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Hybrid electric vehicles (HEV) improvements in fuel economy and emissions strongly 

depend on the energy management strategy used whose aim is to minimize the hydrogen and 

battery cost. In this work a new control strategy called single step dynamic programming 

optimization (SSDP) and an energy management system based on artificial neural network are 

presented. These real-time energy management systems for HEV are derived from a dynamic 

programming (DP) technique. The DP requires that a forecast of the car torque requirement over 

the whole trip or part of it is available. However, in real time the road and driving conditions are 

not known a priori. The methods presented in this work can easily lend themselves for real time 

implementation. The problem formulation accounts for the power balance at each stage, the 

power limits, the state-of-charge (SOC) limits, and the ramp rates constraints of the fuel cell and 

battery. The SSDP optimization technique differs from DP in that it is a forward-looking model 

in which the controller makes instantaneous decisions without the need for back-tracing; 

therefore, it is more realistic than backward-looking models. It requires that only the demand at 

the next period should be known a priori and not the whole road. The proposed ANN is trained 

based on DP results carried out off-line. It can be implemented in real time as it takes one step at 

a time. The results obtained using both methods show that the fuel economy that can be achieved 

is very close to optimal results. Moreover, the two proposed methods provide an easy mechanism 

to change from charge sustaining (CS) to charge depleting (CD) operation simply by changing 

the lower bound of the battery SOC. To solve the SSDP and the ANN methods the demand at the 

next step should be known a priori. This demand is obtained by applying a one step-ahead speed 

forecast. The model used is a first order linear model also known as persistence forecast; it does 

not require an adaptive mechanism to adapt to changes in road conditions in real time. When the 

forecasted speed which is shifted from the actual speed by one step is used with SSDP, the fuel 

economy results obtained are very close to optimal ones obtained by DP. Verification of the 

methodologies is provided by comparing their results to those obtained by DP. Results on 

practical vehicle designs proposed in the literature are presented for the UDDS, HWFET, and 

NEDC standard driving cycles.  
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CHAPTER I 

INTRODUCTION 

 

In the wake of the Kyoto protocol (1997) -an international treaty on global 

warming- attention has shifted towards new technology issues such as energy conservation, 

energy efficiency, and renewable energy as prospective solutions to global warming and 

measures to reduce the dependence on exhaustible fossil fuels. According to the 

International Energy Agency, primary energy consumption has increased by 49% during 

the last two decades (1984-2004) accompanied by an increase in CO2 emissions in the 

atmosphere by 43% [1]. This has created a great research interest in alternative energy 

resources in the transport sector, a major contributor to greenhouse gases (GHG) emissions. 

The fuel cell hybrid electric vehicle (FCHEV) appears to be a possible solution to replace 

the internal combustion engine (ICE) in vehicular applications when the overall economics 

are favorable and the hydrogen refueling technology and infrastructure become available. 

Hybrid electric vehicles compared to conventional internal combustion engine can 

substantially reduce fuel consumption and hence pollution emissions, due to the possibility 

of downsizing the engine, the use of regenerative braking [14], the ability to satisfy the 

demand either from the battery or the fuel cell, and because hydrogen can be obtained from 

renewable resources. Therefore, FCHEV can lead to clean and efficient load transportation 

since it plays a vital role in increasing energy conversion efficiency and reducing exhaust 

emissions.  
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The FCHEV has two energy sources that drive the wheels; the primary source is a 

polymer electrolyte membrane fuel cell (PEMFC) that converts hydrogen and oxygen into 

electric energy and produces water and heat as by products. The secondary source is an 

energy storage system, which can be a battery that is either charged or discharged 

depending on the operating conditions of the vehicle. The output power delivered to the 

wheels may come from the battery or the fuel cell; therefore a control strategy is needed to 

determine at any time the power split between the two sources. 

The power split problem should be solved optimally with the aim to reduce the 

operating cost made-up of hydrogen fuel consumption and battery degradation without 

compromising the driving comfort. This is the basis of energy efficiency in which 

unnecessary energy is reduced without affecting individual welfare. Some authors have 

proposed optimal control strategies to minimize the operating cost of the vehicle; others 

have adopted approaches that lend themselves more readily to real time implementation.  

 

A. Literature Review 

Some global optimization algorithms such as dynamic programming (DP) have 

been proposed in literature. Karaki et al. [2] describe the development of an optimizing 

energy management system based on dynamic programming to manage the fuel cell and 

battery outputs with the aim to reduce the hydrogen consumption by the fuel cell. The 

method is able to produce optimum results but it cannot be implemented in real-time since 

it requires speed forecast of the whole drive cycle.  Schell et al. [3] describe the use of 

stochastic dynamic programming in vehicle design and model-based control algorithms to 

make it possible to increase fuel economy by 2–3% (an increase of about 15 km in range). 
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Perez et al. [4] use DP to determine the optimal split between sources for off-line use, for 

the hybrid electric vehicle (HEV) design, and for component sizing. They note that it may 

be used for on-line purposes by considering short term horizons, assuming that the driving 

schedule will not change dramatically.   It seems that DP is the perfect tool for optimal 

control of HEV in the sense that it solves the problem and finds optimal solution and it can 

be used as a basis of comparison for evaluating other control strategies. However, the 

results obtained are not suitable for real time conditions since the problem must be known 

and well formulated for all its duration. In other words, the driving schedule over which the 

fuel consumption is minimized must be entirely known at the beginning of the trip which is 

not the case in real time. Therefore, it is imperative to develop a real time control strategy 

which does not depend on a priori knowledge to determine the best power split with a good 

overall performance. The solution will necessarily be suboptimal but can be implemented 

in real time. 

Some authors use supervised learning such as neural networks and fuzzy inference 

systems (FIS) to develop a real time control strategy. The output of these systems 

constitutes an approximate optimal control strategy of the problem. Boyali and Guvens [5] 

use DP to generate the optimal pattern of control and then use supervised learning to train 

an artificial neural network (ANN) to approximate the pattern obtained by DP. The 

approximate results of the ANN are close to the optimum ones obtained from the DP 

method. Feldkamp et al. [6] use an ultra-capacitor as a secondary source in the HEV and 

propose a method based on ANN to do the power split. The inputs of the ANN are the 

vehicle speed, power at the wheels, and the ultra-capacitor state of charge, whereas the 

output is the power split. During training a stochastic perturbation is added to the data. The 
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ANN proved to be robust since it is able to produce near optimal results with different drive 

cycles. Yi et al. [7] propose a control strategy based on identifying driving cycles using 

fuzzy neural network in order to optimize the parameters of the control strategy which 

reduce the fuel consumption and emissions of the HEV.  Lin and Zheng [8] formulate 

energy management as a constrained optimal control problem and use the penalty-function 

method to transform the problem into an unconstrained one. Supervised learning is then 

used to produce a neural network whose output constitutes an approximate optimal control 

strategy of the problem. Quigley et al. [9] propose a fuzzy clustering approach with single 

input (departure time) or dual input (departure time and vehicle use) to obtain journey 

parameters (distance and duration) needed to manage the energy flow through HEV. Single 

and dual FIS performed well for distance prediction; however, the dual system improved 

the FIS for distance prediction and worsens it for duration prediction. The system is able to 

generalize and perform well on new unseen examples. Xiong et al. [10] describe an energy 

management system that governs the series-parallel mode post-transmission switching as 

well as the instantaneous power distribution in a hybrid bus using two separate fuzzy logic 

controllers.  The energy consumption is theoretically reduced by about 30% to that of the 

conventional bus under transit bus driving cycle.  Erdinc et al. [11] describe an energy 

management system (EMS) based on fuzzy logic and wavelet transform to control power 

distribution in a hybrid PEMFC-Battery-ultra-capacitor (UC) vehicular system.  Simulation 

shows that the SOC value of both battery and UC can be maintained within suitable limits. 

Accordingly this causes the fuel cell (FC) system to operate in its linear region, which is 

most efficient, thus leading to a decrease in the size of FC system and its fuel consumption. 
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The difficulty of implementing optimal control strategies in real time driving 

conditions led researchers to tackle the energy management problem using a rule based 

approach. Kim and Rousseau [12] compare two control strategies that are used to minimize 

fuel consumption in HEV. The first is rule-based and the second is based on instantaneous 

optimization that minimizes the system losses at every sample time. The instantaneous 

optimization is applied using linear quadratic regulator that calculates the optimal torque. 

The results obtained are compared to global optimal ones obtained from a Pontryagin 

Minimum Principle (PMP)-based optimal control. The optimal system is controlled by a 

co-state needed to bring the SOC to an appropriate final value. This co-state is selected by 

introducing an adaptive mechanism. The instantaneous optimal control produces similar 

fuel economies to global optimal solution than does the rule-based; it is also faster and does 

not require tuning by engineers. Ambuhl et al. [13] show that the explicit solution of the 

optimal control problem, of a simplified speed-independent unconstrained model, can be 

expressed as a simple rule-based map where all regions are defined by model parameters.  

The benefit of this formulation is the simple structure and the low number of possible 

minima.  Simulations show that the maximum error is 1.6% in the final state and 1.0% in 

the final cost for three commonly used driving cycles. Sorrentino et al. [14] carried out a 

performance assessment of a rule-based (RB) control strategy for real time energy 

management of series HEV power-trains.  Simulations were conducted on driving cycles of 

differing features to investigate the dependence of power prediction on the RB strategy 

used.  The potential for on-board implementation of the RB control strategy were analyzed 

by coupling the heuristic rules with a-posteriori estimation of average traction power. Rule 

based methods to schedule the fuel cell and battery power levels have been used by Panik 
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et al. [15].  When the load torque is positive, the controller will try to satisfy this load from 

the fuel cell or the battery depending on the H2 level in the tank and the state-of-charge 

(SOC) of the battery.  One important operating mode is when the torque load is negative; in 

this case the mechanical drive train system is supplying power to the dc bus obtained by 

regenerative braking from the kinetic energy of the car when it is slowing down or when 

the car is going downhill. 

Some authors propose a real time control strategy based on instantaneous 

optimization which requires the minimization of the cost function at each instant. The cost 

function depends on the fuel consumption and battery state of charge (SOC). Different 

approaches have been used to include the SOC in the cost function, a promising approach 

called Equivalent Consumption Minimization Strategy (ECMS) which is relatively faster 

than other strategies proposed in literature have been investigated. It consists of evaluating 

the instantaneous cost function as a sum of fuel consumption and equivalent fuel 

consumption representing the SOC. The optimality of the ECMS method is sensitive to the 

equivalent factor values that are based on the knowledge of the whole driving cycle. To 

make ECMS feasible for online operations, Mussardo et al. [16] use Kalman filter to 

predict future values of the vehicle speed and the optimal equivalence factor has been found 

by online optimization over a receding horizon. The method gives good results but is 

computationally demanding. Onori et al. [17] use a feedback controller applied at regular 

intervals of duration to update the value of the equivalence factor to account for the 

deviation of the SOC from its reference value. The proposed method is implementable in 

real time at low computational burden and is able to achieve results close to optimal global 

solution obtained from DP. Sciarretta et al. [18] present a control of the ECMS strategy. It 
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is based on a new method for evaluating the equivalence factor which does not require the 

assumption of the average efficiencies of the parallel paths. The fuel equivalent is 

calculated online as a function of the current system status and, in particular, of quantities 

that are measurable on board. Therefore, no predictions are needed for the future, and only 

few control parameters are required. The results illustrate the potential of the proposed 

method in terms of reducing fuel consumption and maintaining SOC sustainability. 

Rousseau et al. [19] present a study focused on variations of the size of power train 

components and optimization of the power split between engine and electric motor. They 

have implemented a DP over NEDC under constraints on battery SOC to obtain the optimal 

power split at each time step. Since DP cannot be implemented in real time, they have 

applied ECMS inferred from Pontryagin Minimum Principle (PMP), where they have 

chosen an average value for the price of electric energy estimated from offline optimization 

results. The fuel consumption obtained with ECMS is 326.8g compared to 310.34g 

obtained with DP using Matlab model. Gurkaynak et al. [20] propose a control strategy for 

HEV using the equivalent consumption minimization strategy (ECMS). In this study, a 

neural network is proposed to recognize driving cycles in an attempt to reduce the 

algorithm’s sensitivity to variations in the drive cycle which allow the implementation of 

such models in real-time rendering them more “implementable”. The obtained results are 

close to optimal ones of the dynamic programming. 

Other methods used in literature for the optimization of resources in a FCHEV 

include Pontryagin Minimum Principle (PMP) which is a global optimization technique 

like DP, linear programming, lookup table, and predictive scheme. Bernard et al. [21] 

propose a real-time control, charge-sustaining, strategy for fuel cell hybrid vehicles, which 
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is derived from a non-causal algorithm based on the Pontryagin Minimum Principle (PMP). 

The control strategy is validated experimentally using a hardware-in-the-loop test bench. 

Serrao et al. [22] have considered new issues for the energy management of HEV to include 

more complete and complex cases that are solved using PMP. They have added new 

optimization criteria that extend beyond fuel consumption minimization to deal with 

emissions and battery aging simply by modifying the cost function. These applications are 

simple, immediate, and yield good results. They have also considered cases with additional 

states such as engine and catalyst temperature or battery temperature in which they have 

provided the basis for an analytical solution. Dinnawi et al. [23] use a linear programming 

technique to control the energy flow in a HEV considering several constrains. The 

proposed method is tested over the HWFET and UDDS drive cycles. It is able to produce 

optimum power split results capable of reducing hydrogen consumption and operation cost. 

Wang and Lukic [24] applied DP to series and parallel drive trains and investigated fuel 

economy and battery health. They developed a lookup table for real time control based on 

the DP approach and report improvements of the order of 27% of overall cost. Johanesson 

et al. [25] propose a predictive scheme that uses information from GPS and data record of 

the driving along the bus route to schedule the charging and discharging of the energy 

storage system. The scheme results in improved control of the SOC and the switching 

between hybrid and pure electric mode. The predictive scheme can be implemented in real 

time since the majority of the calculations are moved outside the real time loop, reducing 

the on-line optimization to mostly table lookups.  
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B. Thesis Contribution 

In this work, the development of an energy management system for HEV is 

described; it is called single step dynamic programming technique (SSDP). This method is 

derived from a dynamic programming technique and is able to produce results very close to 

optimal ones. The Forward Dynamic Programming (FDP) requires that a forecast of the car 

torque requirement over the whole trip or part of it is available [2]. However, in real time 

the road and driving conditions are not known a priori. The chief advantage of SSDP over 

DP or other formal optimization methods is that it does not require the speed forecast of the 

whole drive cycle but requires only a one-step-ahead speed forecast.  As such it can readily 

be implemented in real time to do a “near optimal” scheduling of the battery and fuel cell 

resources under charge sustaining (CS) and charge depleting (CD) strategies without 

revising any rule base or program code. Moreover, SSDP is faster than DP and has lower 

computational load. Unlike rule-based control, SSDP does not require to be tuned by 

engineers on new drive cycles or when new component technologies are introduced [12]. 

Moreover, it provides an easy mechanism to change from CS to CD operation simply by 

changing the lower bound of the state of charge (SOC) without the need to introduce an 

adaptive concept that selects an equivalent fuel consumption parameter required to manage 

the SOC to have a CS operation like in [12]. The SSDP is based on DP which can cater for 

non-linearity unlike quadratic programming used in [12]. 

The development of an artificial neural network (ANN) is also investigated in this 

thesis. The proposed ANN is trained based on optimal DP results carried out off-line. 

Unlike DP, the proposed ANN can be implemented in real time as it takes one step at a 

time. The solution of the ANN determines a near-optimal power split between the fuel cell 
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and battery indicating whether the battery should be charged or discharged and at what 

level. The proposed real-time control strategy may be a CS or CD strategy.  

A one-step ahead speed forecast methodology is developed to determine the 

demand at the next period needed to solve SSDP and ANN. Different models are tested; 

higher order models (2nd, 3rd, and 4th orders) are able to forecast the speed with a small error 

but the 1st order model is able to produce better fuel saving results than higher order models 

since the net curve of the actual speed is only shifted by 1 step in this case. Therefore, the 

first order linear model also known as persistence forecast is used. Also by using a first 

order speed forecast model there will be no need to do an adaptive mechanism that adapts 

to changes in road conditions. 

The organization of the rest of the thesis is as follows. In chapter 2 the system 

diagram is presented and explained. This chapter also includes a formulation of the 

optimization problem along with the system cost and constraints, where the DP and SSDP 

methods are discussed. Artificial neural network is investigated in chapter 3. The speed 

forecast model is described in chapter 4. The experimental results are presented and 

analyzed in chapter 5. Verification of the methodologies is provided by comparing them to 

results obtained using dynamic programming.   
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CHAPTER II 

PROBLEM FORMULATION 

 

A. System Diagram 

The diagram of the electric power supply system of the hybrid electric vehicle 

(HEV) is shown in Fig. 1. The power supply of the vehicle has two sources: a fuel cell and 

a battery. The fuel cell is usually of the PEM (polymer electrolyte membrane) type getting 

H2 from a high pressure tank that needs to be filled as a regular gasoline reservoir.  The 

battery is connected to the electric bus bar (bus) by a two way charge controller allowing it 

to be charged or discharged depending on the operating conditions of the car. Torque and 

speed requirements of the mechanical drive system are satisfied by an induction machine 

taking 3-phase electricity through a pulse-width modulated (PWM) inverter with dc supply 

from the electric bus bar.  The power output is usually controlled by increasing or 

decreasing the battery output power or the fuel cell output power. The varying speed 

requirements of the car are satisfied by switching frequency control of the inverter taking 

into consideration the gear ratio [2]. The “Near Optimal Control” block will use speed 

forecast information to know the speed of the car and the torque load at each period and 

then determine for each period the fuel cell and battery power levels taking into 

consideration the various constraints of power balance, power limits, SOC limits, and ramp 

rate limits. The output of the “Near Optimal Control” module is used by “Standard Vehicle 

Control” as a guide to schedule the resources over the next few seconds until the next 

update in the information. 
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Figure 1: The system diagram of the FCHEV 
 

B. Problem Formulation 

The proposed module provides vehicle control with the recommended fuel cell and 

battery power levels that will minimize the cost of system operation during the up-coming 

trip. In this module the speed of the drive cycle is obtained from a one-step ahead speed 

forecast model. The power demand forecast at the wheels is obtained from the speed of the 

drive cycle, the basic car data and road topology.  The power demand forecast at the dc bus 

is suitably obtained from that at the wheels considering the efficiency coefficients of the 

inverter, motor, and drive train as described by Rizzoni et al. [26]. The demand forecast is 

divided into 𝑁 intervals, and during each interval 𝑘, 𝑘 = 1 𝑡𝑜 𝑁, the power demand level, 
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𝐷𝑘 , and the power supply levels, from the fuel cell, 𝐹𝑘, and the battery, 𝐵𝑘, are assumed 

constants. The duration or sampling time, 𝛥𝑇, of each interval is given. 

 

1. System Cost 

The objective of the energy management system (EMS) is to determine for each 

interval 𝑘 the fuel cell power level, 𝐹𝑘, that minimizes the cost of operation consisting of 

the sum of the hydrogen cost and that of the battery.  The cost of fuel cell operation 𝜑𝐹(𝐹𝑘) 

(in $/h) is obtained from the hydrogen consumption rate curve (Fig. 2) by multiplying it by 

the price of hydrogen taken at $3/kg. The fuel cell cost curve has the same shape as the one 

in Fig. 2 and may be approximated by a quadratic or cubic function.  The curve shown 

corresponds to a fuel cell of rated power of 58.8 kW and a net system peak efficiency of 

55.6% occurring at 25% of rated power.  The losses depicted in Fig. 2 have a figure of 

about 10% at the rated value of power output [2]. 

The battery cost is used as a parameter to control the solution as either CS or CD. 

Charge-sustaining operation, when battery losses are neglected, indicates that the net 

energy over the long run from a battery is zero.  In this case the average demand is being 

supplied by the fuel cell, which is the alternative source in this case while the battery is 

simply acting as a buffer.  From the optimization viewpoint the battery cost is valued at an 

incremental cost   𝛾𝑎𝑣𝑔  in ($/kWh) of the fuel cell evaluated at the average demand [2].   
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Figure 2: Hydrogen consumption curve (blue) and consumption loss (black) in g/s 

 

Thus the system cost is given by: 

min 𝜓 = ∑ [𝜑𝐹(𝐹𝑘) + 𝜆𝐵𝛾𝑎𝑣𝑔 𝐵𝑘(𝑠𝑖𝑔𝑛(𝐵𝑘) + 1)/2]𝑁
𝑘=1 𝛥𝑇 (1) 

The battery cost parameter 𝜆𝐵 is varied to make the battery more or less attractive 

in supplying the power demand.  It may be easily verified that there exists a value 𝜆𝐵0 that 

has a value around one, such that when 𝜆𝐵 < 𝜆𝐵0 the apparent battery cost is cheaper than 

that of the fuel cell and thus the optimization process will tend to use more battery energy 

causing a CD strategy, and when 𝜆𝐵 = 𝜆𝐵0 the battery energy will tend to zero leading to a 

CS strategy.  A charge build up strategy may also be implemented when 𝜆𝐵 > 𝜆𝐵0. 

Therefore, there exists a value of 𝜆𝐵 known as 𝜆𝐵0 at which the operation is exactly CS. 

This value is obtained by solving the DP iteratively which requires that the whole demand 
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can be used instead to switch from CS to CD operation simply by changing the lower 

bound of the battery SOC. CS operation is obtained by enforcement of the lower bound on 

the SOC and CD operation is obtained by lowering the bound to the required depletion 

level. In both cases the battery cost parameter is set to a value lower than the incremental 

cost of the fuel cell at the average load of the car for the given drive cycle [2]. 

 

2. System Constraints 

The minimization problem is subject to constraints: 

𝐹𝑘+𝐵𝑘 −𝐷𝑘−𝑅𝑘 = 0  (2) 

𝑋𝑘 − 𝑋𝑘−1 − 𝜑𝐵(𝐵𝑘)𝛥𝑇 = 0 (3) 

𝐹𝑚𝑖𝑛 ≤ 𝐹𝑘 ≤ 𝐹𝑚𝑎𝑥  (4) 

𝐵𝑚𝑖𝑛 ≤ 𝐵𝑘 ≤ 𝐵𝑚𝑎𝑥    (5) 

𝑋𝑚𝑖𝑛 ≤ 𝑋𝑘 ≤ 𝑋𝑚𝑎𝑥   (6) 

−𝑅𝐹∆𝑇 ≤ 𝐹𝑘 − 𝐹𝑘−1 ≤ 𝐵𝐹 ∆𝑇   (7) 

−𝑅𝐵∆𝑇 ≤ 𝐵𝑘 − 𝐵𝑘−1 ≤ 𝐵𝐵 ∆𝑇  (8) 

Equation (2) is the power balance constraint over each period 𝑘, where 𝐷𝑘  and 

𝑅𝑘 are the estimated demand and brake power respectively. The second set of equality 

constraints (3) is that of the battery SOC change from one period to the next, where 𝑋𝑘 is 

the battery SOC during interval 𝑘, and 𝜑𝐵(𝐵𝑘) is the internal charge power (kW) obtained 

from the battery power map curve (Fig.3). Fig.3 shows the power curve for a battery rated 

at 49.6 kW with an energy storage capacity of 3.81 kWh based on data from the Li-ion VL 

6Ah battery [2]. This curve can be obtained from the equivalent circuit of the battery 
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featuring the internal battery voltage and its series resistance [2]. The limits on power level 

and state of charge are given by constraints (4), (5), and (6), where 𝐹𝑚𝑎𝑥 is the rated power 

of the fuel cell, 𝐵𝑚𝑎𝑥 is the maximum power discharge of the battery, and 𝐵𝑚𝑖𝑛 is the 

minimum power charge and it is a negative value. The values 𝑋𝑚𝑎𝑥  and 𝑋𝑚𝑖𝑛 are the 

operational limits on the state of charge required to keep the health of the battery. In 

addition, realistic operating conditions have to respect the ramp-rate constraints given by 

(7) and (8), where 𝑅𝐹and 𝑅𝐵 are the ramp-rate limits in kW/s of the fuel cell and battery, 

respectively. 

 

 

Figure 3: Battery power map curve 
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B. Dynamic Programming 

Forward Dynamic Programming (FDP) is well suited for this class of problems but 

is usually implemented using a heuristic to limit the number of levels of each stage to a 

fixed number in order to avoid the curse of dimensionality in problems with large number 

of stages and has been termed as approximate or tunnel dynamic programming (TDP).  In 

this context, the power demand forecast curve will be divided in stages where at each stage 

the fuel cell power level can be in one of several discrete states. Thus for each state the 

battery power may be determined from the power balance constraint equation (2).  Power 

limit constraints on the fuel cell are ensured by proposing discrete states in the range 𝐹𝑚𝑖𝑛 

to 𝐹𝑚𝑎𝑥; care must be taken to ensure that the discretization interval is smaller than the 

ramp rate of the fuel cell. Constraints on battery power (5) and ramp-rate constraints, (7) 

and (8), are enforced by a penalty cost method.  The battery state-of-charge constraints (3) 

and (6) are also treated by applying a high penalty on infeasible states from among the set 

of proposed ones at a particular stage. The process is illustrated in Fig.4.  For illustration 

purposes the fuel cell is assumed to be at one of 4 levels (𝐿 = 4), e.g. 100%, 66.7%, 

33.3%, and 0% of full rating. At stage 1, the states corresponding to these levels are 𝑆11, 

𝑆12, 𝑆13, and 𝑆14, respectively.  There are transitions from each state to all the states of the 

following stage.  In other words the matrix is full, but for clarity purposes only the 

transitions from the minimum state at each stage are shown in the figure. Darkly shaded 

states 𝑆11, 𝑆12, 𝑆21, 𝑆31, and 𝑆𝑁1 have penalties associated with them and are unlikely to be 

in the optimal path which is found by back-tracing from the minimum state at the last stage, 

SN3, for example. 
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The objective function (equation (1)) will be calculated for all the states of stage 1. 

Then for each state of subsequent stages (i.e. k= 2 to N), the possible transitions from the 

states (j= 1 to L) of the previous stage k-1 are identified, and the minimum cost of reaching 

each state is built recursively. Thus at each stage k, let the minimum cost of reaching each 

state 𝑆𝑘−1,𝑗 be given by (𝜓̂(𝑆𝑘−1,𝑗)) then the minimum cost of reaching state 𝑆𝑘,𝑙 is given 

by: 

𝜓̂(𝑆𝑘,𝑙) =
min

𝑗 = 1, 𝐿
 {𝐶(𝑆𝑘−1,𝑗 , 𝑆𝑘,𝑙) + 𝜓̂(𝑆𝑘−1,𝑗)} (9) 

Where (𝑆𝑘−1,𝑗 , 𝑆𝑘,𝑙) with j= 1 to L are the possible transitions from the states 

𝑆𝑘−1,𝑗  to state 𝑆𝑘,𝑙 and 𝐶(𝑆𝑘−1,𝑗 , 𝑆𝑘,𝑙) are their corresponding transition costs. For example, 

the possible transitions to state 𝑆23 are (𝑆11 , 𝑆23), (𝑆12 , 𝑆23), (𝑆13 , 𝑆23), and (𝑆14 , 𝑆23).  

The numbers on top of states S11, S12, S13 and S14 are the minimum costs for reaching these 

states from the previous stage.  And the cost next to each transition is the cost of operating 

the system in period 2 at the demand level 𝐷2.  The cost of reaching state S23 is the 

minimum of the cost of the previous stage added to the cost of each transition, which is 2.4, 

i.e. minimum of {1.5 + 1.2, 1.3 + 1.2, 1.2 + 1.2, 1.3 + 1.2}. Then the ancestor state of S23 is 

S13. 
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Figure 4: Dynamic programming 
 

When the last stage is reached, the state with minimum cost is identified. Then the 

ancestor state leading to it is also identified and this is repeated to determine the optimal 

path by a trace-back procedure until state 𝑆0 is reached.  The heuristic used here to 

discretize the fuel cell output into 𝐿 levels is essential in keeping the calculations of the DP 

algorithm within a manageable range.  Decreasing the number of levels or states per stage 

would lead to approximate and thus “suboptimal” solutions, whereas increasing them 

would cause the computational requirement of the DP procedure to increase in some 

significant degree.  Identifying a good compromise is essential for this class of problems, 

especially if real-time implementation is sought. The essential steps of the DP algorithm are 

given in List 1, where ℳ a high cost is used as penalty, and 𝐒 is the set of feasible 

transitions. 
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List 1: Dynamic Programming (DP) Algorithm 

 “At every stage ‘k’  

For k= 1, N 

“At every level ‘l’ 

For l= 1, L 

𝐹𝑘,𝑙 = 𝐹𝑚𝑎𝑥  𝑙/𝐿      “Fuel cell power” 

𝐵𝑘,𝑙 = max (𝐷𝑘 − 𝐹𝑘,𝑙 , 𝐵𝑚𝑖𝑛)         “Battery power” 

𝐶𝐹 = 𝜑𝐹(𝐹𝑘,𝑙)                       “Fuel cell cost”  

𝐶𝐵 = 𝜆𝐵 𝛾𝑎𝑣𝑔 sign(𝐵𝑘,𝑙 + 1)/2         “Battery cost” 

𝐶(𝑆𝑘−1,𝑗, 𝑆𝑘,𝑙) = 𝐶𝐹 + 𝐶𝐵 ∀ 𝑗        “Transition cost” 

“Set large penalty cost ℳ for infeasible transitions” 

𝒫𝑗 = 0 ∀ 𝑗   

If ( (𝑆𝑘−1,𝑗,  𝑆𝑘,𝑙) ∉ 𝐒)  ⇒ 𝒫𝑗 = ℳ  ∀ 𝑗  

“Minimum cost node in stage k”  

𝜓̂(𝑆𝑘,𝑙) = min
𝑗=1,𝐿

(𝜓̂(𝑆𝑘−1,𝑗) + 𝐶(𝑆𝑘−1,𝑗, 𝑆𝑘,𝑙) + 𝒫𝑗)    

𝐴̂𝑘,𝑙 =  𝑗𝑘−1
𝑚𝑖𝑛         “Antecedent minimum cost node” 

End  

End 

[𝐹̂, 𝐵̂, 𝑋̂] = Trace_Back(𝐴̂, 𝐹, 𝐵)            “Trace back process” 

End 

 

C. Single Step Dynamic Programming  

The single step dynamic programming (SSDP) solution approach is derived from 

DP. The problem formulation is still the same; the power demand is also divided into stages 

and the fuel cell is divided into levels at each stage. The battery power is determined for 

each level from the power balance constraint (2). Power limit constraints on the fuel cell are 

ensured by proposing discrete states in the range 𝐹𝑚𝑖𝑛 to 𝐹𝑚𝑎𝑥; care must be taken to 

ensure that the discretization interval is smaller than the ramp rate of the fuel cell. 

Constraints on battery power (5) and ramp-rate constraints, (7) and (8), are enforced by a 

penalty cost method.  The battery state-of-charge constraints (3) and (6) are also treated by 

applying a high penalty on infeasible states from among the set of proposed ones at a 

particular stage.  
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The process is illustrated in Fig. 5.  For illustration purposes the fuel cell is 

assumed to be at one of 4 levels (𝐿 = 4), e.g. 100%, 66.7%, 33.3%, and 0% of full rating. 

At stage 1, the states corresponding to these levels are 𝑆11, 𝑆12, 𝑆13, and 𝑆14, respectively. 

Darkly shaded states 𝑆11, 𝑆12, 𝑆21, 𝑆31, and 𝑆𝑁1 have penalties associated with them and are 

unlikely to be in the optimal path.  

SSDP differs from DP in that it is a forward-looking model that minimizes the 

system losses at every sample time. It allows the engine speed to move from the current 

speed to optimal target speed thus “chasing” the optimal speed target [12]. In this case the 

matrix is not full and there are transitions only from the minimum state of the previous 

stage to all other states of the next stage. Therefore, SSDP does not require the speed 

forecast of the whole drive cycle but requires only a one-step-ahead speed forecast.  As 

such it can be readily implemented in real-time.  

 

 

Figure 5: Single step dynamic programming 
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The essential steps of the SSDP algorithm are given in List 2, where ℳ a high cost 

is used as penalty, and 𝑺 is the set of feasible transitions.  

The fuel cell cost, and battery cost are calculated for each state of stage 𝑘. The cost 

of transition from 𝑆𝑘−1, the minimum state at stage 𝑘 − 1, to 𝑆𝑘,𝑙 is the fuel cell cost and 

battery cost of 𝑆𝑘,𝑙. The constraints are checked for the transition from 𝑆𝑘−1 to 𝑆𝑘,𝑙 and in 

case of violation a penalty cost is added. The process is repeated for all the states of stage 

𝑘.  

 Thus at each stage 𝑘, let the minimum cost of reaching stage 𝑘 − 1  be given by 

(𝜓̂(𝑆𝑘−1)) then the minimum cost of reaching stage 𝑘 is given by: 

𝜓̂(𝑆𝑘) =
𝑚𝑖𝑛

𝑙 = 1, 𝐿
 {𝐶(𝑆𝑘−1 , 𝑆𝑘,𝑙) + 𝜓̂(𝑆𝑘−1)} (10) 

Where (𝑆𝑘−1, , 𝑆𝑘,𝑙) with 𝑙 =  1 𝑡𝑜 𝐿 are the possible transitions from the state 𝑆𝑘−1 to 

states 𝑆𝑘,𝑙 and 𝐶(𝑆𝑘−1 , 𝑆𝑘,𝑙) are their corresponding transition costs. For example, if 𝑆13 is 

the minimum state in stage 1, then the possible transitions from stage 1 to stage 2 are 

(𝑆13 , 𝑆21), (𝑆13 , 𝑆22), (𝑆13 , 𝑆23), and (𝑆13 , 𝑆24).  The numbers on top of states 𝑆11, 𝑆12, 

𝑆13 and 𝑆14 are the minimum costs for reaching these states from the previous stage.  And 

the cost next to each transition is the cost of operating the system in period 2 at the 

demand level 𝐷2.   

The state with minimum cost at stage 𝑘 is included in the optimal path, and the 

whole process is repeated to identify the minimum cost at each stage.  
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List 2: Single Step Dynamic Programming (SSDP) Algorithm 

 “At every stage ‘k’  
For k= 1, N 
For l= 1, L 

𝐹𝑘,𝑙 = 𝐹𝑚𝑎𝑥
𝑙

𝐿
                 “Fuel cell power” 

𝐵𝑘,𝑙 = 𝑚𝑎𝑥(𝐷𝑘 − 𝐹𝑘,𝑙 , 𝐵𝑚𝑖𝑛)      “Battery power” 

𝐶𝐹 = 𝜑𝐹(𝐹𝑘,𝑙)                               “Fuel cell cost”  

𝐶𝐵 = 𝜆𝐵 𝛾𝑎𝑣𝑔
𝑠𝑖𝑔𝑛(𝐵𝑘,𝑙+1)

2
              “Battery cost” 

𝐶(𝑆𝑘−1, 𝑆𝑘,𝑙) = 𝐶𝐹 + 𝐶𝐵               “Transition cost” 
“Set penalty to large cost M for infeasible transitions” 
𝑃𝑙 = 0    
𝐼𝑓 ( (𝑆𝑘−1,  𝑆𝑘,𝑙) ∉ 𝑆)  ⇒ 𝑃𝑙 = 𝑀      
End  
“Minimum cost node in stage k”  
𝜓̂(𝑆𝑘) = 𝑚𝑖𝑛

𝑙=1,𝐿
(𝜓̂(𝑆𝑘−1) + 𝐶(𝑆𝑘−1, 𝑆𝑘,𝑙) + 𝑃𝑙)    

End  
 

 

The fuel cell incremental cost  𝛾𝑎𝑣𝑔 given in equation (1) is calculated at average 

demand. In real time the average demand is not known. Equation (11) is used to update the 

average demand at each period, where 𝐷̅𝑘 is the average demand at period 𝑘,  𝐷̅𝑘−1 is the 

old average at period 𝑘 − 1, and 𝐷̂𝑘 is the estimated demand at period 𝑘. The variable 𝑛 is 

chosen by trial and error. Simulation results show that the average demand is not 

significantly affecting the results, so only few points are taken (𝑛 = 4). Small values of 

𝑛 give better results than larger ones since the response to changes on average will be 

faster. 

𝐷̅𝑘 =
𝑛−1

𝑛
 𝐷̅𝑘−1 +  

𝐷̂𝑘

𝑛
 (11) 

Concerning 𝜆𝐵 which also appears in equation (1), it should be kept low for CD 

operation because when the battery is cheaper it will be depleted faster. However, for CS 
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operation 𝜆𝐵 does not make a big difference because the state of charge is bounded but 

better results are obtained when 𝜆𝐵 is close to 1 so that the battery cost is close to the fuel 

cell incremental cost. The relation between 𝜆𝐵 and battery remaining energy is shown in 

Fig. 6. For values of 𝜆𝐵 close to 1, CS operation is obtained as the battery remaining energy 

is close to the initial value which is 0.8, and for small values of 𝜆𝐵 CD operation is 

obtained. As 𝜆𝐵 increases the battery remaining energy increases until a saturation value is 

reached since the battery remaining energy depends on braking operation. HWFET 

approaches saturation before UDDS and has a lower remaining energy value because 

HWFET has less braking than UDDS. A value of 𝜆𝐵 around 0.82 is chosen for both CS and 

CD depletion operations since CD is obtained by lower bound relaxation not by lowering 

𝜆𝐵. 

 

 

Figure 6: Battery remaining energy versus the battery control parameter 𝛌𝐁 
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CHAPTER III 

ARTIFICIAL NEURAL NETWORKS 

 

The artificial neural network (ANN) is an algorithm inspired from the biological 

human cortex. The multilayered neural network is a system made up of layers containing 

neurons; neurons in different layers are connected to each other forming a network. Each 

neuron is called a perceptron. Perceptrons receive signals from each other and pulse a 

signal as the output of an activation function (𝑓). Each neuron has a bias (𝑏), weight(𝑤), 

and an activation function. The proposed ANN consists of three layers. The first layer is the 

input layer with three neurons corresponding to the number of inputs, the second layer is 

the hidden layer with 5 nodes, and the third layer is the output layer with one neuron 

corresponding to the system output as shown in Fig. 7. 
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Figure 7: The architecture of the proposed ANN 
 

The number of hidden layers and hidden nodes is chosen by trial and error. One 

hidden layer with five nodes is selected since it is able to produce the lowest hydrogen 

consumption thus satisfying the objective of the study. Smaller architectures produce better 

results in terms of hydrogen cost and hydrogen consumption which decrease as the number 

of hidden nodes and hidden layers decrease. On the other hand, larger architectures produce 

better results in terms of battery degradation and system cost. Since the main objective of 

the study is to reduce the consumption of hydrogen, a small architecture is chosen. 
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the estimated demand is needed to determine the required power at the wheels. The fuel cell 
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power at the previous period is included due to the fuel cell ramp rate, since the neural 

network should be able to learn the changes in the fuel cell level in order to avoid violations 

in the ramp rate. The battery ramp rate is not accounted for since it is much higher than that 

of the fuel cell.  

The weights and biases are initiated randomly and are updated according to 

Levenberg-Marquardt optimization, which interpolates between the Gauss-Newton 

algorithm and the gradient descent [16].  The activation functions are chosen by trial and 

error; a log sigmoid activation function is used in the hidden layer and a linear activation 

function is used in the output layer. The classifier can be dominated by some attributes with 

relatively large numbers, to avoid this, features are normalized (e.g., mapped to numbers 

between 0‐1).  The ANN is trained using a dataset created by DP. The data set used for the 

UDDS drive cycle has 1370 instances in a three-dimensional feature space, where the 

features are: power demand, fuel cell power, and battery SOC.  

The ANN is trained to learn the pattern of some instances obtained from DP results 

and then it is tested on new unseen instances where it should be able to produce results 

close to optimum ones. Therefore, the road is divided into two parts; training is done over 

one part consisting of 689 data points and testing is done over the other part. The number of 

data point over which training is done is chosen by trial and error. When few data points 

are chosen for training, the data in this case is not enough to train the model well. On the 

other hand, when too many data points are chosen for training, an overfit will occur 

preventing the ANN from being able to generalize well when it comes upon new unseen 

data. 



29 
 

The artificial neural network is used to find the fuel cell power at an instant (𝑡). 

The battery power and the brake power can be determined from the power balance 

constraint as shown in list 3. The ANN results are compared to the optimum results of the 

dynamic programming applied over the same drive cycle and for the same vehicle. It is 

worthwhile noting that the first time the ANN is run the battery minimum state-of charge 

(SOC) is violated by around 75%. Therefore, the minimum allowable SOC is reduced from 

0.8 used in DP to 0.75 allowing for some violations (soft margin) since ANN is a near-

optimal solution of the energy management problem. Concerning the fuel cell power, the 

ANN produces some negative values which are forced to zero hence obtaining the power 

from the battery in these cases. To avoid violations of the power level constraints, all the 

fuel cell powers that are below minimum are set to 𝐹𝑚𝑖𝑛, but this caused the battery 

remaining energy to build up throughout the experiment instead of remaining constant thus 

violating the conditions of CS mode.  

 In an attempt to make the final and initial SOC match, the fuel cell power is 

calculated using ANN at each period. The obtained fuel cell power is corrected to satisfy 

limit and ramp rate constraints and then it is used to find the battery energy and SOC. The 

input of the ANN at the next period is updated by taking the obtained SOC and corrected 

fuel cell power from the previous period and so on. This method was not able to maintain a 

constant energy in the battery throughout the trip and the battery remaining energy 

followed an increasing pattern where the SOC increases above minimum by around 81.2%. 

Another attempt to solve the battery remaining energy problem is to increase the inputs of 

the ANN.  A fourth input is added to the ANN to indicate whether the operation is CS or 
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CD (0 for Cs and 𝛼 =
𝑆𝑂𝐶0−𝑆𝑂𝐶𝑓𝑖𝑛𝑎𝑙

𝑆𝑂𝐶 𝑚𝑎𝑥
 for CD). Adding a fourth input is insufficient and the 

SOC is not maintained in CS operation it increases above minimum in this case by about 

98.3%. 

Since all these methods are not able to maintain the SOC throughout the trip, the 

initial network before modifications is considered i.e. before solving the fuel cell power at 

each period and before adding a fourth input. However, in this case the fuel cell power is 

allowed to go slightly below 𝐹𝑚𝑖𝑛  (soft margin) due to the fact that ANN cannot handle 

constraints like DP. This improves the battery remaining energy results in CS operation 

mode, where the SOC increases above minimum at some periods by 0.78% thus 

approaching towards the optimum solution as will be seen in the results section.    

The same ANN network topology can also be used to operate in a CD mode 

without having to change the architecture of the network, only the lower bound of the 

battery SOC is changed. Also, the generalization capabilities of the ANN are checked. The 

ANN is trained over the UDDS road and tested over the same drive cycle with a 10% faster 

and 10% slower variations. It should be noted that in addition to the speed, the time interval 

is changed to maintain a constant distance in all cases. The ANN is able to work reasonably 

well when the speed of the UDDS cycle is changed. Cross-generalization is also performed, 

where the ANN is trained over UDDS and tested over different drive cycles (HWFET and 

NEDC). In both cases, the ANN is able to generalize fairly well. This shows that the same 

network topology can be used for different cases and conditions. 
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List 3: Solve for Battery and Brake Power Algorithm 

 

If (Dk > 0)    

Bk = Dk – Fk 

Rk = 0; 

Else if (Dk < 0)   

Bk= Dk - Fk  

If (Bk < Bmin)   

“turn brakes on” 

Rk = Bmin - Bk 

Bk =  Dk - Fk  + Rk 

End 

Else 

Bk = - Fk  

Rk = 0 

End 
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CHAPTER IV 

SPEED FORECAST 

 

One of the key functions of an effective hybrid fuel cell vehicle’s design is the 

ability to model short-term predictions of traffic conditions on the roads. The impetus of 

forecasting traffic information, while relying on real-time information is to allocate the 

proportions of hydrogen and battery energies required throughout the trip in order to have 

the most efficient operation at minimum cost. Traffic information is usually reflected by 

traditional performance measures such as travel speed, time, and delays. Several traffic 

prediction models have been developed in literature using wide spectrum of modeling 

techniques. The main objective in this case is to be able to forecast the speed for a one step 

ahead.  

For the SSDP and ANN approaches to be implemented in real time, a step-ahead 

forecast should be done in order to determine the demand at each period. The model used to 

forecast the speed is shown in equation (12). This model is a linear model of the forth order 

with a constant 𝛽0, where 𝑉𝑘 is the measured speed, 𝑉𝑘−1 𝑉𝑘−2 𝑉𝑘−3 𝑉𝑘−4 are historical 

data, and 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 are the beta coefficients. 

𝑉𝑘 = 𝛽0 + 𝛽1𝑉𝑘−1 + 𝛽2𝑉𝑘−2 + 𝛽3𝑉𝑘−3 + 𝛽4𝑉𝑘−4  (12) 

The beta coefficients are calculated from equation (13) using the pseudo inverse 

method (equation (14)), where 𝑉𝑚 is the matrix of measured speed and 𝐻 is the matrix of 

historical data. 

𝑉𝑚 = 𝐻 × 𝛽  (13) 
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𝛽 = (𝐻′𝐻)−1𝐻′  (14) 

To check the stability of the model several tests are done. The beta coefficients 

have been calculated for the UDDS drive cycle at medium speed and as the speed of the 

UDDS cycle increases or decreases for a forth order model with a constant (equation (12)). 

The results are shown in Table 1. The results show that only the constant 𝛽0 changes as the 

speed of the drive cycle changes. This implies that 𝛽0 is a kind of average speed that 

increases as the speed increase and decreases as the speed decrease. Therefore, to increase 

the model stability as driving conditions change, the constant 𝛽0 will not be included. 

 As the driving cycle changes, the beta coefficients will change as shown in Table 

2 where the coefficients of UDDS, NEDC, and HWFET drive cycles for a forth order 

model with a constant (equation (12)) are shown. Therefore, the beta coefficients suitable 

for one drive cycle will not be optimal for the other. Hence, there is no choice of the 

parameters that can be performed only once as initialization of the control strategy and 

applied in every situation. During real time operation, the optimization method uses those 

values of beta that are representative of the current driving conditions. This can be done by 

storing in the controller certain values that are typical of urban, highway, etc. drive cycles 

since it is difficult to calculate beta coefficients in real time because they depend upon the 

measured speed (equation (13)) which is not known a priori. To further check the stability 

of the model, the beta coefficients of UDDS are used to forecast the speed of HWFET and 

the speed of NEDC drive cycles. It seems that the beta coefficients are not significantly 

affecting the results and hence the model can be considered stable. 
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Table 1: The Beta Coefficients for UDDS Drive Cycle of Different Speeds 

Beta 

coefficient 
Slow Medium Fast 

𝜷𝟎 0.0558 0.062 0.0682 

𝜷𝟏 2.0479 2.0479 2.0479 

𝜷𝟐 -1.2107 -1.2107 -1.2107 

𝜷𝟑 0.1397 0.1397 0.1397 

𝜷𝟒 0.0161 0.0161 0.0161 

 

Table 2: The Beta Coefficients for UDDS, NEDC, and HWFET Drive Cycles 

Beta 

coefficient 
NEDC UDDS HWFET 

𝜷𝟎 0.0091 0.062 0.0189 

𝜷𝟏 1.9299 2.0479 2.0865 

𝜷𝟐 -0.9434 -1.2107 -1.159 

𝜷𝟑 -0.01 0.1397 -0.0421 

𝜷𝟒 0.0214 0.0161 0.1126 

 

When models of different orders are tested, the models with high orders appear to 

be better in terms of forecast (lower error), but when it comes to the implementation of the 

model with SSDP, the 1st order produces better fuel saving results since the net curve of the 

forecasted speed is only shifted by 1 step from the actual speed. This shows that there is no 

need to sophisticate the method; therefore, a first order model without a constant also 

known as persistence forecast given in equation (15) is used. 

𝑉𝑘 = 𝑉𝑘−1 (15) 

When using a 1st order model,  𝛽 = 1 which means that no adaptation mechanism 

is needed to adapt to changes in the road conditions. Moreover, the forecast time will not be 

considered since the forecasted speed at a certain instant 𝑘 is simply the actual speed at 

instant 𝑘 − 1.  

The forecasted speed obtained is used to determine the demand required at the 

wheels which is used for solving the real time optimization methods (SSDP and ANN). The 
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forecasted speeds with negative values are set to zero before using them to solve the SSDP 

or ANN method. Non-linear models are used in literature [27], but since the linear model is 

producing good results non-linear models are not considered in this work. 
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CHAPTER V 

SIMULATION RESULTS 

 

The ANN and SSDP will be tested and compared to optimum results obtained by 

DP in order to provide an overall check of these methodologies. The tests will be carried 

over UDDS, HWFET, and NEDC drive cycles shown in Figs. 8, 9, and 10 respectively 

along with the power demand at these roads. The types of cars simulated have varying 

battery sizes to provide an all-battery range (ABR) of 10 to 40 miles and other component 

sizes are appropriately selected.  The data of the cars used are shown in Table 3 [2].  The 

last two digits of the car-type indicate the all-battery range (ABR) in miles for the 

corresponding type.  The power demands shown in Figs. 8, 9, and 10 correspond to the 

FCHEV-20, shown in row 2 of Table 3.  
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Figure 8: The speed curve and power demand curve of the UDDS driving cycle 
 

 

Figure 9: The speed curve and power demand curve of the HWFET driving cycle 
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Figure 10: The speed curve and power demand curve of the NEDC driving cycle 
 

Table 3: Power and Storage Components Sizes of Simulated Cars 

Vehicle ABR 
Mass 

(kg) 

Fuel 

Cell 

(kW) 

Battery 

Energy 

(kWh) 

Battery 

Power 

(kW) 

FCHEV 00 1582 78.9 1.07 26.9 

FCHEV 20 1591 58.8 7.57 50.6 

FCHEV 40 1715 56.5 15.1 140.2 

 

A. Single Step Dynamic Programming Results 

The comparison between the SSDP and DP methods is carried out over the UDDS 

and HWFET drive cycles for the FCHEV-20. Table 4 compares SSDP to DP for charge 

sustained (CS) operation mode. Comparing SSDP with DP when the actual speed is used 

0 200 400 600 800 1000 1200
0

50

100

150

Time

S
p

e
e

d
 (

k
m

/h
)

Driving Cycle Speed Curve

0 200 400 600 800 1000 1200
-50

0

50

Time

P
o

w
e

r 
D

e
m

a
n

d
 (

k
W

) Power Demand Curve



39 
 

i.e. the first two columns of Table 4, the H2 consumption increases by 1.6% and 0.45% with 

SSDP for UDDS and HWFET respectively. The battery degradation is higher by 17.8% and 

31.3% for UDDS and HWFET respectively. The relatively high variations in the battery 

degradation cost are due to the SOC slightly going below minimum in some periods as will 

be seen in Fig. 14. The higher H2 consumption and battery degradation caused the system 

cost when applying SSDP to increase by 7.4% and 3% over UDDS and HWFET 

respectively. SSDP and DP have the same battery remaining energy over UDDS and 

HWFET which implies that over both drive cycles SSDP is able to restore the battery SOC 

at the end of the cycle thus satisfying CS constraints. When the speed forecast is actually 

used to solve SSDP, the results obtained are close to those obtained when actual speed is 

used to solve SSDP where the system cost increases by 0.5% for UDDS and decreases by 

0.4% for HWFET. The speed is forecasted using a first order linear model, also known as 

persistence forecast. Comparing the fuel economy results obtained when using DP to those 

obtained when using SSDP with forecasted speed, the system cost obtained for UDDS is 

higher by around 6.9% and for HWFET it is higher by around 3.4%. This shows that the 

speed forecast model is capable of producing results close to the optimum ones with a low 

error, because the forecasted speed is obtained by shifting the net curve of the actual speed 

by one step when a first order linear model is applied.  
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Table 4: DP and SSDP Results for FCHEV-20 over UDDS and HWFET-CS with SOC0= 

0.8 

  
DP 

Actual 

Speed 

 SSDP  

Actual 

Speed 

 SSDP  

Forecasted 

Speed 

U
D

D
S

 

H2 cost ($) 0.2668 0.2711 0.2701 

Battery 

degradation ($) 
0.1503 0.1770 0.1757 

System cost ($) 0.4171 0.4481 0.4458 

H2 consumption (g) 88.94 90.37 90.04 

Battery Remaining 

energy (pu) 
0.8014 0.8014 0.8014 

H
W

F
E

T
 

H2 cost ($) 0.3760 0.3776 0.3778 

Battery 

degradation ($) 
0.0339 0.0445 0.0461 

System cost ($) 0.4098 0.4221 0.4239 

H2 consumption (g) 125.32 125.88 125.93 

Battery Remaining 

energy (pu) 
0.8082 0.8082 0.8082 

 

Figures 11 and 12 show the different power levels and velocity when the battery is 

operated in a CS mode over a portion of the UDDS with DP and SSDP respectively. The 

battery energy looks sustained in both cases as over the shown portion of the cycle the net 

battery energy seems to balance out as the positive areas (discharge) is about equal to the 

negative areas (charge). The battery is then charged from a braking operation over the time 

range from about 383 to 398 seconds. Also in both cases the battery plus the fuel cell 

powers are larger than the demand in absolute value term. At about 360s there is a sharp 

drop in the power demand of about 10.6kW, which is larger than the fuel cell ramp rate of 

about 7.8kW/s. The DP system prepares for this by increasing the battery power prior to 

360s, so that it can contribute to the required rapid power demand drop as shown in Fig. 11 

which is not the case with SSDP as shown in Fig. 12. 
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Figure 11: Power levels and velocity on part of the UDDS cycle for DP-CS strategy 
 

 

Figure 12: Power levels and velocity on part of the UDDS cycle for SSDP-CS strategy 
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The battery and fuel cell remaining energy are shown for DP and SSDP in Figs. 13 

and 14 respectively.  Since this is a CS operation, the battery remaining energy curve is 

examined to check if CS constraints are obeyed. The DP results show that the battery SOC 

is maintained throughout the drive cycle and it does not go below the minimum value 

which is set to 80% of the battery SOC i.e. equal to 6.056kWh. However, at the end of the 

cycle the SOC tends to rise slightly above minimum due to the last braking operation. On 

the other hand, when applying SSDP the battery SOC decreases below the minimum value 

at some periods around 197, 456, and 1176 seconds. The violation is very small around 

0.2%.  At the end of the drive cycle, the SOC is maintained but slightly higher due to the 

last braking operation like in the case of DP. According to [17], it is normal that the SOC 

deviates from the minimum value during the vehicle operation as long as the final SOC is 

maintained. 
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Figure 13: FC and battery remaining energy for DP over UDDS-CS 
 

 

Figure 14: FC and battery remaining energy for SSDP over UDDS-CS 
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cycle. This might be attributed to the battery being used less with SSDP where the battery 

remaining energy is slightly higher than that of DP. The decrease in the battery degradation 

resulted in a decrease in the overall system cost in case of SSDP. Concerning H2 

consumption, it increases by around 58% for UDDS when applying SSDP and by around 

4.6% for HWFET. 

 

Table 5: DP and SSDP Results for FCHEV-20 over UDDS and HWFET-CD with SOC0= 

0.9 

  
DP 

Actual 

Speed 

SSDP  

Actual 

Speed 

SSDP  

Forecasted 

Speed 

U
D

D
S

 

H2 cost ($) 0.0371 0.0585 0.0581 

Battery 

degradation ($) 
0.6045 0.5579 0.5568 

System cost ($) 0.6416 0.6164 0.6149 

H2 consumption (g) 12.37 19.49 19.35 

Battery Remaining 

energy (pu) 
0.7014 0.7211 0.7214 

H
W

F
E

T
 

H2 cost ($) 0.1390 0.1454 0.1452 

Battery 

degradation ($) 
0.4952 0.5012 0.4999 

System cost ($) 0.6343 0.6466 0.6451 

H2 consumption (g) 46.34 48.47 48.39 

Battery Remaining 

energy (pu) 
0.7083 0.7082 0.7082 

 

 

The battery and power levels for CD mode over portion of the UDDS are shown in 

Figs. 15 and 16 corresponding for DP and SSDP respectively. The power demand is being 

supplied mainly from the battery when applying DP as shown in Fig. 15. The fuel cell 

operates briefly between 352 and 361 seconds driven by the economic differentials in the 

costs. However, with SSDP the fuel cell operates between 352 and 367 seconds showing 
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that more fuel is being consumed as compared to DP and hence in this case the battery is 

used less. 

 

 

Figure 15: Power levels and velocity on part of the UDDS cycle for DP-CD strategy 
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Figure 16: Power levels and velocity on part of the UDDS cycle for SSDP-CD strategy 
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Figure 17: FC and battery remaining energy for DP over UDDS-CD 
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Figure 18: FC and battery remaining energy for SSDP over UDDS-CD 
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Figure 19: The optimal path obtained by DP compared to that obtained by SSDP over 

portion of UDDS-CS 
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battery SOC is used to determine whether the operation is CS or CD. It should be noted that 

when the mode of operation is CD, the SSDP is able to find the optimum solution; this 

might be due to the SOC limits being more relaxed in this case. 

Changing the number of levels affects the number of infeasibilities, the size of the 

added penalties for the corresponding infeasibilities, and the system cost. In this work, 81 

levels are used as in [2]; however different values for the number of levels are tested to 

determine the effect of the number of levels on the system cost and infeasibility. As the 

number of levels increases the number of infeasibilities decreases until it reaches saturation 

at around 161 levels where 108 violations are obtained compared to 178 violations obtained 

at 21 levels. Also the size of added penalty is reduced with increasing number of levels. 

Although the number of violations decreases as the number of levels increase, only 106 

violations are obtained at 81 levels. Concerning the system cost, it is reduced as the number 

of levels increases until a saturation is reached at 641 levels where the system cost is 

0.4446$ as shown in Fig. 20. However, the change in the system cost is not significant as it 

is less than 10%. The accuracy obtained at 81 levels is enough knowing that the execution 

time increases as the number of levels increase to reach 11.63 sec at 2561 levels compared 

to 0.19 sec at 21 levels. Therefore, identifying a good compromise between accuracy and 

execution time is essential. 
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Figure 20: The variation of the system cost with the number of levels 
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Table 6: Performance of DP and SSDP for Various FCHEV over UDDS 

Car Type Method CD (mpgge)1 
CD 

(Wh/mi) 
CS (mpgge) 

FCHEV-0 
DP 

SS 
  

81.21 

79.47 

FCHEV-20 
DP 

SS 

600.86 

381.34 

201.73 

181.70 

83.56 

82.25 

FCHEV-40 
DP 

SS 

1031.7 

487.04 

221.39 

199.48 

79.8 

78.28 

 

B. ANN Results 

The ANN at this stage is trained over UDDS drive cycle, and the vehicle used is 

FCHEV-20. The comparison between the DP and the ANN results for CS mode over 

UDDS drive cycle for the same vehicle is summarized in Table 7. Table 7 shows that the 

hydrogen consumption and hence hydrogen cost in case of ANN are slightly higher than 

that of the DP by around 3.6% resulting in slightly lower battery degradation with ANN by 

around 12.7%. Therefore, the system cost in both methods is very close, as it increases 

when ANN is used by around 2.23%. Concerning the final energy remaining in the battery, 

it is closer to the initial energy (0.8) in case of DP than in the case of ANN which is 

expected as DP can handle constraints easily. Fig. 21 shows that with ANN the SOC is 

going slightly above minimum at some periods by around 0.78%, and the SOC is not 

maintained throughout the drive cycle like in the case of DP or SSDP due to the suboptimal 

nature of ANN that is not able to handle constraints. However, ANN is able to slightly 
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maintain the battery remaining energy in the CS operation since there is no significant 

charge build-up or charge depletion. 

 

Table 7: DP and ANN Results over UDDS-CS with SOC0=0.75 

Parameters DP ANN 

H2 cost ($) 0.2669 0.2766 

H2 consumption (g) 89.0 92.2 

Battery Cost ($) 0.1503 0.1312 

System Cost ($) 0.4171 0.4078 

Battery remaining 

energy (pu) 
0.8014 0.8103 

 

 

Figure 21: The FC and battery remaining energy for DP and ANN over UDDS-CS 
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the same trend; however, they are shifted. The ANN results are able to follow the DP 

results at most periods, but at some instants the fuel cell power obtained by DP is zero 

whereas it is positive by ANN. Also at some periods the fuel cell obtained by ANN is 

negative, but these values are corrected and forced to zero. In general, the ANN solution is 

not the same as DP and this is expected but it is very close and does not show significant or 

abnormal trends.  

 

 

Figure 22: The FC power estimates for DP and ANN over UDDS-CS 
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energy of ANN is slightly lower than that of DP by 0.57%, this caused the battery 

degradation cost when using ANN to increase by around 1%. Therefore, the system cost 

with ANN slightly increases as compared to DP by around 0.75%. Although, ANN does 

not violate the CD constraints by utilizing more battery but this might violate the SOC 

limits.  

 

Table 8: DP and ANN Results over UDDS-CD with SOC0=0.9 

Parameters DP ANN 

H2 cost ($) 0.0371 0.0327 

H2 consumption (g) 12.37 10.89 

Battery Cost ($) 0.6045 0.6137 

System Cost ($) 0.6416 0.6464 

Battery remaining 

energy (pu) 
0.7014 0.6974 

 

Fig. 23 compares fuel cell power estimates obtained by DP to those obtained by 

ANN over portion of the UDDS cycle. The fuel cell operated between 779 and 781 seconds 

and between 80.3 and 805 seconds with DP. However, the fuel cell operated briefly with 

ANN between 802 and 804 seconds showing that less fuel is being consumed and the 

power demand is being supplied mainly from the battery over this portion. The fuel cell 

remaining energy is maintained with both DP and ANN thus satisfying CD mode 

conditions as shown in Fig. 24. Although less H2 is being consumed with ANN, but this has 

resulted in the violation of the fuel cell limits and battery SOC limits where the SOC went 

slightly below minimum. 
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Figure 23: The FC power estimates for ANN and DP over UDDS-CD 
 

 

 

Figure 24: The FC and battery remaining energy for ANN and DP over UDDS-CD 
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After obtaining desired results, the generalization capabilities of the ANN are 

checked. The ANN is trained over the UDDS road and tested over the same drive cycle 

with a 10% faster and 10% slower variations. 

As mentioned before that in addition to the speed, the time interval of the UDDS 

drive cycle is changed to maintain a constant distance in all cases. The results obtained 

show that the ANN works reasonably well when the speed of the UDDS cycle is changed 

as shown in Figs. 25 and 26 corresponding to faster and slower speeds respectively. In this 

case the ANN solution is also shifted from the DP but it is able to follow it at most of the 

periods. The battery remaining for CS operation is shown in Figs. 27 and 28 corresponding 

for faster and slower UDDS respectively. The SOC is slightly going below minimum by 

around 0.26% over faster UDDS and 0.08% over slower UDDS; therefore, there is no 

significant charge depletion or charge build-up. Table 9 shows a comparison between 

optimal results of DP and ANN results for faster and slower speeds, the system cost of 

ANN is close to that of DP as it has varied by around 2% for faster UDDS and 0.45% for 

slower UDDS. 
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Figure 25: The FC power estimates for ANN and DP over faster UDDS-CS 
 

 

Figure 26: The FC power estimates for ANN and DP over slower UDDS-CS 
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Figure 27: The FC and battery remaining energy for ANN and DP over faster UDDS-CS 
 

 

Figure 28: The FC and battery remaining energy for ANN and DP over slower UDDS-CS 
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Table 9: DP and ANN Results over Faster and Slower UDDS- CS Operation 

Parameters 
DP 

faster 

ANN 

faster 

DP  

slower 

ANN 

slower 

H2 cost ($) 0.3212 0.3185 0.1845 0.1840 

H2 usage (g) 107.1 106.2 61.5 61.3 

Battery Cost 

($) 
0.2172 0.2091 0.1049 0.1041 

System Cost 

($) 
0.5383 0.5275 0.2894 0.2881 

Battery Final 

SOC 
0.8020 0.8006 0.8009 0.8009 

 

Cross-generalization is also performed, where the ANN is trained over the UDDS 

drive cycle and tested over different drive cycles (i.e., HWFET and NEDC). The ANN is 

able to generalize fairly well in both cases. The fuel cell estimates are close to the fuel cell 

targets for HWFET and NEDC drive cycles as shown in Figs. 29 and 30 respectively where 

the solutions are also shifted but do not vary significantly. Concerning battery remaining 

energy, the DP and ANN results are close to each other for the HWFET with a small 

insignificant variation where the SOC goes below minimum by around 0.5% as shown in 

Fig. 31. However, for NEDC drive cycle the battery remaining energy shown in Fig. 32 

goes below minimum with ANN by around 3.3% showing that better generalization is 

obtained with HWFET. Table 10 compares optimal results obtained by DP to the 

approximate ones obtained by ANN for both drive cycles showing again that ANN has 

better generalization capability over HWFET where the system cost increases by 1.2% as 

compared to DP; whereas it increases by around 5.5% over NEDC. This can be attributed 

to the shape of the HWFET road which is closer to UDDS road than NEDC. 
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Figure 29: The FC power estimates for DP and ANN over HWFET-CS 
 

 

Figure 30: The FC power estimates for ANN and DP over NEDC-CS 
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Figure 31: The FC and battery remaining energy for ANN and DP over HWFET-CS 
 

 

Figure 32: The FC and battery remaining energy for ANN and DP over NEDC-CS 
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Table 10: DP and ANN Results over HWFET and NEDC-CS 

Parameters 
DP 

HWFET 

ANN 

HWFET 

DP 

NEDC 

ANN 

NEDC 

H2 cost ($) 0.3760 0.3797 0.2709 0.2477 

H2 Usage 

(g) 
125.3 126.7 90.3 82.56 

Battery 

Cost ($) 
0.0339 0.0252 0.0621 0.1037 

System cost 

($) 
0.4098 0.4049 0.3329 0.3514 

Battery 

Final SOC 
0.8082 0.8115 0.8160 0.7959 

 

The ANN is able to produce results close to optimum ones when used in CS and 

CD mode. The SOC is not maintained like in the case of DP and SSDP since ANN cannot 

handle constraints, but the drift is small without significant charge build-up or charge 

depletion. The proposed ANN shows good generalization capability when tested over faster 

and slower UDDS and over new drive cycles. 

 

C. Speed Forecast Results 

As mentioned earlier, the models with high orders are better in terms of forecast 

(lower error), but when it comes to the implementation of the speed forecast with SSDP, 

the 1st order produces better fuel saving results since the net curve of the forecasted speed is 

only shifted from the actual speed by 1 step. Table 11 shows a comparison between the 

results of a SSDP model applied using speed forecasted by models of different orders. The 

results show that the persistence model when used with SSDP method produces results very 

close to SSDP model using the actual speed, where the system cost varies by around 0.51% 

compared to 19.5% with 2nd order model and 24% with 3rd and 4th order models. Figs. 33 

and 34 show the results of forecasted speed compared to measured speed obtained by 4th 
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order and 1st order models without constant respectively. With the first order model the 

forecasted speed is only shifted by one step from the actual speed as illustrated in Fig. 33, 

and the model error of the 4th order is lower than that of the 1st order.  

 

Table 11: Comparison between Different Speed Forecast Model Orders used with SSDP 

over UDDS with SOC0 =0.8 

Forecast 

error & fuel 

economy 

Actual 

speed 

Forecast 

model 

Order 1  

Forecast 

model 

Order 2 

Forecast 

model 

Order 3 

Forecast 

model 

Order 4 

Forecast 

error 
 6.9819 1.3191 1.2685 1.2670 

H2 cost ($) 0.2711 0.2701 0.2941 0.2994 0.299 

Battery 

degradation 

($) 

0.1770 0.1757 0.2413 0.2568 0.2568 

System cost 

($) 
0.4481 0.4458 0.5354 0.5562 0.5558 

H2 

consumption 

(g) 

90.4 90.04 98.0 99.8 99.7 

Battery 

Remaining 

energy (pu) 

0.8014 0.8014 0.8015 0.8015 0.8015 
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Figure 33: Measured speed compared to forecasted speed using 4th order model without 

constant 
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Figure 34: Measured speed compared to forecasted speed using 1st order model without 

constant 
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CHAPTER VI 

CONCLUSION 

 

This work has presented new energy management strategy for HEV known as 

single step dynamic programming (SSDP) technique, and a control strategy based on 

artificial neural network (ANN). These control strategies which are derived from dynamic 

programming (DP) can easily lend themselves for real time implementation. Global 

optimization techniques, on the other hand, such as DP evaluate the fuel economy of a 

given power train configuration producing optimum results. For this control law to be 

implementable the future driving conditions should be known; which is not the case in real 

time. However, the results of DP establish a benchmark for evaluating the optimality of the 

realizable control strategies. The SSDP optimization technique differs from DP in that it 

does not have back-tracing, and this might cause some infeasibility; however, the forward-

looking models are more realistic than those that are backward looking. The infeasibility is 

SOC violation and it is very small without any fuel cell ramp rate violations.  It is shown 

that the infeasibility and the system cost are affected by the chosen number of levels. The 

number of violations, the size of added penalty, and the system cost decrease as the number 

of levels increases until they reach a saturation value. SSDP has a lower computational load 

than DP, the performance in terms of fuel economy for both methods is practically very 

close, and the infeasibility in case of SSDP is physically not serious; therefore, it can be 

asserted that a very slightly sub-optimal solution can be achieved with a technique much 

simpler and more realistic than the one leading to the optimal policy.  Moreover, SSDP is 
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faster than DP by around 86.84%, and therefore it can be used in system sizing which is 

advantageous because when the system is faster, more cases can be examined and the 

quality of the plans obtained will be improved [28]. The proposed ANN on the other hand 

is trained based on DP results carried out off-line. It can be implemented in real time as it 

takes one step at a time. It requires training and has no mechanism to control the SOC; 

there will always be a drift. However, ANN is able to produce results very close to 

optimum ones. It is also able to slightly maintain the battery remaining energy in the CS 

operation without significant charge build-up or charge depletion, even though at some 

periods the SOC is going slightly below minimum, and the final and initial SOC do not 

exactly match like in the case of DP or SSDP due to the suboptimal nature of ANN that is 

not able to handle constraints. Therefore, the proposed SSDP method is better than ANN in 

solving the power split problem since its results are closer to optimum ones, it can handle 

constraints better, it can maintain SOC in CS operation without the drift at the end of the 

drive cycle, and it does not require training. Both SSDP and ANN provide an easy 

mechanism to change from CS to CD modes of operation. To solve the SSDP and the ANN 

methods, the demand at the next step should be known a priori. This demand is obtained by 

applying a one step-ahead speed forecast. Models of different orders are tested, and their 

beta coefficients are examined for different drive cycles. Since only the constant β0 

changes as the speed of the drive cycle changes, β0  is not included in the speed forecast 

model in order to have a more stable model. Moreover, the beta coefficients suitable for 

one drive cycle are not optimal for the other. Therefore, there is no choice of the parameters 

that can be performed only once as initialization of the control strategy and applied in every 
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situation, but it is found out that beta coefficients do not have significant effects on the 

results. Testing shows that higher order models are able to forecast the speed with a small 

error but the 1st order model known as the persistence forecast is able to produce better fuel 

saving results than higher order models when used with SSDP, since the net curve of the 

forecasted speed is only shifted by 1 step from the actual speed in this case. Therefore, the 

first order linear model is used. Also by using a first order speed forecast model there will 

be no need to do an adaptive mechanism that adapts to changes in road conditions since 

𝛽 = 1, and execution time in this case is not considered since the forecasted speed at time 𝑘 

is simply the actual speed at time 𝑘 − 1. 
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