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AN ABSTRACT OF THE THESIS OF

Nizar Rabih El Zarif for Master of Engineering
Major: Machine intelligence

Title: Energv Aware Scheduler For Cloud Computing Tasks In A Datacenter
Environment

The average power consumption per datacenter is around 1 MW per year,
making the power consumption of one datacenter equivalent to that of a small town. It
is estimated that the state-of-the-art datacenter consumes around 0.8W to cool down
1W of heat generated by a server. Also, the cooling cost makes up 15% of the total cost
of ownership. A survey by J. Koomey indicated that nearly 5000 MW were consumed
by datacenters in the US alone in 20035, costing around 2.7 billion dollars in electric
bills. Hence, the need for a better power management arises. Most of today’s
datacenters use either I.east I.oaded First or Round Robin scheduling algorithms which
result in and large energy consumption.

To reduce the energy cost of operating a datacenter, we look into efficiently
scheduling the workload among the available servers. Thus, we modeled the workload
scheduling problem as a Variable Cost and Size Bin Packing Problem, and introduced
two new solutions based on the Best Fit algorithm. The first solution - Divide and
Conquer Best Fit— is a modified version of the Best Fit algorithm optimized for
multicore processors. The second solution is the Accelerated Best Fit optimized
specifically for a Graphical Processing Unit scheduler. Both algorithms solve VCSBPP
and reduce the energy consumed in datacenter servers 7000 times faster than BF. This
translates in transforming BF from being a mostly offline solution to an online one.
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CHAPTER 1
INTRODUCTION

The average power consumption per datacenter is around 1 MW per year, making the
power consumption of one datacenter equivalent to that of a small town [1]. It is
estimated that the state-of-the-art datacenter consumes around 0.8W to cool down 1W
of heat generated by a server. Also, the cooling cost makes up 15% of the total cost of
ownership [2]. A survey by J. Koomey indicated that nearly 5000 MW were
consumed by datacenters in the US alone in 2005, costing around 2.7 billion dollars in
electric bills [3]. Hence, the need for a better power management arises.

Most of today’s datacenters use either Least Loaded First or Round Robin
scheduling algorithms which result in large energy consumption. The online nature of
today’s services, whether for online banking, online shopping, video steaming, data
storage, social networking or messaging requires a continuous stream of power with
minimal power losses. These services are provided by a large number of servers in
datacenters that are required to be mostly ON around the clock and ready to process
any request. Any outage can interrupt ongoing operations and cause a huge impact on
business. These servers consume a large amount of power and generate a lot of heat.
Reducing power consumption on a server or cluster of servers would reduce generated

heat, which in turn will reduce the pressure on the Computer Room Air Conditioning



(CRAC) units. Figure 1 shows airflow and CRAC placement in datacenters [4].
Hot Aisle/ Cold Aisle Approach

Precision Air
Conditioning Units
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Figure 1: Datacenter Lavouts [4]

The demand for servers in a datacenter grew by 56 % between 2005 and 2010
[5] and this trend 1s likely to continue in the future. Thus, energy-saving techniques
are quickly becoming a necessity to reduce the cost of operation and to make
datacenters more environmentally friendly. This can be done at different levels:
circuits level, algorithms level and virtualization level. Thermal aware workload
scheduling is one algorithmic technique that helps reduce the energy consumed by the
CRAC units [6]. The row and column position of the server node within a datacenter
can affect the temperature of the server within a datacenter, and thus thermal aware
scheduling can reduce energy consumed by up to 25% by distributing the workload
across multiple servers within a datacenter [6]. Some electrical companies reduce the
cost per KWh during off-peak hours and thus further savings can be achieved by
rescheduling high demanding tasks to off peak hours [7].

The rest of the thesis 1s organized as follows:



This research secks to reduce energy consumption of datacenters by
proposing an energy aware task scheduler. Its contribution can be summarized by
three main aspects which are:

1) Model and design of a simulator that is both accurate and simple,

2) Propose a solution for energy aware placement that doesn’t sacrifice
performance

3) Propose two novel and very fast solutions for Variable Cost and Size Bin
Packing Problem (VCSBPP): one optimized for multicore CPU and one for GPU

The rest of this thesis is organized as follows:

Chapter Two: Related Works

A survey of the available architectural, virtualization, thermal and power-
aware saving techniques for datacenters is presented in this chapter along with the Bin
Packing Problem (BPP) and its solutions. A basic energy and power model of the
datacenter is also presented to help evaluate the power saving techniques proposed in
this thesis.

Since we will be using Compute Unified Device Architecture (CUDA) to
enhance the performance of our proposed task allocation algorithm, this chapter also
includes an overview of CUDA.

Chapter Three: Enhancing Task Allocation in Datacenter

In this chapter, the task allocation problem is presented and modeled as a
VCSBPP problem. The most known algorithm for solving the VCSBPP problem —
Best Fit (BF) —is discussed and its limitations are highlighted. And then, two
proposed improvements on BF — Divide and Conquer Best Fit (DCBF) and
Accelerated Best Fit (ABF) — are presented.

Chapter Four: Setup and Testing
This chapter explains the setup used to verify the proposed task allocation

techniques. Also, simulation results are also provided and analyzed.
3



Chapter Iive: Conclusion
Finally, this chapter concludes the thesis with a summary and possible future

works.



CHAPTER 2
RELATED WORK

Different techniques were introduced in the literature to optimize datacenters
with respect to performance, energy or temperature. This section will start by
presenting the work done on reducing energy through circuits and architectural
techniques. Next, the virtualization techniques to reduce the number of servers
required in a datacenter and thus the energy consumed are presented. We also
introduce the server power, and finally an introduction to CUDA that will help clarify

few concept used in ABF.

2.1 Datacenter optimization techniques

2.1.1 Architectural Techniques

On the architecture level, several techniques improve the performance given a
constrained power budget [8], or reduce energy consumption without significantly
degrading the performance [9].

[8] proposed the MaxJobPerf algorithm which finds the least demanding tasks
and schedules them first. Next, the algorithm determines the optimal frequency and
voltage to use for each task. This step assumes the server has a DVFS controller that
is capable of varying the frequency and voltage. MaxJobPerf guarantees the server is
kept busy without exceeding the power budget and shows up to 50 % lower wait time
to execute benchmarks. Since the energy consumed has a quadratic dependence on
voltage, DVFS significantly reduces the energy consumed to finish one operation.
However, reducing the voltage necessitates a reduction in frequency which could

degrade performance if not used correctly.



In [9], the authors suggest reducing power of the CPU by reducing the power
consumed by mispredicted instructions. The CPU pipeline must be flushed when the
branch predictor fails to correctly predict the result of a branch. Flushing the pipeline
contributes to about 28% of the total power consumed by the system. Because
throttling of the fetch and decode reduces the bandwidth of their respective units and
might cause stalling of the units altogether, the authors applied selective throttling in
the fetch and decode stage based on the confidence level of the branch predictor. For
low confidence branches, the authors suggest using aggressive throttling; whereas,
less aggressive throttling is used for high confidence branches. Their method of

selective throttling resulted in 18% energy reduction.

2.1.2 Virtualization Techniques

The authors in [10] proposed three techniques of VMs live migration to reduce
energy consumption in datacenters: minimizing migration, highest potential growth
and random search techniques. Minimizing migration technique allows VM migration
when the upper and lower CPU utilization are met. Highest potential growth
technique allows migration when the CPU utilization cost is least. Random search
technique will only allow migration of VM based on uniform probability distribution.
The VMs are then assigned to other servers using a modified version of BFD
algorithm which determines the cost of placement of VM in every possible location.
Their simulation showed a maximum of 87% power reduction compared to the non-
power aware policy where no power saving technique, hardware or otherwise was

used.



2.1.3 ENERGY AND TEMPERATURE AWARE SCHEDULING TECHNIQUES

There have been many approaches in literature for task scheduling and
resource allocation. Energy aware task placement such as the ones proposed in [11]
and [12] aim at reducing the total server energy required to run the tasks. Temperature
aware scheduling such as in [2] and [6] aim at reducing the overall cooling costs.
Performance aware scheduling such as in [13] aim at getting the most performance
out of the datacenter, or reducing the serving time as in [14], or improving the
performance per single machine such as in [15].

Many of these approaches tend to neglect the execution time of their
algorithm. Since most of these algorithms are computationally expensive, most
applications tend to favor a static scheduling approach, where the algorithms are run
offline. However, in datacenters dynamic scheduling is required. A dynamic
scheduling technique is capable of getting the best allocation possible under a tight
time constraint, preferably much lower than the arrival rate of tasks.

The work presented in this thesis is closest to the work done in [10] which the
authors modeled the task scheduling problem in datacenters as a BPP and solved the
task scheduling using BFD. While their approach yielded significant energy
reduction, it tends to take a large amount of time to find the optimal placement which

might make it infeasible for online use.

2.2 Bin Packing Problem

The traditional BPP is defined as packing a list of items L. = {{;,{; ..., [; }. with
volume V = {v4, v, ... v, }, into the minimum number of uniformly sized bins B =
{by, b5 ... b3 }. A typical solution to the BPP tends to cluster items in the least amount
of bin possible to reduce the number of required bin. This is somewhat similar to the

desired energy reduction algorithm in datacenters since reducing the amount of active
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servers needed to run the tasks without overloading any server will reduce the overall
energy consumed by the datacenter without significantly impacting its performance.

There are three widely used methods to solve the traditional BPP: First Fit
Decreasing (FFD), BF and Best Fit Decreasing (BFD) algorithms. In FFD algorithm,
the items are sorted according to their volume and then cach item is placed into the
first bin that could hold it. This method is fast and efficient but does not give the best
results, especially in the case of non- homogeneous size bins. The BF algorithm tests
the cost of placing the item in all possible bing, and then assigns it to the bin that has
the least cost. The BFD algorithm is similar to the BF algorithm but starts with sorting
the items according to their volume. BF and BFD work well for both homogeneous
and non-homogencous bins, but they tend to be computationally expensive

Other solutions for BPP and its variation were also proposed. The authors in
[16] used a randomized pre assignment technique and improved the solution using
branch bound algorithm. The authors of [17] proposed a solution to VCSBPP by
fixing the number of bins and transforming the problem into a knapsack problem.
Authors of [18] introduced Geometric Heuristic which is a variation of BFD by using
a cost function that measures the correlation between bins and the remaining tasks in
the queue. The authors of [19] used a genetic algorithm-based approach for allocating
tasks to solve a three dimensional BPP. This approach tends to give a good local
solution in a short amount of time. However, the local solution might not be the
optimum solution and this algorithm might a worse result when an optimal solution
exists and is feasible to find. The authors of [20] introduced two algorithm variations
of the BF algorithm - Harmonic Match and Refined Harmonic Match - that divide the
search space into opposing quadrants and match these quadrants into bins using BF.
Their method tends to give better results than BF alone in the worst case.

From the literature we can see that BF and its variant are the most used

solution for the coding simplicity and their capability to give good results in most
8



cases. Their big drawback is their large computation time that makes them inviable

for online use when the problem size is large.

2.3 Datacenters and the Cloud

Most scheduling techniques presented in the literature deal with only one
parameter, either power or performance or temperature. However, in today’s
datacenters there is a need to optimize all three parameters (power, performance and
temperature) to ensure that datacenters stay within the power budget while providing
a good quality of service. A dynamic scheduler must have an execution time much
lower than the arrival rate of tasks, and at the same time provide an optimal or near
optimal placement. The time of execution is a key element that most of the literature
tends to leave out. Since most of the previously proposed algorithms are too
computationally expensive, the time required to run these algorithms is too high to be
used online in datacenters if the arrival rate of tasks is large. As a result, datacenters
avoid using these computationally expensive schemes since the time required to get
an optimal allocation is not practical for online use.

From the literature, we know that workload prediction is possible and it
allows the scheduler to estimate the best possible placement for application
performance or for reduced energy consumption. A smart allocation minimizes power
consumption while maximizing performance can lead to a good quality of service
while also reducing cost on the service providers.

The performance counters that can be used for performance and temperature
prediction are: instruction mix, branch prediction accuracy, data cache hit and miss,
instructions per cycle and periodicity of phases [21]. However, the computational
complexity of some of these counters prohibits their use. Some of these metrics,
however, can be retrieved using performance monitoring application programming

9



counter. It has been shown in [21] that the best time difference between consecutive
predictions is 10ms. Prediction is achievable since program phases are periodic. There
are two types of predictors: Simple statistical predictors such as: Average (N), last
value, Exponentially Weighted Moving Average, and History predictors. History
predictors include hash tables with fixed size predictors that are better for variable
workload and run length encoded history that are more suitable for stable behavior.
However, one must note that using a limited hash table would decrease prediction
accuracy and an accurate predictor can be used to improve system performance with
minimal impact on power [22]. Once the performance ranking is performed for all
nodes, ranking job migration starts. Any upcoming task should be scheduled with the
best ranking. Also, a reasonable approach is to have several strategies depending on
the demand such as performance oriented policy, power conservation policy and
general policy.

Temperature and placement aware systems can help with getting more
distributed temperature. Undistributed temperature might lead to lower performance —
due to temperature capping — and lower energy efficiency — due to development of
heat points inside the datacenter. A system where neighbors have high temperatures
would cause the system temperature to rise because of conviction rather than real
workloads. It is wiser not to select such a system to perform heavy tasks since it might
cause rapid temperature build up in that area of the datacenter. Since the CPU
accounts for most of the server power [23], optimizing the scheduling and migration

policy is performed while taking CPU power into account.

2.3.1 Cloud computing

A common name for internet or datacenter services is cloud computing, as the
user is unaware about the number of computer or the networking behind the services.

The cloud architecture consists of four layers as shown in Figure 2. The cloud user

10



application resides in the highest layer providing the service for the consumer. The
user-level middleware resides in the second layer providing the interface for the user
level applications through the user library. Below the user level application and
services resides the core level middleware providing the necessary messaging across
the platforms and monitoring the different resources. This layer also provides the VM
services and VM management. The last level in the system provides the physical

requirement for the cloud such as computation and storage [24].

CLOUDSIM: A TOOLKIT

User level
N
T — Cloud programming: environments and tools
Middleware Web 2.0 Interfaces, Mashups, Concurrent and Distributed
(SaaS) 3 Programming, Workflows, Libraries, Scripting
T ECp— Apps Hosting Platforms |-
i QoS Negotiation, Admission Control, Pricing, SLA Management, ;
Cote Monitoring, Execution Management, Metering, Accounting, Billing
Middleware | ™ Ji
(PaaS) i ] ] |
; Virtual Machine (VM), VM Management and Deployment

i

System level
(laaS)

Figure 2: cloud architecture [24]

2.3.2 Could Services

Could computing 1s becoming more relevant by the day with new platforms
and new services being launched on a regular basis. The application ranges from IT
professionals to basic users, with all backend processing happing in large datacenters
mnvisible to users. Some of the more popular services are: remote IT services such as

Amazon Elastic Compute Cloud [25], online storage services such as 1Could [26],
11
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OneDrive [27], Google Drive [28], DropBox [29] and workload offloading services
such as Microsoft Azure [30]. To an online data center operating system management

tool such as OpenStack [31].

2.3.3 Power Model of a Server

The rapid spreading of cloud applications increases the pressure on the
economy of a datacenter due to energy cost, and on the environment due to high CO,
emissions. The authors of [32] shows that an idle server for a Dell datacenter
consumes around 383.75W when idle and 454.39W under stress, due to the high
constant power cost and cooling cost. Typically the energy consumption per server in
a datacenter is divided into two components: a constant energy and a dynamic energy.
The constant energy is consumed by the memory, disks, fans, motherboard and power
supply, while the dynamic is consumed by the CPU. Cisco showed that for a typical
datacenter under load the power consumption varies around 360W to 380W [33]. The
author of [34] did a breakdown of the idle power consumed in a typical datacenter.
For an idle server a huge portion of the power goes to the constant power for static
component, which account for about 66% of total idle server power while the rest is
consumed by the power supply and the CPU. [35] showed that a VM based datacenter
can save around 18% to 30% of power just by optimal placement of VMs.

Based on the literature [32-34], the power (sp,,) and energy (se,,) consumed
by a server » in a datacenter containing N servers with a total of M tasks that need to

be scheduled can be modeled as follows:

sun{> 0, Spn:an‘l'ﬁn*zup??'}t (1)

=0, sp, = sleep,

M
>0, sen= ) (@ upfh+ fo* upfh + uth) @

m=0

=0, se, = sleep, » 1/n

if su,

12



where su, represents the utilization of server # which cannot be less than 0, se,
represents the energy of server n, upyy, represents the task m processing utilization that
has been assigned to server », ut)}, represents the task m processing time requirement
that has been assigned to server 7, a, is the power constant consumed by the server 7,
[, is the efficiency coefficient (a small 5, represent an efficient system), u,
represents the utilization of the system, [ is the arrival rate of tasks and sleep,, is the
power consumed by the server #» when it is in sleep mode.

For energy reduction a minimal number of servers must be used. Allocating too many
tasks per server can result in reduced energy consumption at the expense of
application slowdown or failure. This is an undesirable side effect that should be
taken into account when running any energy saving algorithm. From the equations,
one can deduce that the power and the energy consumed by the server is highly

depend on what has been assigned to it and the arrival rate of the tasks.

2.4 Compute Unified Device Architecture

CUDA is a parallel computing programing platform that allows accelerated
processing by offloading some of the work from the CPU to the GPU. CUDA is
available on many modern Nvidia GPU, to enable users to take advantage of the
massively parallel capability of the GPU for a non-graphical workload. The CUDA
programming model was built on top of well-developed languages such as C/C++ and
FORTRAN with special API that abstract some of the complexity from the developer.

GPUs are designed to provide high throughput by implementing many cores
that work at lower frequencies compared to the CPU, making them ideal for an
“embarrassingly parallel” application — such as matrix multiplication. However, due
to the parallel nature of GPUs, implementing highly serialized algorithms such as BF
would be extremely inefficient and inherently slower than using a CPU.

13
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Figure 3: CPU and GPU architecture [36]

Figure 3 shows the high level difference between the CPU and GPU [36].
CPUs have larger cache and more complex but fewer Arithmetic Logic Units (ALU)

and more complex control.

2.4.1 GPU Architecture

Unlike the CPU design which encompasses a small number of cores with large

amount of cache and favors reduced execution time over throughput, the GPU is
designed with throughput in mind. Thus, the GPU is built up from a large number of
small cores that have a small instruction set. It uses a small shared cache for every
group of cores. The small amount of cache is essential for parallel applications to
provide speedups. While the GPU is capable of providing significant performance
enhancement, it has a number of limitations that programmers must be aware of and
that might result in significant degradation in performance if not accounted for. The
first limitation is limited shared memory available for every group of cores. Another
limitation is the dramatic change in the underlying GPU architecture with every
generation of GPUs. For example the Tesla GPU generation is only capable of
allocating 16 KB of shared memory per block while the newest Maxwell GPU has
14




4BIE4ER of available shared memory. MNote that shared memory is one of the four
types of memory avalable for use within a GPTT; these types of memory will be
explained in the following subsections. & third limitation 15 the generation dependent
AFPTs available to the programmer. This means that some new APIs might not be
available for old GPTT. However, newer GPTT s can run all codes designed with ol der
APT generations more efficiently.

On ahigh level, the GPTT consists of an interface to connect it to the main

CPT in the system, a number of streaming multiprocessors () that are connected

b
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Figure 4: GPU architecture [37]
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together with a main interconnect networls and share a global memory. Figure 4
shows the components making up the GPT. The most notable component of the GET
15 the ShI[37].

Figure 5 shows the anatomy of the S block within a GPTUT [37]. The number
of 5z 1n a GPU ranges from two for low end GPUs to dozens for high end GPUs

Each SMin turn 15 formed from several Single Processor (5F), a Multithreaded

15



Instruction Unit (MT Issue, [-Cache, C-Cache in Figure 5), special function units
(SFU 1n Figure 5), double precision unit (DP in Figure 5) and shared memory. Even
though the specifics of each of those units varies, a typical SP usually contains integer
and single precision floating point execution units and a small register file. The SFU
offer more complicated mathematical operations such as trigonometric functions. ..
The DP unit contains a double precision floating point execution unit along with

multiply add units.

CUDA Core
Dispatch Port
(Jpgrmd{:oll'edn

oA o

Resuli Queue

Figure 5: Anatomy of an SM [37]

Each CUDA block can be assigned to one or several MP depending on the

resources required for the operation. However a CUDA block cannot be assigned to

16



more than one SM. The number of CUDA SP, cache size and special functions and

number of registers vary by generation.

[ x | l 1
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Figure 6: CUDA Programming Hierarchy WHRE IS THE REFERENCE?

2.4.2 CUDA Programming Model

CUDA programming model falls into the follows the hicrarchical paradigm
presented in figure 6. On the lowest level in the threads, the threads in CUDA are
lightweight threads that are abstracted by CUDA API. Threads are created, destroyed
or scheduled as needed by CUDA and the programmer cannot control which threads
goes to which MP or SM or even CUDA core. CUDA threads are considered
“lightweight” because they take a very short time to be created, scheduled and
destroyed unlike CPU threads. Each thread has a built in ID that allows it to be called
by the programmer, several registers and local memory that are only available to it.

On the second CUDA level warps are found, where warps are group of threads
typically 32 consecutive threads. Warps are the execution unit of CUDA, which
means that a warp generally runs all the instructions until it finish all operations or
reaches a barrier that requires the data to be synchronized with other warps is reached.
For best performance, the programmer must insure that as many warps are running at

17



the same time as possible and avoid thread divergence. A thread divergence incurs
when a number of threads inside a warp are executing some instructions while the
others threads are executing other instruction due to ( if-else) statement and (switch-
case) statement such as:

If (Thread ID < 16)

Foo();

else

Bar();
In the previous example, when a warp reaches the “if statement™ the threads diverge
into two group. The first group with ID < 16 takes the “if branch™ and others threads
are deactivated until the first group to finish executing the branch. After completing
the branch, the second group then takes the “else branch™ and the first group of
threads are deactivated until all other branches are taken. The deactivating and
waiting causes slowdowns, which is why thread divergence must be avoided if
possible.

The third CUDA level is the Block level. Each block is assigned to one MP
inside an SM. If the available resources in an MP are not enough a CUDA block can
be assigned to more than one MP, the resources limitation are either threads, number
of registers or shared memory size. Different GPU generations have different number
of MP and SM and different size of shared memory and different number of registers.
Tuning the performance for all generation is difficult but possible. The maximum
number of threads in a CUDA block is 512 for “Tesla” GPU generation, and 1024
threads for newer generations, such as “Fermi”, "Kepler” and “Maxwell”, at the time
of writing Maxwell is the newest generation currently available in the market with
plans for “Volta” in the future. While the number of threads per block is limited the
number of blocks is very high 64355%64355%64355 in making it virtually an

unlimited total number of threads.
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The highest level of CUDA is the grid level. The Grid is formed from a

number of CUDA blocks which can be 1D or 2D or 3D arrays. Each kernel defined

by the programmer is executed on a grid of threads.

2.4.3 CUDA Memory Model

CUDA provide 4 types of public memory that corresponds to the DRAM

memory on the GPU:

1-

Global Memory (read/write across grids) is available for read and
write from all CUDA threads, thus allowing memory sharing for
threads, warps and blocks. The global memory is accessible by
both the GPU SMs and the CPU.

Constant memory is a special type of memory that is only
available for read from all threads. The size and contents of
constant memory is declared and provided by the CPU

Texture memory is also available for read from all threads with the
added advantage of built in local interpreter, which allows
automatic estimation. The size and contents of the Texture memory
is declared and provided by the CPU.

Local memory is another type of memory available that is declared
by the GPU. It is only available to thread that declared it when the

thread variables cannot fit into its local register.

The other type of memory lies in a local level such as:

= Registers are the fastest type of memory available. They exist
within the SP block and thus are only accessible to the thread

that defined them.
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= Shared memory 12 an SEAM mem oty that 13 avallable per-
klock, which means every thread in a block can read and write
fromito it Because itis shared it allows some thread
cooperation for faster processing, such as Eadiz add and Eadix
Ilin which reduces the computational complexity from O to
Oflog2(I).
Tsing global memaory slows the applicati on speed by a hefty amount since
each DEAM access takes about 100 clock cycles while SEAM takes about two cycles
shared memory, local mem oty and registers does not have the capability of
sending and receiving data from the CPU, hence any memoty copy back to the CEPTT

should be done using the Global Memory as shown in figure 7 [35].
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There are two concepts the CTUDA programmers must take note off. The first

1z the thread ID and the second 1s memory coalescent.
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Each thread and block within a grid is assigned an ID and this ID is saved
within a register in the SP running the thread. Thus, the ID could be in 1D, 2D or 3D
grids.

Thread ID = Local ID + Block ID * Block Dimension

To reference the fifth thread in the third block assuming a block size of 128,
The thread ID would be:

Thread ID =4 + 128*2 = 260.

The Second concept is memory coalescent, which mean any access to the
GPU memory should be done sequentially. Coalescent access hides reading and
writing latency by copying the data from sequential location in global memory to
sequential location in shared memory. A non-Coalescing access might result in poor
application performance and can cause crashes. Generally a good approach in
handling memory and doing memory intensive operation is by copying the data in
coalesced access from the global memory to the local shared memory and any
uncoalesced access can be done from the shared memory. The programmer must take
into account avoiding back conflict, CUDA API provide some tools such as using

atomic operations or thread synchronization for that purpose.

2.4.4 Additional CUDA Programming concepts

While there are many more concepts in CUDA that the programmer must be
aware of than what is presented above, the section above only mentioned the essential
concepts for basic understanding of this thesis. The CUDA setup is relatively easy to
acquire since almost any modern Nvidia GPU is capable of performing CUDA
operations.

The CPU and GPU code are divided in different sections. The CPU is referred

to as host and the GPU is referred as the device. The GPU code is written as a
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function within the CPU code and is launched explicitly by the CPU along with the
launch parameters. There are three launch parameters which include number of
threads per block, the number of blocks, and the size of the dynamic shared memory.
The GPU function is referred to as a kernel, so the launch of the GPU function is
called kernel launch. The GPU kernel can use special functions called device
functions. The host and the device have separate memories, and these memories have
to be explicitly allocated, copied and returned if needed. “Kepler” and newer
generation GPUs have a unified virtual memory, which means that programmer can
allocate a virtual memory that both the CPU and GPU can access, this is done by
allocating memory both on the CPU and GPU, and the driver handles automatic
updates for any changes in the memory for both the CPU and the GPU memories.

At kernel lunch the GPU generates a large number of threads and blocks and
allocate the threads and warps to be executed at the available GPU resources. All
threads lunched will execute the same kernel, the difference between one thread and
another is the ID only. The developer should use the ID to make sure that the kernel is
choosing the correct data to read and write. This requires a good understanding of the
memory model. The terms grid, blocks, threads and ID refer to a logical hierarchy of

CUDA, while the term SM and SP refers to the physical hardware.
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CHAPTER 3
PROPOSED TASK ALLOCATIONS

As mentioned earlier, the standard method of task allocation employed in
servers is the RR method, which simply assigns a task m to a server n where n =
round (m/N) with N being the total number of servers in a datacenter. RR does not
take into consideration the performance and energy impact of this placement and thus
results in poor performance and high energy consumption. Nonetheless, it ensures that
the maximum number of servers is active at a given time. If the number of tasks (M)
exceeds N, RR makes sure that the tasks are equally divided among servers. Another
commonly employed task allocation method is the LLF which allocates the task to the
server with the least amount of CPU utilization using FCFS policy.

This thesis proposes two new task allocation schemes that optimize both
energy and performance within a datacenter. The proposed techniques are also new
solutions to VCSBPP. These two techniques give significant speed increase compared
to BF and enable task allocation in a fraction of the time required by BF. To facilitate
the modeling of the task allocation problem, the following assumptions were made in
the proposed techniques. These assumptions are fairly reasonable for modern servers
in modern datacenters.

1. The tasks are coming in batches and their execution time and processing

requirements are known to the scheduler.

2. The arrival rate of tasks and the number of tasks per batch is also known.

3. The datacenter servers are heterogencous.

4. The migration time of a VM is assumed to be zero.

5. Any server with zero utilization is assumed to be placed in a sleep state

and will consume much less power than when working or idle.

6. All tasks have to be assigned to a server.
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7. All tasks have equal priority.

8. All servers are capable of multi-tasking.

3.1 SERVICE LEVEL AGREEMENT VIOLATION

The SLAV is a metric that we introduced to measure the overutilization of
servers. If the current server utilization (Siy) 1s less than the maximum server
utilization(sumax, ), the SLAV metric is set to zero. Otherwise, the SLAV per server
7 is calculated as the difference between su,, and sumax,, multiplied by the time

spent in overutilization(tmpy,).

M
if (su, —sumax,) >0, SLAV, = Z(sun — SUMaxy) * tmpy, (3)
0
) 1

tmp,, = Min(ut,, ,E) (4)

tmp,, is the minimum between the batch time and the task time requirement, 1/p is
the batch period, m is the task number and M is the total number tasks. Ideally SLAV
should be equal to zero, which means that the current application will not sufter

slowdowns due to less than optimal task placement.

3.2 MATHEMATICAL MODEL

Getting the optimal tradeoff between power and performance is a multi-
objective optimization problem since we are trying to:

1. Minimize the total server energy:

E= ZN:SBR (3)

n=0

2. Minimize the total SLAV: SLAV
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N
SLAV = z SLAV, (6)

n=0

3. Minimize the task allocation execution time ET
ET << 1/u 7N

4. Subject to su,, < sumax,

s = (8)

3.3 PROPOSED COST FUNCTION

To solve this multi-objective optimization problem, we simplify it into a single
objective problem, where the number of servers used is to be minimized by
consolidating several VMs onto a smaller number of servers. The VCSBPP can then
be used to model the VM reallocation problem if the server utilization is assumed to
be the item volume and the maximum utilization per server is assumed to be the bin
size.

To fit the task allocation problem in datacenters to a BPP, some modification
must be made. First, a cost function f(n) is defined to evaluate the placement of a
task m on server n. Equation 9 represent the cost function f(n). This cost function
includes a penalty factor K which is used to penalize an overutilized server making
less likely to be selected as the best server to run the task. This reduced cost function
quantifies the impact on both energy and performance of placing task m on server 7.

The task is then assigned to the server with the lowest cost function.
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UPyy * Uty * Py Se, + Uupy, = maxy,
f(n) = < (an — idle,) * uty, se, = 0 and se, < max, ®)
(up,, * uty, * By + K), se, + up,, > max,

3.4 BIN PACKING PROBLEM

Assume that we have a batch of tasks M (list of items) with total processing
requirement B = Y.t up,, * ut,, arriving at every period 1/ g to a datacenter with N
servers and available processing capability of Y5 (sumax,, — su,,)/u. Initially, all
servers are assumed to be unoccupied with tasks (su,, = 0) as the scheduling starts,
Su,, becomes positive and the available processing is reduced. An intelligent
allocation technique should use the available processing power of a datacenter for the
best task placement meaning tasks should not over-utilize the servers and at the same
time the total energy consumed by the datacenter must be reduced. The solution to
BPP provides a good allocation in datacenters since it reduces the number of active
servers. In doing so, the non-active servers can be put in a low power mode thus
saving energy. However tasks allocation differs from BPP in the ways outlined next.

First servers in datacenters are not homogencous , some servers are more
power efficient while others have more processing capability; some prefer long tasks
with small processing requirement while others prefer short and heavy processing
tasks. To solve this issue, we are assuming that each task will get a different cost
function depending on which server it has been assigned to. Using BPP terminology,
we are assuming that each item will take a different volume depending on the bin.
This is done by multiplying the volume of the item with an adjustment factor to get
the size for that particular bin which is similar to VCSEPP.

Second, a server usually will not be off if its CPU was over-utilized but it will
suffer some slowdowns. On the other hand, a physical container cannot hold more

that its size. This difference means that even if the server is over-utilized, it could be
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assigned more tasks to save power. However, this will cause major slowdowns and
thus incur some SLAV. To balance between energy saving and performance
degradation, the penalty factor K within the SLAV definition must be carefully
chosen. A small K sacrifices performance in favor of energy whereas a large K
sacrifices energy in favor of performance.

Finally, BPP prefers reducing the total number of bin used, while this correlate
with our allocation scheme, our target is to reduce energy consumption. In some cases
it is better to have more low power servers operating than few mid or high power
servers, since low power servers might be better for running long operation with small
processing requirement. By estimating the energy difference in all possible position
we can get a superior result.

The algorithms proposed here are very similar to BF; however some
modifications were made to optimize it as a datacenter scheduler:

1. Our cost function corresponds to the total energy and SLAV combined
into one value. Our target is to reduce this cost function and not the
number of bins as in BF.

2. The numbers of bins here are assumed fixed. Instead of just reducing
the number of bin, we want to reduce the number of used bins as long
as it correlates with a cost function minimization.

3. To guarantee best performance a high penalty is incurred when the bin
is made to hold more than its designed value to guarantee the best
performance.

4. The bins are assumed weakly heterogeneous

These proposed modification to BF should give a significant reduction in the
number of used bins. However the order of the items in the list is important.
Rearranging the item can yield better result but it does come at the cost of higher

execution time when the bins are homogeneous which not the case here.
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3.5BEST FIT AS A SCHEDULER

BF is used as a scheduler since the task scheduling problem is modeled as a
VCSBPP. BF algorithm should give a significant power reduction over RR allocation
technique. However, this reduction comes at the expense of a higher CPU time. In our
simulations the processing time of BF is actually higher than the arrival rates of tasks,
which makes this algorithm unfit to be used online. To reduce the CPU time we
propose using CUDA and OpenMP to parallelize BF. First, however, we should
analyze the algorithm to determine the part that could be parallelized.

Figure 7 shows the BF centralized datacenter scheduler, where the centralized

scheduler handles allocating the tasks to all available servers.
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Assume the following variables:

o N is the total number of servers in a datacenter, € [ .

o tisthe instance of time, t € [0,1,2,...N)

o nis the server number, n € [0,1,2..N)

o uisthe arrival rate of tasks, g € [0, o), 1/ is the arrival Period.

o m is the task number, m € [0,1,2 ... M)

o M is the total number of tasks, M € [N

o upl, is the task processing requirement of task m at time ¢, upf, C

[0,1,2,..100]

o sub is server n’s utilization at time t, su!, € [0,1,2,...N)

o utk, is the required processing time for task m at time t , ut5, € [0, 1,
2... 100].

o ab,is the allocation vector that describes the location where the task is
going to be executed

o sel isthe energy consumed in server n at time t

o EUis the total energy at time t

o I is the number of iteration where ] € [

o 1iis the iteration number and i € [0,1,2 ... 1]

o 0 is the number old unfinished tasks, initially O = 0

o C is the combined number of tasks

BF allocation algorithm consists of the following steps:
1. TImtialize values ({,0,C, M, N, ., K)
2. Loopl: for number of iteration I
a. Generate M number of tasks based on random number

generators
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b. Combine M tasks with previously unfinished O tasks and
get C tasks
c. Loop2: For every upl, C [0,1,2 ...C] tasks
i. Loop3: For every sul, € [0,1,2 ...N] do:

1. Getthe updated cost function f(n) of
allocation tasks upf, with timing
requirement utﬁlto server S,EL.

2. Ifthe suf + upf, > maxy is violated
penalize the server that has been over
utilized by factor K

3. Get min where min is the location where the
minimum f(n)

ii. sul, €upl + sul,,
iii. End Loop3
d. End Loop2
e. Forall Tasks : uty,, = ut,, —1/p
f. Forall Tasks If (ut,, < 0) task m is going to be assumed
finished and removed from task queue.
g. The unfinished tasks are moved to the O queue

3. End Loop1:Exit simulation

Energy savings in a datacenter using BF allocation are achieved, because BF
reduces the number of active servers by consolidating several jobs into the least
amount of servers possible. If a server has not received a task from the centralized
scheduler, the scheduler switches the server into a low power mode -sleep mode-. A
sleeping server consumes much less energy than an active server or an idle one, since

the constant power is reduced to a sleeping power. A sleeping server can turn off its
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fans and disks and put memory and CPU into a sleep or very low power state which
significantly reduces power usage. The SLAV metric was introduced to make sure
that even if we are trying to save energy consumption, we must not overcrowd the
working servers, since over-utilization would result in slowdowns and sometime
system failure. Note that BF works well for homogeneous datacenters as well as
heterogeneous ones. The BF algorithm is a brute force method for a given task order,
this result in high processing time, especially compared to RR.

This algorithm iterates on all servers and for every available task resulting in a
significant energy reduction at the expense of a high computation time. By calculating
f(n) for every task onto every server we can select the one with the lowest cost. FF
on the other hand assigns the tasks to the first server having enough computational
capability to execute it without checking if it is the best server to do so. A task should
be assigned only once. After getting the vector associated with the cost of assigning
the task to every possible server, the algorithm chooses the one with the lowest cost.
This process is repeated until the queue is empty and every task has been assigned.
Once the queue is empty the algorithm waits for the next queue to start task
scheduling all over again.

A task can only be considered completed when both processing and timing
requirement are met. The task is complete gets removed from the task queue to make
room for new tasks. After a T amount of time has passed, new M tasks are going to be
added to the queue, and will be combined with the non-completed tasks and sent to be
scheduled.

In this form the BF does look like a serial problem, because the assignment of
task m + 1 depends on the available processing capability to the N servers which in
turn depends on the allocation of the task m. The algorithm is divided into three
loops. The outer loop is responsible for generating the tasks and merging unfinished

tasks with the new batch of tasks, the middle loop is responsible for looping on all the
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available tasks, and the most inner loop is responsible for selecting the best server for
running the current task. The order of the incoming tasks does have an effect on the
allocation but not too significant, mainly because in datacenters are weakly
heterogencous and the limited variation in the workload means that pattern will start
to appear with tasks.

This variation of BF is ideal to be used in datacenter for two reasons:

1- By checking all available location the algorithm can make sure that the
tasks assigned give the lowest energy possible.

2- By penalizing the over utilized servers or the potentially over utilized,
makes sure the application is safe to run while minimizing lag or
slowdown.

The big drawback of the algorithm is the high computation required to assign
these tasks, and in real world this high execution time would render this method
unusable for online application if the arrival rate of tasks are higher than the execution
time of the algorithm as shown in later subsection.

To resolve the issue of the high execution time, we propose a two-step BF
algorithm that reduces the computational complexity, and allows multicore and many
core machines to run it thus resulting in a huge speedups.

Dividing the large problem into a subset of smaller problem is a common
approach. However in this case the divide is less obvious since each step of the
algorithm depends on both: the currently available tasks and the available processing
capability of servers, so the divide should happen for both N and M at the same time.
Doing this divide ensures that each block forms an independent smaller BPP, and
while the computational complexity of the BF is of the order of N by M. A divided
would have a Blk smaller Block - where Blk is the number of blocks- would have a
computational complexity of N/ Blk by M/ Blk — O(N » M/CIt%)- , which is a

quadratic reduction in complexity. The second benefit of dividing the large problem
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into a smaller independent problem is that it allows us to assign each smaller problem
into a different CPU thread which allows even faster execution. So a quad core
machine can ideally divide the large BPP into 4 smaller BPP resulting in nearly 16
times speedups. The Speedups using divide and conquer should be almost linear with
the number Blk for a single core device or a single thread device and quadratic for a
device having Blk numbers of cores. If the Problem is divided into more blocks than
the number of cores available for the system, the speedups would be linear.
However, there is a limit on how many blocks can be divided. First, the CPU
can only work limited amount of threads. Having many threads would result in many
context switches and less performance and sometimes crashing. Second, dividing the
data and creating threads is not a free process, it requires some overhead, and the
number of threads should be chosen carefully to ensure speedups. Third, dividing
large problem into smaller ones means that each will give a local solution rather than
a global solution. However, when using a small number of blocks, and large number
of servers and tasks, the speedups are going to be very high, and the local solution
should be very close if the relative number of tasks and servers is very large to the

number of blocks since the waste is going to be minimal.

3.6 DIVIDE AND CONQUER BEST FIT

The first proposed solution step is DCBF, this step is not OpenMP or CUDA
specific, and so it would work on practically any language, even non multicore
programming language, and it goes as follows. Instead of assuming the BF would be
done on entire datacenter, we can dynamically divide the datacenter into virtual
blocks and optimize the scheduling on a local level, so instead of having N tasks loop
through M Servers, we can have Nblock tasks loop through Mblock servers , where

M is total number of tasks and N is the total number of servers, Nblock = N/ Blk
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which represents the total number of servers in a block and Mblock = M/ Blk
which is the total number of tasks in a block M block, Blk is the number of blocks.

It is important to divide the number of tasks equally in all clusters or blocks or
we might end up with some clusters be overloaded and other underutilized. Using
cluster division is reasonable since in real datacenters servers are clustered based on
their geographical location. The speed and the performance of DCBF approach
depends on the size of Blk. In DCFS, BF is just a special case of DCBF where Blk is
equal to 1. Selecting an appropriate Blk is essential as a too low selection would not
yield enough speed improvement, while too high Blk would not give too much energy
reduction and might also give some improvement over Round Robin in term of
SLAYV.

Figure 8 shows the overview of DCFB, where the centralized scheduler
virtually divides the datacenters into two local scheduler, since this divide is a virtual
divide it can be dynamic with minimal overhead. This divide allows multiple

threading to happen and have a significant impact on the speed of the algorithm.
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The traditional BF has a computational complexity of O (N * M), while in
DCBF each block have a computational complexity O(N *+ M/ Blk?). For a single
core machine DCBF computation time is proportional with N = M/ Blk. Since all
clusters would be optimized locally, it is easier to take advantage of parallelism since
each thread can work on a local optimum independently. For multicore systems, we
can split every cluster into a different working threads as each subset is independent
which results in a significant speedups. At best case the execution time is reduced by
a factor of Blk? (for multicore system that can handle all available threads
simultaneously), and reduced to a factor of Blk, for a core single thread system.
Choosing the correct value of Bik is essential, as a high Blk can result in too many
CPU threads, in which the benefit of parallelism is overshadowed by the overhead
required to fork and join the threads for multicore systems. The result might even be
worse on single core systems due to the many context switches required.
The algorithm goes as follows:
1. Inmitialize values (N, M, R, Blk, K, ...)
2. Loop1 for number of iteration /
a. Generate M number of tasks based on random number generators
b. Combine M tasks with previously unfinished O tasks and get C
tasks
¢. Divide N tasks and M servers into Blk cluster and Blk threads
d. Loop2: For every upt, € [0,1,2 ... M/BIK] tasks in every thread
i. Loop3: For every sul, € [0,1,2 ...N/BIK] in each thread:
1. Get the updated cost function of allocation tasks
Ub,, with timing requirement ut;,to server su,.
2. Ifthe sul + upf, > max{ is violated penalize the

server that has been over utilized by factor K
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3. Get min where min is the location where the
minimum energy difference happened
4. sul,, €uph + sul,;.
5. End Loop3
ii. End Loop2
e. Join forked threads
f. Forall Tasks : ut,, = ut,, —1/u
g. For all Tasks If ( ut,, < 0)task m is going to be assumed
finished and removed from task queue.The unfinished tasks are
moved to the O queue
h. End Loopl

3. Exit simulation

The speed ups using this method should be significant. It can be implements
with several programming directive using a programming model like OpenMP, MPL,
OpenCL, CUDA ...

The algorithm described above favors CPU execution, since there is still a
large serial part. The big and obvious improvement in DCBF is having smaller
number of computation due to smaller number of servers and number of tasks per
block. The other subtle improvement is the better utilization of the CPU cache -a
smaller array uses less cache-, hence reducing the number of access required to the
main memory. A reduced access to memory can give large improvement in
performance.

While this method gives a significant speedup boost, it is not enough for strict
timing requirement. Furthermore it not optimized for the GPU. The GPU has a
smaller cache and larger number of cores, and can handle much more threads than the
CPU counterpart. To further improve the allocation technique we propose optimizing

it for GPU, by trying to reduce the serial part and allow more simultaneous threads .
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Using BF as a task scheduler should provide good energy reduction compared
to the traditional Round Robin at the expense of high compute time. Using DCBF
should reduce BF execution time by a decent amount with minimal hit on energy
reduction. However, when N and M are both high, a decent improvement is not
enough, so we looked into more optimization techniques to reduce compute time even
further. Thus, we propose a GPU aided BF algorithm that we call Accelerated Best

Fit.
3.7 ACCELERATED BEST FIT

ABF is a modified version of BF and DCBF that taps into the raw computational
capability of the GPU to give a huge speed increase. The improvement provided using
ABF should be so significant that it should transform BF from being an offline BPP
solution into an online one. ABF uses the advantages of massive threading capability
of the GPU, along with shared memory and thread cooperation to achieve the desired
speedups. But first we must expose where DCFB can be parallelized and how we can
take advantage of thread cooperation to reduce the computational complexity compared

to BF and DCBF.

3.7.1 Radix Min Position

The Radix Min position method is a proposed method to get the position of the
minimum with a shared memory environment without altering the original array. This
step 1s necessary in CUDA to reduce the complexity of the most inner loop. The Radix
Min Position is implemented as follows:

1. Generate an array pos with size S

2. S5€5)/2

3. For every thread with index {, ({ < §)

a. Compare f(pos(i)) and f( pos(i + §5))
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b. The position that gives the lower result is copied to {

¢. Synchronize threads ( to prevent data bank conflict)

d S€872

4. The smallest position is found at index 0

The following method manages to reduce the number of iteration of finding the index
of minimum from N steps to log, N. This is a substantial reduction in computational
complexity. Add that to an intelligent use of shared memory and this method ensures
much faster results than when using a serial method to find the minimum. Radix Min
Position should in theory work on any system with shared memory and thread
cooperation but it is best performed using the GPU. The only downside of this method
is that it requires double amount of memory than when executing the code serially. The

downside is important since the amount of shared memory on the GPU is limited.

3.7.2 CUDA optimized Best Fit algorithm

While DCBF is a very good performance leap, it is more optimized toward
multi core processors rather than GPU. In this thesis we optimized ABF to run much
faster on the GPU by using what the GPU and CUDA has to offer.

Unlike CPU threads which require thousands of cycle and create large
overhead, a GPU thread is light with very minimal overhead. Therefore launching
thousands of thread or even hundreds of thousands of threads is feasible on the GPU,
it is unfeasible on the CPU. The second advantage that the GPU has over the CPU is
the control the programmer have over the shared memory. While the CPU has larger
cache, it is not controlled by the programmer but handled dynamically by the CPU,
which makes finding Radix Min Position impossible on the CPU. The GPU cache or
shared memory has two benefit over the CPU cache that helps dramatically improve
the performance. Shared memory as the name suggest is shared at CUDA block level,

which means all threads within the same block can cooperate on completing a task,
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such as when using Radix Min Position. These algorithm can reduce the
computational complexity from N to log2(N). Second, the performance benefit for
shared memory is hiding some memory latency by managing copying memory from
the GPU main memory to the shared memory. In other words while some threads are
being executed as warps, others are getting data from the memory. For best
performance and error free execution, the global memory access should be coalesced,
which means that sequential threads should access sequential data locations form
memory, this would help takes advantage of the very high bandwidth rate of the
graphics memory available for the GPU. Since the memory is shared in the cache we
must make sure of no access violation incurring inside, to do so CUDA provides some
functionality to enable this sort of management, such atomic operations, mutex locks
and thread synchronization. These add some additional difficulties for the
programmer to handle.

ABF differs from DCEBF to allow faster execution on the GPU with the
following regards:

1. Instead of dividing each cluster to a single thread, we can divide each cluster
into a block of threads, these threads should be sized in the power of 2. A
common size for a block is 32, 64, 128, 256, 512 or 1024 threads per block.
Older GPU however are limited to a maximum of 512 threads per block such
as “Tesla” GPU. Newer GPU can handle up 1024 threads per Block. If the
servers and tasks number is not equal to the power of two, it is necessary to
pad the task and server information with virtual tasks and servers to the next
power of 2. Because many parallel algorithms such as Radix Min Position
requires the number of elements to be a power of two.

2. Instead of having one thread calculating f (1) for all servers in BF and DCBF,

we can have each one of the GPU threads calculating f(n) for one server.
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3. Using shared memory we can reduce getting the minimum position from O(N)
to O(log2(N)), it is done by allowing threads to cooperate to get the minimum.

The shared memory is also used to reduce the number of access to the main

memory, thus greatly reducing the wait time to get the task data.

However each one of these improvements present a challenge on its own. The
limited availability of shared memory means that the size of shared memory used
should be kept at minimum, this can be done by reusing the shared memory when
possible. Another difficulty is ensuring that there would be no data bank conflict: this
is difficult since each thread can be in a different point of execution in the code, hence
the use of thread synchronization and atomic operations. Copying data from the GPU
main memory to the shared memory should be done in a single operation, thus
reducing latency and preventing overloading of the GPU memory. Also the data copy
should be made in coalesced manner. Repeated memory request can cause errors in
the memory. Finally, when the number of servers or tasks are not a power of two, the
data have to be padded —by adding zero-to the next power of two to make sure that the
radix min position gives correct results.

The GPU optimized ABF follows this process:

1. Initialize values (N, M, R, Bik ...)

2. Loop1 for number of iteration

a. Generate M number of tasks based on random number generators

b. Combine M tasks with previously unfinished O tasks and get C
tasks

¢. Compare N and C

d. Pad the highest of the two to the next power of two

¢. Divide C tasks and N servers into Blk cluster and the highest
power of 2 threads

f.  Copy data to the GPU
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g Loop2 :For every upf, € [0,1,2 ...C/Blk] tasks in every CUDA
Block
1. Assume every thread calculate the cost function and the
server utilization sul, € [0,1,2 ...C/BIK] :
1. Get the updated cost function f(n) of allocation
tasks upf, with timing requirement utf, to
server sul.
2. Ifthe sul +upl,> sumax!, is violated penalize the
server that has been over utilized by factor K.
3. Use Radix Min position method to get the
minimum.
ii. st €ul, + sk,
iii. End Loop2
h. Copy allocation vector back to the CPU
i. Forall Tasks : ut,, = ut,, —1/p
J- Forall Tasks If ( ut,, < 0) task m is going to be assumed
finished and removed from task queue. The unfinished tasks are
moved to the O queue
k. End loopl
3. Exit simulation

BF and DCBF requires high Computational Complexity of O(N * M) and

O(N = M /Blk?). While the GPU optimized algorithm has a much lower

computational complexity of linearithmic time O(N * log2(M)/Blk?). In addition

computing f(n) on the CPU requires a linear time O(N), the same calculation can be

done in CUDA in constant time 0(1). Going from a quadratic complexity to a

linearithmic times is a huge reduction in complexity and should provide significant

speed increase on top of DCBF. On the other hand the reduction in energy
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consumption and SLAV minimization should be slightly worse in ABF than in DCBF

or BT due to the reduced size of the block.

3.8 SCALABILITY

In queuing theory terms one can consider the BF scheduler as a M/M/1 or
D/D/1 queue, and the proposed DCBF and ABF falls under M/M/Blk and D/D/Blk
queues. In all of these cases, the assumptions that all queues are infinite. However in
reality an infinite queue is not a realistic.

The datacenter scheduler is getting tasks in its queue at rate of M tasks per
batch at every 1/¢ second, with average processing requirement UP and Wait Time
UT, the total Processing Unit Required per Batch Should be Y5 up}, * ut,. Since UP
and UT are independent, the expected value of Y3 upf, * utl, = M+« U Pavg * UTqpg

The total number of servers N. nq, ny, n3 ... Ny, each n represent a server. Each
type of servers has its own power model. Assuming that each type has a maximum
processing capability available sumax,, sumax, ... sumax,, and the average server
processing capability is SU,,,. The available processing capability available at every
period in the datacenter is ), sumax,/u . Assuming that N and sumax are
independent the expected value of 2 sumaxy, /i = N * SUgyq /1. As long as the
available processing capability is more or equal to the required processing capability
the servers shouldn’t be over utilized. The same logic can be applied for both BF and
to DCBF as well as ABF, as long as we are dividing the tasks and servers equally into

clusters.
M« UPm,g * UTa,,,g < N *SUm,g/p,

If this inequality is violated we can expect an infinite queue to build up which
prohibits the datacenter from functioning normally and can cause a service downtime.
Dependent on the application, a downtime can have some serious ramification
especially in banking.
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Since Uyyg, Bypgand Sy, are constant if the random number generator is
consistent, the algorithm should give scale dependent on the arrival rate of tasks and
the number of tasks per batch and the average processing capability of the datacenter

by the following relation:

M
N - H (19)
avyg
N> UPm,g * UTm,g * M=+ p (i1)
- SUm,g
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CHAPTER 4
SETUP AND TESTING

To test the validity of the algorithm we developed a simulator that runs these
schedulers, and ran it on two different machines. The first is a 14” inch laptop -MSI
GE40- with the following specifications:

o Intel 17-4702mq quad core CPU 2.2 GHz with 6MB cache

16 GB of 1600 DD31. RAM dual memory channel

¢ Nvidia GTX 760m with 2GB of GDDRS memory, with optimus

technology

e 128 GB of SSD + 750 GB of 7200 RPM HDD

¢  Windows 8.1 64 bit professional

e CUDA toolkit 6.5

¢ Visual studio 2012

This test setup is our development and host machine. It is a fairly regular

machine with high end Mobile CPU and a mid-range gaming class GPU. The Nvidia
GTX 760m is "Kepler" generation GPU with Compute capability 3.5, 768 CUDA
cores with 4 SM with 192 CUDA cores, the clock speed is rated at 657 MHz. The
latest drivers were used in the run. The code is compiled using NVCC compiler in
release mode and x86 target platform under Windows. Using a higher end or a newer
GPU can yield much faster results, note that year over vear releases, the GPU are
rapidly growing in performance while CPU performances are begging to stagnate. At
the time of writing the GPU performance increase per generation is around 40%,
while the CPU performance increase per generation is about 10'%. Beside that GPU
generations are faster to release at a rate of almost twice a year while the CPU
generation are released at a rate of once a year, making the GPU a lucrative choice for

porting algorithms. Beside that GPU upgrades in a desktop or a server is much easier
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than a CPU upgrade that often requires an upgrade to the motherboard and other
component as well.

The Second system is an aging desktop computer accelerated by modermn GPU
to provider fast algorithm processing. The machine specifications are as follows:

¢ Intel 6600 2.4 GHz core 2 duo desktop CPU with 4 MB cache

e 4GB DDR2 rams

e Nvidia GT 740 with 2gb GDDRS rams with 384 CUDA cores and 2
SM

e windows 7 32 bit ultimate

¢ 180 GB HDD with 5400 RPM

System 2 should show the improvement resultant by using a budget modern
GPU, note that modern computers support PCle 3.0 while old computers are limited
to PCle 1.0 which limit the communication speed between the CPU and the GPU.
This bottleneck might theoretically reduce the algorithm performance. The bottleneck
is due to PCle working at the lowest speed of the components communicating on it
for backward compatibility. PCle 3.0 is 4 times the speed of PCle 1.0 for the same
number of data lines.

In this thesis, we are assuming that the servers are weakly heterogonous,
which means that all servers fall under one of few pre-determined configuration. This
is reasonable for most data centers.

In our implementation, we assumed that there are 4 types of servers. Table 1

shows the unique characteristics of each type of servers.
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Server Type o I idle sumax
Type A 6 1.05 2 20

Type B 60 1.4 3 60

Type C 76.8 1.3 4 100

Type D 79 1.2 3 200

Table 1: The characteristics of the four types of servers considered.

Type A servers are represents low power low performance servers, such as an
ARM server or an Intel Atom server. These are commonly used as an /O servers.
Type B servers represent low end desktop server such as Celeron or AMD Athlon
server. Type C servers represents a single CPU high end server with a single CPU.
Finally, type D servers represents high end servers that can have two CPU per board.
These are expensive high end servers reserved for running demanding tasks.

Each run in the simulations is repeated 20 times for each configuration
(M, N, p), to prove the algorithm scaling under different loads. Blk is chosen at run
time and it 1s equal to the number of concurrent threads that the CPU can run to get
the best efficiency from the hardware. The CUDA block size is varied between (32,
64, 128, 256, and 512) showing the effect of block size on the speed of the algorithm
and the effect on energy reduction and SLLAV. The total execution time is summed for
each block size independently for a total of 20 periods. Each run begins slowly when
the queue 1s empty and starts to fill up rapidly until it gets to a steady state. This will
allow us to compare the speed of the algorithm along with the power reduction and
SLAY for each run. Each run is repeated 4 times, and the results is the average of the
4 runs to prove the consistency of the run. Hence, a total of 1600 scheduling runs for
each test system. The large number of runs should prove that the result is consistent,
scalable and stable.

Assuming that N=20000 servers, M= 2000 tasks per batch and T=1/u = 10

seconds.
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4.1 RESULTS AND DISCUSSION

Figure 9 shows the total energy in datacenters using the proposed algorithms.

Total Energy In Data Center

H Round Robin  ® ABF 32 ABF64 MABF 128 WMABF256 WABF512 mBestFit mMDCBF
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Figure 9: Total Energy in Data Centers

ABF 32 represents the run where the datacenters is virtually divided into
groups of 32 servers and the scheduling is ran locally in each block, ABF 64 into
groups of 64 and so on. BF optimize task scheduling for the entire datacenter. DCFB
on the other hand virtually divide the datacenter into a small number of blocks equal
to the number of concurrent threads which the system can run, which is equal to 8
blocks in system 1. The energy saving using BF, DCBF and ABF in datacenters
varies between 24% energy reductions while using ABF 32 to 28% while using BF
compared to RR. The difference in energy saving between ABF 512 to BF or DCBF
is less than one percent, hence the hit on energy reduction is very small.

In the first batch of simulations N is originally assumed to be 20,000 and M
2,000 and T fixed at 10, N and M where varied in a linear manner to maintain the

ratio N/M + T. Figure 9 shows the energy saving using BF, DCBF and ABF are
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significant. But since it is known that the BF algorithm is computationally expensive,

the time result are shown in figure 10.

Round | ABF 32 ABF 64 | ABF 128 | ABF ABF 512 | BF DCBF
Robin 256
E 0 2420091 | 25.91324 | 26.94064 | 27.6255 | 27.85388 | 28.7671 | 28.65297
reduction 7 2
N,M, T
E 0 2417332 | 25.82668 | 26.96693 | 27.5370 | 27.87913 | 28.7913 | 28.67731
reduction 6 3
2N, 2M, T
E 0 2473684 | 26.17849 | 27.1167 | 27.6201 | 27.98627 | 28.627 | 28.60412
reduction 4
SN,SM,T
E 0 26.48402 | 27.85388 | 28.76712 | 29.2237 | 29.68037 | 28.5388 | 28.53881
reduction 4 1
10N,10M, T

Table 2: Energy reduction percentile compared to round robin

The time difference in execution is huge. Theoretically, BF execution time is
quadratic with respect to the number of tasks and servers. In other words when the
number of tasks and the number of the servers double, the execution time quadruple.
This can be clearly seen in figure 11. The time required for running BF is too large for
online application when the number of servers and tasks are both large. For example,
10N and 10M needed 3.78 more processing time to performe than 5N,5M, since both

M and N are doubled
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Figure 10: Logscale execution time
Figure 10 shows the time diffrence in execution between different algoirthm,

the speedups are so significant that it can’t be easily seen in a linear figure hence the
use of logscale axis. Table 3 shows the relative speedups obtained of using DCBF and
ABF compared to BF. RR execution time number are also included. For DCBF the
time of execution include dividing the datacenter, forking, executing local scheduling
and then joining the threads to get the global allocation vector. ABF execution time
include dividing the datacenter, sending the tasks data to the GPU, launching the
massive number of threads, running the algorithm, getting the local optimum results
and finally copy the allocation vector back to the CPU. This means the actual ABF
and DCBF speedups are even larger then what it appears, but including the

communication and threading overhead for more practical purpose.
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Speedup | Round ABF 32 ABF 64 ABF 128 | ABF256 | ABF512 | BF DCBF
5 Robin

Time 3751.333 | 879.2188 | 401.9286 | 598.617 | 254.6154 | 99.94671 | 1 32.63921
N,M 333

Time infinite 1456.149 | 825.7088 | 565.643 | 621.0663 | 224.9582 | 1 29.34504
2N,2M

Time infinite 3649.378 | 2605.749 | 2352.888 | 1437.745 | 657.1226 | 1 29.27568
5N,5M

Time infinite 6986,331 | 5801.953 | 5020.817 | 2807.591 | 1244.802 | 1 28.81053
10N,10M

As seen in table 3 DCBF is getting around 29 times speedups compared to BF,

Table 3: Times Speedups compared to BF

this speedups is the results of two things. The first reason is the reduced complexity

because the set is 8 times smaller which should give around 8 times less work. The

second reason is that taking advantages of the multicore capability of the CPU which

should give around 4 times speedups since system 1 is a quad core machine. DCBF

can be done without multicore system, while Multicore systems can’t cooperate to do

BF. Table 3 proves that the real speedups (~29 times) using DCBF is very close to the

theoretical one (~32 times). While in ABF, the speedups are even more significant

depending on the size of the of the blocks, N and M. The speed increase ranges from

100 times speedups to a nearly 7000 times even when taking into consideration the

overhead of CPU/GPU communication back and forth, preprocessing and post

processing overhead of virtually dividing the datacenter into blocks. The actual

algorithm time without the overhead was measured to is as low 2 ps using CUDA

profiler, which means an improvement can be in the order of millions if the

communication overhead can be reduced to zero.

Even further improvement can be attained using a more powerful GPU. The

GPU used in the previous simulation is single midrange notebook GPU, which can

operate a maximum of 768 threads at once. During simulations the number of GPU
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threads can reach up to 2%threads which equal 262144 threads. Having a more
powerful GPU or multiple GPUs can help reduce the compute time even further. At
the time of the writing the most powerful GPU in the market —Nvidia Titan Z- having
8122 GFLOPS [39]. System 1 GPU has 964.6 GFLOPS [40] of compute
performance. The other benefit of using GPU for running the algorithm is that it frees

the CPU to work on other jobs while the GPU is busy getting the optimal allocation

vector.
Round ABF 32 | ABF 64 | ABF ABF ABF BF DCBF
Robin 128 256 S12
SLAV N.M 17475000 0 0 0 0 0 0 0
SLAV 2N2M 35050000 0 0 0 0 0 0 0
SLAV 3N,5M 87700000 0 0 0 0 0 0 0
SLAV 10N,10M | 175000000 | O 0 0 0 0 0 0

Table 4: SLAYV for fixed T and variable N and M

Table 4 represents the SLAV which results from overutilization of servers. In
this configuration the SLAV only incurs while using RR, which means that some
computationally heavy tasks were assigned into low power servers that is not
optimized to run it. BF, DCBF and ABF avoid over utilization by placing a
demanding task into powerful servers and non-demanding tasks into low power one to
reduce energy consumption.

Figure (9-10) and table (2-4) proves the scaling of the algorithm regarding the
number of servers and the number of tasks. To prove the scaling with respect to the
arrival rate, N is fixed at 20000, Mand T are varied with the base value of 2000 and
10 respectively.

In figure 11 the algorithm keeps the shape consistency, with RR consuming
the most energy, followed by ABF with smaller blocks. Largest blocks have the

lowest energy consumption hence largest energy saving,.
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Round | ABF 32 | ABF64 | ABF 128 | ABF 256 | ABF 512 | BF DCBF
Robin
E reduction M, T 0 24.20091 | 25.91324 | 26.94064 | 27.62557 | 27.85388 | 28.76712 | 28.65297
E reduction M,0.5*T |0 25.05837 | 26.84825 | 27.93774 | 28.48249 | 28.71595 | 29.2607 | 29.18288
E reduction 1.5*M,T |0 15.11111 | 15.55556 | 16.44444 | 16.88889 | 16.88889 | 17.77778 | 17.55556
E reduction 0 15.11111 | 15.55556 | 16.44444 | 16.88889 | 16.88889 | 17.77778 | 17.55556
1.5*M,0.5+T
E reduction 2*M,T 0 21.20292 | 22.661 24.36209 | 25.33414 | 25.82017 | 26.79222 | 26.54921

Table 5: Energy Reduction Percentile

Table 5 shows that energy reduction percentile for BF, DCBF and ABF

compared to RR when N is fixed while varying M and T. This prove that the

algorithm is scaling correctly in all dimensions (M, N and T). As the datacenter

becomes more cluttered with tasks, the power reduction using BF, ABF and DCBF

are less significant (29% to 17.5%).
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Round ABF 32 ABF 64 ABF 128 | ABF 236 | ABF 512 | BF DCBF
Robin
SLAV M, T 1.75E+07 | 0.00E+00 [ 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
SLAV 14575000 | 118370.8 [ 5475.75 0 0 0 0 0
M,0.5%T
SLAV 26275000 | 5591.5 0 0 0 0 0 0
1.5*M,T
SLAV 33075000 | 11450000 [ 10925000 | 9427500 | 6837500 ([ 7567500 | 1.03E+08 | 19550000
1.5*M,0.5*T
SLAV 40850000 | 858743.3 | 47667.5 |0 0 0 0 0
2*M,T
Table 6: SLAV
Table 6 shows the ST.AV under different workload condition density. If either
the batch arrival rate or the tasks per batch doubles, SLAV might start to appear.
Which means not only power reduction has maintained its percentile, also the SLAV
has maintained its percentile with different load conditions and different sizes. SLAV
was violated in all servers under extreme workload conditions.
In all of the previous tests the result are the average of four runs. The standard
deviation for energy does not exceed 1%, while the standard deviation of time of
execution varies between 3% and 13%. This is an additional proof of the consistency
of the algorithms.
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Figure 11: System 2 logscale execution time
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Figure 12 shows the execution time of the algorithms running on system 2.

This system has a much older CPU and weaker GPU. The GT 740 has a compute

capability of 762.6 GFLOPS [41]. Which makes it around 20% weaker than the GPU

used in system 1

Round ABF 32 | ABF 64 | ABF 128 | ABF 256 | ABF 512 | BF DCBF
Robin
N,M,T 4891.533 | 467.3439 | 577.7402 | 338.1244 | 516.7113 | 206.6845 | 1 2.887678
2ML2N, T Infinite 1078.283 | 1098.705 | 1082.306 | 598.0577 | 338.0629 | 1 3.014153
SN,5M,T infinite 3811.92 | 3196.876 | 3082.116 | 2070.078 | 850.4896 | 1 3.017601
10N, 10M,T | 232966.1 | 7186.02 | 6396.767 | 6494.559 | 3665.964 | 1661.746 | 1 3.044463

Table 7: The relative performance increase compared to BF

A huge relative performance increase can be seen in table 7. ABF relative

speedups are very similar to that seen in table 2 (system 1), however the DCFB

relative speedups is much lower -3 times system 2 compared to 30 times of system 1-.

This difference is due to two reasons. The first is the number of blocks, DCFB will

dynamically divide the work into 2 blocks in system 2 while it is divided to 8 blocks

in system 1. Thus resulting in system 2 having 4 times more work to do than system

1. The second reason is that system 2 can only process two concurrent threads while

system 1 can process 8 concurrent threads.

SLLAV and the total energy results using system 2 is nearly identical to system

1, since both ABF and DCBF behave almost the same under different machine and

different configuration. The only major difference is their speed of execution on

different hardware.

Not only is the algorithm capable of doing the same tasks in much lower time.

Just by having a more powerful GPU we can see a huge difference in performance.

And given that the generational increase in GPU performance is around 40%, and the

CPU performance increase per generation is around 10% makes ABF future-proof.

Besides that upgrading a GPU is as simple as removing the old PCle GPU card and

replace it with a newer PCle GPU card. A CPU upgrade most likely requires an
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upgrade to the motherboard and sometimes RAMs which might dramatically increase
the cost of upgrade. In our setup, installing the modern GT 740 GPU didn’t require
any changes to the now aging system —about 8 years old-, just inserting the new
graphics card and installing its drivers. A CPU upgrade most likely requires an
upgrade to the motherboard and other components which dramatically increases the

cost of an upgrade. Despite all that it still wouldn't give the same speedups as using

ABF.
1/ | Round ABF32 | ABFo64 | ABF ABF ABF BF DCBF
p | Robin 128 256 512
7 16060625 132 0 0 0 0 0 0
6 15257475 428575 | 0 0 0 0 0 0
5 14444025 35006.7 | 526.75 0 0 0 0 0
5
4 14562750 153484. | 27679.7 | 189725 | O 0 0 0
3 5
3 13303725 362418. | 165637. | 637277 | 15971.5 | 4817 0 0
8 8 5
2 10637525 273E+0 | 1.24E+1 | 1.24E+]1 | 1.24E+1 | 1.24E+1 | 1.08E+0 | 1730785
8 0 0 0 0 8 0
1 6199158 839420 | 453727, | 331377 | 242154 | 184618. | 4.95E+0 | 6754480
5 3 8 0

Table 8: SLAYV vs arrival rate for N=20000, M=2000

Table 8 shows the variation of the SLAV with the arrival rate for N = 20000
and M = 2000 when p is varied. The result obtained is the average of four runs under
different batch periods. RR had large STLAV in all runs. As the arrival rate increased,
SLAY appeared first in smaller ABF blocks, later SLAV appeared in larger ABF
blocks. The ABF based allocation algorithm began to have some SLLAV when the
ABF with smallest block size of 32 at 1/p = 7. Similarity SLAV appeared in block
size 64 when the batch period is 5. ABF 128 had some SLAYV when the batch period
18 4 and below. For both 256 and 512 block size, SLAYV incurred when the batch
period was equal to 3. The smaller the block size the larger the SLAV incurred.
Finally, DCBF and BF incurred some SLAV when the batch period is equal or less

than 2.
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1/ | Round ABF 32 | ABF 64 ABF ABF ABF | BF DCBF
1| Robin 128 256 512
8 3.34E+07 | 0.00E+ [ 0.00E+ [ 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+
00 00 00 00 00 00 00
7 3.21E+07 | 1.66E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+
02 00 00 00 00 00 00
6 3.06E+07 | 8.88E+ [ 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+
03 00 00 00 00 00 00
5 290E+07 | 6.51E+ | 1.55E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+ | 0.00E+
04 03 00 00 00 00 00
4 2.92E+07 | 3.25E+ | 637E+ | 3.81E+ | 8.00E+ | 0.00E+ | 0.00E+ | 0.00E+
05 04 03 00 00 00 00
3 2.66E+07 | 7.04E+ | 3.17E+ | 1.21E+ | 2.77E+ | 7.46E+ | 0.00E+ | 0.00E+
05 05 05 04 03 00 00
2 2.12E+07 | 1.56E+ | 6.90E+ | 1.07E+ | 6.69E+ | 6.71E+ | 4.15E+ | 6.13E+
10 10 11 10 10 08 07
1 1.24E+07 | L69E+ | 9.18E+ | 6.75E+ | 4.93E+ | 3.75E+ | 2.00E+ | 2.70E+
06 05 05 03 05 09 08

Table 9: SLLAV vs batch period for N=40000, M =4000

Table 9 represents the SLAYV in the datacenter when N=40000 and M=4000
when p is varied. The result in table 9 are very close to that of table 8 in which the
SLAYV incurred first at the smallest block size and gradually incurred on the larger
block size as the batch period is getting smaller. Finally, SLAV appear when the
block is very large or the entire problem is a single block. The incurrences of the
SLAYV in table 9 is not only gradual as table 8 but also very similar at the batch period
that the SLAYV began incurring. This proves the scalability of the algorithm, since the

ratio of N/M 1s maintained.

1/ [ Round ABF32 | ABF64| ABF| ABF| ABF | BF DCBD

u | Robin 128 256 512

7| 80317425 0 0 0 0 0 0 0

6| 76221800 339 0 0 0 0 0 0

5| 72278525 | 18060 | 1975 0 0 0 0 0

4| 72626700 | 253914. | 41697 | 27723 0 0 0 0
3

3| 66742350 | 5.56E+ | 5.56E+ | 5.56E+ | 5.56E+ | 5.56E+ 0 0
12 12 12 12 12

2| 53032700 | 6.44E+ | 6.44E+ | 6.445+ | 6.44E+ | 6.44E+- | 2.47F+ | 3.48E+
12 12 12 12 12 09 08

1| 30912250 | 435E+ | 435E+ | 4355+ | 4355+ | 4356+ | 1176+ | 1.55E+
12 12 12 12 12 10 09

Table 10: SLAY vs batch period for N=100000, M=10000
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1/ | Round ABF 32 | ABF 64 ABF ABF ABF | BF DCBF
1| Robin 128 256 512
7 1.61E+08 0 0 0 0 0 0 0
6 1.53E+08 [ 862.75 0 0 0 0 0 0
5 1.44E+08 | 34975 | 361.75 0 0 0 0 0
4 1.45E+08 | 478757. 74363 | 4438.5 0 0 0 0
8
3 1.33E+08 [ 2.22E+ | 2.22E+ | 2.22E+ | 2.22E+ | 2.22E+ 0 0
13 13 13 13 13
2 1.06E+08 [ 2.58E+ | 2.58E+ | 2.58E+ | 2.58E+ | 2.58E+ | 9.83E+ | 1.33E+
13 13 13 13 13 09 09
1 61967200 | 1.74E+ | 1.74E+ | 1.74E+ | 1.74E+ | 1.74E+ | 4.72E+ | 6.16E+
13 13 13 13 13 10 09

Table 11: SLAYV vs batch period for N=200000, M=20000

Similarity table 10 and 11 shows the SLAV results when N = 200000,

100000 and M = 20000, 10000 respectively. The results are largely similar to that

table 8 and 9 since the ration of N /M is the maintained.
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CHAPTER 5
CONCLUSION

In this thesis, we introduced AFB and DCBF to solve BPP or VCSBBP for
optimal workload placement in datacenters. BF, ABF and DCFB all managed to get
around 24~28% percent energy reduction in Datacenter compared to RR while
eliminating any STLAV under normal workloads condition. 30 times speed increase
was achieved using DCFB compared to BF, and more than 7000 times speed increase
using AFB compared to BF to schedule tasks with minimal hit to energy reduction
and SLAV. We also empirically proved that the DCFB is getting a consistent speed
increase compared to BF irrespective to the size of the problem. While ABF is getting
larger relative speed increases for larger BPP problem. ABF also promises even larger
speed improvement in the future with newer or Better GPU hardware. This
breakthrough in speed increase in ABF compared to BF can finally bring online
scheduling techniques algorithm into time feasible range for large sets due the very
short execution time.

While it is hard to imagine any further speed increase that can be done to this
algorithm there is still some room for improvement. Porting the algorithm to OpenCL
allows the algorithm to run on a non-Nvidia GPU, thus bringing ABF into even more
hardware. Adding an MPI option can make the algorithm better for Multi CPU
solution or for Xeon Phi aided simulation. Adding more constraint, such as migration
cost, RAM and Disk Utilization can make the model more accurate. Replacing the
SLAY model with a queuing model is more realistic in real datacenters. Rewriting the
algorithms to work on a global scale instead of local can get less speedups compared
to ABF and DCBF, but it can slightly improve the energy saving and performance

degradation.
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