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AN ABSTRACT OF THE DISSERTATION OF

Ola HosseikyMalaeb for Doctor of Philosophy
Major : Physics

Title : Supersymmetric Massive Gravity and Dark Matter

This dissertation is composed of two parts. The first is constructing the
supersymmetric form of the Higgs Massive Gravity. The second part is forming the
Hamiltonian formulation of the recently proposed Mimetic Dark Matter.

When four scalar fields with global Lorentz symmetry take a vacuum expectation
value, diffeomorphism invariance is broken spontaneously and then the graviton ac-
quires mass. To supersymmetrize this model, four N = 1 chiral superfields with
global Lorentz symmetry are considered. The matter action is formed out of these
chiral superfields and it is composed of three D-type and two F-type terms. Then,
using the rules of tensor calculus, N = 1 supergravity Lagrangian is coupled to the
four chiral multiplets. This will promote the global supersymmetry to a local one.
Similar to the bosonic case, when the scalar components of the chiral multiplets
acquire a vacuum expectation value, both diffeomorphism invariance and local su-
persymmetry are broken spontaneously. This will make the scalar fields, χA, vectors
and the chiral spinors, ψA, spin-3/2 Rarita-Schwinger fields since the global Lorentz
index A is then identified with the space-time Lorentz index. At the end, we show
that in the broken phase the spectrum of the model consists of a massive spin-2
field, two massive spin-3/2 fields and a massive vector. It is similar to what we have
for N = 2 supergravity, but the two gravitinos obtained have different masses.

For the second part, we construct the Hamiltonian of Mimetic Gravity. The
equations of motion in this formalism are those of general relativity plus two more
equations. However, these two equations are proved to be the constraint equation
and the conservation of the energy-momentum tensor. Poisson brackets are com-
puted and closure is proved. At the end, comparison with the Hamiltonian dust is
done.
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Chapter 1

Introduction

Dating back to 1973, the possibility of supersymmetry, a theory unifying matter

and radiation, was discovered by Bruno Zumino and Julius Wess in four dimen-

sional spacetime [79]. At that time, it was more of a purely theoretical tool than

a serious possibility for the realistic theory of nature. Shortly after, it was realized

that supersymmetry could be relevant to elementary particle physics. Since then it

has been an attractive subject to many physicists.

Supersymmetry implies that each boson/fermion possesses a supersymmetric parti-

cle fermion/boson. It extends the Poincare symmetry algebra by introducing anti-

commuting symmetry generators (spinors). It is the only possible extension of the

spacetime symmetry.

A supersymmetry multiplet consists of particles having the same mass but differing

by spin 1/2. Therefore, if supersymmetry exists, it should be broken at an energy

which should be soon accessible by the accelerators searching for the supersymmetric

partners. Nevertheless, supersymmetry is still an interesting field to many physicists

for several reasons.

Supersymmetry solves the hierarchy problem which is to understand the big gap
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between the GUT scale and the scale of electroweak symmetry breaking. The unifi-

cation scale in a grand unified theory is around 1015, but below this scale the masses

of the electroweak scalars are not protected by any symmetry against quadratic di-

vergences in perturbation theory. Supersymmetric theories solve this problem by

cancellations between fermion divergencies and boson divergencies at every loop or-

der provided there is cancellation at one loop. This is an attractive feature of super-

symmetry which has better renormalizability properties than of non-supersymmetric

theories.

Supergravity is an extension of general relativity including supersymmetry; there-

fore, the fermionic superpartner of the graviton, the spin-3/2 gravitino, is included

[28]. Is is the only consistent field theory for interacting spin-3/2 fields. Supergravity

is a locally supersymmetric gauge theory where gravitation is implied in a natural

way once the supersymmetry transformation parameters become local.

For N = 1 supergravity, there is one real massless gravitino, while in the extended

(N = 2, 3, ..., 8) theories there are N gravitinos. For N = 2, the theory contains two

Majorana (one complex) gravitinos rather than a Majorana (real) gravitino.

Chapter 2.1 is mainly an introduction to supersymmetry and its algebra. Chiral

and Vector superfields are presented and then it is discussed how to form supersym-

metric Lagrangians. This chapter also includes a section on supergravity and the

Lagrangian is stated.

In the first part of this dissertation, we are going to construct a theory of Massive

Supergravity. First, what is massive gravity? Massive gravity has been studied
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for around 70 years. It has gained interest because it can be an answer to open

questions such as the cosmological constant naturalness problem. It started with

Fierz and Pauli in 1939 when they first wrote an action describing a free massive

graviton [46]. Through these years, curiosities were raised and studied, such as the

vDVZ discontinuity and the Boulware-Deser ghost. Chapter 3 gives a historical

review of massive gravity and discusses how to form massive gravity using the Higgs

mechanism.

To construct the theory of massive Supergravity, we are going to generalize the

Higgs mechanism used in the formulation of massive gravity. The validity of this

setting is studied in chapter 4. Upon symmetrizing massive gravity, the graviton

and the gravitino both get mass due to the breakdown of diffeomorphism invariance.

Therefore, we end up with a massive spin-3/2 particle plus a massive gravitino. It

is an interesting theory since it is similar to N = 2 Supergravity where two spin-3/2

particles exist.

To construct our globally supersymmetric action, superfields are used and the action

is written in superspace using D-terms and F-terms. Then, the rules of tensor

calculus are used promoting global invariance to a local one. The Supergravity

Lagrangian is then coupled to the chiral and vector multiplets using these rules,

where certain conditions are forced on the final action.

Chapters 5 and 6 form the second part of the work. Constrained Hamiltonian

dynamics dates back to Dirac. It is used for canonical quantization and for counting

degrees of freedom. Chapter 5 gives an introduction of the Hamiltonian formulation
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and discusses the canonical formalism constructed by Arnowitt, Deser and Misner

in 1962. The equations of motion and Poisson brackets of general relativity are also

presented.

Recently, Chamseddine and Mukhanov proposed a mimetic dark matter theory

([24]) where they isolated the conformal degree of freedom in a covariant way. They

found that the conformal degree of freedom can mimic the contribution of an extra

pressureless fluid such as Dark Matter.

Chapter 6 deals with constructing the canonical formulation of mimetic dark mat-

ter. Equations of motion are analyzed and compared to those of GR. Furthermore,

we compute the Poisson brackets checking if the algebra is closed.

Chapter 7 is the conclusion. Notation and conventions used are presented in

appendix (A).
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Chapter 2

Supersymmetry and Supergravity

Supersymmetry is a symmetry unifying matter with radiation. It proposes

to each known particle a superpartner. Up to the writing of this thesis, no super-

symmetric particles have been observed in nature. Therefore, it is still a theoretical

invention. Nevertheless, it remains attractive to many scientists for several reasons,

mainly because it is a solution to the hierarchy problem.

2.1 Supersymmetry and its Algebra

Particles in nature are splitted into two kinds, those with integral (bosons)

and half-integral (fermions) spins. Since symmetries play an important role in the

description of physical phenomena, it is natural to ask if there is a symmetry that

places different spin particles in the same multiplet. Several attempts to unify the

spacetime symmetry of the Poincare group with the symmetry of some internal group

have been done. However, until 1974 all internal symmetries were studied but the

no-go theorem of Coleman and Mandula [26] stating that, under certain physical

assumptions, the largest space-time symmetry possible is the Poincare symmetry

shows that the invariance group can at best be the direct product of the Poincare
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group and an internal group.

The most general Lie algebra of symmetries of the S-matrix, as demonstrated by

the theorem of Coleman and Mandula, contains Pµ, Mµν , and Bl with the following

commutating relations

[Pµ, Bl] = 0, [Mµν , Bl] = 0

[Bl, Bm] = ic k
lmBk. (2.1)

Pµ is the energy momentum operator, Mµν is the Lorentz rotation generator, and

Bl are Lorentz scalar operators constituting a Lie algebra where the c k
lm are the

structure constants of the Lie algebra of the internal symmetry group.

The restrictions of the Coleman-Mandula theorem were avoided by relaxing one

condition. Haag, Lopuszanski and Sohnius [68] generalized the notion of a Lie

algebra by involving not only the usual commutators but also anticommutators.

The simple extension was considering Z2 graded algebras (superalgebras) whose

generators are classified into two classes, even (bosonic) and odd (fermionic) and

they obey

[even, even] = even, [even, odd] = odd, {odd, odd} = even. (2.2)
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For every generator A in the graded Lie algebra, there is an associated number a

such that

a =


0 ifA is even

1 ifA is odd

(2.3)

The graded commutator is defined by

[A,B} = AB − (−1)abBA (2.4)

and it satisfies the graded Jacobi identity

[A, [B,C}}+ (−1)a(b+c) [B, [C,A}}+ (−1)c(a+b) [C, {A,B}} = 0. (2.5)

Therefore, the simplest version to generalize the Poincare algebra to a superalgebra is

enlarging it by including a spinor generator Q. This symmetry generator is fermionic

and it turns a bosonic state into a fermionic one and vice versa. A supersymmetry

transformation can be written as

Q|boson > = |fermion >, Q|fermion > = |boson > . (2.6)

Since this added generator Q to the Poincare algebra has a fermionic character, then

a left handed Weyl spinor is introduced, Qα (α = 1, 2). Its Hermitian adjoint is a

7



right handed Weyl spinor, Q̄β̇. Their algebraic relations are given by [78]

{Qα, Qβ} = 0{
Qα, Q̄β̇

}
= 2σµ

αβ̇
Pµ{

Q̄α̇, Qβ
}

= 2σ̄µα̇βPµ{
Q̄α̇, Q̄β̇

}
= 0

[Mµν , Qα] = − (σµν)
β
αQβ[

Mµν , Q̄
α̇
]

= − (σ̄µν)
α̇
β̇ Q̄

β̇

[P µ, Qα] = 0. (2.7)

Supersymmetry thus arises as an extension of Poincare symmetry mixing bosons

with fermions. It combines superpartners, both bosons and fermions states, in an

irreducible representation called supermultiplet which encompasses both the trans-

formations of the Poincare group and the appropriate supersymmetry transforma-

tions.

2.2 Chiral and Vector Superfield

A superfield S(x, θ, θ̄) differs from an ordinary field by being a function of

both the spacetime coordinates xµ, and also of anticommuting Grassmann variables

θα and θ̄α̇. The latter transforms as two-component Weyl spinors with

{θα, θα} =
{
θα, θ̄β̇

}
=
{
θ̄α̇, θ̄β̇

}
= 0. (2.8)
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The mass dimension of the Grassmann variables is [θα] =
[
θ̄α̇
]

= −1/2, whereas the

dimension of the coordinate [x] = 1. The coefficients in an expansion of a superfield,

S(x, θ, θ̄), in powers of θ and θ̄, are the fields of the supermultiplets.

2.2.1 Chiral Superfields

If the superfield satisfies the constraint D̄α̇Φ(x, θ, θ̄) = 0, where D̄ is the

covariant derivative given by

D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (2.9)

then it is called a left handed chiral superfield (LHχSF ). Such a superfield is given

by

Φ(xµ, θ, θ̄) = ϕ(x) +
√

2θψ(x) + θθF (x) + i∂µϕθσ
µθ̄− i√

2
θθ∂µψσ

µθ̄− 1

4
∂µ∂

µϕθθθ̄θ̄.

(2.10)

It has the same number of fermionic and bosonic degrees of freedom where its com-

ponent fields are two scalar fields, ϕ and F , and a Weyl spinor ψ.

Under an infinitesimal supersymmetry transformation, the behaviour of the super-

field Φ is given by [78]

Φ→ Φ + δΦ (2.11)

with

δΦ =
(
ζQ+ ζ̄Q̄

)
Φ (2.12)

9



where Q and Q̄ are differential operators given by

Q =
∂

∂θα
− iσµαα̇θ̄α̇∂µ

Q̄ =
∂

∂θ̄α̇
− iθασµαα̇∂µ. (2.13)

From this we can derive the supersymmetry transformations of the component fields

in the expansion (2.10). It is found that

δϕ =
√

2ζψ

δψ =
√

2ζF −
√

2 ∂µϕσ
µζ̄

δF = i
√

2 ∂µψσ
µζ̄ (2.14)

It should be noted that the change in F is a total derivative. This will be used in

constructing Lagrangians.

The conjugate superfield Φ† satisfies the constraint

DαΦ† = 0, (2.15)

where

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ (2.16)

It is called the right chiral superfield. Therefore, we can say that a chiral multiplet

is the combination of a two-component Weyl fermion and a complex scalar field,

related by supersymmetric transformations.
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2.2.2 Vector Superfield

The chiral superfields introduced above do not have a vector field as com-

ponent field. Thus, vector superfields are introduced to involve gauge vector bosons

(with helicity eigenstates ±1) and their fermionic supersymmetric partners, gaugi-

nos (having helicity eigenstates ±1/2) [9]. Therefore, the vector superfield should

involve a real gauge field Vµ(x) and its fermionic partner λα(x). Starting with a

general superfield given as an expansion in θ and θ̄, we have

S
(
x, θ, θ̄

)
= f (x) + θϕ (x) + θ̄χ̄ (x) + θθm (x) + θ̄θ̄n (x) + θσµθ̄Vµ (x) + θθθ̄λ̄ (x)

+ θ̄θ̄θψ (x) + θθθ̄θ̄d (x) (2.17)

where all higher powers of θ, θ̄ vanish. f,m, n, d are scalar fields, Vµ is a vector

field, and ϕ, ψ, χ̄, λ̄ are Weyl spinor fields. The vector superfield, V , is defined by

the constraint V (x, θ, θ̄) = V †(x, θ, θ̄). This requirement gives

f = f ∗ Vµ = V ∗µ d = d∗

m∗ = n ϕ = χ λ = ψ.

Therefore, it contains altogether sixteen degrees of freedom, eight bosonic degrees

of freedom and eight fermionic degrees of freedom. It has two Weyl spinors with

complex components; thus, each has four real fermionic degrees. These are matched

by eight real bosonic degrees, d(1), f(1),m(2), Vµ(4). It is convenient to rewrite the

vector superfield using particular field combinations (dictated by Φ + Φ†) for the

11



coefficients of the θθθ̄, θ̄θθ and θθθ̄θ̄ components of V. Then we have

V
(
x, θ, θ̄

)
= C (x) + iθχ (x)− iθ̄χ̄ (x) +

1

2
iθθ [M(x) + iN(x)]

− 1

2
iθ̄θ̄ [M(x)− iN(x)] + θσµθ̄Vµ(x) + iθθθ̄

[
λ̄(x) +

i

2
σ̄µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x) +

i

2
σµ∂µχ̄(x)

]
+

1

2
θθθ̄θ̄

[
D − 1

2
∂µ∂

µC

]
(2.18)

where C,M,N,D are real scalar fields, Vµ is a (real) vector field, and χ, λ are Weyl

spinor fields. It is the vector Vµ that lends its name to the multiplet.

Under a supersymmetry transformation

δζV = i
(
ζQ+ ζ̄Q̄

)
V, (2.19)

where Q and Q̄ are defined in (2.13), we get for the transformations of the component

fields

δC = i
(
ζχ− ζ̄χ̄

)
δλα = −iDζα −

1

2
(σµσ̄ν) β

α ζβVµν

δV µ = i
(
ζσµλ̄− λσµζ̄

)
− ∂µ

(
ζχ− ζ̄χ̄

)
δD = ∂µ

(
−ζσµλ̄+ λσµζ̄

)
(2.20)

where Vµν = ∂µVν − ∂νVµ and its transformation is given by

δV µν = i∂µ
(
ζσνλ̄− λσν ζ̄

)
− i∂ν

(
ζσµλ̄− λσµζ̄

)
(2.21)

12



Similar to the variation of the F-field, that of the D-field is also a total divergence.

Also, ∂µ∂
µC transforms as a total derivative; therefore, so does the full coefficient

of θθθ̄θ̄ in the vector supermultiplet.

2.3 Wess Zumino Model

A vector superfield can be constructed simply from a chiral superfield Φ

and an anti-chiral superfield Φ†. For instance

i(Φ− Φ†) = i(ϕ− ϕ†) + i
√

2(θψ − θ̄ψ̄ψ) + iθθF − iθ̄θ̄F †

− θσµθ̄∂µ(ϕ+ ϕ†)− 1√
2
θθθ̄σ̄µ∂µψ +

1√
2
θ̄θ̄θσµ∂µψ̄

− 1

4
iθθθ̄θ̄∂µ∂

µ(ϕ− ϕ†) (2.22)

satisfies the reality requirement. The coefficient of θσµθ̄, the vector potential Vµ, is a

pure U(l) gauge transformation. This led Wess and Zumino to suggest the following

supersymmetric generalization of gauge invariance [79]

V (x, θ, θ̄)→ V (x, θ, θ̄) + i
[
Φ(x, θ, θ̄)− Φ†(x, θ, θ̄)

]
(2.23)

Under this transformation, we find by comparing with equation (2.18) that

C → C + i(ϕ− ϕ†)

χ→ χ+
√

2ψ

1

2
(M + iN)→ 1

2
(M + iN) + F

13



Vµ → Vµ − ∂µ(ϕ+ ϕ†)

λ→ λ

D → D (2.24)

From (2.24) we see that in a gauge theory the fields C, χ,M and N are all gauge

artifacts since they can be eliminated by adjusting ϕ − ϕ†, ψ, F while still leaving

ϕ + ϕ† arbitrary. The fields λ, λ̄,D are gauge invariant while Vµ transforms as

Vµ → Vµ + ∂µΛ. Then in the ‘Wess-Zumino’ gauge the multiplet reduces to Vµ, λ

and D, and the vector superfield reduces to

VWZ

(
x, θ, θ̄

)
= θσµθ̄Vµ(x) + iθθθ̄λ̄(x)− iθ̄θ̄θλ(x) +

1

2
θθθ̄θ̄D(x) (2.25)

The field D, which is the coefficient of θθθ̄θ̄, transforms as a total derivative. The

advantage of this gauge is that all powers of V n
WZ with n > 2 vanish since they will

involve at least θ3. The only non-zero power is

V 2
WZ

(
x, θ, θ̄

)
=
(
θσµθ̄

) (
θσν θ̄

)
VµVν = θα (σµ)αα̇ θ̄

α̇θβ (σν)ββ̇ θ̄
β̇VµVν

=
1

2
θθθ̄θ̄VµV

µ (2.26)

2.4 Supersymmetric Lagrangians

When constructing supersymmetric theories, matter fields (for example

quarks) and their supersymmetric partners (squarks) are assigned to the chiral su-
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perfields discussed above. While vector superfields provide the gauge fields. In the

same multiplet, their fermionic supersymmetric partners, the gauginos, are associ-

ated with them.

To construct a supersymmetric Lagrangian, we must use terms invariant under

a supersymmetry transformation up to a total derivative. As discussed before, for

a chiral superfield, the F-term transforms as a total derivative. While for a vector

superfield, it is the D-term that is invariant up to a total derivative. Therefore, the

Lagrangian of a supersymmetric theory is given by the sum of the F-term of a chiral

superfield (i.e. the θθ component of a LHχSF or the θ̄θ̄ component of a RHχSF )

and the D-term of a vector superfield (i.e. the θθθ̄θ̄ component). This guarantees

that the theory is invariant under supersymmetric transformations.

2.4.1 Lagrangians for Chiral Multiplets

Supersymmetric Lagrangians of chiral multiplets can be constructed from

products of chiral superfields. The product of two left chiral superfields (ΦiΦj) is

again a left chiral superfield (consequently for right chiral superfields). However, the

product of a left chiral superfield and a right chiral superfield (Φ†iΦj) gives a vector

superfield. Therefore, in general, the Lagrangian can be written as [78]

L =

∫
dθ4 ΣiΦ

†
iΦi +

(∫
d2θW (Φ) + h.c.

)
(2.27)

where D- and F-terms are projected out by the superspace integration. The super-

potential, W (Φ), involves up to the third power of the superfield Φi as required by
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renormalizability. It is given by

W (Φ) =
1

2
mijΦiΦj +

1

3
λijkΦiΦjΦk, (2.28)

where the coefficients, mij and λijk, are real and symmetric in their indices. The

mass terms and the couplings of the component fields are provided by the super-

potential; however, it does not provide kinetic terms. The latter are provided by

(Φ†iΦj).

The above Lagrangian expressed in terms of component fields, apart from surface

terms, is given by

L = ∂µϕi∂
µϕ†i + iψ̄iσ̄

µ∂µψi + F †i Fi +

(
mijϕiFj −

1

2
mijψiψj + λijkϕiϕjFk

− λijkψiψjϕk + h.c.) (2.29)

where the auxiliary field F and its complex conjugate F † can be removed by their

equations of motions.

2.4.2 Lagrangians Constructed out of Vector Multiplets

The Lagrangian written above does not contain spin-1 component fields

since vector superfields are not included. Out of these vector superfields, a super-

symmetric gauge field theory can be formed by combining gauge symmetry with

supersymmetry. After all, our vector bosons are supposed to be gauge bosons.
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In the non-supersymmetric case, we know that the vector potential transforms as

Vµ(x)→ V
′

µ(x) = Vµ(x) + ∂µΛ(x) (2.30)

under the U(1) gauge transformation. As discussed in section (2.3), Wess and

Zumino supersymmetrized this transformation by noting that Vµ is a component

of the vector superfield, and from i(Φ− Φ†) (equation 2.22), it is clear that ∂µΛ ≡

∂µ(φ+ φ†). Therefore, they suggested that the superfield transforms as in equation

(2.23), which is repeated here for convenience,

V
(
x, θ, θ̄

)
→ V

′ (
x, θ, θ̄

)
= V

(
x, θ, θ̄

)
+ i
[
Φ
(
x, θ, θ̄

)
− Φ†

(
x, θ, θ̄

)]
(2.31)

under a U(1) gauge transformation.

Noticing that [78]

DαV → DαV + i
(
DαΦ−DαΦ†

)
→ DαV + iDαΦ

since DαΦ† = 0 from the chirality condition, we can obtain an invariant under the

transformation (2.31) by eliminating the term DαΦ. Therefore, multiplying by D̄α̇

we get

D̄α̇DαV → D̄α̇DαV + iD̄α̇DαΦ

→ D̄α̇DαV + i
[{
D̄α̇, Dα

}
−DαD̄α̇

]
Φ
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→ D̄α̇DαV − 2σµαα̇∂µΦ

again using the chirality condition and also using the anticommutator relation be-

tween Dα and D̄α̇ {
Dα, D̄α̇

}
= −2iσµαα̇∂µ. (2.32)

From this it is deduced that

D̄2DαV → D̄2DαV.

Defining

Wα = D̄2DαV ; W̄α̇ = D2D̄α̇V, (2.33)

it follows that D̄β̇Wα = 0 because D̄α̇D̄D̄ = 0.

Wα and W̄α̇ are a left-handed chiral superfield and a right-handed chiral superfield

respectively. Therefore, these superfields are chiral and gauge covariant. Due to

this chirality, the supersymmetric pure gauge theory is constructed out of the F-

component of WαWα. Then ∫
d2θWαWα (2.34)

is a susy invariant Lagrangian. Calculation yields

1

32
(WαWα)F = −1

4
V µνVµν + iλσµ∂µλ̄−

i

4
εµνρσV

µνV ρσ +
1

2
D2. (2.35)

This is the supersymmetric generalization of the kinetic terms −1
4
V µνVµν of the U(l)

18



gauge field. The auxiliary field D can be eliminated using its equations of motion

and λ represents the gaugino contribution.

Similar to the above supersymmetric extension of the U(1) abelian gauge invari-

ance, we have that of the non-abelian gauge invariance that occurs in electroweak

theory, quantum chromodynamics and grand unified theories.

The non-abelian analog of the field strength superfield Wα is the chiral superfield

given by

Wα = (2ig)−1D̄2e−V
(
Dαe

V
)

(2.36)

where V = 2gV ata. V a are the vector superfields containing the non-abelian vector

bosons and ta are the Hermitian matrices constituting the representation of a non-

abelian group G satisfying [
ta, tb

]
= ifabctc (2.37)

where the fabc are the totally antisymmetric structure constant of G.

In this case, the pure gauge-invariant and supersymmetric contribution to the La-

grangian is given by [9]

L =
1

64

[
tr (WαWα) + tr

(
W †
αW

α†)]
F
. (2.38)

2.5 Supergravity

The oldest known force is the gravitational force, but it is still the least un-
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derstood. This is mainly due to the fact that gravitational experiments are difficult

to perform because the gravitational constant κ is small. Moreover, this gravita-

tional constant is dimensionful and this prevented the formulation of a renormal-

izable quantum theory of gravity. The marriage of special relativity and quantum

mechanics has been successfully done forming quantum field theory. This provided

renormalizable field theories for QCD and QFT. However, up to now Einstein’s grav-

ity has proved difficult to treat with any quantum theory. Supergravity comes in

as a theory that, though nonrenormalizable, still has predictive power. It is a field

theory, based upon the principles of special and general relativity and of quantum

mechanics, describing gravity and the other interactions [77].

Supergravity is an extension of general relativity combining the principles of super-

symmetry and general relativity. Its Lagrangian field theory was formulated in 1976

[27]. Due to the symmetry between bosons and fermions, a pure supergravity theory

includes the spin-2 graviton plus its supersysmmetric particle, the gravitino. The

gravitino is a hypothetical spin 3/2 particle described by the Rarita-Schwinger field.

2.5.1 Rarita-Schwinger Field

The kinetic term for the gravitino, φµ, is provided by the massless Rarita-

Schwinger action which is given by

1

2

∫
d4xεµνρσφ̄µγ5γν∂ρφσ (2.39)

where our conventions are given in appendix (A). This action is invariant under the
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transformation

φµ → φµ + ∂µη (2.40)

where η is a Majorana spinor parameter. The Rarita-Schwinger field equation is

given by

εµνρσγ5γν∂ρφσ = 0 (2.41)

which can be written in an alternative form

γµ (∂µφν − ∂νφµ) = 0. (2.42)

2.5.2 Supergravity as Local Supersymmetry

Supersymmetry is a global symmetry of the Lagrangian; however, it may

be promoted to a local symmetry. Local supersymmetry is a theory of general coor-

dinate transformations of spacetime. To see this we consider supersymmetry trans-

formations. In section (2.2) we saw that a supersymmetry transformation changes

fermionic into bosonic particles and vice versa which can be written schematically

as [1]

δB = ε̄F, δF = ε∂B (2.43)

where B and F represent bosonic and fermionic particles respectively and ε is the

infinitesimal supersymmetry parameter. By allowing this parameter to depend on

space-time coordinates, ε = ε(x), the symmetry will become local and then the

21



commutator of two infinitesimal supersymmetry transformations will yield

[δε1 , δε2 ]B = (ε̄1γ
µε2) (x) ∂µB. (2.44)

The space-time dependent vector field (ε̄1γ
µε2) (x) shows that a locally supersym-

metric theory will necessarily be diffeomorphism invariant and this is achieved by

including Einstein’s general relativity.

2.5.3 Local Symmetry from a Global One

One way to construct a theory with local symmetry from a global one is the

Noether method. Consider the Dirac Lagrangian

L = ψ̄ (iγµ∂µ −m)ψ (2.45)

which is invariant under the global symmetry

ψ(x)→ e
i
4

Λabγabψ(x). (2.46)

However, promoting this global symmetry to a local one, the phase will then depend

on the space-time coordinate, Λ = Λ(x). Since this is no longer a symmetry for the

Lagrangian, the invariance of the Dirac equation is restored under local Lorentz

transformations by introducing the covariant derivative

Dµ = ∂µ +
1

4
ω ab
µ γab. (2.47)

22



This is analogous to the electromagnetic case. The Lagrangian ψ̄ (iγµDµ −m)ψ

becomes invariant provided that

ω
′ab
µ = ∂µΛab + ω ac

µ Λ b
c − ω bc

µ Λ a
c . (2.48)

The commutator of two covariant derivatives gives the curvature tensor which is

defined by

[Dµ, Dν ] =
1

4
R ab
µνγab, (2.49)

where it can be easily found that

R ab
µν = ∂µw

ab
ν − ∂νwabµ + wacµ w

b
νc − wacν w b

µc (2.50)

and

R ab
µν (w)eρaeσb = Rµνρσ(g) (2.51)

which is identical to the Riemann tensor as a function of the metric g.

The field eaµ and ωbνa introduced are the vierbein and the spin-connection field usually

used in describing general relativity. The vierbein defines a local set of tangent

frames of the spacetime manifold, while the spin-connection field is associated with

(local) Lorentz transformations of these frames. a, b, ... are tangent space indices,

lowered and raised by the Minkowski metric, while the world indices are µ, ν, ....

The inverse of the vierbein is denoted by eµa ,

eµa = gµνeνa = gµνηabe
b
ν , (2.52)
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and it is related to the spin connection by

∂νe
µ
a = −ω b

νae
µ
b − Γµγνe

γ
a (2.53)

2.6 Supergravity Lagrangian

In a similar way, global supersymmetry can be turned into a local one. In

the supersymmetric case, the transformation parameter is itself a spinor, hence a

spin-3/2 field ψαµ is expected since it carries both a spinor and a vector index. This

field is the supersymmetric partner of the graviton identified with the gravitino’s

Rarita-Schwinger field. It naturally arises in the supergravity multiplets [1]. The

supermultiplet of the spin-2 graviton contains the spin-3/2 gravitino. Therefore,

there are two bosonic degrees of freedom (graviton) and two fermionic degrees of

freedom (massless Weyl vector spinor).

There are mainly two techniques for constructing supergravity models. The first

one, which was used in constructing the original supergravity lagrangians ([27], [34]),

starts from a globally invariant theory and then changes the action and transforma-

tion laws by an iterative procedure so as to obtain an invariant action successively

at each order of the gravitational constant. The second one ([23], [57]) is simpler

where it is to construct gauge theories of the supersymmetric groups. The gauge

theory of local supersymmetry introduces spin-3/2 fields identified with the grav-

itino’s Rarita-Schwinger field. Therefore, supergravity is obtained by gauging locally

supersymmetric transformation where the gauge group is the Poincare supergroup
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and the gauge field associated with the local supersymmetry transformation is the

gravitino. Shortly after, supergravity was reformulated in superspace [78], [56] (see

also [55]).

Here we will sketch how the Supergravity Lagrangian can be obtained by gauging

the supersymmetry algebra. Let [23]

Dµ = ∂µ + ω ab
µ Jab + eaµPa + ψαµQα (2.54)

be the connection associated with the supersymmetry algebra. The curvature tensor

is computed to be

[Dµ, Dν ] = R ab
µνJab + T aµνPa + ψαµνQα, (2.55)

where

R ab
µν = ∂µω

ab
ν − ∂νω ab

µ + ω ac
µ ω b

νc − ω ac
ν ω b

µc,

T aµν = ∂µe
a
ν − ∂νωaµ + ω ab

µ eνb − ω ab
ν eµb + ψ̄µγ

aψν ,

ψµν =

(
∂µ +

1

4
ω ab
µ γab

)
ψν −

(
∂ν +

1

4
ω ab
ν γab

)
ψµ. (2.56)

By imposing the torsion free constraint

Tµν = 0, (2.57)
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ω ab
µ are expressed in terms of eaµ and ψµ by

ω ab
µ = ω ab

µ (e) +
1

4

(
ψ̄µγ

aψb − ψ̄µγbψa + ψ̄aγµψ
b
)

(2.58)

where ω ab
µ (e) is the usual expression in the non-supersymmetric case.

However, this torsion constraint is not preserved under the supersymmetry trans-

formations which are given by

δeaµ = ε̄γaψµ,

δω ab
µ = 0,

δψµ =

(
∂µ +

1

4
ω ab
µ γab

)
ε. (2.59)

To preserve it, the δw ab
µ should be modified to become

δ
′
ωµab = −1

2
eaνe

ρ
b (ε̄γρψµν − ε̄γµψνρ + ε̄γνψρµ) . (2.60)

It is found that the Lagrangian invariant under these supersymmetry transforma-

tions is the Supergravity Lagrangian given by

e−1LSG = −1

4
R + ψ̄µγ

µνρ

(
∂ν +

1

4
ω ab
ν γab

)
ψρ. (2.61)

However, soon after the construction of the gauge action of supergravity, the non-

closure of the algebra on-shell was shown. For this, auxiliary fields were added to the

action and the transformation laws, similar to the situation in global supersymmetry.
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In [45] and [5] the problem was solved and a minimal set of auxiliary fields, closing

the gauge algebra and leaving the action invariant, were derived. It was found out

that only a scalar, a pseudoscalar and an axial world vector field are needed.

Therefore, the Lagrangian of supergravity contains the Einstein-Hilbert Lagrangian

of general relativity and the Rarita-Schwinger Lagrangian for the gravitino field and

auxiliary fields. The field content of N = 1 Supergravity with the minimal set

of auxiliary fields consists of the spin-2 field, eaµ, the spin-3/2 field, φµ, and the

auxiliary fields S, P and Aµ. It is given by [45], [63]

LS.G = − e

2κ2
R(e, ω)− e

3
|u|2 +

e

3
AµA

µ − 1

2
φ̄µR

µ (2.62)

where

u = S − iP (2.63)

Rµν
rs =∂µω

rs
ν + ω rp

µ ω s
νp − µ↔ ν (2.64)

Rµ =εµνρσγνγ5Dρ(ω)φσ (2.65)

R =e µ
r e

ν
s Rµν

rs (2.66)

Dµ =∂µ + (1/2)ωµrsσ
rs (2.67)

ωµrs =ωµrs(e) +Kµrs(e, φµ) (2.68)

Kµrs(e, φµ) =(κ2/4)(φ̄µγrφs − φ̄µγsφr + φ̄rγµφs) (2.69)
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and e is the determinant of the vierbein. This Supergravity Lagrangian is invariant

under local supersymmetry transformations up to a total divergence.
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Chapter 3

Massive Gravity

General relativity (GR) [44], formulated in 1915 by Einstein, is the theory of

gravity for a four dimenional spacetime. It is the theory of a massless spin-2 particle.

Einstein added to his theory in 1917 a cosmological constant to make the universe

static, which what was believed at that time. However, Hubble’s 1929 discovery

showed that the universe is expanding. Physicists then believed that the expansion

would be slowed down as time goes on by the effect of gravity. However, in 1998,

supernova data revealed that the universe has not been slowing down due to gravity,

it is expanding in an accelerated motion. To explain this, theorists included dark

energy, a form of energy density with negative pressure. It is poorly understood, but

we know that it makes around 68% of the energy density. The simplest interpretation

of this dark energy is represented by the cosmological constant, a constant in space

and time. However, still more is unknown than what is known.

3.1 History of Massive Gravity

When we discuss massive gravity, it is normal to ask why massive gravity.

One of the main motivations for considering massive theories of gravity is that they
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provide a new point of view of the cosmic acceleration. A long-distance modification

of general relativity can be obtained by the graviton having a small mass while

keeping the physics at small scales equivalent to general relativity.

There are two main idea of how massive gravity could be useful in interpreting

the cosmological constant. The first idea is that mass of the graviton weakens

gravity in the infrared and this may weaken the sensitivity of the dynamics to an

already existing large cosmological constant. This is what referred to as screening

or degravitating solutions [47, 48]. The second is that gravitons can condense to

form a condensate whose energy density sources self-acceleration which explains that

acceleration of the universe without the need of a cosmological constant [32, 17].

Simple cosmological solutions with flat, open, and closed spatial geometries were

found in [73]. Their solutions exhibited self-acceleration, while being free from

ghost instabilities. Also, in [25], cosmological solutions were found within the tetrad

formulation of massive gravity [22]. It was found that the effect of a graviton mas

is equivalent a matter source introduced to the Einstein equations that can consist

of several different matter types; a cosmological term, quintessence, gas of cosmic

strings, and non-relativistic cold matter.

Massive gravity is an interesting topic for many authors. It dates back for more

than 70 years. It is a theory which propagates a massive spin-2 particle. To construct

such a theory, the graviton should be given mass. This can be done by adding to

the Einstein-Hilbert action a mass term such that as the mass goes to zero, general

relativity should be restored. The first action written for a free massive gravity was
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in 1939 by Fierz and Pauli [46] in the perturbative limit. This is given by

S =

∫
d4x

(
−1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µhµν∂νh+

1

2
∂λh∂

λh

− 1

2
m2
(
hµνh

µν − h2
))

. (3.1)

where gµν = hµν + ηµν . For m = 0, the action is the linearized Einstein-Hilbert

action having the gauge symmetry

δhµν = ∂µζν + ∂νζµ. (3.2)

However, the mass term breaks this general coordinate invariance. The Fierz-Pauli

tuning (the −1 coefficient between hµνh
µν and h2) is crucial where any deviation

will not be description of a single massive spin-2 particle. This action propagates 5

degrees of freedom, the right number for a massive spin-2 particle.

In 1970, van Dam, Veltman and, independently, Zakharov [76], [80] coupled the

linear theory to a source and discovered that the limit as the graviton’s mass goes

to zero is not continuous. There is a difference between what the theory predicts

for a small non-zero value and general relativity (m = 0). For example, it gives

a 25 percent off for the bending of light by the sun. It was then concluded that

the mass of the graviton is exactly zero and not some extremely small value. This

discontinuity of the physics in the parameters is known as the van Dam-Veltman-

Zakharov discontinuity (vDVZ) [80]. Due to this discontinuity, massive gravity was

considered not physically possible since it was experimentally ruled out.
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However, Vainshtein then argued that the discontinuity is due to the fact that not

all degrees of freedom decouple as the graviton’s mass goes to zero. As the mass

goes to zero, a massive graviton becomes a massless graviton plus a scalar coupled

to the trace of the stress tensor. He studied the non-linear theory presuming that

the linear theory does not give the whole picture [75]. He showed that as the mass

approaches zero, the perturbation theory fails because higher order contributions

becomes much stronger due to singularities in the graviton mass. Then he resolved

this problem by considering a distance scale known as Vainshtein radius around any

mass. He found that below this radius, massive graviton acts like a massless particle.

The linear approximation is not suitable in the massless limit since Vainshtein radius

goes to infinity as the mass goes to zero. This saved massive gravity by having no

contradiction with experiments even if the graviton has a small mass. In [18] (see

also [42]), further developments of this scale were considered.

Unfortunately, in the same year, Deser and Boulware [13] showed that the theory

of massive gravity is ill-behaved at the non-linear level because it has a ghost scalar

that remains coupled. In the non-linear theory, there is an extra degree of freedom

that appears as a scalar field with a negative kinetic energy. This scalar is known

as the Boulware-Deser ghost. This led them to conclude that Einstein’s gravity is

an isolated theory since massive gravity is theoretically sick.

A Lagrangian theory mixing a graviton with a massive 2+f meson was formulated

by Isham, Salam and Strathdee [19]. This was generalized by Chamseddine, Salam

and Strathdee [2]. They introduced the mixing terms through a spontaneous sym-
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metry breaking mechanism. Extra dimensions theories were considered by Dvali,

Gabadadze, and Porrati [49]. They built a five dimensional model which seems, in

the decoupling limit, to be ghost-free when considered around a true background.

Since there was no Higgs mechanism that is ghost-free and returns a massive

graviton, it was believed that we cannot obtain a ghost-free massive Einstein’s grav-

ity in four dimensions. Siegel [71] restored diffeomorphism invariance by using four

scalars in open-string field theories. However, his theory is not free of ghosts when

studied around a trivial background. Then, in 2003, Arkani-Hamed, Georgi and

Schwartz [62] by applying this method to massive gravity restored general coordi-

nate invariance, but their model is not ghost free. They also studied massive gravity

as an effective field theory where they found a maximum UV cutoff.

’t Hooft [72] (see also [52]) broke diffeomorphism invariance by using four scalar

fields having vacuum expectation values. These scalars make the graviton massive

where we end up with a massive spin-2 boson and a massive scalar. However, in the

unbroken phase, his theory includes a ghost (negative kinetic energy of the scalar

field). In the broken symmetry phase, there is no Fierz-Pauli term for the massive

graviton, and the ghost state does not decouple.

Not long ago, Chamseddine and Mukhanov [21], using Higgs mechanism, were

able to form massive gravity. They considered four scalars with global Lorentz

symmetry. The action considered is made up of two parts, the action of the four

scalar particles added to the Einstein action. As a consequence of spontaneous
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symmetry breaking, the four scalar fields will have non-zero expectation values, that

breaks diffeomorphism invariance. The graviton absorbs three of the scalar degrees

of freedom, while the fourth degree will remain coupled. Then the graviton will have

a Fierz-Pauli mass term making it massive and having five degrees of freedom. It

was found that their theory is free of ghosts below scales related to Vainshtein scales.

In [54], the massless limit of Higgs gravity was considered and the Vainshtein scale

was determined. It was found that this scale depends on the interactions of scalar

fields. It was also proved that below this scale, massive gravity goes smoothly to

Einstein’s gravity. A simplified reformulation of massive gravity was given in [22].

In this new formulation, the action depends quadratically on the scalar fields.

3.2 Higgs Massive Gravity

To make the graviton massive via Higgs mechanism, four scalar fields φA

are considered with A = 0, 1, 2, 3. The index A is a global Lorentz index; it mixes

the scalar fields and preserves the metric ηAB = (1,−1,−1,−1). From these scalar

fields, a field space tensor is constructed

HAB = gµν∂µϕ
A∂νϕ

B, (3.3)

An action providing the graviton mass is then constructed using the space tensor.
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This action is diffeomorphism and Lorentz invariant and is given by

S = − 1

2κ2

∫
d4x
√
−gR +

m2

8

∫
d4x
√
−g
(
H2 −HA

BH
B
A

)
+ 3

(
1

16
H2 − 1

)2

.

where κ2 = 8πG. This is not a unique action. There exist many other actions

agreeing at the second level but differing at higher orders.

Expanding around the vacuum solution, which breaks diffeomorphism invariance

[21]

ϕA =
(
xA + χA

)
, gµν = ηµν + hµν . (3.4)

and introducing

h̄AB = HAB − ηAB, (3.5)

this gives

h̄AB = hAB +
(
∂AχB + ∂BχA

)
+ · · · . (3.6)

Then the action is rewritten as

S = −1

2

∫
d4x
√
−gR +

m2

8

∫
d4x
√
−g
[ (
h̄2 − h̄ABh̄BA

)
+ · · ·

]
. (3.7)

We can write the Einstein action also in terms of h̄AB since it is invariant under

infinitesimal transformations x̃A = xA + ξA and the metric perturbations around

Minkowski space-time transform similarly, with χA instead of ξA. Therefore, the

35



full action up to second order terms in h̄AB is given by

S =
1

2

∫
d4x

[
h̄A,CB h̄BA,C − 2h̄A,CC h̄ D

A,D + 2h̄A,CC h̄,A

−h̄,Ah̄,A −m2
(
h̄ABh̄

B
A − h̄2

)]
.

This theory is free of ghosts since no linear term in H was included in the action.

The constructed action is at least quadratic in the fields ϕA since the field HAB is

quadratic in ϕA.

3.3 vDVZ Discontinuity

The vDVZ discontinuity is easily seen by comparing the propagators of the

massless and massive graviton. The graviton propagator in flat spacetime in the

momentum space is given by [80]

Dµν,λσ(k) =
1

2

ηµληνσ + ηµσηνλ − ηµνηλσ
k2 + iε

. (3.8)

While if we propose gravity to be due to the exchange of a massive spin-2 particle

with mass mg, then the propagator takes the form

D
(m)
µν,λσ(k) =

1

2

GµλGνσ +GµσGνλ − 2
3
GµνGλσ

k2 −m2
g + iε

(3.9)

with Gµν = ηµν − kµkν/m
2
g. We can replace Gµν by ηµν since the spin-2 particle

is coupled to a conserved source with kµT
µν = 0. This propagator becomes in the
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limit mg → 0

D
(m)
µν,λσ(k) =

1

2

ηmuληνσ + ηµσηνλ − 2
3
ηµνηλσ

k2 + iε
. (3.10)

This differs from the propagator of the massless graviton by a factor of 2/3 instead

of 1 appearing in front of the last term. This discontinuity is traced back to the

fact that the scalar mode of the massive graviton does not decouple. A massless

graviton has only two degrees of freedom, while a massive one has five degrees of

freedom. These five degrees can be thought of as coming from a massless spin-2,

spin-1 and spin-0 fields. The coupling of the helicity ±1 vanishes because of the

condition kµT
µν = 0. However, the extra coupling of the helicity zero to the trace

of the energy-momentum tensor survives in addition to the two tensor degrees of

freedom.

This discontinuity was shown at the classical level without going to quantum

theory in [54]. The method usually applied in cosmological perturbation theory

was used. They first start by classifying the metric perturbations according to the

irreducible representations of the spatial rotation group [61]. In the Newtonian

gauge, the metric then takes the form

ds2 = (1 + 2φ)dt2 − (1− 2ψ)δikdx
idxk. (3.11)

The static interaction between two massive bodies is entirely due to the two poten-

tials φ and ψ. Solving the equations of motion, it follows immediately that ψ = φ/2
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and the gravitational potential φ for a central source of mass M0 is given by

φ = −4

3

M0

r
e−mgr =

4

3
φNe

−mgr (3.12)

where φN is the Newtonian gravitational potential. mg is the graviton’s mass which

is of the order of the present Hubble constant, about 10−33eV .

For distance scales much smaller than 1/mg, the static potentials will be related to

the Newtonian potential by φ = 4
3
φN and ψ = 4

3
(2)φN . This however won’t affect

the bending of light which is determined by the sum φ+ψ. In massive gravity, this

combination is equal to

φ+ ψ =
4

3
φN +

2

3
φN = 2φN (3.13)

which is what we have in General Relativity with ψ = φN . Therefore, we obtain

the same prediction for the bending of light. However, the gravitational potential is

modified by a 4/3 factor even in the limit of a zero mass. This will modify the motion

of planets as predicted from general relativity. Fixing the gravitational potential by

redefining the gravitational constant will give a wrong bending of light. This is the

classical version of the van Dam, Veltman and Zakharov discontinuity.

3.4 Boulware-Deser Ghost

In this section we show that the nonlinear ghost propagates around broken

symmetry background following what was done in [4]. To trace the appearance of
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the nonlinear ghost it is convenient to work in the Newtonian gauge where the scalar

field perturbations are not equal to zero. In this case, the metric takes the form

ds2 = (1 + 2φ) dt2 + 2Sidtdx
i −
[
(1− 2ψ) δik + h̃ik

]
dxidxk (3.14)

where Si,i = 0 and h̃ij,i = h̃ii = 0. h̃ij are irreducible tensor perturbations having two

independent components and describing the graviton with two degrees of freedom in

a diffeomorphism invariant way. Also, the scalar fields perturbations transforming

as scalars under the three-dimensional rotation group, χ0 and χi = π,i, are only

considered. In this choice, the ghost is traced as a dynamical degree of freedom of

the scalar field χ0. It was shown in [54] that the linear perturbations of the scalar

fields can be expressed in terms of the metric potential ψ as

π =
2∆− 3m2

g

m2
g∆

ψ

χ0 = −
2∆ + 3m2

g

m2
g∆

ψ̇ (3.15)

and then the action up to second order in perturbations simplifies to

(S)δ2S = −3

∫
d4x

[
ψ
(
∂2
t −∆ +m2

g

)
ψ
]
. (3.16)

Due to the accidental U(1) symmetry of the scalar fields χA, the field χ0 enters as

a Lagrange multiplier around Minkowski background [21]. However, this symme-

try is not preserved on a background deviating from Minkowski space. Therefore,
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the nonlinear ghost will reappear in the cubic order in the metric and scalar field

perturbations since the χ0 starts to propagate. To see the ghost, third order terms

involving the powers of χ̇0 are considered

δ3S =
m2
g

2

∫
d4x

{[(
g00 − 1 +

√
−g
)
h̄ii +

(
g0i + χ̇i − χ0

,i

) (
g0i + χ̇i

)]
χ̇0 +

1

2
h̄ii
(
χ̇0
)2

+ · · · } . (3.17)

The term linear in the time derivative of χ0 does not induce dynamics for the

mode χ0, while the term proportional to (χ̇0)
2

induces the propagation of χ0 on the

background deviating from Minkowski space for which h̄ii 6= 0.

This action can be expressed entirely in terms of ψ. Considering small perturbations

around a background field ψb, ψ = ψb + δψ, the action up to second order in δψ is

given by

δS = −3

∫
d4x

{
δψ
(
∂2
t −∆ +m2

g

)
δψ +

1

m2
GH

[(
∂2
t δψ

)2
+ 2

ψ̈b
∆ψb

(∆δψ)
(
∂2
t δψ

)]

+ · · · } , (3.18)

where

m2
GH = −

3m4
g

4∆ψb
, (3.19)

Taking for the background field the scalar mode of gravitational wave with the

wavenumber k ∼ mg, for which ψ̈b ∼ ∆ψb ∼ m2
gψb and m2

GH ∼ m2
g/ψb. By consider-

ing perturbations δψ with wave-numbers m2
GH � k2 � m2

g and skipping subdomi-
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nant terms we can rewrite the action above as

δS ≈ − 3

m2
GH

∫
d4xδψ

(
∂2
t + · · ·

) (
∂2
t +m2

GH · · ·
)
δψ. (3.20)

The perturbation propagator is then given by

1

∂2 (∂2 +m2
GH)
' 1

m2
GH

(
1

∂2
− 1

∂2 +m2
GH

)
. (3.21)

This obviously describes the scalar mode of the graviton together with non perturba-

tive Boulware-Deser ghost of mass mGH ∼ mg/
√
ψb. As ψb vanishes, mGH becomes

infinite and the ghost disappears. This ghost would not be essential if mGH would be

larger than the Vainstein scale Λ5 = m
4/5
g since the linearized consideration above

breaks down at energies above Λ5 and the scalar fields enter the strong coupling

regime. However, in strong enough background we have mg < mGH < Λ5 and then

the nonlinear ghost appears below the Vainshtein scale, where the perturbative ex-

pansion is trustable.

In [31] and [30] it was claimed that there is a unique ghost free nonlinear extension

of massive gravity related with Λ = m
2/3
g Vainshtein scale. Their claim was proved

in the decoupling limit neglecting the vector modes of the graviton. However, it was

shown in [4] that away from the decoupling limit the nonlinear ghost reappears in

the fourth order of perturbation theory which cannot be removed by adding fifth

and higher order terms.
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To summarize, Higgs gravity uses four scalar fields and the Higgs mechanism to re-

solve the problems that faced finding a consistent theory for massive gravitons. This

model reproduces at the leading order the Fierz-Pauli mass term, but the Boulware-

Deser ghost arises at higher non-linear order of perturbation theory. However, it was

shown in [4] that this nonlinear ghost exists only at the scales below the Vainshtein

energy scale which is extremely low, about 10−20eV , considering the mass of the

graviton to be of the order of the present Hubble scale. Therefore, the ghost is in

the strong coupling regime where it is completely harmless and thus irrelevant.
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Chapter 4

Supersymmetrizing Massive
Gravity

In this chapter, we are going to construct a theory of massive supergravity

by generalizing the Higgs Gravity formulation [58], [59]. It is interesting to explore

what are we going to get upon taking massive gravity into supersymmetry.

4.1 Going into Supersymmetry

To supersymmetrize Higgs Gravity, we start by using four chiral superfields,

ΦA
(
x, θ, θ

)
, instead of the four scalars used in the bosonic case (section 3.2). These

superfields are subject to the condition

D .
αΦA

(
x, θ, θ

)
= 0, (4.1)

where A = 0, 1, 2, 3 is a global Lorentz index and D̄α̇ is defined in equation (2.9).

From section 2.2, we have

ΦA = ϕA+i(θσµθ̄)∂µϕA−
1

4
θθθ̄θ̄∂µ∂

µϕA+
√

2 θψA−
i√
2
θθ
(
∂µψAσ

µθ̄
)
+θθFA. (4.2)
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To form our generalized induced metric, we start by writing a quartic interaction.

The most general term is given by

DαΦADβΦBD
.
α
Φ∗CD

.
β
Φ∗DMαβAB

.
α

.
βCD

(4.3)

where MαβAB
.
α

.
βCD

is a multispinor constructed in such a way as to make the action

invariant under Lorentz transformations. There are two possible strategies to adopt:

to symmetrize and antisymmetrize with respect to the fermionic indices αβ and
.
α
.

β,

or to use the equivalence of α
.
α to a vector index

Vα .
α = σµ

α
.
α
Vµ. (4.4)

We thus define HABC as the basic field

HABC = DαΦA(σB)αα̇D̄
α̇Φ∗C = DΦAσBD̄Φ∗C (4.5)

Its Hermitian conjugate is

H∗ABC = DΦCσBDΦ∗A = HCBA (4.6)

We also denote HABCη
AB by HAAC and we define the contracted field

HC = HAAC , H∗A = HACC (4.7)

44



to simplify our expressions. The products that could be formed from this H field

are given in appendix B. These represent all the possible D-type terms that can be

included in our action. Therefore, the action to start with is the linear combination

of all these D-type terms constructed. This is given by

c1HABCHABC + c2HABCHACB + c∗2HABCHBAC + c3HABCHBCA

+ c4HABCHCAB + c5HABCHCBA + c6HAH
∗
A + c7HAHA + c∗7H

∗
AH

∗
A

+ εABCDHABC (c8HD − c∗8H∗D) + εABCD (c9HABEHCDE + c∗9HEABHECD)

+ εABCD (c10HAEBHCED + c11HAEBHECD + c∗11HAEBHCDE + c12HEABHCDE) .

(4.8)

where all the constants ci are real except for those whose conjugate appear (i.e. c2,

c7, c8, c9, c11, are complex). All these terms are computed term by term up to all

orders in θ.

4.2 Coupling to Supergravity

To couple our supersymmetric action to supergravity, we use the rules of

tensor calculus. These rules provide us the method of coupling Supergravity to the

components of vector and chiral multiplets [63] (see also [43]). This will promote

the global supersymmetry to a local one. Let us first present a review of these rules.

4.2.1 Rules of Tensor Calculus

The vector multiplet discussed in section (2.2) has as component fields two

scalars (C and a complex M), two Majorana spinors (ξ and λ), a vector (Vµ), and
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one auxiliary scalar field (D). It is represented by

V = (C, ξ,M, Vµ, λ,D) . (4.9)

While the component fields of a left-handed chiral multiplet (F-type) are a complex

scalar field z, left-handed Weyl spinors χL, and a complex auxiliary field h. It is

given by

F = (z, χL, h) . (4.10)

To couple the F-type multiplet to supergravity, we use the action formula given by

e−1LF = h+ κuz + κφ̄µγ
µχ+ iκ2φ̄µγ

µνφvRz + h.c. (4.11)

That of the D-type multiplet is given by

e−1LD = D +
iκ

2
φ̄µγ

5γµλ− κ

3
(uM∗ + u∗M) +

iκ2

8
εµνρσφ̄µγνφρξ̄φσ

+
2

3
κVµ

(
Aµ +

3

8
ie−1εµρστ φ̄ργτφσ

)
− iκ

3
e−1ξ̄γ5γµR

µ

− 2

3
κ2Ce−1LS.G. + e−1LS.G. (4.12)

where LS.G. is the supergravity Lagrangian given in section (2.5). These two equa-

tions contain the auxiliary fields u and Aµ. To eliminate them, we use their equations

of motion which are given by respectively

κz − κ

3
M∗ − 1

3
u∗ = 0
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2

3
κVµ +

1

3
Aµ = 0 (4.13)

Plugging back for Aµ, u and u∗ in e−1LF + e−1LD, we get

e−1LF + e−1LD = D − 1

2κ2
R(e, w)− 1

2
e−1φ̄µR

µ + (h+ h∗)− κ2 (Mz +M∗z∗)

+ 3κ2zz∗ +
((
κφ̄µγ

µχ+ iκ2φ̄µγ
µνφvRz

)
+ h.c.

)
− 2

3
κ2Ce−1LS.G.

+
iκ

2
φ̄µγ

5γµλ− iκ
3
e−1ξ̄γ5γµR

µ +
k2

3
MM∗ +

iκ2

8
εµνρσφ̄µγνφρξ̄φσ

+
i

4
e−1κεµρστVµφ̄ρστφσ. (4.14)

4.2.2 Constructing the Full Action

Using the above equations we can construct our full action. We require an

action with the following conditions

• It has a Fierz-Pauli term for the vierbeins (ēµAē
A
µ − ē2). This choice decouples

the sixth degree of freedom of the massive graviton.

• It has no constant.

• It contains no linear vierbein term

• It gives Maxwell form for the χA fields

l
(
∂µχA∂

µχA∗ − ∂AχA∂BχB∗
)

(4.15)

where l is a constant
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• It is ghost free where there should be no terms like

∂µχA∂
µχA, or ∂Aχ

A∂Bχ
B (4.16)

• The gravitino should be massive.

Calculations show that working instead with

HABC = HABC −DxAσBDx∗C , (4.17)

where xA are the coordinates, will cancel the linear vierbein term without including

higher order terms in HABC . This is similar to what was done in the bosonic case

to give an action with the correct behaviour (as discussed in section 3.2). In that

case hAB was defined by

hAB = HAB − ηAB ≡ HAB − ∂µxA∂µxB (4.18)

so that there is no need to include higher order terms in HAB and only

(
h̄ABh̄

B
A − h̄2

)
(4.19)

were considered.

It was also found that if we consider only D-type terms, all of the above required

conditions are well satisfied except making the gravitino massive. To solve this issue,

F-type terms are included because only such terms will return a mass term for the
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gravitino.

Several F-type terms can be written. Two such terms are given below. These will

be added to the action formed of D-type terms composed above (equation 4.8)

c13D
2 (
DΦAσ

ABDΦB

)
+ c∗13D

2
(
DΦ∗Aσ

ABDΦ∗B
)

+ c14D
2 (
DΦADΦAD̄Φ∗BD̄ΦB∗)+ c∗14D

2
(
D̄Φ∗AD̄ΦA∗DΦBDΦB

)
(4.20)

To find the full Lagrangian that satisfies the required conditions, we have first to

express the supermultiplets in terms of their component fields. Expressing the metric

in terms of vierbeins, gµν = eµae
νa, and expanding the fields around the vacuum

solution

ϕA = xA + χA, eµa = δµa + ēµa , (4.21)

then up to quadratic orders, the components of our superfields are found. Coupling

the components of the vector and chiral multiplets to supergravity, it is found that

the required matter action is formed of three D-type terms and two F-type terms.

It is given by

m4

∫ (
c1H̄ABCH̄BCA + c2H̄ABBH̄CCA + c3H̄ABH̄

∗
AB

)
dθ2dθ̄2d4x

+
m2

κ

∫ (
c4D̄

2
(
DΦAσ

ABDΦB

)
+ c∗4D

2
(
D̄Φ∗Aσ̄

ABD̄Φ∗B
))
dθ2d4x

+m4

∫
c5D̄

2
(
DΦADΦAD̄Φ∗BD̄ΦB∗) dθ2d4x

+m4

∫
c∗5D

2
(
D̄Φ∗AD̄ΦA∗DΦBDΦB

)
dθ2d4x (4.22)
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where HAB = DΦADΦB and m and κ are used to fix the dimensions where [ΦA] =

−1, [Dα] = 1/2, [dθ] = 1/2 and [d4x] = −4.

The components of the basic field, HABC , and of the superfields forming the action

are given in appendix C. This action is not unique. Many other actions exist serving

the same purpose. For example, the three D-type terms can be substituted by three

other terms

εABCDDαΦA (σB)αα̇ D̄
α̇Φ†CD

βΦD

(
σE
)
ββ̇
D̄β̇Φ†E

εABCDDαΦA (σB)αα̇ D̄
α̇Φ†ED

βΦD (σC)ββ̇ D̄
β̇ΦE†

εABCDDαΦA

(
σE
)
αα̇
D̄α̇Φ†CD

βΦD (σB)ββ̇ D̄
β̇Φ†E. (4.23)

The constants, c1, c2, c3, c4 and c5, are found by forcing the constraints on the action.

This will return a system of equations for the constants given by

• No ghost → −16c1 + 32c2 − 256 (c5 + c∗5) = 0

• Maxwell: l (∂µχA∂
µχA∗ − ∂AχA∂BχB∗)→ 32c1 + 128c2 + 32c3 = l

and 32c1 + 32c2 + 32c3 + 482 × 3 c4c
∗
4 − 128 (c5 + c∗5) = −l

• Constant → −64× 16 (c5 + c∗5) + 962 × 3 c4c
∗
4 = 0

Solving this system, we obtain

c1 =
l

24
− 432 c4c

∗
4

c2 =
l

48

c3 = − 3l

32
+ 432 c4c

∗
4
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c5 =
27

2
c4c
∗
4 (4.24)

l is fixed to be −1/2 by normalizing the kinetic term. Moreover, c4 is arbitrary, but

we set it to be i
48
√

6
for the term ψ̄Aγ

AγBψB to cancel out. The full Lagrangian

(e−1LF + e−1LD) is then reduced to

− 1

2
m4

(
∂µχA∂

µχA∗ − ∂AχA∂Bχ∗B
)

+
7

3
m4

(
ēAµ ē

µ
A − ē

2
)
−m4 FAF

A∗

− 7

3

(
ē∂Aχ

A + ē∂Aχ
A∗)+

7

3

(
ēµA∂µχ

A + ēµA∂µχ
A∗)

− 5

24
m4 εABCDψ̄AγBγ5∂CψD +

3i

8
m4 ψ̄Aγµ∂

µψA −
√

6

8
m6κ ψ̄Aψ

A

+

√
6

18
m6κ ψ̄Aγ

AγBψB −
5
√

6

36
m6κ ψ̄Aγ

BγAψB +
1

2
e−1εµνρσφ̄µγ5γν∂ρφσ

+

√
2i

4
m4κ φ̄µγ

µγAψA −
√

2i

4
m4κ ψ̄Aγ

Aγµφµ +

√
3

6
m2φ̄µγ

µ∂AψA

+

√
3

6
m2∂Aψ̄Aγ

µφµ +

√
6i

3
m2κ φ̄µγ

µνφv +

√
3

12
m2κ φ̄µγ

µγAγB∂BψA

+

√
3

12
m2κ ∂Bψ̄Aγ

BγAγµφµ −
1

2κ2
R(e, w).

Now it is clear how the dimensions are fixed by m and κ, where [χA] = −1, [ē] =

0, [FA] = 0, [ψA] = −1/2 and the gravitino [φµ] = 3/2.

51



4.3 Equations of Motion

The equations of motion can be found from the full Lagrangian. The Euler-Lagrange

equations are given by

δL

δΦa
=

∂L

∂Φa
− ∂µ

[
∂L

∂ (∂µΦa)

]
= 0 (4.25)

From this, the equations of motion for ψ̄A and φ̄µ are found to be given respectively

by

−5

24
m4εABCDγBγ5∂CψD +

3i

8
m4γµ∂

µψA −
√

6

8
m6κ ψA − 5

√
6

36
m6κ γBγAψB

+

√
6

18
m6κ γAγBψB −

√
3

6
m2 γµ∂Aφµ −

√
2i

4
m4κ γAγµφµ

−
√

3

12
m2κ γBγAγµ∂Bφµ = 0 (4.26)

and

√
3

6
m2 γµ∂Aψ

A +

√
2i

4
m4κ γµγνψν +

√
3

12
m2 γµγAγB∂BψA +

√
6i

3
m2κγµνφν

+
1

2
εµνρσγ5γν∂ρφσ = 0. (4.27)

The gravitino is a vector-spinor and hence it is reducible because it contains both

spin 3/2 and spin 1/2 degrees of freedom. Therefore, to simplify the equations of

motion and count the degrees of freedom, we decompose ψA into a spin-3/2 helicity,
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ψ̂A, and a spin-1/2 helicity, λ

ψA = ψ̂A +
1

4
γAγ5λ

⇒ ψ̄A =
¯̂
ψA +

1

4
λ̄γAγ5, (4.28)

where γAψ̂
A = 0. Similarly, we decompose φµ

φµ = φ̂µ +
1

4
γµγ5η

⇒ φ̄µ =
¯̂
φµ +

1

4
η̄γµγ5, (4.29)

where γµφ̂
µ = 0. Again φ̂µ is a spin-3/2 helicity, and η is spin-1/2 helicity.

The equations of motion expressed using this decomposition are then given by

−5

24
m4εABCDγBγ5∂Cψ̂D +

5

96
m4εABCDγBγD∂Cλ+

3i

8
m4γµ∂

µψ̂A

+
3i

32
m4γµγ

Aγ5∂µλ+
3
√

6

32
m6κ γAγ5λ− 29

√
6

72
m6κ ψ̂A −

√
3

6
m2 γ5∂Aη

−
√

2i

4
m4κ γAγ5η −

√
3

12
m2κ γBγAγ5∂Bη = 0 (4.30)

and

√
3

3
m2 γµ∂Aψ̂

A +

√
2i

4
m4κ γµγ5λ+

√
6

6
m2κ φ̂µ −

√
6

8
m2κγµγ5η

+
1

2
εµνρσγ5γν∂ρφ̂σ +

1

2
γ5γµρ∂ρη = 0. (4.31)
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To simplify these field equations, we multiply equations (4.30) and (4.31) by γA and

γµ respectively. This will yield

i

3
∂Aψ̂

A − i

8
γ5γA∂Aλ+

3
√

6

8
m2κ γ5λ−

√
2iκ γ5η = 0 (4.32)

i

3
m2 ∂Aψ̂

A −
√

6

12
m4κ γ5λ−

√
2

8
im2κ γ5η +

√
3

12
∂µφ̂

µ +

√
3

16
γ5γµ∂µη = 0 (4.33)

A further simplification of equations (4.30) and (4.31) can be done by tracing them

with ∂A and ∂µ respectively. This gives

3i

8
m4γµ∂µ∂Aψ̂

A +
3i

32
m4γ5∂A∂Aλ+

3
√

6

32
m6κ γAγ5∂Aλ−

29
√

6

72
m6κ ∂Aψ̂

A

−
√

3

4
m2 γ5∂A∂Aη −

√
2i

4
m4κ γAγ5∂Aη = 0 (4.34)

and

√
3

3
γµ∂µ∂Aψ̂

A +

√
2i

4
m2κ γµγ5∂µλ+

√
6

6
κ ∂µφ̂

µ −
√

6

8
κ γµγ5∂µη = 0. (4.35)

We can then express ψ̂A in terms of λ and η using equation (4.32),

∂Aψ̂
A =

3

8
γ5γA∂Aλ+

9
√

6i

8
m2κγ5λ+ 3

√
2κγ5η. (4.36)

54



Upon plugging this into equation (4.34), we get an equation relating λ to η

−3i

8
m2∂A∂

Aλ+
17
√

6

12
m4κ γA∂Aλ−

87i

4
m6κ2 λ− 7

√
2im2κ γA∂Aη

− 58
√

3

3
m4κ2 η − 2

√
3 ∂A∂

A η = 0. (4.37)

Similarly from (4.33) and (4.36) we get an equation for ∂Aφ̂
A

∂Aφ̂
A =
−
√

3i

2
m2γ5γA∂Aλ+

11
√

2

2
m4κ γ5λ− 3

4
γ5γA∂

Aη − 7
√

6i

2
m2κγ5η (4.38)

Plugging this into (4.35), we get another equation relating λ and η

−3

8
∂A∂

Aλ− 13
√

6i

8
m2κγA∂Aλ+

11

2
m4κ2 λ− 3

√
2κ γA∂Aη −

7
√

3i

2
m2κ2 η = 0.

(4.39)

Combining equations (4.37) and (4.39), we get

− 5
√

6

24
m4κ γA∂Aλ−

109i

4
m6κ2 λ− 4

√
2i m2κ γA∂Aη −

137
√

3

6
m4κ2 η

− 2
√

3 ∂A∂
Aη = 0. (4.40)

Since the action is invariant under local supersymmetry transformations, we can

choose the gauge η = 0

γA∂
Aλ+

109
√

6

5
im2κ λ = 0. (4.41)

This gives a Dirac type equation for the spin-1/2 helicities.
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It should be noted that the divergence of φ̂ is found in terms of lambda. However,

we can find a combination of φ̂A and ψ̂A

φ̂′A = φ̂A + αψ̂A (4.42)

such that the divergence of φ̂′ equals zero (∂Aφ̂′A = 0) [29]. Then φ̂′ has two helicities

3/2 and −3/2.

4.4 Degrees of Freedom

Counting degrees of freedom, we start with a N = 1 supersymmetry model,

and then couple it to Supergravity. We know from section (2.5) that supergravity

contains a massless spin-2 graviton with two bosonic degrees of freedom and one

massless spin-3/2 gravitino with two fermionic degrees of freedom. For the N = 1

supersymmetry model, it is similar to the Wess-Zumino model discussed in section

(2.3). It contains four spin-0 particles, ϕA; however, ϕ0 decouples due to the Fierz-

Pauli choice. Therefore, there are only six degrees of freedom (3 times 2). For

this, we have six fermionic degrees of freedom forming a multiplet. Therefore, we

are starting with an overall eight bosonic degrees of freedom and eight fermionic

degrees of freedom.

After coupling to Supergravity, we obtain N = 1 massive representation. It

contains a single massive spin-2 particle, a single massive vector field and two massive

spin-3/2 particles. Each massive spin-3/2 particle has four degrees of freedom, and
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this constitute the eight fermionic degrees of freedom. For the bosonic degrees of

freedom, the massive spin-1 particle has three degrees of freedom, and the massive

graviton has five degrees of freedom. Therefore, we have an overall of eight bosonic

degrees of freedom which gives us the same number of degrees of freedom as before.

What is noticeable is that at the end we are left with two massive gravitinos.

This is similar to the N = 2 supersymmetry in which we have two massive spin-

3/2 particles. However, in our case, the two gravitinos have different masses. This

is because supersymmetry is completely broken. It is a space-time symmetry and

then it is broken exactly at the same scale as the diffeomorphism breaking. We

are starting with a supergravity action and a matter action which are independent;

therefore, we are left with two massive spin-3/2 particles with completely different

masses. There is no N = 2 supersymmetry to start with since before diffeomorphism

breaking we had spin 1/2 and not spin 3/2, then the two gravitinos would not have

the same mass. When coordinate invariance is broken by the four scalars, the Lorentz

symmetry of the tangent manifold gets identified with that of space-time, the four

scalars become four-vectors and the spin 1/2 supersymmetric partners become spin

3/2 fields. Therefore, one is a genuine gravitino φµ, while the other ψA becomes

identified with a gravitino after the breaking.

4.5 LHC and Our Superpartners

The LHC, Large Hadron Collider, with a 27 km loop built near Geneva is
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the world’s largest and most powerful particle accelerator. It was built between 1998

and 2008 and it first started on 10 September 2008. It has many purposes where it

allows to test the predictions of the Standard model and to prove (or disprove) the

existence of the Higgs boson, and also to search for the superpartners predicted by

supersymmetry.

The LHC is now shutdown for upgrades and it will resume early in 2015 where

the beam energy will be increased to reach 6.5 TeV per beam. We hope that some of

the open questions will be answered and that superpartners will be found to prove

supersymmetry. If this so, then the experiments will tell us at what energies we

expect to find our predicted particles in the model built in this thesis.
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Chapter 5

Canonical Formulation

The Hamiltonian formulations provide insights mainly for counting degrees

of freedom, for canonical quantization purposes and for numerical investigation of

solutions. Canonical structures play an important role in quantum gravity and in

numerical relativity.

To set up a canonical formulation, one starts by defining momenta to be the

time derivatives of the fields. This is used to replace only time derivatives in the

Hamiltonian by momenta; therefore, spacial derivatives do not change. In this

formulation, space-time symmetry is hidden, but of course still present.

The aim of this chapter is to write Einstein’s action in canonical form and find

the constraints. First, we will briefly review the Hamiltonian formalism.

5.1 History

Hamiltonian formulation is not a new topic. Dirac, in [36, 37, 40] (see also

[51]), set up a general theory for constrained Hamiltonian dynamics which is used
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for canonical quantization. Then he applied this procedure to general relativity

[38], [41]. Further work was done by Bergmann ([6, 11, 15]) to quantize covariant

field theories, like the Einstein’s theory of gravity. Then, Arnowitt, Deser and

Misner identified the ADM energy as the Hamiltonian after gauge fixing, and they

constructed a canonical formulation of gravity in 1962 ([64, 65, 66, 67]). Their

canonical formulation is most widely used. The tetrad form of this ADM formalism

was derived in [33].

There are other canonical formulations such as the one introduced by Ashtekar

where he introduced new variables which lead to simplifications in the gravitational

constraints ([7, 8]). His theory led to loop quantum gravity. Later, the canonical

formulations of matter couplings to gravity were considered. For example, such

canonical formulations for massive scalar fields were found in [69, 70] and for spin-

1/2 Dirac field in [39, 53].

5.2 Hamiltonian Formalism

Starting with the action

S =

∫
L(qi, q̇i)dt (5.1)

for a system of n degrees of freedom, i = 1, ..., n, the conjugated momentum is

defined to be

pi =
∂L

∂q̇i
, (5.2)
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and the Hamiltonian is given by

H = q̇ipi(q, q̇)− L(q, q̇). (5.3)

It is a well-defined functional of qi and pj with the equations of motion given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (5.4)

where they are of first order in the time derivative. These field equations can be

expressed in terms of the classical Poisson bracket which is defined to be

{f(q, p), g(q, p)} = Σn
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (5.5)

The equations of motion are then written in the compact form

q̇i = {qi, H}, ṗi = {pi, H}. (5.6)

The Hamiltonian formulation of field theories is similar to the finite-dimensional

system; however, the independent variables are labeled by a continuous parameter x

and not by a discrete parameter i. Mathematical care is required for the variational

equations or Poisson brackets.

A basic functional derivative is

δφ(x)

δφ(y)
= δ(x− y) instead of

∂qi

∂qj
= δij, (5.7)
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and the generalized Poisson bracket is then defined using functional derivatives

{f, g} =

∫
dxn

(
∂f

∂φ(x)

∂g

∂pφ(x)
− ∂f

∂pφ(x)

∂g

∂φ(x)

)
. (5.8)

5.3 ADM Formalism

Arnowitt, Deser and Misner constructed a canonical formulation of gravity

(ADM) in 1962 ([67]). This Hamiltonian formulation requires time to be singled

out where spacetime is split into space and time. To write the theory in a 3 + 1

dimensional form, we start by considering two hypersurfaces with t = constant

(earlier) and t+dt = constant (later) [20]. The 3-geometry of the earlier hypersurface

is described by the metric

hij(t, x, y, z)dxidxj. (5.9)

while that of the later hypersurface is

hij(t+ dt, x, y, z)dxidxj. (5.10)

The proper distance and proper time from the earlier to the later 3-geometry are

given in terms of the lapse and shift functions, N and Ni. The proper interval

between xµ = (t, xi) and xµ + dxµ = (t + dt, xi + dxi) is found by using the 4-
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dimensional form of the Pythagorean theorem and this yields

ds2 = hij(dx
i +N idt)(dxj +N jdt)− (Ndt)2 = gµνdx

µdxν . (5.11)

The full metric, gµν , is then given by [67]

NiN
i −N2 Nk

Ni hik

 (5.12)

and its inverse is − 1
N2

N i

N2

Nk

N2 hik −N iNk/N2

 (5.13)

where hij is an induced metric on the 3-dimensional hypersurfaces with hijhjk = δik.

After this splitting of spacetime, Einstein’s action

S = −1

2

∫ √
−gR (5.14)

is written as

SADM =

∫
d4x

(
ḣijπij −NµHµ

)
=

∫
d4x

(
ḣijπij −NH0 −N iHi

)
(5.15)

where πij is the canonical momentum given by

πij =
∂

∂ḣij

(√
−gLADM

)
=
√
h (hijK −Kij) (5.16)
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and Kij is the extrinsic curvature

Kij =
1

2N
(Ni|j +Nj|i − ḣij). (5.17)

H0 and Hi are called the Hamiltonian and the diffeomorphism constraints respec-

tively. They are given by the intrinsic curvatures

H0 = R0 ≡ −
√
h

[
3R + h−1

(
1

2
π2 − πijπij

)]
Hi = Ri ≡ −2hikπ

kj
|j (5.18)

The action is in the first order form (first order time derivatives enter) where only

the time derivative of hij enter into the action. Ṅ and Ṅ i are not involved; i.e.

their momenta are not defined and they are not dynamical variables. Therefore, the

Hamiltonian of general relativity is a function of hij and its conjugate momentum

πij, while the lapse and shift functions enter as Lagrange multipliers. Variation with

respect to N and Ni give constraint equations.

5.4 Equations of Motion of GR

Computing the Hamiltonian field equations, we first have the propagation

of the hij

ḣij = {hij, Hg} = 2Nh−1/2

(
πij −

1

2
hijπ

)
+Ni|j +Nj|i. (5.19)
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where

Hg =

∫
d3x

(
NR0 +N iRi

)
. (5.20)

This restates equation (5.16), the defining equation of the canonical momentum in

terms of the metric tensor and its derivatives. Second, there is another set of six

equations determining the propagation of πij

π̇ij = {πij, Hg} = −δHg

δhij
. (5.21)

Varying the Hamiltonian with respect to hij and using

δhkl(x)

δhij(y)
= δi(kδ

j
l)δ(x, y) =

1

2

(
δikδ

j
l + δilδ

j
k

)
δ(x, y), (5.22)

gives

π̇ij = −N
√
h

(
3Rij − 1

2
hij 3R

)
+

1

2
Nh−1/2hij

(
πmnπmn −

1

2
π2

)
− 2Nh−1/2

(
πimπ j

m −
1

2
ππij

)
+
√
h
(
N |ij − hijN |m |m

)
+
(
πijNm

)
|m

−N i
|mπ

mj −N j
|mπ

mi (5.23)

These six equations correspond to the six field equations Gij = 0. Variation with

respect to N and N i yield four constraint equations, Hµ = 0. These are equivalent
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to the Einstein’s field equations

G0
µ = R0

µ −
1

2
δ0
µR = 0. (5.24)

The existence of the constraints shows that initial values cannot be arbitrarily cho-

sen. Their presence also means that there are underlying symmetries. These first

class constraints generate gauge transformations, which are equivalent to coordinate

changes [12].

Counting the degrees of freedom, the basic variables, gij and πij, are both sym-

metric variables thus having twelve independent components. Four are eliminated

by the four independent constraints. Out of the eight remaining, another four de-

grees of freedom can be gauged away by gauge transformations. Then we are left

with four phase space degrees of freedom which recover the two degrees of freedom

of the graviton.

5.5 Poisson Brackets of GR

To construct the algebra of the first class constraints, it is more convenient

to work with smeared forms. This will ensure well-defined algebraic relations since

the derivatives by field will then be free of delta distributions.

Consider the smeared quantities, H[N ] and D[N i], given by the integration with
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respect to the multipliers N and N i

H[N ] =

∫
d3xN(x)H0(x) and D[N i] =

∫
d3xN i(x)Hi(x) (5.25)

Working out the Poisson brackets of the constraints, then we obtain [12]

{H[N1],H[N2]} = D
[
hij (N2∂jN1 −N1∂jN2)

]
{
D[N i

1],D[N i
2]
}

= D
[
N i

1∂iN
j
2 −N i

2∂iN
j
1

]
{
D[N i

1],H[N2]
}

= H[N i
1∂iN2]. (5.26)

These equations are equivalent to the Dirac algebra [40] (see also [35]).
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Chapter 6

Canonical Formulation of Mimetic
Dark Matter

Dark matter does not interact with electromagnetic waves; it neither emits

nor absorbs electromagnetic radiation, making it hard to be observed. Its existence

was proposed to give the galaxies extra mass, since they are spinning faster than

we can explain with known laws of physics and the galaxies observed mass. They

cannot be held together with the gravity generated by their observable matter; the

extra mass generates extra gravity. This gravitational effect of dark matter on visi-

ble matter inferred its existence.

Dark matter outweighs visible matter. The universe contains 4.9% ordinary matter,

26.8% dark matter and 68.3% dark energy out of the total mass-energy. So the mat-

ter we know accounts only for approximately 5% of the content of the universe; while

dark matter and dark energy constitute 95% of the total content of the universe.

Out of the total matter in the universe, 84.5% is dark matter.

In this chapter, we review the recently proposed theory of mimetic dark matter

[24] and we construct its Hamiltonian formulation [60].
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6.1 Mimetic Dark Matter

Not long ago, Chamseddine and Mukhanov [24] modified Einstein’s theory

of gravity to propose a theory of mimetic dark matter. Their theory is a conformal

extension of Einstein’s general relativity. They considered a physical metric, gµν , in

terms of an auxiliary metric, g̃µν , and a scalar field φ. It is defined by

gµν =
(
g̃αβ∂αφ∂βφ

)
g̃µν , (6.1)

where the scalar field enter only through first derivative. This physical metric is

invariant with respect to the conformal transformation of the auxiliary metric, g̃µν →

Ω2g̃µν .

The action is constructed in terms of the physical metric which is considered as a

function of the auxiliary metric and the scalar. Varying the action with respect to

the auxiliary metric results in a traceless equation of motion, while the variation

with respect to the scalar returns a differential equation for the trace part. These

equations are given respectively by

(Gµν − T µν)− (G− T ) gµαgνβ∂αφ∂βφ = 0

∇κ ((G− T ) ∂κφ) = 0. (6.2)

where Gµν and T µν are Einstein’s tensor and the energy momentum tensor respec-

69



tively. The trace of the former equation is

(G− T ) (1− gµν∂µφ∂νφ) = 0 (6.3)

which is satisfied even for G− T 6= 0 because the scalar field satisfies the constraint

equation

gµν∂µφ∂νφ = 1. (6.4)

It was shown that even in the absence of matter, Tµν = 0, the conformal degree of

freedom can mimic Dark matter. This dust fluid has a stress tensor given by

T̃ µν = (G− T ) gµαgνβ∂αφ∂βφ. (6.5)

Therefore, it is a pressureless fluid with energy density G − T , and a four-velocity

uµ = gµα∂αφ satisfying the normalization condition uµuµ = 1.

In [50], an equivalent formulation of this model is given without introducing the

auxiliary metric. Their action is given by

S = −
∫

(R(g) + λ (1− gµν∂µφ∂νφ))
√
−gd4x. (6.6)

Then the ghost free models of this theory were discussed in [10]. It was found that

the theory is free of ghost instabilities for a positive energy density. Recently, an

arbitrary potential was added to the action to form an extension of the mimetic

dark matter theory [3]. Cosmological solutions were studied and it was shown how
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choosing an appropriate potential can lead to various cosmological solutions.

In short, this model is predicting dark matter without introducing matter. It will

be experimentally ruled out once a dark matter particle is found. One could add the

proposed Lagrangian to a galaxy and then compare with the existed data to check

the validity of the theory.

6.2 Hamiltonian Formulation of the Extended

Theory

The action of the extended mimetic dark matter theory, where an arbitrary

potential, V (φ), is added, can be written as the following

S = −
∫
d4x(−g)1/2

(
1

2
R +

1

2
λ (1− gµν∂µφ∂νφ) + V (φ) + Lm

)
(6.7)

where Lm is the matter Lagrangian. Variation with respect to λ gives the constraint

equation

gµν∂µφ∂νφ = 1. (6.8)

The first step in constructing the canonical formalism is to write the action in a

3 + 1 dimensional form by splitting spacetime into space and time. The part of the

action depending on the scalar field is given by

S = −
∫
d4xNh1/2

(
1

2
λ

(
1− g00∂0φ∂0φ− 2g0i∂0φ∂iφ+ hij∂iφ∂jφ−

N iN j

N2
∂iφ∂jφ

))

71



−N
√
hV (φ) (6.9)

where g00, g0i and gij are defined with the signature (+,−,−,−).

Varying the Lagrangian with respect to the time derivative of φ, we get the momen-

tum conjugate to φ which is found to be

p =
∂L

∂φ̇
= N
√
hλ
(
g00∂0φ+ g0i∂iφ

)
⇒ φ̇ =

Np√
hλ

+N i∂iφ (6.10)

while the variation with respect to λ̇ will result in a primary constraint

pλ =
∂L

∂λ
= 0. (6.11)

Demanding that this primary constraint is preserved under the time evolution gives

a secondary constraint

ṗλ = −{pλ, H} = −∂H
∂λ

= 0 (6.12)

Writing the Lagrangian as

L = −1

2
Nh1/2λ

(
1 + g00φ̇2 + hij∂iφ∂jφ−

N iN j

N2
∂iφ∂jφ

)
+ pφ̇−N

√
hV (φ) (6.13)

then the Hamiltonian is given by

H = pφ̇− L
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=
1

2
Nh1/2λ

(
1 + g00φ̇2 + hij∂iφ∂jφ−

N iN j

N2
∂iφ∂jφ

)
+N
√
hV (φ) (6.14)

Using equation (6.10), we plug for φ̇ in terms of p, then we get

H =
Np2

2
√
hλ

+
1

2
N
√
hλ
[
1 + hij∂iφ∂jφ

]
+ pN i∂iφ+N

√
hV (φ). (6.15)

This Hamiltonian is still a function of the lagrange multiplier λ. To find it, we solve

the secondary constraint ∂H
∂λ

= 0. This gives

λ =
p√

h
√
hij∂iφ∂jφ+ 1

(6.16)

Plugging back we get the total action

∫
d4x

(
LADM + pφ̇−Np

√
hij∂iφ∂jφ+ 1−N ip∂iφ−N

√
hV (φ)

)
(6.17)

where LADM is given in section 5.3. The total action is then by

St =

∫
d4x

(
ḣijπij + pφ̇−N

(
p
√
hij∂iφ∂jφ+ 1 +R0

)
−N i (p∂iφ+Ri)−N

√
hV (φ)

)
(6.18)

6.3 Equations of Motion

The field variables of the total action are (hij, πij) and (p, φ). The lapse

and shift functions, N and N i, still appear linearly and variation of the Lagrangian
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with respect to both will return constraint equations. The equations of motion are

found to be

• Varying with respect to πij

ḣij = 2Nh−1/2

(
πij − 1

2
hijπ

)
+N i|j +N j|i (6.19)

This equation is that of Einstein’s theory of gravity. It is independent of φ

since the part of the action depending on the scalar field is independent of πij.

• With respect to hij

π̇ij = −N
√
h

(
3Rij −

1

2
hij

3R

)
+

1

2
Nh−1/2hij

(
πmnπmn −

1

2
π2

)
− 2Nh−1/2

(
πimπ

m
j −

1

2
ππij

)
+
√
h
(
N|ij − hijN |m |m

)
+ (πijN

m)|m

−N |mi πmj −N |mj πmi +
Np∂iφ∂jφ

2
√
hkl∂kφ∂lφ+ 1

− 1

2
N
√
hV (φ)hij (6.20)

This equation includes two more terms than those of general relativity, coming

from the part of the action depending on the scalar field φ.

• With respect to N

R0 + p
√
hij∂iφ∂jφ+ 1 +

√
hV (φ) = Hgrav + Hφ = 0 (6.21)

• With respect to N i

Ri + p∂iφ = Hi grav + Hi φ = 0 (6.22)
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The above equations, (6.21) and (6.22), are the four modified constraint equa-

tions. They now include also the fields (φ, p).

• Two more equations are left. The first is obtained by varying with respect to

p

φ̇−N
√
hij∂iφ∂jφ+ 1−N i∂iφ = 0 (6.23)

• The second is the variation with respect to φ

ṗ− ∂k

(
Np∂kφ√

hij∂iφ∂jφ+ 1
+Nkp

)
+N
√
h
dV (φ)

dφ
= 0 (6.24)

Therefore, we have two more equations than those of Einstein’s theory of gravity,

coming from the variation of φ and p. However, if we write the constraint equation

gµν∂µφ∂νφ = 1 in a 3 + 1 dimensional form,

g00φ̇2 + g0iφ̇∂iφ+ hij∂iφ∂jφ−
N iN j

N2
∂iφ∂jφ = 1, (6.25)

then we get a quadratic equation for φ̇. Its solution is exactly equation (6.23). This

means that the equation for the scalar field φ gives us no new info.

Considering the other equation, eq. (6.24), we are going to show that it is exactly the

Bianchi identity. To prove this we will first start by finding the energy-momentum

tensor.
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Consider the action part depending on the scalar field φ, it is given by

Sφ =

∫
d4x

(
pφ̇−Np

√
hij∂iφ∂jφ+ 1−N ip∂iφ−N

√
hV (φ)

)
. (6.26)

The canonical components of the stress energy tensor, found by varying the action,

are given by [12]

T00 = − N√
h

(
N
δSφ
δN

+ 2N i δSφ
δN i

+ 2
NiNj

N2

δSφ
δhij

)
T0i = − N√

h

(
δSφ
δN i

+ 2
N j

N2

δSφ
δhij

)
Tij = − 2

N
√
h

(
δSφ
δhij

)
. (6.27)

Computing the variations, we have

δSφ
δN

= −p
√
hij∂iφ∂jφ+ 1−

√
hV (φ)

δSφ
δN i

= −p∂iφ

δSφ
δhij

= −Np
2

∂iφ∂jφ√
hij∂iφ∂jφ+ 1

+
N
√
h

2
hijV (φ) (6.28)

Plugging back, we get the components of Tµν . These are given by

T00 =
N2p√
h

√
hij∂iφ∂jφ+ 1 +

2N√
h
N ip∂iφ+

N iN j

√
h

p∂iφ∂jφ√
hij∂iφ∂jφ+ 1

+N2V (φ)−N iNiV (φ)

T0i =
N√
h
p∂iφ+

N j

√
h

p∂iφ∂jφ√
hij∂iφ∂jφ+ 1

−NiV (φ)
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Tij =
p∂iφ∂jφ√

h
√
hij∂iφ∂jφ+ 1

− hijV (φ). (6.29)

This in complete agreement with the energy-momentum tensor found in the La-

grangian formalism, Tµν = λ∂µφ∂νφ, upon using equation (6.23).

Let us start from the definition of the covariant derivative

∇µT
µ
ν =

1√
−g

∂µ
(√
−gT µν

)
− ΓµνρT

ρ
µ. (6.30)

The T µν components are obtained by raising the index appropriately. Expressing

then (4)Γ in term (3)Γ and simplifying, it is easy to show that equation (6.24) is just

the identity ∇µT
µ
i = ∇0T

0
i +∇jT

j
i = 0.

This shows that the mimetic gravity has the same number of equations as that

of Einstein’s gravity since the two added equations are the constraint equation and

the conservation of the energy-momentum tensor. However, the equations resulting

from the variation with respect to hij, N and N i are those of pure Einstein’s gravity

plus extra terms as a function of the scalar field φ. This is how the mimetic dark

matter enters the picture.

6.4 Poisson Brackets

As shown in the previous section, the constraints can be decomposed into
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the gravitational part plus the scalar field part. These are written as

H = Hgrav + Hφ; Hi = Hi grav + Hi φ. (6.31)

This is a ′non-derivative′ coupling where the Hφ is independent of the gravitational

momentum πij [74]. Working with the smeared functions introduced before (in sec-

tion 5.5), then the Poisson bracket of two Hamiltonian constraints splits into

{H[N1],H[N2]} = {Hgrav[N1] + Hφ[N1],Hgrav[N2] + Hφ[N2]}

= {Hgrav[N1],Hgrav[N2]}+ {Hgrav[N1],Hφ[N2]}

+ {Hφ[N1],Hgrav[N2]}+ {Hφ[N1],Hφ[N2]} (6.32)

This can be simplified because the gravitational Hamiltonian constraint is indepen-

dent of the spatial derivatives of momenta, then the two Poisson brackets {Hgrav, Hφ}

and {Hφ, Hgrav} cancel out, and we get

{H[N1],H[N2]} = {Hgrav[N1],Hgrav[N2]}+ {Hφ[N1],Hφ[N2]} (6.33)

To compute this, we first find the functional derivatives and then plug in equation
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(5.8). The functional derivatives of the scalar Hamiltonian constraint are

δHφ[N ]

δϕ(x)
= −∂i

(
pNhij∂jφ√
hkl∂kφ∂lφ+ 1

)
+N
√
h
dV

dφ
;

δHφ[N ]

δp(x)
= N

√
hkl∂kφ∂lφ+ 1 (6.34)

This gives upon plugging in the integral

{Hφ[N1],Hφ[N2]} = Dφ

[
N i

3

]
(6.35)

where

N i
3 = hij (N2∂jN1 −N1∂jN2) . (6.36)

Similarly the Poisson bracket of two diffeomorphism constraints is computed by first

finding their functional derivatives

δDφ

δφ
= −∂i(pN i)

δDφ

δp
= N i∂iφ (6.37)

and then upon integration

{
Dφ[N i

1],Dφ[N i
2]
}

= Dφ

[
N i

1∂iN
j
2 −N i

2∂iN
j
1

]
. (6.38)

In computing the third Poisson bracket, {D[N i],H[N ]}, the cross term {Dgrav[N
i],Hφ[N ]}
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survives because the scalar Hamiltonian constraint Hφ is a function of the metric

hij. Therefore, we have

{
D[N i],H[N ]

}
=
{
Dgrav[N

i],Hgrav[N ]
}

+
{
Dφ[N i],Hφ[N ]

}
+
{
Dgrav[N

i],Hφ[N ]
}
. (6.39)

The Poisson bracket for the scalar constraints is found by using equations (6.34)

and (6.37). Upon integrating by parts we get

{
Dφ[N i],Hφ[N ]

}
= Hφ[N i∂iN ]−

Nk
|ipNh

ij∂jφ∂kφ√
hrs∂rφ∂sφ+ 1

. (6.40)

To find {Dgrav[N
i],Hφ[N ]}, we use equation (5.18). Then we have

δDgrav

δπij
= 2N i

|k h
kj (6.41)

which gives upon integrating by parts

{
Dgrav[N

i],Hφ[N ]
}

=
Nk
|ipNh

ij∂jφ∂kφ√
hrs∂rφ∂sφ+ 1

. (6.42)

Then the combined result is the one expected,

{
D[N i],H[N ]

}
= H

[
N i∂iN

]
. (6.43)

Therefore the full constraint algebra is equivalent to that of general relativity (equa-

80



tion 5.26).

6.5 Canonical Formulation of Dust

In this section, we compare the Hamiltonian formulation of mimetic dark

matter to that of dust which was done by Brown and Kuchar [14]. They wrote the

four-velocity uα of the dust as uα = −∂αT + Wi∂αZ
i where Zi are the comoving

coordinates of the dust particles, T is the proper time and Wi are the 3-velocity

components. The canonical action is then given by

SD =

∫
d4x

(
PṪ + PiŻ

i −NHD −N iHD
i

)
(6.44)

where Zi and T are the canonical coordinates,

HD = P
√
hijuiuj − 1 and HD

i = −Pui = P∂iT − PWk∂iZ
k (6.45)

This agrees with our results when Zi = 0. The scalar field φ is then the proper

time T . This agrees with the Lagrangian analysis when it was shown that in the

synchronous gauge φ = T .
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Chapter 7

Conclusions and Future Work

In this work, two problems were considered, supersymmetrizing massive

gravity and constructing the canonical formulation of mimetic dark matter.

Starting from four chiral superfields with global Lorentz index instead of the four

scalars used in the bosonic case, the basic field was defined. Also, supermultiplets

were formed and the matter action was constructed. When this was coupled to

the Supergravity action using the rules of tensor calculus, global symmetry was

promoted to a local one. Applying the conditions forced on the total action, it was

found out that the matter action is formed of three D-type terms and two F-type

terms.

Once the scalar fields of the chiral multiplets acquire a vacuum expectation value,

then local supersymmetry is broken exactly at the same scale as the diffeomorphism

breaking. This breaking of coordinate invariance identified the four scalars with

four-vectors and the spin-1/2 with a spin-3/2 Rarita Schwinger field. Therefore, we

are left with a massive vector, two massive spin-3/2 fields with different masses, and

a massive spin-2 particle. The two gravitinos does not have the same mass since

there is no N=2 supersymmetry to start with. Before diffeomorphism breaking we
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had spin-1/2 and not spin 3/2; then, the two gravitinos would not have the same

mass since one is a genuine gravitino, while the other becomes identified with a

gravitino after the breaking.

Equations of motion were found and analyzed and then degrees of freedom were

counted. Before coupling to supergravity, we started with eight bosonic and eight

fermionic degrees of freedom. This is preserved after the coupling where we are left

with the same degrees of freedom.

Further work can be done by generalizing the work in [16] to the supersymmetric

case using the quadratic formulation in [22]; however, this is much more complicated

since it needs a superspace formulation of supergravity [78]. Also, in this work,

the structure at the non-linear level, a much more difficult task, was not touched.

Analysis at higher orders may reveal ghosts. But then the Vainshtein scale could be

found and we expect things to be similar to massive gravity. This means that when

we go to higher orders, we expect the non-linear ghost to be found in the strong

coupling regime where it is completely harmless.

Next, mimetic dark matter was studied in its canonical form. The Hamilto-

nian was first constructed and then the equations of motion were analyzed. It

was found that the number of equations is equal to that in general relativity plus

two more equations coming from the variation with respect to the two extra phase

variables. However, the equation for the scalar field was reinterpreted as the conser-

vation of the energy-momentum tensor, and the other is just the constraint equation,

gµν∂µφ∂νφ = 1. Therefore, we have an extra field, φ, modifying Einstein’s equations

while keeping the same number of equations. This is how dark matter is represented.

83



Poisson brackets are computed and closure is proved. Also, comparison with the

Hamiltonian formulation of dust is done. This shows the equivalence between the

two models and proves that the modification done to Einstein’s action is represent-

ing dark matter. Further work could be done on applications of the Hamiltonian

quantization such as to solve the Wheeler-DeWitt equations.
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Appendix A

Notation and Convention

Metric: gµν = diag {1,−1,−1,−1}

Pauli matrices:

σ1 =

(
0 1
1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0
0 −1

)

Dirac spinor:

Ψ =

(
ψα
χ̄α̇

)
;

Adjoint Dirac spinor:

Ψ̄ ≡ Ψ∗γ0 =
(
χα ψ̄α̇

)
Majorana spinor:

ΨM =

(
ψα
ψ̄α̇

)
; Ψ̄M =

(
ψα ψ̄α̇

)
Grassman spinor:

θα =

(
θ1

θ2

)
; θ̄α̇ =

(
θ̄1

θ̄2

)

ψ̄α̇ ≡ (ψα)∗ and χα ≡
(
χ̄α̇
)∗
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Antisymmetric ε-matrices:

εαβ = εα̇β̇ =

(
0 1
−1 0

)
; εαβ = εα̇β̇ =

(
0 −1
1 0

)

As a convention, repeated spinor indices contracted like α
α or α̇

α̇

γµ ≡
(

0 σµ

σ̄µ 0

)
; γ5 ≡ iγ0γ1γ2γ3 =

(
−1 0
0 1

)
(A.1)

There are also the following useful identities:

(σµ)αβ̇ = εβ̇α̇εαβ (σ̄µ)α̇β ; (σ̄µ)α̇β = εβαεα̇β̇ (σµ)αβ̇

(σµ)αα̇ (σ̄ν)α̇α = Tr (σµσ̄ν) = 2ηµν

(σµ)αα̇ (σµ)ββ̇ = 2εαβεα̇β̇

(σµ)αα̇ (σ̄µ)ββ̇ = 2δβαδ
β̇
α̇

(σµν)α
β ≡ i

4
(σµσ̄ν − σν σ̄µ)α

β; (σ̄µν)α̇ β̇ ≡
i

4
(σ̄µσν − σ̄νσµ)α̇ β̇

σµν =
1

2i
εµνρσσρσ; σ̄µν =

−1

2i
εµνρσσ̄ρσ

(σµσ̄ν + σν σ̄µ)α
β = 2ηµνδβα ; (σ̄µσν + σ̄νσµ)α̇ β̇ = 2ηµνδα̇

β̇

σµσ̄νσρ + σρσ̄νσµ = 2 (ηµνσρ + ηνρσµ − ηµρσν)

σ̄µσν σ̄ρ + σ̄ρσν σ̄µ = 2 (ηµν σ̄ρ + ηνρσ̄µ − ηµρσ̄ν)

σµσ̄νσρ − σρσ̄νσµ = −2iεµνρκσκ

σ̄µσν σ̄ρ − σ̄ρσν σ̄µ = 2iεµνρκσ̄κ

Tr (σµσ̄νσρσ̄κ) = 2 (ηµνηρκ + ηµκηνρ − ηµρηνκ − iεµνρκ) (A.2)

86



where ε0123 = +1.

θαθβ = −1

2
εαβ (θθ) ; θ̄α̇θ̄β̇ =

1

2
εα̇β̇
(
θ̄θ̄
)

;

θαθβ =
1

2
εαβ (θθ) ; θ̄α̇θ̄β̇ = −1

2
εα̇β̇
(
θ̄θ̄
)

The derivatives with respect to a Grassmann variable are defined as follows:

∂α ≡
∂

∂θα
; ∂α ≡ −εαβ∂β; ∂̄α̇ ≡

∂

∂θ̄α̇
; ∂̄α̇ ≡ −εα̇β̇∂̄β̇.

This implies that

∂αθ
2 = 2θα; ∂αθ2 = −2θα;

∂̄α̇θ̄
2 = −2θ̄α̇; ∂̄α̇θ̄2 = 2θ̄α̇.
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Appendix B

D-type terms

In this appendix, we list the products that can be formed as D-type terms.

1. HABCHABC where (HABCHABC)∗ = HCBAHCBA = HABCHABC and is self

adjoint.

2. HABCHACB where (HABCHACB)∗ = HCBAHBCA = HABCHBAC

3. HABCHBCA where (HABCHBCA)∗ = HCBAHACB = HABCHBCA and is self

adjoint.

4. HABCHCAB where (HABCHCAB)∗ = HCBAHBAC = HABCHCAB is self adjoint

5. HABCHCBA where (HABCHCBA)∗ = HCBAHABC and is self adjoint

6. HAH
∗
A is self adjoint

7. HAHA where (HAHA)∗ = H∗AH
∗
A

8. εABCDHABCHD where
(
εABCDHABCHD

)∗
= −εABCDHABCH

∗
D
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9. εABCDHABEHCDE where
(
εABCDHABEHCDE

)∗
= εABCDHEBAHEDC

= εABCDHEABHECD

10. εABCDHAEBHCED where
(
εABCDHAEBHCED

)∗
= εABCDHAEBHCED is self ad-

joint

11. εABCDHAEBHECD where
(
εABCDHAEBHECD

)∗
= εABCDHAEBHCDE

12. εABCDHEABHCDE where
(
εABCDHEABHCDE

)∗
= εABCDHBAEHEDC

= εABCDHEABHCDE is self adjoint.
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Appendix C

Components of the Superfields

The components of the basic field HABC to all orders in θ and θ̄ are given

by

• No θ, θ̄ terms:

2ψAσBψ̄C

• θ terms:

2
√

2i ψAσBσ̄Cθ + 2
√

2i ψAσBσ̄
µθ ∂µχ

∗
C + 2

√
2θσBψ̄C FA

• θ̄ terms:

−2
√

2i θ̄σ̄AσBψ̄C − 2
√

2i θ̄σ̄µσBψ̄C ∂µχA + 2
√

2ψAσB θ̄ F
†
C
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• θθ terms:

4i ηBCFAθθ + 4i FA ∂Bχ
∗
Cθθ

• θ̄θ̄ terms:

−4i ηBAF
†
C θ̄θ̄ − 4i F †C ∂BχAθ̄θ̄

• θθ̄ terms:

− 2i
(
θσBψ̄C

) (
∂µψAσ

µθ̄
)
− 2i (θ∂µψA)

(
θ̄σ̄µσBψ̄C

)
+ 2i

(
ψAσB θ̄

) (
θσµ∂µψ̄C

)
+ 2i (ψAσBσ̄µθ)

(
θ̄∂µψ̄C

)
+ 4 θ̄σ̄AσBσ̄Cθ + 4 θ̄σ̄AσBσ̄

µθ ∂µχ
∗
C

+ 4 θ̄σ̄µσBσ̄Cθ ∂µχA + 4 θ̄σ̄µσBσ̄
νθ ∂µχA∂νχ

∗
C + 4θσB θ̄ FAF

†
C

• θθθ̄ terms:

−
√

2i
(
θ̄σ̄µσBψ̄C

)
θθ∂µFA −

√
2
(
ψAσB θ̄

)
θθ∂µ∂

µχ∗C +
√

2i
(
∂µψ̄C σ̄

µσB θ̄
)
θθFA

+ 2
√

2i
(
θ̄∂Bψ̄C

)
θθFA + 3

√
2
(
∂µψAσ

µθ̄
)
ηBCθθ + 3

√
2
(
∂µψAσ

µθ̄
)
∂Bχ

∗
Cθθ

−
√

2i θ̄σ̄F∂µψA εµBCF θθ −
√

2i θ̄σ̄F∂µψA∂
νχ∗C εµBνF θθ −

√
2θ̄σ̄C∂BψAθθ

+
√

2θ̄σ̄B∂CψAθθ −
√

2 θ̄σ̄µ∂BψA ∂
µχ∗C θθ +

√
2 θ̄σ̄B∂µψA ∂

µχ∗C θθ
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• θθ̄θ̄ terms:

√
2i (ψAσBσ̄

µθ) θ̄θ̄∂µF
†
C + 3

√
2
(
θσµ∂µψ̄C

)
ηBAθ̄θ̄ + 3

√
2
(
θσµ∂µψ̄C

)
∂BχAθ̄θ̄

−
√

2i
(
∂νψ̄C σ̄

F θ
)
θ̄θ̄εABνF −

√
2i
(
∂νψ̄C σ̄

F θ
)
θ̄θ̄ ∂µχAεµBνF −

√
2
(
∂Bψ̄C σ̄Aθ

)
θ̄θ̄

+
√

2
(
∂Aψ̄C σ̄Bθ

)
θ̄θ̄ −

√
2
(
∂Bψ̄C σ̄µθ

)
θ̄θ̄ ∂µχA +

√
2
(
∂µψ̄C σ̄Bθ

)
θ̄θ̄ ∂µχA

−
√

2i (θσBσ̄
µ∂µψA) θ̄θ̄F †C − 2

√
2i (θ∂BψA) θ̄θ̄F †C −

√
2
(
θσBψ̄C

)
θ̄θ̄ ∂µ∂

µχA

• θθθ̄θ̄ terms:

1

2
ψAσB∂µ∂

µψ̄C +
1

2
∂µ∂

µψAσBψ̄C + 2i FA∂BF
†
C − 2i F †C∂BFA

+ 2i ηAB∂µ∂
µχ∗C − 2i ηBC∂µ∂

µχA + 2i ∂BχA∂µ∂
µχ∗C − 2i ∂Bχ

∗
C∂µ∂

µχA

− 3

2
∂BψAσµ∂

µψ̄C −
3

2
∂µψAσµ∂Bψ̄C +

1

2
∂µψAσB∂µψ̄C

+
1

2
∂µψ̄C σ̄µ∂BψA +

1

2
∂Bψ̄C σ̄µ∂

µψA −
1

2
∂µψ̄C σ̄B∂

µψA

C.1 D-type terms

1. For the superfield H̄ABCH̄
BCA:

• C = 0, ξ = 0, M = −8
(
ψAσBσ̄

AψB
)

• Vµ = quadratic, λ = quadratic

• D = −16
(
∂µχA∂

µχA + ∂µχ
∗
A∂

µχA∗
)

+ 32
(
∂µχA∂

µχA∗ + ∂AχA∂
Bχ∗B

)
+ 80 FAF

A∗ − 8 εABCDψAσB∂Cψ̄D − 8i
(
ψAσ

A∂Bψ̄
B + ψAσ

B∂Aψ̄B
)

− 56i ψAσ
µ∂µψ̄

A + 32 ē∂Aχ
A + 32 ē∂Aχ

A∗ + 32 ē2
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where Vµ and λ don’t affect our results since they will give terms with higher

orders.

2. H̄ B
AB H̄ CA

C :

• C = 0, ξ = 0, M = 16
(
ψAσ

Aσ̄BψB
)

• Vµ = quadratic, λ = quadratic

• D = 32
(
∂µχA∂

µχA + ∂µχ
∗
A∂

µχA∗
)

+ 32 ∂AχA∂
Bχ∗B + 128 ∂µχA∂

µχA∗

+ 272 FAF
A∗ + 8 εABCDψAσB∂Cψ̄D − 8i

(
ψAσ

A∂Bψ̄
B + ψAσ

B∂Aψ̄B
)

− 200i ψAσ
µ∂µψ̄

A + 96 ē2 + 128 ēaµē
µ
a + 96 ē∂Aχ

A + 96 ē∂Aχ
A∗

+ 128 ēµA∂µχ
A + 128 ēµA∂µχ

A∗

and the third

3. (DΦADΦB)
(
D̄ΦB∗D̄ΦA∗):

• C = 0, ξ = 0, M = 0

• Vµ = 0, λ = quadratic

• D = 32
(
∂AχA∂

Bχ∗B + ∂µχA∂
µχA∗

)
+ 80 FAF

A∗ − 8 εABCDψAσB∂Cψ̄D

− 8i
(
ψAσ

A∂Bψ̄
B + ψAσ

B∂Aψ̄B
)
− 56i ψAσ

µ∂µψ̄
A + 64 ēaµē

µ
a

+ 64 ēµA∂µχ
A + 64 ēµA∂µχ

A∗

C.2 F-type terms

The components of the F-type terms are

1. D̄2
(
DΦAσ

ABDΦB

)
:
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• z = −96i− 48i ∂AχA − 48i ē− 16i ē∂AχA − 32i ēµA∂µχ
A + 8i ēAµ ē

µ
A

−8i ē2

• Xα = −4
√

2
(
σABψA

)
α
∂µ∂

µχB − 16
√

2i
(
∂AψA

)
α
∂BχB

− 48
√

2i
(
∂AψA

)
α

+ 16
√

2i (∂AψB)α∂
BχA

• h = total derivative

h is a total derivative, therefore it won’t affect our calculations. The compo-

nents of the other term are

2. D̄2
(
DΦADΦAD̄Φ∗BD̄ΦB∗) :

• z = −128 ψ̄Aψ̄
A

• Xα = 128
√

2i
(
σBψ̄B

)
α
∂AχA + 64× 4

√
2i
(
σνψ̄B

)
α
∂νχ

∗
B

• h = −64× 4
(
∂µχA∂

µχA + ∂µχ
∗
A∂

µχA∗ + ∂AχA∂
Bχ∗B

)
− 64× 2 FAF

A∗

− 64 εABCDψAσB∂Cψ̄D + 64i
(
ψAσ

A∂Bψ̄
B + ψAσ

B∂Aψ̄B + ψAσ
µ∂µψ̄

A
)

− 64× 16− 64× 16 ē− 64× 8 ēAµ ē
µ
A − 64× 4 ē2

+ 64
(
ē∂Aχ

A + ē∂Aχ
A∗)+ 64× 4

(
ēµA∂µχ

A + ēµA∂µχ
A∗) .
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