
AMERICAN UNIVERSITY OF BEIRUT

Semi-Automatic Annotator for Medical NLP
Applications

by

Mohamed Naji Sabra

A thesis
submitted in partial fulfillment of the requirements

for the degree of Masters in Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
August 2015

An Abstract of the Thesis of

Mohamed Sabra for Master of Engineering
Major: Electrical and Computer Engineering

Title: Semi-Automatic Annotator for Medical NLP Applications

With the expansion of scientific and social media, a wealth of online in-
formation resources has accumulated as free text including articles, studies, and
social blogs. Mining, standardization, and extraction of information from these
resources brings upon novel approaches for data analysis and knowledge discov-
ery; particularly from domain specific large text corpora.
Key to this is annotated corpora. Supervised algorithms for machine learning
need them for training. Unsupervised algorithms need them for testing and eval-
uation. Manual annotation is expensive specially in expert domains such as
medicine.
This thesis presents a Semi-Automatic Annotator for Medical NLP Applications
(SAMNA) . SAMNA takes a large corpus, a list of labels, a list of terms associ-
ated with each label, and lists of rules associated with labels and terms. SAMNA
annotates the corpora words that match the corresponding terms and rules. It
also uses distributional similarity to discover novel annotations. In addition, it
provides the annotating scholar with an intuitive, friendly and efficient interface
to navigate and edit the annotations.
We used SAMNA in several medical NLP applications to annotate protein sets in
medical articles related to specific diseases such as stroke, spinal chord injuries,
and Alzheimer. The graph theory based analysis of the corpora annotated with
SAMNA led to discoveries on interest to medical experts.
SAMNA can also be applied in systems review, as well as other annotation do-
mains.

4

Contents

Abstract 4

Contents i

List of Figures iii

List of Tables v

1 Abstract 1

2 Introduction 2

3 Preliminaries 7

3.1 Annotations . 7

3.2 Distributional Similarity . 7

3.3 Medical NLP . 8

4 Motivation 10

5 Semi Automatic Annotator 13

5.1 SAMNA File Extraction . 13

5.2 SAMNA Navigation . 14

5.3 SAMNA Data Model . 15

5.4 SAMNA Annotation . 15

5.5 SAMNA User Editing . 16

5.6 SAMNA Analysis . 16

6 Method 18

6.1 Direct String Matching . 18

6.2 knowledge Base Rules . 18

6.3 Distributional Similarity Algorithm 20

6.4 Choosing δ1 and δ2 . 23

i

7 Implementation 28
7.1 File Reader . 28
7.2 Highlighter . 32
7.3 Annotation . 33

8 Experimental results 35
8.1 Stroke Case Study . 35

8.1.1 Method . 36
8.1.2 Results . 39
8.1.3 Conclusion . 43

8.2 Case study 2 spinal cord injury 44
8.2.1 Materials and Methods . 45
8.2.2 Results . 46
8.2.3 Conclusion . 47

9 Related Work 48

10 Conclusion and Future Work 50

Bibliography 51

Appendix A Tutorial 55
A.1 How to run the tool . 55
A.2 Tool Prerequisite . 55
A.3 Tool Features . 56

A.3.1 Loading frame . 56
A.3.2 Main frame . 57

A.4 Loading Abstracts . 58
A.4.1 Loading Abstracts from an XML file 59
A.4.2 Loading Serialized Abstracts 60
A.4.3 Loading Abstracts from TXT and CSV file 60

A.5 Moving between Abstracts . 60
A.6 Adding Annotation . 61
A.7 Removing Annotation . 61
A.8 Apply expert Rules . 62
A.9 Distributional Similarity suggestion 62
A.10 Adding New Labels . 62
A.11 Annotation distribution . 63
A.12 Exclude Abstract . 63
A.13 Undo Actions . 63

ii

List of Figures

6.1 String matching algorithm . 19
6.2 Create hash table from label spreed sheet 19
6.3 Get similarity for 1 word protein 21
6.4 Get collocation for 1 word protein 21
6.5 similarity and collocation computation 22
6.6 Get the 1 word suggested similarity List 24
6.7 distributional similarity algorithm 25
6.8 Get the multi word similarity List 26
6.9 Precision alternating δ1 and δ2 27

8.1 overview of data curation and processing 36
8.2 captured set of accessions . 37
8.3 articles selection process . 38
8.4 clustering of proteins in the BIMP expressed by brain tissue . . . 39
8.5 Venn Diagram of the distribution of BIMP proteins on different

significantly enriched KEGG pathways 40
8.6 Markov clustering of the network of BII 41
8.7 Markov clustering of the network of BII 42
8.8 Graph of protein-protein interactions among components of major

KEGG enriched pathways . 43
8.9 Rich-club organization in the BII 43
8.10 Estrogen targets within the BIMP 44
8.11 SPINAL CORD . 46

A.1 Choosing work space . 56
A.2 SAMNA Loading frame . 57
A.3 SAMNA main frame . 57
A.4 loading Abstract Picture . 59
A.5 adding protein . 61
A.6 suggestion base on the distributional similarity algorithm 62
A.7 Adding new label . 63
A.8 annotation distribution . 63
A.9 removing abstract . 64

iii

A.10 undo an action . 64

iv

List of Tables

6.1 precesion while alternating δ1 and δ2 27

v

vi

Chapter 1

Abstract

With the expansion of scientific and social media, a wealth of online infor-
mation resources has accumulated as free text including articles, studies, and
social blogs. Mining, standardization, and extraction of information from these
resources brings upon novel approaches for data analysis and knowledge discov-
ery; particularly from domain specific large text corpora.
Key to this is annotated corpora. Supervised algorithms for machine learning
need them for training. Unsupervised algorithms need them for testing and eval-
uation. Manual annotation is expensive specially in expert domains such as
medicine.
This thesis presents a Semi-Automatic Annotator for Medical NLP Applications
(SAMNA) . SAMNA takes a large corpus, a list of labels, a list of terms associ-
ated with each label, and lists of rules associated with labels and terms. SAMNA
annotates the corpora words that match the corresponding terms and rules. It
also uses distributional similarity to discover novel annotations. In addition, it
provides the annotating scholar with an intuitive, friendly and efficient interface
to navigate and edit the annotations.
We used SAMNA in several medical NLP applications to annotate protein sets in
medical articles related to specific diseases such as stroke, spinal chord injuries,
and Alzheimer. The graph theory based analysis of the corpora annotated with
SAMNA led to discoveries on interest to medical experts.
SAMNA can also be applied in systems review, as well as other annotation do-
mains.

1

Chapter 2

Introduction

With the expansion of scientific and social media, a wealth of information has
accumulated as free text within online resources including articles, studies, and
social blogs. Mining, standardization, and extraction of this information would
bring upon new approaches for analysis and discovery of knowledge within large
text corpora specific to certain disciplines. Natural language processing (NLP)
tasks deal with text corpora, and map these corpora to output domains. Those
output domains differ according to the NLP task. Example output domains are
(1) another language in case of a machine translation (MT) task, (2) word clas-
sification in case of part of speech (POS) annotation task, and (3) categories in
an information extraction (IE) task.
There are two NLP approaches: a supervised, and an unsupervised approach.
Both NLP approaches need a reference text corpus annotated with correct data
alongside with a testing text corpus to evaluate the accuracy of the NLP tech-
nique. A supervised approach will also require a training text corpus that is
annotated in a manual or standard manner to learn a computational model [1].

There is an ongoing interest in applying NLP information and relational extrac-
tion tasks to biomedical literature and texts. Several tools have been developed
in the field of medical and biological NLP to handle different types of corpora [2]
including:

• Electronic medical records (EMR),

• Medical literature databases such as PubMed and Scopus,

• Genia Event Extraction (GE),

• Cancer Genetics (CG),

• Pathway Curation (PC),

• Gene Regulation Ontology (GRO),

2

• Gene Regulation Network in Bacteria (GRN), and

• Bacteria Biotopes (BB).

Several annotators such as Knowtator [3], Brat [4], WordFreak [5], MMAX2 [6],
Callisto [7], and Turku Event Extraction System TEES [8] are already present and
were utilized in some biomedical applications such as the use of TEES in curation
of the Gene Regulatory Network in Bacteria [2]. However, these annotators may
not be optimal to all tasks of biomedical NLP, and optimized models of these
annotators would better fit specific biomedical NLP tasks.

We are particularly interested in devising new biomedical NLP tools to convert
the massive literature on complex diseases and conditions into a resource that
fosters a better understanding of the disease processes and therapy. The bio-
chemical basis of disease can be reduced into disturbances in gene products (such
as proteins) that would lead to abnormal cellular biology leading to pathology.
Proteins and their relation to diseases have become important in recent medical
research especially that proteins are the final biochemical effectors and the most
interesting targets for therapeutic intervention.

In the field of protein to disease relations, there is a huge number of articles
that report protein changes during or after a certain disease. A wide range
of proteins is reported by these studies depending on the author’s interest, the
particular aspect of disease studied or the animal model. However, the collective
contribution of the entire spectrum of protein changes is the determinant of overall
disease pathology. This spectrum of protein changes cannot be characterized by
one or few studies and requires cumulative evidence over decades of scientific
research. Therefore, efforts to extract and curate the spectrum of protein changes
in disease from the large number of scientific reports would allow for both a global
and detailed analysis of molecular architecture of diseases that includes the full
network of proteins interactions responsible for disease phenotype and symptoms.

the aim of this work is to use semi-automatic annotation and biomed-
ical NLP algorithms to provide a model for curation and construction
of a molecular architecture of pathological and disease conditions. The
resulting model is particularly significant in the context of complex diseases where
a large number of proteins contribute to the disease processes such as Alzheimer’s
disease,stroke, myocardial infarct, and cancer metastasis.

Articles reporting protein changes after disease are stored in online biomedical
databases like PubMed and SCOPUS. The databases allow using a special API
for the retrieval of the data in a predefined format such as EXtensible Markup

3

Language (XML) and comma-separated values (CSV) depending on a search key
specific to the disease or disease process of interest.
Each article presents evidence of the role of one or more proteins in activating
a pathway of one or more diseases. To be able to treat a disease, medical re-
searchers are interested in looking at the comprehensive picture.
A search in PubMedand Scopus returns 83,101 articles related to the stroke dis-
ease. This magnitude of literature is hard to analyze manually and automated
NLP tools that help in the selection of the relevant articles are needed.
Existing annotators fall short of performing this task because:

1. Most of the existing annotators need a professional software developer to
deploy and run them, which is hard for a protein or disease specialist.

2. Some of those annotators could not handle large file sizes such as 100 MB,
while the data about Brain Ischemia is a 688 MB.

3. They cannot parse XML and CSV files specific to biomedical indexing
databases.

4. They do not generate needed statistics from the annotated data (such as
frequency and co-occurrence of the annotated terms).

5. They are single document based, and cross-document analysis is the target
of this work.

Therefore, we need an annotator that allow for cross-document annotation sur-
passes all the above shortcoming and has the following abilities

• It should be user friendly and easy to install and use.

• It should parse large files and extract important data from files such as
titles, abstracts, ids and dates.

• It should be able to display documentation aggregated across all articles
and files, and allows for inspecting each one alone with its important com-
ponents.

• It should allow the intervention of the specialist to edit and redo the auto-
matic annotations including adding or deleting an annotation.

• It should be able to create statistical metrics that describe the annotations
and their occurrence while performing the NLP task.

• It should be able to automatically suggest potential hits within biomedical
texts with high accuracy.

4

We propose to build a Semi-Automatic Annotator for Medical NLP Applica-
tions (SAMNA), which allows the user to load a large amount of data including
abstracts and titles of published articles that discuss a specific disease of interest.
In addition to the required functionalities, SAMNA provides the following:

• SAMNA visualizes the components of articles such as title, abstract, id and
date with color sensitive annotations, that highlight occurrences of terms
of interest to the NLP task in the text.

• SAMNA takes expert rules from the specialist that specify features of the
target annotations. It uses these rules to annotate additional terms not
defined previously in the database. For example ∀ Pi ∈ list of protein P;
Pi[1-9][1-9]* is a protein. If XYZ is a protein in the database, XYZ3 will
be annotated as protein.

• SAMNA implements a distributional similarity algorithm using DISCO [9]
to find new annotations.

• SAMNA saves a result file holding the important statistics of annotation
occurrences and frequencies for each annotation. In this way SAMNA pro-
vides a full protein spectrum of diseases for further analysis by biomedical
investigators.

We evaluated SAMNA and used it with the following applications:

Stroke (or brain ischemia)

We used SAMNA to construct, annotate and curate a brain ischemia meta-
proteome that reflects the spectrum of protein changes after brain infarct. We
used systems biology databases including UniProt [10] for protein accession re-
trieval and STRING [11] for protein interaction data, to construct the interaction
network among the extracted proteins. Curation of the proteome allowed for dis-
secting the role of different biochemical pathways in the amplification of injury
after stroke and revealed, with the help of graph theory algorithms, the presence
of a rich-club organization in the brain ischemia interactome. The detected path-
ways and the rich-club provide information on the optimal approaches to target
injury mechanisms after stroke [12].

Spinal Cord Injury

We also used SAMNA to curate the proteome of spinal cord injury (SCI) and we
were able to characterize the full molecular architecture of SCI. Analysis of the
curated proteome using graph theory revealed a modular organization of disease
process that are centered around a core of cell survival decision proteins. Those
core proteins provide the best targets for therapy. [13]

5

Cancer metastasis

Using the multi-label capability of SAMNA, we applied the same approach to
study epithelial-to-mesenchymal (EMT) transition, the process by which cancer
cells develop migrating and metastatic potential. SAMNA allowed to annotate
for proteins, microRNAs, cancer subtypes, and drugs in order to detect the pro-
tein changes behind EMT and their relation to the cancer subtype, microRNA
expression and to anti-cancer drugs.

We have also applied the same approach using SAMNA to other diseases such as
Alzheimer’s disease and Schizophrenia. And the analysis of the resulting graphs
is in progress.

The rest of this thesis is organized as follows, chapter 2 introduces key medical
NLP concepts, basic annotation terminology, and distributional similarity con-
cepts that will be used in the thesis, chapter 3 discusses motivation behind the
creation of SAMNA, chapter 4 introduces the functionality of the Semi Automatic
Annotator, chapter 5 introduces the methods implemented in SAMNA, chapter
6 describes SAMNA technical implementation, chapter 7 introduces results and
case studies, chapter 8 discuses related work, chapter 9 concludes with future
suggestions, appendix A is a tutorial that passes through all functionalities of
SAMNA.

6

Chapter 3

Preliminaries

This chapter introduces key medical NLP concepts, basic annotation terminology,
and distributional similarity concepts that will be used in the thesis.

3.1 Annotations

We provide the following definitions and use them across the document. Given
a set of documents and a set of labels where a document is a sequence of words,
and a label is a designated word, we define the following.

Definition 3.1.1 (Annotation). An annotation is a tople <w, pos, l>where w
is a word , pos identifies the document d and position of w in d, and l is a label.

Definition 3.1.2 (Term). A term is a word that has a label.

Definition 3.1.3 (Legend). A Legend is a set of display properties that allow
visual identification of similarly labeled words.

Definition 3.1.4 (Class). A class, also known as annotation type is a is a couple
<la,lg>where la is a label and lg is a legend. We denote by class(la) the set of
terms with label la.

Definition 3.1.5 (Rule). A rule is a regular expression that extends labels with
wild cards of regular expression to match words in document (such as the asterisk
). Example: ∀ Pi ∈ list of protein P; Pi+”-”+[A-Z][A-Z] is a protein.

3.2 Distributional Similarity

The distributional similarity of two words w1 and w2 is a measure of how
much those two words tend to occur in similar context.[14]. Given a set of
words w1,w2,....wn. The frequency vector of wi, i ∈ [1,...,n] is given by v=
<C1,C2,.....Cn>where Ci is the number of times wi occurs around w within a
window of words of size K.

7

Definition 3.2.1 (Collocation). A collocation of a word w is a set (C1,R1),(C2,R2).....(Cn,Rn)
where Ci is the word collocated to w within a window of words and Ri is the score
of collocation. To compute the collocation score we used the following equation

g(w,w′, r) = log
(f(w, r, w′)− 0.95)f(∗, r, ∗)

f(w, r, ∗)f(∗, r, w′)

Where w and w′ stand for words and r for a window position (or a dependency
relation, respectively), and f is the frequency of occurrence. To compute the
collocation score we used DISCO[9] function which implement the above equation.

Definition 3.2.2 (Similarity). The similarity of a word w is a set (S1,R1),(S2,R2).....(Sn,Rn)
where Si is the word similar to w and Ri is the score of similarity. To compute
the similarity score we used the following equation

lin(w,w′) =

r∑
p=1

v∑
wi=1

{
g(w,wi, p) + g(w′, wi, p) : g(w,wi, p) > 0 and g(w′, wi, p) > 0

0 : else
r∑

p=1

v∑
wi=1

(g(w,wi, p) + g(w′, wi, p))

To compute the similarity score we used DISCO[9] function which im-
plement the above equation.

3.3 Medical NLP

Natural Language Processing (NLP) automates natural text understanding in-
cluding entity and relational extraction. Medical NLP is interested in extracting
entities such as protein names, symptoms, and treatments from medical texts
such as publications and electonic medical records(EMR).
NLP uses three main approaches.

Knowledge-based approach The key elements of a knowledge-based system
(KBS) are: [15].

1. Knowledge modules that contain expert information,

2. A knowledge base where the knowledge is stored,

3. A deduction engine for detecting solutions to problems from stored knowl-
edge, and

4. A user interface that allows the model to accept user input and explain its
processing and reasoning steps.

8

In our case, the publications are the knowledge modules. The predefined anno-
tation and the expert rules are the knowledge base. The application of the rules,
the distributional similarity algorithm, and the user feedback in the semiauto-
matic annotator process form the engine. Finally, SAMNA embedded all that in
a user friendly interface.

Empirical approach Empirical approaches implement machine learning tech-
niques to automatically extract lignuistic knowledge from natural language data
such as root detection, tokenization, part of speech tagging. The general trend
for these approaches is to apply pattern recongnition techniques such as K-
nearest neighbour and support vector machines (SVM) to extract information
from text [16].
These approaches originally don’t require necessarily knowledge of the language
rules.

Hybrid approach Recent techniques propose merging both approaches in
which knowledge of the liguistic rules is used along with the empirical meth-
ods in order to boost the performance, and direct the learning process.
SAMNA uses both expert rules and statistical algorithms in addition to user
feedback to extract information.

Manual annotations Given a text where we want to annotate terms that
appertain to a label of interest, manual annotation is a techniques that allow the
specialist to modify existing annotation by

1. adding / removing annotation.

2. adding / removing a label.

Automatic annotation Given a document where we want to annotate terms
that appertain to a label of interest, automatic annotation is set of techniques
that decide whether a word in that document is associated to a specific label,
such as

• knowledge base rules which are some hard coded rules suggested by the
specialist base on the knowledge of how the labels usually varies between
each others, and

• distributional similarity algorithm that find annotation base on the simi-
larity of the already founded annotation.

9

Chapter 4

Motivation

Medical studies typically review selected articles from a specific domain liter-
ature. The reviewer is limited to a humanly manageable number of articles,
error prone, and hence not comprehensible. Collective knowledge embodied in
all articles addressing a specific disease is hard to capture by sole human manual
work. In particular, relations between proteins and specific diseases across all
pubmed literature is of interest to medical scholars to shed some light on emerg-
ing and interacting disease pathway. Articles reporting on protein and disease
co-occurrence exist in online biomedical databases like PubMed and SCOPUS.
The databases allow using special API to retrieve the data in a predefined format,
with a text base search mechanism.
The search mechanism works with exact string matching of keywords, mesh terms,
and user defined queries. This might include lots of articles that are not of in-
terest since the search is out of context. Those might also miss some important
articles because of the exact string matching short comings. Screening the arti-
cles manually is a cumbersome and error prone task.

Scholars look for articles where each article presents evidence of the role
of one or more proteins in activating a pathway of one or more diseases. For
example a search in PubMed and Scopus returns 83,101 articles related to the
stroke disease. This magnitude of literature is hard to analyze manually and au-
tomated NLP tools that help in the selection of the relevant articles are needed.
Enabling the analyses of literature od such magnitude will help health-care providers
to build a model for curation and construction of the molecular architecture of
pathological and disease conditions. Such model is particularly significant in
the context of complex diseases where a large number of proteins contribute to
the disease processes such as Alzheimer, Stroke, Myocardial infarct, and Cancer
Metastasis.
This motivates us to use NLP techniques to help extract information
of interest from the articles using semi-automatic annotation.

10

Existing annotators fall short of performing this task because of the following

1. Most of the existing annotators need a professional software developer to
deploy and run them, which is hard for a protein or disease specialist.
Knowtator [3] is a protege plugin (protege is a java tool where you make
class and define relation) so you have to know how to install and use protege
plugins to be able to use Knowtator. Brat [4] is a web server written
in python that require a CGI (Common Gateway Interface) capable web
server.

2. Some of those annotators could not handle large file sizes such as 100 MB,
while the data about Brain Ischemia is a 688 MB.

3. They cannot parse XML and CSV files specific to biomedical indexing
databases. XML and CSV file retrieved from online database contain data
that might not be of biomedical interest so we need to parse the files before
displaying its content.

4. They do not generate needed statistics from the annotated data (such as
frequency and co-occurrence of the annotated terms).

5. They are single document based, and cross-document analysis is the target
of this work.

Therefore, we developed an annotator that allows for cross-document annotation
and surpasses all the above shortcomings. SAMNA is a semi automatic annotator
that has the following abilities.

• It is user friendly and easy to install and use.(See appendix A for a tutorial)

• It loads a predefined database of labels with associated terms. and uses it
in the annotation process.

• It parses large files and extract important data from files such as titles,
abstracts, ids and dates.

• It is able to display documentation aggregated across all articles and files,
and allows for inspecting each one alone with its important components.

• It allows the intervention of the specialist to edit and redo the automatic an-
notations including adding or deleting an annotation and adding or deleting
a label.

• It creates statistical metrics that describe the annotations and their occur-
rences while performing the NLP task.

11

• It is able to automatically suggests potential annotations within biomedical
texts with high accuracy.

• It visualizes the components of articles such as title, abstract, id and date
with color sensitive annotations, that highlight occurrences of terms of in-
terest to the NLP task in the text.

• It takes expert rules from the specialist that specify features of the target
annotations. It uses these rules to annotate additional terms not defined
previously in the database. For example ∀ Pi ∈ list of protein P; Pi[1-9][1-
9]* is a protein. Protein followed by one or more digit will be considered
a new protein. For example if XYZ is a protein in the list, XYZ3 will be
annotated as protein.

• It implements a distributional similarity algorithm using DISCO [9] to find
new annotations.

• It saves a result file holding the important statistics of annotation occur-
rences and frequencies for each annotation. In this way SAMNA provides
a full annotation spectrum for further analysis by investigators.

SAMNA is a promising tool for medical NLP applications, such as information
extraction from medical databases which will help researches to study cross doc-
ument relations such as protein to disease relations.

12

Chapter 5

Semi Automatic Annotator

The semi-automatic annotator for medical NLP applications SAMNA, allows
the specialist to load files with a specific format such as EXtensible Markup Lan-
guage (XML), comma-separated values (CSV), and text file TXT. Those files can
be extracted from PubMed and Scopus for example.Then SAMNA allows semi
sutomatic annotation of these files.

5.1 SAMNA File Extraction

SAMNA loads the files and extracts from them the following needed components
upon the request of the user.

• The title,

• The abstract,

• The ID (PMID for example) which is a unique ID that identifies the pub-
lication, and

• The date which is the date of publication

In case scholars were interested in more details such as the results or the figures
of an article, SAMNA is also supported with scripts that can extract other parts
of the article if needed and if available. Typically the title and abstract are
enough for annotation because they are manageable and easy for screening. They
have the most important information about the publication work and a brief
description of the results. Further more lots of papers are expensive and not
open access, and lots of paper are not fully digitize yet.

13

PubMed XML structure A search in the PubMed database results in an
XML file with the following structures and tags.
In the XML file each article is embodied inside a node named PubmedArticle
that contains:

• ArticleTitle is the node holding the title of an article.

• Abstract is the node enclosing the abstract of an article.

• PMID is the node containing the PMID of the article.

• DateCompleted is the node having the date of the article.

Several other details exist in the XML file that SAMNA ignores for now such as
journal details, authors names, and comments.

Scopus CSV and TXT Structure CSV file are organized by column names.
Each raw represents an article. SAMNA is interested in

• The title column.

• The abstract column.

• The id column.

• The publication year column.

Several details exist in the CSV file that SAMNA ignores for now such asAuthors
names column, article link column, and source column.
SAMNA is a user friendly annotator tool that have a navigation process, cashing
process, and automatic annotation algorithm

5.2 SAMNA Navigation

SAMNA have a user friendly navigation process.

• SAMNA allows the specialist to go between extracted articles one by one,
forward and backward. It offers the choice to do that by clicking the next
and previous button or through shortcut keyboard navigation keys.

• SAMNA applies the exper rules and the distributional similarity annotation
algorithm for each article and allows the user to validate the automatically
found annotations.

• SAMNA allows the specialist to go to a specific article number. This gives
the specialist the ability to continue working after a break.

14

• SAMNA allows the specialist to go through and annotate all abstracts au-
tomatically while extracting statistics about annotation occurrences and
frequencies.

• SAMNA implement shortcut keyboard for every important action. Thus
the specialist can annotate the articles in a faster way. For example the
specialist can start highlighting the article while reading, and when he finds
a term that should be annotated he click CTRL + (the number of word he
want to annotate). SAMNA will annotate the number of words he specified
starting with the last highlighted word.

5.3 SAMNA Data Model

SAMNA has a cashing system to load already defined list of annotation labels
and associated terms. SAMNA stores new annotations and labels, and saves
statistics using spreadsheet files.

• SAMNA can work on several projects each project is organized in a direc-
tory named a work space. SAMNA prompt the user for the work space at
first. The work space may contain the annotation label and term lists.

• SAMNA saves the annotations in a result database. The specialist can have
some statistics about each annotation and its frequency of occurrence. Each
row in the result file is an annotation. The row contain annotation term,
the id of the article, the label it belong too, the origin term from which the
annotated term is deduced, the date of the article, the section where the
annotation was found, and the position of the annotation in text.

• SAMNA saves annotation labels and terms in a spreadsheet format. Those
spreadsheets are used in the annotation process. It also saves editing action
in a spreadsheet format so the action will be memorized.

5.4 SAMNA Annotation

SAMNA has a direct string matching annotation process, and an automatic pro-
cess that suggests new annotation.

• SAMNA annotates words according to some already defined databases of
labels. Label databases can be filled manually by a professional person or
can be constructed automatically by the tool. This provides the ability of
adding a term to the database of labels. This databases contain terms that
should be annotated and visualized with a specific legends if found in the
document. For example label can be protein, terms can be the proteins
names and legend can be a color highlighter.

15

• SAMNA highlights exact matching words and highlights term matches ac-
cording to predefined expert rules.

• SAMNA applies predefined specialist rules to catch new annotation.

• SAMNA applies a distributional similarity algorithm to find and suggest
new annotations.

5.5 SAMNA User Editing

SAMNA allows the user to edit annotation terms and label, and to exclude a
term or an article from the annotation process.

• SAMNA enables the specialist to add or remove a label. To add a label the
specialist has to choose the label name and the associated legend. When
the specialist adds a new label, a database of this label will be created
and the specialist will be able to add and remove annotations to the label
database.

• SAMNA enables the specialist to add and remove new annotations to the
label database. when adding (or removing) an annotation the annotation
will be highlighted (or unhighlighted) in all other article. any addition (or
deletion) of an annotation will affect the label database.

• SAMNA enables the specialist to exclude a term from annotations in a
specific article.

• SAMNA enables the specialist to exclude a article from annotations. This
article will not be shown in results.

• SAMNA allows the specialist to choose whether to apply the rules while
searching for annotations in text.

• SAMNA gives the ability to undo actions.

• SAMNA offers shortcuts to do the important actions mentioned above.

5.6 SAMNA Analysis

SAMNA provides the results of the annotation in a spreadsheet files to be used
for the analysis such as:

• Inter-annotation agreement.

• Graph analysis from detected entities.

• Cross document analysis with other databases.

16

All these features are shown in the java GUI buttons, right click menu, and
keyboard shortcuts which made SAMNA a user friendly tool. Details about the
GUI and the buttons places and functions can be find in the tutorial guide,
Appendix. A.

17

Chapter 6

Method

SAMNA uses three different methods to annotate a word in the text. It uses a
string matching algorithm where it annotates words that match the predefined
terms. It also uses a Knowledge base algorithm to annotate words that syntac-
tically look like predefined regular expression rules associated with terms and
labels. Finally, it uses a statistical algorithm based on distributional similarity
to suggest annotations.

6.1 Direct String Matching

SAMNA loads the predefined database of terms in a lookup has table. It reads
the text word by word and checks whether the word exists in the lookup table.
If a match is found, SAMNA creates an annotation with the associated label for
the match, highlight it in the interface , and saves it in the result spreed sheet
file. For multi word terms, SAMNA uses the first word of the term as a hash key
and saves the rest of the term in the has entry for further matching (Figure 1).

From 7,403 predefined protein names we were able to find 9,053 exact
matches in 36,818 abstracts for spinal cord injury XML file. Those 9,053 exact
matches are for 915 unique protein terms.

6.2 knowledge Base Rules

SAMNA takes a set of regular expression associated with a set of terms. The
regular expressions form a knowledge base of rules. The regular expressions are
written with the help of the expert scholar; i.e the protein expert in the stroke
and spinal cord studies. Those following rules are examples of rules implemented
to capture proteins names

• Allow a number after a word; ∃ Pi ∈ list of protein P; Pi[1-9][1-9]* is a
protein.

18

1 pub l i c void SAMNAStringMatching (text , l a b e l s)
2 {
3 h= CreatHashTable (l a b e l s) ; // see figure 2

4 f o r each word w in t ext
5 {
6 r= lookup (h ,w) ;
7 i f (r i s multiword)
8 {
9 i f (Check (r . r e s t , Text (After (Pos (w)))))

10 {
11 annotate (w +Text (After (Pos (w)))) ;
12 }
13 }
14 e l s e i f (r i s t rue)
15 {
16 annotate (w, r . l a b e l) ;
17 }
18 }
19 }

Figure 6.1: String matching algorithm

1 pub l i c HashTable CreatHashTable (l a b e l s)
2 {
3 HashTable h = new HashTable () ;
4 f o r each term t in l a b e l s
5 {
6 i f (t i s one word)
7 {
8 h .Add(t , t rue) ;
9 }

10 e l s e
11 {
12 h .Add(f i r s tWord (t) , RestWords (t)) ;
13 }
14 }
15 re turn h ;
16 }

Figure 6.2: Create hash table from label spreed sheet

19

• Add and remove ’s’ for plural; ∃ Pi ∈ list of protein P; Pi”s” is a protein
and ∃ Pi”s” ∈ list of protein P; Pi is a protein.

• Add an asterisk ”*” to a word; ∃ Pi ∈ list of protein P; Pi+”*”+[A-Z][A-Z]*
is a protein.

• Add a dash ”-” to a word; ∃ Pi ∈ list of protein P; Pi+”-”+[A-Z][A-Z]* is
a protein.

• Add a ”P-” and ”C-” prefix to a word; ∃ Pi ∈ list of protein P; ”P-”+Pi

and ”C-”+Pi is a protein.

• Consider word with parenthesis expressions following them ’(’ or ’)’; ∀ Pi
∈ list of protein P; ”Pi(”+*+”)” is a protein.

• Consider words with slash and backslash ’/’ or ’\’ without them; ∃ Pi ∈
list of protein P; Pi+’/’+* is a protein.

• Similar rules where also included to treat special characters such as commas,
points, and brackets.

The above rules were hard coded to optimize their run time. SAMNA also accepts
user defined regular expressions. Using knowledge expert rules, we were able to
find 10,504 protein names in 36,818 abstracts for spinal cord injury XML file.
Those 10,504 protein names were from 1,458 protein names deduced from the
same 915 unique protein names. This method increases our protein finding from
915 till 1458

6.3 Distributional Similarity Algorithm

SAMNA uses an automatic statistical algorithm based on distributional similar-
ity to boost annotation effectiveness. The distributional similarity algorithm is
illustrated in Listing 5.3, 5.4, and 5.5. The distributional similarity algorithm
works as follows.

1. It computes Si and Ci which are the the set of the top similar and collo-
cated words of each term ti in the terms using Disco [9] tool. The similarity
and collocation scores RSij and RCij are calculated based on a pre com-
puted corpora index. We used the PubMed index for the stroke and spinal
cord.PubMed data packet is a packet provided by disco containing the in-
dex of approx. 100,000 medical articles from the PubMed Open Access
database (July 2007).

2. The top similar and collocated words are selected based on a user defined
threshold TS and TC (Figure 3 and 4).

20

1 Publ ic HashTable GetOneWordSimilarity (oneWordTerm , d i s c o)
2 {
3 HashTable hSimilarWordsAndScores = new HashTable () ;
4 SimilarWordsAndScores= d i s co . SimilarWordsAndScores (

oneWordTerm) ;
5 f o r each word sw in SimilarWordsAndScores
6 {
7 i f (sw . score>TS)
8 {
9 hSimilarWordsAndScores .Add(sw . word , sw . s co r e) ;

10 }
11 }
12 re turn hSimilarWordsAndScores ;
13 }

Figure 6.3: Get similarity for 1 word protein

1 Publ ic HashTable GetOneWordCollocation (oneWordTerm , d i s c o)
2 {
3 HashTable hCollocationWordsAndScores = new HashTable () ;
4 CollocationWordsAndScores= d i s co . CollocationWordsAndScores (

oneWordTerm) ;
5 f o r each word cw in CollocationWordsAndScores
6 {
7 i f (cw . score>TC)
8 {
9 hCollocationWordsAndScores .Add(cw . word , cw . s co r e) ;

10 }
11 }
12 re turn hCollocationWordsAndScores ;
13 }

Figure 6.4: Get collocation for 1 word protein

21

3. It uses an algorithm to compute the similarity and collocation of multi-
word terms, which is not directly supported by DISCO. This algorithm
divides the multi-word term into single words and computes the similarity
and collocation of every word. then it computes the intersection of the
similarity of all the words. It associates each word in the intersection set
with its minimum score across all words. It does the same for the collocation
sets (Figure 5).

3. It uses an algorithm to compute the similarity and collocation of multi-
word terms, which is not directly supported by DISCO. This algorithm
divides the multi-word term into single words and computes the similarity
and collocation of every word. then it computes the intersection of the
similarity of all the words. It associates each word in the intersection set
with its minimum score across all words. It does the same for the collocation
sets (Figure 5).

T1
T2

.

.

.

.
Tn

Ti

Similarity and colocation for each term

Get the similar words of
Ti_1 which have a score

greater than Ts

List of manually
curated words

Divide Ti into multi words:
Ti_1
Ti_2
Ti_3
…..

Divide Ti into multi words:
Ti_1
Ti_2
Ti_3
…..

Is Ti one word ?
Disco_Similarity (Ti)

Yes

Disco_Collocation (Ti)

Get the collocation words
of Pi_1 which have a score

greater than Tc

No

Disco_Similarity
(Ti_1)

Disco_Collocation
(Ti_1)

Get the similar words of
Ti_2 which have a score

greater than Ts

Get the collocation words
of Pi_2 which have a score

greater than Tc

Disco_Similarity
(Ti_2)

Disco_Collocation
(Ti_2)

Get the similar words of
Ti_3 which have a score

greater than Ts

Get the collocation words
of Pi_3 which have a score

greater than Tc

Disco_Similarity
(Ti_3)

Disco_Collocation
(Ti_3)

Get the interaction of similarity and
collocation with the minimum score

List of similarity and colocation with their scores

Figure 6.5: compute similarity and collocation between all words in text

4. It computes the total similarity and collocation score for every suggested
terms. After computing the similarity and collocation of each term Si and

22

Figure 6.5: compute similarity and collocation between all words in text

4. It computes the total similarity and collocation score for every suggested
terms. After computing the similarity and collocation of each term Si and
Ci, a lot of intersection between similar and collocated words should be

22

found. To compute the score of each similar and collocated word we use
the equations:

(a) Let Rsij be the similarity score of Sij which is a similar word to the
term Ti.

(b) If Sfj which is a similar word to the term Tf is equal to Sij having a
similarity score Rsfj.

(c) Do increment the number of repeated time for the word Sfj.

(d) Update the score of suggested similarity word (Sfj=Sij). Sfj = Rsij
+((Rsfj *(δ1+repeated times*δ2)).
δ1 and δ2 are constant factor to increment the similarity and colloca-
tion score

5. It Takes the suggested similarity words that have a total score above a user
defined threshold to have the one word similarity list. (Figure 6 and
7).

6. It uses the collocation of those similarity words to compute the multi word
suggestion.(Figure 8)

After running this algorithm on the spinal cord injury file, provided to
the algorithm an input of 7403 protein name (same protein names as above). The
algorithm was able to suggest 8605 protein names with 530 new unique protein
names deduced from 86 distinct suggested protein names with a recall of 81.12

6.4 Choosing δ1 and δ2

To choose the best value of δ1 and δ2 we did alternate the value of δ1 and δ2
computing the precision of the 500 highest score suggested words. Table 1 and
Figure 9 represent our findings which indicate that we should set δ1 = 1000 and
δ2 =10 to get a precision of 89.1% for the first 500 words.

23

1 Publ ic Similar ityListGetOneWORDSimilar ityList (Terms , d i s c o)
2 {
3 i n t d e l t a =1000;
4 i n t de l t a2 =10;
5 g l o b a l s im i l a r i t y s c o r e t h r e s h o l d =68445871;
6 f o r each Termt in Terms
7 {
8 St=GetOneWordSimilarity (t , d i s c o) ;
9 f o r each word $S t i $ in $S t$

10 {
11 i f (s im i l a r i t y S c o r e s . containsKey (S t i . word))
12 {
13 s im i l a r i t y S c o r e s . put ($S t i $. word () , s im i l a r i t y S c o r e s . get ($S t i $

. word)+($S t i $. s c o r e ∗ de l ta1+(s imi l a r i tyRepeadted . get (entry .
getKey ()) ∗ de l ta2))) ;

14 s im i l a r i tyRepeadted . put ($S t i $. word , s im i l a r i tyRepeadted . get (
$S t i $. word)+1) ;

15 }
16 e l s e {
17 s im i l a r i t y S c o r e s . put ($S t i $. word , $S t i $. s c o r e) ;
18 s im i l a r i tyRepeadted . put ($S t i $. word , 1) ;
19 }
20 }
21 }
22 f o r each entry in s im i l a r i t y S c o r e s . entrySet ()
23 {
24 i f (entry . getValue ()>g l o b a l s im i l a r i t y s c o r e t h r e s h o l d)
25 {
26 oneWordSuggestions . add (entry . getKey ()) ;
27 }
28 }
29 re turn oneWordSuggestions ;
30 }

Figure 6.6: Get the 1 word suggested similarity List

24

P1
P2

.

.

.

.
Pn

DISCO Similarity
function

S(pi)
Pi

1 word similarity algorithm

Get the similar word of
P10 which have a score

greater than 100

Check if exist in the list of similar
word

Pi_Similar_3

If do not exist in the list of similar
words Add it with its score.

List of 1 word similar words
and scores

……
…..

Pi_Similar_3,
Count_Pi_Similar_3++

…..
…..

List of similar words
and number of
times repeated

If already exist in the list of
similar words

1- increment repeated times
2- score of P10_Similar_3= Old

score of P10_Similar_3+((
rs_10_3*(delta1+repeated

times*delta2))

S_1_1,rs_1_1
…
…

P10_Similar_3,
Score(P10_Similar_3)

Or

 Old score of
P10_Similar_3,+((

Score(Pi_Similar_3)
*(delta1+(repeated

times*delta2))
….
….

List of manually
curated words

Pi_Similar_1, Score(Pi_Similar_1)
Pi_Similar_2, Score(Pi_Similar_2)
Pi_Similar_3, Score(Pi_Similar_3)

.

.

Pi_Similar_1, Score(Pi_Similar_1)
Pi_Similar_2, Score(Pi_Similar_2)
Pi_Similar_3, Score(Pi_Similar_3)

.

.

Figure 6.7: distributional similarity algorithm

25

1 Publ ic L i s t GetTwoWORDSimilarityList (Terms , d i s c o)
2 {
3 oneWordSimi lar i tySuggest ions=GetOneWORDSimilarityList (Prote ins

, d i s c o) ;
4 i n t d e l t a =1000;
5 i n t de l t a2 =10;
6 g l o b a l c o l o c a t i o n s c o r e t h r e s h o l d =1435699;
7 f o r each s imi larword sw in oneWordSimi lar i tySuggest ions
8 {
9 c o l o c a t i o n s=GetOneWordCollocation (sw , d i s c o) ;

10 f o r each c o l l o c a t i o n c in c o l l o c a t i o n s
11 {
12 i f (c o l o c a t i onS co r e s . containsKey (c . word))
13 {
14 c o l o c a t i onS co r e s . put (c . word , c o l o c a t i onS co r e s . get (c . word)+(c .

s co r e ∗ de l ta1+(co locat ionRepeadted . get (c . word) ∗ de l ta2))) ;
15 co locat ionRepeadted . put (c . word , co locat ionRepeadted . get (c . word)

+1) ;
16 }
17 e l s e
18 {
19 c o l o c a t i onS co r e s . put (c . word , c . s c o r e) ;
20 co locat ionRepeadted . put (c . word , 1) ;
21 }
22 }
23 }
24 f o r each entry in c o l o c a t i onSco r e s . entrySet ()
25 {
26 i f (entry . getValue ()>g l o b a l c o l o c a t i o n s c o r e t h r e s h o l d)
27 {
28 oneWordCol locat ionSuggest ions . add (entry . getKey ()) ;
29 }
30 }
31

32 f o r (i n t i =0; i<oneWordCol locat ionSuggest ions . s i z e () ; i++)
33 {
34 f o r (i n t j =0; j<oneWordSimi lar i tySuggest ions . s i z e () ; j++)
35 {
36 multiWordSuggestions . add (oneWordSimi lar i tySuggest ions . get (j)+”

”+oneWordCol locat ionSuggest ions . get (i)) ;
37 }
38 }
39 //for three words suggestion we add the collocation for the

collocations words

40 re turn multiWordSuggestions ;
41 }

Figure 6.8: Get the multi word similarity List

26

alternating δ1 and δ2
δ1 δ2 Precision
1 0 0.879732739
10 0 0.879732739
100 0 0.879732739
1000 0 0.879732739
1000 5 0.884955752
1000 10 0.89135255
1000 12.5 0.887417219
1000 20 0.889867841
1000 100 0.887417219
5000 1000 0.887168142
1000 1000 0.885462555

Table 6.1: precesion while alternating δ1 and δ2

Figure 6.9: Precision While alternating δ1 and δ2

27

Chapter 7

Implementation

SAMNA is a java tool, it is composed of three packages: file reader, highlighter,
and annotator.

7.1 File Reader

The file reader package is the package responsible of parsing the XML, CSV,
and TXT files containing the abstracts and the needed information. Reading
from spread sheet files, writing to them, and deleting from them. Spread sheet
files represent the database structure of SAMNA.

The files reader package consists of the following.

1. XmlParser class responsible of parsing the XML file taken from the PubMed
database it has two public methods:

(a) GetXmlAbstracts:

• Takes XmlFilePath as String which is the path of the XML file,

• Returns an array list of hash map of strings in each hash map
there are: title, abstract, PMID, and date.

• Create a serialized object of this array list of hash map of strings
in the same file directory, so the next time it will take much less
time to load the abstract using the second method GetXmlAb-
stractsserialized.

(b) GetXmlAbstractsserialized:

• takes SerializedFilePath as String which is the path of the serial-
ized object file

• Returns an array list of hash map of strings in each hash map
there are: title, abstract, PMID, and date.

28

XML parser parse XML files using java Document Object Model (DOM)
parser, XML parser searches for nodes named <PubmedArticle>, which
represents an article and extract from it the nodes containing title, abstract,
PMID, and date which are respectively<ArticleTitle>, <Abstract>, <PMID>,
and <DateCompleted>.

2. TxtReader class responsible of parsing CSV and txt file taken from scopus
database. in this class an additional library is used, which is opencsv-2.3.jar
to easily read csv files. it has two public method each for one file type

(a) GetTxtAbstracts:

• It takes TxtFilePath as String which is the path of the txt file.

• Returns an array list of hasp map of strings in each hasp map
there are: title, abstract, PMID, and date.

(b) GetTxtAbstractsFromCSV:

• it takes CSVFilePath as String which is the path of the CSV file

• Returns an array list of hasp map of strings in each hasp map
there are: title, abstract, PMID, and date.

The CSV library allows to easy parse the csv file, by choosing the column
number and assign its content.

• PMID column 18.

• Date column 2.

• Title column 1.

• Abstract column 14.

3. ExcelReader class, because our databases are now in excel format, we use
the excel reader class that has 11 public methods used to

(a) Get predefined terms from labels databases along with the suggested
terms.

• Method name: GetAllProteinAndSimilarWords.

• Input: a string, which is the path of the excel file of labels.

• Output Array List of Multi map of String and Array List of
strings. first multi map are the predefined database of terms,
second multi map is the one word suggest terms, third multi map
is the two word suggested terms, and the fourth multi map is the
three words suggested terms.

– The first string is the first word of the term.

– the array list of strings are the rest of words constructing the
term.

29

– Multi map is an implementation of hash map made by google.

– this hash table implementation made the query toward the
label names very fast, because we have to search for each word
inside more than 8000 label names, so without this hashing
implementation the process will be incredibly slow.

(b) Read Labels names.

• Method name: GetAllLables.

• Input: a string, which is the path of the excel file of labels names.

• Output: Array list of strings which are the labels names excluding
the default protein label.

(c) add a new label in addition to the default label.

• Method name: AddLableToList.

• Inputs: 3 strings: the path of the excel file of labels names,

– the new label name, and

– the new label color.

• Output: void.

(d) add a label to its database

• Method name: AddProteinToList.

• Inputs: 2 strings: the path of the excel file of label, containing its
terms, and

– the new term.

• Output: void.

(e) open the excel file

• Method name: open.

• Input: a string which is the path of the excel file

• Output: void.

(f) close the excel file

• Method name: close.

• Input: a string which is the path of the excel file

• Output: void.

(g) delete an annotation from its database

• Method name: RemoveProteinFromDatabase.

• Input: 2 strings: the path of the excel file, and

– the name of terms to be deleted.

• Output: void.

(h) not adding a word to the result file if it is find in a specific abstract,

30

• Method name: findRow.

• Input: 4 strings: the path of the excel file,

– PMID of the article where the word should not be considered
for annotation,

– the date of the article where the word should not be considered
for annotation, and

– the term that should not be considered in the specific article.

• Output: an integer which is the raw number where this term is
founded.

(i) add annotation to result file

• Method name: AddProteinRecordToResults.

• Input: 4 strings: the PMID of the article where the annotation
was founded,

– the date of the article where the annotation was founded,

– the term that should be added to the result file, and

– the term to which this annotation belongs

• Output: void.

(j) add a term to not be considered in a special article

• Method name: NotProteinRecord.

• Input: 5 strings: the path of the excel file,

– the PMID of the article where the term was founded,

– the date of the article where the term was founded,

– term that should not be considered if found in this specific
article, and

– the label to which this term belongs.

• Output: void.

(k) remove annotation from result file

• Method name: RemoveProteinFromResults.

• Input: 2 strings: the path of the excel file, and

– annotation that should be removed from result file.

• Output: void.

In this ExcelReader class we used

• POI library (poi-3.10-FINAL-20140208.jar) to manipulate excel file.
POI is a library made by Apache to manipulate Microsoft office Doc-
uments. [17].

31

• commons lang3 library for string manipulating (commons-lang3-3.3.2.jar),
common lang library is made by Apache.

• Google library named (guava-16.0.1.jar) to use a MultiMap object
which is an implementation of HashMap.[18].

Note that we are opening the excel result file one time at the start of the
tool and close it one time at the close of the tool, instead of opening and
closing the file each time we want to write on it. This trick save us a lot of
time.

7.2 Highlighter

The highlighter package has only one class which is the HighlightPainter, High-
lightPainter is responsible of highlighting and removing the highlight from the
document, in this class we don’t need any additional library except for the one
mentioned above.
HighlightPainter class has 4 public methods

1. highlight version2: it is the mainly use highlight function it takes as pa-
rameters:

(a) PMID: the id of the article we are highlighting.

(b) Date: the Date of the article we are highlighting.

(c) textComp: which is the text area in the main frame.

(d) pattern: which is the hash table of the protein terms.

(e) myHighlightPainter: the highlighter used.

(f) myaddedHighlightPainter: another highlighter used for added protein.
The difference between highlighters are basically the color used.

(g) Type: the label of the annotation such as protein,antibiotic, or bacte-
ria.

(h) SpecialCase: a boolean to tell the function to apply specialist rules or
no.

(i) workspace: path of the work space.

(j) excel: which is an instance of the mentioned excel reader class to be
able to access and do changes in the databases.

and return an array list of string containing founded annotations.
Basically highlight version2 method :

• takes every word in the abstract and title, apply rules on this words
to have a list of words, and search for these words in the hash table of
terms, the word will be the key of the hash table.

32

• If the word is founded it continues to see if the next array list of string
which are the value of the key are the next words in the documents.

• If they are the same so it has founded an annotation.

• If annotations is founded it highlights them and adds them to the
result file, after doing a check on the file containing the annotations
that should not be considered in a special article.

2. highlightNonProtein: it highlight non protein with a special color to be
noticed when removing a protein from database. it takes as parameters

(a) textComp: which is the text area in the main frame.

(b) pattern: the non protein to remove highlight from it.

(c) myHighlightPainter: the highlighter used as an indicator that this
protein is removed.

3. removeHighlights: to remove all highlighter in the main frame, used to clear
the text area. removeHighlights takes as parameter the text area only.

4. removeHighlights: to remove highlighter from a specific word, it takes as
parameters

(a) jTextArea: which is the text area in the main frame.

(b) turnLightOff: the non term we want to remove highlight from it.

(c) PMID: the id of the article we are highlighting.

(d) Date: the Date of the article we are highlighting.

(e) Type: the label of the annotation.

(f) workspace: path of the work space.

7.3 Annotation

Annotation package have two class:

1. the Action class which is a small class with only a constructor made to save
the actions done by the users so we can undo them if we want.

2. the most important class which is the SAMNAFrame class which is the
main frame of the SAMNA tool. the SAMNAFrame class contain all GUI
structure and buttons, in addition to the logic behind these buttons, it
contain the ability to do a right click and to do all available function that
will be mentioned in section A.
SAMNAFrame class contain 1 public method which is its constructor, and
18 private methods used by the constructor to :

33

(a) Open a file chooser box to choose a file.

• BrowsLoadCSVAbstract: to choose a CSV file.

• BrowsLoadTxtAbstract: to choose a txt file.

• BrowsLoadAbstract: to choose an XML file.

• BrowsLoadAbstractserialized: to choose a serialized file.

(b) parse the content of the chosen files and fill the array list of articles
from these files

• LoadCSVAbstract: to load articles from a CSV file

• LoadTxtAbstract: to load articles from a TXT file

• LoadAbstract: to load articles from a XML file

• LoadAbstractserialized: to load articles from a serialized file

(c) create the right click menu.

• CreatPopupMenuOnRightClick: method responsible of creation
of the right click menu, and the function of each option.

• RenderPopupMenu: method used to add an option to the right
click menu. RenderPopupMenu method is used when we add a
new label, so an option to add an annotation to this new label is
added to the right click menu.

(d) allow the intervention of specialist to add or remove annotation and
labels.

• AddToProteinDatabase: used to add an annotation to its label
database.

• AddLableToDatabase: used to add a new label to the labels database.

• RemoveProteinFromDatabase: used to remove a term from its
label database.

• RemoveProteinFromResult: used to remove an annotation from
the result file

• RemoveProtein: used to remove default annotation.

• AddProtein: used to add default annotation.

(e) highlight the articles

• RenderFrame: main method used to highlight the main frame.

• AddToHighlightedWordsSection: method to add annotations to
the list on the right side of the frame.

The constructor method also contain:

• The structure and design of the GUI.

• The shortcuts creations.

34

Chapter 8

Experimental results

We provided SAMNA to medical scholars and worked with them on annotating
text corpora for two diseases: 1) stroke and 2) spinal cord injury. we discuss the
two case studies below.

8.1 Stroke Case Study

The burden of ischemic stroke is still the highest among all neurological dis-
eases despite tremendous efforts devoted to prevention, management, treatment
and rehabilitation of stroke patients [19], [20]. After decades of research and
hundreds of clinical trials on ischemic stroke, the full spectrum of pathophysi-
ological processes has not yet been elucidated neither has a final and terminal
treatment been devoted. Preclinical and clinical studies have predicted that a
single-action-single-target paradigm is not the optimal approach to treat stroke
and that multi-action-multi-target paradigms are required [21]. Eventually, there
is a sincere need to compile efforts to understand the evolution of different mecha-
nisms after ischemic stroke and the relation of this to disease outcome and possible
interventions. We used SAMNA coupled to systems biology and network analysis
tools to analyze the complex protein interaction network that occurs after stroke.
To do that, we curated and annotated a brain-ischemia metaproteome (BIMP)
through literature mining and applied graph theory algorithms to analyze and
dissect the corresponding brain ischemia interactome (BII). The analysis uncov-
ered a rich-club organization in the BII and provided insight into the mechanisms
predominating early and subsequent phases of ischemic stroke. In addition, we
used network analysis in the context of drug-protein interaction that showed that
estrogen is still the most interesting intervention in ischemic stroke.

35

8.1.1 Method

Extraction of Target Dataset An overview of the research paradigm of this
study is shown in Figure 1. Literature on brain ischemia was extracted from
PubMed using the MeSH term (Brain Ischemia) and the search key (Stroke OR
brain infarct* OR cerebral infarct* OR brain ischem* OR cerebral ischem* OR
ischemic brain injury) as well as from references of reviews and extracted papers.
Abstracts were screened for relevance by two investigators using the title. Selected
abstracts were then processed into SAMNA for extraction of protein entities that
exhibit association with ischemic stroke. A detailed description of the selection
process is illustrated in Figure 3.

Figure 6

Figure 8.1: overview of data curation and processing

Text Annotation and Accession Mapping Different versions of gene and
protein names were exported from UniProt (http://www.uniprot.org) and HUGO
(http://www.genenames.org) databases. Abstracts were first matched with the
databases for similar terms to be annotated. Exact matches and close matches
are annotated as terms of interest and extracted into a separate dataset each iden-
tified by the papers ID. A human annotator with experience in both stroke and
proteomics verifies the captured term and skims the abstracts using SAMNA for
additional terms. With each new term captured, the original database is updated
for later use. Captured terms were then mapped automatically using a C# tool
that communicates with UniProt and HUGO databases for retrieving human or-
thologs of captured entities and the corresponding accessions. Frequency of each

36

accession was calculated as the number of distinct reports with the studied ac-
cession. Figure 2 illustrates the details of the text annotation process leading to
the captured set of accessions.

Supplementary Figure 2

 Figure 8.2: captured set of accessions

Functional Annotation The list of accessions retrieved from literature was
functionally annotated using DAVID [22] for GO cellular component, GO bio-
logical processes, KEGG pathways, tissue expression and Genetic Association of
Diseases database. Protein-protein interaction (PPI) data for the BIMP was re-
trieved through STRING database that includes curated PPI data from several
other databases [23]. PPI data obtained from STRING is then mapped into the
full Brain Ischemia Interactome using Cytoscape 3.1.1 [24]. In addition, data on
protein-drug interaction was retrieved from GeneCodis and STITCH. GeneCodis
allows for enrichment analysis of gene-drug interactions within a network using
PharmGKB database11 while STITCH allows for analysis of chemical-gene inter-
actions within a network using a dataset of 3 million chemical agents [25]. Drug
or chemical targets are defined in our study as those proteins and genes with
which the drug or chemical interacts and affects regulation.

Interactome Graph Analysis Graph Measures: Examination of the topol-
ogy of the BII network using graph theory was performed through Systems Bi-
ology and Evolution MATLAB Toolbox (SBEToolbox) and Cytoscape [25], [26].

37

Supplementary Figure 1

Figure 8.3: articles selection process

Characteristic measures of network organization were computed including node-
specific degree k, clustering coefficient, path length, betweenness centrality, and
modularity. Power-law degree distributions and adjacency matrices of the net-
works were generated in MATLAB (Mathworks, R2013a).

Rich-Club Analysis The emphasis of this work is the detection of a rich-club
organization among the nodes within the network of the BII. A rich club is a set
of high-degree nodes that are more densely interconnected than predicted by the
node degrees alone [27] . A rich-club coefficient ϕ(k) is computed over the range
of degrees in the network as previously described by Colizza et al [27]. For a given
degree distribution k1, , kn, rich-club coefficient for each degree k is calculated as
the number of edges among nodes with degrees higher than k divided by the
maximum possible number of edges among those nodes (Equation (1)).

ϕ(k) =
2E>k

N>k(N>k − 1)
(1)

where N>k is the number of nodes with a degree higher than k, and E>k is the
number of edges among those nodes.
To calculate normalized rich-club coefficient, we generated 10,000 random net-
works with the same degree distribution as the network of interest as described
by Viger and Latapy [28]. The average of rich-club coefficients of the random
networks ϕrandom(k) is calculated, and the normalized rich club is computed as

38

in Equation (2):

$(k) =
ϕ(k)

ϕrandom(k)
(2)

The normalized rich-club coefficient was calculated from the lowest degree to the
second highest degree encountered in the BII. A normalized rich-club coefficient
$(k) > 1 indicates the presence of a rich-club organization in the network.

8.1.2 Results

Curation and Annotation of First Brain Ischemia Meta-proteome To
extract our target Brain Ischemia Meta-proteome (BIMP), we retrieved 82,181
articles through PubMed and other databases using a combination of MeSH terms
and sensitive search keys (Figure 3).

We performed semiautomatic annotation of proteins reported to be in-
volved in stroke pathogenesis and recovery. A combination of preset protein
nomenclature database and manual validation was used to ensure sensitive and
specific capture (Figure 2). A total of 927 curated proteins were used for future
analyses after mapping proteins from different species to human orthologs. As
predicted, tissue-plasminogen activator (t-PA) was the most frequently reported
protein.
Functional annotation and clustering of proteins in the BIMP were performed

Figure 1

 Figure 8.4: clustering of proteins in the BIMP expressed by brain tissue

using DAVID for enriched GO (Gene Ontology) biological processes, cellular com-
ponents and tissue expressions [29]. As summarized in Figure 4, BIMP proteins
are predominantly expressed by brain tissue (Figure 4B), cluster by GO cellu-
lar component to extracellular space, neuronal projections and vesicular clusters,
and are primarily enriched for inflammatory processes (Figure 4A). Furthermore,
KEGG 7 pathway annotation reveals that complement and coagulation cascade
(CCC) is the most enriched pathway followed by calcium signaling and mitogen-
activated-kinase (MAPK) pathways (Figure 5). Notably, The CCC pathway
appears to have minor intersection in terms of common components with other
pathways compared to the other major pathways.

39

Figure 2

 Figure 8.5: Venn Diagram of the distribution of BIMP proteins on different
significantly enriched KEGG pathways

Construction and Analysis of Brain-Ischemia Interactome Protein-protein
interactions among components of the BIMP were retrieved via STRING database [11]
and the network representing interactions within the BIMP was analyzed through
Cytsoscape [30] and MATLAB (R2013a, The MathWorks, Inc.). A full visual-
ization of the full network is shown in Figure 6 clearly indicating the need to
use automated network analysis tools to reduce the network into an appreciable
form.

Markov Clustering Algorithm (MCL) was used to identify 16 distinct
clusters within the network. Figure 7A shows a reduced form of the interactome
given as interactions between major MCL clusters. Functional annotation of
enriched GO biological processes in each cluster is summarized in Figure 7B
and shows that inflammatory response, regulation of cell death and glutamate
receptor signaling are the most influential biological processes within the network
of clusters having the highest node-specific degrees. In addition, interconnections
were mapped among the three most enriched KEGG pathways in the network
showing that components of the CCC pathway are heavily interconnected with
proteins in other pathways despite that it has lower intersection in terms of
components (Figure 8). This finding is specifically significant for understanding
the role of this pathway in ischemic and reperfusion injury.

40

Supplementary Figure 3

Figure 8.6: Markov clustering of the network of BII

Rich-Club Organization in Brain Ischemia Interactome As shown in
Figure 9 (A-C), analysis of the brain ischemia interactome (BII) for the exis-
tence of rich-club organization has shown the presence of a rich-club for nodes
with degrees ranging between 40 and 180 and peaking at degree of 132. Nodes
with the highest rich-club coefficient (above 1.3) are highlighted in Figure 9A
and defined as the rich-club core. Rich-club analysis was also performed on the
three top degree clusters reported in Figure 6 revealing the presence of rich-club
organization in clusters 16 and 14 enriched for inflammatory response and regula-
tion of cell death respectively and not in cluster 5 (Figure 7C-7H). Interestingly,
comparison of rich-club components to non-rich-club components for frequency
of encounter in the curated literature shows that the frequency of rich-club nodes
is significantly higher (Figure 9D). Members of the rich-club were found to span
multiple pathophysiological pathways that predominantly include inflammatory

41

Figure 3

Figure 8.7: Markov clustering of the network of BII

and immunological response mechanisms.

Estrogen: a Pleiotropic Effect in Stroke Treatment In the last step, we
use findings of network analysis as a screening effect for potential therapeutics.
Analysis of protein-drug interactions, performed through STITCH [25] and [31],
have revealed estrogen as the most enriched chemical therapeutic within our BII.
Targets of estrogen within our BII are shown in Figure 10A and include up to 15%
of the nodes in the network. Estrogen was also found to preferentially target nodes
within the rich-club (53% of total rich-club components) which was reflected by a
significant enrichment on Fischer Exact t-test (Figure. 10C). Eventually, estrogen
targets were shown to have significantly higher normalized rich-club coefficient
compared to estrogen non-targets (Figure. 10B). Estrogen targets within the BII
had significantly higher participation coefficients upon MCL clustering compared
to non-targets indicating a more prominent contribution by those nodes to the
global network (Figure. 10D). Besides estrogen, other chemical compounds that
have similar pleiotropic effect (beneficial or harmful) on targeting components of
the BII are reported.

42

Supplementary Figure 4

Figure 8.8: Graph of protein-protein interactions among components of major
KEGG enriched pathways

Figure 4

Figure 8.9: Rich-club organization in the BII

8.1.3 Conclusion

We used SAMNA to construct, annotate and curate a brain ischemia meta-
proteome that reflects the spectrum of protein changes after brain infarct. We
used systems biology databases including UniProt [10] for protein accession re-
trieval and STRING [11] for protein interaction data, to construct the interaction
network among the extracted proteins. Curation of the proteome allowed for dis-

43

Figure 5

Figure 8.10: Estrogen targets within the BIMP

secting the role of different biochemical pathways in the amplification of injury
after stroke and revealed, with the help of graph theory algorithms, the presence
of a rich-club organization in the brain ischemia interactome. The detected path-
ways and the rich-club provide information on the optimal approaches to target
injury mechanisms after stroke.

8.2 Case study 2 spinal cord injury

Spinal cord injury (SCI) is a prominent cause of disability worldwide, and in
the U.S. is second only to stroke as a cause of disability, accounting for 23%
of all cases of paralysis [32]. The fact that there is no effective therapeutic
intervention for the treatment of SCI highlights the need for a better and more
integrative understanding of the molecular mechanisms that promote pathology
and determine recovery.

There is limited information available on how pathways involved in these
processes connect with each other to result in the pathological outcome. With
the aim of providing insight into the interdependency of prominent pathophys-
iological processes and the molecular disturbances that affect neuronal survival
and axonal regeneration, we investigated the full molecular architecture of SCI.
In this work, we use SAMNA to extract information from the scientific literature
on protein and gene disturbances after SCI. We use systems biology tools and

44

resources to map interactions among proteins reported to be dysregulated after
SCI, and we use network analysis and graph theoretical algorithms to study the
network of protein interactions after SCI. We identify hub proteins, critical path-
ways, and modules involved in SCI pathogenesis, as well as potential therapeutic
targets.

8.2.1 Materials and Methods

Extraction of Target Dataset Literature on spinal cord injury was extracted
from PubMed using the MeSH term (Spinal Cord Injuries) and the search key
(”Traumatic Spinal Cord”[Title/Abstract] OR ”Spinal Cord Trauma”[Title/Abstract]]),
as well as from references of reviews and extracted papers. After abstracts were
screened for relevance by two scientific curators, selected papers were then pro-
cessed into SAMNA for extraction of protein and gene terms reported in associ-
ation with SCI.

Text Annotation and Accession Mapping Tools To extract protein and
gene names and identifiers from the text, we used SAMNA to ensure specificity
and sensitivity of capture. SAMNA:

• Extracts different versions of gene and protein names and abbreviations
from UniProt (http://www.uniprot.org) and HGNC (http://www.genenames.org)
databases,

• Checks the text of the extracted abstracts with the gene and protein terms
extracted from the databases to annotate exact matches and,

• Detects and annotates close matches based on variations of the extracted
terms. Variations were defined in the form of computational knowledge base
rules to detect differences in spelling, the mentioning of specific and multiple
subunits, and variability in the use of special characters and abbreviations

The detected and annotated terms were extracted into separate datasets, each
identified by the ID of the source paper. A human annotator with experience
in both neurotrauma and proteomics verified the captured terms and inspected
the abstracts using SAMNA. SAMNA ran several trials of manual annotation
to assess the precision and recall of SAMNA. Each trial included around 1000
annotated terms with their corresponding abstracts. After each trial, the set of
rules was updated based on annotators input. Trials were performed with rules
updates until SAMNA achieved more than 99.5% on precision and recall mea-
sures. Fig. (1a) summarizes the overall approach used for term extraction. Next,
an in-house C# program communicated with UniProt and HGNC to retrieve the
corresponding accessions of captured terms. The frequency of each accession was
computed as the number of distinct reports of accession in question. To avoid

45

being biased by the literature, there was no assignment of weights for frequency
in our network analysis, but terms with a frequency less than three were cross-
validated by a second annotator to ensure minimal false positive captures (Fig.
1c).

Figure 8.11: SPINAL CORD

Functional Annotation and Interactome Data We used the Database
for Annotation, Visualization and Integrated Discovery (DAVID) [22] [33] to
annotate the retrieved list of accession for GO (Gene Ontology) cellular com-
ponent, GO biological processes, and KEGG (Kyoto Encyclopaedia of Genes
and Genomes) pathways. Functional annotation clustering was also performed
through DAVID to identify enrichment scores for different groups of annotations.
For clarity of presentation, we report p-values of corrected Fischer exact t-test
for enrichment analyses as enrichment scores which are computed as log10(1/p-
value). Protein-protein interactions (PPI) were obtained from STRING databases
by including interactions among the list of accessions with a combined score
higher than 0.4 [11] [34].

Graph Theory Measures After construction of the SCI interactome, graph
theory was used to examine the topology of the network

8.2.2 Results

We retrieved 38,742 abstracts from PubMed searches of which 4,102 abstracts
were found to discuss relevant information on protein changes in the context of

46

SCI. After six trials of manual cross-validation and tool optimization (Fig. 1a),
we were able to achieve more than 99.5% on both precision and recall measures,
which was further confirmed by a test trial (Fig 1b). We then captured a total of
11,369 terms that included automatically captured and manually verified terms
(Fig 1c). Captured terms were mapped to 1,083 unique accessions for proteins
or genes associated with SCI pathogenesis. The distribution of those accessions
by occurrence in the literature was right skewed with a mean of 10.5 reports per
accession (Fig 1d). The full list of curated accessions along with their frequencies
and references are shown in the Datasets of all captured terms listed by their
UniProt protein accessions and including their frequencies and corresponding
references. We named this list an SCI meta-proteome, defined as the protein
complement of SCI changes curated from experiments in different animal species.

8.2.3 Conclusion

We used SAMNA to curate the proteome of spinal cord injury (SCI) and we
were able to characterize the full molecular architecture of SCI. Analysis of the
curated proteome using graph theory revealed a modular organization of disease
process that are centered around a core of cell survival decision proteins. Those
core proteins provide the best targets for therapy.

47

Chapter 9

Related Work

knowtator is a manual creation annotation tool, knowtator is implemented as a
protege plugin, it is main strength is in the ability of creating a complex schema
using protege class. which is in the same time its week point, because you have
to be a developer to write a anotation schema. schema is a specification of what
kind of annotation can be created. knowtator schema can model syntatic and
semantic cases in knowtator annotated data can be exported in XML Format,
they did implement an inner annotator agreement (IAA) metric, which generate
a descriptive report about consistency between annotators. [3].

Brat introduce a web based tool for text annotation, which implement a se-
mantic class disambiguation technique to reduce a 15% of annotation time. brat
is supported by NLP technology it aim to be :

• user friendly

• use NLP technique in a wise way.

• support user intervention and judgment (non technical user such as subject
domain expert)

• annotation is aided by an automatic semantic class disambiguation tech-
nique.

BRAT it is implemented in python, and need a CGI compatible web server to
be used. it is structured for NLP tasks. [4]. Semantic category disambiguation
is the algorithm used in BRAT, it is an important sub task of several problem
in NLP,and was recently used in assisting other tasks such as annotation. in [35]
they introduce a task setting where they return many suggestions for a given
annotation, through a beam search with a dynamic width beam.

48

Wordfreak is a NLP annotation tool,written entirely in java,it is designed to
allow component to be added without the need of recompiling the initial source,
through a plugin architecture Wordfreak need development to create a new an-
notation schema it is an automatic tool with some confidence measurement, and
annotation choices which help in NLP tasks such as POS and in active learning
or correction of automatic annotation. [5].

49

Chapter 10

Conclusion and Future Work

We did introduce SAMNA a Semi-automatic Annotator for Medical NLP Appli-
cations. SAMNA help scholars to annotate large corpora with labels and terms
of interest. It also uses distributional similarity to discover novel annotations.
In addition, it provides the annotating scholar with an intuitive, friendly and
efficient interface to navigate and edit the annotations. We did prove SAMNA’s
need and uniqueness in many medical applications. SAMNA has a promising
future in medical NLP application specially in the protein to disease relation. It
will always be upgraded technically and functionally to meet the scholars need.

• Upgrade the distributional similarity algorithm to be more efficient in multi-
word suggestion as it is in the one word suggestion.

• Integrate the tool with MySQL database as an option instead off using
spread sheet files. MySQL can run on many platform. and it is an open
source widely use database system.

50

Bibliography

[1] F. A. Zaraket and A. Jaber, “Matar: Morphology-based tagger for arabic,”
in Computer Systems and Applications (AICCSA), 2013 ACS International
Conference on, pp. 1–4, IEEE, 2013.

[2] C. Nédellec, R. Bossy, J.-D. Kim, J.-j. Kim, T. Ohta, S. Pyysalo, and
P. Zweigenbaum, “Overview of bionlp shared task 2013,” in Proceedings of
the BioNLP Shared Task 2013 Workshop, pp. 1–7, 2013.

[3] P. V. Ogren, “Knowtator: A protege plug-in for annotated corpus construc-
tion,” in Proceedings of the 2006 Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Tech-
nology: Companion Volume: Demonstrations, NAACL-Demonstrations ’06,
(Stroudsburg, PA, USA), pp. 273–275, Association for Computational Lin-
guistics, 2006.

[4] P. Stenetorp, S. Pyysalo, G. Topic, T. Ohta, S. Ananiadou, and J. Tsu-
jii, “Brat: a web-based tool for nlp-assisted text annotation,” EACL 2012,
p. 102, 2012.

[5] T. Morton and J. LaCivita, “Wordfreak: an open tool for linguistic annota-
tion,” in Proceedings of the 2003 Conference of the North American Chap-
ter of the Association for Computational Linguistics on Human Language
Technology: Demonstrations-Volume 4, pp. 17–18, Association for Compu-
tational Linguistics, 2003.

[6] C. Müller and M. Strube, “Multi-level annotation of linguistic data with
MMAX2,” Corpus technology and language pedagogy: New resources, new
tools, new methods, vol. 3, pp. 197–214, 2006.

[7] D. S. Day, C. McHenry, R. Kozierok, and L. Riek, “Callisto: A configurable
annotation workbench.,” in LREC, 2004.

[8] J. Björne and T. Salakoski, “Tees 2.1: Automated annotation scheme learn-
ing in the bionlp 2013 shared task,” in Proceedings of the BioNLP Shared
Task 2013 Workshop, pp. 16–25, 2013.

51

[9] P. Kolb, “Experiments on the difference between semantic similarity and
relatedness,” in Proceedings of the 17th Nordic Conference on Computational
Linguistics-NODALIDA09, 2009.

[10] U. Consortium et al., “The universal protein resource (uniprot) in 2010,”
Nucleic acids research, vol. 38, no. suppl 1, pp. D142–D148, 2010.

[11] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic, A. Roth,
P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, et al., “The string
database in 2011: functional interaction networks of proteins, globally inte-
grated and scored,” Nucleic acids research, vol. 39, no. suppl 1, pp. D561–
D568, 2011.

[12] A. Alawieh, Z. Sabra, M. Sabra, and F. Zaraket, “Novel bioinformatics ap-
proach reveals pathogenic mechanisms in cerebral ischemia-a step towards
preclinical stroke information management system,” in STROKE, vol. 46,
LIPPINCOTT WILLIAMS & WILKINS TWO COMMERCE SQ, 2001
MARKET ST, PHILADELPHIA, PA 19103 USA, 2015.

[13] A. Alawieh, Z. Sabra, M. Sabra, F. Zaraket, and S. Tomlinson, “A rich club
organization in spinal cord injury interactome provides insight into patho-
physiological mechanisms and potential therapeutic interventions,” in Spinal
Cord Injury, ASCI/AAP Joint Meeting, Chicago, IL, 2015.

[14] A. Budanitsky and G. Hirst, “Evaluating wordnet-based measures of lexical
semantic relatedness,” Computational Linguistics, vol. 1, no. 1, pp. 1–49,
2004.

[15] C. Daly, W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, “A
knowledge-based approach to the statistical mapping of climate,” Climate
research, vol. 22, no. 2, pp. 99–113, 2002.

[16] C. Cardie, “Empirical methods in information extraction,” AI magazine,
vol. 18, no. 4, p. 65, 1997.

[17] P. Apache and A. Java, “To access microsoft format files,” 2009.

[18] K. Boumillion and J. Levy, “Guava: Google core libraries for java 1.5+.”

[19] H. A. Whiteford, L. Degenhardt, J. Rehm, A. J. Baxter, A. J. Ferrari, H. E.
Erskine, F. J. Charlson, R. E. Norman, A. D. Flaxman, N. Johns, et al.,
“Global burden of disease attributable to mental and substance use disorders:
findings from the global burden of disease study 2010,” The Lancet, vol. 382,
no. 9904, pp. 1575–1586, 2013.

52

[20] A. S. Go, D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, W. B.
Borden, D. M. Bravata, S. Dai, E. S. Ford, C. S. Fox, et al., “Heart dis-
ease and stroke statistics–2013 update: a report from the american heart
association.,” Circulation, vol. 127, no. 1, p. e6, 2013.

[21] B. V. Zlokovic and J. H. Griffin, “Cytoprotective protein c pathways and
implications for stroke and neurological disorders,” Trends in neurosciences,
vol. 34, no. 4, pp. 198–209, 2011.

[22] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Bioinformatics enrich-
ment tools: paths toward the comprehensive functional analysis of large gene
lists,” Nucleic acids research, vol. 37, no. 1, pp. 1–13, 2009.

[23] A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn, M. Simonovic,
A. Roth, J. Lin, P. Minguez, P. Bork, C. von Mering, et al., “String v9.
1: protein-protein interaction networks, with increased coverage and inte-
gration,” Nucleic acids research, vol. 41, no. D1, pp. D808–D815, 2013.

[24] B. Demchak, T. Hull, M. Reich, T. Liefeld, M. Smoot, T. Ideker, and J. P.
Mesirov, “Cytoscape: the network visualization tool for genomespace,” 2014.

[25] M. Kuhn, D. Szklarczyk, A. Franceschini, C. von Mering, L. J. Jensen, and
P. Bork, “Stitch 3: zooming in on protein–chemical interactions,” Nucleic
acids research, vol. 40, no. D1, pp. D876–D880, 2012.

[26] K. Konganti, G. Wang, E. Yang, and J. J. Cai, “Sbetoolbox: a matlab
toolbox for biological network analysis,” Evolutionary bioinformatics online,
vol. 9, p. 355, 2013.

[27] V. Colizza, A. Flammini, M. A. Serrano, and A. Vespignani, “Detecting rich-
club ordering in complex networks,” Nature physics, vol. 2, no. 2, pp. 110–
115, 2006.

[28] F. Viger and M. Latapy, “Efficient and simple generation of random sim-
ple connected graphs with prescribed degree sequence,” in Computing and
Combinatorics, pp. 440–449, Springer, 2005.

[29] D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integra-
tive analysis of large gene lists using david bioinformatics resources,” Nature
protocols, vol. 4, no. 1, pp. 44–57, 2008.

[30] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker, “Cytoscape: a software environ-
ment for integrated models of biomolecular interaction networks,” Genome
research, vol. 13, no. 11, pp. 2498–2504, 2003.

53

[31] D. Tabas-Madrid, R. Nogales-Cadenas, and A. Pascual-Montano,
“Genecodis3: a non-redundant and modular enrichment analysis tool for
functional genomics,” Nucleic acids research, vol. 40, no. W1, pp. W478–
W483, 2012.

[32] C. Gibson, S. Turner, and M. Donnelly, “One degree of separation: paralysis
and spinal cord injury in the united states,” Christopher and Dana Reeve
Foundation, Short Hills, 2009.

[33] B. T. Sherman, D. W. Huang, Q. Tan, Y. Guo, S. Bour, D. Liu, R. Stephens,
M. W. Baseler, H. C. Lane, and R. A. Lempicki, “David knowledgebase: a
gene-centered database integrating heterogeneous gene annotation resources
to facilitate high-throughput gene functional analysis,” Bmc Bioinformatics,
vol. 8, no. 1, p. 426, 2007.

[34] C. Von Mering, M. Huynen, D. Jaeggi, S. Schmidt, P. Bork, and B. Snel,
“String: a database of predicted functional associations between proteins,”
Nucleic acids research, vol. 31, no. 1, pp. 258–261, 2003.

[35] P. Stenetorp, S. Pyysalo, S. Ananiadou, and J. Tsujii, “Almost total re-
call: Semantic category disambiguation using large lexical resources and
approximate string matching,” in Proceedings of the Fourth International
Symposium on Languages in Biology and Medicine, 2011.

54

Appendix A

Tutorial

A.1 How to run the tool

SAMNA is a java tool. It is uploaded on Google svn under the name ”medannota-
tion” https://code.google.com/p/medannotation/source/browse/#svn%2Ftrunk
Specialist can run SAMNA by:

• building the source code and get the jar file, then

• run the jar file by the command ”java - jar JarFileName.jar or java -
Xmx8096m -jar JarFileName.jar”. -Xmx8096m is used to give the tool
more RAM memory in case of large data file.

Both the jar file and the command can be given to the medical specialist in one
folder. The specialist has to double click on the command icon which will run
the jar file. NOTE: SAMNA can be imported as a Netbeans project.

A.2 Tool Prerequisite

When the specialist run SAMNA it asks him to specify the work space direc-
tory.(Figure A.1)
To properly run SAMNA specialist should choose the work space directory where
he has to have:

1. The protein database named :”formoh-labels.xlsx”

2. The result database named:”results.xlsx”

3. The local non protein database named ”LOCALNonProtein.xlsx”

55

https://code.google.com/p/medannotation/source/browse/#svn%2Ftrunk

Figure A.1: Choosing work space when you first run the tool

4. The labels database named ”Labels.xlsx”

5. The excluded abstract database named ”exludedAbstracts.xlsx”

A.3 Tool Features

After choosing the work space SAMNA open in two stage.

1. Loading frame where specialist has to choose the type of loaded file.

2. Main frame where the specialist can annotate the loaded file.

A.3.1 Loading frame

After choosing the work space SAMNA will open the loading frame (Figure A.2)
where the specialist has to choose between:

1. Loading abstract fro a serialized object.

2. Loading abstracts from XML file.

3. Loading abstract from a CSV file

4. loading auto extracted paper

5. Loading abstract from a text file.

After choosing the file to load, the Main frame of SAMNA will open (Figure A.3)

56

Figure A.2: SAMNA Loading frame

Figure A.3: SAMNA main frame

A.3.2 Main frame

In the main frame SAMNA has two action source:

1. The buttons line on the bottom of the frame, which contain buttons from
left to right that allow the specialist to:

• Choose if he wants to apply the knowledge base rules.

57

• Go between abstract forward and backward.

• Go through all abstract automatically (auto generate result button).

• Go to a special abstract number directly.

2. The right click mouse pop up and its shortcuts which allow specialist to:

• Add new annotation to the label database.

• Add new label other than the protein default label.

• Add new annotation to the new label database, when specialist adds
a new label, a new option will appear that allow the user to add an
annotation to the new label.

• Remove an added label.

• Remove a annotation locally, if the specialist want to not annotate a
term if this term is founded in a specific abstract.

• Remove a protein annotation from the database.

• Remove an annotation from its newly created label database.

• Remove an abstract, if the specialist want to not annotate terms in a
specific abstract.

• Undo important actions.

A.4 Loading Abstracts

The first step Specialist has to do with SAMNA is to load the abstracts into the
frame. The abstracts could be in an XML file extracted from PubMed database
through the The National Center for Biotechnology Information (NCBI) web-
site, in a TXT and CSV file extracted from Scopus database, in a folder format
containing the auto extracted papers retrieved by a special script along with
SAMNA, and in a serialized object format which is an object containing the
needed data to load.
When loading the abstracts into the frame (Figure A.4) specialist can notice

1. Number of abstracts and the abstract currently loaded.

2. Title section where the title of the abstract is shown.

3. PMID and Date section where the PMID and date of the loaded abstract
is located.

4. The highlighted word section where the annotations are listed.

58

Figure A.4: loading Abstract Picture

5. The main frame section where the title and the abstract text are annotated
and the suggestions are highlighted in gray.

6. The tabs section, when the specialist loads auto extracted paper he will
have a result section and a figures captions section along with each figure
in a tab.

7. Distribution section where the specialist can see each annotation distribu-
tions in the file if he clicked on the annotation in the highlighted word
section.

A.4.1 Loading Abstracts from an XML file

SAMNA is designed to load XML file that contain medical publications, <Pub-
medArticle>node for each publication inside this ”PubmedArticle” node we have
4 important nodes to be extracted and shown in the GUI:

1. <PMID>node that contain the publication Id.

2. <DateCompleted>node that contain the Date of the articles.

3. <AbstractText>which is the most important node that contain the abstract
of the articles.

4. <ArticleTitle>that contain the title of the article.

To load an XML file specialist has to click on ”load XML file from PubMed”
button which will open for him a file chooser dialog to choose the XML file he
wants to load.

59

After choosing the XML file, SAMNA will parse this file, put all article in a list,
specialist can see each abstract alone with its title, PMID, and date.
When Loading the XML file into the frame SAMNA creates a serialized object
in the same directory of the file, this serialized object contain the list of abstracts
already loaded from the XML file.

A.4.2 Loading Serialized Abstracts

The serialized object is created when loading the abstract to minimize the loading
time. Because the XML file could have a large size (800 MB), that could cost
hours to be loaded.
After loading the file the serialized object will contain only elements of interest
to the specialist (Abstract, Title, PMID, Date). The serialized object will have a
much lower size (10% of the original file size). The serialized will cost much less
time to be loaded (30 minutes to load a file with 330 MB size, will be 5 seconds
to load its serialized object with 30 MB size).
If the XML was large specialist will only pay the time to open it the first time,
the second time he could load it from the serialized object and it will coast him
much less time.
To load the abstracts from the serialized object specialist has to click the but-
ton ”Load serialized object” which will open for him a file chooser where he can
choose the serialized object.
Note that the serialized object will have the same name as the xml file but with
different extension(”.ser”).

A.4.3 Loading Abstracts from TXT and CSV file

As above specialist can also load abstract from a TXT and CSV file extracted
from Scopus, which has some special format. To load abstract from TXT and
CSV file specialist has to click on the ”Load TXT file scopus” button or ”Load
CSV file scopus” button. and then choose the text or CSV file.

A.5 Moving between Abstracts

After loading the abstracts, specialist can move between abstracts by clicking on ”
Next Abstract”, ”Prev Abstract”, ”Auto Generate results”, and ”go to abstract”
buttons.
While going between abstract each term founded in the predefined database will
be annotated and added to the result database along with its PMID and Date.
Specialist can automatically go through all abstract by clicking ”auto generate
abstract” button, and he can go to a specific abstract by putting its number and

60

click ”go to abstract” button.
Next and Prev abstract button are made for the specialist to go between abstracts,
so he can add a annotation to its label database, remove an annotation if he realize
that this term should not be in the label database, or should not be considered
as a label in this special abstract. Specialist can also add some label other then
the default label so he can construct a new label database from the abstracts.

A.6 Adding Annotation

the tool allow specialist to add a protein to the protein database (Figure A.5)

Figure A.5: Adding protein to database

all he has to do is to:

1. Select a word he wants to add.

2. Right click add click add to protein table.

after he does those 2 steps the protein will be added to its database, and the
term will be annotated in all abstracts in a special color (yellow). Note: to add
a protein specialist can use two shortcut Ctrl+s to add the selected words, or
Ctrl+ number to add a number of word from the selected words to the database.
(ex: CTL+5 will add the last 5 words of the selected words to the database).

A.7 Removing Annotation

The figure 4 shows that the specialist can also remove selected protein from its
database (Not A protein) or not consider it as protein in a particular abstract
(remove label locally) those two options have shortcut: Ctrl+R and Ctrl+L re-
spectively.

61

A.8 Apply expert Rules

While moving between abstracts specialist can choose to consider special case
or not to consider them, Special case are the cases where SAMNA will apply
specialist rules.(ex: protein named ”XYZF” and we have a word ”XYZF-5” if
specialist did choose to consider special case SAMNA will highlight the word
”XYZF-5” for him, otherwise it will not highlight it).

A.9 Distributional Similarity suggestion

While moving between abstracts the tool will suggests new protein name for the
specialist in a gray color so he can pay attention of the probability to have a new
annotation that should be added.(Figure A.6)

Figure A.6: suggestion base on the distributional similarity algorithm

A.10 Adding New Labels

SAMNA used first to extract protein name from abstract, add protein to database
can be used for any element other than protein, specialist is able to add a new
label, name it, then choose a color to highlight with. by clicking on ”add new
label after right click” then the specialist will be able to choose a name and color
for this new label (Figure A.7).
After adding a new label a new right click action will be added, to allow adding

annotation to the new created label.

62

Figure A.7: Adding new label

A.11 Annotation distribution

Specialist can see each annotation distribution when he double click on the an-
notation in the annotations list.(Figure A.8). SAMNA will take some time to go
throught all abstracts, but after this the specialist can have an idea about the
distribution of each annotation in the file.

Figure A.8: annotation distribution

A.12 Exclude Abstract

SAMNA allows the specialist to exclude an abstract so the annotation in this
abstract will not be considered in the result file. Excluding abstract can be done
by right click and press ”remove abstract” or shortcut it by Ctrl+D Excluded
abstract will be disabled as shown in (Figure A.9).

A.13 Undo Actions

SAMNA allow the specialist to undo any action he made while he is still in the
abstract, he just has to right click and press undo or press the shortcut CTRL+Z,
if he did add some annotation it will be deleted from the database, if he deletes
some annotation it will be added again (Figure A.10).

63

Figure A.9: removing abstract

Figure A.10: undo an action

64

	Abstract
	Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Preliminaries
	Annotations
	Distributional Similarity
	Medical NLP

	Motivation
	Semi Automatic Annotator
	SAMNA File Extraction
	SAMNA Navigation
	SAMNA Data Model
	SAMNA Annotation
	SAMNA User Editing
	SAMNA Analysis

	Method
	Direct String Matching
	knowledge Base Rules
	Distributional Similarity Algorithm
	Choosing 1 and 2

	Implementation
	File Reader
	Highlighter
	Annotation

	Experimental results
	Stroke Case Study
	Method
	Results
	Conclusion

	Case study 2 spinal cord injury
	Materials and Methods
	Results
	Conclusion

	Related Work
	Conclusion and Future Work
	Bibliography
	Appendix Tutorial
	How to run the tool
	Tool Prerequisite
	Tool Features
	Loading frame
	Main frame

	Loading Abstracts
	Loading Abstracts from an XML file
	Loading Serialized Abstracts
	Loading Abstracts from TXT and CSV file

	Moving between Abstracts
	Adding Annotation
	Removing Annotation
	Apply expert Rules
	Distributional Similarity suggestion
	Adding New Labels
	Annotation distribution
	Exclude Abstract
	Undo Actions

