u1(t1, Uk

0 )
Uk
2 − u2(t2, Uk

1 )
...

Uk
N − uN−1(T, Uk

N−1)


(4.7)

4.6 thus produces the following recurrence relation of the multiple shoot-
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ing method applied to an initial value problem:

{
Uk+1
0 = u0,

Uk+1
n+1 = un(tn+1, U

k
n) + ∂un

∂Un
(tn+1, U

k
n)(Uk+1

n − Uk
n)

(4.8)

At iteration k, computations on the independent slices yield end values
{un(tn+1, U

k
n)}, then one uses the recurrence 4.8 to correct these values in

order to end up with Uk+1
n+1 , which are then used as initial values for iteration

k + 1.
In order to implement this method, one needs a numerical method to com-

pute {un} and a method to compute or approximate the terms ∂un
∂Un

(tn+1, U
k
n)(Uk+1

n −
Uk
n) of the Jacobian.
In 2001, a new predictor-corrector scheme was introduced by Lions, Ma-

day and Turinici [23], the "Parareal algorithm". There have been many de-
velopments made to this algorithm. In [11] Farhat and Chanderesis o�ered
a mathematical justi�cation for the Parareal algorithm based on the theory
of distributions. In [16] Gander and Vandewalle prove that the parareal al-
gorithm is a multiple shooting method where one approximates the Jacobian
by a �nite di�erence approach. In [11] Farhat et al presented the application
of this algorithm to �uid and structure applications.

4.2 LIONS Parareal Algorithm

Lions Parareal algorithm was a turning point in the time parallel solution of
time-dependent di�erential equations. We �nd that many authors have tried
to apply this algorithm on a variety of problems from di�erent application
areas. Gander et al provided a convergence analysis of the Parareal algorithm
in [16], [14]. He also provided a derivation of this algorithm in [14]. We
decided to apply this algorithm to the Satellite problem and test its fast
convergence.

Both the Parareal algorithm and the APTI algorithms are predictor cor-
rector schemes as mentioned in the prior sections. They are both iterative
procedures, in the sense that they consist of iterating until convergence is
reached. And in every iteration, prediction and correction is done.
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The Parareal algorithm is de�ned using two propagation operators:

• F (t2, t1, u1) provides an accurate approximation of the solution u(t2)
given the initial condition u(t1) = u1.

• G(t2, t1, u1) provides a less accurate approximation of the solution u(t2)
given the initial condition u(t1) = u1, for example on a coarser grid or
using a lower order method, or even an approximation using a simpler
model.

The algorithm starts with the initial condition U0
0 = u0. It then obtains

an initial approximation of U0
n, n = 0, . . . , N at times t0, t1, . . . , tN using

the sequential computation of U0
n+1 = G(tn+1, tn, U

0
n). It then performs for

k = 0, 1, . . . the correction iteration:

Uk+1
n+1 = G(tn+1, tn, U

k+1
n ) + F (tn+1, tn, U

k
n)−G(tn+1, tn, U

k
n) (4.9)

Note that the Parareal algorithm 4.9 will for k →∞ converge to a series
Un which satis�es Un+1 = F (tn+1, tn, Un). That is the approximation of
the solution values Un will converge to the values obtained using the �ne
sequential propagator F.

The parareal method was �rst introduced in [23] and applied to a linear
scalar model. In [2] the new simpli�ed form 4.9 was introduced by Ba�co et
al. In what follows is the derivation presented by Gander and Vanderwalle
in [15] based on the multiple shooting method introduced in the previous
subsection, applied to 4.1.

The formulation 4.8 is continuous, but in order to apply the multiple
shooting algorithm it is necessary to discretize the di�erential equations for
every sub- time interval. One should select a numerical method in order
to compute un(tn+1, U

k
n), and one should chose a method to compute or

approximate the terms un
Un

(tn+1, U
k
n) or their e�ect on the di�erence term

Uk+1
n − Uk

n .
If we approximate in the multiple shooting relation 4.8 the terms:

1. un(tn+1, U
k
n) by the solution given by the �ne propagator F (tn+1, tn, U

k
n)

2. ∂un
∂Un

(tn+1, U
k
n)(Uk+1

n − Uk
n) in a �nite di�erence way using the G propa-

gator G(tn+1, tn, U
k+1
n )−G(tn+1, tn, U

k
n)
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Then in that case the multiple shooting method is exactly the Parareal
algorithm.

Algorithm 3 Parareal Algorithm
U0
0 = u0

//Iteration 0
//Initial prediction
for n = 0 to N − 1 do
Ĝ0n+1 = G(tn+1, tn, U

0
n)

U0
n+1 = Ĝ0n+1

end for
//Parareal Iterations
for k = 0 to Kmax do

Uk+1
0 = u0

//Parallel Step
for n = 0 to N − 1 do
F̂kn+1 = F (tn+1, tn, U

k
n)

end for
//Sequential Step
for n = 0 to N − 1 do

// Predict
Ĝk+1
n+1 = G(tn+1, tn, U

k+1
n )

//Correct
Uk+1
n+1 = Ĝk+1

n+1 + F̂kn+1 − Ĝkn+1

end for
//Check for convergence
if |Uk+1

n+1 − Uk
n+1| < ε ∀ n then

BREAK
end if

end for
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4.3 Implementation

In our implementation of the Parareal algorithm, we divided the time inter-
val [0, T ] into N coarse intervals each of size δT = T

N
. We chose the two

propagation operators in the following manner:

• The G operator is given by the classical fourth order Runge Kutta
method with coarse time step δT = T

N
.

• The F operator is given by the classical fourth order Runge Kutta
method with �ne time step τ = δT

Nf
= T

N∗Nf

In the following, we present an example of a system of Ordinary Di�er-
ential Equations on which we apply the Parareal algorithm and show results
obtained.

Example: Brusselator

The Brusselator is a system of ODEs that models di�usion in a chemical
reaction, and is presented by:

ẋ = A+ x2y − (B + 1)x,
ẏ = Bx− x2y. (4.10)

Where:

• A = 1 and B = 3.

• The initial conditions are x(0) = 0, y(0) = 0.

• The time interval is given by [0, 12].

• The number of coarse slices is given by: N = 32, which implies that
the coarse time step δT = 0.375 seconds.

• The number of �ne slices is given by: Nf = 20, which implies that the
�ne time step τ = 0.01875 seconds.

Figure 4.1 shows the initial guess of the solution given by the coarse
solver. The Parareal algorithm converges after 6 iterations to the solution
shown in Figure 4.2 . In both �gures 4.1 and 4.2, the green line represents
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Figure 4.1: Initial guess of the solution of the Brusselator problem

Figure 4.2: Final approximation of the solution of the Brusselator problem
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the Sequential �ne grid solution, while the blue circles represent the solution
given by the Parareal algorithm. The error of the �nal Parareal solution
versus the sequential solution is given by 6.32e− 10.
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4.4 APTI vs Parareal

APTI and Parareal are both predictor-corrector methods. But if one exam-
ines both algorithms closely, one notices that they di�er completely in the
way predictions and corrections are made. We list the di�erences between
the two approaches in the following points:

1. The Parareal algorithm makes predictions by using the coarse operator
G which involves using forth order Runge Kutta with a relatively `big'
time step T

N
, while the APTI algorithm uses ratio-based predictions.

2. The initial predictions made by the Parareal algorithm involve only
the sequential computation of the N slices using a coarse grid, while
the predictions made by the APTI algorithm involve the sequential
computation of ns slices using a �ne grid until the ratio stabilizes.

3. The predictions made by the Parareal algorithm are less accurate than
those made by the APTI since the Parareal uses an operatot G of low
accuracy, while APTI uses the exact solution of the �rst ns slices in
order to make the predictions on later slices.

4. The predictions made by the Parareal algorithm are expensive since
they must be done sequentially. This is due to the fact that the pre-
diction of the value on a slice depends on the values on the previous
slices, which obliges every processor to compute the predictions on all
the slices even if he is only assigned a few number of slices in the �ne
propagation. While the predictions of APTI can be done in parallel
since the prediction of the solution value on a slice is independent of
the values on the previous slices. Hence every processor makes a smaller
number of predictions.

5. In order to make corrections, the Parareal algorithm computes the
jumps, i.e. the di�erences between the values predicted by the coarse
propagator and the values computed using the �ne propagator. It then
resorts to the propagation of these jumps in order to compute the new
corrected values. This propagation cannot be done except sequentially
since the computation of the correction on any slice depends on the
correction on all the previous slices. Therefore every processor requires
all the values computed in any iteration in order to compute the new
corrected values, which are the predicted values for the next iteration
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in case there was no convergence. While the APTI algorithm uses
ratio-based corrections which can be done in parallel, since at any iter-
ation each processor only needs the converged vector from the previous
iteration to compute the new corrected values.

6. In the Parareal algorithm, in any given iteration all the processors have
to solve all the slices assigned to them before proceeding to the next
iteration, even if none of the slices converge. This is due to the fact
that the algorithm needs all the computed values for every time slice
since all these values are needed in order to make the propagation of
jumps. But we note that one propagation operation is relatively fast
and inexpensive. While in the APTI algorithm, every processors pro-
ceeds solving the slices assigned to it, while these slices are converging
withing a certain accuracy. And if a slice does not converge, then the
processor stops the computations at that point and switches to the next
iteration.

Remark. It is important to note that in most of the papers which apply
Parareal to various problems, the author concentrates on the total number
of iterations it takes for the algorithm to converge, rather than on the ac-
tual execution time. Therefore the author claims fast convergence of the
Parareal algorithm when the number of iterations is small compared to the
total number of slices N. But mostly there is no actual time measurement to
show speed-ups versus the sequential integrator.

For instance, in [14] Gander and Hairer solve the Brusselator system of
ODEs using the Parareal algorithm and mention that there is speed-up with
respect to the sequential integrator if we neglect the cost of the coarse solver
in the parareal algorithm. This is in fact not practical because even though
one coarse step is not inexpensive but when done on N slices twice during
every parareal iteration, then this cost can no longer be neglected.

Another note is that the authors are measuring speed-up as N
number of iterations

assuming that they run the algorithm on N processors. Therefore for this
numbers to be meaningful, one must have as many processors as there are
coarse time steps. And the number of coarse steps will logically increase as
we increase the total time T , hence the parareal's performance is expected
to decrease when using a bigger time interval.
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4.5 Modi�ed Parareal

In real applications, execution time is far more important than the number
of iterations made by an algorithm before convergence. In fact the Parareal
algorithm su�ers from a performance issue in the statement made by the
authors in the literature so far, for instance in [15].

In every parareal iteration, the parallel �ne propagation step and the
sequential coarse prediction and correction steps are performed on all the
slices for n = 0 to N − 1. Yet when performing experiments on the parareal
algorithm, we noticed that at every iteration some number of slices converge
before the last iteration. Hence, performing computations on the slices that
have already converged to a speci�c tolerance, is a redundant task that is
consuming execution time.

We suggest a modi�ed version of the parareal algorithm 4 where com-
putations at every iteration are done on the slices that have not converged
yet. This version will decrease the execution time of the algorithm without
changing the number of iterations the algorithm takes to converge. It is a fact
that the number of iterations made till convergence will remain unchanged,
but the number of operations (both parallel and sequential) being performed
at every iteration will decrease signi�cantly.

We applied both this modi�ed parareal algorithm and the classic parareal
algorithm to the Brusselator problem 4.10 and obtained the solutions shown
in Figure 4.3. In fact the solution given by the modi�ed parareal algorithm
coincides with that given by the classic parareal algorithm. We show in table
4.1 the performance results of both algorithms on the Brusselator problem.
Both algorithms take the same number of iterations to converge, which is
in this case 6 iterations, but the execution time of the modi�ed parareal is
less than that of the classic parareal. In fact, there is a 32% improvement in
execution time of the modi�ed parareal algorithm versus the classic parareal
algorithm.
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Algorithm 4 Modi�ed Parareal Algorithm
U0
0 = u0

//Iteration 0
//Initial prediction
for n = 0 to N − 1 do
Ĝ0n+1 = G(tn+1, tn, U

0
n)

U0
n+1 = Ĝ0n+1

end for
num_converged_slices = 0
//Parareal Iterations
for k = 0 to Kmax do

Uk+1
0 = u0

//Parallel Step
for n = num_converged_slices to N − 1 do
F̂kn+1 = F (tn+1, tn, U

k
n)

end for
//Sequential Step
for n = num_converged_slices to N − 1 do

// Predict
Ĝk+1
n+1 = G(tn+1, tn, U

k+1
n )

//Correct
Uk+1
n+1 = Ĝk+1

n+1 + F̂kn+1 − Ĝkn+1

end for
//Update the number of converged slices
if |Uk+1

n+1 − Uk
n+1| < ε then

num_converged_slices + = 1
end if
//Check for convergence
if num_converged_slices = N then

BREAK
end if

end for
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Figure 4.3: Solution of the Brusselator Problem given by the Parareal and
Modi�ed Parareal algorithms

Table 4.1: Performance results for the Brusselator problem

Parareal Modi�ed Parareal

Number of Iterations 6 6

Execution time (seconds) 2.9788 e− 01 2.0247 e− 01
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Chapter 5

Results

The following table 5.1 lists the main notations that will be used throughout
this chapter:

Table 5.1: Notations used
N Number of slices
Nf Number of �ne slices used by the �ne propagator of the Parareal

algorithm
ns Number of sequential slices computed by the APTI algorithm before

the parallel computations start
τ Time step (in seconds) of integration used by the �ne RK4 propagator
Ts Time (in seconds) needed to solve the problem using a sequential

procedure
nI Number of iterations it takes the algorithm to converge
np Number of MATLAB workers used
Tnp Time (in seconds) needed to solve the problem in parallel using np

workers
Snp Speed-up achieved while using np workers
Erel Relative error of the parallel solution with respect to the sequential

solution

The parallel speed-up Snp is evaluated as the ratio of the sequential exe-
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cution time to the parallel execution time while using np MATLAB workers:

Snp =
Ts
Tnp

(5.1)

Moreover, the sequential execution is one where there is no predictions,
corrections nor iterations. It is the applications of RK4 on the total number
of slices.

The relative error is a measure of the di�erence between the solution given
by the parallel solver Y P and the solution given by the sequential solver Y S:

Erel =
||Y P − Y S||
||Y P ||

(5.2)

Note that in MATLAB, one should preallocate vectors and matrices be-
forehand in both the sequential version and the parallel version of the al-
gorithms. Increasing the size of vectors inside loops will adversely a�ect
performance, since it implies repeatedly resizing arrays and looking for large
continuous blocks of memory then moving the previous small array into these
blocks. Not that in MATLAB, elements of a data structure are always stored
in neighboring memory locations. Therefore, preallocating the maximum
amount of memory space needed will contribute substantial improvement in
execution time.

The tests were conducted using MATLAB R2013b.

5.1 Choice of an EOS condition for the APTI

algorithm

The orbit of the satellite in a J2 perturbed motion, as stated in Chapter
2 , is an osculating ellipse of which the orbital elements change at every
instant. And all of these instantaneous ellipses have the center of the earth
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at one focus, hence the satellite will certainly pass through the xy-plane of
the IPQW frame, that is the plane corresponding to the Keplerian ellipse if
there was no perturbation.

Moreover, we can consider the behavior of the solution to be oscillatory
since there exists a two-dimensional plane (the xy-plane in the IPQW frame)
on which the projection of {Y } rotates about a �xed center (the center of the
earth). Therefore the EOS condition is chosen to be at the instance when
the solution {Y } executes a full(or almost full) rotation about the center.

Therefore, a natural choice of the EOS condition would be to end the ith

slice when the satellite crosses the xy-plane, after completing a rotation, that
is when:

Yi,3 = 0, (5.3)

for the second time, after being satis�ed at the previous slice Yi−1,3 = 0.
This is due to the fact that having crossed the xy-plane at the end of the i−1
slice, the satellite will cross this plane twice in order to make an almost full
rotation about the center of the earth, as shown in Figure 5.1. The behavior
of the solution makes this EOS condition guaranteed to be reached.

Figure 5.1: Orbit of a satelitte in a J2 perturbed motion (11 rotations)
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Let Q be the function de�ned by :

{
Q[Y (t)] = 0, if Y3(t) = 0 for the second time after Y3(Ti−1) = 0
Q[Y (t)] = 1, if Y3(t) 6= 0 or Y3(t) = 0 for the first time after Y3(Ti−1) = 0

(5.4)
Thus the EOS condition 5.3 can be written in the following form:

Q[Y (Ti)] = 0 and ∀t ∈ ]Ti−1, Ti[, Q[Y (t)] 6= 0 (5.5)

Hence the original IVP is equivalent to the sequence of initial value shoot-
ing problems where one seeks on the ith slice [Ti−1, Ti] the EOS function Yi
and the EOS time Ti, such that:


dY
dt

= F (Y ) = FK(Y ) + FP (Y ), Ti−1 < t ≤ Ti
Y (Ti−1) = Yi−1,
Q(Y (Ti)) = 0, and ∀t ∈]Ti−1, Ti[, Q(Y (t)) 6= 0

(5.6)

where FK(Y ) and FP (Y ) are given by 2.34 and 2.35 respectively.

5.2 Period of 1 day

Tables 5.2 , 5.3 , 5.4 , 5.5 , 5.6 , 5.7 below summarize the numerical results
obtained from applying the APTI, Parareal and Modi�ed Parareal algorithm
to compute a satellite's trajectory in a J2 perturbed motion for a period of
1 day, for a set of 6 initial conditions, using 2,4 and 8 MATLAB workers.
Each initial condition is given in terms of the 6 Keplerian orbital elements
(e0,a0,i0,ω0,Ω0,M0).
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Table 5.2: Performance results for case 1 initial conditions for 1 day
APTI Parareal Modi�ed Parareal

Case 1 1 1
e0 0.1 0.1 0.1
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 14 2880 2880
Nf N/A 30 30
ns 4 N/A N/A
τ (seconds) 1 1 1
Ts (seconds) 62.2728 18.1651 18.1651
nI 7 2 2
Erel 7.85 e-17 0 0
T2 (seconds) 43.3010 17.7960 14.7603
S2 1.44 1.02 1.23
T4 (seconds) 39.3763 9.7590 8.2066
S4 1.58 1.86 2.21
T8 (seconds) 39.6100 5.8486 4.9543
S8 1.57 3.11 3.67
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Table 5.3: Performance results for case 2 initial conditions for 1 day
APTI Parareal Modi�ed Parareal

Case 2 2 2
e0 0.1 0.1 0.1
a0 (km) 7650 7650 7650
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 13 2880 2880
Nf N/A 30 30
ns 4 N/A N/A
τ (seconds) 1 1 1
Ts (seconds) 61.1379 18.1884 18.1884
nI 6 2 2
Erel 1.17 e-15 0 0
T2 (seconds) 41.3354 17.7865 13.8085
S2 1.48 1.02 1.32
T4 (seconds) 38.4897 9.7791 7.6443
S4 1.59 1.86 2.38
T8 (seconds) 39.9636 5.8260 4.6093
S8 1.53 3.12 3.95
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Table 5.4: Performance results for case 3 initial conditions for 1 day
APTI Parareal Modi�ed Parareal

Case 3 3 3
e0 0.0005 0.0005 0.0005
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 14 2880 2880
Nf N/A 30 30
ns 4 N/A N/A
τ (seconds) 1 1 1
Ts (seconds) 62.3180 18.2282 18.2282
nI 7 2 2
Erel 1.43 e-15 0 0
T2 (seconds) 43.7320 17.7305 14.7159
S2 1.42 1.03 1.24
T4 (seconds) 38.7003 9.9250 7.9245
S4 1.61 1.84 2.30
T8 (seconds) 40.5601 5.8992 4.8085
S8 1.54 3.09 3.79
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Table 5.5: Performance results for case 4 initial conditions for 1 day
APTI Parareal Modi�ed Parareal

Case 4 4 4
e0 0.15 0.15 0.15
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 14 2880 2880
Nf N/A 30 30
ns 4 N/A N/A
τ (seconds) 1 1 1
Ts (seconds) 61.7423 18.1846 18.1846
nI 7 2 2
Erel 2.22 e-15 0 0
T2 (seconds) 43.3455 18.0201 15.3010
S2 1.42 1.01 1.19
T4 (seconds) 38.3868 9.8367 8.4313
S4 1.61 1.85 2.16
T8 (seconds) 40.3448 5.8484 5.0692
S8 1.53 3.11 3.59
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Table 5.6: Performance results for case 5 initial conditions for 1 day
APTI Parareal Modi�ed Parareal

Case 5 5 5
e0 0.1 0.1 0.1
a0 (km) 7300 7300 7300
i0 (degrees) 80 80 80
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 14 2880 2880
Nf N/A 30 30
ns 4 N/A N/A
τ (seconds) 1 1 1
Ts (seconds) 62.3974 18.1137 18.1137
nI 7 2 2
Erel 2.24 e-15 0 0
T2 (seconds) 43.2047 17.9681 14.9209
S2 1.44 1.01 1.21
T4 (seconds) 38.5543 9.9786 8.2740
S4 1.62 1.82 2.19
T8 (seconds) 39.8357 5.9393 4.9535
S8 1.57 3.05 3.66
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Table 5.7: Performance results for case 6 initial conditions for 1 day
APTI Parareal Modi�ed Parareal

Case 6 6 6
e0 0.1 0.1 0.1
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 5 5 5
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 14 2880 2880
Nf N/A 30 30
ns 4 N/A N/A
τ (seconds) 1 1 1
Ts (seconds) 61.7470 20.2553 20.2553
nI 7 2 2
Erel 2.09 e-15 0 0
T2 (seconds) 43.2474 17.7613 14.7149
S2 1.43 1.14 1.38
T4 (seconds) 38.2713 9.9060 8.1910
S4 1.61 2.04 2.47
T8 (seconds) 40.3011 5.8863 4.8748
S8 1.53 3.44 4.16
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Table 5.8: Average performance results for a period of 1 day
APTI Parareal Modi�ed Parareal

N 14 2880 2880
ns 4 - -
nI 7 2 2
Erel 1.54 e-15 0 0
S2 1.44 1.04 1.26
S4 1.60 1.88 2.29
S8 1.54 3.15 3.80

For a period of 1 day, all 3 algorithms APTI, Parareal and Modi�ed
Parareal achieved speed-up versus the sequential process, even when using
only 2 workers. Parareal outperforms APTI since it achieves higher speed-up.
This is quite expected, as discussed in the previous chapter, since the total
time of integration is relatively small. Hence Parareal is at an advantage. On
the other hand APTI is at a disadvantage because for this relatively short
period of time, the chosen EOS condition required choosing a 14 slices, a
very small total number of slices compared to 2880 slices for the Parareal
algorithm. Additionally, the APTI algorithm needed to compute 4 slices se-
quentially before starting the parallel process, hence 30% of the slices were
computed sequentially, thus the relatively bad performance of APTI. More-
over, a possible method for improving APTI's performance is by changing
the EOS condition from 1 rotation to 1

2
or 1

4
of a rotation, something we did

not try.
We note that the Modi�ed Parareal algorithm outperforms the classic

Parareal algorithm since it achieves on average speed-up of 1.21 versus the
classic Parareal as shown in table 5.9.

Table 5.9: Speed up of Modi�ed Parareal versus Parareal for a period of 1
day

np Speed-up
2 1.21
4 1.22
8 1.21
Average 1.21
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5.3 Period of 3 days

Table 5.10: Performance results for case 1 initial conditions for 3 days
APTI Parareal Modi�ed Parareal

Case 1 1 1
e0 0.1 0.1 0.1
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 42 2592 2592
Nf N/A 20 20
ns 12 N/A N/A
τ (seconds) 5 5 5
Ts (seconds) 38.8944 12.3269 12.3269
nI 4 2 2
Erel 3.37 e-05 1.70e-05 1.70e-05
T2 (seconds) 20.7622 12.2523 10.7427
S2 1.87 1.01 1.15
T4 (seconds) 19.11 6.7808 6.1241
S4 2.04 1.82 2.01
T8 (seconds) 26.0099 4.4368 3.8004
S8 1.50 2.78 3.24
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Table 5.11: Performance results for case 2 initial conditions for 3 days
APTI Parareal Modi�ed Parareal

Case 2 2 2
e0 0.1 0.1 0.1
a0 (km) 7650 7650 7650
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 39 2592 2592
Nf - 20 20
ns 12 N/A N/A
τ (seconds) 5 5 5
Ts (seconds) 38.4149 12.3292 12.3292
nI 4 2 2
Erel 2.81 e-05 1.32e-10 1.32e-10
T2 (seconds) 20.4081 11.1546 10.6546
S2 1.88 1.11 1.16
T4 (seconds) 20.0809 6.2827 6.0999
S4 1.91 1.96 2.02
T8 (seconds) 25.5615 4.0353 3.8084
S8 1.50 3.06 3.24
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Table 5.12: Average performance results for a period of 3 days
APTI Parareal Modi�ed Parareal

N 41 2592 2592
ns 12 - -
nI 4 2 2

Erel 3.09 e-05 8.52 e-06 8.52 e-06
S2 1.88 1.06 1.15
S4 1.97 1.89 2.02
S8 1.50 2.92 3.24

For a period of 3 days, all 3 algorithms APTI, Parareal and Modi�ed
Parareal achieve speed-up versus the sequential process. APTI achieves
higher speed-up than Parareal when using 2 and 4 workers, while Parareal
outperforms APTI while using 8 workers. In this case, APTI is still at a
disadvantage because the total number of slices is still relatively small. Ad-
ditionally, APTI needed to perform 12 slices sequentially before starting the
parallel process, hence 30% of the slices were computed sequentially.

We note that the Modi�ed Parareal algorithm outperforms the classic
Parareal algorithm since it achieves on average speed-up of 1.1 versus the
classic Parareal as shown in table 5.13.

Table 5.13: Speed up of Modi�ed Parareal versus Parareal for a period of 3
days

np Speed-up
2 1.09
4 1.07
8 1.11
Average 1.09
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5.4 Period of 20 days

Table 5.14: Performance results for case 1 initial conditions for 20 days
APTI Parareal Modi�ed Parareal

Case 1 1 1
e0 0.1 0.1 0.1
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 279 5760 5760
Nf N/A 10 10
ns 35 N/A N/A
τ (seconds) 30 30 30
Ts (seconds) 51.2577 14.7394 14.7394
nI 8 21 21
Erel 6.27 e-5 3.6 e-05 3.6 e-05
T2 (seconds) 19.2606 137.9646 78.7113
S2 2.66 0.11 0.19
T4 (seconds) 14.8369 79.039 45.3034
S4 3.45 0.19 0.33
T8 (seconds) 15.6309 51.5848 29.969
S8 3.28 0.29 0.49
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Table 5.15: Performance results for case 2 initial conditions for 20 day
APTI Parareal Modi�ed Parareal

Case 2 2 2
e0 0.1 0.1 0.1
a0 (km) 7650 7650 7650
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 260 5760 5760
Nf N/A 10 10
ns 35 N/A N/A
τ (seconds) 30 30 30
Ts (seconds) 50.6646 13.755 13.755
nI 7 17 17
Erel 5.33 e-05 4.07 e-05 4.07 e-05
T2 (seconds) 19.9946 110.1763 64.5697
S2 2.53 0.12 0.21
T4 (seconds) 14.5221 64.2077 37.6062
S4 3.49 0.21 0.37
T8 (seconds) 15.6356 42.0768 24.9649
S8 3.24 0.33 0.55
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Table 5.16: Average performance results for a period of 20 days
APTI Parareal Modi�ed Parareal

N 270 5760 5760
ns 35 - -
nI 8 19 19

Erel 5.8 e-05 3.84 e-05 3.84 e-05
S2 2.60 0.12 0.20
S4 3.47 0.20 0.35
S8 3.26 0.31 0.52

For a period of 20 days, only APTI was able to achieve a speed-up versus
the sequential process, while Parareal and Modi�ed Parareal fail to do so.
APTI outperforms Parareal since the total time of integration is relatively
large, which enforced a reasonable total number of slices for APTI.

One must also note that APTI has faster convergence rate since it required
8 iterations to converge while Parareal needed 19 iterations.

Moreover, the Modi�ed Parareal algorithm outperforms the classic Parareal
algorithm since it takes on average half of the execution time of the classic
Parareal, hence achieving almost twice the speed-up as shown in table 5.17.

We do note that the speed-up for Parareal increased as the number of
workers increased, but we could not test it with more workers since the AUB
HPC platform had a licence for very few MATLAB workers.

Table 5.17: Speed up of Modi�ed Parareal versus Parareal for a period of 20
days

np Speed-up
2 1.73
4 1.73
8 1.7
Average 1.72
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5.5 Period of 43 days

Table 5.18: Performance results for case 1 initial conditions for 43 days
APTI Parareal Modi�ed Parareal

Case 1 1 1
e0 0.1 0.1 0.1
a0 (km) 7300 7300 7300
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 599 12384 12384
Nf N/A 5 5
ns 46 N/A N/A
τ (seconds) 60 60 60
Ts (seconds) 66.763 14.9342 14.9342
nI 10 42 42
Erel 1.04 e-04 1.3 e-04 1.3 e-04
T2 (seconds) 23.2285 336.3072 177.3699
S2 2.87 0.04 0.08
T4 (seconds) 15.5201 211.1520 111.0128
S4 4.30 0.07 0.13
T8 (seconds) 13.8165 153.9589 81.2850
S8 4.83 0.10 0.18
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Table 5.19: Performance results for case 2 initial conditions for 43 days
APTI Parareal Modi�ed Parareal

Case 2 2 2
e0 0.1 0.1 0.1
a0 (km) 7650 7650 7650
i0 (degrees) 98 98 98
ω0 (degrees) 10 10 10
Ω0 (degrees) 45 45 45
M0 (degrees) 123 123 123
N 558 12384 12384
Nf N/A 5 5
ns 46 N/A N/A
τ (seconds) 60 60 60
Ts (seconds) 64.7477 14.8966 14.8966
nI 9 33 33
Erel 8.29 e-05 2.01 e-04 2.01 e-04
T2 (seconds) 22.7323 264.8994 141.4436
S2 2.85 0.06 0.11
T4 (seconds) 15.1349 167.8680 89.8344
S4 4.28 0.09 0.17
T8 (seconds) 13.3199 121.5371 65.7219
S8 4.86 0.12 0.23
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Table 5.20: Average performance results for a period of 43 days
APTI Parareal Modi�ed Parareal

N 579 12384 12384
ns 46 - -
nI 10 38 38

Erel 9.34 e-05 1.65 e-04 1.65 e-04
S2 2.86 0.05 0.09
S4 4.29 0.08 0.15
S8 4.85 0.11 0.21

For a period of 43 days, APTI algorithm is also the only one to achieve
speed-up versus the sequential process.

Furthermore, APTI has faster convergence rate since it required 10 iter-
ations to converge while Parareal needed 38 iterations. Hence APTI's con-
vergence rate is 4 times better than that of Parareal.

Moreover, the Modi�ed Parareal algorithm outperforms the classic Parareal
algorithm since it takes on average half of the execution time of the classic
Parareal, hence achieving almost twice the speed-up as shown in table 5.21.

Table 5.21: Speed up of Modi�ed Parareal versus Parareal for a period of 43
days

np Speed-up
2 1.89
4 1.89
8 1.89
Average 1.89
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5.6 Period of 108 days

Table 5.22: Performance results (1) of APTI for 108 days
Case 1 2 3 4
e0 0.1 0.0005 0.15 0.1
a0 (km) 7300 7300 7300 7300
i0 (degrees) 98 98 98 98
ω0 (degrees) 10 10 10 5
Ω0 (degrees) 45 45 45 45
M0 (degrees) 123 123 123 123
N 1500 1500 1500 1500
ns 46 46 46 46
τ (seconds) 60 60 60 60
Ts (seconds) 166.2018 167.7576 167.463 166.5701
nI 18 17 22 29
Erel 2.94 e-03 1.50 e-03 2.06 e-02 5.90 e-03
T2 (seconds) 52.9642 52.3221 53.8457 54.1518
S2 3.14 3.21 3.11 3.08
T4 (seconds) 32.8032 31.7628 33.4829 34.219
S4 5.07 5.28 5.00 4.87
T8 (seconds) 26.336 25.3389 28.6234 30.616
S8 6.31 6.62 5.85 5.44
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Table 5.23: Performance results (2) of APTI for 108 days
Case 5 6 7 8
e0 0.1 0.1 0.1 0.1
a0 (km) 7300 7300 7300 7300
i0 (degrees) 98 98 98 98
ω0 (degrees) 10 10 10 10
Ω0 (degrees) 10 120 45 45
M0 (degrees) 123 123 20 60
N 1500 1500 1500 1500
ns 46 46 46 46
τ (seconds) 60 60 60 60
Ts (seconds) 166.5804 166.6014 166.7929 167.4185
nI 18 18 17 26
Erel 2.57 e-03 2.57 e-03 3.23 e-03 8.88 e-03
T2 (seconds) 52.9488 52.4362 52.6763 53.5668
S2 3.15 3.18 3.17 3.13
T4 (seconds) 32.1936 31.7623 31.5856 33.1685
S4 5.17 5.25 5.28 5.05
T8 (seconds) 26.4352 26.1684 25.3772 27.4835
S8 6.30 6.37 6.57 6.09
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Table 5.24: Average performance results of APTI for a period of 108 days
N 1500
ns 46
nI 21
Erel 6.03 e-03
S2 3.14
S4 5.12
S8 6.19

For a period of 108 days, we evaluated APTI on s set of 8 initial conditions.
Table 5.24 shows the average performance results obtained. The results are
very promising since:

• The algorithm shows a fast convergence rate, because it converges after
21 iterations which is negligible when compared to the total number of
slices 1500.

• The speed-up is signi�cant while using 2,4 and 8 workers.
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Chapter 6

Conclusion

The time-dependent ordinary di�erential equations that describe the mo-
tion of a satellite in a J2 perturbed potential, can in fact be solved in a
time-parallel manner using predictor-corrector schemes. In this thesis, we
presented two main methods in order to do so: the Adaptive Parallel Time
Integration algorithm (APTI) and the Parareal algorithm. Each algorithm
has its own advantages and disadvantages. APTI has the advantage of yield-
ing good predictions because it solves the �rst ns slices sequentially then uses
this exact solution of the problem in order to make predictions for the rest of
slices. APTI also uses ratio-based corrections which are more accurate than
other correction methods. But the disadvantage of the APTI algorithm is
that it involves the sequential computation of ns slices which is sometimes
costly, and the ratio-based correction is relatively slow which can adversely
a�ect execution time.

On the other hand Parareal has the advantage of not solving any slices
sequentially, which saves on execution time, and it uses a relatively fast
correction scheme which consists on propagating the jumps. But on the
downside, Parareal's predictions are not as accurate as APTI's and they are
also dependent on all the slices. Additionally, Parareal's corrections involve
lots of communications since they are also dependent.

We tried to improve Parareal's performance by introducing the modi�ed
Parareal algorithm. This algorithm intends to save on execution time by
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assessing the convergence of every slice individually during every iteration,
then not computing the already converged slices during the following iteration
of the algorithm.

The results have shown that the Parareal algorithm outperforms the
APTI algorithm for relatively small integration periods, since the chosen
EOS condition enforced choosing a relatively small number of slices. The
small total number of slices proved to be not signi�cant enough to get a
valuable speed-up.

On the other hand, APTI outperforms Parareal (in terms of execution
time and number of iterations) for relatively large integration periods, when
the total number of slices became much larger. Thus we showed APTI's
e�ciency for predicting the orbit of a satellite in a J2 perturbed motion,
for up to 108 days with an average relative error of 6.10−3 which is very
insigni�cant considering the total integration time T = 9, 331, 200 seconds.

Moreover, the results also show that the modi�ed Parareal algorithm
takes less execution time than the classic Parareal algorithm for small and
large integration periods, hence doubling the speed-up.

As future work, we plan the following:

• Change the EOS condition for APTI from doing 1 whole iteration about
the xy-plane in the IPQW frame into doing 1

2
or 1

4
of a rotation, in order

to increase the total number of slices for small integration periods. This
will help improve APTI's performance for small time intervals.

• Increase the number of MATLAB workers by getting a license for a
bigger number of workers, then test if Parareal's execution time will
decrease for relatively large integration periods.

• Compare our numerical results with analytical ones given by classical
perturbation theory.

• Modify the Parareal algorithm in such a way that the coarse slices are
no longer equal, but take the same execution time. For instance, this
could be done by �rst doing trial run and determining which coarse
partition is taking the longest amount of execution time, and which
one is taking the shortest amount of execution time. Then one would
adjust the length of these partitions so that their respective execution
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times become equal. This approach is extremely useful to avoid any
idle time on any processor.
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