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Title: Structure of Rings with Conditions on Certain Subsets 

 

 

 Rings are of different structures, altering some conditions on some subsets of a ring 

might cause a change in its structure. In this thesis, we study some of these alterations and 

their effects on the ring and its subsets. 

 In the first chapter, we introduce some basic definitions, theorems, and lemmas that 

are crucial for the succeeding chapters.  

In the Second chapter, we study the structure of rings with prime centers and how 

varying some conditions on these rings affects its commutativity. We then conclude this 

chapter by giving an example showing that a ring with a prime center is not necessarily 

commutative. 

In the third chapter, we show that rings multiplicatively generated by idempotents 

and nilpotents might undergo a change in its structure and the structure of some of its 

subsets when it’s given some conditions. Furthermore, we show that a ring R which is 

either finite or has an identity is necessarily Boolean when given some property; we then 

give an example which shows that the finiteness of R and the existence of its identity along 

with this property are essential to prove that R is Boolean. 

In the final chapter, we show how putting some conditions on subsets that are 

multiplicatively generated by idempotents and nilpotents of a ring might alter the structure 

of the ring and its subsets. 
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CHAPTER I 

INTRODUCTION AND PRELIMINARIES 

 In this chapter, we will introduce some basic definitions and theorems that will be 

used throughout the forthcoming chapters.  

 

Definition 1.1.  An element e in a ring R is said to be idempotent if     . A ring R is 

Boolean if every element of R is idempotent.  

Definition 1.2.  An element a in a ring R is said to be nilpotent if there exists a positive 

integer n = n (a) such that       . An ideal I is said to be nil if every element in I is 

nilpotent. An ideal I is said to be nilpotent if      for some integer n.  

Definition 1.3.  A nonzero ring R is a prime ring if for any two elements a and b of R,  

arb = 0 for all r in R implies that either a = 0 or b = 0. 

Definition 1.4.  An element x of a ring R is called periodic if there exist distinct positive 

integers m, n such that      . A ring R is called periodic if each of its elements is 

periodic.   

Definition 1.5. An element a of a ring R is said to be a central element iff             

The set of all central elements is called the  center of  R  and is denoted by Z(R) or C(R). 

Definition 1.6.  A ring R with identity is called a division ring if every nonzero element is a 

unit. A commutative division ring is called a field. 

http://en.wikipedia.org/wiki/Zero_ring
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
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Definition 1.7.  A ring R with no zero divisors is called a domain. A commutative domain 

is called an integral domain. 

Definition 1.8.  In a ring R, the ideal generated by all commutators [x, y] = xy - yx in R is 

called the commutator ideal of R. 

Definition 1.9.  A ring R is said to be left (right) Artinian if it satisfies the descending 

chain condition on left (right) ideals of R. A ring R is Artinian if it is both left and right 

Artinian. 

Theorem 1.1.  A nonzero ring R is an Artinian ring if and only if every nonempty set of 

ideals has a minimal element. In particular, R has a nonzero minimal ideal. 

Proof. (     ) 

Let R be an Artinian ring, and let A be a nonempty set of ideals in R. Let        Suppose 

that A has no minimal element, then there exists      such that        . 

Similarly,    is not minimal in A, then there exists an ideal      such that        . We 

continue in this manner to get a strictly decreasing chain of ideals in R:   

                     

Since R is Artinian, then there exists k such that         for all     , contradiction. 

So, A has a minimal element. 

(   )  

Assume that every nonempty set of ideals in R has a minimal element.   
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Let                    be a descending chain of ideals of R. Choose S to be the set 

consisting of these ideals, then S has a minimal element, let it be   . By assumption for 

any           . But,     is the minimal element then               Then R satisfies 

the descending chain condition and thus is Artinian. 

Definition 1.10.  An element     is left quasi-regular if there exists r   R such that        

            Similarly, an element     is right quasi-regular if there exists r   R 

such that         . An ideal I is left (right) quasi-regular if every element of I is left 

(right) quasi- regular.   

Definition 1.11.  A left ideal I in a ring R is said to be regular if there exists     such 

that                        Similarly, a right ideal I in a ring R is said to be regular 

if there exists     such that                       . 

Definition 1.12.  A left module A over a ring R is said to be simple iff RA    and A has no 

proper submodules. A ring R is simple iff      and R has no proper two-sided ideals. 

Definition 1.13.  Let B be a subset of a left R- module A. Then, the left annihilator of B is  

Ann(B) = {                       }. If B is a submodule of A, then Ann(B) is an ideal 

of R.   

Definition 1.14. A (left) R-module A is called a faithful module if the (left) annihilator of 

A, Ann(A), is equal to {0}. A ring R is said to be (left) primitive ring if there exists a simple 

faithful R – module. 

Theorem 1.2.  If R is a ring, then there is an ideal J(R) such that: 
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1. J(R) is the intersection of all regular maximal left ideals of R; 

2. J(R) is a left quasi- regular left ideal which contains every left quasi- regular left 

ideal of R; 

3. J(R) is the intersection of all left annihilators of simple left R-modules; 

4. J(R) is the intersection of all the left primitive ideals of R; 

Note: Statements 1-4 are true if “left” is replaced by “right”. These statements are all 

equivalent and they define the ideal J(R) called the Jacobson radical. 

Proof. [9, p.426] 

Theorem 1.3. The Jacobson radical J(R) of a ring R contains no nonzero idempotent 

elements. 

Proof. Let    be an idempotent element in       , we want to show that    .  Since 

     then        Therefore,    is left quasi-regular and we get           for 

some   in  . Hence,         Then,           but   is idempotent and thus  

         .  

Theorem 1.4. If R is a left (right) Artinian ring, then the Jacobson radical of R is nilpotent.  

Proof. Let J = J(R). Consider the chain of left ideals in R: 

           

Since   is left Artinian then there exists   such that               

Suppose       Let   {   { }   is a left ideal of                   { } }  
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    since          { }  

Since    is left Artinian, then    has a minimal element   { } and so      { } for 

some     in    So, there exists      such that       

Since       then –      which gives that –   is left quasi-regular (since        

Then,          for some     and            . But      and hence  

   , contradiction. Therefore,     { } and   is nilpotent. 

Lemma 1.1.  Let R be a ring with identity 1. Let J be the Jacobson radical of R, let a be an 

element of J, then (a+1) is a unit.  

Proof. Since     then   is left quasi-regular. So, there exists     such that  

        . Therefore,                          . Hence,  

      is the inverse of      . 

Lemma 1.2. Let R be a ring. If r is both idempotent and nilpotent in R, then r = 0. 

Proof. Let   be an element of   which is both nilpotent and idempotent, assume    . 

Since   is nilpotent, let     be the least positive integer such that     ; hence, 

          but   is idempotent i.e.,     . Then,       , this contradicts the fact that 

  is the least positive integer satisfying     . As a consequence,       

Definition 1.15. A ring R is said to be semisimple if J(R) = 0. 
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Theorem 1.5. (Wedderburn-Artin) The following conditions on a left Artinian ring R are 

equivalent. 

(i) R is simple; 

(ii) R is primitive; 

(iii) R is isomorphic to the endomorphism ring of a nonzero finite dimensional vector 

space V over a division ring D. 

(iv) For some positive integer n, R is isomorphic to the ring       of all n n 

matrices over a division ring D.    

Proof. [9, p.421]. 

Theorem 1.6. (Wedderburn-Artin). The following conditions on a ring R are equivalent. 

(i) R is a nonzero semisimple left Artinian ring; 

(ii) R is a direct product of a finite number of simple ideals each of which is 

isomorphic to the endomorphism ring of a finite dimensional vector space over 

a division ring; 

(iii) there exist division rings          and positive integers          such that R 

is isomorphic to the ring      
         

           
  . 

Proof. [9, p.436] 

Theorem 1.7. Let R be a semisimple left Artinian ring, then R has an identity. 

Proof. If R is a semisimple left Artinian ring, then by Theorem 1.6, there exist division 

rings            and positive integers            such that:   
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Where      
   is the complete matrix ring over the division ring   . Since each matrix 

ring has an identity, then R has an identity. 

Theorem 1.8.  Let R be a ring. Then, the quotient ring R/J(R) is semisimple. 

Proof. Let J = J(R). We want to show that         . We consider the canonical 

epimorphism,          defined by            ̅; and let   be the collection of all 

regular maximal left ideals of    

By definition of      ,         for all    . 

    is a maximal left ideal of     because   is a maximal ideal in  . Since   is regular, then 

there exists an element     with        for all r in R. We want to show     is regular. 

Let  ̅    ̅, then  

 ̅   ̅  ̅                                ̅   ̅  

So,      is a regular maximal left ideal of    . 

If  ̅  ⋂{            }  then,  ̅  ⋂{           }  Hence,     for each      and 

       . So,  ̅    in    , and thus         . As a result,     is semisimple. 
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CHAPTER II 

RINGS WITH PRIME CENTERS 

 In this chapter, the structure of certain classes of rings with prime centers and the 

relation of this structure to commutativity is going to be studied. Additionally, an example 

of a non-commutative ring with a prime center is going to be demonstrated.  

Throughout this chapter, R is an associative ring. 

 

Definition 2.1.  A ring is said to have a prime center C if whenever ab         

          . 

Definition 2.2.  A ring is said to have a semiprime center C if whenever            

      

Lemma 2.1. If R is a periodic ring, then for each x in R, some power of x is idempotent  

                                                       

Proof. If     R, then       for some positive integers m = m(x) and n= n(x); without 

loss of generality consider n > m. Then,                   

(since              ) 
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Now repeat the same process a second time to gain:                      

                                            

Repeating the same process until we obtain:  

                      (        )
 

 

Then,    (        )
 

     (        )
 

 (        )
 

 

                                            (   (        )
 

)
 

  

Therefore,    (        )
 

 is idempotent. Thus, k(x) is a function of n(x) and m(x) and 

                              

Hence,       (           )
 

 (      
)
 

        
         

Note 2.1. Every commutative ring has a prime center. 

Proof.  Let R be a commutative ring.  Let C be the center of R. Then, obviously C = R; 

Consequently,      does imply that     and     since C = R and        ; 

concluding that C is prime. 

Note 2.2. A prime center is a semi prime center. 
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Proof. Let R be a ring with a prime center C. Let                              

         (since C is prime). If     then        and then repeat the same process to 

reach       

Lemma 2.2. Let R be a ring having a semiprime center C. Then the nilpotent and the 

idempotent elements of R belong to the center. 

Proof. Let   be any nilpotent element of R. Then,      for some positive integer n. 

Consequently,       . But R has a semiprime center C, so if      then    . Thus, 

all nilpotents of R are in C. 

Now, let   be any idempotent element of R, then,        Let   be any element in R. 

Consider         

                                                                         

                         

                            

                                                                

Thus,        is nilpotent and hence belongs to C. 

Then,                      

                  

                   

                                                                             

Similarly,        is nilpotent and thus belongs to C.   
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Then,                      

                  

                  

                                                                             

As a result,      , concluding that      

Theorem 2.1. Let R be a periodic ring. R is commutative iff R has a semiprime center. 

Proof. 

   )  

If R is commutative, then R has a prime center, but every prime center is semiprime, thus R 

has a semiprime center. 

(   

Suppose that R has a semiprime center, and let   be any element of R. Since R is periodic, 

then there exists a power of   which is idempotent (Lemma 2.1). Let k be this positive 

integer power. Therefore,          and hence      (Lemma 2.2). Thus     since C 

is semiprime. Then R   C, but we know that C   . We conclude that R = C and thus R is 

commutative. 

Lemma 2.3. Let R be a ring with identity 1 and having a prime center C. Let U be the set of 

units of R. Then U  C. 
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Proof. Let      Then            But R has a prime center C, this implies that 

              and hence      Concluding that U  C. 

Lemma 2.4. Let R be a ring with identity 1 and having a prime center C. Let J be the 

Jacobson radical of R. Then J   . 

Proof. Let      So,   is a non-unit, thus        implying that     is a unit (Lemma 

1.1) and thus central by lemma 2.3. Then     since           where       

  and    . Consequently, J   . 

Lemma 2.5. Let R be a prime ring having a semiprime center. If e is an idempotent of R 

then e = 0 or e = 1 (if R has an identity 1). 

Proof. Let   be an idempotent of R. Then,     (Lemma 2.2). So,  

                                              

This implies, since R is a prime ring, that either      or        . So,     or 

           . If      then             But     thus,               

implying that   is an identity element of      

Theorem 2.2. If R is a prime ring with a prime center C, then R is a domain. 

Proof. Let      where              Then,     , but C is prime, so           

   Thus,                                       Now, since R is a prime 

ring  this implies that     or        As a consequence, R has no zero divisors and thus a 

domain. 
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Theorem 2.3. If R is an Artinian ring and I is a nonzero non-nilpotent ideal then I contains 

a nonzero idempotent element. 

Proof.  [8, Theorem 1.5.2] 

Theorem 2.4. Let R be a prime Artinian ring with identity 1. If R has a prime center then R 

is a field. 

Proof. Let I be a nonzero ideal of R. Then I is non-nilpotent, since if I were nilpotent then 

for every nonzero         such that        But    , then     , thus,     since   

is semiprime; consequently,             , hence,               for R is a 

prime ring. If    , then,                          continuing in this manner we 

reach    , contradicting the fact that I is a nonzero ideal. Thus, since R is Artinian, I 

contains a nonzero idempotent element (By Theorem 2.3). So, by Lemma 2.5,    I and 

hence I = R. Subsequently, R has no nonzero proper two sided ideals and thus R is simple. 

Now, R is a simple Artinian ring and hence is isomorphic to a complete matrix ring       

over a division ring D (By Theorem 1.5). However, no matrix ring       over a division 

ring D with     can have a prime center. (            but,                  ).  

So, n = 1 thus R must be a division ring. By Lemma 2.3, the units of R are central and 

hence R is commutative. Therefore, R is a commutative division ring and thus a field. 

Lemma 2.6. Let {          } be a family of Rings. If the direct product ∏       has a 

prime center then    has a prime center for each      . 



 

14 
 

Proof. Let C be the center of ∏      , Ci  be the center of Ri ,       , let    and    be two 

elements of    (      such that         . Let {  } and {  } be two elements   ∏       

such that: 

    {
                    
                   

            and                 {
                    
                   

 

Thus {  } {  }   {
                         
                      

 

But          and           (the center of Rj). Thus, {  } {  }   , so {  }     or 

{  }    since   is prime. Therefore,       or      . Hence,     is prime. So,     has a 

prime center for each     . 

Theorem 2.5. Let R be a semisimple Artinian ring. If R has a prime center, then R is 

isomorphic to a direct product of fields. 

Proof. Since R is semisimple Artinian then it is isomorphic to a complete direct product  

     
        

          
   where            are positive integers and each 

     
   is an       matrix ring over a division ring   . Now, R has a prime center 

implies that      
        

          
   has a prime center, thus, each       

    

for   {     } has a prime center (by Lemma 2.6). But in the proof of Theorem 2.3, it was 

shown that this cannot happen unless each     , thus          {     }  Therefore, R 

is isomorphic to a direct product of division rings with prime centers. But each division ring 

   is a ring with unity and with a prime center; hence, by Lemma 2.3, all the units of    are 
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central. As a consequence, all elements of    are central, implying that    is commutative, 

hence,    is a field. Therefore, R is isomorphic to a direct product of fields. 

Theorem 2.6. Let R be a simple ring with identity 1 and having a prime center. Then R is a 

domain. 

Proof. Let   be a nonzero element of   (center of R). Then,    is a nonzero ideal of R  

(     . R is simple, so it has no proper two sided ideals implying that        . 

However,     thus         such that                . Thus,   must be a unit 

and hence every nonzero element of C must be a unit. Now, assume that R has zero 

divisors, then,        for some           But, 0 belongs to the prime center C of R, 

which implies that      . As a result,     or     ; therefore,   is a unit or   is a unit 

since every non-zero element in C must be a unit. Consequently,      such that       

       . 

                

              

               

                 

Contradiction, since    . Thus, R can’t have zero divisors which makes it a domain. 

Theorem 2.7. Let R be a ring with identity and having a prime center C. If for each 

      a monic polynomial      with integer coefficients such that          then R is 

commutative. 



 

16 
 

Proof. We start by proving that if     with        , then    . We will do this by 

induction on n the degree of   .  

If n = 1 and      with         then               where     is an integer. So, 

   . Now, assume that for all     with       of degree n belongs to C implies x 

belongs to C is true for n. We want to prove it for n+1.  

Let    , such that                               where                

Then,                  . Therefore,                    .  But C is 

prime; hence,     or                   If     we are done, else  

                ; then,    has a polynomial of degree n which belongs to C, 

hence,     (by the inductive hypothesis) and thus proved for degree n+1. 

Example of a noncommutative ring with a prime center: 

Let F be an infinite field, let   be an automorphism of F with infinite order. Let        be 

the ring of all polynomials      over F such that                         . 

       can be easily proved a domain.  

Now, let R =        . We will prove that this R is a noncommutative ring with a prime 

center. 

Let C be the center of R, let              
         be any nonzero element in 

the center of R. 
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But       , then              , therefore, 

(i)                                                  .   

  has an infinite order (i.e.    is not the identity automorphism for    ). Hence, 

           such that: 

(ii)           

              
         

                   
      

            

(By part (i)). In addition, 

                                    
              

             
                     

But               since       . Thus: 

(iii)                   
                  

F is a field, assume         Then      for some positive integer  . Let   be an element 

of F satisfying        . Thus,    
         by (iii). Then,    

         (F is a field 

then it is a commutative ring where the nonzero elements are units, hence, for  

                  and      are units) 
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But this contradicts with (ii). As a result,       , then the center C = 0. If           

  for             then             which implies that        or        (since 

    which is a domain thus has no zero divisors); therefore,        or      

  concluding that C is prime. And so, R has a prime center C. R is non-commutative since 

           . Consequently, R is a non-commutative ring with a prime center. 
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CHAPTER III 

RINGS WHICH ARE MULTIPLICATIVELY GENERATED BY 

IDEMPOTENTS 

 

A Boolean ring is a ring where every element is idempotent. This motivates the 

study of the structure of a ring R which is multiplicatively generated by its idempotents and 

rings which are multiplicatively generated by idempotents and nilpotents. Indeed, we show 

that if R is finite or has an identity along with this property, then it is necessarily Boolean. 

Afterwards, we give an example to show that to prove R Boolean, the finiteness of R and 

the existence of its identity along with the above property cannot be omitted. 

 

Definition 3.1.  A ring R is called an I-ring if it is multiplicatively generated by its 

idempotent elements. 

Lemma 3.1. Let R be a Boolean ring. Then char(R) = 2. 

Proof. Let      Then      and              which implies that  

             and hence     . Thus,          . Then,             

Theorem 3.1. If a ring R is Boolean, then R is commutative. 

Proof. Let        we want to show that        Since   is Boolean, then      and 

      Now, 
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Then,          But by Lemma 3.1,     ; therefore,      .   

Lemma 3.2. Let R be an I-ring, let      If the idempotents of R are central then b is 

idempotent. 

Proof. Since R is an I-ring, and      then            where    is idempotent for every 

  {    }. Hence, 

                           
     

                 . Thus, b is  

idempotent. 

Theorem 3.2. Let R be an I-ring with identity 1. Then R is Boolean.  

Proof. Let     then            where    is idempotent for every   {    }.To 

prove R is Boolean, we need to show that b is idempotent; so, it is enough to show that the 

idempotents are central (Lemma 3.2). Thus, assume that            and let 

        , then,      as seen before (p.10-11) and hence     has an inverse in 

                             . 

By hypothesis,              where    is idempotent    {     }; hence,  

                    
                  . However,         exists, 

thus,                =              . So,     . Similarly,         thus  

       and hence    . Therefore,       . 
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In a similar manner taking            we can show that      thus        which 

implies that           and hence   is central. Therefore, R is Boolean. 

At the end of this chapter, example 3.1 will show why the condition      cannot be 

dropped from Theorem 3.2. 

Theorem 3.3. Let R be a finite I-ring. Then R is Boolean. 

Proof. We will proceed by proving this theorem by contradiction. So, suppose that R is a 

finite I-ring which is not Boolean. Since R is finite, we can consider   not Boolean with 

least number of elements. That is, any I-ring with fewer elements than R must be Boolean. 

It is obvious that   { } else R would be Boolean contradicting our assumption. Let J be 

the Jacobson Radical of R. If J = {0}, then R is semisimple and thus has an identity by 

Theorem 1.7. Thus, by Theorem 3.2, R is Boolean, contradicting our hypothesis, so 

  { }  Now, since R is Artinian then R has a minimal ideal    by Theorem 1.1. Let 

     be an element of  R/  . Since R is an I-ring then: 

                                          where    is idempotent 

   {     }  Note that        
                      

             

thus         is idempotent   , and hence any element in  R/   is a product of 

idempotents, thus R/   is an I- ring with fewer elements than R(since      . Therefore, 

since by assumption R is the smallest non-Boolean I-ring then R/   is Boolean.  R/   

Boolean implies that J/   is Boolean since J/   is a subring of R/  , but J is nilpotent 

(Theorem 1.4) and hence J/   is nilpotent. Hence, every element in J/    is nilpotent and 

idempotent thus every element of J/   is zero (Lemma 1.2) and hence     J. Thus, J is 
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the (unique) minimal ideal of R. Since R is finite, J is nilpotent, so   a positive integer 

    such that       Hence,      since if     , then, by a simple inductive proof it 

can be shown that     . This implies that       , contradiction. It follows then that  

   { } since      and   is minimal. Since, as shown above R/J is Boolean, then R/J is 

commutative (Theorem 3.1) and thus 

                                                                                                                      (1)                    

Furthermore, if J = R, then R has no nonzero idempotent elements (Theorem 1.3), but R is 

an I-ring thus R = {0}, a contradiction. Hence,    , thus R/J has an identity since it is 

semisimple and finite (Theorem 1.7). Let  ̅      be the identity element of    . Since R 

is finite, then, for every    , there exists     and   such that      , for    . Then,

   

                                                                          

             

                                 

                                          

                          

Repeating the above procedure, we get                  Now, let  

             . Then,  
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So,   is an idempotent element. But              . Then      for some integer 

    . Thus, there exists a positive integer b such that 

                                                                                                                            (2) 

where   is an idempotent element of R. Since R/J is Boolean then  ̅   ̅   ̅= identity 

element of R/J. Therefore, 

                                                                         (3)    

since          ̅̅ ̅̅ ̅̅ ̅̅ ̅    ̅̅ ̅   ̅   ̅  ̅   ̅   ̅  ̅   ̅   ̅   ̅   ̅. Similarly, 

                                                                            (4) 

Now, let   be an arbitrary but fixed element of R and let      then by (1), we have that 

         for some      Therefore,                 since    { }  It follows 

then, for any    ,     is an ideal in  . But    is a minimal ideal of R, and hence  

    { } or      for any given                (5) 

Similarly,  

    { } or      for any given                 (6) 

Returning to the idempotent element   in (2), we now prove  that  
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      { }                                                    (7) 

Assume    { }, and let    . Then, by (4),        for some      and hence,  

           { } 

Since    { } and   = {0}. We have thus shown that  

                                     { } for all               (8) 

Now, we consider two idempotent elements of    g and h. Using (1), we have         

and using (8), we get             Therefore,           and         Then,  

                                  . 

In other words, the product of any two idempotent elements is idempotent. But   is an  

 -ring, which implies that every element in   is a product of idempotents, thus   is Boolean 

and we get a contradiction. Therefore,    { } and similarly we can show that     { }  

Combining (5) and (6) with the above result, we get: 

                                       (9) 

Let       using (4) we have: 

         for some             (10) 

Now, using (9) we have  

                                                   for some              (11) 
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Combining (10) and (11), we get                           So,     and by 

(10), we get       Similarly, we show that      by using       

Hence,  

               

Thus,   is an identity element of   and by using Theorem 3.2, we get that R is Boolean, 

which contradicts the hypothesis and by this contradiction we end the proof. 

Example 3.1. This example shows that Theorem 3.2 might have not been true if R didn’t 

have an identity, and Theorem 3.3 need not be true if R were not finite.  

Let Ro be a ring with identity, and let R be the ring of all     matrices over Ro in which 

at most a finite number of entries are nonzero. For every        a finite     matrix A 

over Ro such that: 

   (
   
   
   

)    where the     are zero matrices. 

Let L, M, and N be the matrices defined by: 

  (
     
   
   

)                      (
     
    
   

)                          (
    
   
   

)   

where    is the     zero matrix and    is the     identity matrix. 

   (
     
   
   

)(
     
   
   

)  (
  
   

  
   
   

)  (
     
   
   

)    
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   (
     
    
   

)(
     
    
   

)  (
     

      
  

   

)  (
     
    
   

)    

   (
    
   
   

)(
    
   
   

)  (
  
   
   
   

)  (
    
   
   

)    

Thus       and   are idempotents and 

     (
    
   
   

)(
    
   
   

)  (
   
   
   

)    

Then every   in R can be expressed as a product of idempotents. However, the set of 

nilpotents N’ is not an ideal, since: Let    (
   
   
   

)    

    (
   
   
   

)      since    (
   
   
   

)(
   
   
   

)  (
   
   
   

)  

    (
   
   
   

)      since       (
   
   
   

)    and thus never equal to zero. 

Moreover, R is an  - ring which is not commutative and thus not Boolean. This example 

shows that we cannot drop the hypothesis that     in Theorem 3.2, or the hypothesis that 

R is finite in Theorem 3.3. 

Lemma 3.2. Let R be a ring such that the set of nilpotents N is commutative. Then    

  and      for every     and every nonzero idempotent element e in R.  

Proof. Let   be a nonzero idempotent element in   and let    . We have that  
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            as seen before (p.10). 

Thus          but     and   is commutative then  

                     

Multiplying by    from the left and the right, we get 

                         

or 

                        

Then,               which implies that              Now, using induction on     

we will prove that        
           positive integer  .  

For      we already proved that             so we are done. 

Now, assume the property is true for     i.e.        
     

  . We want to prove it true for 

   . We already have that:        
     

   then 

        
        

     

 But we proved that              then 

     
    (    

 )
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Hence proved for    . Now, since   is nilpotent, then, there exists   such that       

Choose      to get        
      

    (        )         , thus  

       Since   is commutative, then   is a subring of    We have          and 

       then       Similarly, we can show that       

Theorem 3.4. Let R be a ring in which every element is either idempotent or nilpotent and 

where the set of nilpotent elements N is commutative. Then N is an ideal of R and R/N is 

Boolean. 

Proof. Let     and let   be a nonzero idempotent element in  . Since   is commutative, 

then   is a subring and by Lemma 3.2,      and     . Now, let     then   is either 

idempotent or nilpotent. If    is idempotent, then      and             If   is 

nilpotent, then      and      since   is a subring. Therefore,   is an ideal of  . 

Now, it remains to show that      is Boolean. Let  ̅          for      By 

hypothesis,     where   is idempotent or     where   is nilpotent. Then, either  

        wich is idempotent in    , or       which is the zero element of 

   . Hence,     is Boolean. 
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CHAPTER IV 

RINGS WHERE CERTAIN SUBSETS ARE 

MULTIPLICATIVELY GENERATED BY IDEMPOTENTS 

 

In this chapter, we study the structure of certain rings with certain subsets that are 

multiplicatively generated by idempotents motivated by the fact that in a Boolean ring 

every element is trivially the product of idempotents.   

Throughout this chapter, R is a ring, N is the set of nilpotents, C is the center of R, J is the 

Jacobson radical of R, C(R) is the commutator ideal of R, Z is the ring of integers, and 

      denotes the commutator      . 

 

Theorem 4.1. Let R be a finite ring such that: 

(i) The set R\N is multiplicatively generated by idempotents. 

Then N is an ideal of R and R/N is Boolean. 

In proving this theorem, Lemmas 4.1, 4.2, and Theorem 4.2 are required: 

Lemma 4.1. If a ring satisfies (i),   

           then any homomorphic image of this ring must satisfy (i). 

Proof. Let        be a surjective homomorphism. We want to prove that if   satisfies 

(i) then so does   . Assume that R satisfies (i) and let         be any element of    for 
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some    , then     or    \  i.e.      or             where    is an 

idempotent element    {     } (By (i)). Therefore,      for some positive integer m 

or           . Then,                      and hence     is nilpotent or  

                                    . But,      
      

          

    {     } concluding that        is idempotent    . Thus, if          where    is 

the set of nilpotents of    then    is a product of idempotents. Hence,    satisfies (i). 

Lemma 4.2. If the commutator ideal C(R) of a ring R is nil,  

            then the set N of nilpotents forms an ideal of R. 

Proof. Let      the commutator ideal of R be nil thus       . Consider       , this is 

a commutative ring (let  ̅  ̅          then  ̅         and  ̅         thus  

 ̅ ̅   ̅ ̅          (       )                  since           . 

Consequently,  ̅ ̅   ̅ ̅   , then,   ̅ ̅   ̅ ̅ which proves that       is commutative). 

Now, let       then      and      for some integers i and j. We want to prove that 

       So, we consider ( ̅   ̅)
 

 ∑ ( 
 
)  ̅    ̅  

   

   
  since        is 

commutative. We choose n big enough such that for each   {        }, either     or 

     . Then,   ̅  ( ̅)
   

                         and thus ( ̅   ̅)
 

= 

0, hence,   ̅   ̅     but  ̅   ̅           and       , therefore,         It 

remains to show that       for      and      Now,     implies that there exists an 

integer m such that       Consider  ̅  ̅ where  ̅         and  ̅        , then 

   ̅  ̅     ̅   ̅    ̅  (       )   ̅ (    )       since      is an ideal, thus, 

 ̅  ̅    and thus      . We then conclude that N is an ideal. 
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Theorem 4.2. Let R be a ring with identity such that R satisfies (i).   

           Then R is Boolean. 

Proof. Let       Then,     is invertible and        Thus, by (i), 

               where    is idempotent    {       }. Multiply both sides from the 

left by    to get  

                    

           
        

                      

Multiply both sides from the right by the inverse of     to get  

                           , hence,     . 

Similarly, we can show that each          {     }; consequently,       and  

   , this implies that     . Thus, R is multiplicatively generated by idempotents. As  

a consequence, R is Boolean by theorem 3.2. 

 

Proof of Theorem 4.1. Let R be a finite ring satisfying (i) 

Case 1:   

If J = 0, then R has an identity since it is a finite semisimple Artinian ring (Theorem 1.7). 

Furthermore, R satisfies (i). Thus, R is Boolean by Theorem 4.2.  
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Case2:  

If J   0 and R satisfies (i), then, by Theorem 1.8, R/J is semisimple; in addition, R/J is 

Artinian (since finite) and thus has an identity (Theorem 1.7). Since R/J is a homomorphic 

image of R, then, R/J satisfies (i) (Lemma 4.1). As a result, R/J is Boolean (Theorem 4.2). 

Hence, R/J is commutative and thus               . R is Artinian since it is finite, 

then, J is nil (Theorem 1.4) which implies that       is in    for every         Now, 

since C(R) is generated by all commutators                 , then C(R)    

         , thus, the commutator ideal is nil and hence N is an ideal by Lemma 4.2. 

Now, by (i) for all    ,     or           where   
        {     }.  

If      then                                   . But  

                       
        , therefore, every element     in R/N 

is multiplicatively generated by idempotents, which implies that R/N is Boolean since R/N 

is finite (Theorem 3.3). 

Theorem 4.3. Let R be a finite ring such that  

(ii) The set R\J is multiplicatively generated by idempotents 

then N is an ideal of R and R/N is Boolean. 

To prove theorem 4.3, the following Lemmas are needed: 

Lemma 4.3. If a ring satisfies (ii)   

           then any homomorphic image of this ring must satisfy (ii) 
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Proof. Let        be a surjective homomorphism, we want to prove that if   satisfies 

(ii) so does   . Assume that R satisfies (ii), let         be any element of    for some 

   . 

By (ii) either     or            where    is an idempotent of  R     {     }. Let    

denote the Jacobson radical of   , it can be easily proved that        , and thus, for 

all                 , either     then                 ; or         , 

then,                                      {     }  Hence, each       

is idempotent and thus    is written as a product of idempotents in R’. As a conclusion,    

satisfies (ii). 

Lemma 4.4. Let R be a ring with identity such that R satisfies (ii),  

                     then R is Boolean. 

Proof. Let    . Then,      ,  i.e.      R\J. Therefore, by (ii),             

where    is an idempotent for        So,           
                

      which implies that      since     is invertible. Continuing in this manner, we 

show that            . Therefore,       and hence    . So, J=0, thus, R/J 

satisfying (ii) and   being   implies that R is multiplicatively generated by idempotents. As 

a result, R is Boolean by Theorem 3.2. 

 

Proof of Theorem 4.3: 

Let R be a finite ring satisfying (ii). 
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Case 1:  If J = 0, then R is a semisimple Artinian ring and thus has an identity element 

(Theorem 1.7). Therefore, R is Boolean by Lemma 4.4 and the theorem follows. 

Case 2: Suppose J  . Then by theorem 1.8, R/J is semisimple; in addition, R/J is Artinian 

and thus has an identity (Theorem 1.7). Furthermore, by Lemma 4.3, R/J satisfies (ii). 

Therefore, R/J is Boolean by Lemma 4.4. So,     is commutative, thus,       

          . Now, since C(R) is generated by all commutators                 , 

then           This implies that C(R) is nil and henceforth N is an ideal of R (by 

Lemma 4.2). 

Since    , then,      implies     but by (ii)            where    is idempotent 

   ; therefore,     implies that                                 

   where                 {     }. Consequently, R/N is multiplicatively 

generated by idempotents, and since R/N is finite, R/N is Boolean, by Theorem 3.3. 

Theorem 4.4. Let R be a ring with identity 1 satisfying:  

(iii) The set R\C is multiplicatively generated by idempotents. 

Then R is commutative. 

Proof. Let         such that     , then               

(since      (as seen before (p.10) thus   is nilpotent).  

Assume    , then      , hence,        . 

So by (iii),               where each    is an idempotent. Therefore, 
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       =                

But     is a unit thus     . Likewise,           =1, then,       which 

implies that     and       . Similarly, letting b =        where     and   an 

idempotent of R, we get     and       . Therefore,           concluding that 

     

On the other hand, if     then       

                   

                      

Since       then          and hence        . Similarly, if    , then,  

       and hence       showing that   is central. So, in all cases the idempotents are 

central; but by (iii) R\C is multiplicatively generated by idempotents then R     , 

contradiction. Hence, R = C and thus R is commutative. 

Theorem 4.5. Let R be a ring satisfying: 

(iv) The set R\J is multiplicatively generated by idempotents and nilpotents. 

If R satisfies the polynomial identity           for some positive integer m  where f is a 

polynomial with integer coefficients, and if the set N of nilpotent elements is commutative, 

then N is an ideal of R and R/N is Boolean. 
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Proof. First, we prove that             by induction. R satisfies the polynomial 

identity              then for                           so the inductive 

hypothesis is true for    . 

Now, assume             is true for m then: 

                 

                    

                    

                  

                    

Thus proved for m+1. 

             implies that             is idempotent for each     since  

                                       

Let     . Since J is an ideal then             is an idempotent element in J.  

                                                                

              

But J contains no nonzero idempotent elements (Theorem 1.3) and hence  = 0. So, 

           Therefore,                                 , thus, every 

element in J is nilpotent. Hence, using (iv) every element in R is multiplicatively generated 
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by idempotents and nilpotents. As a result, using Theorem 3.4, N is an ideal and R/N is 

Boolean.  

The importance of the finiteness of R in Theorems 4.1 and 4.3, and essentiality of the 

existence of an identity element of R in Theorem 4.2 and Lemma 4.4 is demonstrated in 

example 3.1.   
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