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An introductory analysis to general relativity, cosmology, and mimetic dark
matter is provided. In chapter 3 where cosmology is discussed, the need of an
inflationary theory is motivated. Inflation is showed to possibly solve the flatness
problem and the horizon problem of the cosmic microwave background (CMB)
radiation. Based on an exponential potential, a solution is obtained representing
a scale factor of a matter-dominated universe satisfying the condition of inflation
for some initial conditions. Furthermore, a more general potential is suggested
that incorporates inflation too. Then, with this general potential, a solution
to the 0-i perturbed Einstein’s differential equation that includes mimetic dark
matter is provided in chapter 5. Finally, quantum perturbations are mentioned
briefly. The constants involved in this model are tuned to be in agreement with
the amplitude fluctuation of the CMB. Therefore, dark matter, inflation, and
CMB can exist in one model without introducing any extra degrees of freedom.
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Chapter 1

Introduction

The nature of dark matter is not well understood. Some models were proposed

based on modifications of Einsteins General Theory of Relativity, others are based

on proposing the existence of new particles, while others are based on much more

fancy complicated mathematical theories and ideas that are not supported by

observations. A recent modification of General Relativity was proposed in [1]

suggests that the metric has a conformal invariance when it is expressed in terms

of a field which is not dynamical, that’s to say it satisfies Hamilton-Jacobi equa-

tion. The equations of motion that result are similar to Einstein’s equations of

motion with an extra mode term that mimics cold dark matter even in the ab-

sence of normal matter. Hence, it is called Mimetic Dark Matter (MDM). This

work was followed by a paper [2] that shows the compatibility of MDM with cos-

mology. It demonstrates how MDM can generate inflation, bouncing universes,

and quintessence.

Inflation is an attractive theory because it explains the curvature flatness of the

observable universe and the homogeneity of the CMB to a certain degree, and it

dilutes monopoles (if Grand Unification Theories (GUT) exist) so that they are

not observed today. Moreover, some of the predictions of inflation were confirmed
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experimentally by checking indirect consequences of inflation on primordial den-

sity perturbations in the CMB by the BOOMERanG experiment (Balloon Obser-

vations Of Millimetric Extragalactic Radiation ANd Geophysics) [3], the Cosmic

Background Explorer [4], then by the Wilkinson Microwave Anisotropy Probe

[5], and recently by the Planck satellite [6][7]. The Ekpyrotic universe model [8]

was proposed in order to solve the singularity problem and the problems that

inflation solves. It is a contracting phase preceding the big bang. A duality be-

tween the two models has been established in [9]. According to Planck satellite,

the data favors modeling inflation by using one single field [6]. However, calcu-

lating the spectral index for scalar perturbations in the ekpyrotic model with a

single field [10] [11] yields a blue-shifted spectrum (ns = 3) in disagreement with

Planck’s data which is red-shifted spectrum. However, by using multiple fields,

the ekpyrotic model’s cosmological perturbations become in agreement with ob-

servations. Moreover, some argue that cosmological perturbations are ill-defined

or aren’t generated by ekpyrotic and cyclic models [12] [13]. For cyclic universes,

the second-law of thermodynamics dictates that the subsequent cycles must have

a larger entropy than the previous ones; hence, it hinders a truly cyclic universe

because one would reach a point in the past where the cycle is infinitesimally small

[14]. Hence, inflation is still more coherent with observations when it comes to

modeling data by a single field in order to obtain the spectral index with a red

tilt. In addition, Planck’s data favors a plateau-like potential with an upper limit;

therefore, challenging the initial conditions that give rise to inflation in the first

place making it less likely to occur [15]. A suggested extension to the idea of

inflation is provided in [16] to resolve this problem.

Searching for dark matter is still more convincing than pursuing other theories
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such as MOND (MOdified Newtonian Dynamics) because you can’t build a co-

herent and consistent cosmological model from MOND (it doesn’t give the CMB

angular power spectrum for instance). MOND violates the equivalence principle,

conservation of momentum (Newton’s third law), Lorentz invariance, sometimes

the cosmological principle, superposition of gravitational fields, and the existence

of escape velocity [17]. Moreover, it doesn’t work in galaxy clusters [18]. MOND

is a kind of an effective theory that misses an explanation similar to Kepler’s law

that requires Newtonian mechanics to explain it [19].

The aim of this thesis is to link MDM to an experiment in order to verify that

the model works without introducing any extra degrees of freedom. This might

be achieved by trying to find a potential where both 70 e-folds inflation and the

amplitude fluctuations of the CMB could be obtained. In order to get the toolkit

for this work, chapter 2 provides an introduction to general theory of relativity

which is the basic playground to understand gravity and things at the large scale.

Then, an introduction to cosmology and inflation is presented in chapter 3. More-

over, MDM is explained along with its applications to cosmology in chapter 4.

And finally, the goal of this thesis is presented in chapter 5 where both inflation

and CMB can be obtained without introducing any extra degrees of freedom.
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Chapter 2

General Relativity

General Relativity (GR) has some assumptions about the properties of spacetime

such as it’s a C∞ n-dimensional and pseudo-Riemannian manifold. The differen-

tiability condition insures the existence of differential equations, while the type

of manifold insures that the metric is compatible with Minkowski space in special

relativity. In this section, a quick introduction to the basics of GR are introduced.

Note that in all of this work the speed of light and reduced Planck constant are

set according to natural units, i.e. c = ~ = 1. For more elaborate information

about the basics check [20] and [21].

2.1 Metric

The line element in GR for a pseudo-Riemannian metric gµν

ds2 = gµν(x)dxµdxν ; µ, ν = 0, 1, ..., (n− 1) (2.1)

The line element contains information about the system that we are dealing with.

For instance, if we have an isotropic and homogeneous universe, then we will find
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spherical symmetry. Moreover, if it doesn’t depend on time, then the system has

conservation of energy.

The determinant is defined as

g ≡ |detgµν | (2.2)

2.2 Equation of motion

Consider the action

S =

∫
ds =

∫ √
gµνdxµdxν =

∫ √
gµν(x(λ))

dxµ

dλ

dxν

dλ
dλ (2.3)

where λ is an affine parameter. By varying the action with respect to λ and then

set the affine parameter λ to proper time τ , we would get the geodesic equation

of GR [20]

d2xµ

dτ 2
+ Γµρσ

dxρ

dτ

dxσ

dτ
= 0 (2.4)

and

Γσµν =
1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (2.5)

where Γ is called Christoffel symbol. Note that τ is related to λ by λ = aτ + b

(since they are affine parameters) where a and b are constants.

2.3 Covariant Derivative

By going to curved spacetime, we have to update our partial derivatives and

volume elements in integration in order to connect different space vectors that
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are defined at each point on the manifold or because partial derivatives are not

invariant under general coordinates transformation because of the derivative of

the basis vectors. Hence, partial derivatives are upgraded to covariant derivative

for a general tensor as

∇σT
µ1µ2...µk
ν1ν2...νl

= ∂σT
µ1µ2...µk
ν1ν2...νl

+ Γµ1

σλT
λµ2...µk
ν1ν2...νl

+ ...− Γλσν1
T µ1µ2...µk
λν2...νl

− ... (2.6)

And the volume element upgrades to
√
|g|dnx in n dimensions. Furthermore, our

metric must also be upgraded from ηµν to gµν

2.4 Riemann and Ricci tensors

Riemann tensor can be constructed out of Christoffel symbols as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ (2.7)

And the Ricci tensor can be obtained by contracting the upper index with the

middle lower index as

Rµν = Rλ
µλν (2.8)

2.5 Einstein-Hilbert Action

Einstein’s equation can be derived by varying this action with respect to the

metric

S = −1

2

∫ √
−g
[
R(gµν) + Lm

]
d4x (2.9)
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where R is called the Ricci scalar, Lm(gµν) is the Lagrangian of matter, and

8πG = 1. The resulting equation is

Rµν −
1

2
gµνR = Tµν (2.10)

where Rµν is Ricci tensor and Tµν is the energy-momentum tensor. This equation

can be interpreted as matter or energy curves spacetime and also matter and

energy follow the curvature along their geodesic lines.

The energy-momentum tensor can be approximated as a perfect fluid; hence it

can be expressed as

Tµν = (ρ+ p)UµUν + pgµν (2.11)

2.6 Conformal Transformation

If Ω is a smooth and strictly positive function, then the metric g̃αβ = Ω2gαβ

is generated by a conformal transformation from gαβ. The Christoffel symbols,

Ricci tensor, Ricci scalar, and Weyl tensor that arise from g̃αβ and gαβ are related

by a set of equations [21] and [22],

Γρµν → Γ̄ρµν = Γρµν + Ω−1(δρµ∇νΩ + δρν∇µΩ− gµνgρα∇αΩ) (2.12)

Rν
µ → R̄ν

µ = Ω−2Rν
µ − (n− 2)Ω−1∇µ∇ρ(Ω

−1)gρν (2.13)

+(n− 2)−1Ω−n∇ρ∇σ(Ωn−2)gρσδνµ

R→ R̄ = Ω−2R + 2(n− 1)Ω−3∇µ∇νΩg
µν (2.14)

+(n− 1)(n− 4)Ω−4∇µΩ∇νΩg
µν

Cσ
µνρ → C̄σ

µνρ = Cσ
µνρ (2.15)
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Chapter 3

Cosmology

Our modern view of cosmology rests heavily on two ideas. The first idea is that

the universe on large scales appears homogeneous and isotropic. The second idea

is that the universe is expanding. Once these assumptions are set, a metric can be

written called the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric, and

equations of motion can be derived from Einstein’s equation (2.10).

3.1 FLRW Metric

FLRW metric is

ds2 = −dt2 + a2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
(3.1)

where a(t) is the scale factor function which informs us how big is the space-like

slice at time t, and k is the curvature constant. If k = 1, then the observable

universe would be closed with a positive curvature; if k = −1, then the observ-

able universe would be open with a negative curvature; and if k = 0, then the

observable universe would be flat with no curvature. By observation [3][4][5][7],
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the observable universe is considered flat.

The metric (3.1) with k = 0 is

ds2 = −dt2 + a2(t)
[
dr2 + r2(dθ2 + sin2 θdφ2)

]
(3.2)

3.2 Friedmann equations

By plugging the components of the FLRW metric (3.1) in (2.5) and (2.8), and

note that Christoffel symbols are symmetric in the lower indices we obtain

Γ0
11 =

aȧ

1− kr2
, Γ0

22 = aȧr2, Γ0
33 = aȧr2 sin2 θ

Γ1
10 = Γ2

20 = Γ3
30 =

ȧ

a

Γ1
22 = −r(1− kr2), Γ1

33 = −r(1− kr2 sin2 θ)

Γ2
12 = Γ3

13 =
1

r

Γ2
33 = − sin θ cos θ, Γ3

23 =
cos θ

sin θ
(3.3)

and

R00 = −3
ä

a

R11 =
aä+ 2ȧ2 + 2k

1− kr2

R22 = r2(aä+ 2ȧ2 + 2k)

R33 = r2(aä+ 2ȧ2 + 2k) sin2 θ (3.4)

Einstein’s equation (2.10) can be re-written (by taking the trace of both sides)

as

Rµν = 8πG(Tµν −
1

2
gµνT ) (3.5)
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By plugging the metric (3.1) components, (2.11), and (3.4) in (3.5), two equations

are obtained for µν = 00 and µν = ij respectively

ä

a
= −4πG

3
(ρ+ 3p) (3.6)( ȧ

a

)2

=
8πG

3
ρ− k

a2
(3.7)

These two equation are called the Friedmann equations. The first equation de-

scribes acceleration of the scale factor, while the second describes the velocity of

the scale factor. The rate of expansion can be realized by the Hubble parameter

H =
ȧ

a
(3.8)

The value of the Hubble parameter now is denoted by H0. There is uncertainty

in the value of H0; hence, it’s expressed as [23]

H0 = 100 h km s−1 Mpc−1 =
h

3000
Mpc−1 (3.9)

where h falls between 0.5 ≤ h ≤ 0.8 and 1pc ≈ 3.1 × 1016 meters. Moreover, if

the universe is flat k = 0, then a critical density is defined as

ρc(t) =
3H2

8πG
(3.10)

and

Ω(t) ≡ ρ

ρc
(3.11)

where Ω is a density parameter that can represent the total density. The present
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critical density now is [23]

ρc(t0) = 1.88 h2 × 10−29g cm−3 (3.12)

In order to solve the system of Friedmann equations (3.6) (3.7), we must have

knowledge of how the density ρ evolves with time, and an equation of state that

relates density and pressure.

A particle horizon is defined as the greatest comoving distance for an observer at

a given time to receive signals that travel at the speed of light

χph(τ) = τ − τi =

∫ t

ti

dt

a(t)
(3.13)

At any epoch, events separated by more than twice the particle horizon cannot

have a common cause; they are said to be out of causal contact. Hence, particle

horizons set a limit distance to which past events can be observed.

3.3 The Fluid Equation

The fluid equation can be derived from the first law of thermodynamics applied

to a volume V with a unit comoving radius [24]

dE + pdV = TdS (3.14)

where E is energy, (3.14) becomes

E =
4π

3
a3ρ (3.15)
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The change in energy and volume with respect to time

dE

dt
= 4πa2ρ

da

dt
+

4π

3
a3dρ

dt
(3.16)

dV

dt
= 4πa2da

dt
(3.17)

Assuming an adiabatic process dS = 0, and substituting (3.16) and (3.17) in

(3.14) yields

ρ̇+ 3H
(
ρ+ p

)
= 0 (3.18)

Equation (3.18) is called the fluid equation or continuity equation.

3.4 Types of Universes

We will consider four relevant possibilities for the equation of state that relates

density and pressure. In the first three cases k = 0, which represents a good

approximation.

• Matter:

For matter we treat it as a dust, that’s to say, not moving with high speeds;

hence, p ≈ 0. The fluid equation (3.18) becomes

ρ̇+ 3
ȧ

a
ρ = 0⇒ 1

a3

d

dt
(ρa3) = 0⇒ d

dt
(ρa3) = 0⇒ ρ =

ρ0

a3
(3.19)

where ρ0 is a proportionality constant. This result can be obtained from intuition

by realizing that the density falls off proportionally with the volume. Now to

obtain a(t), we substitute (3.19) in Friedmann equation (3.7)

ȧ2 =
8πGρ0

3

1

a
(3.20)
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Assuming a power-law solution to this differential equation yields

a(t) =
( t
t0

) 2
3

(3.21)

and the density

ρ(t) =
ρ0

a3
=
ρ0t

2
0

t2
(3.22)

The universe in this scenario is called a matter-dominated universe where it

expands forever, however H(t) is decreasing as

H(t) ≡ ȧ

a
=

2

3t
(3.23)

• Radiation:

The relationship between pressure and density for radiation [25]

p =
ρ

3
(3.24)

hence, the fluid equation (3.18) becomes

ρ̇+ 4
ȧ

a
ρ = 0⇒ 1

a3

d

dt
(ρa4) = 0⇒ d

dt
(ρa4) = 0⇒ ρ =

ρ0

a4
(3.25)

Performing the same analysis we obtain

a(t) =
( t
t0

) 1
2

(3.26)

and

ρ(t) =
ρ0

a4
=
ρ0t

2
0

t2
(3.27)
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Note that a radiation-dominated universe expands slower than a matter-dominated

universe because of its pressure. Moreover, the density for each scenario decreases

as t2.

• Vacuum or Constant Density:

The constant density behavior is similar to the cosmological constant Λ (Vacuum)

behavior up to a constant. It corresponds to p = −ρ. The Friedmann equation

(3.7) becomes

ȧ

a
=

√
8πG

3
ρ0 = H0 (3.28)

The solution to this differential equation is straightforward

a(t) = a0e
H0t (3.29)

• k 6= 0

If k 6= 0 and the first term in (3.7) is negligible after a sufficient time, then the

universe becomes curvature-dominated. Hence, if k = −1 (open universe), then

Friedmann equation (3.7) becomes

( ȧ
a

)
=

1

a2
(3.30)

The solution to (3.30) is

a(t) = a0t (3.31)

This implies that the universe is going to expand just because of the curvature.

It’s called free expansion. However, if k = 1 (closed universe), then in the be-

ginning of time the first term in (3.7) dominates; and hence, the universe is

expanding because H2 is positive; however, after a sufficient amount of time, the
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second term in (3.7) dominates; and hence the universe starts collapsing because

H2 is negative now.

Let’s assume that we are in a matter-dominated universe. Then, the evolution of

the scale factor for the three different values of k with respect to time is shown

in Figure 3.1 [26].

Figure 3.1: Three different scenarios for the end of the universe

To summarize, Table 3.1 lists the evolution and properties of different uni-

verses chronologically dominant as the universe expands (as a(t) increases).

Universe Type Evolution a(t)

Radiation-dominated ∝ 1
a4 ∝ t

1
2

Matter-dominated ∝ 1
a3 ∝ t

2
3

Curvature-dominated 1
a2 ∝ t∗

Vacuum-dominated ∝ constant ∝ eH0t

∗ For negative curvature k = −1

Table 3.1: Properties of different types of universes
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Furthermore, if we define an equation of state to be

w =
p

ρ
(3.32)

then we substitute this equation of state in the fluid equation (or continuity

equation) (3.18) and solve the differential equation we would get

ρ ∝ a−3(1+w) (3.33)

Equation (3.33) generalizes all the cases that we have mentioned above by spec-

ifying the equation of state.

∗ Non-relativistic matter w = 0→ ρ ∝ a−3

∗ Relativistic matter (e.g. radiation) w = 1
3
→ ρ ∝ a−4

∗ Vacuum energy w = −1→ ρ ∝ constant

It’s informing to look at the thermal history of the universe that’s given in Figure

3.2 [27]
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Figure 3.2: Major events in the thermal history of the universe

3.5 Problems with the Traditional Big Bang The-

ory

The traditional big bang theory solved some of the problems in cosmology such

as the existence of the CMB and the expansion of the universe. However, there

have been some persisting problems that cannot be explained by the traditional

big bang theory. These problems are the flatness and horizon problems. There

were some other problems like the prediction that at high temperatures in the
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beginning of the universe an abundance of magnetic monopoles and heavy par-

ticles according to GUT (if GUT exist) were created however today they aren’t

observed. The first two problems are problems that are imposed by nature; a.k.a

external problems. However, the third problem is generated from problems of

theories beyond the Standard Model of particle physics; a.k.a internal problems

[28].

• Flatness Problem:

We can write Friedmann equation (3.7) as

Ωtot(t)− 1 =
k

a2H2
(3.34)

The evolution of the denominator on the RHS for matter-dominated and radiation

dominated universe are

a2H2 ∝ t−
2
3 matter-dominated unvierse

a2H2 ∝ t−1 radiation-dominated unvierse (3.35)

and hence

Ωtot(t)− 1 ∝ t
2
3 matter-dominated unvierse

Ωtot(t)− 1 ∝ t radiation-dominated unvierse (3.36)

We can notice that the difference Ωtot− 1 increases with time for both scenarios.

However, we know that the universe is flat from experiment. Moreover, we can

deduce that the flat curvature case is an unstable configuration because if Ωtot

deviates little bit from 1 it will start evolving with time.
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Another way of viewing the problem is to examine how much accurate Ωtot must

be in the beginning of time to produce the flatness that we observe today. In other

words, it’s to what extent the initial condition on Ωtot must be tuned without an

explanation for the tuning. Let’s assume a universe that has only radiation to

simplify the calculation and illustrate the point clearly. Let’s look at the ratio

Ωtot(tp)− 1

Ωtot(t0)− 1
=
( ȧ(t0)

ȧ(tp)

)2

=
(tp
t0

)
(3.37)

where t0 ' 4× 1017 sec and tp is the time of the process in question. Hence, the

ratio (3.37) for [29] [30]

∗ At decoupling (t ' 1013 sec) requires Ωtot(tdec)− 1 ≤ 10−5

∗ At nucleosynthesis (t ' 1 sec) requires Ωtot(tnuc)− 1 ≤ 10−18

As we go back in time, the accuracy of Ω to be initial exactly 1 increases without

an explanation.

• Horizon Problem:

The temperatures across two opposite points in the CMB are almost the same.

The straightforward and intuitive explanation for this phenomenon is that these

two points reached thermal equilibrium because they have been in contact before.

However, if we compare the time at which these two points were emitted (decou-

pling or recombination time) and the present time, and calculate the distance

between them via (3.13)

∫ tdec

t∗

dt

a(t)
�
∫ tpresent

tdec

dt

a(t)
(3.38)
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then, it can be inferred that the two points couldn’t have the time to reach

thermal equilibrium. Equation (3.38) means that the distance light could travel

before the microwave background was released is much smaller than the present

horizon distance. Hence, the question now is: How can two regions that haven’t

been in contact before be at thermal equilibrium?

Figure 3.3: The past light cones of two points at recombination don’t overlap

In Figure 3.3 [27], the problem is illustrated how two particle horizons in a

causal diagram don’t overlap yet they are in thermal equilibrium. According to

the hot big bang theory, the x-axis in Figure 3.3 represents a singularity for the

beginning of the universe. The Hubble sphere is the distance beyond which the

recession velocity is greater the the speed of light, and it’s not a horizon [31].

3.6 Inflation

Inflation was designed to solve problems in the traditional cosmology such as the

flatness and horizon problem [32]. Let’s define inflation, then see how it solves
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the previously mentioned problems.

Inflation can be defined in many ways that are equivalent. It’s a period of time

when the scale factor was accelerating

ä > 0 ↔ d

dt
(ȧ) > 0 ↔ d

dt
(aH) > 0 (3.39)

If we apply the condition of inflation (3.39) to (3.6)

ä

a
= −4πG

3
(ρ+ 3p) (3.40)

we notice that ρ + 3p < 0 in order for inflation to occur. Density is always

positive; hence, pressure must be negative p < −ρ
3
. Moreover, inflation must

hold for a period of time, after that it must have a graceful exit to convert its

energy to conventional matter. An accelerating stage for the scale factor can be

achieved if we have a cosmological constant term Λ
3

in (3.7), and after solving it

for late times, the scale factor obtained

a(t) = eHt = e
√

Λ
3
t (3.41)

However, driving inflation from a cosmological constant has some problems such

as it doesn’t have a graceful exit.

3.6.1 Flatness Problem Revisited with Inflation

If we plug (3.41) in (3.34), then we would get

Ωtot(t)− 1 ∝ e−2Ht (3.42)
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Hence, this exponential evolution ensures to make Ωtot to be very close to 1; and

hence, a minuscule deviation is only possible at very late times as shown in Figure

3.4 [23].

Figure 3.4: Inflation damps the amplitude of Ωtot to 1

Therefore, we can deduce that at early times the universe was stretched to

become flat to an extent that the increase in (3.36) doesn’t affect the flatness of

the universe much. You can think of a manifold that has a complicated structure

in the beginning. After stretching it extremely enough, this manifold would look

flat to an observer on its surface. It’s similar to an observer who sees the surface

of Earth to be flat because it’s stretched enough that the observer can’t perceive

the global geometry of Earth.

3.6.2 Horizon Problem Revisited with Inflation

Inflation pushes the singularity of the Big Bang to a negative conformal time

value; thus, giving time for two opposite regions to be in thermal contact. Figure
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3.5 [27] illustrates how two regions in the CMB are in causal contact because

inflation extends the slants of the particle horizon cones to the past.

Figure 3.5: Inflation pushes the singularity to a negative conformal time value

Inflation insures that the period of time between the beginning of inflation

and decoupling is larger than the period between decoupling and the present

moment ∫ tdec

t∗

dt

a(t)
�
∫ tpresent

tdec

dt

a(t)
(3.43)

For inflation, τ = 0 represents not a singularity, but a transition phase between

an inflationary period (that solves the flatness and horizon problems) and the

traditional Big Bang theory. Hence, in Figure 3.5, the Hubble sphere isn’t equal

to zero at the reheating period because it’s not a singularity. Moreover, the
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boundary of the Hubble sphere during inflation can be obtained by considering

the third definition of inflation in equation (3.39) that describes the shrinking of

the Hubble sphere in comoving coordinates.

In order to measure how much inflation is required to solve the flatness and

horizon problem, cosmologists refer to the number of e-foldings as

N =

∫ tf

ti

Hdt (3.44)

where ti and tf are the times when inflation began and ended respectively.

3.7 Inflation Scalar Field

We are going to deal with a flat universe k = 0 from now on as dictated by

inflation. The action for a scalar field with a potential

S = −
∫ √

−g
[1

2
gµν∂µφ∂νφ+ V (φ)

]
d4x (3.45)

The energy-momentum tensor is by definition

Tµν ≡
−2√
−g

δS

δgµν
(3.46)

We vary the action (3.45) with respect to the metric and get

Tµν = ∂µφ∂νφ− gµν
(1

2
gαβ∂αφ∂βφ− V (φ)

)
(3.47)
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Then, equating (2.11) and (3.47), we deduce

ρφ =
1

2
φ̇2 + V (φ) (3.48)

pφ =
1

2
φ̇2 − V (φ) (3.49)

Substituting (3.48) in (3.7)

H2 =
8πG

3

(1

2
φ̇2 + V (φ)

)
(3.50)

Because we have a homogeneous and isotropic universe which are symmetries

of our FLRW metric, for a perfect fluid the diagonal terms are equal to zero

(−φ̇∂iφ = T i0 = 0). Hence, the inflation field should not depend on spatial

coordinates

φ = φ(t) (3.51)

Varying the action with respect to the scalar field φ

δφS = −
∫ √
−g
[1

2
gµνδ(∂µφ)∂νφ+ V,φδφ

]
d4x (3.52)

where ∂V
∂φ

= V,φ. Integrating by parts and δφS = 0 yields [33]

δφS

δφ
= 0 =

∫ [
∂µ

(√
−ggµν∂νφ

)
−
√
−gV,φ

]
d4x (3.53)

Note that the D’Alembert operator gives

2φ ≡ 1√
−g

∂µ

(√
−ggµν∂νφ

)
= V,φ (3.54)
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√
−g = a3r2 sin θ for metric (3.2); hence,

2φ =
1

a3r2 sin θ
∂µ

(
a3r2 sin θgµν∂νφ

)
= −φ̈− 3Hφ̇+

1

a2
∇2φ = V,φ (3.55)

However, according to (3.51) there should be no spatial derivatives for the scalar

field. Therefore, we arrive to a very important equation

φ̈+ 3Hφ̇+ V,φ = 0 (3.56)

Equations (3.50) and (3.56) make a system of equations that can inform us about

the evolution of the scalar field φ and the scale factor a(t) for a given potential.

3.8 Slow-roll Approximation

Equation (3.56) can be viewed as the equation for the harmonic oscillator with a

friction term that damps its initial velocities and acceleration. We can re-write

(3.6) as

ä

a
= H2 + Ḣ = H2(1− ε) (3.57)

where

ε = − Ḣ

H2
=

3

2
(wφ + 1) =

M2
Pl

2

φ̇2

H2
(3.58)

and where 8πG = 1
M2
Pl

and M2
Pl is the reduced Planck mass. The de Sitter limit

is when

ä

a
� 0 =⇒ wφ → 0 =⇒ ε→ 0 =⇒ φ̇2 � V (φ) (3.59)
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Moreover, the potential is greater than the kinetic energy; thus, H ∝
√
V . This

entails that to make inflation sustain for a long period of time

|φ̈| � |3Hφ̇|, |V,φ| (3.60)

Hence, equations (3.56) and (3.50) are simplified to

H2 =
V

3M2
Pl

(3.61)

3Hφ̇ = −V,φ (3.62)

Substituting these equations in (3.59)

M2
Pl

2

φ̇2

H2
= ε� 1 =⇒ M2

Pl

2

(V,φ
V

)2

= εV � 1 (3.63)

Let’s define a parameter to capture condition (3.60)

η = − φ̈

Hφ̇
� 1 (3.64)

and

ηV = M2
Pl

V,φφ
V
� 1 (3.65)

Hence, the slow-roll conditions are

εV � 1 , ηV � 1 (3.66)

It’s important to distinguish between the Hubble Slow-Roll Parameters (HSRP)

ε and η, and the Potential Slow-Roll Parameters (PSRP) εV and ηV . The first

type has clearer geometrical interpretation and some analytic properties; while
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the second type is suitable to study inflation for a given potential [34]. They can

be related as [35]

ε ≈ εV , η ≈ ηV − εV (3.67)

Note that the first parameter in (3.66) refers to the slope of the potential; thus,

it makes sure that it’s very flat (de Sitter limit (3.59)) in order to roll slowly

for a long period of time. It also informs us when inflation should start. The

second parameter refers to the curvature of the potential and informs us how

much inflation is required.
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Chapter 4

Mimetic Dark Matter

In a recent work [1], Einstein’s theory of gravity was reformulated by introducing

a physical metric that’s built from an auxiliary metric and first-order partial

derivatives of a scalar field. By working out the equations for the new metric;

a new term emerges in Einstein’s equation that represents a new longitudinal

mode that can mimic cold dark matter even in the absence of normal matter

and without introducing any extra degrees of freedom. This section has detailed

calculations of equations that are in [1][2].

4.1 Equations of motion

Let’s define a physical metric gµν in terms of an auxiliary metric g̃µν and a scalar

field φ

gµν = (g̃αβ∂αφ∂βφ)g̃µν ≡ P g̃µν (4.1)

Note that the physical metric gµν is invariant under conformal transformation

g̃µν → Ω2g̃µν .
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Einstein-Hilbert action (2.9) is now defined as

S = −1

2

∫ √
−g(g̃µν , φ)

[
R(gµν(g̃µν , φ)) + Lm

]
d4x (4.2)

Let’s write the variation of the metric in terms on the auxiliary metric and the

scalar field

δgαβ = Pδg̃αβ + g̃αβδP

= Pδg̃αβ + g̃αβ

(
δg̃µν∂µφ∂νφ+ 2g̃µν∂µδφ∂νφ

)
= Pδg̃αβ + g̃αβ

(
− g̃κµg̃λνδg̃µν∂κφ∂λφ+ 2g̃κλ∂κδφ∂λφ

)
= Pδg̃µνδ

µ
αδ

ν
β − δg̃µν g̃αβ(g̃κµg̃λν∂κφ∂λφ) + 2g̃αβ g̃

κλ∂κδφ∂λφ

= Pδg̃µν

(
δµαδ

ν
β − gαβgκµgλν∂κφ∂λφ

)
+ 2gαβg

κλ∂κδφ∂λφ (4.3)

Then we vary (4.2) with respect to the physical metric as in (4.3)

δS = −1

2

∫
d4x
√
−g(Gαβ − Tαβ)

×
(
Pδg̃µν

(
δµαδ

ν
β − gαβgκµgλν∂κφ∂λφ

)
︸ ︷︷ ︸

1©

+ 2gαβg
κλ∂κδφ∂λφ︸ ︷︷ ︸

2©

)
(4.4)

Setting the variation of the metric to zero, the first term reduces to

(Gαβ − Tαβ) 1© =⇒ Pδg̃µν

[
(Gµν − T µν)− (G− T )gµαgνβ∂αφ∂βφ

]
= 0 (4.5)

while the second term after integrating by parts (and noting that δφ at infinity

vanishes) reduces to

(Gαβ − Tαβ) 2© =⇒ 1√
−g

∂κ

(√
−ggκλ∂λφ(G− T )

)
= 0 (4.6)

30



Since gµν = 1
P
g̃µν , the scalar field satisfies the condition

gµν∂µφ∂νφ = 1 (4.7)

Notice that equation (4.5) can be re-expressed as

Gµν = T µν + T̃ µν (4.8)

where

T̃ µν = (G− T )gµαgνβ∂αφ∂βφ (4.9)

Comparing (4.9) with (2.11) leads to

ρ ≡ G− T, Uµ ≡ gµα∂αφ, p ≡ 0 (4.10)

Hence, T̃ µν mimics the behavior of dust because the expressions in (4.10) are the

properties of non-relativistic matter. For instance, if we have

ds2 = dt2 − γijdxidxj (4.11)

where γij = a2δij is a three dimensional metric and a is the scale factor. Note that

this metric is similar to metric (3.2). If we take φ = t (synchronous gauge), which

means that the hypersurfaces of constant φ are the same as the hypersurfaces of

constant t, then equation (4.6) becomes

∂0

(√
detγ(G− T )

)
= 0 (4.12)
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Solving this

G− T =
C(xi)

a3
(4.13)

Although in the absence of matter, equation (4.13) yields a density (G − T )

of how matter evolves. Hence, we have the behavior of dark matter without

introducing any extra degrees of freedom and without introducing any new kind

of matter. Moreover, if inflation is present for 60 e-folds, then the energy density

of MDM would dilute. In the coming sections this problem is addressed again

and solutions are suggested.

4.2 Applications to Cosmology

Consider the action [2] [36] [37]

S =

∫
d4x
√
−g
[
− 1

2
R(gµν) + λ(gµν∂µφ∂νφ− 1)− V (φ) + Lm(gµν,...)

]
(4.14)

where the cosmological constant can be absorbed in the potential V (φ) because it

shifts V (φ) by a constant. Varying the action (4.14) with respect to λ (Lagrange

multiplier) yields (4.7) which is the normalization condition UµUµ = −1, where

the scalar field φ represents the velocity potential. However, varying with respect

to gµν yields

Gµν − 2λ∂µφ∂νφ− gµνV (φ) = Tµν (4.15)

Taking the trace of this equation gives the Lagrange multiplier

λ =
1

2
(G− T − 4V ) (4.16)
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hence equation (4.15) becomes

Gµν = (G− T − 4V )∂µφ∂νφ+ gµνV (φ) + Tµν (4.17)

Note that equations (4.7) and (4.17) are equivalent to Einstein’s equations with

an extra longitudinal mode. Note that the degrees of freedom in MDM are the

same as General Relativity according to the Hamiltonian formulation of Mimetic

Gravity [38]; hence, there are no extra degrees of freedom.

By taking the covariant derivative of (4.17), and using the energy-momentum

conservation ∇νTµν = 0 and the Bianchi identity ∇νGµν = 0 we get

∇ν
[
(G− T − 4V )∂µφ∂νφ+ gµνV (φ)

]
= 0 (4.18)

Applying the covariant derivative to (4.7)

∇ρ(gµν∂µφ∂νφ) = 2gµν(∇ρ∂µφ)∂νφ = 2gµν(∇µ∂
ρφ)∂νφ = 0 (4.19)

with ∂µφ 6= 0 for at least one index yields

∇ν
(

(G− T − 4V )∂νφ
)

= −∂V
∂φ

(4.20)

The first and second terms in (4.17) can be identify as the new T̃µν with

p̃ = −V (4.21)

ρ̃ = G− T − 3V (4.22)
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4.2.1 MDM Differential Equation

Consider metric (4.11) and a general solution to condition (4.7) with Tµν = 0

φ = t (4.23)

where the integration constant is removed for generality. Applying equations

(4.21), (4.22), and (4.23) to (4.20)

1√
−g

∂ν

(√
−g(ρ̃− V )∂νφ

)
=

1

a3

d

dt

(
a3(ρ̃− V )

)
= −V̇ (4.24)

Solving this equation and integrating by parts lead to

ρ̃ =
3

a3

∫
a2V da (4.25)

The Friedmann equation can be obtained from the µν = 0 component in (4.17)

in the absence of matter (Tµν = 0)

H2 =
ρ̃

3
=

1

a3

∫
a2V da (4.26)

The µν = ij components yield

2Ḣ + 3H2 = V (t) (4.27)

This equation can be obtained by multiplying (4.26) by a3 and differentiating

with respect to time. It’s better to convert the integral in (4.26) to an ordinary
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differential equation. This is accomplished by introducing a new variable

y = a
3
2 (4.28)

then

H =
2

3

ẏ

y
, Ḣ =

2

3

(
ÿ

y
−
( ẏ
y

)2
)

(4.29)

hence

ÿ − 3

4
V (t)y = 0 (4.30)

By solving this equation, we can know how a(t) evolves with time given any

potential. Therefore, using this equation we can find cosmological solutions for

different potentials easily.

4.2.2 MDM Cosmological Perturbations

Let’s consider the metric perturbations of MDM. We can notice that the off-

diagonal elements in T̃µν are zero in first order. The perturbed metric in the

Newtonian gauge is [39]

ds2 = (1 + 2Φ)dt2 − (1− 2Φ)a2(t)δijdx
idxj (4.31)

and

φ = t+ δφ (4.32)

is the first-order perturbation in the scalar field. A term 1
2
γ(2φ)2 (where γ is a

constant, and 2 = gµν∇µ∇ν) is added to action (4.14) for reasons to be mentioned
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later. The action becomes [2]

S =

∫
d4x
√
−g
[
− 1

2
R(gµν) + λ(gµν∂µφ∂νφ− 1)− V (φ) +

1

2
γ(2φ)2

]
(4.33)

Let’s vary the action with respect to the metric term by term

δS1 = −1

2

∫
d4x
√
−gGµνδg

µν (4.34)

δS2 =

∫
d4x
[
δ(
√
−g)λ(gµν∂µφ∂νφ︸ ︷︷ ︸

=1

−1) + δgµν∂µφ∂νφλ
√
−g
]

=

∫
d4x
√
−g∂µφ∂νφλδgµν (4.35)

δS3 = −
∫
d4xδ(

√
−g)V (φ)

=

∫
d4x
√
−g1

2
gµνV δg

µν (4.36)

Note that we can use this useful identity

2φ =
1√
−g

∂µ

(
(
√
−ggµν∂ν)φ

)
= χ (4.37)
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Hence

δS4 =
1

2
γ

∫
d4xδ(

√
−g)χ2︸ ︷︷ ︸

δS4A

+
1

2
γ

∫
d4x
√
−gδ(χ2)︸ ︷︷ ︸

δS4B

(4.38)

δS4A =
1

2
γ

∫
d4x
−
√
−g

2
gµνχ

2δgµν

= −1

4
γ

∫
d4x
√
−ggµνχ2δgµν (4.39)

δS4B = γ

∫
d4x
√
−gχδ(χ)]

= γ

∫
d4x
√
−gχ

[
δ
( 1√
−g

)√
−gχ+

1√
−g

δ(
√
−gχ)

=
1

2
γ

∫
d4x
√
−ggµνχ2δgµν︸ ︷︷ ︸

δS4B1

+ γ

∫
d4xχδ

(
∂µ(
√
−ggµν∂ν)φ

)
︸ ︷︷ ︸

δS4B2

(4.40)

δS4B2 = γ

∫
d4xχ

[
∂µ

(
(δ(
√
−g)gµν∂ν)φ

)
+ ∂µ

(
(
√
−gδgµν∂ν)φ

)]

= γ

∫
d4xχ

[
∂µ

((−1

2

√
−ggµνδgµνgµν∂ν

)
φ

)
+ ∂µ

(
(
√
−gδgµν∂ν)φ

)]
= −γ

∫
d4xχ∂µ

(
(
√
−gδgµν∂ν)φ

)
(4.41)

Integrating by parts yields

δS4B2 = −
∫
d4x
√
−g1

2
γ(χ,νφ,µ + χ,µφ,ν)δg

µν (4.42)

Adding up all the variations

δS = δS1 + δS2 + δS3 + δS4

= δS1 + δS2 + δS3 + δS4A + δS4B1 + δS4B2 (4.43)
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and then set δS
δgµν

= 0 we obtain

Gµ
ν = T̃ µν (4.44)

where

T̃ µν =
(
V + γ

(
φ,αχ

,α +
1

2
χ2
))
δµν + 2λφ,νφ

,µ − γ(φ,νχ
,µ + χ,νφ

,µ) (4.45)

Equations (4.7) and (4.44) determine the scalar field, metric, and Lagrange mul-

tiplier λ. They are equivalent to Einstein’s equation without any extra degree of

freedom. Let’s consider (4.23) with an integration constant as a general solution

for (4.7) for metric (4.11), we obtain

χ = 2φ = φ̈+ 3Hφ̇ = 3H (4.46)

Let’s consider (4.32) in (4.7) in the Newtonian gauge metric (4.31). Note that

for metric (4.31) we have

g00 = (1 + 2Φ) , gij = −(1− 2Φ)a2δij (4.47)

g00 = (1− 2Φ) , gij = −(1 + 2Φ)a−2δij (4.48)

equation (4.7) becomes

(gµν0 + gµν1 + ...)(δ0
µ + ∂µδφ)(δ0

ν + ∂νδφ) = 1 (4.49)

hence, the zeroth order

gµν0 δ0
µδ

0
ν = g00

0 δ
0
0δ

0
0 = 1 (4.50)
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and the first order

gµν0

(
δ0
µ∂νδφ+ δ0

ν∂µδφ

)
+ gµν1 δ0

νδ
0
µ = 0

⇒ 2g00
0 ∂0δφ+ g00

1 = 0

⇒ g00
1 = −2∂0δφg

00
0 = −2a−2Φ

⇒ ∂0δφ = Φ⇒ ∂0δφ = −Φ (4.51)

The expressions for T̃ µν for different components

T̃ 0
0 = V + 3γ

(3H2

2
− Ḣ + 2λ

)
(4.52)

T̃ 0
i = 0 (4.53)

T̃ ij =
(
V +

3

2
(2Ḣ + 3H2)

)
δij (4.54)

Perturbing T̃ µν we obtain

δT̃ µν =
[
δV + γ

(
δ(φ,α)χ,α + φ,αδ(χ

,α) + χδ(χ)
)]
δµν

+ 2λ
(
δ(φ,ν)φ

,µ + φ,νδ(φ
,µ)
)

− γ
(
δ(φ,ν)χ

,µ + φ,νδ(χ
,µ) + δ(χ,ν)φ

,µ + χ,νδ(φ
,µ)
)

=
[
δV + γ

(
δ(φ,0)χ,0 + δ(φ,i)χ

,i + φ,iδ(χ
,i)︸ ︷︷ ︸

=0

+φ,0δ(χ
,0) + χδ(χ)

)]
δµν

+ 2λ
(
δ(φ,ν)φ

,µ + φ,νδ(φ
,µ)
)

− γ
(
δ(φ,ν)χ

,µ + φ,νδ(χ
,µ) + δ(χ,ν)φ

,µ + χ,νδ(φ
,µ)
)

(4.55)
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Hence

δT̃ 0
i = 2λδ(φ,i)− γδ(φ,i)χ,0 − γδ(χ,i)

= 2λδ(φ,i)− 3γδ(φ,i)Ḣ − γδ(χ,i) (4.56)

Moreover, let’s calculate χ and δχ by using metric (4.31)

χ =
1√
−g

∂µ

(√
−ggµν∂νφ

)
=

1

a3(1− 2Φ)
√

1− 4Φ2
∂µ

(
a3(1− 2Φ)

√
1− 4Φ2gµν∂νφ

)
= 3H(1− 2Φ)φ̇− 4Φ̇φ̇− 4(1 + 2Φ)ΦΦ̇φ̇+ (1− 2Φ)φ̈

+
2Φ,i(1 + 2Φ)a−2δijφ,j

1− 2Φ
+

4ΦΦ,iδ
ijφ,j

1− 2Φ

− 2Φ,ia
−2δijφ,j − (1 + 2Φ)a−2δijφ,ij (4.57)

and

δχ = 3Hδφ̇− 6HΦ− 4Φ̇ + δφ̈− ∆

a2
δφ

= −3δφ̈− 3Hδφ̇− ∆

a2
δφ (4.58)

Einstein’s 0− 0 equation using (4.17) and (4.52)

G0
0 = 3H2

H2 =
V

3
+ γ(

3

2
H2 − Ḣ) +

2

3
λ (4.59)
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and the i− j equation using (4.17) and (4.54)

Gi
j = 2

ä

a
+
( ȧ
a

)2

= 2Ḣ + 3H2

2Ḣ + 3H2 = V +
3

2
(2Ḣ + 3H2) (4.60)

and hence we obtain

2Ḣ + 3H2 =
2

2− 3γ
V or H2 =

2V

3(2− 3γ)
− 2

3
Ḣ (4.61)

Moreover, by substituting (4.61) in (4.59) we obtain

λ = Ḣ(3γ − 1) (4.62)

On the one hand, the diagonal Einstein’s equations remain the same up to a

constant. On the other hand, the 0 − i Einstein’s perturbed equation using

(4.51), (4.53), (4.56),(4.58), and (4.62) [40] [41]

2(Φ̇ +HΦ),i = 2λδφ,i − 3γḢδφ,i − γδχ,i

2Φ̇ + 2HΦ = 2λδφ− 3γḢδφ− γδχ

2δφ̈+ 2Hδφ̇ = 3γ(Ḣδφ+ δφ̈+Hδφ̇)− 2Ḣδφ+ γ
∆

a2
δφ (4.63)

hence

δφ̈+Hδφ̇+ Ḣφ− c2
s

a2
∆δφ = 0 (4.64)

where

c2
s =

γ

2− 3γ
(4.65)
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Convert (4.64) to Fourier space, and then for short wavelength perturbation H

and Ḣ are neglected because λph = a
k
� csH

−1,

δφk ∝ e±icskt (4.66)

However, for long wavelength perturbation, , the term c2s
a2 ∆δφ is neglected because

λph = a
k
� csH

−1 yielding,

δφ = A
1

a

∫
adt (4.67)

and

Φ = δφ̇ = A
d

dt

(1

a

∫
adt
)

= A
(

1− H

a

∫
adt
)

(4.68)

Note that the addition of 1
2
γ(2φ)2 in the Lagrangian makes it possible to distin-

guish between short and long wavelengths perturbation solutions.

In order to obtain quantum fluctuations, the action must be expanded to second

order and the effects of gravity are neglected because these quantum perturba-

tions are small in scale; hence, they can be considered in flat spacetime. Even

if the effects of gravity are included in the analysis, the same result would be

obtained. Action (4.33) to second order and integrating by parts yield

S = −1

2

∫
d4x
( γ
c2
s

δφ′∆δφ′ + ...
)

(4.69)

where the 1
c2s

factor is included in order for mimetic dark matter not to vanish

for higher derivatives. To choose the canonically normalized quantum fluctuation

variable [42] [39] the δφ′∆δφ′ term can be considered as X ′. Hence, X = δφ∆δφ′

converted to the Fourier space k2δφδφ′. Therefore, the variable is

vk ∼
√
γ

cs
k δφk (4.70)
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with vacuum fluctuation

δvk ∼
1
√
ωk
∼ 1√

csk
(4.71)

and hence,

δφk ∼
√
cs
γ
k−

3
2 (4.72)

During inflation,

1

a

∫
a dt ' H−1 (4.73)

Matching long wavelength perturbations (4.67) with quantum perturbations (4.72),

we obtain

Ak ∼
√
cs
γ

Hcsk∼Ha

k3/2
(4.74)

Hence, the gravitational potential in comoving scales λ ∼ 1/k

Φλ ∼ Ak k
3/2 ∼

√
cs
γ
Hcsk∼Ha (4.75)

whereHcsk∼Ha is evaluated during inflation because quantum perturbations crossed

the horizon during the inflationary stage and then during matter-dominated uni-

verse the horizon catches up with the quantum perturbations that were frozen

out.
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Chapter 5

A Cosmological Solution to

MDM

5.1 Scale factor

Plugging in the exponential potential [23],

V = Voe
−κt (5.1)

in equation (4.30) and define Vo to be a constant α

ÿ − 3

4
αe−κty = 0 (5.2)
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Apply the transformation s =
√
−3α
κ

e
−κt

2 to get

dy

dt
=

dy

ds

ds

dt
=
dy

ds

(
−
√
−3α

2
e−

κt
2

)
d2y

dt2
=

d

dt
(
dy

dt
) =

dy

ds

(κ
4

√
−3α e

−κt
2

)
+
d

dt
(
dy

ds
)︸ ︷︷ ︸

= ds
dt

d2y

ds2

(
−
√
−3α

2
e−

κt
2

)

=
dy

ds

(κ
4

√
−3α e

−κt
2

)
+
d2y

ds2

(
−
√
−3α

2
e−

κt
2

)(
−
√
−3α

2
e−

κt
2

)
=

dy

ds

(κ
4

√
−3α e

−κt
2

)
+
d2y

ds2

(
− 3α

4
e−κt

)
(5.3)

Equation (5.2) becomes

−3α

4
eκt
d2y

ds2
+
κ

4

√
−3α e−

κt
2
dy

ds
− 3

4
α eκty = 0

κ2s2

4

d2y

ds2
+
κ2s

4

dy

ds
+
κ2s2

4
y = 0 (5.4)

Finally, multiply both sides by 4
κ2 , differential equation (5.2) transforms to [43]

s2d
2y

ds2
+ s

dy

ds
+ s2y = 0 (5.5)

The solution to this differential equation is well-known by Bessel’s functions,

y(t) = C1J0

(√
−3α

κ
e

−κt
2

)
+ C2Y0

(√
−3α

κ
e

−κt
2

)
(5.6)

where C1 and C2 are constants. The form of a(t) is,

a(t) =

[
C1J0

(√
−3α

κ
e

−κt
2

)
+ C2Y0

(√
−3α

κ
e

−κt
2

)] 2
3

(5.7)
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It can be deduced that for t −→∞, a(t) ∝ t
2
3 which is similar to the scaling factor

of a matter-dominated universe. Note that we can always add a cosmological

constant in the Lagrangian in order to get a universe that’s dominated by a

cosmological constant as it’s observed nowadays. On the other hand, for t −→ 0,

y(t) = C1e
√

3α
4
t + C2e

−
√

3α
4
t (5.8)

a(t) =
[
C1e
√

3α
4
t + C2e

−
√

3α
4
t
] 2

3
(5.9)

For α positive, a(t) grows exponentially as in an inflationary universe. However,

for α negative, a(t) leads to an oscillatory universe in the beginning of time. The

energy density of mimetic matter can be obtained as

ρ̃ = 3
( ȧ
a

)2

= −αe−κt
[C1J−1(

√
−3α
κ

e
−κt

2 ) + C2Y−1(
√
−3α
κ

e
−κt

2 )

C1J0(
√
−3α
κ

e
−κt

2 ) + C2Y0(
√
−3α
κ

e
−κt

2 )

]2

(5.10)

and the pressure,

p̃ = −V (t) = −αe−κt (5.11)

and the equation of state is

w =
p̃

ρ̃
=
[ C1J0(

√
−3α
κ

e
−κt

2 ) + C2Y0(
√
−3α
κ

e
−κt

2 )

C1J−1(
√
−3α
κ

e
−κt

2 ) + C2Y−1(
√
−3α
κ

e
−κt

2 )

]2

(5.12)

Moreover, it can be deduced from (5.2) that the density, pressure, and equation

of state evolve like dust in a matter-dominated universe for t −→∞

ρ̃ =
4

3t2
(5.13)

p̃ = −V (t) = 0 (5.14)

w = 0 (5.15)
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For t −→ 0 and C1 is not much greater than C2,

ρ̃ = α (5.16)

p̃ = −α (5.17)

w = −1 (5.18)

The equation of state for t −→ 0 is at the Phantom Divide Line similar to the

equation of state of a cosmological constant that drives inflation but without a

graceful exit. In order to trigger inflation in the beginning of time, ä(t) > 0 must

be satisfied. The acceleration equation is,

ä

a
= −4πG

3

(
ε+ 3p

)
(5.19)

Hence, ρ + 3p < 0 must be true. Density is always positive; therefore, we must

have negative pressure satisfying

p < −ρ
3

(5.20)

This is valid for t very small and positive α. A 70 e-folds inflation can be generated

in this picture for any α because it satisfies the inequality. Let’s consider another

potential [2]

V (t) =
αt2n

etκ + 1
for n > −1 (5.21)

given that etκ >> t2n always for positive time and suitable n. As t −→ ∞ and

t −→ 0 it evolves as a(t) ∝ t
2
3 , and as t −→ −∞ it generates inflation satisfying
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the 70 e-folds condition with

a(t) ∝ e
−
√

α
3(n+1)2

t2

(5.22)

with

H =
ȧ

a
= −

√
α

3
tn (5.23)

Note that at t −→∞ both potentials (5.1) and (5.21) behaves the same because

at t −→∞ (5.21) can be approximated as (5.1). In order to give an estimate for

α, calculate (3.44) for 70 e-folds for (5.22), and noting that t2i > t2f for this model

because inflation starts from −∞; and hence

α '
(540(n+ 1)

tn+1
i

)2

(5.24)

5.2 Perturbative Solution of the Scalar Field in

the Newtonian Gauge

Considering a plane wave perturbation ∝ eikx, equation (4.64) becomes,

δφ̈k +
ȧ

a
δφ̇k +

(c2
sk

2

a2
+
ä

a
−
( ȧ
a

)2
)
δφk = 0 (5.25)

By taking the limit of t −→ ∞ in (5.7) is similar when taking the limit of the

argument of Bessel’s function to zero because of the decaying exponential function

inside the argument of Bessel’s functions. So for small x [44]

J0(s) → 1 (5.26)

Y0(s) → 2

π

[
ln
(s

2

)
+ 0.5772...

]
(5.27)
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Hence, the scaling factor (5.7) becomes as t −→∞,

a(t) =
[
C1 + C2

2

π

(
ln
(√−3α

2κ
e

−κt
2

)
+ 0.5772

)] 2
3

(5.28)

This equation can be expressed again as,

a(t) = [C1 + C2
2

π
(
−κt

2
+ β)]

2
3 = [C ′1 + C ′2t]

2
3 (5.29)

where β = 0.5772 + ln(
√
−3α
2κ

) is just a constant, and C ′1 = C1 + C2
2
π
β and C ′2 =

−C2
κ
π
. By substituting (5.29) in (4.64), and solving the differential equation,

we can get an idea about the evolution of δφ at a very large time-scale and for

different wavelengths. For short wavelength perturbation H and Ḣ are neglected

because λph = a
k
� csH

−1,

δφ ∝ e±icskt (5.30)

However, for long wavelength perturbation, the term c2s
a2 ∆δφ is neglected because

λph = a
k
� csH

−1; and hence, the solution to equation (4.64) is

δφ = D1π +D2β −D2tκ (5.31)

Equation (5.31) can also be obtained by a second method; if we plug equation

(5.29) in (4.67), and choose A ∝ κ we would get equation (5.31) again. Note that

the perturbation amplitude grows as a function of time only.

5.3 Quantum perturbations

In order to obtain the gravitational potential for comoving scales in this model

from quantum perturbations, substitute (5.22), (5.23), and (5.24) in (4.75) with
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absolute value

Φλ ∼
√
cs
γ
×
√

1

3

540(n+ 1)

tn+1
i

tn|t:csk∼Ha (5.32)

Note that γ is just a constant in the action (4.33). Hence, by choosing n, γ, and

ti appropriately, one can fit the value of the gravitational potential to be equal

to the measured value ∝ 10−5 in CMB experiments [4], [5], and [6].
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Chapter 6

Conclusion

In this thesis, an introduction to general relativity, cosmology, and mimetic dark

matter was provided. Then, an exponential potential was plugged in the dif-

ferential equation of MDM that relates any potential to any scaling factor in

cosmology. At the limit of time goes to infinity, the density, pressure, and equa-

tion of state behave like dust in a matter-dominated universe, and in the limit of

time goes to zero, a condition on the density can trigger inflation satisfying the

70 e-folds condition but for some initial conditions. Another general potential is

given that satisfies the 70 e-folds condition. Furthermore, a first-order fluctua-

tion is obtained. This can be accomplished by taking the limit of a(t) at infinity

and plugging it in the 0 − i perturbed Einstein’s equation of a scalar field in

the Newtonian gauge. Finally, it is worth noting that after performing quantum

perturbations, the obtained amplitude fluctuation from MDM can be tuned to

be of the same order as the CMB. Hence, MDM can provide a model for dark

matter, inflation with 70 e-folds at early times, and CMB amplitude fluctuation

at later times without introducing any new degrees of freedom.
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