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An Abstract of the Thesis of

CHADI HANNA TRAD for Master of Engineering
Major: Electrical and Computer Engineering

Title: Facial expression recognition from images for various head poses

In the process of facial expression detection from image or video modalities, the
variation of head poses with respect to the camera causes a challenging problem
for any robust recognition. Several studies have been conducted on the effect
of the pose on the recognition rate. The prevalent methodology to solve this
problem consists of transforming the facial features back to a frontal pose before
inferring the facial expression. Some work has further considered splitting the
face into multiple parts then performing a simple maximum combination of the
classifications. In this work, we propose a new approach for splitting and fusing
the facial features in cases with head yaw rotations. The approach consists of
splitting the face into left and right features. Then, two methods are proposed
to classify the facial expression. In the first method, we detect facial Action
Units (AUs) in the left and right parts then combine the results using a logical
OR operation. In the second method, we propose an optimized fusion of the
facial expressions. The outcome of the optimized method is a set of weights to
combine the classifications from each side of the face at different yaw angles. The
weights are determined dynamically based on the yaw angle of the head through
a polynomial regression. Experiments were conducted on the two methods using
a custom-made database and a set of benchmark 3D facial images. The results
showed a 7.1% improvement for our proposed split-and-fuse method over full facial
features approach. Furthermore, the optimized fusion method showed superiority
in comparison to max-based fusion.
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Chapter 1

Introduction

Facial Expression Recognition (FER) has attracted research works for the past
two decades. Broadly, FER consists of automatically detecting emotions or muscle
changes in the face, typically from a camera. While significant progress has been
made towards automated FER, the problem of head pose remains a key challenge.
In this thesis, we present a background on this particular area of research and our
contributions. The importance of FER lies in the number of applications enabled
by this area of research, in fields such as Human-Computer-Interaction (HCI),
crime prevention and even marketing. We begin this chapter by discussing the
relevance of FER to these three fields.

A modern user-interface should interpret the facial movements as well as the
emotional state of the user [1]. One of the well-known systems that employ FER-
based user-interfaces is Intel’s Assistive Context Aware Toolkit (ACAT). By only
detecting the movement of a single cheek muscle, ACAT enables Prof. Stephen
Hawking to interface with his computer and the world via voice synthesis and
text prediction [2]. Other types of emotion-based HCI systems have been pro-
posed for entertainment purposes. For instance, Durnaika et al [3] proposed to
add an emotion recognition functionality to Sony’s social AIBO robot. These ad-
ditions allowed the AIBO to detect human emotions and respond to them. Such
applications represent a sample of FER field’s contributions to the HCI field. Ad-
ditionally, new applications in crime prevention can now be enabled by automated
FER. Due to the long hours of operator monitoring a camera feed, operators are
considered to be the ”weakest link” in surveillance systems according to Bullington
[4]. Therefore, by offloading the burden of human information processing off the
operators, Bullington suggested that automated FER can make surveillance more
effective. Furthermore, new contributions to the marketing field have been made
with the use of FER technology. RealEyes, a UK start-up, has recently partnered
with more than 20 major companies to assess the effectiveness of their current and
future video commercials. By tracking the emotions of a number of subjects during

1



a commercial, RealEyes claims to evaluate the user engagement while watching a
video and predict the impact of the video.

Despite the progress of these applications, the variation in head pose remains
one of the major setbacks for the accuracy of automated FER. The majority of
the works available solves the problem of head pose by pose normalization which
consists of transforming the face to a frontal view first or by choosing features
that are not highly affected by the pose. It has been reported that the pose
has an impact on the recognition rate and that the best rate is achieved at non
frontal poses [5]. To improve on the accuracy obtained for non frontal poses, we
propose two approaches that consist of splitting the face into two regions, and then
combining the decisions from both regions.

For head rotations around the vertical axis, also called yaw rotations, we split
the face into left and right regions, classify the expression in each region separately,
and then fusing the decisions. The reasoning behind the fusion of decisions from
two regions is that these parts provide competitive rather than complementary in-
formation. For instance, a smile can be detected independently using the left or
right side of the face. In contrast, when regions provide complementary informa-
tion, a fusion of decisions may suffer from loss of information. To illustrate this
effect, an analogy can be made to the mythological story, ”the blind men and the
elephant”. In an attempt to learn what the elephant is like, each person feels a
different part of the elephant. The group of persons end up in complete disagree-
ment, thinking that the elephant is either a hand fan (ear) or a pillar (leg), etc.
Similarly, choosing regions that present complementary information can impede
the performance of a decision fusion.

Therefore, we present in this thesis two methods to recognize facial expressions
with head rotation: one is angle independent, and the other is angle dependent. In
the first method, we propose a heuristic approach to detect Action Units (AUs),
codes for muscle changes in the face, by applying classifiers on two regions of the
face and merging the decisions. In the second method, we propose a fusion based
approach to recognize the emotion by optimizing the detection with respect to the
angle. The particulars of these approaches are further described in this thesis.

This thesis is planned as follows. Chapter 2 covers the backgrounds related
to the thesis and the field of FER. Chapter 3 describes the related research work
in this field. Chapter 4 provides the details for the first proposed method for AU
detection from either sides of the face. Chapter 5 presents the second method
based on optimized fusion for emotion recognition from both sides of the face.
Chapter ?? summarizes our contributions and concludes the thesis.
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Chapter 2

Background

Facial expression recognition consists of determining the affective state of an in-
dividual. A number of methods have been proposed in the last two decades to
achieve this recognition. The methods vary in multiple aspects such as the use
of coding for facial expressions, the facial features and the classification methods.
This chapter provides a brief overview of the common methods used.

Another differentiating aspect is the pose normalization approach applied.
Briefly, this chapter presents the similarities and differences between these expres-
sion detection methods, starting with the different taxonomies of facial expressions,
followed by an overview of the methods applied.

2.1 Taxonomy of Facial Expressions

For facial expression detection, there are typically two types of approaches: One
type is based on facial expression measurement and the other is based on facial
muscle action detection. These types are also known as message-judgment and
sign-judgment approaches, respectively [6]. The aim of message-judgment is to
detect the affect underlying the facial expression, while the aim of sign-judgment
is to purely describe the state of facial components such as their movements or
shapes, leaving affect judgment to a higher level process.

Facial Action Coding System (FACS) is considered as a sign-judgment ap-
proach, while the emotion detection is a message-judgment approach. FACS,
which was introduced by Ekman et al. [7], is the most used coding scheme that
describes the muscular activity of a face. This coding scheme describes visually
discernible facial movements in terms of Action Units (AUs). Ekman and Friesen
first identified 44 AUs, which were associated with the contraction of facial mus-
cles. They also provided rules for recognition of the onset (start), apex (peak) and
offset (end) of the AUs. Additional AUs were later added in newer revisions. On
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Figure 2.1: AUs activated for the emotion happy

the other hand, a similar coding scheme is also used to describe the underlying
affective state. In his research, Ekman first discovers a set of emotions that are
expressed similarly across all cultures, which he coined universal emotions (anger,
disgust, fear, happiness, sadness and surprise). Each of Ekman’s emotions can be
represented by a combination of AUs, as illustrated in Figure 2.1. Virtually every
existing work and application on facial expressions studies the six basic emotions.
Aside from being widely available in most databases, the main reason of their pop-
ularity is their stability over culture and age. Another notable emotion labelling
scheme is Russell’s valence-arousal model [8]. While the use of such scheme is less
common when describing facial expressions, the advantage provided by this model
is that emotions are classified along two continuous dimensions instead of being
labelled discretely. In this thesis, our first proposed method in Chapter 4 detects
AUs while the second one in Chapter 5 detects universal emotions.

2.2 Facial Expression Recognition Approach

Generally, most facial expression recognition approaches apply similar procedures
for detection. Starting with a set of images or a video, the first step consists
of detecting the position of the face in the image. Facial detection has been
extensively solved, and one of the prevalent algorithms used to solve this problem
is the Viola-Jones algorithm [9]. The detected face has a certain position and
orientation with respect to the camera, called head pose. The variation in head
pose between one video and the other is problematic since it can negatively affect
the accuracy of the system. Once the face is detected, head pose normalization
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is typically applied. The types of normalizations are further explained in section
2.3. The normalization is then followed by feature extraction. The main idea
behind feature extraction is to compute features that are relevant to the facial
expressions. For instance, to detect if a person is smiling, the distance between
the lip corners can be used as a feature. If this distance is high with respect
to a reference, the person is likely to be smiling. Alternatively, the forming of
folds and riddles around the mouth, specifically in the nasolabial region, can also
indicate a smile. These two types of features are later referred to as geometric and
appearance-based features. After computing these features, a machine learning
algorithm is applied for the detection of the facial expression.

2.3 Pose Normalization Approaches

There are three types of common transformations for head pose normalization:
Euclidean transformations, affine transformations, and model based transforma-
tions.

Euclidean transformation is simplest transformation, and consists of a transla-
tion, a rotation and a scaling. The method considers the inner eye corners, which
are invariable with respect to the expressed affect. A rotation of the face is per-
formed, aiming to align the eye corners with the horizontal plane. This rotation is
then followed by the scaling of the face to match a reference interocular distance
(the distance between the eyes). The rotation, which is a rotation within the cam-
era plane, can be used to normalize the face when it has rotated within the same
plane. Very small out-of-plane rotations might be tolerable when applying this
transformation.

Affine transformations are more complex and consist of a linear combination
of translation, rotation, scaling and shearing (non-uniform scaling). This kind
of transformation requires three points of reference, and the tip of the nose is
typically considered in addition to the inner eye corners. Affine transformations
are generally used for small angles ranging between -30 and 30 degrees, as the
reported accuracies drastically decrease for images outside of those bounds.

Finally, model-based transformations consist of mapping the pixel coordinates
detected to a 3D model of the face and then projecting them back to a frontal view.
Common frameworks that are used for this type of transformation are Active Shape
Models (ASM) [10] or Mixture of Parts (MoPs) [11].

5



Chapter 3

Related Work

In this chapter, we discuss the work related for AU detection in section ?? and
emotion detection in section 3.2.

3.1 AU detection

Virtually most of the AU methods reported have been based on near frontal views
data [12] or on data with moderate head pose variation [13]. For instance, the
work of Valstar et al. [12] investigated facial AU recognition from near-frontal
views using geometrical features, and modeled the temporal phases of AUs. One
of the weaknesses reported is that significant out-of-plane rotations affected the
recognition accuracy. Other work such as the work of Tyan et al. [14] used
a combination of geometrical and appearance based features. This method was
reported to be robust for moderate face rotations, but no direct measure for the
accuracy/angle dependency was reported.

To extract facial expressions in less-constrained environments, such as different
head poses, Pantic and Patras [15] investigated facial AU recognition from profile
views. Most methods used to recognize AUs are based on geometric features. In
the work of Valstar et al. [12], the authors extracted the facial points using a
tracking scheme based on particle filtering using factorized likelihoods (PFFL).
Affine transformation was then performed on the obtained coordinates to reverse
the effect of scaling and small head orientations. Geometrical features as well as
temporal features were extracted from the image sequences. Finally, a combination
of Gentle-Boost and Support Vector Machine (SVM) was used in the classification
stage. The system was further extended to detect the temporal activation model
(neutral, onset, apex and offset). The main disadvantages of their system in
detecting AUs for pose variations can be summarized by the following: (1) the
affine transformation cannot model out-of-plane rotations assigned with the head
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pose, and (2) PFFL cannot handle facial point occlusions associated with head
pose variation.

3.2 Emotion Recognition

Broadly, emotion detection can be achieved by using two types of features: geo-
metric and appearance-based. Prominent works have utilized the following types
of appearance based descriptors: Histogram of Gradient (HoG) (e.g [16]), Local
Binary Patterns (LBP) (e.g [5]) and Scale Invariant Feature Transform (SIFT) (e.g
[17]). On the other hand, a number of works have focused on geometric features.
Features such as the displacement of important facial points in Hu [18], to more
sophisticated ones including temporal features in Valstar [12] have been proposed.
For a more elaborate survey on the types of features used, we refer to the survey
in [19]. While most of the works improve on the feature extraction, dimensionality
reduction [16] or classification approaches, a very limited number of algorithms
have directly studied the effect of the pose (e.g. [18, 16, 20]). Also few works have
attempted to split the face into regions and perform a decision fusion to study the
effect of pose (e.g. [21, 22]).

The work of Tariq et al. [21] reported that splitting the face into multiple
regions and applying a fusion on the decision level can improve the performance
of the recognition. The fusion applied in their work was MAX fusion. MAX
fusion consists of selecting the class that has the highest decision score from all
the classifiers. However, we argue that this type of fusion does not model the effect
of the pose on the performance of each region, and thus has room for improvement.
In contrast, we propose a fusion approach that optimizes the fusion depending on
the yaw angle.
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Chapter 4

Method 1: Angle Independent
Action Unit Detection Method

In this study, we propose a system that can recognize FACS AUs for various poses,
which was published in [22]. Facial expression recognition has been an active
research topic for many years, with Facial Action Coding Systems (FACS) being
among the widely used methods. FACS is a well-established scheme in psychology
to annotate facial muscle contractions and relaxations, also called Action Units
(AUs). Previous works on FACS-based methods focused on frontal or near-frontal
head poses. In this work, we propose a method to recognize expressions in side
head poses. This method builds one classifier for each possible group of occlusions.
Facial expression recognition of a side facial pose is then based on a boosting
approach of the different classifiers. The method is first tested with frontal and
near-frontal head poses, and the results are shown to be comparable to state of the
art work for AU and emotion detection. The method is then tested with a small
training set for various orientations and AUs, and shown to be accurate.

The rest of this chapter is planned as follows. In Section 4.1, we present some
preliminary concepts. Section 4.2 presents the proposed method. Experimental
results are shown in Section 4.3. This method is concluded in Section 4.4.

4.1 Preliminary Concepts

In this section, we describe the general parts in a geometrical based AU recognition
system and introduce the methods used in our system. First, a facial tracker is
employed to detect and track the facial points. One of the most used models for
facial tracking is the Deformable Model Fitting (DMF). DMF is a classic problem
formulation in which the shape of object deformations is modeled using the Point
Distribution Model (PDM) founded by Taylor [10]. In this model, the facial points’
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positions are calculated using the following equation:

xi = sR(x̄i + Φiq) + t , (4.1)

where xi denotes the location of the ith landmark, s denotes a scale, R a rotation
matrix, x̄i the mean location of the ith landmark, q a set of non-rigid parameters,
and Φ a submatrix of basis variations. The aim is to determine the landmarks
positions xi, by determining the set of shape parameters (shape, rotation, transla-
tion and non-rigid parameters). Particularly, the Regularized Deformable Model
Fitting (RDMF) tracker [23] follows the DMF model. RDMF uses a logistic re-
gressor function to determine the likelihood of a facial point position, given an
input image. The values of the landmark positions are determined by minimizing
the misalignment error according to the PDM model as well as maximizing the
new position likelihood. The search space of an optimal solution is minimized
using hill climbing methods. The advantage of this tracker is that it is robust to
multiple occlusions since it leverages the relationship among the facial points in
the PDM model. After extracting features from the obtained facial points’ posi-
tions, a machine learning algorithm such as SVM can be used to classify an AU.
However, if the feature dimension is greater than the training data, overfitting to
the training data is rather probable. Many feature reduction techniques can be
used at this stage. Gentle-Boost combines a weighted vote of weak classifiers in
the final classification. In the next section, we propose how to combine RDMF
with Gentle-Boost to detect the AUs for various orientations.

4.2 Proposed Method

In this section, we describe our proposed method illustrated in Fig. 4.1. The first
step is to detect and track a set of facial point coordinates using the RDMF tracker
proposed in [23]. These coordinates are then separated into two groups: left-face
points and right-face points. The features extracted are the distances’ variation
among the points. Finally, we describe the model for detecting the activation status
of each AU. In the following subsections, we first describe how the features are
extracted for each face region, and then we explain the AU classification scheme.
Finally, we describe a classification system for emotion detection.

4.2.1 Feature Extraction from Left and Right Face Regions

Each image sequence is first processed using the RDMF tracker [23] obtain facial
points coordinates across all frames. We note the coordinates of these points as:

X = ((x1, y1), (x2, y2), ..., (xn, yn)) . (4.2)
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Figure 4.1: AU detection algorithm

.
In this work, the number of facial points is 66, which is based on the RDMF

implementation. We note at this point that not all of these points can be extracted
when an area from the face is occluded, such as the right or the left facial area.
After detecting the facial points, a set of features are then extracted. Euclidean dis-
tances dij among the points are calculated, such that dij =

√
(xi − xj)2 + (yi − yj)2.

Then, the set of features are extracted from the specified facial area. The features
are defined by the ratios:

Rij =
dij
drij

(4.3)

where drij is the distance between the facial points i and j in a reference frame:
a frame where the facial expression is neutral. The choice of these features is
suitable when the head poses in the neutral frame and the tracked frame are
relatively close. Rather than employing all the points in the AU classification,
we propose to train multiple classifiers for each facial area (in this case left or
right). It follows that only pair of points within one part of the face are used as
features in each classifier. For instance, consider a facial tracker that can track
three disjoint sets of facial points: A, B and C, and assume that either one of the
set of points A or C can be occluded at once (for example the left or right facial
area). Rather than training a single classifier MABC on all the landmarks that
belong to A, B or C, we propose to train two classifiers: MAB and MBC, that is
for all possible combinations of landmarks being present/absent. For instance, in
the testing phase, in the case where A (respectively C) is occluded, MBC classifier
should be used (respectively MAB). The occlusion status of the facial area can be
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directly extracted from the RDMF tracker by checking the point coordinates. On
the other hand, if no landmarks from A or B are occluded, the decision should be
weighted between MBC and MAC. The same procedure applies for the training
phase, where the classifiers can be trained only when their corresponding sets are
not occluded. In our implementation, we consider three sets of landmarks: left-
face-only set L, right-face-only set R and common points J. In the case where
no area is occluded, the final decision is based on a logical OR between MLJ and
MRJ. In the remaining part of the paper, the term “left face” (respectively “right
face”) will refer to the points in L and J (respectively to the points in R and J).
It is worth noting that the difference between this method and conventional ones
is that multiple classifiers with various features are being used for each face region
rather than using one classifier for the whole face.

4.2.2 Action Unit Detection Model

The training algorithm for each AU classifier is illustrated in Fig. 4.1 and Fig. 4.2.
In the training phase, the neutral and apex frames are extracted from each video.
The features from the left and right areas of the face are collected separately.
One classifier is trained to classify the activation state of each AU (activated or
not) and for each area of the face, using the features collected. The activation
state of each AU should be available in the database or manually annotated by a
FACS coder. We employ Gentle-Boost algorithm to avoid data overfitting on one
hand, since the number of features is higher than the number of training data,
and to make our work more comparable with other works in the literature. In the
testing phase, if a facial area is occluded, the classifier of the other area will be
used for classification. In the case where no facial area is occluded, the activation
state of the AU is calculated by performing a logical OR on both left and right
classifications. In fact, the FACS manual states that if an AU is activated in one
part of the face, e.g. left eye brow raiser, the AU is annotated to be activated.

4.3 Experiments and Evaluation

In our system, we employed the author’s implementation of the RDMF facial
tracker in our system [23]. The code executes in real time and its output ranges
from 20 - 30 fps based on the processor and the compiler used. In order to evaluate
our method, we perform three experiments. In the first one, we test our system
on the Cohn-Kanade (CK) database [10] which contains 480 gray scale videos
that were made public. The head orientation of subjects in the recorded videos
is near-frontal. This database was collected for the purpose of facial expression
recognition and this is currently the most used database in this research area. We
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Figure 4.2: Left/Right face model

study our system on this database in order to validate our results by comparing
them with a state-of-the-art geometrical approach for small head orientations. In
this comparison, we use the results obtained in the frame-based experiments by
Valstar et al. in [12]. In the second experiment, the Emotion detection system is
tested against the one proposed also in [12]. Finally, we validate our system in the
third experiment for various poses of the head, ranging from 0 degree to 90 degrees.
For this case, multiple videos were recorded featuring different orientations

4.3.1 Benchmarking for Action Unit Detection

In the CK database, for each sequence of images, the facial landmarks were de-
tected using the RDMF tracker. The coordinates of the 66 facial landmarks are
tracked through each image sequence in the database. The left face area con-
sists of 37 points while the right one contains 38. The numbers were determined
experimentally and depend on the training of the facial tracker.

For each facial area, the ratios of the distances, described in section 3, were
extracted from the neutral face and the apex frames. In the CK database, rather
than manually labeling the apex frames for each AU in each video, which is time
consuming, we considered the neutral and the apex frames to be the first and the
last frames of the image sequence, respectively. We note that this assumption
is fair for most AUs in this database, since most image sequences were recorded
till the beginning of the apex stage for all AUs. However, we are aware of this
assumption’s limitation since it is not always valid, especially for certain AUs like
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Table 4.1: Size of the facial landmark sets and their corresponding features
Size of landmark sets Size of feature vector

Full-Face Left Right Full-Face Left Right
66 37 38 2145 666 703

AU45 (blink). As per features and class labels, the left face features and the right
face features were extracted for each image as specified in the previous section.
In summary, the size of the feature sets are presented in Table 4.1. Finally, we
mention that we trained each of the Gentle-Boost classifiers for 10 rounds.

We conduct our experiment using the leave-one-subject-out strategy. In each
fold, one subject is left out of the database, and all classifiers are trained on
the remaining subjects and then tested on the subject that was left out. Binary
confusion matrices are then summed together for all the experiments, i.e. for
each subject in the database. Table 4.2 shows a comparison between the results
obtained in our work, named Distance Ratio Classifier (DRC), and the one in the
paper [12] by Valstar et al., illustrated as (TMP). In the third column, the number
of positive examples for each AU is illustrated. All AUs that were previously
studied, except for AU10, are also studied in this work. In our experiment, all 500
image sequences from the CK database were used, whereas the number of image
sequences used in the TMP algorithm is 153. Four measures were calculated:
accuracy, recall, precision and F1 measure. While the accuracy measure is a
highly biased measure due to the unbalanced nature of the data, precision and
recall are a better approximation of the data. The F1 measure combines the two
latter measures by favoring them equally. The table is interpreted as follows. For
each AU, compare the F1 column of the DRC and TMP algorithms. Precision and
recall can be used for further investigation on the property of the classifier used.
When needed, we refer to the accuracy of column. However, we note again that
the latter measure is not very significant since the number of negative examples
for each AU is much bigger than the ones with positive examples. Although, the
results obtained in our method are highly optimistic, no direct conclusion on the
superiority of our algorithm over the temporal based algorithm can be made since
the selection of videos used is not the same.

As can be seen, AU1 (inner brow raisers) and AU24 (lip pressor) show very close
results with superior measures for the DRC method. Additionally, our method is
also superior for other AUs such as AU2, AU4, AU5, AU7 and AU9. We believe
that the reason for this improvement is behind the DMF model used by the Facial
Tracker. On the other hand, other AUs such as AU6 (cheek raiser) and AU12 (lip
corner puller) show that the method proposed is not accurate. In fact, it can be
observed that the landmarks of the lip corners are not tracked effectively using the
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RDMF when performing AU12. Lastly, the poorest result achieved by DRC is for
AU45 (blink). The lack of precision for this AU detector is mostly attributed to
the preprocessing assumption that we made. In fact, most image sequences end
after the offset of this AU has occurred, i.e. the final frame does not generally
contain the apex for AU45. Any accurate result for this AU is due to the mere
correlation between AUs in the database. We mention that we trained each of the
Gentle-Boost classifiers for 10 rounds.

4.3.2 Benchmarking for Emotion Detection

In this section, the same features extracted previously are used in the emotion
detection. We compare our method to the one proposed by Valstar et al. in [12]
on the CK database. Note that the annotation for the emotions is provided in the
database. The confusion matrix obtained in [12] is illustrated in Table 4.3. The
results obtained using our method are illustrated in Table 4.4. We test our system
by using the points from left face only. The classification accuracy in our method
is very comparable to the one in [12]. The classification rate for the emotion
anger and surprise is much better in our method. On the other hand, the sadness
classification rate is lower in our case. We note that the database subsets used
are not the same in our experiment and the one in [12]. Thus, we don’t elaborate
more on the comparison, and simply state that the results obtained in our method
are comparable to the state of the art approach in [12].

4.3.3 Various Pose Evaluation for Brow Raisers

This section is from our work [22]. In this section, we test our method on various
orientations. For this purpose, a training set was created featuring two subjects in
45 videos in total. The sequences were recorded for three discrete yaw orientations
(horizontal rotations), namely no yaw, moderate yaw and extreme yaw, approxi-
mated by: 0 degree, 45 degrees and 90 degrees angles to the camera imager. All
videos were taken using a DMC-F3 Panasonic camera at a resolution of 1280x720
pixel2, a rate of 30 fps and a distance of 2 meters from the subject.

The subject was asked to stand in a frontal pose, and then to rotate his head
by a specific angle until facing a marker on the wall and to perform an AU or a
combination of AUs. Afterwards, we manually annotated the neutral frames and
apex frames of each sequence. We note that only the neutral frame preceding the
onset phase is considered. A sample recorded set of images is shown in Fig. 4.3.
The subjects were asked to perform AU1 and AU2 (brow raisers). As a matter of
fact, it is essential to assess the validity of any FACS system for the most common
AUs (AU1 and AU2 consists about 20% of the CK database).
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Table 4.2: Comparison between the work in this paper (DRC) and the one of
Valstar et al (TMP).

AU Meth. Videos Acc. Recall Prec. F1

1 DRC 144 0.910 0.809 0.864 0.835
TMP 68 0.918 0.808 0.844 0.826

2 DRC 97 0.964 0.871 0.946 0.907
TMP 50 0.939 0.791 0.879 0.833

4 DRC 156 0.896 0.755 0.864 0.806
TMP 54 0.870 0.604 0.658 0.630

5 DRC 78 0.926 0.708 0.761 0.734
TMP 37 0.904 0.566 0.629 0.596

6 DRC 111 0.870 0.713 0.694 0.703
TMP 39 0.930 0.789 0.811 0.800

7 DRC 108 0.862 0.685 0.679 0.682
TMP 31 0.870 0.268 0.315 0.290

9 DRC 50 0.972 0.864 0.826 0.844
TMP 30 0.928 0.676 0.497 0.573

12 DRC 113 0.904 0.780 0.780 0.780
TMP 42 0.930 0.827 0.844 0.836

15 DRC 81 0.910 0.609 0.661 0.634
TMP 19 0.969 0.500 0.283 0.361

20 DRC 70 0.924 0.638 0.772 0.698
TMP 34 0.908 0.466 0.582 0.517

24 DRC 43 0.928 0.421 0.533 0.471
TMP 17 0.935 0.395 0.497 0.440

25 DRC 303 0.888 0.917 0.905 0.911
TMP 19 0.851 0.717 0.782 0.748

26 DRC 39 0.926 0.175 0.636 0.275
TMP 27 0.902 0.336 0.380 0.357

27 DRC 77 0.972 0.919 0.895 0.907
TMP 30 0.964 0.836 0.873 0.854

45 DRC 19 0.954 0.091 0.400 0.148
TMP 23 0.943 0.584 0.408 0.480

DRC Avg. 0.920 0.664 0.748 0.689
TMP Avg. 0.917 0.611 0.619 0.609
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Table 4.3: Confusion matrix for emotion classification using the method by Valstar
et al. (TMP)

An. Di. Fe. H. Sad. Sur. Rate
Ang. 2 3 2 0 9 1 0.118
Disg. 1 19 1 1 4 1 0.704
Fear 1 4 15 5 2 1 0.536
Hap. 1 0 3 33 0 1 0.868
Sad. 4 2 1 0 16 1 0.667
Sur. 0 1 1 1 0 34 0.919

Table 4.4: Confusion matrix for emotion classification using the features from the
left face

An. Di. Fe. H. Sad. Sur. N. Rate
Ang. 19 3 0 2 4 0 1 0.655
Disg. 1 32 0 0 0 0 1 0.941
Fear 0 1 14 1 1 0 0 0.824
Hap. 0 0 1 60 0 0 0 0.984
Sad. 4 0 2 0 9 0 1 0.563
Sur. 0 0 8 0 0 63 0 0.887
Neu. 0 0 0 0 0 0 228 1

In the testing phase, only the tracked points from the neutral and apex frame
were extracted from the video. A previously trained DRC classifier set from the
CK database was used on the data set. Table 4.5 illustrates the evaluation of
our method for the three yaw intensities, and for the two AUs. We note that the
tracker failed to track some videos for extreme face orientations. These videos are
excluded from the final statistics. The second column shows the intensity of the
head orientation. The numbers of positive and negative examples are illustrated
in the third and the fourth column. The same measures from experiment 1 are
used in this experiment. Not surprisingly, the F1 increased when the orientation
intensity was stronger. In fact, this is consistent with the work in [15] which
concluded that profile views are better than frontal views for AU detection.

4.4 Summary of Observations for Method 1

Method 1 gives a working system that can detect AUs for various head poses
without any prior training on these poses. The method has comparable results with
the state-of-the-art geometrical algorithm in [12] for near-frontal head orientation.
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Figure 4.3: Samples in an images sequence from the recorded database. The
subject is first asked to rotate their face, then to perform the AU. The third image
is annotated as the neutral face, and the fifth is annotated as the apex frame.

Table 4.5: Evaluating algorithm on the recorded database for 3 head orientation
intensities and two AUs

AU Int. P N Acc. Recall Prec. F1

1 1 4 10 0.929 1.000 0.800 0.889
2 14 22 0.861 0.786 0.846 0.815
3 9 11 0.950 0.889 1.000 0.941

2 1 4 10 0.643 0.500 0.400 0.444
2 7 29 0.889 0.571 0.800 0.667
3 5 15 0.850 0.600 0.750 0.667
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The model was able to generalize to a new database where AUs were still detectable
at various pose orientations. One of the limitations of our proposed method is that
the fusion (OR) considers that both left and right classifiers are equally reliable.
In our next work in Chapter 5, we propose a fusion method that optimizes the
fusion of left and right regions depending on the angle.
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Chapter 5

Method 2: Angle Dependent
Emotion Detection Method

In this chapter, we provide details for the method that can recognize basic emo-
tions through an optimized fusion approach. The method is shown in Section 5.1.
The performed experiments are shown in Section 5.2. Section 5.3 concludes the
proposed proposed approach.

5.1 Proposed Method

In this section, we present our proposed method to detect emotions using a de-
cision fusion. This section is divided as follows. In subsection 5.1.1, we describe
an overview of the classification and fusion approach. Then, we discuss how to
generate ground truth to train and test our algorithm in subsection 5.1.2. The
third subsection describes the features and how the classifiers are trained. Finally,
the process of training the fusion model parameters is explained.

5.1.1 Overview

We hereby describe the process of detecting an emotion given two sets of points
from the left and right regions of the face. This process is illustrated in Figure
5.1 and Figure 5.2. Before describing the emotion detection process, we assume
that the pose and a number of facial points are tracked using third-party software
that applies algorithms such as Particle filtering with Factorized Likelihoods [24]
or Kalman filtering schemes such as the method proposed in [25]. Alternatively,
in the context of this work, we generate these tracked points using a 3D database.
Also, we only limit the scope of this study to the variations in the yaw angle of
the face.
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Figure 5.1: Proposed classification system

Figure 5.2: Proposed fusion approach for one emotion

The system starts by extracting features from the left and right regions inde-
pendently, followed by applying a multi-class classifier that detects the emotion in
each region. The features and classifiers used are further described in section 5.1.3.
The output of the two classifiers is two sets of scores, {dL,k} and {dR,k}, which
represent the probability of having an emotion Ek, given the left and right facial
features respectively. Then, for each emotion Ek, we perform a fusion on the two
scores dL,k and dR,k, depending on the yaw angle α. The proposed fusion, further
illustrated in Figure 5.2, works as follows. Considering an emotion Ek, we propose
to apply a linear combination of the left and right scores of that emotion. Addi-
tionally, the weights wL,k and wR,k of this combination are mainly determined by
the yaw angle α through two polynomial approximations, using two stored vectors
ΩL,k and ΩR,k. The output of this fusion is a decision score γk for each emotion.
Finally, the emotion with the highest fusion score is selected.

The rest of this section is divided as follows. We first describe how the training
data is generated from a 3D database in section 5.1.2. Then, we discuss the features
and classifiers in section 5.1.3. Finally, we show how the fusion parameters are
trained in section 5.1.4.
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Figure 5.3: Steps to generate 2D points for each specific pose.

5.1.2 Ground Truth Data

Training the classifiers and fusion parameters requires training instances for mul-
tiple yaw angles. Therefore, we use a 3D database [26] and generate training
instances for various yaw angles. The input of this procedure is a 3D frame from
the database, containing 3D coordinates of specific facial points, a cloud of 3D
points from the face, and a texture; the latter two are essential for 3D rendering
of an image. However, since only geometric features are needed in our proposed
method, we only transform the 3D coordinates of the key facial points we want
to use. The output of this procedure is the set of key facial points as seen by
a 2D camera when the head performs a yaw rotation α. The generation proce-
dure is described in this section and in Figure 5.3. At this point, we note that the
transformations used to project 3D models onto a camera are very well established
in computer graphics. However, the procedure explained hereby only shows how
these transformations are applied to ensure further alignment in the training data.

Provided that the face of a subject is in a near frontal pose, i.e. a pose where
the face of the subject is not directly facing the camera, we first transform the
coordinates of the facial points to a frontal pose. This preliminary transformation
is applied in order to ensure that all subsequent pose transformations provide
consistent results. Two important characteristics of a frontal pose are that the
coordinates of the eyes are vertically aligned, and that they have the same depth.
We denote by pose normalization this described process. This normalization can
be achieved by performing two rotations about the center of the eyes.

Formally, we assume a direct system of coordinates (X, Y, Z) centered at the
camera where X is the horizontal axis, Y the vertical one, and Z the axis rep-
resenting the depth. The suggested frontal pose normalization is equivalent to a
translation to the center of the eyes, followed by two rotations about the Z and
Y axis that set the Y and Z coordinates of the eyes to 0, respectively. Finally, a
translation from the center of the eyes back to the camera system is performed.
By using a homogeneous representation of the coordinates which is a representa-
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Figure 5.4: Approach to train the classifiers

tion in a 4 dimensional system of coordinates, all rotations and translations can
be described by matrix multiplications. The normalization process can then be
represented as

Pfrontal = T−1eyes ×RZ ×RY × Teyes × P (5.1)

where P is a 4 ×N matrix containing the homogeneous coordinates of the N
points to transform, Teyes is a 4 × 4 matrix representing the translation from the
camera system to the center point between the eyes, RY is the 4×4 rotation matrix
about the Y axis that sets the Z coordinates of the eyes to 0. Similarly, RZ is the
4× 4 rotation matrix about the Z axis that sets the Y coordinates of the eyes to
0. The values of these matrices can be computed by calculating the coordinates
of the inner eye corners and the angle they form with each of the axis discussed
above.

The second step of the process is to perform the desired head pose transforma-
tion. Ideally, a yaw rotation is a rotation of the head about a virtual axis passing
through the center of the neck. However, the coordinates of the neck are not
generally tracked in facial point trackers. Alternatively, we employ the nose tip
coordinates and apply the transformation on a vertical axis passing through the
nose tip. To apply the yaw rotation, a translation should be first performed from
the camera to the nose tip coordinates. The inverse of this translation should also
be performed after the rotation is applied. All of the previous steps are achieved
through a sequence of transformation matrix multiplications.

Ppose = T−1nose ×R′Y × Tnose × Pfrontal (5.2)

where R′Y is the rotation matrix representing the yaw rotation around the axis
Y . The transformed coordinates in Ppose represent the 3D coordinates as observed
when the head performs the desired yaw angle. The final step is to project the
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computed coordinates on the camera plane to obtain the 2D coordinates. Ideally,
this can be achieved by applying a perspective projection if the intrinsic parameters
(e.g. focal length) of the camera are available. However, in the case of the used
database [26], we do not have access to these parameters. Thus, we apply a weak
perspective projection to the camera, which simply considers scaled values of the
X and Y components and ignores the Z component. This approximation is largely
valid since the depth variations within the face are relatively small compared to
the average depth of the face with respect to the camera.

At the end of this process, for each subject and emotion, we obtain a set of
2D facial point coordinates for the neutral and apex frame, and for several angles.
This set of coordinates and labels are later used to train and test our classifiers.

5.1.3 Feature Extraction and Classification

After generating the facial points as discussed in section 5.1.2, we now discuss the
geometrical features extraction as well as the emotion classification method. The
facial points are first split to left and right coordinates by grouping the ids of the
points provided by the database. Features are then extracted from each region
to later decide on the classification scores for each emotion. The outline of the
training approach is illustrated in Figure 5.4. After extracting the key 3D facial
points, which are provided with the database, we transform the 3D coordinates
for several yaw angles. Afterwards, we extract the geometrical features and train
the left and right classifiers. The details of this process are further described in
this section.

Similarly to the algorithm in [18] and our earlier study in [22], we extract a
set of features representing the displacement of the facial points between the apex
frame and the neutral frame of an image sequence, in the left and right regions
independently. This is achieved by first calculating the distances between all pairs
of points in the neutral frame, and the distances between all pairs of points in the
apex frame. In this work, the final feature set for an image sequence is the set of
ratios of those distances. Namely, for any pair of points {p, q} in the left or right
regions, the feature extracted is

fp,q =
dapexp,q

dneutralp,q

(5.3)

where dapexp,q is the Euclidean distance between points p and q in the apex frame,
and dneutralp,q the one between the same points in the neutral frame.

Following the feature extraction process, a basic classifier can be applied. For
similar features extracted from the entire face, Hu et al. [18] tested several classi-
fiers and concluded that support-vector-machines (SVMs) performed best. Simi-
larly, we apply the muli-class SVM algorithm implemented in LIBSVM [27].
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Figure 5.5: Approach to learn the fusion parameters

Figure 5.6: Estimating a smoothed posterior probability distribution

When applying these classifiers, and in order to preform an advanced fusion
on the decision level, we perform a soft classification. In contrast to a hard clas-
sification where a testing instance strictly belongs to one single class at a time, a
soft classification allows the instance to belong to all classes with different degrees
of membership. The membership degree can be represented as a probability that
the instance belongs to the specific class given the features observed. A common
way to extract the probability estimates for multiple classes in SVM algorithms
is the method proposed by Wu et al. [28] which is also implemented in LIBSVM.
Therefore, whenever the trained SVM models are applied, we extract a vector
of membership levels representing 6 scores per region. Each score represents the
probability that the instance belongs to one of the six basic emotions. The fusion
of these scores is further described in the next section.

5.1.4 Fusion Model

Typically, when a single classifier is applied and a vector of probabilities are ob-
tained, we apply the Maximum A Posteriori (MAP) rule and choose the emotion
with the highest posterior probability. On the other hand, when the face is split
into two regions, two classifiers are used, and thus two probability vectors are
extracted. Performing a convenient fusion of the two probability vectors is an
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optimization problem, and we argue that this fusion should depend on the yaw
angle. Therefore, we propose a fusion algorithm that optimizes the fusion of the
left and right probability vectors, depending on the angle. This section contains
our proposed method to train our MAP-based fusion. As previously described
in the beginning of section 5.1 and in Figure 5.1, the fusion consists of a linear
combination of the probabilities obtained in each region in the face, left or right.

Formally, a MAP fusion given the observed scores dL,k and dR,k can be formu-
lated as follows

ŷ = arg max
k∈{1,...,c}

P (Ek|dL,k, dR,k) (5.4)

where ŷ is the estimated emotion, and c is the total number of emotion classes.
Note that the sparsity of the observations provided by the left and right scores
makes the fusion less generalizable for all angles. Therefore, to provide further
generalization across angles, we perform the three following steps: (1) smooth the
posterior probability distribution, (2) learn the weights of a linear combination to
estimate the probability distribution, and (3) learn the polynomial parameters to
estimate the latter weights given the angle. These three steps are further discussed
in each of the following sections, and can be summarized by Figure 5.5 and Figure
5.6.

The rest of this section is organized as follows. In section 5.1.4, we provide a
smoothing approach to estimate the posterior probability distribution. In section
5.1.4, we estimate the rest of the weights.

Posterior Probability Smoothing

In this part of our work, we propose a method to estimate a smoothed distribution
of the posterior probability of a given emotion. The method, illustrated in Figure
5.6, consists of discretizing the left and right scores, (dL,k, dR,k), and computing 2D
histograms for the pair of scores in two cases: when Ek is the ground truth emotion
and when it is not. The obtained histograms are then smoothed. Subsequently,
the histograms are used to calculate the likelihood and prior probabilities. Finally,
the estimate of the posterior probability is calculated.

We begin by discretizing each input into N equal bins. Formally, we note d̃i,k
the discretization of di,k such that

d̃i,k
def
== max

{
m ∈ G|m+

q

2
≤ di,k

}
(5.5)

with G = { q
2
, q+ q

2
, 2q+ q

2
, . . . , (N−1)q+ q

2
}, and i ∈ {L,R}. In the experiments,

we considered a number of bins N = 10, and q = 0.1. To calculate the two 2D
histograms per emotion, when Ek is the ground truth and when it is not, we define
the two histogram spaces as follows.
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ϕα,Ek
(u, v) =

∣∣∣{(d̃L,k) |u = d̃L,k, v = d̃L,k

}∣∣∣ (5.6)

ϕα,¬Ek
(u, v) =

∣∣∣{(d̃L,j) |u = d̃L,j, v = d̃L,j, j 6= k
}∣∣∣ (5.7)

where Ek indicates that the ground truth label is Ek, ¬Ek indicates that it is
not, and |· | indicates the cardinality of a set, i.e. the number of training instances
that satisfy the conditions indicated. In order to estimate the posterior probability,
Equation 5.6 is used in the estimation of the likelihood probability while both
Equations 5.6 and 5.7 are used in the estimation of the prior probability. Therefore,
before estimating the posterior probability, a Laplacian correction is due to avoid
a division by 0.

ϕ′α,Ek
(u, v) = ϕα,Ek

(u, v) + 1 (5.8)

ϕ′α,¬Ek
(u, v) = ϕα,¬Ek

(u, v) + 1 (5.9)

Additionally, due to the sparsity of the histograms and to ensure a smoother
model that can be generalized over all angles, we define ϕ̂ a smoothed histogram
derived from ϕ′. The smoothing process can be any standard smoothing operation
on 2D images such as average weighting.

Therefore, for a given angle α, after computing the histograms, the likelihood
probabilities can be estimated as follows.

P̂α (u, v|Ek) =
ϕ̂α,Ek

(u, v)∑
u,v ϕ̂α,Ek

(u, v)
(5.10)

P̂α (u, v|¬Ek) =
ϕ̂α,¬Ek

(u, v)∑
u,v ϕ̂α,¬Ek

(u, v)
(5.11)

Consequently, the resulting total probability can be calculated

P̂α (u, v) = P̂α (u, v|Ek)× P (Ek) + P̂α (u, v|¬Ek)× P (¬Ek) (5.12)

Finally, the posterior probability estimate of having an emotion Ek given dL,k,
dR,k and α is:

P (Ek|dL,k, dR,k, α) ≈ P̂α

(
Ek|d̃L,k, d̃R,k

)
(5.13)

where

P̂α (Ek|u, v) =
P̂α (u, v|Ek)× P (Ek)

P̂α (u, v)
(5.14)
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Angle-Dependent Posterior Probability Regression

Using the smoothed estimated fusion probability P̂α (Ek|u, v) obtained, we esti-
mate a multi-variable regression for each class given u, v and α. The objective
of this training is to learn a fused decision for emotion k that fits the estimated
posterior probability. This can be noted as

P̂α (Ek|u, v) ≈ γk(u, v, α) (5.15)

To fit this equation, two regressions are performed sequentially:

1. For each angle, a regression is performed for all pairs (u, v) to determine a
linear combination of the left and right scores of an emotion Ek.

2. In the second regression, the model parameters are fitted for all angles α.

Namely, these regressions can be defined by the following two equations.

γk(u, v, α) ≈ ωL,k[α]× u+ ωR,k[α]× v (5.16)

and
ωi,k[α] ≈ ΩT

i,k × a (5.17)

where ωi,k[α] are the coefficients of the linear combination learned for a given
yaw angle α, Ωi,k is a vector containing the polynomial coefficients used to esti-

mate ωi,k[α], a =
[
1 α1 α2 . . . αm

]T
, and m is the polynomial degree. Alter-

natively, Equations 5.16 and 5.17 can be rewritten as:

(ωL,k[α], ωR,k[α]) = arg min
(b1,b2)

∑
(u,v)

((b1 × u + b2 × v) − γk(u, v, α))2 (5.18)

and

Ωi,k = arg min
Ωi,k

∑
α

(ΩT
i,k × a− ωi,k[α])2 (5.19)

These least square minimizations are computed to generate the parameters
ΩL,k and ΩR,k for each emotion.

5.2 Experiments and Results

In this section, we conduct a set of experiments to evaluate the performance of our
algorithm. In Section 5.2.1, we evaluate our method by running a set of preliminary
experiments. In Section 5.2.3, we compare various approaches to fuse the left and
right classifications. Finally, Section 5.2.4 compares the fusion approach to a prior
art method.
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5.2.1 Experiment Setup

To test our algorithm, we employ the BU-4DFE [26] database. The BU-4DFE
database features 101 subjects, with a balanced gender ratio and ethnic variety,
where each subject performed 6 emotions: anger, disgust, fear, joy, sadness and
surprise. The database consists of 606 videos along with 83 tracked facial points.
15 of these points that belong to the contour of the face were removed. Therefore,
only 68 of the database points were considered.

For the purpose of employing our image-based method, we manually extract
two frames from each video: one frame with a neutral expression and one with a
full-blown (apex) expression. All the experiments reported were performed using
10-fold cross validation. In the training phase and for each instance, the tracked
points are transformed to the specified pose as described in Fig. 5.3 and Section
5.1.2. The features were generated as described in Section 5.1.3. First, two multi-
class linear SVM classifiers are trained to classify the 6 basic emotions, one for
the left region of the face, and one for the right region. To classify the 6 basic
emotions, from the left and right regions of the face independently as described
in Section 5.1.3 and Figure 5.4. Next, the output of the two classifiers is then
used to learn the fusion parameters as described in Section 5.1.4 and Figure 5.5.
In the testing phase, the tracked points are synthesized in the same manner and
both classifications and the fusion are applied as described in Figures 5.1 and 5.2.
We note here that the same training data is used to train classifiers and fusion
parameters.

5.2.2 Method Evaluation

In this section, we present some preliminary results to evaluate our method. Start-
ing with the set of 3D coordinates, the coordinates were transformed to various
poses, as shown in Figure 5.8. The angles considered in our experiments are be-
tween -45 and 45 degrees with increments of 5 degrees. Afterwards, the left and
right coordinates were grouped together in two sets of points. Features were ex-
tracted from each group separately and a classifier was learned for all emotions
per facial region.

After applying the learned classifiers, the remaining parameters were learned
as described in Figure 5.9. Considering the emotion happy for illustration, the
left and right scores for the happy emotion were extracted from all the training
instances. For each angle, an estimate of the posterior probability was calculated as
described in Equation 5.13. This estimate can be represented as a non decreasing
function of the left and right weights between 0 and 1, as shown in the 3D plot.
In the second step, we fitted the points from this plot to a linear summation of
the weights as in Equation 5.16. For each angle, a left weight and a right weight,
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Figure 5.7: Fusion weights and approximations for the happy emotion

Figure 5.8: Examples of generated facial points with 15 degrees increments

Figure 5.9: Learning fusion parameters
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Figure 5.10: Applying fusion parameters

ωL,Happiness[α] and ωR,Happiness[α], were then obtained. In the third and final step,
we fitted these weights through a polynomial regression where α is the variable,
as in Equation 5.17. The set of coefficients ΩL,Happiness and ΩR,Happiness were then
obtained. The same process was repeated for all six emotions in this database.

To evaluate the system, the learned classifiers and parameters were then applied
to the cross validation test data. On the other hand, when recognizing the emotion
of a test subject, the left and right classifiers were first applied on the face. The
left and right scores for all emotions were then obtained. Considering the emotion
happy, the fusion score can be illustrated in Figure 5.10. The angle α was applied
to determine an estimate of the left and right weights ωL,Happiness and ωR,Happiness.
These weights were then multiplied with the left and right scores obtained from
the classifiers, thus obtaining a fused score for the emotion happy. In the same
manner, the fused scores for all emotions were calculated. Finally, the emotion
with the highest fusion score was selected.

Figure 5.7 illustrates the parameters ωL,k and ωR,k obtained for the happy
emotion. We applied a regression to the third degree polynomial (m = 3 in
Section 5.1.4). A general ascending trend can be observed in the left weight curve,
indicating that at the boundaries, a much higher weight should be applied to the
region that is facing the camera. However, a local maximum in the same figure can
also be observed around the angle -30 degrees. In fact, the reported accuracy of all
emotions by the left and right classifiers seem to follow the same trend by looking
at Figure 5.11, which suggests that the performance is increased at a slight yaw
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Baseline Approach Fusion Approach
Anger Disgust Fear Joy Sad Surprised Anger Disgust Fear Joy Sad Surprised

Anger 72.52 9.41 0.00 0.99 11.63 5.45 Anger 75.00 9.16 0.00 0.99 14.6 0.25
Disgust 7.92 63.37 5.45 5.20 2.72 15.35 Disgust 10.15 76.49 4.21 4.21 2.97 1.98
Fear 0.99 13.61 40.10 14.60 10.89 19.80 Fear 0.99 14.11 45.54 13.12 13.86 12.38
Joy 0.25 3.96 2.48 79.70 2.72 10.89 Joy 0.00 4.95 1.98 86.88 5.45 0.74
Sad 13.12 1.73 7.18 0.00 75.25 2.72 Sad 12.62 1.24 4.46 0.00 80.69 0.99
Surprised 0.00 0.50 7.67 0.00 0.25 91.58 Surprised 0.00 0.99 10.40 0.00 0.50 88.12
Avg. RR 70.42 Avg. RR 75.45

Table 5.1: Confusion matrix comparison between the proposed algorithm and the
baseline approach, for 4 head orientations of 0, 15, 30 and 45 degrees

angle. This is consistent with previous works that reported a higher performance
at non frontal angles. On the other hand, the same reasoning can be applied for
the right weight curve.

The weights determined for the fusion vary smoothly with respect to the angle,
in Figure 5.7. However, these weights do not generally add up to 1. This is
attributed to the fact that the left and right weights are determined independently
without any constraint.

Overall the proposed method is expected to work well under the following
assumptions: (1) The orientation of the head with respect to the camera mainly
consists of a yaw rotation and (2) the probability extracted from the classifiers can
accurately fit the model described in Equation 5.16 and Equation 5.17, and (3)
both regions of the face are equally reliable for a test subject in a frontal pose.

5.2.3 Fusion Approaches

The goal of this experiment is to evaluate the performance of the fusion based
method and compare it to other fusion approaches. We first compare with the
left and right detection approaches (consistently performing a hard decision from
either the left or right region). The accuracy of the left and right classifiers are
evaluated individually, and then compared with the obtained accuracy of the fusion
method. The results are illustrated in Figure 5.11. For most of the angles, the
recognition rate corresponding to the fusion is better than the rates for the left and
right alone. At all times, it seems to do as good or better than the best standalone
classifier of the left and right. In a second experiment, we compare our proposed
fusion approach to a max-based fusion where the emotion with the highest score
on both regions is selected. After conducting the experiment on angles between 0
and 45 with 15 degrees increment, the obtained accuracy for max-based fusion is
75.08% while the proposed fusion approach showed an accuracy of 75.45%, which
shows a slight superiority of the proposed optimization.
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Figure 5.11: Accuracies of the left, right and fusion classifiers, calculated per angle

5.2.4 Baseline Classification

The objective of this experiment is to compare the proposed decision fusion against
classifying the entire face at once. By considering the features from the entire face,
this method becomes similar to the one proposed by Hu et al. [18]. The algorithm
extracts the same type of features from the entire face, and applies a similar SVM
linear classifier. The main differences are splitting the face and fusing the outputs
of left and right emotion classifiers. We compare our method to the prior art
approach. The angles are varied between 0 and 45 with 15 degrees increment. The
reported results of the fusion approach and the baseline approach are presented in
Table 5.1. For all emotions except for surprise which had a decrease in recognition
rate, we have an increase in the individual recognition rates of our fusion method.
An increase of 13% is achieved on the emotion disgust which is generally a difficult
emotion to detect. Overall, the new proposed method accuracy showed a 7.1%
increase in accuracy compared to the method proposed by Hu et al. [18].

5.3 Summary of Observations for Method 2

In this chapter, we proposed an approach to detect facial expressions for differ-
ent head poses. Unlike most approaches which rely on evaluating features from
the whole face, we split the face into two regions, calculate the features and clas-
sify the emotion in each region of the face independently. We then proposed an
angle dependent fusion based method to combine the decisions of the classifiers.
The outcome of this method is that the parameters of the decision fusion can be
predicted given the angle using a simple regression. We show that the proposed
decision fusion outperforms previous approaches. The main contribution of this
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work is in the dynamic fusion approach. It should be noted that the classifiers
used can be improved by using different features. Therefore, future improvements
should consider other features and classifiers.
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Chapter 6

Conclusion

In this thesis, two methods were proposed for FER. The first method is based on
splitting the face to two regions and fusing the decisions using a logical OR oper-
ation. The second method optimizes the fusion weights by maximizing the poste-
rior probability estimate with respect to the yaw angle. We showed that our first
method compared well with state-of-the-art algorithms for frontal poses. Addition-
ally, the method generalized for non-frontal head poses and different databases.
In our second method, a 7.1% improvement in recognition rate was achieved over
full facial features approach.

For future works, several improvement aspects can be considered. We note that
the facial tracker plays an important role in the recognition of facial expressions.
For instance, choosing a different tracker and applying it to our first method can
improve the accuracy for certain AUs such as lip corner pullers. Additionally, the
accuracy can further be improved by choosing more complicated features, geomet-
rical or appearance based, such as SIFT-based descriptors. Aside from obtaining a
higher classification performance overall, the posterior probability estimation can
become more accurate, thus making the estimation of the left and right weights
more accurate. Other important improvements can be made on the fusion model.
The model can be extended to allow for other types of rotations (such as pitch ro-
tations). Additionally, the regressions, which are applied to determine the left and
right weights, can be improved by performing a fitting to non-linear models. One
suggested model would be a Gaussian estimation. Consequently, the weights would
be determined using expectation maximization. Finally, further experiments need
to be conducted on bigger databases in order to compare our methods with other
state-of-the-art approaches.
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