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An Abstract of the Thesis of

Dalal Samir Hammoud for Master of Engineering
Major: Electrical and Computer Engineering

Title: GUICop: Specification Based GUI Testing

Oracles used for testing graphical user interface (GUI) programs are required
to take into consideration complex non-functional factors such as variations in
screen resolution or color scheme. To accommodate this aspect of GUI testing,
specifically when comparing observed to expected outputs, researchers proposed
fuzzy comparison rules and computationally expensive image processing techniques
to tame the comparison process; which is necessary, otherwise absolute comparison
would be too conservative to be practical.

Alternatively, we propose GUICop, a new approach with a supporting toolset
that checks whether the execution trace of a GUI program adheres to a user-
defined specification that is expectedly free of non-functional aspect. GUICop
comprises the following: 1) a GUI specification language; 2) instrumented GUI
libraries; 3) a solver ; 4) a driver ; and 5) a code weaver. The user defines the
functional specifications of the subject application using the GUI specification
language whose alphabet consists of: a) basic geometric objects describing GUI
components; b) GUI events; and c) positional operators that express relative object
positions. The driver traverses the GUI structure of the subject and generates
events that drive its execution. The GUI libraries capture the GUI execution
trace, i.e., information about the relative positions taken by the displayed GUI
components. And the solver, enabled by the code weaver, checks whether the
traces satisfy the specifications. We successfully evaluated GUICop using case
scenarios that we developed and real life case studies such as JEdit, Advanced
JukeBox and Gason.
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Chapter 1

INTRODUCTION

Testing of Graphical user interface (GUI) applications entails many challenges

not presented when testing command line applications. For example, legitimate

GUI test inputs might consist of long sequences of various types of GUI events

as opposed to a fixed number of parameters with predefined types. Also, when

auditing the results of a GUI execution, judging whether the expected behavior is

observed is by no means trivial, i.e., precise and/or sensible oracles are hard to

construct.

Some major complicating factors for developing GUI oracles are actually non-

functional in nature, such as variations in screen resolution, color scheme, and line

attributes (e.g., style, thickness, transparency etc.). To alleviate the impact of

these factors, researchers proposed fuzzy comparison rules [1] and computationally

expensive image processing techniques [2][3] to tame the process of comparing

observed GUI outputs to expected outputs. This is necessary; otherwise absolute

comparison would be too conservative to be practical. It should be noted that

many researchers opted to totally circumvent this issue by relying on the null-

oracle, which simply considers a program to have failed if it terminates abnormally
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or never terminates [4]. Alternatively, we propose GUICop, a new approach

and a supporting tool set that checks whether the execution trace of a GUI

program adheres to its user-defined specification which is expectedly free of any

non-functional aspects. In order to support specification-based GUI testing, we

devised GUICop to include the following: 1) a GUI specification language; 2)

a driver ; 3) instrumented GUI libraries; 4) a solver ; and 5) a code weaver. The

user defines the functional specifications of the subject application using the GUI

specification language whose alphabet consists of: a) basic geometric objects

describing GUI components; b) GUI events; c) positional operators that express

relative object positions; and d) temporal operators that express event timings.

The driver traverses the GUI structure of the subject and generates events that

drive its execution [5]. The GUI libraries capture the GUI execution trace [6], i.e.,

information about the relative positions taken by the displayed GUI components

and the times when the GUI events were triggered. And the solver, enabled by

the code weaver, checks whether the traces satisfy the specifications. A sizable

body of work on GUI testing was conducted in the past two decades. The most

notable was the work of Memon et al. [7][8][9][10][11][12], which we describe

subsequently. In fact, the GUICop driver leverages part of that work [5]. Abbot1

is an existing specification-based GUI testing framework that is an extension of

JUnit. It supports writing specifications for programmable Java GUI components,

but unlike GUICop, stops short of enabling the user to specify general layout and

component interactions. For example, a component may match its programmable

specification, even if it was partially hidden by another component on the screen.

Other JUnit extensions that enable the user to write assertions also suffer from

1abbot.sourceforge.net
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that problem, namely, JFCUnit2, Pounder3, Marathon4, SWTBot5, UISpec4J6,

and Jemmy7. In most cases, the checks enabled by the aforementioned tools rely

on a hierarchical tree structure where the nodes are the GUI components such as

frames, text boxes, and push buttons, and the edges represent parenthood relations.

Generally, these tools take the following steps: (1) finding a GUI component

of interest starting from the root of the GUI tree based on the programmable

name of the component; (2) exercising a relevant event on the component; and

(3) checking the status of the GUI tree following the event using JUnit assertions.

However, unlike GUICop, the above steps suffer from the following problems:

• Programmable component names are not always known. Most

developers do not always name their GUI components. And even if they

do, the names are not necessarily known by testers. Also GUI components

could be automatically generated, for example, a scroll bar in an edit box

gets instantiated when the length of the text exceeds the width of the edit

box.

• GUI trees are not adequately expressive. GUI trees capture parent-

hood information amongst visible components, i.e., they express positional

containment only and fall short of expressing other positional and timing

relations. For example, a YES/NO dialog box may contain the title bar,

the message label box, and the YES/NO push button components. While it

is easy to express and check such containment relation using a GUI tree, it

is not possible to express and check the layout of the components, e.g. YES

2jfcunit.sourceforge.net
3pounder.sourceforge.net
4marathontesting.com
5swtbot.org
6www.uispec4j.org
7jemmy.java.net
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is to the left of NO.

This paper makes the following contributions:

• A new GUI specification-based testing approach and supporting tool set

that circumvents non-functional discrepancies that hinder the task of reusing

GUI test suites, such as changes in screen resolution.

• A novel specification language that enables capturing layout information of

GUI components, and timings of GUI events.

• A solver that monitors a GUI execution via instrumentation and code

weaving, in order to check whether the GUI application satisfies its user-

defined specification.

• An extendible library of specifications of common GUI components, which

allows for the reuse of specifications.

• The proposed GUI specifications could provide the basis for automated

generation of sophisticated test cases that exercise complex GUI functionality

and layouts.

The remainder of this work is organized as follows. Chapter 2 offers a background

about several important notions. Chapter 3 motivates the work. Chapter 4

discusses related work. GUICop and its components are described in Chapters

5, 6, 7, 8, 9 and 10. We present our case studies in Chapter 11. Finally, we

conclude in Chapter 12.
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Chapter 2

BACKGROUND

2.1 Java Swing

2.1.1 Introduction

Swing is a GUI API, the primary one for the Java platform and part of Oracle’s

Java Foundation Classes (JFC). It offers a wide set of components to build desktop

interfaces. The set of components ranges from simple elements such as windows,

buttons, scrollbars, frames etc., to more complex objects such as file choosers,

combo boxes and menus [13].

The Swing classes are built on top of the Abstract Window Toolkit (AWT) archi-

tecture. AWT is Java’s original platform-independent GUI API. It addressed the

portability challenges that windowing systems presented earlier. AWT provided

the magic of maintaining the look and feel corresponding to a specific environ-

ment: one can create a program on one platform and deliver the compilation

output (byte-codes/class files) to every other supported environment without

recompilation [14].
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This powerful property was maintained to a certain extent in Swing which differs

from AWT by having a more sophisticated set of GUI components. Swing provides

a native look and feel that imitates the look and feel of several platforms although

a small difference is still distinguishable. Swing also supports a pluggable look and

feel that allows applications to have a look and feel unrelated to the underlying

platform. Swing classes are solely written in Java with no native code while AWT

wraps native GUI components. Swing draws its own components by using Java

2D to call low level operating system drawing routines. Among the advanced

components Swing provides, there are tabbed panels, scroll panes, trees, tables

and lists.

2.1.2 Architecture

Swing components are loosely based on the traditional Model-View-Controller

(MVC) programming paradigm [15]. A Model encompasses the state data for

each component. For instance a model of a scrollbar may have information about

the current position of its thumb, how wide the thumb should be, while a view is

its visual representation; how you see it on the screen. The view calculates the

position and width of the thumb in screen pixels. A controller takes the input

from the user on the view and reflects the changes in the data; it dictates how

components react to events such as mouse clicks, gaining or losing focus. It knows

for instance that dragging the thumb of a scrollbar is a legitimate action and

that the action of dragging should stop at the limits of the endpoints [16]. The

diagram in Figure 2.1 shows an architectural perspective of the MVC pattern.

Swing uses a simplified version of MVC, the model-delegate, where the view and

the controller are combined into a single element, the UI delegate [16]. In this

way, Swing has a pluggable look-and-feel architecture.
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Figure 2.1: MVC pattern.

2.1.3 Coordinate Spaces

Graphics2D objects have their coordinates specified in a coordinate system called

User Space. The other coordinate system is device-dependent and varies according

to the target rendering device. Transformations from User to Device Space are

represented by AffineTransform objects responsible for scaling, translating &

rotating objects [17].

The User Space origin is located in the upper-left corner of the space, with

x values increasing to the right and y values increasing downward [18]. User

coordinates are transformed to a virtual device space that approximates the

resolution of the target device [17].

2.2 ANTLR

ANTLR is a sophisticated parser generator used to implement language inter-

preters, compilers, tree walkers and other translators [19]. ANTLR is used to

build interpreters for domain specific languages. Once ANTLR is provided with

the language grammar, it automatically generates the lexical analyzer (lexer) and

parser by analyzing the provided grammar. The lexical analysis operates on the

incoming character stream. The parsing phase operates on a stream of vocabulary

symbols, called tokens, produced by the lexical analyzer.
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A typical ANTLR grammar is a combined grammar that specifies both the

parser and lexer rules. Any set of strings that can be defined using tokens

(concatenated characters, alternation of characters, or repetition of character an

arbitrary number of times) is called a regular set and is recognized by scanners.

Any set of strings that can be defined in terms of tokens or recursion is called a

context-free language. It is recognized by parsers.

An Abstract Syntax Tree (AST) can be generated by the parser. It is an

essential structure in GUICop. An AST is contrasted with a parse tree which

represents the syntactical form of the input. The AST records meaningful tokens

and the grammatical structure used by the parser. It omits rule names, punctuation

and white spaces.

2.3 Aspect Oriented Programming

Object Oriented Programming (OOP), one of the most important programming

paradigms, faces an important limitation in software development. It is essentially

static, and any change in requirements can have a huge effect on development

timelines [20].

Using Aspect Oriented Programming (AOP), the developer can dynamically

modify the OO model to meet new requirements without affecting the original

code. The AOP code can be kept in a separate location and the OO model can

remain intact. The AOP code is woven with the application.

Below are a few concepts related to AOP:

- Advice: The advice represents the additional code to be applied to the

existing model.

- Point-cut: The point-cut is the point of execution in the application at

8



which a distinctive behavior “cuts” across multiple points in the OO model.

For example, a point-cut is reached when the thread enters a method.

- Aspect: The aspect is composed of the point-cut and the advice.

9



Chapter 3

OVERVIEW AND

MOTIVATION

Developing GUI testing tools presents a set of several challenges. First, an

adequate representation of the GUI should be created and used across these tools.

The GUI should be represented at a high level of abstraction that would overcome

non functional discrepancies. Second, GUIs respond to user-generated events [21].

To test GUIs, we need to simulate these events then check the result of the

action. Driving the execution of the GUI is not easy and could be prone to error.

Some of the widgets could be skipped during the process which requires human

intervention to make sure that the GUI is being adequately tested. Therefore tests

should be automated as much as possible to simplify the test designer’s work.

Additionally, conventional test coverage criteria might not catch all the user

interaction scenarios. The amount of code being tested is important, but what’s

equally important is whether the tested code corresponds to problematic user

interactions [22].

On the other hand, a non crashing application does not implicate a correct
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Figure 3.1: GUICop Flow Diagram.

GUI. Some of the elements might not be appearing or they might have a ”bad

look”. The appearance of the GUI should be equally critical to its functionality

and detecting problems in the layout cannot be achieved by only exercising GUI

events.

In our approach illustrated in Figure 3.1, the user writes specifications to

describe the GUI under test using the GUICop specification language. The

specification language was designed after brainstorming and producing around 50

use cases. The specification represents therefore the screen output that the tester

expects to see.

A specification library maintains the models (primitive or complex shapes)

defined in the user’s specification which allows for their reuse in the future.

GUICop checks the specification against the GUI without modifying the

application’s source code. A code weaver weaves the call for GUICop with the

application to intiate the checking process.
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pr i va t e JButton findButtonWithText ( S t r ing text ) {
f o r (Component c : getComponents ( ) ) {

i f ( c i n s t an c e o f JButton && c . parent ( ) i n s t an c e o f JFrame ) {
JButton button = ( JButton ) c ;

i f ( t ex t . equa l s ( button . getText ( ) ) ) re turn button ;
}

}
re turn nu l l ;
}
. . .
f indButtonWithText ( ”Method” ) ;

Figure 3.2: GUI correctness via programming.

To capture the behavior of the GUI, the underlying graphics library is instru-

mented to generate a list of the shapes being painted on the screen. This output

is derived from the instrumented library by means of driving the execution of the

GUI through a driver.

Finally, the exhibited behavior is checked against the specification using our

solver and the check either passes or fails.

3.1 GUICop vs. GUI Correctness via program-

ming

We now present an example showing the advantages of GUICop over the common

approach of programmatically checking for GUI correctness.

Given the associated requirement: A dialog box has a button containing the text

“Method”. The above could be checked programmatically using the specification

shown in Figure 3.2.

The code searches for the button among the GUI widgets via the class JButton.

It also looks for the parent of the button by checking if it’s a frame (instance of

JFrame). Once the button is found, the text inside the button is matched against

12



the text ’Method’.

We can foresee the following problematic points in this code:

1. Writing this code requires that the tester has enough expertise on how the

GUI components are represented in the GUI tree.

2. This code needs to be tailored/ported for each supported GUI API such as

Qt, MFC and SWT.

3. What if the text inside the button is cropped or not visible?

Using GUICop, the alternative specification would be as shown in Figure 3.3

DialogBox = {

variables {

rectangle r1, r2;

textrect t1;

}

properties {

X = r1.x;

Y = r1.y;

WIDTH = r1.width ;

HEIGHT = r1.height ;

}

constraints {

(((r1 contains r2) and (r2 contain t1))

and (t1.string == ’Method ’));

}

}

Figure 3.3: Specification as done using GUICop

In this specification, we can note the following:

1. The tester does not need to know that a GUI tree exists.

2. The specification portability is not an issue due to the high abstraction level

the specification is written at.

3. The issue of component visibility is implicitly taken care of by the instru-

mented GUI libraries within GUICop.
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hscrollbar = {

variables {

triangle tr1 , tr2;

rectangle r1, r2 , r3 , r4;

}

properties {

X = r1.x;

Y = r1.y;

WIDTH = r1.width+r2.width+r4.width;

HEIGHT = r1.height;

}

constraints {

(((r1 contains tr1) leftto (r2 contains r3)) leftto (r4 contains tr2));

}

}

Figure 3.4: Specification of a horizontal scrollbar.

3.2 GUICop in Action

We now present an example to show how GUICop can check a specification

against an instrumentation output and return whether the specification is met or

violated.

The following specification defines a horizontal scrollbar hscrollbar, shown in

Figure 3.4. The specification has one specobject to be checked: hscrollbar. The

first section of the specification is the declaration of the variables. The variables

declared are two triangles: tr1 and tr2 and four rectangles: r1, r2, r3 and r4.

The second section assigns the properties of the horizontal scrollbar. X, Y,

and HEIGHT correspond to x, y and height of rectangle r1. The width of the

horizontal scrollbar is taken to be the summation of the widths of r1, r2 and r4,

i.e. the bordering rectangles.

The third section states the consraint that dictates how the variables are

positioned with respect to each other. Rectangle r1 contains triangle tr1. Rectangle

r2 contains rectangle r3 and rectangle r4 contains triangle tr2. r3 represents the

knob of the horizontal scrollbar.
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rectangle (10, 10, 100, 10); //x, y, width , height

polyline(4, 12, 15, // triangle: # of points ,x1,y1

,

20, 18, 20, 12, 12, 15); //x2,y2,x3 ,y3,x1,y1

polyline(4, 108, 15,

100, 18, 100, 12, 108, 15); // triangle

rectangle (60, 12, 6, 6); // knob

...

rectangle (72, 12, 6, 6); // knob moved right

...

rectangle (78, 12, 6, 6); // knob moved again

Figure 3.5: Sample instrumentation output(left); horizontal scrollbar(right).

Figure 3.5(left) shows a sample instrumentation output that draws a horizontal

scrollbar and does not violate the specification. Figure 3.5(right) shows the

horizontal scrollbar. The comments are not part of the instrumentation output

and are added for clarification. In case the knob moves beyond the right triangle

as follows, the checker determines that the constraints are violated.

rectangle(103,12,6,6);//(knob leftof t2) violated
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Chapter 4

RELATED WORK

In this section, we provide an overview on the different tools and approaches

relevant to the work we developed. In the last decade, several GUI testing tools

have been developed to be used by the academia or the industry.

Many of the existing GUI testing tools are script-based, i.e. they require the

user to manually write unit tests to validate the behavior of the GUI application

in order to automate the test execution, such as Abbot1, Pounder2, JFCUnit3,

SWTBot4, UISpec4J5, Selenium WebDriver6, Robotium7 and SOAtest8. Testers

write test scripts to interact with the GUI, i.e by invoking clicks or keyboard

strokes, to perform interaction during playback. Test cases validate whether the

application executed correctly.

Abbot [23] is an extension of the JUnit framework that supports writing

specifications for programmable Java GUI components. Testing with Abbot

1abbot.sourceforge.net
2pounder.sourceforge.net
3jfcunit.sourceforge.net
4swtbot.org
5www.uispec4j.org
6www.seleniumhq.org/projects/webdriver
7robotium.com
8https://www.parasoft.com/product/soatest
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consists of writing scripts to get references to GUI components and either perform

user actions on those components or make some assertions about their state [23].

Writing such scripts is tedious and prone to error since there isn’t a systematic

or general way to follow. Abbot also stops short of enabling the user to specify

general layout for the GUI. For example, a component may match its programmable

specification, even if it was partially hidden by another component on the screen.

The same applies to other JUnit extensions used to write assertions such as

JFCUnit, Pounder, Marathon, SWTBot, UISpec4J, and Jemmy.

Similar script-based tools have been developed based on visual GUI testing.

Skiuli9 for instance is one of the tools that use computer vision techniques to

implement a visual language for writing scripts. The testers can use screenshots

of GUI elements to visually find them instead of using the names or properties

of the components [3] [2]. For example, a tester can write the following script:

click(>); assertExist(||); assertNotExist(>);. This script states that when

the play button is pressed, a pause button should automatically replace it. ‘>’

and ‘||’ refer to real snapshots in the Sikuli environment.

Unfortunately, Sikuli offers a method that is associated with robustness prob-

lems and is highly dependent on computationally expensive image processing

techniques to abstract the strict comparisons. In short, script-based testing can

reduce the effort put in GUI testing since test cases can be used to automate GUI

interactions. However, writing these scripts is a very time consuming process,

therefore the tester may not be able to develop as many test cases.

In contrast with script-based testing, other techniques called Capture/Replay

tools would capture the user sessions and replay them later, such as jrapture,

testworks, Test Automation FX, Selenium IDE, Rational Robot, HP WinRunner

9
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and Quick Test Pro.

Capture/Replay tools are less labor intensive than script-based tools since

they involve more interaction; however the tester still has to manually perform

the capturing process even though the test cases can be automatically replayed

for regression testing [24] [25]. This technique suffers from lack of robustness to

GUI changes. Both techniques lead to a relatively small number of test cases

since they lack enough automation.

Another generation of GUI testing tools operate by directly accessing the

structure of the GUI through widgets, widget properties and values which makes

such tools more robust to screen resolution and GUI changes than the previous

ones [26]. GUITAR [11] is an example that incorporates a GUI ripping process

[5] and an automated test case generation.

Memon et al. worked considerably on developing GUI Ripper [5], a technique

for dynamically reverse engineering models of GUI applications for the purpose of

automating the testing process [5] [27] [28] [29]. GUITAR [11], a tool developed

by Memon and al. is a model based system for automated GUI testing. The GUI

ripper is part of the GUITAR toolset. It works on extracting the structure of the

GUI by invoking all windows and executing all executable widgets in a window.

The GUI structure is represented by a GUI forest where every node represents

a window that captures the widgets, properties and values in that window [5].

GUITAR then proceeds to converting the GUI forest into an event flow graph [11]

which is then passed as an input for a test case generator to create test sequences.

The generated test sequences can therefore be executed automatically by being

replayed.

Unfortunately GUITAR falls short of being able to model dynamically changing

GUIs [30]. Parts of the GUI might be missing from the generated test cases [31],
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for example when a GUI component is partially visible due to another component.

GUITAR performs GUI regression testing: it considers the given GUI as a

reference to produce test cases. If the GUI has defects, GUITAR generates tests

that consider these defects as a correct behavior [32].

To overcome this issue, the testing process should be based on specifications

of the GUI, i.e. what we expect the GUI to look like. This is where our approach

comes in. The tester using GUICop separately defines a set of specifications

that presents a high level of abstraction of the GUI layout. The GUI layout is

simplified by primitive and/or custom defined objects and a description of the

relationship between the objects. GUICop therefore does not rely on visual

testing and therefore shows robustness against problems due to image and screen

resolution.

The GUICop toolset has a driver which is loosely based on the GUI Ripper

to drive (automatically) the execution of the GUI application. The GUI Ripper

extracts the structure of the GUI and generates a GUI forest where each node

represents a window and captures the widgets, properties and values in that

window. GUICop on the other hand focuses on an instrumented version of the

graphics library to capture the behavior of the application GUI. This improves

the ability of GUICop to detect defects associated with the display that are

undetectable in the internal properties of the widgets maintained by the GUI

forest.
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Chapter 5

SPECIFICATION LANGUAGE

GUICop takes a specification that describes the desired behavior of the GUI.

The specification is written in a GUICop specification language designed to cover

positional, arithmetic and logical GUI behaviors. To design this language, we

assembled around 50 case scenarios that we expressed in English first. Then

we designed a hierarchical specification language with primitive objects such as

Rectangle, Ellipse and Line that can be directly instantiated with keywords.

More complex objects can be declared with hierarchical composition.

The language allows the following.

1. Object Declaration

The first step in writing a specification is to declare the variables to be

used. Variables are the objects used to construct the specobject, the object

we’re checking for. These variables can represent primitive objects such as

Triangle, Rectangle, Ellipse, Polygon, Textrect and Line or they can be

complex objects declared by the user. A variable declaration includes the

type of the object followed by an identifier, such as rectangle r1.

2. Object Properties
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The properties of an object are the key to compute positional, logical

and arithmetic checks in the specification. Every primitive object has

its set of properties. These are listed in Chapter 6. The properties of

complex objects or specobjects are modeled by a bounding box rectangle.

They are therefore labeled as X, Y, WIDTH and HEIGHT. This allows

for a hierarchical composition where a specobject can be used in other

specifications.

3. Object Constraints

A specification describes how primitive or complex objects appear and how

they’re positioned with respect to each other. A constraint is an expression

of operations that use objects as operands with positional, arithmetic or

logical operators to express corresponding GUI behaviors.

4. Hierarchical Object Type Composition

A specobject, once defined in a specification, can be used in the declara-

tion of more complex objects. In that sense, several specifications can be

assembled in one specification file.

5. Operators

Different types of operations can be covered in a specification. Positional,

arithmetic and logical operators are therefore used in a constraint to check

for a specific GUI behavior. These operators take two operands which can

be:

- Id of primitive objects or complex objects when checking for a positional

GUI behavior.

- access for a member variable, i.e.r1.width when computing an arithmetic
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operation.

Binary operators are divided as follows:

- logic such as and, or, == and <

- positional such as above, contains, smaller, equal, leftto, and over

- alignment such as leftaligned, rightaligned, topaligned, and bottoma-

ligned

- arithmetic such as +, −, ∗, and /

5.1 Use Case Scenarios

To be able to define the specification language, we inspected around 50 case

scenarios that we expressed in English first. The result of these experiments

and several brainstorming sessions led to designing the specification language in

the way we explained before. The case scenarios include the main interfaces of

standalone applications such as Calculator and Music Player, or specific parts of

the GUI such as Menu Bar, Top Bar, Scrollbar and Drop Down List.

A specification example for Drop Down List when it’s collapsed is shown in

Figure 5.1:

Figure 5.1: Collapsed Drop Down List

The user is checking for a rectangle containing two other rectangles. One

of them contains the text ’cats’, the other one contains a downwards triangle.

The specification in this case scenario was only an expression of constraints. The
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Drop_Down_List =$rectangle(r1) CONTAINS (rectangle(r2) CONTAINS text(t1) LEFTTO

Expand_Arrow) AND (t1.value = ’cats ’)

Expand_Arrow = rectangle(r1) CONTAINS triangle(t1) AND (t1.x1 < t1.x2) AND (t1.

y1 = t1.y2) AND (t1.x3 > t1.x1) AND (t1.x3 < t1.x2)

Figure 5.2: An early stage specification of a collapsed drop down menu.

objects were declared within the expression itself and the properties weren’t

cached after the check is complete so we could not use the specobject in further

specifications.

Realizing how such a specification was incomplete and rather complicated

to build a checker accordingly, we decided to divide the specification into three

sections, a section for the declaration of variables, a section for caching the

properties and a section for expressing constraints.

5.2 Grammar

The grammar in Figure 5.3 describes the specification language and it is written

using ANTLR. An adequate overview about ANTLR can be found in Chapter 2.

The grammar is composed of a set of rules. Any rule that can be defined using

tokens (concatenated characters or repetition of characters) is called a regular set.

Any rule that can be defined in terms of tokens or recursion is called a context-free

language. Tokens are repeated using regular expressions. The regular expression

∗ used in the grammar means 0 or more repeated tokens. The output of this

grammar is an Abstract Syntax Tree (AST). An AST is a simplified syntactic

representation of the source code. Syntactic nodes that aren’t useful for analysis

such as ;, , , =, {, }, ( and ) are excluded from the AST using !. The tree has

operators as internal nodes and operands as leaves. To apply this structure, an

operator in a rule is forced to be the root of the corresponding subtree, using the
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grammar spec;

specobjects: specobject (specobject)*;

specobject: (ID^ ’=’! ’{’! variables properties constraints ’}’!);

variables: (’variables’^ ’{’! variablesdecl* ’}’!);

properties: (’properties’^ ’{’! propertiesdecl* ’}’!);

constraints: (’constraints’^ ’{’! constraintsdecl ’;’! ’}’!);

variablesdecl: (ID^ ID (’,’! ID)*’;’!);

propertiesdecl: (PROPERTY^ ’=’! expression ’;’!);

constraintsdecl: ’(’! constraintsdecl OPERATOR^ constraintsdecl ’)’!

| membervariableaccess | ID | INT | QUOTEDSTRING;

expression: membervariableaccess (OPERATOR^ membervariableaccess)*;

membervariableaccess: (ID ’.’^ ID);

OPERATOR: ’leftto’ | ’rightto’ | ’above’ | ’below’ | ’contains’

| ’over’ | ’smaller’ | ’leftaligned’ | ’rightaligned’

| ’topaligned’ | ’bottomaligned’ | ’textsubstring’

| ’textsmaller’ | ’textconcatenate’ | ’and’ | ’or’

| ’xor’ | ’+’ | ’-’ | ’*’ | ’/’ | ’==’ | ’.’

| ’<’ | ’>’ | ’!=’ ;

PROPERTY: ’X’ | ’Y’ | ’WIDTH’ | ’HEIGHT’;

Figure 5.3: Grammar of the specification language

symbol .̂

The rules that fall under the regular sets are OPERATOR and PROPERTY.

OPERATOR denotes the keywords used for positional, arithmetic and logic

operators. PROPERTY denotes the properties of the bounding box rectangle

generated after the check is complete and satisfied: X, Y, WIDTH and HEIGHT.

The rules that fall under the context-free language are membervariableaccess,

variablesdecl, expression, propertiesdecl, constraintsdecl, specobjects, specobject,

variables, properties and constraints. The rules are explained below:
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- specobject: this rule represents the specification of a specobject. A specob-

ject is defined using its Id followed by the list of declared variables, the list

of properties and the constraints expression.

- specobjects: the specification language allows for a hierarchical composi-

tion. This rule denotes the definition of at least one specobject in the file,

with the possibility of having 0 or more other specifications if a specobject

is defined using other specobjects.

- variablesdecl: this rule denotes the declaration of the member objects. A

declaration includes the type of the object followed by one or more identifiers.

- variables: this rule denotes the section of variables. It calls the rule

variablesdecl which declares the member objects. The rule Variablesdecl

can be repeated more than once in order to declare several types of member

objects.

- membervariableaccess: this rule denotes access to properties of a member

object.

- expression: this rule denotes one or more operations with access to prop-

erties of member objects as the operands.

- propertiesdecl: this rule declares the properties of the specobject. X, Y,

WIDTH and HEIGHT are defined in terms of properties of member objects.

- properties: this rule declares the section of properties.

- constraintsdecl: this rule denotes the constraint on how member objects

should appear in the GUI. This rule is recursive. The constraint is an

expression of operations with member objects or properties of member
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objects as operands. The base case is any Id of a member object, string,

integer or properties of member objects.

- constraints: this rule declares the section of constraints.

5.3 Abstract Syntax Tree and Parse Tree

The parser in ANTLR constructs a Parse Tree and returns an Abstract Syntax Tree

representing the grammatical structure of the parsed input. An AST represents

semantically meaningful aspects of the input program, in contrast with a parse

tree which shows the concrete syntax, i.e. how tokens are grouped together and

records the complete textual form of the input. Certain keywords and punctuation

such as ;, , , =, {, } ( and ) are omitted from the AST since the compiler only

cares about the abstract structure. However they are included in a parse tree

where the grammar derivation is fully represented.

GUICop is provided with the Abstract Syntax Tree generated by the parser.

The solver traverses the AST in order to verify that the instrumentation output

meets the specification assigned by the user. Every specobject in an AST is a tree

holding a subtree of variables, a subtree of properties and a subtree of constraints.

The root node of the AST is an empty node with the defined specobjects as its

children.

The data structure of the AST has the following:

1. The root node has an empty node

2. The children of the root node are the trees for the defined objects in a given

output file

3. Each object node has 3 children:
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pushedradiobutton = {

variables {

ellipse e1 , e2;

}

properties {

X = e1.x;

Y = e1.y;

WIDTH = e1.width;

HEIGHT = e1.height;

}

constraints {

(e1 contains e2);

}

}

Figure 5.4: Pushed radio button specification (left); (right) Pushed radio button

- variables tree, subtree that contains a list of member objects that can

be primitive or other specobjects.

- properties tree, subtree of 4 nodes labeled X, Y, WIDTH and HEIGHT

of the bounding box object.

- constraints tree, a binary tree that has the operators as inner nodes

and the declared member objects as leaves.

5.4 Example

We now present an example of a specification written by a user to check for a

pushed radio button. In the normal state, the shape of a radio button is an ellipse.

When it is pressed, it appears as two ellipses, one inside the other. Figure 5.4(left)

shows the pushed radio button specification. Figure 5.4(right) shows the picture

of a pushed radio button.

In the first section of the specification, the objects that construct the radio

button are declared. The declaration includes the type of the object ellipse
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followed by two identifiers e1 and e2. The second section lists the properties of the

radio button. These properties take after the properties of the container ellipse e1.

In the last section, the constraint states that ellipse e2 is contained inside ellipse

e1.

5.4.1 Abstract Syntax Tree

The Abstract Syntax Tree as generated by the parser in ANTLR is shown in

Figure 5.5. The tree structure conforms with the one described in section 5.3 and

only keeps the meaningful representation of the grammar that is needed by the

compiler.

The root node is an empty node nil. The root node has the specobjects

defined in the specification file as its children. In this case, there’s only one child

corresponding to one specobject, the radio button. The radiobutton node has

three child subtrees: variables, properties and constraints.

The variables tree has the types of declared member objects as children of the

variables node, such as ellipse in our example. The identifiers e1 and e2 are

the children of the type node ellipse.

The properties tree has X, Y, WIDTH and HEIGHT as children of the

properties node. This is common across every specobject. Every property node

has either the property of a declared member object as a child, or an expression

(operation) between properties of declared member objects. In our example, the

properties of the radio button take after the properties of the ellipse e1. The dot

’.’ operator is the child of every property node; it goes into the internal nodes to

denote access to a property of a member object. The identifier of the member

object e1 and its properties are cached in the leaves.

The constraints tree has the expression of the constraint as a child of the
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constraints node. Operators are stored in internal nodes and operands are stored

in leaves: e1 and e2 go into the leaves, the operator contains goes into their

parent node.

Figure 5.5: Abstract Syntax Tree

The Abstract Syntax Tree is the key to semantically analyze the specification

input. GUICop generates using ANTLR the corresponding AST of the specifi-

cation and extracts information into data structures. The solver then augments

the tree structure of the constraints and recursively traverses the tree in order to

compute the check.

5.4.2 Parse Tree

The Parse Tree of the variables section constructed by the parser in ANTLR is

shown in Figure 5.6. A full parse tree for the specification above is very large and

cannot be scaled to fit into the page. The parse tree graphically represents the

derivation sequence of the input. The tree nodes represent symbols of the grammar.

There’s one leaf for every token and one internal node for every reduction during

parsingPunctuation and keywords such as ;, , , =, {, } ( and ) are all included.
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The root of the tree is the title of the grammar, grammar spec. The root has

only one element variables as a child, since we’re only interested in showing the

grammar derivation of the variables rule.

The variables rule has a string, another rule and keywords such as {, } and

WHITE SPACE as children. The string is the keyword variables that denotes

the section, followed by the variablesdecl rule. The variablesdecl rule is a

node having the type of the member object ellipse followed by the identifiers

e1 and e2 as children. WHITE SPACE, , and ; also appear as children of the

variablesdecl node.

Figure 5.6: Parse Tree of the variables section

The Parse Tree is the key to verify that the written specification is syntactically

correct. GUICop parses the specification input using ANTLR. If the specification

written by the user doesn’t conform with the grammar rules, GUICop raises an

error to alert the user.
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Chapter 6

INSTRUMENTATION

To capture the behavior of the GUI, GUICop saves the list of components being

drawn on the screen in an output file. The components are generated by the

graphics library used to build GUIs. The components available in the list are

then matched against the primitive objects defined in the specification.

Qt and Java Swing are widely used toolkits for building GUI applications

for the C++ and Java platforms, respectively. Supporting them within GUICop

requires instrumenting their APIs to capture the behavior of the rendered GUIs.

The instrumentation is mainly performed on functions that draw basic shapes

such as rectangle,line and text. The process includes adding printing statements

to these functions. An application executed using the instrumented libraries

generates a GUI Output file containing the list of all the basic shapes that

are drawn on the screen with their properties. Currently, the shapes that are

supported in an output file are shown in Figure 6.1: Qt, a library written in C++,

was chosen to be instrumented in the final year project. For this project, the

choice was expanded to explore a different platform than C++ which led us to

Swing, the next-generation GUI toolkit that Sun Microsystems created to enable
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rectangle(x, y, w, h);

line(x1 , x2 , y1, y2);

oval(x, y, w, h);

polygon(x1, y1, ..., xn,yn);

triangle(x1, y1, x2, y2 , x3 , y3);

text(x, y, str);

textrect(x, y, w, h, str);

Figure 6.1: Primitive shapes and their properties

enterprise development in Java [16].

Before settling on Swing, SWT (Standard Widget Toolkit) which is also a graphical

widget toolkit for use with the Java platform, was an option. According to Eclipse

Foundation, SWT and Swing were built with different goals in mind. SWT

is oriented towards high performance, native look and feel and deep platform

integration. Native widgets can be accessed through SWT across a spectrum of

platforms. Swing, on the other hand, is designed to allow for a highly customizable

look and feel that is common across all platforms [33].

Both have rich component types and features; however Swing is a standard GUI

library that gets shipped with JRE, there is no need for additional native libraries

which made it very desirable especially that it also presents a high level ease of

use. A brief overview about Java Swing is available in Chapter 2.

The output file generated by the instrumented graphics library follows a

specific format that corresponds to an output language we designed using ANTLR.

The parser in ANTLR returns an Abstract Syntax Tree (AST) that is passed to

GUICop. GUICop reads the AST and saves the objects in a list of strings.

6.1 Java 2D API

The Java 2D API offers advanced 2D graphics and imaging through a set of classes

that enable the development of richer Java applications and user interfaces. The
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classes are provided as enhancement to the Abstract Windowing Toolkit (AWT)

[18].

6.1.1 Related Packages

Swing draws the objects on the screen using the Java 2D API. The API has several

packages; three of them were instrumented to produce a list of all the objects

drawn on the screen. The packages that are involved in the instrumentation are

described as follows:

- javax.swing.plaf.metal: Metal is the default Java look and feel for Swing

components. It is shipped with Swing and is not related to a specific

platform. This is the crossplatform and the most general look-and-feel that

will be used if one does nothing in the code to set a different L&F [34].

MetalIconFactory.java is the instrumented class in this package. It enables

creating radio buttons and check boxes.

- sun.java2d: The Java 2D expands AWT to support more general graphics

and rendering operations. The Graphics class is behing drawing all the

primitive objects such as rectangles, ovals, polygons and lines. Graphics2D

provides a way to render virtually any geometric shape [18].

- sun.swing: For historical reasons, some traditionally non-public implemen-

tation classes for Swing are provided in this package such as SwingUtili-

ties2.java [13].

6.1.2 Instrumented Classes

The instrumented classes in Swing are SunGraphics2D.java, MetalIconFactory.java

and SwingUtilities2.java exisiting in the packages sun.java2d, javax.swing.plaf.

33



drawRect(int x, int y, int w, int h)

drawRoundRect(int x, int y, int w, int h, int arcW , int arcH)

drawOval(int x, int y, int w, int h)

drawArc(int x, int y, int w, int h, int startAngl , int arcAngl)

drawLine(int x1, int y1 , int x2, int y2) drawString(String str , int x, int y)

drawChars(char data[], int offset , int length , int x, int y)}

Figure 6.2: Instrumented drawing functions.

metal and sun.swing respectively.

- SunGraphics2D.java: SunGraphics2D.java extends Graphics2D.java and

implements several functions for drawing different GUI components and

shapes. Some of these functions draw the outlines of the shapes while others

fill the interior of the shapes. Functions shown in Figure 6.2 were modified

by adding printing statements to print the shape they’re drawing and its

properties to an output file.

- MetalIconFactory.java: Radio buttons and check boxes constitute a special

case. Although a radio button looks like an oval and a check box looks like a

square, however these are not drawn using the methods to draw ovals or rect-

angles. Instead, the corresponding function is paintOceanIcon(Component c,

Graphics g, int x, int y) where several calls to drawLine(int x1, int

y1, int x2, int y2) are made to build the shape of a radio button and a

check box using individual lines connected to each other. For instance, the

following calls shown in Figure 6.3 for the drawLine(int x1, int y1, int

x2, int y2) function with the below values for (x1, y1, x2, y2) draw the

oval behind the radio button.

- SwingUtilities2.java: A collection of utility methods for Swing. This class

provides the width and height of the drawn strings and characters from the

FontMetrics class of the passed in Graphics.
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g.drawLine(4, 0, 7, 0);

g.drawLine(8, 1, 9, 1);

g.drawLine (10, 2, 10, 3);

g.drawLine (11, 4, 11, 7);

g.drawLine (10, 8, 10, 9);

g.drawLine(9, 10, 8, 10);

g.drawLine(7, 11, 4, 11);

g.drawLine(3, 10, 2, 10);

g.drawLine(1, 9, 1, 8);

g.drawLine(0, 7, 0, 4);

g.drawLine(1, 3, 1, 2);

g.drawLine(2, 1, 3, 1);

Figure 6.3: Drawing a radio button using the drawLine function

6.2 Grammar

The grammar in Figure 6.4 describes the output language and it is written using

ANTLR. The primitive shapes are defined with their corresponding properties

such as coordinates and text. The grammar parses the output file and builds

an Abstract Syntax Tree. The grammar is annotated in a way to make each

declared shape the root of its own tree, having its properties (coordinates, text)

as children. As it is the case with the specification language, all grammar tokens

such as brackets, white-space and punctuation marks do not appear in the tree.
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grammar out;

properties

:(’rectangle’^ ’(’! INT ’,’! INT ’,’! INT ’,’! INT ’)’! ’;’!)

|(’line’^ ’(’! INT ’,’! INT ’,’! INT ’,’! INT ’)’! ’;’!)

|(’ellipse’^ ’(’! INT ’,’! INT ’,’! INT ’,’! INT ’)’! ’;’!)

|(’polygon’^ ’(’! INT ’,’! INT (’,’! INT ’,’! INT)* ’)’! ’;’!)

|(’triangle’^ ’(’! INT ’,’! INT ’,’! INT ’,’! INT ’,’! INT ’,’!

INT ’)’! ’;’!)

|(’arc’^ ’(’! INT ’,’! INT ’,’! INT ’,’! INT ’,’! INT ’,’! INT ’)’!

’;’!)

|(’text’^ ’(’! INT ’,’! INT ’,’! DEF ’)’! ’;’!)

|(’textrect’^ ’(’! INT ’,’! INT ’,’! INT ’,’! INT ’,’! DEF ’)’!

’;’!)

|(’point’^ ’(’! INT ’,’! INT ’)’! ’;’!)

;

listofproperties

: (properties)*;

Figure 6.4: Grammar of the output language

The rules properties and listofproperties both fall under the context-free

language. The rule properties represents the possible shapes that can be drawn by

the graphics library with their properites such as coordinates and text. This rule

can represent one shape with its properties at a time. The rule listofproperties

calls the rule properties 0 or more times to denote a list of shapes with their

properties.

6.3 Abstract Syntax Tree

Similar to the specification language, the parser in ANTLR constructs a Parse

Tree and returns an Abstract Syntax Tree that GUICop is provided with. The

data structure of the AST has the following:

1. The root node has an empty node

36



2. The children of the root node are the trees for the different shapes in the

output file

3. Each shape node has as many children as its coordinates and other properties.

A shape tree could be as follows:

- the root is the name of the shape such as rectangle.

- the children are its coordinates such as x, y, width and height.

For example, we assume for simplicity that the following two shapes, a rectangle

and a line, are found in the output file:

rectangle(10,15,10,20);

line(2,5,8,12);

Figure 6.5: Abstract Syntax Tree

The AST generated by the parser in ANTLR shown in Figure 6.5 conforms

with the structure explained above. The root node is an empty node. The

children of the root node are the names of the shapes available in the output file.

Every shape is a subtree with the root node being the name, and the children of

the root being the properties such as coordinates and text. GUICop takes the

AST, traverses it and constructs a linear list of strings with the shapes and their

properties.
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6.4 Special Cases

GUI applications are often refreshed generating several instances of the same

objects. The list returned by the instrumentation process might therefore have

many entries for the same shape and properties. For instance when we minimize a

window then maximize it, all widgets are repainted again which generates several

redundancies. GUICop is embedded with the ability to detect these redundancies

and filter them out of the output file by tracking the stack traces for all the results

and excluding outliers from the output. Below is a list of all the conditions that

GUICop handles in order to omit undesired results:

- Double Buffering: double buffering mode is by default enabled in Swing.

It is primarily used to provide a better perceived performance and user

experience by avoiding to draw directly to a visible component and drawing

instead to an offscreen image first [34]. This can save the application from

appearing sluggish or amateurish [35]. However this ends up generating

additional shapes with properties not related to the component in hand.

- Volatile Image: the volatile image is associated with the double buffering

mode. A volatile image allows components to take advantage of accelerated

graphics hardware for extremely efficient double buffering [16].

- Border Painting: Swing calls the paintBorder() method to paint the

borders of the component. For instnce, a button’s borders are drawn as four

lines delimiting the rectangle that composes it. This produces additional

shapes (lines) in the output file that can be considered as false positives

when computing the check.

- Gradient Drawing: Swing provides a method to fill shapes with color
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gradient patterns. The shape of the pattern is redundant and is ommitted

from the output file.

- Radio Button & Check Box: a radio button and a check box are drawn

using several lines connected to each other. The resulting shape is an ellipse

in the case of a radio button and a rectangle in the case of a check box.

GUICop replaces these lines in the output file with the final drawn shape.
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Chapter 7

CODE WEAVER

We developed a code weaver using Aspect Oriented Programming (AOP) to weave

the GUICop specification in the targeted code position of the application.

The code weaver, based on AOP, allows us to inject the call for the GUICop

checker into the application without having to modify the original code. The

developed AOP code is kept in a Java Aspect class separate from the applicaton.

Currently, the code weaver supports three advices, as shown below:

- Before advice: advice code is executed before the joinpoint method.

- After advice: advice code is executed after the joinpoint method.

- Around advice: Advice code that surrounds a joinpoint method. Around

advice can perform custom behavior before and after the method invocation

and can also choose whether to proceed to the joinpoint.

- When advice: Advice code is excuted right on the execution of the join-

point method.

The code weaver provides a user friendly way to generate the aspect code

shown in Figure 7.1. The user doesn’t need to be concerned about the exact AOP
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aspect testscript {

pointcut drawMenu () : execution(void drawMenu ());

after(): drawMenu (){

guicop.check(" MenuItemSeparator ");

}

Figure 7.1: Example of the aspect code generated by the code weaver .

title testscript

after drawMenu ()

guicop MenuItemSeparator

Figure 7.2: Example of how the user writes the aspect script in English.

syntax. The user can write the script in English in a certain format; the parser of

the code weaver then parses the script and returns the Java aspect code.

We show in Figure 7.1 an example of how the code weaver generates an aspect

script that weaves the call for the GUICop checker into the application.

The user can write the English script shown in Figure 7.2 and pass it to the

parser of the code weaver.

The code weaver fetches the necessary elements to construct the aspect code

such as the title testscript, the advice (before), the function name (drawMenu()

and the code to call around the function which a call for the GUICop checker.

MenuItemSeparator is the specobject to be checked and it is defined in the

specification.
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Chapter 8

SOLVER

The solver is a key module in the GUICop methodology. It checks whether the

GUI at hand meets the specification assigned by the user. The solver takes as

input the Abstract Syntax Tree (AST) of the specification and the AST of the

instrumentation output and returns whether the output file meets the specification.

The Abstract Syntax Trees of the specification and instrumentation output

are trees automatically generated by the front end from the specification file and

the instrumentation output file respectively, and they are described in Chapter 5

and 6. The instrumentation output file is the result of running the GUI with the

instrumented library described in Chapter 6.

The root of the AST of the specification is the empty node NIL. It has several

child subtree objects; each subtree corresponding to a specobject defined in the

specification file. The root of the specobject subtree has three children: variables,

properties and constraints. The constraints is a subtree where the internal nodes

represent the operations and the leaves represent the declared member objects

or access to properties of member objects. The declared member objects denote

member variables in the specobject. They can be primitive such as Triangle,
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Rectangle, Ellipse and Line, or other specobjects declared by the user. The

solver traverses the top object recursively. Once a user defined object is met,

its subtree is traversed. Once a primitive object is met, its matches from the

instrumented file are computed and cached. Once an operation is met, the matches

of its operands are computed by a recursive traversal; then the operation is applied

at the matches of the operands to compute its own matches. Once the matches of

the root node of a specobject subtree are computed, the properties are computed.

The properties represent the coordinates X, Y, the WIDTH and the HEIGHT of

the rectangle bounding the specobject.

The AST of the instrumentation output has the primitive objects in the

output file as children. The solver traverses the AST of the instrumentation

output and stores the primitive objects in a list of strings. The solver recursively

computes tuples of objects from the output file that match nodes in the AST of

the specification. The recursive base case is the leave nodes: nodes that specify

basic shapes. The recursion ensures that dependencies on children nodes are all

resolved and computed before applying the constraints of the node in question.

Every node holds the objects that satisfy the constraints of the node in the order

of appearance of the objects in the definition section of the specification. It also

maintains the total number of variables declared in the specification and uses a

dummy object Joker to fill those variables that are not yet satisfied. As the tree

is being traversed recursively, instances of the joker are gradually replaced by

matching shapes. The solver creates a bounding box object that contains these

matching shapes. At the end it will return whether the specification is met by

checking that the root of the tree has at least one satisfying object.
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hscrollbar = {

variables {

triangle tr1 , tr2;

rectangle r1, r2 , r3;

}

properties {

x = r1.x;

y = r1.y;

width = r1.width+r2.width+r3.width;

height = r1.height;

}

constraints {

(((r1 contains tr1) leftto r2) leftto (r3 contains tr2));

}

}

Figure 8.1: Specification of a horizontal scrollbar

8.1 Example

GUICop takes as input a user specification and an instrumented output, then

returns if the output meets the specification. To illustrate the work of the solver, we

take as an example a horizontal scrollbar with the specification shown in Figure 8.1.

Figure 8.2(left) shows the generated instrumentation output. Figure 8.2(right)

shows the GUI sample that includes a horizontal scrollbar.

o1: rectangle (10, 30, 10, 60);

o2: rectangle (10, 10, 10, 10);

o3: rectangle (80, 10, 10, 10);

o4: rectangle (20, 10, 60, 10);

o5: triangle (88 ,15 ,80 ,18 ,80 ,12);

o6: triangle (12, 15, 20, 18, 20, 12);

Figure 8.2: Sample instrumentation output (left) ; (right) Sample GUI including
a horizontal scrollbar

The diagram in Figure 8.3 illustrates how GUICop works. The GUICop
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Figure 8.3: GUICop Checker

checker builds an abstract syntax tree (AST) from the specification and monitors

the instrumentation output to check whether it satisfies the specification. The

checker currently supports the rectangle, triangle, line, ellipse, arc, polygon,

text and textrect shapes.

First, the checker annotates each node in the AST corresponding to a basic

geometric shape or event with all the objects in the instrumentation file matching

it, in addition to instances of the Joker denoted by <j>. We call each annotation

a solution. A solution would be then a list of potential components that can satisfy

the current node. The number of objects and their order is always maintained in a

component. Every object appears in the component at the order it was declared in

the definition section of the specification. At the leaf level of the tree, instances of
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the Joker are inserted in the place of the shapes that are not satisfied yet. As the

tree is being traversed recursively with operations being solved, instances of the

Joker are gradually replaced with shapes that satisfy the operation in question.

The tree in Figure 8.3 is the AST of the constraint of the hscrollbar example.

Identifiers t1 , t2 , r1, r2 and r3 are assigned to the rectangle and triangle objects

from the instrumentation output. t1 and t2 are both triangles thus the checker

annotates t1 with <o5><j><j><j><j>and <o6><j><j><j><j>since t1

appears first in the declaration of variables. t2 comes second, therefore the checker

annotates it with <j><o5><j><j><j>and <j><o6><j><j><j>. <j>a

Joker instance replaces the shape that is not matched yet. At the level of the

leaves, a typical solution has only one satisfied object among instances of the

Joker.

Second, the checker recursively traverses the AST from the root node repre-

senting the specification and computes whether each node can be satisfied with the

current status of the instrumentation output. Each node represents an operator

and is associated with rules that satisfy it. For example, we say o1,o2 ` o1 con-

tains o2 if and only if o1.getMostTop() <o2.getMostTop() and o1.getMostLeft()

<o2.getMostLeft() and o1.getMostBottom() >o2.getMostBottom() and o1.getMost

Right >o2.getMostRight(). Consider the left subtree of the AST. The operator

contains with r1 and t1 as operands. It has two satisfying components out of

the eight possible components resulting from the Cartesian product of the respec-

tive solutions of r1 and t1. The checker annotates the contains operator with

<o5><j><o3><j><j>and <o6><j><o2><j><j>as solutions. For each op-

erator, the checker uses rules associated with the operator to compute properties

for the matching pairs to be used in later checks. For example, for the leftof

operator, we have (o1,o2).x = min(o1.x, o2.x).
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Similarly when the checker visits the leftof operator with r2 and contains as

operands, it annotates it with <o6><j><o2><o3><j>and <o6><j><o2><o4>

<j>as these satisfy the leftof operation. The same concept is applied to the

right subtree of the AST.

Finally, when the checker visits the leftof root node, it annotates it with

<o6><o5><o2><o4><o3>as a final solution. The checker considers a node

satisfied if it is annotated with at least one solution. Therefore, for our example,

the specification is satisfied.

8.2 Algorithm

GUICop traverses the tree of constraints recursively. Each leaf in the tree contains

either an Id or an access for a member variable (ex: r1.width). Two leaves are

compared together using the operation specified in their parent node. Each leaf

has a list of components that could potentially be a solution. A nested for loop

compares each component in the first leaf with each component in the second

leaf using the operator. If the operation is satisfied, components from every leaf

are merged together in a new list. The new list of components is saved in a new

node. The Satisfied bit of the new node will be set to true if the new list of

components is non-empty, otherwise it would be set to false. The new node is then

returned, replacing the parents and the leaves. The procedure is done recursively

until the tree collapses. Finally the Satisfied bit of the one remaining node is

returned, and it correctly states whether the specification meets the output of the

instrumentation.
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8.2.1 Tree Traversal

GUICop recursively traverses the constraints section to verify the object.

traverse(N):

if N has children then

Left = Left(N)

Right = Right(N)

if Left has children then

Left(N) = traverse(Left)

end if

if Right has children then

Right(N) = traverse(Right)

end if

if Left is leaf and Right is leaf then

return solve(Parent , Left , Right)

end if

return N

end if

Figure 8.4: Tree Traversal Algorithm.

8.2.2 Tree Verification

GUICop recursively checks whether each node can be satisfied.

solve(Parent , Left , Right):

Operation = Parent.text

List1 = Left.Components

List2 = Right.Components

for i = 1 < Size(List1) do

for j = 1 < Size(List2) do

Condition = Compare(List1(i); List2(j))

if Condition then

//Add List1(i) and List2(j) to List3

List3 = merge(List1(i); List2(j))

end if

end for

end for

N.Components = List3

if Size(List3) != 0 then

N.satisfied = True

end if

return N

Figure 8.5: Tree Verification Algorithm
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8.2.3 Merging Components

GUICop merges components together if the node is satisfied.

merge(C1, C2):

List1 = C1.Shapes

List2 = C2.Shapes

C3 = new Component

for i = 1 < Size(C1) do

if List1(i) is not a Joker and List2(i) is a Joker then

Add List1(i) to List3

end if

if List1(i) is a Joker and List2(i) is not a Joker then

Add List2(i) to List3

end if

if List1(i) is not a Joker and List2(i) is not a Joker then

if List1(i) = List2(i)

Add List1(i) to List3

end if

end if

if List1(i) is a Joker and List2(i) is a Joker then

Add Joker to List3

end if

end for

Add List3 to C3

return C3

Figure 8.6: Merging Components Algorithm.

8.3 Operators Semantics

The comparison function defines the semantics for the operators. Positional oper-

ators take as input two components, perform the operation using the components’

bounds and return whether the operation is satisfied. These are shown in Table 8.1:
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Operator Purpose
Above Checks if the lower bound of the first is above the upper bound

of the second
Leftto Checks if right bound of the first is left to the left bound of

the second
Contains Checks if the left and right bounds of the second are between

the left and right bounds of the first, and the upper and lower
bounds of the second between the upper and lower bounds of
the first

Over Checks if the two objects are overlapping
LeftAligned Checks if the left bound of the first is aligned with that of the

second
RightAligned Checks if the right bound of the first is aligned with that of

the second
TopAligned Checks if the top bound of the first is aligned with that of the

second
BottomAligned Checks if the bottom bound of the first is aligned with that of

the second
Smaller Checks if the size of the first is smaller than the size of the

second
Equal Checks if the size of the first is equal to the size of the second

Table 8.1: Positional operators

To solve for logic operations, the implemented functions take two nodes as

parameters and perform the operation on their Satisfied bits. Table 8.2 lists

the logic operators.

Operator Purpose
And Checks if both children nodes have the Satisfied flag set to

true
Or Checks if either one of the children has the Satisfied flag set

to true
Equals X == Y
LessThan X < Y

Table 8.2: Logic operators
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GUICop also supports arithmetic operations listed in Table 8.3. An operator

in this case is an access to a member variable, ex: r1.height, r1.x.

Operator Purpose
Plus X + Y
Minus X - Y
times X * Y
Over X / Y

Table 8.3: Arithmetic operators
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Chapter 9

DRIVER

A graphical user interface is by default hierarchical where widgets are connected

to each other through sequences of events. Using this notion, GUI testing can

be automatically “driven” by exploiting this hierarchy. Following Memon’s GUI

ripping technique [5], we implemented a driver to act on any Swing application: it

extracts the GUI’s structure by starting with the top level windows and opening

all executable child windows through a depth first traversal.

We present in Figure 9.1 the algorithm based on the GUI ripping process to

drive the execution of the GUI of a Swing application.

The algorithm describes two methods traverse and rec-traverse that traverse

traverse(Application A)

ListW = A.Windows

for W in ListW

rec -traverse(W)

rec -traverse(Window W)

ListC = W.Components

for C in ListC

execute(C)

ListG = getinvokedWindows(C)

for G in ListG

rec -traverse(G)

Figure 9.1: Algorithm of the driver based on the GUI Ripper.
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the GUI to extract its structure. The methods perform a depth-first traversal

(DFS) on the hierarchical structure of the GUI application. A GUI is generally

described as a forest of trees where each tree is rooted at a top frame or window.

The method traverse gets the list of top-level windows ListW , i.e. the windows

that are visible when the application first starts.

The method rec-traverse performs a depth-first search of the GUI tree rooted

at the GUI window W available from ListW . It gets then the list of widgets

or components ListC that are child nodes of the window W . Every executable

component is executed. The method is then performed recursively on the invoked

window G available from the list of invoked windows ListG until all the structure

of the forest is exploited.

The driver can currently execute a set of widgets: buttons, lists, menu bars

and menu items. It can also modify a text component (textfield, textarea) by

typing inside of it.
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Chapter 10

IMPLEMENTATION

10.1 Solver

The solver is developed in Java and has four packages in total:

- geometric: a package for the geometric shapes

- structures: a package for the structures

- guicop: a package for the solver’s logic

- parsers: a package for the parsers generated by ANTLR

10.1.1 Package geometric

The geometric package contains all the geometric shapes that GUICop supports.

An abstract class Shape is defined to inherit the geometric objects: Rectangle,

Ellipse, Line, Polygon, Text, Textrect. An additional shape, Joker is defined

to represent shapes that are not solved for yet during the checking process, in

order to maintain the total number of variables and their order at every step. The

Shape class defines the abstract functions shown below:

- getLeftBound()
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Shape Properties
Rectangle X,Y, Width, Height

Ellipse X, Y, Width, Height

Line X1, Y1, X2, Y2

Polygon ArrayX, ArrayY

Text X, Y, String

Textrect X, Y, Width, Height, String

Table 10.1: Properties of shapes

- getRightBound()

- getTopBound()

- getBottomBound()

- getSize()

These functions are common to all the previously listed shapes. Every primitive

shape class inherits from Shape and implements more functions depending on the

underlying shape. The functions are related to the properties of the shape. Every

inherited shape also has a default constructor and a constructor that takes as

arguments its corresponding properties. By default, all the properties of he Joker

are set to 0.

We present in Table 10.1 the properties of every geometric shape.

10.1.2 Package structures

The structures package refers to the data and tree structures used by GUICop

in the checking process. A Component class groups several basic shapes together

inside a bounding box when a node is satisfied. Component maintains a list of

shapes, and the following member functions: getMostLeft() gets the left side

coordinate of the object in the list that has the left most left side. getMostRight(),

getMostTop(), getMostBottom() are similar member functions.
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A Variable class maps an id defined in the variables section of the GUI object

definition to a list of potential shapes drawn from the list output of the drawing

library. The class has the member variables Id and the list of shapes Instances.

Finally, a Node class represents the augmented node of the constraints tree.

The parser generated by ANTLR parses the specification and returns an Abtract

Syntax Tree (AST) to the GUICop checker. The GUICop checker fetches the

variables subtree, the properties subtree and the constraints subtree. The AST has

a Tree data structure defined in the ANTLR runtime library where the ANTLR

Tree node can only hold a String member variable. Therefore the constraints

subtree cannot be traversed before rebuilding its structure and augmenting the

capacity of every node. The member variables added to the Node class are as

follows:

- SATISFIED: a boolean value that is true if the instrumentation meets the

specification at the node; false otherwise

- COMPONENTS : a list of objects of type Component that meet the specifi-

cation at the node.

- VALUES : a list of doubles returned from an operation that meets the

specification

- STRINGS: a list of strings returned from a string comparison that meets

the specification

10.1.3 Package guicop

The guicop package contains the essential logic used by the solver to perform the

checking process.
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The instrumentation output has a list V of all the objects being painted on

the screen. This list is constantly being updated upon screen refresh or any GUI

action. GUICop monitors this list and updates it by filtering out redundancies

and removing undesired results that are due to special cases listed under 6.4 in

chapter 6. The list of active objects L is accessible by shape types, e.g. it supports

an API to return all rectangles efficiently.

GUICop reads the specifications and generates the following.

1. GUICop keeps a map from each identifier, defined in the variables section,

to its variable type in a hash table. The type serves well to access all

satisfying objects for an identifier in L.

2. GUICop keeps a map from each identifier in the variables section, to the

order of its appearance in a hash table.

3. GUICop builds an AST for the formula in the constraints section. The

leaves are identifiers and are associated with the objects in L. ANTLR

initially generates a tree with nodes that would only store texts. GUICop

builds an augmented data structure and initializes the leaves: the variable

type of the id in the leaf is fetched from the hash table. After fetching the

type of the variable, a list of geometric shapes is stored inside a component

of the corresponding node. If the identifier corresponds to a custom defined

object, this object is checked first and a list of bounding boxes is returned

and used if the custom object is satisfied. The components also contain

instances of the Joker object to replace the variables that do not correspond

to the node under consideration. An instance of the variable is any potential

geometric shape that the variable can take.

4. GUICop keeps a table T of predicate rules indexed by the binary operators.
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Each rule rv for an operator v takes the solutions S1 and S2 of operands o1

and o2, respectively, and generates all possible solutions S ⊆ S1 × S2 and

eliminates those in S for which rv does not hold.

5. GUICop keeps a table G of rules that generate complex shapes to represent

the matching solutions in S in terms of basic geometric shapes. The

generative rules may compute the bounding box or the smallest polygon

containing the operands. The bounding box is generated from the properties

section of the defined object where X, Y, WIDTH and HEIGHT of the

object are assigned. The GUICop checker annotates the operator nodes

with the generated shapes as solutions.

6. GUICop considers the identifiers to match different objects unless otherwise

specified. GUICop uses this fact to reduce the running time of the checker.

For example, when the leftof operator from the hsbar example determines

that knob is r2, GUICop eliminates r2 from the solutions of hsbar leaving

only r1.

10.1.4 Package Parsers

The parsers package contains the lexer and parser Java classes generated by

ANTLR for both the specification and output language. The parser class has a

method for every rule defined in the grammar. Rule references are translated to

method calls and token references are translated to match(TOKEN) calls [19].

To utilize the developed grammars on the specification input and the instru-

mentation output, classes ANTLRInputStream and CommonTokenStream available in

the org.antlr.runtime package are loaded to create a parser that feeds off the

token stream. ANTLR then generates from the parser grammar an Abstract
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Syntax Tree (AST) that is passed to GUICop. An AST is a simple and useful

representation of the input. The parser also generates a parse tree, which is

less relevant for us in this case. The parse tree represents the sequence of rule

invocations used to match an input stream. It helps us verify that the input is

syntactically correct.

10.2 Driver

The driver is implemented in Java and it is loosely based on the GUI rip-

ping technique [5]. In Swing, GUI windows and widgets are instances of Java

classes. The driver starts by launching the application under test using the

reflection method where the main method of the application is invoked us-

ing java.lang.reflect.Method.invoke(). The Java API java.awt.Window.get

Windows() identifies all the visible GUI windows. These are the top level windows

of the application.

The driver starts recursively traversing these top level windows. The identity

of every window is saved in a HashMap once accessed to avoid a second access

during recursion.

The driver analyzes the current window and extracts its constituent widgets

through the method getComponents() of class Container and java.awt.Frames.

getJMenuBar() of class MenuBar. From the list of returned components, the driver

checks if the current component is a button (belongs to the AbstractButton class)

or a list (JList) or a text component (JTextComponent). The AbstractButton

class is a superclass for JButton, JRadioButton, JCheckBox and JMenuItem among

others. Therefore the driver can detect all types of buttons by checking if the

superclass of the widget is the AbstractButton.
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A click event is executed on the executable widgets, i.e. those belonging to

the AbstractButton class family. This class provides the method doClick() that

triggers a click event.

The driver traverses a list by going over (selecting) all its list elements through

the method setSelectedIndex(int i).

Finally, Swing offers major types of text components such as text fields

(JTextField class) and plain text areas (JTextArea) class. The driver exercises

a text component by typing a few characters inside of it after checking if it’s

editable.

After exhausting all the components belonging to one window, the process is

recursively performed till all the windows are invoked and analyzed.

10.3 Code Weaver

The code weaver is written in Java. It is a class that takes as input a script

written in English. The weaver parses this script to generate the corresponding

Aspect Oriented code using AspectJ. The resulting AspectJ code is then woven

with the application to embed the call for the GUICop checker within it.

The parser loops over the code to get all the environment variables and stores

them in a HashMap. It then loops again to fetch the pointcuts, the identifiers, the

function names and the code to be executed around the function. The parser

finally constructs instances of a method called PublicMethod that are maintained

in an ArrayList and that take as parameters the information previously fetched.

The PublicMethod class has 3 member variables presented below:

- function: contains the function name in the application at which the

pointcut should be defined
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- code: contains the code to call around the function

- timing: contains information about when the code should be executed

relatively to the function call in the application

Once the PublicMethod instance is constructed, the AOP code is generated with

the correct AspectJ syntax.
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Chapter 11

RESULTS

GUICop is successfully evaluated using real life case studies listed in Table 11.1.

The table summarizes the applications used for the purpose of evaluating GUICop,

their size (Lines of Code) and the issues that GUICop detected in these applica-

tions.

Case Study Size (LOC) Issue

JEdit
301,874 lines Right to Left Justification in Arabic Writing

Missing Menu Item Separator
Missing Hot Key Indicator

Jajuk 86,144 lines Unordered Listing of Numbered Tracks
Gason 1,741 lines Cropped Content in Labels

Table 11.1: Summary of Case Studies

11.1 Case Study JEdit

JEdit is a Java open source text editor used for programmers. We wrote a

specification to check against an existing JEdit defect. The defect relates to Right

to Left justification for Arabic text. We also injected two more defects and wrote

specifications to check against them. The first is a missing menu item separator
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and the second is a missing hot key indicator. We wove the GUICop specification

in the corresponding code position in JEdit. We present below three scenarios

where GUICop detected existing or injected bugs.

11.1.1 Right to Left Justification Defect

JEdit supports over 160 character encodings including UTF8 and UTF16 [36],

therefore Arabic characters should be supported. However when writing in Arabic

in the editing area, the characters appear left justified instead of being right

justified.

In the event of writing in English for instance, the sentence would be left

justified and the x coordinate of the resulting word would be equal to the x

coordinate of the text editing area. In this case, a character or a word is represented

by a textrect, which is a rectangle containing text. The coordinates of the textrect

are shown relative to the surrounding text area, therefore textrectx = textareax

= 0.

We developed a specification to check whether an Arabic sentence appears

right justified by verifying that the sentence does not start at the left side or the

beginning of the editing area, i.e. that textrectx > 0. The specification is shown

in Figure 11.1.
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RighttoLeft = {

variables {

firstline o1;

secondline o2;

}

properties {

X = o1.x;

Y = o2.y;

WIDTH = o1.width;

HEIGHT = o1.height+o2.height;

}

constraints {

(((o1 above o2) and (o1.x > 0)) and (o2.x > 0));

}

}

firstline = {

variables {

textrect t1;

}

properties {

X = t1.x;

Y = t1.y;

WIDTH = t1.width;

HEIGHT = t1.height;

}

constraints {

(t1.string == arabicstr1));

}

}

secondline = {

variables {

textrect t1;

}

properties {

X = t1.x;

Y = t1.y;

WIDTH = t1.width;

HEIGHT = t1.height;

}

constraints {

(t1.string == arabicstr2);

}

}

Figure 11.1: Right to Left Justification Specification.

The specification has three specobjects. RighttoLeft is the specobject to

be checked. The specification has a hierarchical composition where RighttoLeft

is defined in terms of the objects firstline and secondline.

The first section of the specification of RighttoLeft consists of the declara-

tion of the variables. Two custom defined objects are declared. firstline and

secondline denote two lines written in Arabic to be checked if they’re right jus-
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tified. The specification refers to arabicstr1 and arabicstr2 where arabicstr1 is

’ú
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�
Kð

�
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YËñË@ I. ë

	
X’ and arabicstr2 is

’ 	
àAj

�
JÓB@’.

The first and second lines are basically textrects, i.e. rectangles containing

text which is an Arabic phrase in this case. With every character being typed,

the textrect is updated with the new character and its width increases. GUICop

looks for the textrect that has the full phrase in the instrumentation output file

as dictated by the constraints of the firstline and secondline objects.

The constraint in RighttoLeft states that the first line should be above the

second line and that the lines should not be left justified, i.e. they should not

start at the beginning of the text area. After running the application to test the

scenario, the instrumented Swing library generates a long output list of shapes

being drawn on the screen. The GUICop checker inspects the output of the

instrumentation and asserts that the arabic phrases are not left justified, as shown

in Figure 11.2.

Solving for: (((o1 above o2) and ((o1 . x)) > 0) and ((o2 . x)) > 0)

Number of logic operations: 0 x 0

Number of endNode components: 0 and Number of endNode strings: 0

------------------------------------------

object1 is not satisfied

------------------------------------------

Figure 11.2: Output of the checker. Case Jedit Right to Left justification.

11.1.2 Missing Menu Item Separator

We programmatically removed a menu item separator from a context menu in

jEdit. We then wrote a specification to check for the existence of the menu item

separator.

Figure 11.3(left) shows the menu with the separator between the ”Properties”
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and ”Parent Directory” menu items.

Figure 11.3: jEdit context Menu (left) with a separator between ”Properties”
and ”Parent Directory”; (right) without the separator

Figure 11.3(right) shows how the menu looks like after rebuilding and running

jEdit with the function addSeparator() commented. The addSeparator() function

call in the BrowserCommandsMenu.java creates a separator between two menu items.

Commenting this function results in the removal of the separator, as shown in the

code snippet shown in Figure 11.4.
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i f ( ( f i l e s . l ength == 1 ) | | ( browser . g e t S e l e c t e dF i l e s ( ) . l ength != 0 ) )
add ( createMenuItem ( ” p r op e r t i e s ” , ”22x22/ a c t i on s /

document−properties . png” ) ) ;
// addSeparator ( ) ;

}
add ( createMenuItem ( ”up” , ”22x22/ a c t i on s /go−parent . png” ) ) ;

Figure 11.4: Function call addSeparator() commented.

We developed the specification in Figure 11.5 to check whether the separator

between the ”Properties” and ”Parent Directory” menu items exists. The missing

separator specification has three specobjects.
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MenuWithSeparator = {

variables {

MenuItem1 m1;

MenuItem2 m2;

line l1;

}

properties {

X = m2.x;

Y = m2.y;

WIDTH = m2.width;

HEIGHT = m2.height+m1.height;

}

constraints {

((((m2 above l1) above m1) and (l1.y1 == l1.y2)) and (l1.x1 < l1

.x2)));

}

}

MenuItem1 = {

variables {

textrect t1;

}

properties {

X = t1.x;

Y = t1.y;

WIDTH = t1.width;

HEIGHT = t1.height;

}

constraints {

(t1.string == ’Parent Directory ’);

}

}

MenuItem2 = {

variables {

textrect t2;

}

properties {

X = t2.x;

Y = t2.y;

WIDTH = t2.width;

HEIGHT = t2.height;

}

constraints {

(t2.string == ’Properties ’);

}

}

Figure 11.5: Missing menu separator specification.

MenuWithSeparator is the specobject to be checked. The specification has

a hierarchical composition where MenuWithSeparator is defined in terms of

MenuItem1 and MenuItem2. The first section of the specification of MenuWith

Separator consists of the declaration of the variables. Two custom defined objects

and a primitive shape (line) are declared. MenuItem1 and MenuItem2 denote

the menu items and the line denotes the separator. A menu item is a rectangle
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containing a text (textrect). Therefore, MenuItem1 is defined as a textrect

containing the string ’Parent Directory’ and MenuItem2 is defined as a textrect

containing the string ’Properties’.

The constraint in MenuWithSeparator states that the menu item ’Properties’

should be above the separator which in turn should be above the menu item

’Parent Directory’. The menu item separator is described as a horizontal line. To

force this attribute in the constraint, a horizontal line is characterized by the fact

that the ordinates y1 and y2 are equal and the abscissa x1 is less than x2.

After running the application to test the scenario, the instrumented Swing

library generates a long output list of shapes being drawn on the screen. The

GUICop checker inspects the output of the instrumentation and asserts that the

menu item separator is missing, as shown in Figure 11.6.

Solving for: ((((m2 above l1) above m1) and ((l1 . y1) == (l1 . y2))) and ((l1 .

x1) < (l1 . x2)))

Number of logic operations: 13 x 103

Number of endNode components: 0 and Number of endNode strings: 0

------------------------------------------

object1 is not satisfied

------------------------------------------

Figure 11.6: Output of the checker. Case Jedit Missing Separator.

11.1.3 Missing Hot Key Indicator

We removed a hot key indicator from the Markers menu in jEdit. We then wrote

a specification to check for the existence of the hot key indicator and the checker

asserts its absence. Figure 11.7(left) shows the Markers menu with the hot key

indicator under the letter M.

69



Figure 11.7: Markers Menu (left) with a hot key indicator; (right) without the
hot key indicator

In the properties file of JEdit, jedit en.props, a hot key is assigned by adding

a dollar sign $ next to the letter M in the Markers Menu entry, as per the following:

#{{{ Markers menu

markers.label=$Markers

After removing the dollar sign $ and rebuilding JEdit with the modified properties

file, the Markers Menu no longer has the hot key indicator. Figure 11.7(right)

shows the Markers menu without the hot key indicator.

We developed a specification to check whether the hot key indicator under

letter M in the Markers menu exists, as shown in Figure 11.8. The specification

has two specobjects. HotKeyIndicator is the specobject to be checked.
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HotKeyIndicator = {

variables {

markers m1;

rectangle hotkey;

}

properties {

X = m1.x;

Y = m1.y;

WIDTH = m1.width;

HEIGHT = m1.height;

}

constraints {

(((((m1 above hotkey) and (hotkey.height < 3)) and (m1.x < (

hotkey.x + 1))) and (hotkey.x < (m1.x + 1))) and (hotkey.y

== ((m1.y + m1.height) + 1)));

}

}

markers = {

variables {

textrect t1;

}

properties {

X = t1.x;

Y = t1.y+1;

WIDTH = t1.width;

HEIGHT = t1.height -1;

}

constraints {

(t1.string == ’Markers ’);

}

}

Figure 11.8: Missing Hot Key Indicator Specification.

The specification has a hierarchical composition where HotKeyIndicator is

defined in terms of the object markers.

The first section of the specification of HotKeyIndicator consists of the

declaration of the variables. A custom defined object and a primitive rectangle

are declared. markers denotes the Markers menu and the rectangle denotes the

hot key or the underscore like shape under the letter M in ’Markers’. The Markers

menu is a rectangle containing a text which corresponds to the primitive shape

textrect. Therefore, m1 is defined as a textrect containing the string ’Markers’.

The constraint in HotKeyIndicator states that the textrect ’Markers’ should

be above the underscore like shape of the hot key. The height of the underscore

like shape should be very small so that the rectangle looks more like a line. The
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underscore like shape should start around the beginning of the textrect ’Markers’

and should be positioned right below the textrect.

After running the application to test the scenario, the instrumented Swing

library generates a long output list of shapes being drawn on the screen. The

GUICop checker inspects the output of the instrumentation and asserts that the

hot key indicator is missing, as shown in Figure 11.9.

Solving for: (((((m1 above hotkey) and (( hotkey . height) < 3)) and ((m1 . x) <

(( hotkey . x) + 1))) and (( hotkey . x) < ((m1 . x) + 1))) and (( hotkey . y)

== (((m1 . y) + (m1 . height)) + 1)))

Number of logic operations: 0 x 9

Number of endNode components: 0 and Number of endNode

------------------------------------------

object1 is not satisfied

------------------------------------------

Figure 11.9: Output of the checker. Case Jedit Missing Hot Key Indicator.

11.2 Case Study Advanced JukeBox

Jajuk is a cross-platform Java music organizer and player. It is directed towards

advanced users who are looking for powerful functionalities [37]. We wrote a

specification to check against an existing Jajuk defect. The defect relates to

numbered tracks not being listed in order. We wove the GUICop specification in

the corresponding code position in Jajuk. We present below the scenario where

GUICop detected the issue.

11.2.1 Unordered Listing of Numbered Tracks

When listing numbered tracks, Jajuk fails to put them in the right order. For

instance, ’Track1’ is followed by ’Track10’ instead of ’Track2’. We reported this

issue on GitHub under Issue number 1991 [38]. Figure 11.10 shows how Jajuk
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lists numbered tracks in the library or the Tracks table. GUICop can detect this

issue by asserting that ’Track2’ does not precede ’Track10’, as shown in the figure.

Figure 11.10: Numbered tracks listed in Jajuk.

We developed a specification to check whether the tracks are listed in order,

by checking for instance if ’Track2’ precedes ’Track10’, as shown in Figure 11.11.

The specification has three specobjects. NumberedTracks is the specobject to

be checked.

73



NumberedTracks = {

variables {

secondtrack t1;

tenthtrack t2;

}

properties {

X = t1.x;

Y = t1.y;

WIDTH = t1.width;

HEIGHT = t1.height+t2.height;

}

constraints {

(t1 above t2);

}

}

tenthtrack = {

variables {

textrect t2;

}

properties {

X = t2.x;

Y = t2.y;

WIDTH = t2.width;

HEIGHT = t2.height;

}

constraints {

(t2.string == ’Track10 ’);

}

}

secondtrack = {

variables {

textrect t1;

}

properties {

X = t1.x;

Y = t1.y;

WIDTH = t1.width;

HEIGHT = t1.height;

}

constraints {

(t1.string == ’Track2 ’);

}

}

Figure 11.11: Numbered Tracks Listing Specification.

The specification has a hierarchical composition where NumberedTracks is

defined in terms of the objects secondtrack and tenthtrack.

The first section of the specification of NumberedTracks consists of the

declaration of the variables. Two custom defined objects are declared. secondtrack

and tenthtrack denote the second and the tenth tracks in the library. The second

and tenth tracks are basically textrects, i.e. rectangles containing text, ’Track2’
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and ’Track10’ respectively.

The constraint in NumberedTracks states that the second track should be

above the tenth track. After running the application to test the secnario, the

instrumented Swing library generates a long output list of shapes being drawn on

the screen. The GUICop checker inspects the output of the instrumentation and

asserts that ’Track2’ does not precede ’Track10’ as shown in Figure 11.12.

Specification error for solving: (t1 above t2)

Number of endNode components: 0 and Number of endNode strings: 0

------------------------------------------

object1 is not satisfied

------------------------------------------

Figure 11.12: Output of the checker. Case Jajuk Unordered Listing of Numbered
Tracks.

11.3 Case Study Gason

Gason is an open source plugin developed in Java to use sqlmap from BurpSuite [39]

which is an integrated platform for performing security testing of web applications

[40]. We wrote a specification to check against an existing Gason defect. The

defect relates to the labels not displaying words entirely. We wove the GUICop

specification in the corresponding code position in Gason. We present below the

scenario where GUICop detected the issue.

11.3.1 Cropped Content in Labels

The source code of Gason is hosted on Google Code. A defect is found regarding

the user interface of Gason and is reported under Issue3 [41]. This issue consists

of the content of the labels being cropped and not seen completely. The labels are

not resizable either. Figure 11.13 shows how the main window of Gason appears
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with the content of the labels not being displayed completely.

Figure 11.13: Main window of Gason with cropped content in the labels.

We developed a specification to check whether the content of the labels is

displayed correctly, by checking for one of the labels containing the word ’Cookie’,

as shown in Figure 11.14.

CroppedContent = {

variables {

textrect t1;

}

properties {

X = t1.x;

Y = t1.y;

WIDTH = t1.width;

HEIGHT = t1.height;

}

constraints {

(t1.string == ’Cookie ’);

}

}

Figure 11.14: Cropped Content Specification

The specification has one specobject to be checked, CroppedContent. The
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first section of the specification of CroppedContent consists of the declaration

of the variables. A textrect is declared to denote a label containing text. The

constraint in CroppedContent states that the label should contain the word

’Cookie’. After running the application to test the secnario, the instrumented

Swing library generates a long output list of shapes being drawn on the screen.

Since the word ’Cookie’ isn’t fully displayed, GUICop detects the issue by looking

for the full word in the instrumentation output and reports a failure, as shown in

Figure 11.15.

Specification error for solving: ((t1 . string) == ’Cookie ’)

Number of endNode components: 0 and Number of endNode strings: 0

------------------------------------------

object1 is not satisfied

------------------------------------------

Figure 11.15: Output of the checker. Case Gason Cropped Content in Labels.

77



Chapter 12

CONCLUSION

In this work, we presented GUICop an automated GUI testing tool to check

whether the execution trace of a GUI program satisfies a user-defined specification.

GUICop is a full toolset that handles the testing process from launching the

application to driving the application’s GUI to finally computing the check without

impacting the application’s original code. The GUICop specification language

is based on basic geometric shapes, events, and relative positional and timing

operators. GUICop captures the behavior of the GUI through an instrumented

Java Swing library. The GUICop specification language and the supporting

solver tolerate non-functional behavioral differences such as screen resolution and

color schemes. This allows for more robust testing suites.

GUICop was successfully evaluated using real life case studies and was seen

effective at detecting layout problems undetectable in the widgets properties. In

the future we will support more shapes and operators with GUICop and provide a

more extensive library of GUI objects. We will instrument other graphics libraries.

Furthermore, we will extend the functionality of the driver by expanding the list

of executable widgets and generating automated test cases to exercise the GUI.
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Appendix A

JEdit

A.1 Building jEdit

A build.xml file that comes with the source code of jEdit enables the user to

compile the code and run the tool through ANT. A few changes were performed

to the build.xml as shown in Figure A.1:

- Addition of the guicop.jar and antlr-3.4.jar to the classpath of the javac and

java commands in the ”compile” and ”run” targets.

- Addition of the JVM argument to the java command in the ”run” target in

order to load the instrumented graphics library
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<target name="compile" depends="init">

<mkdir dir="${ classes.dir}/core"/>

<depend srcDir="${ basedir}"

destDir="${ classes.dir}/core"

cache="${ classes.dir}"/>

<dependset >

<srcfilelist files="build.xml"/>

<targetfileset dir="${ classes.dir}/core"/>

</dependset >

<javac srcdir="${ basedir}"

destdir="${ classes.dir}/core"

debug="true"

debuglevel="${ config.build.debuglevel}"

nowarn="${ config.build.nowarn}"

deprecation="${ config.build.deprecation}"

source="${ target.java.version}"

target="${ target.java.version}"

compiler="modern"

encoding="UTF -8"

includeAntRuntime="false">

<classpath id="classpath.compile">

<fileset dir="${lib.dir}/ compile"

includes="*.jar"/>

<!-- Needed jar files added here -->

<fileset dir="/home/dalal/workspace/Examples/bin

"

includes="*.jar"/>

</classpath >

<include name="org/**"/>

<compilerarg line="${ config.build.compilerarg}"/>

</javac >

</target >

<target name="run"

depends="init ,build"

description="run jEdit">

<java jar="${jar.location }/${ jar.filename}"

fork="true"

spawn="true"

<!-- Needed jar files added here -->

classpathref="classpath.compile">

<!-- Loading the instrumented graphics library -->

<jvmarg value="-Xbootclasspath/p:/home/dalal/Desktop/

Research/rt.jar"/>

<arg value="-settings =${ build.dir}/ settings"/>

</java>

</target >

Figure A.1: Modifications made to the build.xml file of jEdit

A.2 Calling GUICop

Upon closing the about dialog in the help menu of jEdit, a call to the GUICop

checker is woven to check for the provided specification against the instrumentation

output. The call for GUICop is made within the closeDialog() method of the
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AboutDialog.java class, before the dialogue is completely disposed. The code

snippet is shown in Figure A.2. The code is applied across all case studies to call

the checker.

{
t ry {
Thread . s l e e p ( 2000 ) ;

} catch ( Inter ruptedExcept ion ex ) {
// Logger . getLogger (ToolBarDemo . c l a s s . getName ( ) ) . l og

( Leve l .SEVERE, nul l , ex ) ;
}

t ry {
Class c = guicop .Main . c l a s s ;
Class [ ] argTypes = new Class [ ] { St r ing [ ] . c l a s s } ;
Method main ;
obj = c . newInstance ( ) ;
main = c . getDeclaredMethod ( ”main” , argTypes ) ;
System . out . format ( ” invok ing %s . main ( )%n” , c . getName

( ) ) ;
main . invoke ( obj , new St r ing [ 1 ] ) ;
} catch (NoSuchMethodException | Secur i tyExcept ion

e1 ) {
// TODO Auto−generated catch block
e1 . pr intStackTrace ( ) ;

} catch ( I l l e g a lAc c e s sExc ep t i on e1 ) {
// TODO Auto−generated catch block
e1 . pr intStackTrace ( ) ;

} catch ( I l l ega lArgumentExcept ion e1 ) {
// TODO Auto−generated catch block
e1 . pr intStackTrace ( ) ;

} catch ( Invocat ionTargetExcept ion e1 ) {
// TODO Auto−generated catch block
e1 . pr intStackTrace ( ) ;

} catch ( In s t an t i a t i onExcep t i on e1 ) {
// TODO Auto−generated catch block
e1 . pr intStackTrace ( ) ;

}
}

Figure A.2: Java code to call the GUICop checker
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