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ABSTRACT 
 
 
   Oil and gas exploration involves different complex and costly procedures. 
Specially designed vehicles (trucks or ships) send sound waves and collect their 
reflections using a set of predesigned geometrically distributed sensors. Further analysis 
is performed to extract the different seismic attributes which help identify the different 
lithological formations such as oil and gas reservoirs. The analysis also helps identify 
suitable drilling sites and estimate oil or gas quantity for business men and economists 
to assess the drilling risks and costs which can reach up to 1Billion dollars. In short, 
seismic data analysis is a distributed big data analysis by excellence: it involves many 
complex and computationally expensive operations from massive data acquisition, to 
data processing and data analysis.   
    
   In this thesis, seismic data acquisition, processing and analysis are described to 
highlight the complexity of the problem. The overall seismic data processing and 
analysis flow are migrated into a distributed design that uses the Map/Reduce Paradigm. 
A sample seismic texture analysis is carried out to identify target locations in an oil 
bearing site where slices of a 3D seismic block data are processed separately to extract 
window samples and their corresponding Haralick attributes using the Grey Level Co-
occurrence Matrix (GLCM). We propose the Barricaded Boundary Minority 
Oversampling Method (BBMO) which is based on a modification of the least square 
support vector machine (LS-SVM) since it can be easily distributed due to its equivalent 
incremental form. BBMO oversamples the minority samples at the boundary in the 
direction of its closest majority samples to fix the problem of data imbalance caused by 
the fact that oil bearing sites in a specific field are usually less than the non-bearing sites 
resulting in imbalance in the seismic exploration data.  All operations are described and 
profiled to find the computationally most expensive in our proposed framework. 
Experimental results on BBMO performance and computational improvements when 
multithreading and distributed accelerated computing are employed, motivate follow on 
work.  
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CHAPTER I 

INTRODUCTION 

 

1.1 Thesis Objective 

   Complex and large-scale data analysis have captured the attention of scientists 

and researchers to find solutions to the high computational costs and reduce their 

processing times. In particular, large-scale seismic data analysis involves many complex 

operations each of which has diversely expanded and researched to include different 

methods increasing the computational cost of the whole application. Different problems 

of seismic data analysis are addressed and solved. The main objectives of this thesis are: 

1. An overview of marine seismic data acquisition, processing and analysis is 

presented highlighting different methods employed during the three different 

stages. 

2. An overview of seismic texture analysis using the Haralick attributes that 

employ the Gray Level Co-occurrence matrices to extract four features that can 

aid in the identification of oil bearing sites 

3. Our proposed Barricaded Boundary Minority oversampling technique to remove 

the bias of LS-SVM with imbalanced datasets 

4. Description of the  methods used during  learning and prediction of oil bearing 

sites in 3D seismic data 
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5. Extension of the method into a distributed Map/Reduce  model after profiling the 

different tasks in the algorithm in different distributed platforms 

 

1.2 Thesis Organization 

The thesis is organized as follows  

Chapter 2 describes an overview of seismic data analysis. The raw data captured from 

the sensors undergoes many different processing techniques until the data is ready to be 

migrated into the 3D volume. Marine seismic method is described and all the processing 

steps are briefly described. Seismic texture analysis is described in detail. Support vector 

machines which are the classifiers used in this thesis along with their distributed forms 

are also described in detail. An overview of the map reduce framework and the RASSD 

frameworks is provided. Finally, a literature review on imbalanced datasets is discussed. 

Chapter 3 discusses the serial and distributed forms of the different flows in the 

method. The overall seismic method described in chapter 2 is imported into a distributed 

design that uses the Map/Reduce paradigm. An example flow that includes extraction 

and analysis of seismic texture attributes is presented and analyzed based on the design 

proposed. Finally, our proposed Barricaded Boundary Minority Oversampling technique 

which oversamples the minority at the boundary in the direction of the closest majority 

samples to remove the bias of LS-SVM. A detailed formulation and analysis is 

presented.  
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Chapter 4 gives the experimental setup, the metrics used, and the different experiments 

performed on the different datasets. First, experimental results of the BBMO are 

presented and analyzed. Next, seismic texture analysis is performed serially, in a 

distributed fashion, with multithreading, and with map reduce design over RASSD. 

Computational speedups and accuracy results are reported.  

Chapter 5 provides a conclusion and highlights the possible extensions of the discussed 

topics. 
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CHAPTER II 

METHODS OF SEISMIC DATA ACQUISITION, 
PROCESSING, AND THEIR ANALYSIS 

2.1 Introduction 

   The exploration of oil and gas involves different complex and costly procedures 

that encompass the joint efforts of geologists, geophysicists, engineers and businessmen. 

Specially designed vehicles (trucks or ships) send sound waves and collect their 

reflections using a set of predesigned geometrically distributed sensors. Further analysis 

is performed to extract the different seismic attributes which help identify the different 

lithological formations such as oil and gas reservoirs. The analysis also helps identify 

suitable drilling sites and estimate oil or gas quantity for business men and economists 

to assess the risks and the costs of drilling (up to 1Billion dollars [1]).  

 In addition to the complex processing steps involved in seismic analysis, the 

amount of data collected and involved during processing is huge (ranging between 

100GB to few TB [2]) which makes the problem computationally too expensive 

especially in 4D analysis and monitoring where real-time analysis is crucial. On the 

other hand, many distributed methods and paradigms such as the Hadoop Map/Reduce 

have proved to reduce the computational costs of large data analysis by parallelizing the 

tasks among the different nodes in the cloud.  

 The main purpose of this chapter is to describe the techniques and methods 

used during marine seismic data acquisition, data processing, and data interpretation. 

We discuss marine seismic data acquisition methods highlighting the difference between 
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2D, 3D, and 4D seismic data. Next, seismic data processing is discussed where the data 

is reconditioned first and migrated later to form the 3D seismic volumetric data. An 

overview of different data interpretation techniques that extract the needed features or 

attributes from the seismic data is presented. Among the seismic attributes and their 

different classifications, we discuss in detail texture attributes which employ the grey 

co-occurrence matrix (GLCM) to compute the Haralick texture attributes. An outline of 

Support Vector Machines (SVM) and Least Squares Support Vector Machines (LS-

SVM) is provided along with their distributed forms. The Hadoop Map Reduce and the 

RASSD platforms are briefly reviewed. Finally, imbalanced datasets and the different 

techniques used to overcome the problem of imbalance are reviewed.  

The following nomenclature is used for this section: 

θ,h

i,j

i,j

g

i

i

θ :GLCMrelationshipangle

C :GLCM horizontalmatrix (θ=0

V :symmetricGLCMelements

P :normalizedGLCMelements

N :numbergray tones

X : matrixcontaining thewindowsamples on

nodei

e :vectorof ones

D :diagonalmatrixcont

i

aining thelabelsof the

windowson nodei

E :adjustedsamplematrixon nodei

1i

2i

i

0

d :classifiermatrix-matrix multiplicationterm

d :classifiermatrix-vectormultiplicationterm

L :labelmatrixof eachwindow

ω : hyperplaneweight vector

b :hyperplanebias

C :the penalty term

ξ :soft margin slack variables

I :idnetitymatrixof size m+1whoselast

diagonalvalueis0

B :testingdata matrix

Y :predicted label

α :Lagrange multipliers

 

2.2 Seismic Data Acquisition and Processing 

 In this section, an overview of the seismic method is represented. Oil trapped 

beneath the earth surface is first discovered using the seismic acquisition method where 
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acoustic waves are sent into the earth’s crust and their response signals are gathered by 

special sensors. The collected data undergoes a series of processes to recondition the 

data and migrate it to form a 3D model of the explored site. The data is processed to 

extract different attributes which are in turn used for seismic event analysis such as oil 

bearing sites.  

2.2.1 Seismic Data Acquisition 

 Oil and gas are fluids of organic origin that were cooked under high pressure 

and over millions of years underneath the earth’s surface [3].  These hydrocarbon fluids 

are stored in porous rocks [4] forming an oil trap (geologic environments that allow for 

significant amounts of oil or natural gas to accumulate). Oil traps have two basic 

components: a permeable reservoir rock to hold the oil and natural gas, and a cap rock 

that is impermeable and traps the accumulated material. These traps exist under the 

earth’s crust both on land and under the oceans and seas. Naturally and over millions of 

years, different types of traps have formed as shown in Figure 1.  

  Many techniques have been employed to discover and characterize these traps, 

the most popular of which is the seismic method. Whether conducted on land or in 

marine environments, the method is the same except for some details and the equipment 

used during acquisition. In this paper, the marine seismic method is described and 

analyzed. 
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Figure 1Common types of traps [5] 

 

   The marine seismic method employs high energy, low frequency sound waves 

that can penetrate more than 6km below the sea floor using an acoustic sound source 

such as Vibroseis, hand gun, or dynamite. The generated acoustic waves travel through 

the various layers underneath the surface and bounce back to the receivers, geophones or 

hydrophones, which measure the strength and return time of each wave [6]. The sound 

wave propagates into the different layers governed by the laws of reflection and 

refraction and return to the sensors in three forms: compressional wave (P-wave), shear 

wave (S-wave) and the ghost wave as shown in Figure 2. 
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Figure 2The seismic reflection method [7] 

  

   The marine seismic method employs one or two sets of underwater equipment 

directly connected behind the marine seismic vessel (Figure 3). One set to generate 

sound waves and another composed of one or several long cables called streamers, each 

containing several hundred evenly spaced receivers that record the reflected signals [7]. 
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Figure 3Marine seismic data acquisition [8] 

    

   Based on the set-up used, seismic surveys may be two dimensional (2D), three-

dimensional (3D), or 4 dimensional (4D). 2-D surveys use one sound source and one set 

of receivers. These surveys are usually conducted along a grid with parallel lines that are 

up to five kilometers apart. The acquired survey data can then be analyzed to produce a 

set of 2D images. With 2D acquisition, a general picture of the geological characteristics 

of an area is produced indicating different types and sizes of structures present. To get 

more detailed information about the present geological features, 3-D surveys are 

conducted. Two or more sound sources and multiple sets of receivers (Figure 4) produce 

more accurate volumetric data per survey vessel sail line resulting in more accurate 

models of the exploration site.  
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Figure 42Dand 3D seismic data acquisition [7] 

 
 
 
   3D surveys are typically acquired along a racetrack pattern (as shown in figure 

4) and may take many months to complete. Powerful computers are required to process 

the large volume of the data and produce a 3D image of the subsurface. A 3D seismic 

data acquisition project for a 500 km2 area takes about 8 months [9].  

 

Table 1.Types of Marine Seismic Surveys 

Survey/ 
Data Produced 

Setup Amount of Data Time Taken 
to Process 

Purpose 

2D -1sound Source 
-1 streamer 
-Equidistant 
Sensors 

Few Gb Few Days General View 
Inaccurate 

3D -Many Streamers 
-Sensors organized 
in a grid 

100GB    -1.5 TB Few Months Detailed View 
Accurate  

4D Underground 
Sensors 

Few GB /TB per 
unit time 

Pseudo Real 
Time 

Accurate 
Monitoring 
Real Time 
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   4D seismic surveys are 3D surveys carried out at different times over the producing 

life time of a field to assess how the hydrocarbons are moving through the reservoirs as 

production proceeds. In this case, the hydrophones are placed at the sea floor connected 

to the processing vessel/structure (z, y, x, and p in figure 2) [10]. The on-board high 

performance computers allow the monitoring of the oil sites in a pseudo-real time 

fashion. Table 1 compares the different methods in terms of time taken, equipment used, 

acquisition times and applications. 

   Higher resolution images can be obtained by using sparkers, boomers, or chirp 

profilers instead of hydrophones [7]. For more detailed imaging, wide azimuth imaging 

[10] is used especially in sites with complex geological environments. Other parameters 

such as the currents, tides, temperature, salinity of water, and weather condition, are also 

recorded to correct the seismic readings. The data saved in the SEG-Y format contains 

the raw and some processed data in multiplexed channel sequential order per recording 

cycle. The data are recorded at the same time at consecutive channels [11].   

2.2.2 Seismic Data Processing 

    The raw seismic data cannot be directly used for analysis. Yilmaz [12] illustrated in 

detail the different processing techniques applied on seismic data (Figure 5). The data is 

reconditioned first to increase the signal to noise (SNR) ratio and later migrated to create 

a geographical model of the subsurface under study.  
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Figure 5Seismic data processing [12] 

 

   The multiplexed data samples from a recording cycle are first de-multiplexed 

by storing the data samples in consecutive order in memory, saving all the samples in 

one channel followed by those of the next channel as shown in figure 6. This process 

can be done by matrix transposition.  

 

 
Figure 6De‐multiplexing seismic data [12] 

 
 
   Next, the data is edited to remove the dead traces, noise traces, switch polarity 

on reversed traces and cut unwanted signals. Gain recovery is also applied. This process 

is like turning up the volume to account for seismic attenuation. Automatic gain control 
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can also be used to equalize the amplitude along the trace. Finally, field geometry is 

incorporated with the seismic data.  Coordinates of shot and receiver gathers are added 

to the headers of the seismic data.  Seismic signals can be considered as a sampled 

signal wave.  

 

 
Figure 7From seismic traces to seismic sections [13] 

    

 

   The waves are incorporated with a wavelet to produce a continuous wave that 

can be processed (Figure 7). When the waves are assembled based on their correct 

geographical locations, a seismic section is formed showing the lithological structure of 

the subsurface. But first, the wave undergoes de-convolution to improve the SNR 

further. Seismic de-convolution improves the temporal resolution of the data by 

compressing the wavelet of the seismic trace to a spike using a wiener filter. This 

technique broadens the spectrum of seismic data to obtain more high-frequency energy 



 
 
 
 

14 
 
 
 

in the signal. Figure 8 (right) shows more detail due to de-convolution when compared 

to the original image (Figure 8 (left)). 

 

 
Figure 8De‐convolution increases temporal resolution of seismic readings [12] 

 

Since both signal and noise are boosted, data is also filtered using a wide band filter. 

The data is then transformed from shot-receiver coordinates to midpoint-offset 

coordinates by using the field geometry information. With Common Midpoint Sorting 

(CMP) (Figure 9), each trace is assigned to the midpoint of the shot and receiver and all 

the ones with the common midpoint are grouped together. CMP stacking attenuates 

coherent noise such as multiples, guided waves, and ground roll.  
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Figure 9Common midpoint (CMP) sorting [12] 

 

  On the other hand, multi-fold coverage with non-zero offset recording yields 

velocity information about the subsurface. Velocity analysis is a crucial phase in most 

imaging projects since it aids during the migration to the depth domain. A study 

performed on selected CMP gathers or groups of gathers yields the velocity spectrum 

that represents hyperbolic trajectories governed by velocity, offset, and travel-time.  

 

 
Figure 10Velocity model [12] 
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  These velocity models are then spatially interpolated across the entire profile to 

supply a velocity function for each CMP gather in the profile (Figure 10). Velocity 

model is also used for normal move-out correction to flatten the events across the offset 

range. The resulting distortions are muted before stacking. Residual static correction is 

applied on the NMO corrected (Figure 11) stacked data to improve stacking quality. 

Predictive de-convolution is used to suppress reverberations and whiten the spectrum. 

Time variant band pass filtering is applied to suppress noisy frequency bands and finally 

a gain is applied to bring up weak reflections.  

 

 
Figure 11Normal Move‐Out (NMO) correction [12] 

    

   Dipping events in the seismic data are mapped to their subsurface position by 

migration of the stacked section using the medium velocity to produce a seismic 2D 

image or slice as shown in figure 12. Migration also collapses reflections. There are two 

types of Migration: pre-stack time migration and pre-stack depth migration. Kirchhoff 

time migration (PKTM) is one of the most popular migration algorithms [14].  
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Figure 12Migrated Image [12] 

 
 

2.2.3 Seismic Attributes 

   From the processed seismic data, a plethora of seismic attributes can be 

extracted. Seismic attributes are quantified specific data characteristics which represent 

subsets of total information and can be computed from pre-stack or from post-stack data, 

before or after time migration. Ben Summerfield highlighted that it was possible to 

predict fluid content, porosity and faces changes from reflection character changes such 

as bright spots [15] that became popular in the 1970’s [16][17]. Taner and Sheriff 

introduced five attributes: instantaneous amplitude, instantaneous phase, instantaneous 

polarity, instantaneous frequency, and weighted average frequency [18]. New 

geologically non-significant attributes such as zero-crossing frequency, average 

amplitude, dominant frequency and many others, revealed meaningful patterns in the 

seismic data. Several studies related complex trace seismic attributes to Fourier spectral 

averages, which yielded clues to wavelet properties and led to “response attributes” [19]. 
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Ostrander used pre-stack attributes and proved them to be efficient direct hydrocarbon 

indicators [20]. In the mid 1990’s, 3D seismic attributes became popular which helped 

bring new advances into the attribute analysis field [21]. Other multi-dimensional 

attributes soon followed, such as parallelism and divergence [22][23]. Seismic Inversion 

[24-27] and Attribute versus Offset (AVO) [28-30] (which is based on the Zoeppritz 

equations [31]) are two other techniques commonly used in seismic data analysis as 

well. They employ both pre-stack and post-stack data to compute diverse attributes such 

as the Acoustic Impedance (AI), and the Elastic Impedance (EI) [32]. Simultaneous Pre-

stack Inversion uses the pre-stack CMP gathers to compute impedance and density [33]. 

Seismic and well-log data have to be tied together by using interpreted seismic horizons 

before inversion [34]. 3D versions of dip and azimuth were also defined and studied in 

[35].  

2.2.3.1Seismic Attribute Classification 

   Hundreds of seismic attributes have been created and are classified in many 

ways [36-38]: attributes derived from Fourier analysis, complex trace analysis, time-

frequency analysis, wavelet transforms, principal components, AVO attributes, and 

texture attributes to name a few.  

Pre-Stack Attributes 

   Azimuth and offset related information can be derived from the image gathers 

traces or the CMP. Although computing these attributes is usually computationally 

expensive, they can help understand fluid content and fracture orientations.  AVO 

attributes and velocity are examples of pre-stack attributes. 
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Post-Stack Attributes 

   Post-stack attributes are the ones computed after stacking the seismic data 

which is an averaging process to eliminate offset and azimuth information. The migrated 

data will still maintain the time relationships and all the temporal variables such as 

frequency. Such attributes are used to observe large amounts of data in initial 

explorations.  

Attributes may be further classified by their computational characteristics: 

Instantaneous Attributes 

   Instantaneous attributes are calculated sample by sample, and represent 

instantaneous variations of various parameters. Complex traces may be used to compute 

instantaneous values of attributes such as trace envelope, its derivatives, frequency and 

phase. 

Wavelet Attributes 

   Wavelet attributes include the instantaneous attributes that are calculated at the 

peak of the trace envelope and have a direct relationship to the Fourier transform of the 

wavelet. For instance, instantaneous frequency at the peak of the envelope is equal to the 

mean frequency of the wavelet amplitude spectrum. Instantaneous phase corresponds to 

the intercept phase of the wavelet. This attribute is also called the “response attribute”.  

Physical Attributes 

   Physical attributes relate to physical qualities and quantities. The magnitude of 

the trace envelope is proportional to the acoustic impedance contrast. Frequencies 

directly relate to bed thickness, wave scattering and absorption. Instantaneous and 
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average velocities directly relate to rock properties. These attributes are classically used 

for lithological classification as well as in reservoir characterization. 

Geometrical Attributes 

   Geometrical attributes define the spatial and temporal relationship of all other 

attributes. For instance, lateral continuity using semblance is a good indicator of bedding 

similarity and discontinuity. Because they define event characteristics and their spatial 

relationships, geometrical attributes are also used for the recognition of depositional 

patterns, and the lithology. 

In summary, variation of amplitude of post and pre-stack seismic data are valuable for 

hydrocarbon investigation, especially in relation to gas reservoirs. 

Some Basic Attribute Characteristics 

   Let us consider few examples of attributes and their characteristics. The 

envelope represents the instantaneous energy of the signal which is proportional in its 

magnitude to the reflection coefficient.   The Trace Envelopeis a physical attribute and it 

can be used as an effective discriminator for bright spots, sequence boundaries, acoustic 

impedance contrast, gas accumulation, and others.The First Derivative of the 

Envelopewith respect to time represents the variation of the energy of the reflected 

events. This attribute is also a physical attribute and it can be used to detect possible 

fracturing and absorption properties. The Second Derivative of the Envelopegives a 

measure of the sharpness of the peak of the envelope. It can identify all reflecting 

interfaces within the seismic bandwidth. 

   The instantaneous phase attribute is also a physical attribute and can be 

effectively used as a discriminator for geometrical shape classifications. Instantaneous 
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phase is a good indicator of lateral continuity, can be used to compute the phase 

velocity, and can produce detailed visualization of stratigraphic elements.  

  

  

A: Original seismic 
 

B: Velocity model 

C: Acoustic impedance D: Steer FFT 

  

E: Variance F: Inline dip 

Figure 13Different attributes computed using seismic sections [141] 
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Instantaneous frequency is the time derivative of phase, which relates to the 

centroid of the power spectrum of the seismic wavelet, responds to both wave 

propagation effects and depositional characteristics. It is a physical attribute and can be 

used as a Hydrocarbon indicator by low frequency anomaly. It can also be used to 

identify fracture zones at the lower frequency zones. Instantaneous frequency can also 

be used to indicate bed thickness. Figure 13 illustrates examples of seismic attributes 

represented as 2D images. 

2.2.3.2 Seismic Texture Analysis 

   Texture is another important characteristic that can help in identifying certain 

patterns of interest within an image and can be applicable on a wide variety of 

applications that deal with images. Haralick et al. developed 14 features for texture [39]. 

However, defining or selecting these features is dependent on the application itself. 

Textural features are computed based on the tonal variation within a band or a window. 

Varying shades of grey in an image can be used to calculate texture features. These 

textures can be fine, coarse or smooth, irregular or lineated. 

   Grey-Level Co-occurrence matrices (GLCM) is the basis of Haralick feature 

attributes which considers the relation between two pixels at a time, called the reference 

and the neighbor pixel. Any image, which can be defined as a two dimensional array or 

a matrix, can be quantized into a finite number of grey levels Ng. The grey-level co-

occurrence matrix can be defined as the probability Pi,j where two neighboring pixels 

separated by a certain distance  occur in an image, one with grey tone i and one with 

grey tone j. The GLCM is also dependent on the angular relationship between the two 
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cells. Neighboring cells can have and angular relationship   equal to 00, 450, 900 and 

1350 as shown in figure 14. 

 

 
Figure 14Angular relationship between two neighboring cells in an image [39] 

    

   After setting the distance and the angular relationship, the GLCM can be 

computed as follows. First, the original image of dimension nxm is quantized into a 

number of grey levels Ng, usually 8, 16, or 32. The GLCM will have a dimension Ngx 

Ng. Based on the distance and the orientation, the number of co-occurrences of different 

grey levels in the image is computed.  The symmetric of the computed matrix is added 

to it and then averaged to obtain a normalized symmetric square matrix. ,i jV being the 

sum of the GLCM and its symmetric, the probabilities , jiP    are computed by 

normalization using equation (1) : 

,
,

,
, 1

g

i j
i j N

i j
i j

V
P

V





                                                                (1) 
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Figure 15Calculating the GLCM matrix of a 4x4 sample image 

    

   As an example, consider figure 15. The 4x4 image is quantized into 4 grey 

tones (1, 2, 3, and 4). Next the matrix C is constructed which contains the relative 

frequencies of the different grey tone combinations within the image with a 0 degree 

angular relationship separated by a distance 1 which means the first neighbor to the 

right. As an example, the value “2” is adjacent to the value “4” two times thus C (2, 4) is 

set to 2. The GLCM matrix is constructed by adding the symmetric of the matrix C to 

itself and then normalized. 

   Haralick introduced fourteen statistical texture features which were generated 

from the GLCM in different directions and averaged. These features can be divided into 

three major groups: contrast group, orderliness and statistical some of which are defined 

and discussed.  

Contrast Group 

This group comprises the features that use weights related to the distance from the 

GLCM diagonal. All these features include the (i-j) term multiplied by the GLCM 

probability values.  
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A. Contrast:Contrast is a local grey level variation in the grey level co-

occurrence matrix. It can be thought of as a linear dependency of grey levels 

of neighboring pixels. According to the equation of contrast, the weights 

increase exponentially. High contrast values are likely for heavy textures and 

low for smooth and soft textures.  

2
,

, 1

( )
gN

i j
i j

Contrast P i j


 
 

B. Dissimilarity:Dissimilarity is a measure that defines the variation of grey 

level pairs in an image. It is the closest to Contrast with a difference in the 

weight. Unlike contrast, the weights of the dissimilarity function increase 

linearly. 

,
, 1

| |
gN

i j
i j

Dissimilarity P i j


 
 

C. Homogeneity: Homogeneity measures the uniformity of the non-zero entries 

in the GLCM. Homogeneity weights values by the inverse of the Contrast 

weight, with weights decreasing exponentially away from the diagonal.  

,

2
, 11 ( )

gN
i j

i j

P
Homogeniety

i j


   

Orderliness 

Orderliness indicates how regular the pixel values within a specific window are.  

A. Angular second moment (ASM) and energy: ASM and Energy use each Pij 

as a weight for itself. High values of ASM or Energy occur when the window 

is very orderly. 
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2
,

, 1

gN

i j
i j

ASM P

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Energy ASM
 

 

B. Maximum Probability: occur if one combination of pixels dominates the 

pixel pairs in the window. 

,( )i jMaximum probability Max P  

C. Entropy:Energy is the opposite of entropy. Energy can be used to do useful 

work. In that sense it represents orderliness. Entropy in any system 

represents disorder, where in the case of texture analysis is a measure of its 

spatial disorder 

, ,
, 1

( ln )
gN

i j i j
i j

Entropy P P


   

Statistical 

The third group of GLCM texture measures consists of statistics derived from the 

GLCM. Examples include 

A. The mean: which represents the average GLCM value horizontally or 

vertically 

,
1 1

( ) ( )
g gN N

x i j x x
j i

p i P and i p i
 

    

,
1 1

( ) (j)
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y i j y y
i j
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x yand  are the means 
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B. The variance:Variance is a measure of the dispersion of the values around 

the mean. It is similar to entropy.  

2

1

( )( )
gN

x x
i

Variance p i i 


   

C. The correlation:The Correlation texture measures the linear dependency of 

grey levels on those of neighboring pixels 

,
, 1

gN

i j x y
i j

x y

ijP

Correlation

 

 






where x yand  are the standard deviations 

 GLCM and Haralick were the basis of face recognition analysis [40]. An Oil 

spill detection technique using GLCM and texture analysis is described in [41] where 

pixels or remote images are classified into two classes; oil or non-oil. Other applications 

include the use of GLCM in edge enhanced images [42] and as texture analysis in 

seismic data [43] and in fabric surface [44]. Volume texture extraction for 3D 

visualizations and interpretation has also been studied [45]. Texture attribute analysis 

was also employed in reservoir prediction and characterization [46] and for detecting 

colon cancer cells [47]. 

2.2.3.3The Edges of the Image 

   While computing the Haralick attributes, the edges of the image are not 

included in the computation since values assigned to a specific pixel are defined by the 

window centered at that pixel. The edge pixels of an image usually represent a very 

small fraction of total image pixels which make this problem minor [48]. As shown in 

figure 16, windowing of the edges of the image is not possible when square matrix of 
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odd dimension (“5” in the figure) is employed. Only the windows centered at the pixels 

in the yellow region will be processed. 

 

 
Figure 16Windowing of images [48] 

 
 

2.3 Seismic Data Analysis 

 During analysis of seismic data, the selection of the proper set of attributes for a 

specific application is essential. Many attributes duplicate each other such as the 

amplitude attributes. Cross-plotting of seismic attributes can be employed to visually 

relate attributes and eliminate similar ones [49][50]. Principal component analysis 

(PCA)  can also be used to determine the most effective seismic attributes [51]. Other 

attribute reduction methods employ rough set theory and support vector machines 

(SVM) [52]. Figure 17 depicts the general multi-attribute analysis of seismic data. 

Examples of applications include reservoir characterization [53], predicting reservoir 

properties from well logs using neural networks [54], and seismic analysis workflow for 

reservoir characterization in the vicinity of salt [55]. 
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Figure 17Basic flow of seismic multi‐attribute analysis [22] 

    

   Hashemi et al. presented a classification application to detect gas chimneys 

using seismic attributes [56] and RDA method based on the set of popular attributes for 

the gas chimney problem introduced by Tingdahl et al. [57]. Other applications discuss 

the relationships between the different attributes [49]. Kliff analyzed 8 key hydrocarbon 

indicators retrieved from post-stack data [58].  

2.3.1 Support Vector Machines 

Support vector machines (SVMs) were first introduced by Vapnik which aims at 

finding the separating hyperplane that best separates the samples into two classes 

[59][60]. SVMs have many variations and different incremental and distributed forms 

which are described in what follows. 

The original SVM is a constrained quadratic optimization problem, which 

produces a global and a unique solution and aims at maximizing the margin and 

minimizing the error of the misclassified samples. Given a training set   1
( , )

N

i i i
x y


 where

n
ix  , and assuming the pattern is linearly separable, there are two classes: 1iy   and
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1iy   .  The aim is to find the optimized hyperplane that separates the two classes 

(Figure 18). 

 

 
Figure 18Learning the separating hyperplane of SVMs 

 

Define by   the hyperplane weight vector and b by its bias, the margin 

separating the two support vector hyper-planes is 2

|| ||w
 which needs to be maximized 

and is equivalent to minimizing  
2|| ||

2 2

T  
  under the minimized constraints  

( ) 1T
iy x b     . The problem can be defined as  

2

( ) 1

T

T
i

Minimize

Subject to y x b

 






  

(2) 

Let i   be the Lagrange multipliers of the samples. The Lagrange equation of the 

optimization problem can be written as  

1
( , , ) { ( ) 1}

2

T
m T

i ii
L w b y x b

   


                                                       (3) 

By finding the derivatives of ( , , )L w b   with respect to   and setting it equal to zero we 

get: 
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1
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
                             (4) 

By finding the derivatives of ( , , )L w b  with respect to b and setting it equal to zero we 

get: 

1
0

m

i ii
y


 (5) 

In general, in any optimization problem, the dual problem is easier to solve than 

the original problem. The dual problem can now be defined as: 

1 1 1
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Minimize L y y x x
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
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  








  


                      (6) 

The samples with non-zero i  are called the support vectors which represent the 

samples that decide the direction and the position of the separating hyperplane.  In case 

the data is linearly inseparable, a relaxation technique is used to minimize the number of 

misclassified points (Figure 19).  

 

 

 

 
 

 

Figure 19Linearly separable and non-separable cases [64] 

 

In this case a soft margin slack variables i  and the penalty parameter C (which controls  

the trade-off between the complexity and the number of misclassified points and needs  
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to be tuned) are introduced and the optimization problem becomes: 

12
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i
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i
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Subject to y x b
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
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 


                                               (7) 

The dual is almost similar to the previous formulation except for one of the constraints.  

1 1 1
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  

                    (8) 

After determining the Lagrange multipliers, we compute the vector ω, then b, 

and then the equation of the hyper-plane. SVM is different from neural network in that it 

cannot have local minima hence producing a unique hyper-plane. 

In case of non-linear boundaries as in figure 20, SVMs can employ several kinds 

of kernel functions such as linear, polynomial, radial basis functions (RBF) as long as 

they satisfy Mercer’s condition. With the use of kernels, the data becomes linearly 

separable and SVM can be applied in feature space. 

 

 
Figure 20Non-linear boundaries are transformed into a linear one using kernel methods [64] 
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   Support vector machines have been used in a plethora of applications such as 

text categorization [61], object recognition [62], computer graphics [63] and 

geotechnical engineering [64].SVMs have been modified and restructured in different 

forms such as the sequential minimal optimization (SMO) [65] and least squares support 

vector machines (LS-SVM) [66].   

2.3.2 Least Squares Support Vector Machines 

The SVM formulation proposed by Vapnik can be solved using quadratic 

programming (QP) that is usually computationally expensive. Suykens and Vanderwalle 

proposed an alternative to SVM, the LS-SVM formulation by changing the error term in 

the objective function to a least square error function similar to ridge regression, and the 

inequality constraint was changed into an equality, which results in a system of linear 

equations instead of a QP problem [59]. X being the training samples, D being the 

diagonal matrix containing the labels of the training samples and e being a vector of 

ones, the optimization problem of the LS-SVM can be expressed in matrix form by 

1 1

2 2

( )

T T

T

Minimize C

Subject to D X be e

   

 

 

   

                                                                    (9) 

Due to the equality constraint, the above problem can be further reduced by 

substituting the error term into the objective function. The optimization function is 

reduced to an unconstrained one: 

1 1
( ( )) ( ( )

2 2
T T T TMinimize e D X be e D X be        


                                          (10) 

Finding the partial derivatives with respect to ω and b and rearranging the terms, 

the problem becomes a system of linear equations. 
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 

                                                            (11) 

where [ ]E X e  and
0

I is a (m+1) by (m+1) diagonal matrix whose last entry is a zero 

and the others have diagonal entries equal to 1. Predicting the class of new samples is 

done by using  

( )j jy sign wX b       (12) 

2.3.3 Distributed SVMs 

  Do and Poulet proposed an incremental and distributed version of LS-SVM that 

solves the problem on smaller portions of the dataset at a time instead of loading the 

whole data into memory [67]. In their design, they consider the parts that can be 

incrementally solved. Suppose the data was split into k smaller blocks of data iX which 

contains a certain amount of samples to be trained and suppose the diagonal matrix D is 

also divided into smaller diagonal matrices iD as shown in figure 21.  

 

 
Figure 21Distributed LS‐SVM 
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We can write 
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  Using linear algebra, the two terms 1
Td E E and 2

Td E De  of equation (11) can be 

computed in the following manner  

1 1 1 1 2 2 2 1
...

kT T T T T
k k k i i ii

d E De E D e E D e E D e E D e


       (14)

2 1 1 2 2 1
...

kT T T T T
K K i ii

d E E E E E E E E E E


       (15) 

 Therefore, the calculation of these two terms can be done block by block whose 

aggregated results can be used to find the final hyper-plane parameters using equation 

(11). The equation becomes 

  

1

0
1 2 1 21 1

[ ... ]
k kT

n i ii i

I
b d d

C
  



 

   
 

      (16)  

 Do and Poulet’s extended these concepts to a distributed version to run on 

distributed systems as shown in figure 21. Supposing there are K nodes in the 

distributed system, each node will have a portion of the data matrix iX along with its 

portion of the diagonal matrix iD .On each node i, 1
T

i i id E E  and 2
T

i i i id E D e  are 

computed and the results are sent to the master node which aggregates them using 

equations (14) and (15). The master node finds the hyper-plane parameters  and b using 

equation (16).  
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 Distributed block minimization [68], the cascaded SVMs[69] , parallel SVM 

(PSVM) [70] and others [71] are examples of  distributed SVMs. Distributed block 

minimization is a linear distributed SVM solver proposed by Pechyony et al. [68] which 

works in an environment in which the data is distributed over k nodes. A mapper 

function runs an updated version of SVM in the dual space which uses the difference of 

the parameter  1t t     . The solver is run on each subset data at the nodes. The 

partial results are sent back to the master node where the reducer function gathers all the 

solutions from the different nodes and outputs a single global solution 

1
1

1 k
t

t t i
ik

  


   . This solution is sent back to the nodes where a new solution is 

computed. A threshold value controls the number of cycles of this operation. This 

algorithm was implemented on Map-Reduce/Hadoop on a dataset of 79M and took only 

11 minutes to achieve an equivalent accuracy to the normal Liblinear SVM that took 

around 3 hours.  

 The parallel cascaded SVM [69] is another technique which works in a 

distributed fashion. It basically decomposes the problem into many sub-problems on 

which SVMs are applied and then it combines the resulting SVs two by two (or 3 by 3) 

as shown in figure 22.The SVM is applied again on these resulting sets to produce new 

SVs until 1 set remains and the final set of SVs is produced and the final hyper-plane 

parameters are computed.  



 
 
 
 

37 
 
 
 

 
Figure 22The cascaded SVM 

  

The last output can be sent back as feedback to update some of the initialized 

variables and the data will be scanned again in the cascaded form until a globally 

converging result is achieved. Filtering is performed by taking all elements that are 

interior to the region and discard the ones outside the region. In other words, a non-

support vector in a subset has a higher chance of being a non-support vector of the 

whole problem, and that’s why it can be eliminated. An attempt to speed-up the cascade 

SVM further was implemented using field programmable gate arrays (FPGA) as 

described in [72]. 

 DominikBrugger has compared and analyzed in [73] different support vector 

machines where he investigated at identifying the computational most demanding 

portions of the algorithm and the parts of the quadratic program that can be parallelized. 

He concludes that all types of SVMs can be parallelized and linear and even super-linear 

speedups can be achieved. Different types of applications have been applied with 
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distributed SVMs such as in image annotation [74] pattern matching algorithms [75] and 

cloud based classification [76]. 

 

2.4 Distributed Platforms 

 In this section, we present a brief overview of the different distributed methods 

employed during our experiments: Hadoop Map/Reduce, Matlab, and RASSD.  

 The size of the digital universe has increased around ten times from 2006 to 

2011 to reach 1.8 zettabytes (1 zettabyte-1 million terabytes) [77]. This is not surprising 

since a large part of the world uses social media, email services, and mobile 

applications. Hadoop was created by Doug Cutting who had already created Apache 

Lucine for text searching. The Google file system soon flourished in 2003 which had the 

capability to handle very large files around the web [78]. In 2004, Google introduced 

Map/Reduce to the world [79-82]. 

 Map/Reduce is a programming model for processing and handling large 

datasets (Figure 23). The processes are divided into two phases: a mapper and a reducer. 

Each phase employs key-value pairs as input and output. The programmer specified the 

key value pairs used, the map function, and the reduce function. The map function 

processes data at the different nodes of the system to emit key-value pairs. The reducer 

merges all the intermediate results with the same key.  
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Figure 23The Hadoop Map/Reduce architecture [83] 

  

   Programs written in this style are automatically parallelized and executed on a 

large cluster of machines. Hadoop takes care of the partitioning details of the input data, 

scheduling the execution of the different tasks via job-trackers and task-trackers, 

handling machine failures, and managing the communication between the different 

machines. Hadoop uses the Hadoop Distributed File-system (HDFS) to manage and 

handle the data.  

   Map/Reduce design was employed for many applications that involve large 

amounts of data. Spam filtering [84], seismic data analysis and monitoring [14][85], 

image and video processing [86], video watermarking [87][88],cloud security[99], web 
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video categorization[90], and SVM classifiers [91][92] to mention a few, have been 

already applied on the Hadoop framework.  

   Matlab [94] has introduced a distributed and parallel platform on which the 

Hadoop Map/Reduce method can be applied. The parallel implementation allows 

multithreading, while the distributed form can be performed on a cluster [95]. 

Reconfigurable Accelerated Solid State Drives (RASSD) is a distributed platform for 

data intensive applications which uses solid state drives combined with field 

programmable gate arrays (FPGA) placed at the different nodes of the distributed 

system [96]. FPGA are used to accelerate processes by hardware design [97]. FPGAs 

have also been applied for seismic attribute extraction as illustrated in [98-102]. The 

RASSD platform (Figure 24) assumes that the data is already dispersed in different 

geographical locations and schema servers are used to resolve the location of the data. A 

client sends a query request to the middleware server which processes the query and 

identifies the location of the concerned data and the processing required. Each server 

being connected to multiple RASSD nodes downloads the appropriate function codes 

called “drivelets” and the corresponding acceleration configuration bit stream onto the 

RASSD’s active processing unit. The capabilities integrated into this system can be built 

using open source frameworks such as Hadoop Map/Reduce. From the application 

perspective, the programmer needs to identify the data, its location, the processing 

required, the needed acceleration as well as the needed parameters. The RASSD OS is a 

real-time multitasking operating system that uses 32 bit MIcroBlaze soft processor core 

available for Xilinx FPGA’s [103]. The K-means was distributed and analyzed on 

Hadoop [104] and even accelerated using FPGAs [105].  
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Figure 24Overview of the general system architecture of the RASSD [96] 

 

   Many of the algorithms employed during seismic data analysis are usually 

applied per data unit such as per trace, or per image window, or per frequency range. 

Thus, these algorithms can be easily parallelized where processing of units can be 

performed separately. The results from the different parallel processes can be combined 

into a final aggregated result. 

 

2.5 Literature Review on Imbalanced Classification and Other 
Related Work 
 
   Image processing techniques are used in seismic data analysis as well. 

Handling noise data enhances the signal to noise ratio by filtering or resisting the noise 

[106]. Instances that are suspected to be noisy are discarded based on some evaluation 



 
 
 
 

42 
 
 
 

criteria, or replaced by a more appropriate value [107-110]. Feature extraction 

techniques have been developed to render the attribute set into a concise and non-

redundant attribute set. Techniques include principal component analysis (PCA), 

independent component analysis (ICA) [111], correlation, and the regularized 

discriminant analysis (RDA) [112].Support vector machines, neural networks, and 

decision trees are among the popular classifiers that are commonly used in pattern 

recognition problems [113].  

   Classification of large and imbalanced datasets is one of the leading challenges in 

data analytics since traditional machine learning algorithms are usually biased towards 

the majority class. In many real life applications the data is imbalanced i.e. the important 

class has much less instances than the other class. The numerous efforts that have aimed 

to learn from imbalanced datasets can be divided as either data, algorithmic, or kernel 

based nature. At a data level, resampling methods such as: over-sampling of the 

minority class to balance the class distribution by replication and under-sampling of the 

majority samples which balances the data by eliminating samples randomly from the 

majority class [114][115][116], were proposed to resample the data prior to training. 

Because under-sampling methods proved to be inefficient because of the loss of 

important information [117], the Synthetic Minority Over-Sampling Technique 

(SMOTE) [118] added “synthetic” data to the minority class by k nearest neighbor. 

Other extensions of the SMOTE algorithm have been developed such as SMOTE-RSB 

which uses the rough set theory [119], the Safe Level-SMOTE [120] where safe level 

coefficients are computed by considering the majority class in the neighborhood, and the 

Borderline-SMOTE [121] which oversamples the minority class at the borderline by 
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considering the nearest minority neighbors. An extension of Borderline-SMOTE, 

borderline-SMOTE-2, oversamples the minority class by considering the nearest 

neighbor from the majority class in addition to the k nearest minority neighbors. Also, 

SPIDER [122] combines local over-sampling of the minority class with filtering 

difficult examples from the majority class.  

 Extensions to Support Vector Machines are among techniques that have been 

proposed at an algorithmic level to handle imbalanced datasets. Veropoulos et al. 

assigned different error costs for each class [123] while Tang and al. merged a cost 

sensitive learning approach that extracted a smaller number of the support vectors, with 

different error costs [124]. Another popular technique is the one-class SVM which 

estimates the probability density function and gives a positive value for the elements in 

the minority class and a negative value for everything else [125][126] as if the cost 

function of the majority class samples is taken to be zero. Scholkopf et al. proposed 

matching the data into a new feature space using a kernel function and separating the 

new samples from the origin with a maximum margin [127]. Support Vector Data 

Description aims at finding a sphere that encompasses the minority class and separates 

them from the outliers. Since kernel parameters influence the size of the region, correct 

tuning is essential for satisfactory accuracy [128]. z SVM modified the decision 

boundary in such a way to remove the minority class’s bias towards the majority 

class[129]. Other techniques have also been proposed to solve the problem of 

imbalanced datasets that include the combination of two or more different algorithmic 

approaches [130-134]  



 
 
 
 

44 
 
 
 

 Kernel modification methods among which are Class Boundary Alignment 

(CBA) and Kernel Boundary Alignment (KBA), transform the kernel function to enlarge 

the region around the minority class in an attempt to overcome the imbalance problem 

[135][136][137]. Wu and Chang point out that since positive samples lie further from 

the ideal boundary; SVMs produce skewed hyper-planes with imbalanced datasets.  
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CHAPTER III 

COMPUTATIONAL DESIGNS, FLOWS, 
ALGORITHMS AND ANALYSIS 

3.1  Introduction 

   As evident by the discussion made in the previous section, seismic data analysis 

is naturally complex.  After their collection, seismic data undergoes a series of 

composite algorithms (pre-processing, attribute computation, and data analysis) to 

identify interesting sites such as oil and gas reservoirs, drilling sites, faults and salt 

domes. Each of these site identification problems employs a diverse yet a specific set of 

attributes. Selected by an expert in the field, the attributes could be further analyzed to 

select the most significant ones by using feature analysis methods (such as PCA, 

correlation). Finally, the final attribute set is used as an input to a classifier to identify 

interesting locations in the exploration sites. 

   Seismic data are by nature so huge and processing large amounts of data results 

in a more expensive computational cost. Distributed systems have proved to reduce the 

computational expense of problems consisting of complex procedures and that handle 

volumetric data. In addition, using the FPGAs to accelerate the computationally most 

expensive portions of the different algorithms may further result in larger computational 

gains.  

   On the other hand, seismic attribute data may be imbalanced since oil bearing 

samples will be relatively much smaller relative to the non-oil bearing ones. We propose 
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in the last section, the Barricaded Boundary Minority Over-sampling to overcome the 

problem of the bias of LS-SVM.   

 

3.2 Seismic Data Processing and Analysis Workflows 

 In this section, we begin with the typical sequential processing flows employed 

during seismic data analysis. Later, the flows are migrated into a distributed design 

using the Map/Reduce paradigm. Using this method, we finally illustrate an example 

flow that employs seismic images to compute textural attributes and uses the 

incremental LS-SVM to predict hydrocarbon-bearing sites employing Map/Reduce. 

3.2.1 Sequential Flow of Seismic Data Interpretation 

       As illustrated in figure 25, the overall flow of the seismic data analysis and 

interpretation can be divided into two major phases: the data processing phase and the 

classification phase.  

Figure 25Overview of the general system flow of seismic data processing 
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The first phase can be divided into two major stages: 

 the Pre-Processing Stage (PPS) : where  the collected raw seismic data is 

reconditioned before it is used to produce  migrated 3D models of the 

exploration site (Figure 5) . 

 the Attribute Extraction Stage (AES) where the output data cubes produced 

during PPS will be used to compute the seismic attributes (Figure 26). 

 

 

Figure 26Attribute Extraction Stage 

    

   Many of these cubes, such as the seismic cube, are permanently stored in the 

memory since they are used frequently during AES. Attribute data are computed from 

pre-stack and post-stack data depending on their type as shown in figure 26.  Different 

types of attributes are computed in different ways. Textural, statistical, geometrical, and 

instantaneous data can be extracted from the post-stack data. AVO attributes and 

Inversion analysis employs pre-stack and post-stack data and produces a different set of 

attributes.                        
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   The attributes are saved in the form of attribute cubes. Typically an expert 

selects a set of suitable attributes for each application during the Data Selection Stage 

(DSS) during which the chosen attribute set is either fetched or computed and arranged 

into the attribute matrix A.  

 

 
Figure 27Classification stage 

    

   In any supervised learning, labeled data are needed. Both the labels and their 

respective attribute matrix are employed as inputs to the Classification Phase which is in 

turn divided into two major stages: 

 The attribute matrix processing (AMP): where the data is reconditioned and 

enhanced before being fed to the classifier. 

 Learning and Prediction Stage (LPS): where different classification and 

clustering algorithms are employed. 

   Normalization, imbalanced data analysis, PCA, ICA, RDA, noise removal, and 

other methods can be employed to process the data. SVM, LS-SVM, NN, and K-means 
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are some examples of popular classifiers. At this stage, classifiers are learnt according to 

the label and attribute matrix and then predictions are made. The results are then 

analyzed through the performance metrics available for each classifier and repeated if 

needed. The prediction results are used to analyze the sites through volumetric analysis 

and visualization to identify and assess the different geological structures in the site. 

Figure 27 depicts the classification stage.  

3.2.2 Distributed Seismic Data Processing Workflows 

 In general, every problem that can be written as a summation can be 

parallelized. Seismic analysis involves many processes which are in this form and hence 

many of the operations can be distributed-ly computed. We employ Hadoop’s 

Map/Reduce paradigm to illustrate the distributed form of the different procedures. We 

first define for every task a splitter input data format and splitter output data format 

depending on the process which we intend to parallelize (Figure 28). The data splitter 

function will be responsible for indexing and splitting the data into smaller portions into 

the different nodes of the distributed system. Every process that can be parallelized is 

defined by a mapper and a reducer each of which inputs and outputs specific 

<key,value> pairs. A special combiner method is needed to recombine the distributed 

processed data. Specific data input and output formats are defined for the combiner as 

well.  The combined data is then saved into the data cubes or memory for later use.  
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Figure 28Map/Reduce input and output 

    

   Figure 29 depicts a Map/Reduce design of the pre-processing and attributes 

extraction phases. The original seismic data is split over the different nodes first using 

the Data Splitter 1 function. Each of the pre-processing algorithms (PPSi) that have the 

capability of being designed in the Map/Reduce framework are coded as Map/Reduce 

pairs and processed distributed-ly. For each mapper and reducer, specific <key,value> 

pairs are defined. Special data splitters and combiners manage the data over the 

distributed system.  

 

 

Figure 29 Map Reduce based architecture of the preprocessing stage (PPS) and the attribute extraction 
stage (AES) 
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   As an example, a distributed implementation of Kirchhoff Time Migration 

using Hadoop’s Map/Reduce was studied in [10]. Since individual traces are processed 

separately and then summed based on their travel times, PKTM can be directly 

parallelized [48]. In this example, the input <key,value> pair are the trace number and 

the sampling values of the trace respectively. Mappers independently process the 

different <key,value> pairs to migrate the data using sequential forward  

PKTM. The reduce function simply gathers the migrated values to produce the final 

image.  Another example of parallel computation of   the correlation process using 

seismic data   is illustrated in [125]. The correlation runtime was reduced to produce 

improvements by a factor of 19. Similarly, during the attribute extraction phase (AEP), 

parallelization is performed again using the Map/Reduce paradigm and newly defined 

set of mappers, reducers, and <key, value> pairs for each attribute. Typically, the user 

must select the attributes needed for a specific application.      

 

Figure 30Map/Reduce based architecture of seismic attribute data processing (AMP)  and  the learning 
and prediction stages (LPS). 
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   The selected attributes are computed if they are not already stored in the 

attribute cubes. As shown in figure 30, the attribute matrix processing (AMP) follows 

where the data is processed in a distributed fashion. Some of the processes in this phase 

may alter the data into a new attribute set, and other processing types may result in new 

data or attributes that are aggregated to the original seismic attribute set to produce the 

matrix B. Finally, the attribute matrix B is used along with some external data such as 

label and the classifier parameters to classify for a specific type of seismic event. 

Classifiers are also learned and used in a distributed fashion. 

 

3.3 Seismic Texture Analysis 

   As an example to seismic data processing and analysis, we present in this 

section a sample application of seismic texture analysis. The study includes data 

preparation, data distribution and windowing, four Haralick attribute extraction, and 

classification using distributed LS-SVM. This application itself employs the migrated 

seismic data cube produced by data preprocessing stage PPS. The seismic cube is 

supposed to be divided into a number of 2D slices or images numbered based on their 

location in the volume. Images were extracted from the volume and numbered based on 

their location from 1…Nimages to keep track of their respective coordinates as shown in 

figure 31. 
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Figure 31Seismic slices from the 2D volume taken as images 

    

   Every Image is supposed to be read and processed separately serially in the 

serial design and in a distributed manner in the distributed design. Each image is then 

subdivided into a number of 32x32 windows which is in turn subdivided into exactly 49 

(8x8) windows by taking half-way offsets. The window size 8x8 can be easily changed 

into 16x16 and then 32x32 by changing a variable. However, most of the design was 

based on an 8x8 window size. 

  Figure 32 represents the overall flow of Seismic texture extraction. Each of the 

windows is processed separately to find their respective GLCMs. This matrix holds the 

probability of the co-occurrence of the grey levels Ng. From the GLCM,   all the 

Haralick attributes can be computed.  

As pointed out by Chopra and Alexeev in [43], low-frequency and high-amplitude 

anomalies, that are indicative of hydrocarbon accumulation, exhibit high energy, low 

contrast, and low entropy, when compared to non-hydrocarbon sediments.  
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Figure 32Texture attribute computation flow 

 

The following Haralick attributes were considered to identify oil bearing sites. 

1) Contrast: which uses weights relative to the distance from the GLCM diagonal  

2) Energy: which has high values when an image is very orderly  

3) Entropy: which is also indicative of the amount of information an image 

represents 

4) Variance: which is the popular statistical measure similar to entropy 

Every sub-window thus produces four Haralick attributes. All are gathered into a 

single matrix called the attribute matrix which is properly indexed to keep track of the 

positions of the data. An oil bearing block of the 3D seismic data is used during the 

labeling process. The block is assumed to be labeled by an expert that identifies 

locations as oil or non-oil bearing. 

An oil bearing block of the 3D seismic data is used during the labeling strategy 

(Figure 33). The locations of the oil bearing sites in each of the 2D images in the 3D 

block are labeled by following the following strategy. 

 

 
Figure 33Labeling strategy 
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   A label of 1 corresponds to oil bearing sites and a label of 0 for non-oil bearing 

sites. The labels can be also imagined as 2D label images containing zeros and ones. 

These label images are again divided the same way the seismic images were divided 

resulting into sub-windows of size 8x8.  These windows can now be considered as two 

tone gray level images. The normalized GLCM of these label images produce a 2x2 

matrix since we have only two possible values. We find the sum of probabilities of the 

non-zero-zero occurrences, PNZZ, and consider the label of a window to be 1 if it’s 

greater than a certain threshold “th” (which takes a default value of 0.5 in this study).  
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Figure 34Labeling examples 

    

   Consider figure 34, where three 4x4 example label matrices are shown with 

their corresponding label. In the first window, the probability of zero-zero occurrence is 

zero, which indicates that there are no non-oil bearing sub windows beside each other. 

This obviously results into a positive label which indicates a site that contains oil. In the 
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second window has high probability of non-zero-zero occurrence and it will have a zero 

label. The last window shows alternating zeros and ones, however, its PNZZ is 1 and it is 

labeled positive. 

   When the attribute matrix and the label data are ready, they are passed to the 

learning and the prediction phase as shown in figure 35. 

 

Figure 35Learning and prediction flow using texture attributes 

 
 

3.4 Seismic Texture Analysis Pseudocode and Complexity 
Study 
 
   In this section we describe the different methods used in this application 

detailing the input, the output, and the procedures. Each of these performs a specific task 

and will be used in different ways during both the learning and the prediction phases.  

The pseudo code for the sub programs called operations are: 

Operation1: Read the training and label image 
Input: Index of the training image 
Output: Image and label matrices 
 
Operation2: Computation of the Haralick attributes 
Input: Training image 
Output: Haralick attribute matrix 
Steps: 

 Read 32x32 matrix window from image 
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 Cut it into 49 (8x8) windows 
 Compute GLCM of each 8x8 window resulting in an 8x8 GLCM matrix with 8 

grey levels 
 Compute the Haralick attributes producing 4 values 
 Aggregate into the Haralick Attribute matrix 

 
Operation3:Compute the label vector 
Input: Label matrix 
Output: Label Vector 
Steps:  

 Read 32x32 matrix window from label image 
 Cut it into 49 (8x8) windows 
 Compute GLCM of each 8x8 window resulting in a 2x2 GLCM matrix with 2 

grey levels 
 Compute the non-zero-zero probability 
 Compute the label based on a threshold  
 Aggregate into a label vector 

 
Operation4: Compute the matrices 
Input: Haralick matrix from operation 2 and the label vector 
Output: Incrementally added matrices  
Steps:  

 Form the diagonal label matrix 
 Compute the intermediate sum of matrices as described in equations 14 and 15 

 
Operation 5: Compute the LS-SVM parameters 
Input: the computed matrices from operation 4 
Output:ω,b 
Steps: 

 Aggregate incoming matrices from operation 4 
 Matrix inversion 
 Compute w and b using equation 16 

 
Operation 6: Predict the label 
Input: The Haralick Attributes and ω ,b 
Output: the label of the image 
Steps: 

 Predict using equation 12 
 Aggregate results into their correct position 
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   During the learning phase, operations 1 through 5 are used. On the other hand, 

only operation1, operation 2 and operation 6 are employed during the prediction phase. 

The complexity analysis of these operations is shown in table 2. 

 

Table 2.Computational Complexity of the Different Operations 

Operation 1  ( )MxN  

Operation 2  2 2 4( * *[M*N (3 (log function)) ])
m' ' g

M N
N p p

n
   

 

Operation 3  4( * *[M* N ])
m' '

M N
p

n
 

 

Operation 4 
 

(5 * '* ')m n  

Operation 5 
 

( '* ')m n
 

Operation 6 
 

( )sN  

s

MxN : image size p : window size

m'xn' : subimage size N : number of samples
 

 
 

The most complex operation is operation 2 where the 2D GLCM and the 

Haralick attributes are computed in both training and prediction phases.  GLCM’s 

complexity is 2 2((2 * k 20) * p )   while that of the Haralick attributes is 

2 2( ( (ln) ))gN p   . In the case of the 3D GLCM, the fetching of the pixels is performed 

in a 3D volume or a moving box instead of a 2D window. The GLCM complexity in the 

3D case is 2 3((2 * k 20) * p )   where p is the window cube’s dimension. The Haralick 

attributes will still have the same complexity as in the 2D case. 
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3.5 Map/Reduce Based Design of Seismic Texture Analysis 

   In the Map/Reduce framework, the above processes are designed as follows. 

During the attribute extraction phase, we define a mapper that handles the seismic 

images and their respective labels. The mapper uses the image number as the key and 

the image as the value. For the seismic image, the output <key,value> pair will be the 

image number and the corresponding computed Haralick attributes. The labels are tied 

to their respective images. The reducers simply join the produced values into a single 

image matrix and label vector.   

   The resulting data is then passed to the classification stage where classification 

is performed using the Map/Reduce design. The attribute matrix and label vector are 

distributed evenly on the different nodes with proper indexing. The <key, value> pair in 

this case are the index and a portion of the attribute matrix and the label vector. LS-

SVM has to compute the two matrices  1
T

i i id E E  and 2
T

i i i id E D e as discussed in the 

previous chapter. After all the windows are processed, the matrices are aggregated into a 

single matrix. Then, the LS-SVM parameters ω and b are computed using equation (12) 

which involves an inversion of a 5x5 matrix.  

The Learning Phase (Figure 36) 
Preparation 

 Data distribution to nodes, images are split on the different nodes available 
 Set initial parameters such as the penalty term C, Number of gray levels, window 

size. 
Main Class 

 Configure the job 
 Set the mapper and reducer classes 

Mapper Function 
 While (there are still images to read) 
 Read parameters from the main class 
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 Load seismic cube section and label image using operation 1 
 Compute Haralick attributes using operation 2 
 Compute the Labels  using operation 3 
 Calculate partial matrices of the classifier using operation 4 
 Local summation of the partial matrices of the classifier  

Reducer (Operation 5) 
 While (there are still nodes that didn’t finalize sending the data) 
 Read the local summation matrices from the nodes and aggregate them into a 

single matrix 
 Compute the parameters ω and b  

 
 
 

 

Figure 36Distributed Map/Reduce design of the learning phase 

   

  During the prediction phase, the attributes of the new images are computed the 

same way as in the learning phase. The aggregated attribute matrix is used in equation 

(12) to produce a label. The output labels are then reassembled to give an overall 3D 
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volume which shows the locations where there is a high probability of hydrocarbon 

presence. The <key,value> pairs here are the index and their respective Haralick 

attribute values or matrix if taken as a block.   

Prediction Phase (Figure 37) 
 
Preparation 

 Data distribution to nodes, images are split on the different nodes available 
 Set initial parameters such as the penalty term C, number of gray levels, window 

size,… 
 
 
Main Class 

 Configure the job 
 Set the mapper and reducer classes 

 
Mapper Function 

 While (there are still images to read) 
 Read learnt parameters from the main class 
 Load Seismic section using operation 1 
 Compute Haralick attributes using operation 2 
 Local aggregation of the partial Haralick matrices  

 
Reducer (Operation 5) 

 While (there are still nodes that didn’t finalize sending the data) 
 Read the matrices from the nodes and aggregate them into a single matrix 
 Compute the labels using equation  
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Figure 37Distributed Map/Reduce design of the prediction phase 

   

  A combiner function is defined to control the exact locations of the predicted 

results in the 3D volumes. The combiner in our application simply reconstructs the label 

images and then arranges the images in the order of their index or numbering to produce 

a 3D volume as shown in figure 38. 
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Figure 38Volume estimation and visualization 

    

   The unit length which is relative to the site and instrumentation is used and 

multiplied with the estimated volume of the predicted oil  that has resulted from 

meshing the different predicted positively labeled images: 

unit estimatedV V xV  (17) 

 

3.6 Barricaded Boundary Minority Oversampling Method 

   LS-SVM often produces biased hyper-planes when trained with imbalanced 

datasets. In this section, we describe the Barricaded Boundary Minority Oversampling 

(BBMO) method that oversamples the minority samples in the direction of the closest 

majority samples to solve the problem. The nomenclature used with BBMO, the 

formulation, BBMO and LS-SVM formulation merged together, and its complexity 

analysis is described in this section.  
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3.6.1 Nomenclature 

 
Consider the  following nomenclature for this section. 
 

1

2

B1

X :training samples

X :minority class samples

X :majority class samples

m    :number of minority samples

n     :total number of samples

d     : dimension of input space

B : the boundary samples

X  :boundary minority 

B2

B1

B2

z

samples

X  :boundary majority samples

n  :number of boundary minority samples

n  :number of boundary majority samples

n    :number of synthetic weighted means

max

min

1

2

α : Lagrange multipliers of LS-SVM

α  : maximum Lagrange multiplier of minority samples

α  : minimum Lagrange multiplier of majority samples

th :threshold value for the linearly separable case

th :threshold v

B1

B2

alue for the linearly non-separable case

Ψ  :matrix holding the replicated minority samples 

Ψ :matrix holding the replicated majority samples

K(.,.):kernel matrix

γ :the weight for the computation of the weighted means

IR   :imbalance ratio of the dataset (m/n-m)

Z    : weighted means , the "barricade"

 

 

3.6.2  BBMO formulation 

   LS-SVM as originally proposed by Suykens and Vanderwalle introduced two 

major changes to SVM[66]. First, the error term in SVM was changed to a least square 

error. Second, the inequality constraint was changed into equality. These changes render 

the hyper-plane’s orientation more data oriented instead of being oriented by the support 

vectors. Therefore, LS-SVM suffers from sparseness [138] since all the dataset is 

considered to behave as support vectors. 

Taking LS-SVM drawbacks into consideration, BBMO creates synthetic minority 

samples at the hyper-plane boundary in the direction of the majority boundary samples 

to push the hyper-plane away from the minority to remove the bias.  

  Two variations of BBMO are represented: BBMO-1 which handles the linearly 

separable case by adding synthetic data in the direction of all majority boundary samples 
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and BBMO-2 of the linearly non-separable case that uses the kernel matrix values, 

which is the general case, adds synthetic data around each boundary minority sample in 

the direction of all close majority boundary samples if there are any.  

 
Figure 39Illustrative extraction of the boundary samples of the linearly separable case and the formation 

of the barricade Z by calculating the weighted means of all the boundary samples 

 

First, let us consider the linearly separable case. LS-SVM computes the 

Lagrange multipliers of all the samples and produces positive Lagrange multipliers for 

all the minority samples within the band Band negative values for the majority samples 

(labels are taken to be 1 for the minority and -1 for the minority) as shown in figure 39. 

To find the samples closest to the boundary, we first find the absolute maximum 

Lagrange multipliers of both classes then select the samples based on a threshold th1. 

Next, we compute the inter-class weighted means of the selected boundary samples by 

considering all the combinations forming a “barricade” Z in front of the minority 

boundary samples in the direction of the majority boundary samples. The set Z 
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represents the weighted means which employ a weight   that varies between 0.5 and 

1(since the synthetic samples are closer to the minority boundary samples). We assume 

the weight varies linearly with the imbalance ratio (IR) of the dataset as follows:

1
0.5

2IR
   . If the two classes are balanced, IR is close to 1 which sets  to 1 that 

results in simply duplicating the minority boundary samples. As the imbalance ratio 

increases,  takes smaller values (tending to 0.5) resulting in synthetic samples that 

occupy further locations around the minority boundary samples widening the 

distribution of the minority samples at the boundary however in the direction of the 

majority boundary samples. This will result in pushing the hyper plane away towards the 

majority removing the bias as shown in figure 40. The following algorithm represents 

the BBMO-1 algorithm for the linearly separable case.  

 

BBMO-1 algorithm workflow: the linearly separable case

i 1 max i

j 2 min j

1

i 1 i 1 max i B1

j 2 j 1 min j

1)  x X, compute  using LS-SVM

2)  x X  ,  max( ) where i=1,2,...,m

x X  ,  min( ) where j=1,2,...,n-m

3)  Let  0.8 1

x X ,if { . } , add x to X

x X ,if { . } , add x to X

th

th

th


 
 

 
 

 
  

  

 
  

   B2

k B1 B1

l B2 B2

p k l z

z B1 B2 p

1

4)  x X , where k=1,2,...,n

x X , where l=1,2,...,n

   Compute z x (1 )x where p=1,2,...,n   

1 m
    n  n .n  , z  Z ,  =0.5+ ,  IR=

2 n-m
5)  Add Z to X  and train using LS-SVM

   

IR

 



 
 

  

 
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   This approach may be successful in linearly separable cases, however when the 

data becomes linearly non-separable and kernels are used to solve the classification 

problem, finding the boundary samples cannot be achieved using the Lagrange 

multipliers of the LS-SVM. In addition, the orientation of the added synthetic data may 

be very random and the number of oversampled instances will be very large creating in 

this case a bias towards the minority. Instead we adopt another method which can be 

generalized to the non-linear case. In our study, we employ the RBF kernel. Using the 

kernel matrix values instead of the Lagrange multiplier values to find the boundary 

samples, for each minority class sample, the maximum kernel value with each of the 

majority sample is computed. Next, the maximum of these values is extracted and used 

to select the boundary samples of the minority class with the corresponding closest 

majority boundary samples according to a threshold  th2. For each boundary minority 

sample and it’s corresponding “near” majority boundary samples, the weighted means 

are computed and added to the minority class. The following algorithm describes the 

steps in detail. 
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“barricade” around the minority boundary samples will also allow a wider region for the 

minority samples to populate in. Other oversampling techniques have also aimed at 

providing more general data distribution for the minority such as SMOTE however 

assumptions vary. To understand the difference, consider figures 42 and 43. 

 

 
 

 

    

   SMOTE oversamples the minority samples by introducing synthetic samples 

along the line joining any or all k minority class nearest neighbors depending on the 

amount of over-sampling needed. As shown in figure 42, samples “a”, “b”, and “c” have 

each other as nearest neighbors, synthetic samples are generated along their lines. The 

three synthetic samples in the circle now occupy most of this region although the region 

contains the majority sample “1”.  

BBMO-2 on the other hand adds synthetic data around the boundary minority 

samples in the direction of all near (not nearest) majority samples. Sample “a” has two 

Figure 43The way BBMO‐2 modifies the 

minority class distribution when synthetic data 

are added

Figure 42The way SMOTE modifies the minority 

class distribution when synthetic data are 

added 
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close majority samples close to it, thus two synthetic samples are added in their 

direction as shown in figure 43. Similarly, synthetic samples are added for samples “b” 

and “c”. As we can observe, the region in the circular region is not totally occupied by 

the minority but only a portion of it. 

The way oversampling techniques perturb the distribution of the minority sample 

plays an important role in classification results especially the samples at the boundary. 

While SMOTE reserves larger areas for the minority samples in the direction of the 

nearest neighbors, BBMO reserves only the regions surrounding the minority samples at 

the boundary in the direction of the close majority samples. Thus, BBMO leaves 

unknown regions unoccupied until new samples arrive and help construct the ideal 

boundary.  

3.6.3 BBMO and LS-SVM 

   In this section, BBMO is incorporated into the LS-SVM formulation. Consider 

the following nomenclature: 
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i

ω  : hyperplane weight vector  

ξ   : error term for the original training data

ξ'  : error term for the synthetic training data

C  : trade-off constant

b   : bias term

y : labels  of the training samples {-

p

1,1}

Y     :vector containg the labels y

y : labels  of the synthetic samples{1}

Y'    :vector containing the labels y

α     : Lagrange multipliers of the training samples

β     : Lagrange multipliers of t

i

p

B1

B2

he synthetic samples

e     :vector of ones

Ψ : matrix containing the minority class boundary samples replicated the needed number of times

Ψ : matrix  containing the majority boundary samples ordered acco

n

rding to the respective minoritity boundary sa

I : Identity  matrix of size n

 

Merging the BBMO technique into the LS-SVM formulation, the problem can now be 

defined by 

' '

'

1 1 1

2 2 2

( ) 1 1,2,....

( ) 1 1,2,....

T T T

T
i i i

T
p p i z

Minimize C C

Subject to y x b wherei n

y z b where p n

     

 

 

  


   
    


      (18) 

whereyp is a vector of ones since the new synthetic weighted means belong to the 

minority class. 

The objective function of the LS-SVM is written as:

2 2

1 1 1 1

1
( , , , ) {[ ] } {[ ] ' }

2 2 2
'

n nn nz z
T T T

i i i i i i p p p p

i i i p

C C
L b b y b yx z           

   

            
         (19) 
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Applying the KKT conditions: 

1 1

0
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
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0 'T

p p p

L
y z b 




   


      (25)                                              

Replacing again equations (16), (18) and (19) in both equations (20) and (21), and 

rearranging the terms we get 

1

0
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b
e e

I
e XX XZ Y

C
I

e ZX ZZ Y
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





                                 

                                       (26)                        

   Where Y’ is a vector of ones since the newly added weighted means belong to 

the minority class. 

   Let us define 1B and 2B by the two matrices that contain the samples of the 

boundary points paired in such a way that considers all the possible combinations 

needed as shown in figure 44. 
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Figure 44Preparing the BBMO matrices to compute the weighted means implicitly using LS‐SVM 

    

   Since the set Z is dependent on the original set X from which the boundary 

subset is selected, the computation of TXZ , TZX ,and TZZ can be done implicitly using 

the 1B and 2B matrices as shown in equation (23).   
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   The product between the matrices in equations (22) and (23) can be replaced by 

any kernel function (.,.)K  that satisfies Mercer’s condition yielding: 
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3.6.4 Complexity Analysis 

BBMO computes new synthetic samples from the boundary and adds them to the 

dataset. First, the boundary samples are extracted. Considering the linearly separable 

case, BBMO-1 uses the Lagrange multipliers of LS-SVM to perform the extraction 

whose computation is mainly a matrix inversion with complexity 3(n ) .Next, the 

boundary samples are selected using the threshold values includes mainly comparison of 

the Lagrange multipliers. This operation has a complexity of (2n) . The preparation of 

1B and 2B and the computation of the weighted means has a complexity zΘ(4n ) .  

Next, the weighted means are included in the LS-SVM formulation resulting in a larger 

matrix inversion with complexity 3
zΘ((n+n ) ) . The overall complexity of the BBMO-1-

LS-SVM algorithm is: 3 3 3
z zΘ[n +(n+n ) +2n+4n ]<Θ(3n )  knowing that zn <<n  and n is 

large. 

BBMO-2 uses on the other hand the kernel matrix values to find the boundary 

samples whose complexity is 2(n d) . Next, the boundary samples are to be selected 

using the threshold values includes which uses the kernel matrix values. This operation 

has a complexity of (m(n m))  . Similar to BBMO-1, the computation of the weighted 

means has a complexity z(4n ) . Next, the weighted means are included in the LS-SVM 

formulation resulting in a larger matrix inversion with complexity 3
z((n+n ) ) . The 

overall complexity of the BBMO-2-LS-SVM algorithm is: 

2 3 3
z zΘ[n d+m(n-m)+(n+n ) +4n )] <Θ(3n )  as zn <<n  and n is large. 
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CHAPTER IV 

EXPERIMENTAL RESULTS  

 

4.1 Introduction 

   In order to understand the behavior of the different elements studied in this 

paper, we performed a series of experiments and then merged them into the designed 

distributed system. After defining the metrics used to evaluate the performance and the 

data selected in the experiments, BBMO-1 and BBMO-2 were analyzed to understand 

its impact on the data and the performance with LS-SVM. Next, seismic textures were 

analyzed where different types of lithological structures were taken and their respective 

attributes were computed. The seismic volume was studied and accuracy of LS-SVM 

with/without BBMO and the estimation of the volume were carried out. Finally, the 

distributed version of seismic texture analysis is studied by first profiling the application 

to identify the parts which are computationally most expensive, then the results of the 

distributed computation on Matlab were reported, and later the application was projected 

into the RASSD distributed system where acceleration of the most computationally 

expensive operation was explored.  

   All the experiments in this section were performed on an Intel core i7 2GHz 

processor with 6GB RAM using MATLAB 7.10.0 except for the acceleration part which 

were performed and analyzed on the specifications described in the corresponding 

section. 
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4.2 Experiments with BBMO 

   In this section, we briefly present the different experiments performed to assess 

the performance of the BBMO. First, the performance metrics and the data details are 

defined. Then, SVMs are used with the BBMO-1 and BBMO-2 and their performance is 

evaluated and compared. 

4.2.1 Performance Metrics 

   The accuracy of a classifier’s performance, which gives the proportion of the 

total number of predictions that were correctly classified, is a misleading measure 

especially when used with imbalanced datasets. A classifier might produce high overall 

accuracy by misclassifying most of the important minority class due to the bias.  Instead, 

many other measures are used to evaluate the performance of classifiers with 

imbalanced datasets since with extreme imbalance situations a classifier may show high 

accuracy by misclassifying most of the minority class samples. For a two class 

classification, true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) are the different possible prediction results as described in the confusion 

matrix of figure 45.  

 Predicted 
Class 
YES NO 

Actual 

Class 

YES TP FN 

NO FP TN 

 

TP+TN
accuracy = 

TP+TN+FP+FN
TN

recall      =
FP+TN

TN
precision=

TN+FN

G-mean  = recall x precision

 

Figure 45The confusion matrix and the evaluation matrix 
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   The TP-rate, also known as recall, is a measure that gives the percentage of the 

correctly classified positive samples. The precision defines a measure of exactness or the 

predicted positive cases that were correct, while the geometric mean, G-mean, is a 

measure that combines between the precision and the recall. 

4.2.2 Imbalanced Data Description 

   In our experiments we will use the above described metrics to evaluate the 

performance of BBMO. A selected popular set of imbalanced datasets are described in 

Table 3. The selection was made to include different data sizes, types, imbalance ratio 

(IR) and different number of attributes. The datasets were retrieved from KEEL data 

repository [139] and UCI [140]. 

 

Table 3. Description of Dataset 

Dataset Type Name IR Samples Attributes 

 
Real 
World 
Datasets 
Balanced 

Yeast 8.11 1484 8 

Ecoli 8.19 336 7 

Segmentation 6.01 2308 19 

Ionosphere 
 

2.02 351 34 

Spambase 1.54 4601 57 

Wisconsin 
Diagnostic 

3.21 198 32 

Synthetic 
Imbalanced 
Datasets 

Clover 5 600 2 

Subclass 5 600 2 

Paw 5 600 2 
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4.2.3 Experimental Results using BBMO 

Let us examine the results of the BBMO minority oversampling technique 

described in chapter 3. First, BBMO-1 that uses the Lagrange multiplier values to 

extract the boundary samples was run against three popular datasets and their respective 

accuracy, recall, and the G-mean are tabulated in table 4.  

 

Table 4.Performance of SVMs compared with BBMO-1: the linearly separable case 

Data  SVM  LS‐SVM BBMO1+LS‐SVM

  Accuracy  Recall  G‐mean Accuracy Recall G‐mean Accuracy  Recall G‐mean

Spambase  0.91257  0.8758  0.8876 0.8858 0.7842 0.8462 0.9127  0.8896 0.8893

Wisconsin  0.9561  0.9339  0.9408 0.9543 0.8860 0.9362 0.9701  0.9483 0.9594

Ionosphere  0.8690  0.7301  0.8065 0.8578 0.6523 0.7769 0.8830  0.8005 0.8357

 
    

   One can observe that the BBMO-1 with the LS-SVM performs better than LS-

SVM with all the metric measures used. The performance is slightly better when 

compared with the SVM. Since the accuracy, recall, and G-mean all increase together, 

this means the boundary minority samples that were not classified correctly before have 

been correctly classified without any trade-off with the majority boundary samples. 

Thus, the bias is removed safely in the linear case for the datasets used. The 

performance of BBMO-1 was degraded when it was run against other datasets which 

were linearly inseparable. Because the boundary samples rely on the Lagrange 

multipliers,  in the linearly non-separable case, the method fails as the means of the 

boundary samples do not necessarily lie on the boundary. On the other hand, especially 
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with the linearly non-separable case, BBMO-2 performs well on most of the datasets 

when it fails with the sub-class, the e-coli, and the ionosphere datasets by only recording  

 

Table 5.Performance of SVMs compared with BBMO-1: Non-Linearly Separable Case 

Data   SVM  LS‐SVM BBMO2+LS‐SVM

  Accuracy  Recall  G‐mean Accuracy Recall G‐mean Accuracy  Recall  G‐mean

Paw  97.16  0.9300  0.9165 96.97 0.9000 0.9011 97.67  0.9800  0.9354

Subclass  94.5  0.86  0.8402 94.67 0.7600 0.8281 93.50  0.8100  0.8077

Clover  96.56  0.8750  0.9713 96.94 0.9000 0.8853 97.65  0.9375  0.9127

Yeast  95.35  0.8809  0.8384 93.74 0.7109 0.7862 96.13  0.9054  0.8818

E‐coli  95.21  0.8072  0.8449 92.26 0.6145 0.7183 94.65  0.8672  0.8366

Segment  99.49  0.9747  0.9822 99.42 0.9697 0.9796 99.49  0.9747  0.9822

Ionosphere  95.1831  0.9062  0.9317 93.73 0.9363 0.9152 94.59  0.9600  0.9290

Spam  91.56  0.8852  0.8879 91.34 0.8598 0.8871 91.82  0.8830  0.8948

Wisconsin  95.42  0.9150  0.9376 94.90 0.9056 0.9303 95.43  0.9292  0.9383

 

 

higher recall values which may be an indication of a trade-off between the minority and 

the majority boundary class samples. 

This is true since in any classification problem, new samples to be classified may 

or may not resemble the data employed during the prediction process. The new samples 

that are closer to the boundary have higher probability of being misclassified. In order to 

understand this phenomenon, we define the function that extracts for each of the test 

samples the closest inter-class boundary samples and their respective distances from 

each other using the kernel distance.  The experiments show that BBMO-2 reduces the 

distance slightly for the minority samples as it adds synthetic minority samples at the 

boundary in the direction of the majority samples. This will increase the probability of 

the boundary incoming samples to be classified correctly.  In figure 39, the test sample 

xt which is halfway at the boundary and is approximately equidistant from both classes 
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is now closer to the minority class and will most probably be classified as a minority 

sample. This explains the slight improvement in both overall accuracy and the recall 

when compared with the SVM as few of the samples are being saved if they are close 

enough to the minority boundary samples. This also explains the trade-off between the 

recall and the overall accuracy in some of the cases in table 5. Figure 46 represents the 

average error of some of the performance e metrics when LS-SVM is compared with the 

original SVM with And without BBMO. The results clearly show that with BBMO-2 

LS-SVM results approaches the results of SVM and records on average slightly better 

results. 

 

 
Figure 46Average error in performance metrics when LS‐SVM is compared with SVM with and without 

BBMO‐2 

 

We also compare the BBMO with SMOTE with some of the datasets. BBMO2 

with LS-SVM again outperforms the SMOTE with the SVM in most of the cases where 

it fails with the e-coli and produces similar results with the skin segmentation dataset as 

shown in table 6. 
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Table 6.Comparison of BBMO-2 against SMOTE 

  SMOTE+SVM BBMO2+LS‐SVM 

  Accuracy G‐mean Accuracy G‐mean 

Paw  97.50 0.9278 97.67 0.9354 

Subclass  90.00 0.6851 93.50 0.8077 

Clover  95.06 0.815 97.65 0.9127 

Yeast  95.35 0.8384 96.13 0.8818 

Ecoli  96.94 0.8449 94.65 0.8366 

Segment  99.49 0.9822 99.49 0.9822 

Spam  90.75 0.8808 91.82 0.8948 

 
 
 

 
Figure 47Metric value variation when number of synthetic data is varied 

 

The threshold th2 defines the number of samples chosen at the boundary and 

respectively the number of oversampled data forming the barrier. Figure 47 shows how 

the accuracy, recall and the G-mean vary with the variation of the number of samples 

chosen. Since the RBF kernel’s sigma parameter choice affects the values in the kernel 

matrix, th2 needs to be tuned. In general, th2 was chosen 
2

0.8<th <1 in all our 

experiments where sigma was of the order of tens. This ensured the selection of the 

closest samples. For the spambase dataset, th2 was set to 0.998 which resulted in 

oversampling of around 300 samples. As shown in the figure, when the number of 

0.7

0.75

0.8

0.85

0.9

0.95

1

0 100 200 300 400 500 600 700 800

Variation of th with Spambase Dataset

Accuracy Recall Gmean



 
 
 
 

83 
 
 
 

synthetic samples varied between 300 and 400 samples a slight trade-off between the 

different metrics was produced. The figure also shows that when the number of 

oversampling of the minority using BBMO-2 increases, accuracy and G-mean decreased 

while the recall increased which means that the majority samples were being 

misclassified in expense of the minority. The same variation were obtained with the 

other datasets with different th2 values as increasing its value resulted in the selection of 

only very few samples from the extreme boundary which didn’t produce any 

enhancement in the performance. Thus, th2 needs to be tuned correctly to select a good 

representative amount of boundary samples and subsequently a representative number of 

oversamples minority boundary samples. 

 

4.3 Experiments on Seismic Textures 

A plethora of seismic textures have been identified and related to lithological 

structures or other accumulations such as gas and oil. In this section we study briefly 

some of these textures and their respective Haralick Attributes. The images were 

extracted from the OpenDtect [141] software. Figure 48 shows a seismic section on 

which 8 different textures are marked with squares and labeled in capital letters referred 

to as windows.  Window A represents a parallel rock bed which represents sedimentary 

rocks. Window F represents a bright spot which is an indication of oil and gas while E 

represents a gas escape channel. D represents an inclined parallel rock formations and H 

represents a chaotic fault. 
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Figure 48Types of textures in a seismic slice 

 

   Figure 49 represents the attribute values recorded at the different sections 

considered in figure 48. The represented results are relative to the highest values 

recorded for each attribute.  In particular, window F which represents a bright spot i.e. 

hydrocarbon accumulation, resulted in highest energy, lowest contrast, highest variance, 

and lowest entropy. These results validate Goa’s results.  Note that, our computations 

were done using the angular relationship of 0 degrees and a distance of 1. 

 

 
Figure 49Seismic texture attribute values at the considered windows in figure 48 
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The energy attribute of the seismic section in figure 48 is shown in figure 50. The bright 

spot is directly visible as the horizontal dark region as shown by the OpenDtect 

software.  

 

 
Figure 50The energy attribute computed in 3D fashion using OpenDtect Software 

 
 

4.3.1 Performance of the Classifiers on the Seismic Data 

   In this section, we demonstrate the performance of LS-SVM and BBMO when 

trained and evaluated with a sample 3D seismic volume. The sample seismic volume 

extracted from the F3 demo data which contains an oil reservoir. This particular sub 

volume of data was used for training the classifiers serially. The volume contains 10 

slices of 2D seismic images where a 10-fold cross validation was performed. Nine of the 

slices were used for training while the 10th slice was used for validation. The next figure 

shows the overall accuracy along with other imbalanced data performance.  
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Figure 51Performance of LS‐SVM with BBMO 

 

Since the data at hand is naturally imbalanced; the oil bearing locations are much 

smaller than the non-oil bearing locations, the classifier was fed BBMO-2 to improve 

the accuracy. As expected, all the performance metrics showed an enhancement and 

recorded higher results with the BBMO when compared with LS-SVM as shown in 

figure 51. 

4.3.2 Volume Estimation and Visualization 

The unit area of the F3demo data was estimated to be around 4mx4m per pixel in 

the retrieved images from the OpenDtect Software. Thus the estimated volume is around 

64m3/1 pixel3. This unit volume is multiplied by the estimated pixel volume of the 

predicted oil site. The estimated volume was found to be around 1200 pixel3 in one 

section. If 10 sections are considered and the distance between the two slices is 

supposed to be dz , then the estimated pixel volume is around 12000 dz. In our stud, we 

assume dz to be 1pixel resulting in 12000 pixel3. The overall volume is 
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again the GLCM and the Haralick are the most expensive tasks during the prediction 

phase and distributing  and accelerating them would produce faster computational times.  

In the case of the distributed training of the classifier, the LS-SVM produces 

similar results. The distributed version of the BBMO was not studied in this paper since 

the learning phase is usually performed on a sub volume of the data whose dimension is 

much smaller than the data used for prediction since computationally the most expensive 

operations were found to be the extraction of the GLCM and the Haralick per window.  

 

4.5 Experimental Results of the Seismic Application on 
Distributed Matlab 
 

In this section, the effect of multithreading on the prediction phase using 

distributed Matlab on eight cores is highlighted; nevertheless similar results were 

recorded for the learning phase. Different data sizes were used and their respective 

computational times were computed. The volume sizes for typical image volumes under 

study ranges from 308 KB to 2.25 GB. Figure 56 shows that as the amount of data 

increases, the computational times for the prediction phase increase exponentially when 

run serially.  
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

 
Seismic data analysis is a large scale and complex method which includes a 

plethora of techniques whose computational cost increases with the amount of data. 

Seismic volumes generally contain hidden information which can be indicative of 

different lithological structures and other information. The extraction of this information 

requires a complex analysis of the seismic data to retrieve the needed attributes. These 

attributes are classified into different classes and each may be used in the identification 

of a certain structure in the seismic data. Texture attributes were described and used in 

this paper to identify oil bearing sites. Naturally, oil bearing sites are relatively much 

smaller than the non-oil bearing sites which make the data used for training the classifier 

imbalanced. LS-SVM is known to produce biased separating hyper-plane when trained 

against imbalanced data. The Barricaded Boundary Minority Oversampling method was 

introduced to remove the bias of the LS-SVM and produce better results when compared 

with LS-SVM and relatively better or comparative results when compared to the SVM 

depending on the data. The development phase of BBMO highlights the idea in two 

versions.  When applied on the seismic data, LS-SVM produces better results with LS-

SVM.  Finally, the application is reconstructed to fit a map/reduce based distributed 

environment. The application was designed to automatically read, extract windows, 

extract the GLCM and compute the Haralick attributes the matrices in the LS-SVM 

formulation, learning and the prediction phases all in a distributed fashion. The 

application was profiled to identify the computationally most expensive parts and 
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include these sections in the mapper function that is performed at each node in a 

distributed system. The reducer simply aggregated the results. The computations were 

further accelerated by Dr. MagedaSharafeddin on RASSD nodes and speedups of more 

than 200 times were recorded for the prediction phase. 

The work presented in this paper can be further developed in the future in 

different ways. First of all, the classifier used in this paper is the LS-SVM which was 

further studied using the BBMO method described to solve the problem of the bias. The 

different parameters in BBMO can be studied to tune the results. Other classifiers may 

be employed and compared with these results to understand the impact of the classifier 

on seismic texture analysis.  

As for the seismic data analysis, the aim in this paper is to train the data using oil 

bearing sites and later use the classifier to identify these sites in a 3D fashion. Other 

Haralick attributes coupled with other seismic attributes may be employed to generalize 

the method to identify any type of features in the seismic volume such as faults and gas 

chimneys. 3D GLCM with different orientation and distances may be also explored on 

this system. Also, the method can be generalized to be used for texture analysis of other 

types of 2D or 3D data such as in the medical field and satellite images. 4D data analysis 

can also be studied. 

The computations in the RASSD node were done using a window size of 8x8 

which can be later improved to include 16x16 and 32x32 window sizes. The whole 

design can be also implemented on the popular Hadoop framework since it was 

designed using the Map Reduce framework. 
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Finally, the overall distributed seismic data analysis flows described in this thesis 

can be developed. Different ways to distribute the load onto the distributed system may 

be studied and compared. 

 

 



 
 
 
 

96 
 
 
 

REFERENCES 
 
[1] Explaining Exploration and Production Timelines (Offshore). Energy API , 2011 

Retrieved from 
http://www.api.org/newsroom/upload/51073205_explaining_exploration_and_produ
ction_timelines_offshore1.pdf 

[2] Retrieved from http://www.storagesearch.com/nstorart.html 
[3] “Oil On My Shoes”, Electric Logs. Retrieved from 

http://www.geomore.com/electric-logs/ 
[4] N. Ezekwe, “Petroleum Reservoir Engineering Practice”, Prentice Hall, September 

14, 2010. 
[5] Trap Types, Heavy Oil Science Centre, Retrieved 

fromhttp://www.lloydminsterheavyoil.com/traptypes.htm 
[6] Retrieved from  www.sercel.com 
[7] “An Overview of marine seismic operations”, OGP, International Association of Oil 

and Gas Producers, 2011. 
[8] Maritimeportal.net , retrieved from:  http://maritimeportal.net/what-is-a-offshore-

seismic-survey-vessel/ 
[9] Retrieved from http://www.rag-austria.at/en/business-area/search/seismic.html 
[10]  ION,  Retrieved from http://www.iongeo.com/ 
[11] M. W. Norris, A.K. Faichney, SEGY Data Exchange Format, Release 1.0, 

Society of Exploration Geophysics, May 2002. 
[12] Ö. Yilmaz, “Seismic data analysis”, Society of Exploration Geophysicists, 

2001. 
[13] M. Hall, Visual cross-plotting, 2011 retrieved from 

http://www.agilegeoscience.com/journal/tag/attributes?currentPage=3 
[14] N. B. Rizvandi, A. J. Boloori, N. Kamyabpour, and A. Zomaya, “MapReduce 

Implementation of PrestackKirchoff Time Migration (PKTM) on Seismic Data,” 
IEEE, 2011, pp.86-91. 

[15] B.F. Rummerfield, “Reflection quality a fourth dimension”, Geophysics, vol. 
19, 1954, pp. 684-694. 

[16] M.B. Dobrin, “Introduction to geophysical prospecting” , 3rd Ed.: McGraw- 
Hill, Inc., 1976. 

[17] R.E. Sheriff, L.P. ,Geldart, “Exploration seismology volume 1: History, theory, 
and data acquisition”. Cambridge University Press, 1989. 

[18] M.T. Taner, R.E. Sheriff, “Application of amplitude, frequency, and other 
attributes to stratigraphic and hydrocarbon exploration”, in Payton, C.E.,Ed., 
Seismic stratigraphy - Applications to hydrocarbon exploration: Am. Assn. Petr. 
Geol. Memoir 26, 1977, pp. 301-327. 

[19] J.D. Robertson, H.H. Nogami, “Complex seismic trace analysis of thin beds,” 
Geophysics, vol. 49, 1984, pp.  344-352. 

[20] W.J. Ostrander, “Plane Wave reflection coefficients for gas sands at non-
normal angles of incidence,” SEG Expanded Abstracts, 1, 1982, pp. 216-218. 



 
 
 
 

97 
 
 
 

[21] M. Bahorich, S. Farmer, “3-D seismic discontinuity for faults and stratigraphic 
features,” The coherence cube: 65th Ann. Internat. Mtg., Soc.Expl. Geophysics., 
Expanded Abstracts, ,1995, pp.  93-96. 

[22] J.H. Justice, D.J. Hawkins, G. Wong, “Multidimensional attribute analysis and 
pattern recognitions for seismic interpretation,” Pattern Recognition, vol. 18,  1985, 
pp. 391-407. 

[23] R.B. Oliveros, B.J. Radovich, , “Image-processing display techniques applied 
to seismic instantaneous attributes on the Gorgon gas field, North West Shelf, 
Australia,”  67th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 
1997,  pp.  2064-2067. 

[24] R.O. Lindseth, “Synthetics sonic logs-a process for stratigraphic 
interpretation,” Geophisics, 44, 1979, pp. 3-26. 

[25] S. Lancaster and D. Whitcombe, “Fast-track coloured inversion,” SEG 
Expanded Abstracts,19, 2000, pp. 1572-1575 . 

[26] S.N. Dasgupta, M.R. Hong, P. La Croix, L.Al-Mana , G. Robinson, “Prediction 
of Reservoir Properties by Integration of Seismic Stochastic Inversion and 
Coherency Attributes in Super Giant Ghawar Field,” SEG Absracts, 2000. 

[27] A. Lau,J. Dai. A. Robinson, B. Flack, C.-C. Shih, R. Utech , N. Banik , Colored 
Inversion: Application In A Tertiary Basin Offshore China , Offshore Techology 
Conference, 2005. 

[28] M. Burianyk, S, Pickford, “Amplitude vs Offset and Seismic Rock Property 
Analysis: A Primer,” CSEG Recorder November, 2000, pp.4-14. 

[29] XG.  Li, D.H. Han,J. Liu, D. McGuire, “Inversion of Sw and porosity from 
seismic AVO,” SEG/Houston Annual Meeting, 2005. 

[30] K.J. Marfurt, “Robust Estimates of 3D reflector dip and azimuth,” Geophysics, 
vol.71,no. 4, 2006,pp. 29-40. 

[31] Shuey, R.T., “A simplification of the Zoeppritz equations,” Geophysics, 50, 
1985, 609-614.  

[32] P. Connolly, “ElasticImpedance,” The Leading Edge, 18, 1999, pp. 438-452. 
[33] Singh, Y.,“Litho-facies detection through simultaneous inversion and principal 

component attributes,” The Leading Edge, 26, 2007, 1568-1575.  
[34] A. Swisi, “Post- and Pre-stack attribute analysis and inversion of Blackfoot 

3Dseismic dataset”,2009.  
[35] K. Marfurt, “Robust estimates of 3D reflector Dip and Azimuth,” Allied 

Geophysics Laboratories, 2006, pp. 29-40. 
[36] R.E. White, “ Properties of instantaneous seismic attributes,” The Leading 

Edge, 10, no. 7, 1991, pp. 26-32. 
[37] M. T. Taner, “Seismic Attributes”, Rock Solid Images, Houston, U.S.A., 

CSEG, 2001. 
[38] A. E. Barnes “Seismic Attributes in your Facies”, Landmark Graphics Corp., 

Englewood, Colorado, U.S.A., CSEG Recorder (History) , 2001. 
[39] R. Haralick, K. Shanmugam, and I. Dinstein, “Textural Features for Image 

Classification”, IEEE Trans. on Systems, Man and Cybernetics, SMC–3(6), 1973,pp. 
610-621. 



 
 
 
 

98 
 
 
 

[40] A. Eleyan, H. Demirel, “Co-occurance based Statistical Approach for Face 
Recongnition,”IEEE, 2009,pp. 611-615. 

[41] L. Lopez, M. Moctezuma, and F. Parmiggiani, “Oil Spill detection using 
GLCM and MRF”, IEEE, 2005, pp. 1781-1784. 

[42] P.J. Costianes, J.B. Plock, “Gray-level co-occurrence matrices as features in 
edge enhanced images,” Applied Imagery Pattern Recognition Workshop (AIPR), 
IEEE 39th, 2010, pp. 1-6.  

[43] S. , V. Alexeev, “Application of texture attribute analysis to 3D seismic data,” 
The Leading Edge, pp. 934-940, 2006, 

[44] X. Wang, N.D. Georganas, “GLCM Texture based Fractal Methods for 
Evaluating Fabric Surface Roughness,” IEEE, 2009, pp. 104-107. 

[45] G. Gao, “Volume Texture extraction for 3D seismic visualization and 
interpretation,” Geophysics,vol 68, no.4, 2003, pp. 1294-1302. 

[46] M.Yenugu, K.J. Marfurt, S. Matson, “Seismic Texture analysis for reservoir 
prediction and characterization,” the Leading Edge, 2010,pp.1116-1121. 

[47] A. Chaddad, C. Tanougast, A. Dandache, A. Al Houseini, A. Bouridane, 
“Improving of Colon Cancer Cells Detection Based on Haralick’s Features on 
Segmented Histopathological Images,” ICCAIE, 2011, pp. 87-90. 

[48] Mryka Hall-Beyer, “GLCM Texture Tutorial”, 2008, available at 
http://www.fp.ucalgary.ca/mhallbey/tutorial.htm 

[49] D.Subrahmanyam, P.H.Rao , “Seismic Attributes- A Review,”, 7th international 
Conference and exposition on petroleum physics, Hyderabad, 2008. 

[50] A. Barnes, “Too many seismic attributes?” CSEG Recorder, 2006,pp.41-45. 
[51] M. G. Orozco-del-Castillo, C. Ortiz-Alem´an, R. Martin, R .A´ vila-Carrera, 

and A. Rodr´ıguez-Castellanos, “Seismic data interpretation using the Hough 
transform and principal component analysis,” Nanjing Geophysical Research 
Institute,2011,pp.61-73. 

[52] N. Ru, Y.Jianhua, “An Attribute Reduction Methods Based on Rough Set and 
SVM and with Application on Oil-Gas Prediciton,” International Conference on 
Computer and Information Science, IEEE, 2007. 

[53] R.L. Chambers and J.M. Yarus , “Quantitative Use of Seismic Attributes for 
Reservoir Characterization,” Quantitative Geosciences, Inc., 2002. 

[54] A.  Bhatt, “Reservoir properties from well logs using neural networks,” 
Adissertation. 2012. 

[55] C. J. Ferguson,A. Avu,N. Schofield, G. S. Paton, “Seismic analysis workflow 
for reservoir characterization in the vicinity of salt,” Reservoir Geoscience and 
Engineering, First Break, vol.28, 2010, pp.107-113. 

[56] H. Hashemi, D. M. J. Tax, R. P. W. Duin, A. Javaherian, and P. de Groo, “Gas 
chimney detection based on improving the performance of combined multilayer 
perceptron and support vector classifier,” Non Linear Processes Geophysics,vol. 15, 
2008,pp. 863-871. 

[57] K.M. Tingdahl,A.H.  Bril , P.F. de Groot, “ Improving seismic chimney 
detection using directional attributes,” J. Petrol.Sci.Eng., vol. 29,2001, pp. 205-211.  

[58] C. Kliff, “Analyzing 8 key direct hydrocarbon indicators on post stack data,” 
HIS, 2010, pp.1-9. 



 
 
 
 

99 
 
 
 

[59] V. Vapnik , “The Nature of Statistical Learning Theory”, Springer,1995. 
[60] C. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition”, 

Data mining and Knowledge Discovery,2, 1998, pp.121-167. 
[61] T. Joachims , “Text categorization with Support Vector Machines: Learning 

with many relevant features” , Machine Learning: ECML-98 , Lecture Notes in 
Computer Science Volume 1398, 1998, pp. 137-142. 

[62] V. Blanz, B. Schoelkopf, H.H. Buelthoff, C. Burges, V. Vapnik and T. Vetter , 
“ Comparison of View-Based Object Recognition Algorithms Using Realistic 3D 
Models,”In ICANN96, Bochum, Springer, 1996,pp. 251-256. 

[63]  F. Steinke, B. Schoelkopf, V. Blanz , “Support Vector Machines for 3D Shape 
Processing,” In Computer Graphics Forum 24(3),  Eurographics, 2005. 

[64] A. Goh, S.H. Goh, “Support Vector Machines: Their use in geotechnical 
engineering as illustrated using seismic liquefaction data,”ScienceDirect Elsevier, 
Computers and Geotecnics 34, 2007, pp. 410-421. 

[65] J. Platt, “Sequential minimal Optimization: a Fast Algorithm for Training 
Support Vector Machines”, 1998. 

[66] J. Suykens , J. Vanderwalle,” Least Squares Support Vector Machines 
Classifiers,” Neural Processing Letters, , 1999, pp. 293-300. 

[67] T.-N. Do and F. Poulet, " Classifying one billion data with a new distributed 
SVM algorithm," in 4th IEEE International Conference on Computer Science, 
Research, Innovation and Vision for the Future, Vietnam, 2006. 

[68] D, Pechyony ,L. Shen , R. Jones, “Solving Large Scale Linear SVM with 
Distributed Block Minimization,” Akamai Technologies, 2012. 

[69] H. P. Graf, E. Cosatto, L. Bottou, I. Durdanovic, V. Vapnik, “Parallel support 
vector machines: The cascade svm,” In Advances in Neural Information Processing 
Systems, 2005. 

[70] E. Chang , K. Zhu, H.Wang, H. Bai, “ PSVM: Parallelizing Support Vector 
Machines on Distributed Computers,” Google Research, Beijing, China, 2007. 

[71] D. Wang , Y. Zhou , “Distributed Support Vector Machines: An overview,” 
IEEE, 2012, pp. 3897-390. 

[72] T.G.Addair, D.A. Dodge, S.D. Rupert, “Large-scale Seismic Signal Analysis 
with Hadoop,” Computers and Geosciences 66, 2014, pp. 145-154.  

[73] D. Brugger, “Parallel Support Vector Machines”, WSI, 2006. 
[74] N.K. Alham, M. Li, S. Hamoud, Y. Liu, M. Ponraj, “A Distributed SVM for 

Image Annotation”, IEEE, 2010. 
[75] N. Rizvandi,J. Taheri J., A. and Zomaya, “On using Pattern Matching 

Algorithms in map reduce Applications,”  2011, IEEE, pp. 75-80. 
[76] C. Cortes, V.Vapnik. “Support-Vector Networks,” Machine Learning, vol. 20, 

issue 3, 1995, pp. 273-297. 
[77] T. White, “Hadoop the Definitive Guide”, O’Reilly, Third Edition, May 2012. 
[78]  S. Ghemawat, H. Gobioff, S.T. Leung, “The Google File System,” Google, 

SOSP’03, Bolton Landing, New York, USA, 2003. 
[79] R. Lämmel, "Google's mapreduce programming model - revisited," Science of 

Computer Programming, vol. 70, 2008,  pp. 1-30 



 
 
 
 

100 
 
 
 

[80] J. Dean, S. Ghemawat, “MapReduce: Simplified Data Processing on Large 
Clusters,” Google, Inc., OSDI, 2004. 

[81] S. Dorward, R. Griesemer, S. Quinlan, “Interpreting the Data: Parallel Analysis 
with Sawzall,”Google, Inc., 2005 

[82] Q.Z.Huang, L. Ye, M.Y. Yu,F.L. Wu ; R. Liang, “ Information Integration 
Based Cloud Computing ,” Network Computing and Information Security (NCIS), 
2011 International Conference on, Vol. 1 , 2011, pp. 79 – 83. 

[83] A. Holmes, Hadoop In Practice, Manning Publications Co, 2012, pp. 7. 
[84] G. Caruana, M. Li, M. Qi, “A map reduce based Parallel SVM for Large Scale 

Spam Filtering,” 8th International Conference  on Fuzzy Systems and Knowledge 
Discvery, IEEE, 2011, pp. 2659-2662. 

[85] Y. Goto,   R.Yamada, Y.  Yamamoto, S. Yokoyama,  H. Ishikawa,  “SOM-
Based Visualization for Classifying Large-Scale Sensing Data of Moonquakes ,” 
P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC), 2013 Eighth 
International Conference on , 2013, pp.  630 – 634. 

[86] M. Kim, Y. Cui, H. Lee, H. Lee, C. Jeong, “A Hadoop-based Multimedia 
Transcoding System for Processing Social Media in the PaaS Platform of 
SMCCSE,” Transactions on Internet and Information Systems, vol. 6, No. 11.,  
2012. pp. 2827-2848. 

[87] C.H. Lin, C.Y. Lee, S.P. Chien, “Digital Video Watermarking on Cloud 
Computing Environments,” SDIWC. ,2013, pp. 49-53. 

[88] P. Singh and R.S. Chadha, “A Survey Digital Watermarking Techniques, 
Applications and Attacks,” International Journal of Engineering and Innovative 
Technology (IJEIT), Volume 2, Issue 9,  2013, pp. 165-175. 

[89] N. Singh, S. Matele, S. Singh, “An Efficient Approach for Security of Cloud 
Using Watermark Technique,” IJARCCE,, 2013, pp. 2814-2817. 

[90] L. Duan, D. Xu, I.W.H. Tsang, J. Luo, “Visual Event Recognition in Videos by 
Learning from Web Data,” IEEE, Vol.  34, No 9, 2012, pp. 1667-1680. 

[91] F. OzgurCatak, M. ErdalBalaban. “CloudSVM : Training an SVM Classier in 
Cloud Computing Systems,”Turkish Journal of Electrical Engineering and Computer 
Sciences, 2013. 

[92] Sun Z, Fox G, “ Study on Parallel SVM Based on MapReduce,”  International 
Conference on Parallel and Distributed Processing Techniques and Applications; 16- 
2012, pp. 495-561. 

[93] J.R. Quinlan, “Introduction of decision trees,” Machine Learning, vol. 
1,1986,pp. 81-106. 

[94] Retrieved from www.mathworks.com/products/matlab 
[95] Retrieved from www.mathworks.com/products/distriben 
[96] N. Abbani , A. Ali , D. Al Otoom , M. Jomaa , M. Sharafeddine, H. Artail, 

H.Akkary, M. Saghir, M. Awad, H. Hajj, “A Distributed Reconfigurable Active SSD 
Platform for Data Intensive Applications”, 13th IEEE International Conference on 
High Performance Computing and Communications, 2011. 

[97] D.V.Rao, S. Patil, N.A. Babu, v. Muthukumar, “Implementation and Evaluation 
of Image Processing Algorithms, on Reconfigurable Architecture using C-based 



 
 
 
 

101 
 
 
 

Hardware Descriptive Languages,” International Journal of Theoretical and pplied 
Computer Science, vol. 1, no. 1, 2006, pp. 9-34. 

[98] H. Fu and B. Clapp, O. Mencer, and O. Pell , “Accelerating 3D Convolution 
using Streaming Architectures on FPGAs,”  79th Society of Exploration 
Geophysicists (SEG), 2009. 

[99] T. Nemeth, J. Stefani, W. Liu, O. Pell, R. Dimond, R. Ergas, “An 
implementation of the Acoustic wave equation on FPGAs,” 78th Society of 
Exploration Geophysicists (SEG), 2008. 

[100] T. Nemeth, J. Stefani, O. Pell, R. Ergas, “Design space analysis for the acoustic 
wave equation implementation on FPGA,” 70th European Association of 
Geoscientists and Engineers, 2008. 

[101] H.Fu, W. Osborne, B. Clapp, O. Pell, “Accelerating Seismic Computations on 
FPGAs from the perspective of Number Representations,” 70th European 
Association of Geoscientists and Engineers, 2008. 

[102] O. Pell, B. Clapp, “Accelerating Subsurface Offset Gathers, for 3D 
Applications,” 77th Society of Exploration Geophysicists (SEG), 2007.C. Brodley 
and M. Friedl, "Identifying and eliminating mislabeled training instances," Proc. of 
13th National Conf. on Artificial Intelligence, 1996, pp. 799-805.  

[103] X. Wu, and P. Gopalan, Xilinx Next Generation 28 nm FPGA Technology 
Overview. s.l. : Xilinx White Paper, 2013. 

[104] Retrieved from www.mahout.apache.org/users/clustering/k-means-
clustering.html 

[105] H.M. Hussein, K. Benkrid, C. Hong, H. Seker,  “Highly Parameterized 
k_means Clustering on FPGA: Comparative Results using GPPs and GPUs,” IEEE, 
2011. 

[106] X. Zhu, X.D. Wu and S.Chen., "Eliminating class noise in large datasets," 
Proceedings of the 20'h ICML International Conference on Machine Learning, 
Washington D.C., 2003, pp. 920-927.  

[107] O. Barinova and v. Gavrishchaka, "Removal of confusing training samples as a 
generic mechanism to improve and diversify trading strategies discovered by 
boosting-based optimization," Proc. of CIEF, 2008.  

[108] H. Yin, H.B. Dong and Y.x.Li., "A Cluster-Based Noise Detection Algorithm," 
DBTA 2009, pp. 386-389. 

[109] C. M. Teng, "Correcting noisy data," In Proceedings of the International 
Conference on Machine Learning, 1999, pp. 239-248.  

[110] C. M. Teng, "Polishing blemishes: Issues in data correction," IEEE Intelligent 
Systems, 2004, pp. 34-39. 

[111] A. Hyvarinen and E. Oja, “Independent Component Analysis: algorithms and 
applications,” Neural Betworks, vol. 13, no. 4-5,2000, pp. 411-430. 

[112] J. H. Friedman, “Regularized Discriminant Analysis,” SLAK, 1988 . 
[113] R.C. Gonzalez, R. E. Woods, Digital Image Processing, Pearson, 2008. 
[114] Kotsiantis S., Kanellopoulos D., Pintelas P., Handling Imbalanced Datasets: a 

review. GESTS International Transactions on Computer Science and Engineering, 
vol. 30, 2006, pp. 1–11. 



 
 
 
 

102 
 
 
 

[115] H. He ,E. Garcia , “Learning from Imbalanced Data. IEEE Transactions on 
knowledge and data engineering, Vol 21, 2009, pp. 1263-1284. 

[116] Y. Ou,H. Hung , Y. Oyang, “A Study of Supervised Learning with Multivariate 
Analysis on Unbalanced Datasets”, 2006, pp. 2201-2205. 

[117] R. Akbani, S. Kwek, N. Japkowicz, “ Applying support vector machines to 
imbalanced datasets,” In Proceedings of the 15th European Conference on Machine 
Learning,  2004, pp. 39-50. 

[118] N.V. Chawla, K. W. Bowyer, L.O. Hall, W. P. Kegelmeyer, “SMOTE: 
Synthetic Minority Over Sampling Technique,” Journal of Artificial Intelligence 
Research, vol. 16, 2002,pp. 321-357. 

[119] B. Ramentol, Y. Caballero, R. Bello, F. Herrera, “SMOTE-RSB: a hybrid 
preprocessing approach based on oversampling and undersampling for high 
imbalanced datasets using SMOTE and rough set theory,” Springer, 2011. 

[120] C. Bunkhumpornpat,K. Sinapiromsaran, C. Lursinsap, “Safe-LevelSMOTE: 
Safe Level Synthetic Over-Sampling TEchnique for Handling the Class Imbalanced 
Problem,” In Proceedings of PAKDD, Springer LNAI 5476, 2009, pp. 475–482. 

[121] H. Han, W.Y.Wang, B.H. Mao, “Borederline-SMOTE: A New Over-Sampling 
Method in Imbalanced Data Sets Learning,” In Proceedings of ICIC, Springer, 2005, 
pp. 878-887. 

[122] J. Stefanowski, Sz. Wilk, “Improving rule based classifiers induced by 
MODLEM by selective pre-processing of imbalanced data,” In Proceedings of the 
RSKD Workshop at the ECML/PKDD Conference, 2007, pp. 54–65. 

[123] K. Veropoulos, C. Campbell , N. Cristianini, “Controlling the sensitivity of 
support vector machines,” In Proceedings of the International Joint Conference on 
Artificial Intelligence, 1999, pp. 55-60. 

[124] Y. Tang, Y., Y.Q. Zhang, Y. Q., N.V. Chawla, S. Krasser, “SVMs modeling for 
highly imbalanced classification,” IEEE Transactions on Systems, Man, and 
Cybernetics, Part B, 2009, pp. 281-288. 

[125] D.M.J.Tax,R.P.W. Duin, “Support vector domain description,” In Pattern 
Recognition Letters, vol. 20, 1999, pp. 1191-1199. 

[126] A. Kowalczyk, B. Raskutti, “One class svm for yeast regulation prediction,” 
SIGKDD Exploration Newsletters, vol. 4, no. 2, 2002, pp. 99-100. 

[127] B. Scholkopt, J. C. Platt , J. Shawe-Taylor , A.J. Smola, R. C. 
Williamson,“Estimating the support of a high dimensional distribution,” Neural 
Computation, vol. 13, 2001, pp. 1443–1471. 

[128] L. Zhuang, H. Dai , “Parameter Optimization of Kernel-based One-class 
Classifier on Imbalanced Learning,” Journal of Computers, vol. 1, 2006, pp. 32–40. 

[129] T. Imam ,K. Ting , J.  Kamruzzaman, “z-svm: An SVM for improved 
classification of imbalanced data,” In Proceedings of the 19th Australian joint 
conference on Artificial Intelligence: advances in Artificial Intelligence, Springer-
Verlag, 2006, pp. 264-273. 

[130]  X. Wang,  S.Matwin, N.Japkowicz, X. Liu, “Cost-Sensitive Boosting 
Algorithms for Imbalanced Multi-instance Datasets,”Canadian Conference on AI, 
2013,pp. 174-186. 



 
 
 
 

103 
 
 
 

[131] P. Li ,K.  Chan , W. Fang , “Hybrid kernel machine ensemble for imbalanced 
data sets,”  In Proceedings of the 18th International Conference on Pattern 
Recognition, IEEE Computer Society, 2006,  pp. 1108-1111. 

[132] N. Ajeeb, A. Nayal A, M.Awad M., “MinSVM for Linearly Separable and 
Imbalanced Datasets,” International Joint Conference on Neural Networks (IJCNN), 
TX, 2003. 

[133] Wu G., Chang E., “Adaptive feature-space conformal transformation for 
imbalanced-data learning,” In Proceedings of the 20th International Conference on 
Machine Learning, , 2003, pp. 816-823. 

[134] Wu G., Chang E., “Class-boundary alignment for imbalanced dataset learning,” 
In Proceeding of the International Conference on Machine Learning: Workshop on 
Learning from Imbalanced Data Sets, 2003, pp. 49-56. 

[135] Wu G., Chang E., “KBA: Kernel boundary alignment considering imbalanced 
data distribution,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, 
no. 6, 2005, pp. 786-795. 

[136] Li P., Chan K., Fang W., “Hybrid kernel machine ensemble for imbalanced 
data sets,”  In Proceedings of the 18th International Conference on Pattern 
Recognition, IEEE Computer Society, 2006, pp. 1108-1111. 

[137] Wu G., Chang E., “KBA: Kernel boundary alignment considering imbalanced 
data distribution,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, 
no. 6, 2005, pp. 786-795. 

[138]   J. L´opez, K. De Brabanter, J.R. Dorronsoro and J.A.K. Suykens,  “Sparse LS-
SVMs with L0-norm minimization”, ESAN, 2011, pp.189-194. 

[139] J, Alcalá-Fdez, A. Fernandez , J. Luengo, J. Derrac, S. García, L. Sánchez , F. 
Herrera, “KEEL Data-Mining Software Tool: Data Set Repository, Integration of 
Algorithms and Experimental Analysis Framework,” Journal of Multiple-Valued 
Logic and Soft Computing 17:2-3, 2011,  pp. 255-287. 

[140] K. Bache, M. Lichman, UCI Machine Learning Repository 
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of 
Information and Computer Science.2013. 

[141] Available at http://opendtect.org 

  



 
 
 
 

104 
 
 
 

  



 
 
 
 

105 
 
 
 

Do not include this page 
 
 




