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This thesis studies the impact of operations management, namely supply chain 

management, on carbon emissions. Recent literature has demonstrated how classical 

inventory management models, such as the economic order quantity (EOQ) model, can 

be amended to allow jointly reducing operational costs and carbon emissions. However, 

most of this literature is concerned with single-product inventory management models, 

with little attention paid to realistic supply chain contexts involving several products 

and locations. Along the line of studying carbon emissions in supply chains, this thesis 

analyzes an inventory management model with two products replenished jointly over a 

common cycle in a framework following the assumptions of the classic EOQ model. 

This is a typical practical situation, when, for example, one truck is used to deliver 

multiple products from a supplier to a retailer. The research objective is to identify the 

conditions under which ordering multiple products jointly is “better” than ordering them 

individually with respect to costs and emissions. Another objective is to analyze carbon 

control policies that offer a good balance between costs and emissions. 
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CHAPTER I 

INTRODUCTION 

 

Global warming is a worldwide threat. The Intergovernmental Panel on 

Climate Change (IPCC) estimated that the Earth’s temperature will increase by 1.8-4 °C 

by the end of this century (Solomon, et al., 2007). Global warming is mainly caused by 

increased greenhouse gas (GHG) emissions, such as carbon emissions. GHG emissions 

must be reduced by 50% (based on 1990 levels) by 2050 in order to have a 50% chance 

in limiting the increase in temperature to 2°C (Meinshausen, et al., 2009). To reduce the 

effect of global warming, legislations and regulations that reduce carbon emissions are 

being enacted by the United Nations; the European Union and other countries. The 

Kyoto protocol (United Nations, 1998) and the European Union’s (EU) Emission 

Trading Scheme (ETS) are examples of these efforts. The European Union’s ETS 

covers for example 46% of total EU CO2 emissions (Wagner, 2004). As a response, 

many firms are investing in new technologies that are more environmentally friendly, 

using more environmentally friendly raw materials, and are focusing on waste 

management, reverse logistics, network design, green manufacturing and green 

remanufacturing. However these approaches take time to be implemented and require 

the investment of large amounts of money. Instead, firms can meet the requirements 

through operational adjustments. Operational adjustments can be analyzed by amending 

classical models, such as those on inventory management, to account for emissions.  

There is much interest in amending inventory models to account for green 

considerations. However, a limited number of studies analyze multi-item inventory 

systems with green considerations, opposed to the number of single-item studies. In 
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addition, to the author’s knowledge, not a study was conducted comparing the effects of 

joint ordering and disjoint ordering on costs and emissions. The purpose of the thesis is 

to study a two-item inventory model under different carbon policies and to determine 

the cases where joint ordering benefits more than disjoint ordering with respect to costs 

and emissions (i) if no policy is applied and (ii) under each of different applied policies. 

To meet the research objectives, this thesis will base on the classical EOQ 

model to first formulate models for the cases where two products are replenished jointly 

and disjointly if no policy is applied, the thesis will second compare the costs and 

emissions in both cases to determine the conditions under which replenishing jointly is 

preferred over replenishing disjointly, the thesis will third repeat the process under 

different applied carbon policies. The results show that joint replenishment does not 

always save on costs and emissions; it even increases them under certain conditions. 

The results also show that applying carbon control policies can reduce emissions 

significantly for small increases in costs in the case of joint replenishment.    

The remainder of his thesis is organized as follows. In Chapter II, we survey 

the related literature. In Chapter III, we present our assumptions and formulate models 

for joint ordering and disjoint ordering if no policy is applied. In Chapter IV, we 

compare joint ordering and disjoint ordering with respect to costs and emissions and we 

discuss our results. In Chapter V, we modify the models to account for three carbon 

policies, carbon tax, carbon cap-and-trade, and strict carbon cap and we compare joint 

and disjoint ordering under these policies. Finally we conclude in Chapter VI.  

  



3 

 

CHAPTER II 

LITERATURE SURVEY 

 

This chapter presents a survey of relevant literature. Section II. A of the 

chapter covers works on single-item inventory models. Then, Section II. B covers works 

on multi-item inventory models. 

 

A. Single-Item Models 

Many scholars are studying the impact of environmental policies and 

environmental considerations on inventory models with the aim of reducing GHG 

emissions. Scholars mostly consider single-item inventory models and modify them to 

account for emissions. The methods commonly used in altering inventory models are (i) 

reformulating the model to consider environmental policies, (ii) associating costs with 

environmental emissions, and (iii) considering emissions in the objective function. 

Reformulating inventory models under environmental policies reflects the 

regulations and policies enacted by many countries in their effort to reduce emissions. 

The most considered regulations are strict carbon cap, carbon tax, and carbon cap-and-

trade. Strict carbon cap policies set a ceiling on emissions that firms cannot cross. 

Carbon tax policies impose a tax on firms per unit of carbon emission. Carbon cap-and-

trade policies set a ceiling on emissions but allow firms to buy and sell carbon 

allowances.  

Chen et al. (2013) use the EOQ model to prove analytically that operational 

decisions alone can lead to significant reduction in carbon emissions without causing 

significant increase in costs. The authors extend the EOQ model to consider 1) strict cap 
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regulations, 2) carbon tax regulations, 3) cap-and-offset regulations where emissions are 

taxed if they only exceed a certain threshold.  

Hua et al. (2011) modify the classical EOQ model to account for the cap-and-

trade policy. They find that optimal order size lies between the order quantity 

minimizing emissions and that minimizing costs. They also find that reducing emission 

generally leads to an increase in cost, but the retailer can reduce both emissions and 

costs under some conditions. 

Similarly, Toptal et al. (2014) extend the EOQ model to consider strict cap, 

carbon tax, and carbon cap-and-trade policies. However, besides determining the order 

sizes, they analyze investment in emission reduction technologies. Their results show 

that the investment option can help the retailer reduce costs under the three policies. But 

emissions do not decrease under strict cap policy. 

Benjaafar et al. (2013) extend the lot sizing problem for single and multiple 

firms accounting for different carbon policies. Based on numerical examples, reducing 

carbon emissions is possible without significantly increasing costs.  

Song and Leng (2012) extend the newsvendor model to consider carbon 

policies and draw useful managerial insights. Specifically they specify conditions where 

firms can increase profit and decrease emissions under cap-and-trade policy. They also 

argue that the state should tax firms differently depending on the profitability of the 

product they sell. 

Other than reformulating the model under carbon policies, many scholars 

associate costs to emissions in their effort to develop more environmentally aware 

models. For example, Bonney and Jaber (2011) include environmental costs in their 

extension of the EOQ model. They argue that such models must use non costs metrics 
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and must consider all the logistics chain. Wahab et al. (2011) associate costs to CO2 

emissions from transportation in an extension of the EOQ model. They classify 

emission costs into fixed and variable costs. Fixed costs depend on fuel efficiency, 

emissions per gallon, and distance. Variable costs depend on the weight of shipments. 

They study the impact of emissions costs in a scenario where the vendor and buyer are 

in different countries. Battini et al. (2014) analyze the traditional EOQ model with 

additional costs related to transportation and obsolescence costs and emissions. 

 Bouchery et al. (2012) analyze a multi-objective (cost and emission) EOQ 

model. They identify a set of efficient frontier solutions. The decision maker selects a 

solution from this set based on his utility function. Bozorgi et al. (2014) not only 

include emission in the objective function, they also formulate nonlinear holding and 

transportations costs and emissions, which were either not modeled or considered as 

linear functions in the previous works. They argue that their model will result in fewer 

emissions compared to the model of Bouchery et al. (2012). 

 

B. Multi-Item Models 

All of the previously mentioned works consider single-item inventory model. 

However, in many cases, firms need to manage the inventory of multiple items and 

might order some products jointly to save on fixed costs. Joint replenishment models 

aim to determine the best grouping strategies that minimize costs. Works on joint 

replenishment problems (JRPs) began decades ago with the works of Starr and Miller 

(1962) and Shu (1971). Starr and Miller (1962) extend the dynamic lot sizing model 

under certainty to account for multiple items ordered jointly over a common cycle. Shu 

(1971) develops a set of criteria which can be used to determine an optimum order 
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frequency for the item with the smallest demand and for the rest of the items that are 

ordered jointly within the EOQ model framework.  

Modifying the joint replenishment problem to include environmental 

consideration leads to a resource constrained JRP (Schaefer & Konur, 2014). Contrary 

to classical JRPs, a limited number of studies covers resource constrained JRPs. Moon 

and Cha (2006) study the joint replenishment problem with budget constraint. Porras 

and Dekker (2006) develop a global optimization procedure to solve a constrained joint 

replenishment problem, based on a minimum order quantity for each product. 

Works on JRPs with environmental considerations are scarce. Zhang and Xu 

(2013) study the production planning of a multi-product newsvendor problem under the 

cap-and-trade policy. In this problem the products share the same carbon cap. The 

authors present a solution method to determine the optimal ordering policy.  

Schaefer and Konur (2014) include carbon cap constraint in JRP where each 

product is subject to the assumptions of the EOQ model. They use genetic algorithm 

methods on numerical examples to find optimal conditions. Results show a decrease in 

costs and an increase in emissions with increasing carbon cap. In addition, increasing 

carbon cap leads to a decrease in setup cost and an increase in holding costs, and leads 

to a decrease in set up emissions and an increase in emissions from holding.  

Although I will cover in this work a two item inventory model under carbon 

policies similar to Schaefer and Konur (Schaefer & Konur, 2014), the presence of new 

analytical results and managerial insights and the comparison between joint and disjoint 

ordering distinguish my work from theirs.  
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CHAPTER III 

PROBLEM FORMULATION UNDER NO POLICY 

 

In this chapter we first list our assumptions in Section III. A, then we present 

our notations in Section III. B, then we formulate our model for the case where the 

products are replenished disjointly in Section III. C, and we present the joint 

replenishment model in Section III. D. In this chapter, we will not consider any carbon 

policy. 

 

A. Assumptions 

1. Assumptions of the EOQ model are valid for each product. Each product 

has a constant demand rate, production costs, and linear holding costs. If products are 

ordered individually, then each product has fixed costs. If products are jointly ordered, 

then they both share common fixed costs. 

2. As introduced by Chen et al. (2013), each product has emission 

parameters, emissions from holding, emissions from production and fixed emissions.  

3. In contrast with Chen et al. (2013), fixed emissions are related to fixed 

costs to account for savings in fixed emissions in joint. 

4. Products have a common cycle if they are ordered jointly as 

recommended by Starr and Miller (1962) and as illustrated in the Figure 1. The source 

of Figure 1 is Salameh et al. (2014).  
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Figure 1 Behavior of inventory over time in joint replenishment case 

 

B. Notation 

iA : Fixed costs associated with product i 

ih  : Holding costs associated with product i 

ic : Unit price of product i 

iQ : Order size of product i 

iD : Demand rate of product i 

ˆ
iA : Fixed emissions associated with product i 

ˆ
ih : Emissions associated with holding of product i 

îc : Emissions associated with the production of product i 

A : Fixed costs for the joint ordering case 

Â : Fixed emissions for the joint ordering case 

im : Fixed emissions associated with product i 

in : Emission factor related to product i  

 : Proportion of product 1 in each order. 1

1 2

D

D D
 


 

ˆ
iA is related to 

im  and 
in by ˆ

i i i i
A m n A   
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Fixed emissions are assumed to have two parts, fixed emissions that are 

affected by joint replenishment of products, and fixed emissions that are not affected by 

joint replenishment of products. Emissions affected by joint replenishment mainly 

comprise emissions from transportation and from some machinery works. These 

emissions are related to fixed costs by a factor 
in covering emissions factors and 

including the proportion of fixed costs that are affected by joint replenishment. 

Emissions that are not affected by joint replenishment cover emissions from packaging, 

from some equipment set-up and other similar emissions. These emissions are expressed 

by
im . In the special case where all fixed emissions are affected by joint replenishment, 

then the
im ’s are zero and the 

in ’s have higher values.  

In joint ordering, 1 2 1 2(1 )ˆ m m n A n AA       

Total fixed emissions in joint replenishment are the summation of the 

contributions of each product towards total fixed emissions. We assumed that if product 

1 constitutes  of the total order quantity in joint replenishment, then product 1 is 

responsible of  of the total fixed costs in joint replenishment. Therefore the 

contribution of product 1 towards total fixed emissions in joint replenishment is 1m  in 

addition to the emission factor 1n  times the share A  of product 1 of the total fixed 

costs. Similarly, the contribution of product 2 towards total fixed emissions is 

2 2(1 )m n A  .  

 

C. Disjoint Ordering Problem 

Suppose a retailer is managing the inventory of two items. The retailer might 

order the two products disjointly. In this case, he wants to solve the following model 
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1 2

1 1 1 1 2 2 2 2
1 1 2 2

,
1 2

min  
2 2Q Q

A D h Q A D h Q
c D c D

Q Q
      

We are minimizing the total cost per unit for the two products. It is the sum of 

the total cost per unit of each product. 

Minimum costs for this case occurs by ordering the economic order quantity 

for each product i.e.  

    

* 1 1
1

1

* 2 2
2

2

2

2

A D
Q

h

A D
Q

h





 

Total costs per unit are 1 1 1 2 2 2 1 1 2 22 2A D h A D h c D c D    

Total emissions per unit time are

1 1 1 1 2 2 2 2 1 1 2 2
1 1 2 2

1 2

ˆ ˆ( ) ( )
ˆ ˆ

2 2

m n A D m n A D h Q h Q
c D c D

Q Q

 
         (1) 

It has the same structure as the cost function. Therefore, the minimum costs 

occur by ordering the economic order quantity for each product with emission 

parameters instead. 

1 1

1

1

2 2

2

2

1 1

2 2

2(ˆ
ˆ

2(ˆ
ˆ

)

)

A D
Q

h

A D
Q

h

m n

m n








       (2) 

Therefore the order quantities that minimize costs do not necessarily minimize 

emissions. 
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D. Joint Ordering Problem 

In case the retailer orders the two products jointly, the total cost per cycle will 

be 

2 2

1 1 2 2

1 1 2 2
2 2

j j

j j

h Q h Q
A c Q c Q    , 

with
1 2

1 2

j jQ Q

D D
 , so 

1 2

2

1

j

j

Q D
Q

D
  

The above model is for total cost per cycle, total cost per unit time is 

2 2

1 1 2 2

1 1 2 2

1 1

2 2

/

j j

j j

j

h Q h Q
A c Q c Q

Q D

   
 

Replacing 
2 jQ  by

1 2

1

jQ D

D
, the model becomes 

2

1

1

1 1 21

1 1 2 2

1

( )
min  

2j

D

Dj

j
Q

Q h hAD
c D c D

Q


     

Setting the derivative of the cost function to zero, the order quantities 

minimizing costs are  

2

1

1

2

* 1
1

1 2

* 2
2

2 1

2
 

2

j D
D

j D
D

AD
Q

h h

AD
Q

h h







 

2

1

2 3

1 1

2
Moreover, 0

j j

ADd TC

dQ Q
  , so the total cost is convex in 1 jQ  

Total emissions per unit time are 

2

11 1 21
1 1 2 2

1

ˆ ˆˆ ( )
ˆ ˆ

2

D
Dj

j

Q h hAD
c D c D

Q


          (3) 
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The carbon emission equation also resembles an EOQ model, so emissions can 

be minimized for the following quantities:  

2

1

2

1
1j

1 2

2
2 j

1
2 1

ˆ2ˆ  
ˆ ˆ

ˆ2ˆ
ˆ ˆ

D
D

D

D

AD
Q

h h

AD
Q

h h







        (4) 

Again, the order quantities that minimize costs do not necessarily minimize 

emissions. 
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CHAPTER IV 

JOINT REPLENISHMENT EFFECTIVENESS UNDER NO 

POLICY 
 

In this chapter we present an analysis aimed at identifying conditions that 

make joint replenishment favorable for reducing costs in Section IV.A and for reducing 

emissions in Section IV.B.   

 

A. Cost Analysis of Joint Replenishment Effectiveness  

Lemma 1 Joint replenishment saves on costs if and only if 
2

1

1
r

c t


 
,  

where
1 2

A
r

A A



, 

2

1 2

2 2 1 1

1

2 2

c

A A

D h D h


 

  
 

, and 2 1t t t   ,   

with 1

1

1 1

2A
t

D h
 and 2

2

2 2

2A
t

D h
  being the order cycles lengths of the two products under 

the individual EOQ models. 

Proof. See Appendix I.  

Lemma 2 The number of cases where joint replenishment saves on costs 

decreases the farther the two order cycles lengths are from each other. 

Proof. See Appendix II. 

Lemma 1 indicates that there is a certain threshold for fixed costs in joint 

replenishment beyond which disjoint ordering is more beneficial in terms of costs. This 

threshold depends on the closeness of the disjoint order cycles of the two products. 

Lemma 2 indicates that costs savings depends on the homogeneity of the products. 
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B. Emission Analysis of Joint Replenishment Effectiveness  

Lemma 3 Joint replenishment saves on emissions if and only if r is bounded 

by two values r1 and r2, where 
2

2

1

4
( )

2

b b c
r

  



,

2
2

2

4
( )

2

b b c
r

  



, 

1 2

1 2

2 2 1 1

2 21 2

3

2 2 1 1

( )

1
( )

2

A A
P P

D h D h
b

A A
P t

D h D h





  

, 4

3

P
c

P
  , 1 1

1 1

1 1

ˆm h
P n

A h
   , 2 2

2 2

2 2

ˆm h
P n

A h
   ,

2

1

2

1

1 2

3 1 2

1 2

ˆ ˆ( )
(1 )

( )

D
D

D
D

h h
P n n

h h
 


   


, and 1 2

4

1 2

m m
P

A A





. 

Proof . See appendix III. 

Lemma 3 suggests that joint ordering saves on emissions if the joint fixed 

costs are between two boundaries. These boundaries also depend on the closeness of the 

disjoint order cycles of the two products. 

 

C. Discussion 

1. Insights from lemmas 1,2 and 3 

Joint replenishment does not necessarily save on both costs and emissions. In 

fact four cases are possible as shown in Figure 2 drawn from a numerical example. 

Figure 2 shows the variations of the cost threshold ratio r*, and the two emission 

boundaries r1 and r2 as functions of 1 2t t t   .  

Different values of t  were obtained by fixing the order cycle of one product 

and varying the order cycle of the second product. This can be done by varying A2, the 

fixed costs related to the second product as the order cycle depends on A2 via the 

relation 2

2

2 2

2A
t

D h
 . Different values of t  can be obtained as well by changing D2 or h2. 



15 

 

Figure 2 shows that when the ratio of joint fixed costs on disjoint fixed costs ratio, r, is 

below r*, then joint replenishment saves on costs, while joint replenishment saves on 

emissions if r is between r1 and r2. 

 

 

Figure 2 Variations of r*, r1, and r2 

 

In comparing joint and disjoint ordering, four cases are possible: joint 

replenishment saves on both costs and emissions, joint replenishment saves on 

emissions but not on costs, joint replenishment saves on costs but not on emissions, and 

joint replenishment saves neither on costs nor on emissions. The four cases are mapped 

to the four regions shown in Figure 2. Benefits from joint ordering do not depend only 

on savings in fixed costs, but also depends on the homogeneity of the products. The 

closer the two cycles are, the larger the range of r where joint ordering saves on costs. 

The farther the two cycles are, the stricter the range of r where joint ordering can save 

costs. However, other parameters also impact the benefits of joint ordering, as explained 

next. 
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2. Impact of other parameters 

To assess the impact of other parameters, a base case was taken and each 

parameter was changed by -50%, -25%, 25% and 50% respectively. The base case was 

taken so that the cost and emission functions are identical. The different values of Δt 

were obtained by varying A2. Figure 3 shows the resulting r*, r1, and r2. Table 1 shows 

the input parameters. 

 

 

Figure 3 Behavior of r*, r1, and r2 for base case 

 

Table 1 Cost and emission parameters of base case 

Parameter Value Parameter Value 

m1 0 A1 10 

m2 0 A2 Variable 

n1 1 h1 1 

n2 1 h2 1 

ĥ1 1 D1 50 

ĥ2 1 D2 50 

 

Since the cost and emission functions are identical, r* and r2 must also be 

identical while r1 is always zero. Therefore there are only two regions, one below the 
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curves where joint replenishment saves on both costs and emissions, and one above the 

curves where joint replenishment saves neither on costs and emissions. 

Increasing n1 by 50% leads to an upward shift of r2 for small Δt, and a 

downward shift of r2 for large Δt as shown in Figure 4. 

Thus increasing n1 restricts the area where joint replenishment saves on both 

costs and emissions for large Δt. 

Table 2 summarizes the findings after increasing other emission parameters. 

Some of the respective figures are shown in Appendix IV. Changing the emission 

parameters affects the aforementioned b and  . In turn these changes will be reflected in 

r1 and r2. Note that the findings in Table 2 cannot be generalized, as r1 and r2 depends 

collectively on all parameters. 

 

 

Figure 4 Behavior of r*, r1, and r2 after increasing n1  
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Table 2 Effects of increasing base case emission parameters 

Parameter Effect of Increasing Parameter 

m1 Expansion to the area where joint replenishment saves on emissions for 

large Δt. However it leads to a restriction of the area joint replenishment 

saves both emissions and costs for small Δt. 

m2 Reduction in the area where joint replenishment saves both on emissions 

and costs. 

n1 Restriction to the area where joint replenishment saves on both costs and 

emissions for large Δt. 

n2 Expansion to the area where joint replenishment saves on emissions. The 

area where joint replenishment saves on both remains the same. 

ĥ1 Restriction to the area where joint replenishment saves on both costs and 

emissions for large Δt. 

ĥ2 Expansion to the area where joint replenishment saves on emissions. The 

area where joint replenishment saves on both is the same. 

 

3. Interpretation of the effects of changes in emission parameters  

To interpret the effects of changes in emission parameters, the variations of 

order quantities 
*

1Q , 
*

2Q , *

1 jQ , *

2 jQ , 1Q̂ , 2Q̂ , 1
ˆ

jQ and 2
ˆ

jQ are shown in Figure 5 for the 

base case and in Figure 6 after increasing n1 by 50%. 

 

 

Figure 5 Disjoint and joint order quantities minimizing costs and emissions for the base case 
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Figure 6 Disjoint and joint order quantities minimizing costs and emissions after increasing n1 by 50% 

 

Figure 6 shows that after increasing n1, the deviations of *

1, jQ and *

2, jQ  from 

1, jQ̂ and 2, jQ̂  were larger than the deviations of 
*

1Q  and 
*

2Q  from 1Q̂  and 2Q̂ for positive 

Δt. And it is the other way around for negative Δt. This shows that after increasing n1, 

the difference between joint order quantities and the minimum emissions order 

quantities is larger (smaller) than the difference between disjoint order quantities and 

the minimum emissions order quantities for positive (negative) Δt. This can explain the 

fact that increasing n1 restricts the area where joint replenishment saves on emissions for 

positive Δt since increasing n1 benefits the disjoint scenario and not the joint scenario. 

The same reasoning can be applied to explain the effects of increasing other parameters. 

This chapter showed the presence of four “strategy regions”, resulting from 

minimizing costs and studying the impact on emissions. However, certain policies 

might be enacted by regulations to reduce emissions. These regulations will affect the 

above regions as the optimal solutions might change. 
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CHAPTER V 

POLICY ANALYSIS USING JRM 

 

In this chapter we study the effects of carbon policies on order quantities, costs 

and emissions. In addition we study the effectiveness of joint ordering for some of the 

policies. Three policies are taken into considerations, carbon tax in Section V. A, carbon 

cap-and-trade in Section V. B, and strict carbon cap in Section V. C. 

 

A. Carbon Tax 

In this section, we study the impact of carbon tax policy on costs and 

emissions in the cases of joint ordering and disjoint ordering. In this policy, a financial 

penalty, a tax, is imposed per unit of carbon emitted. Let t is the penalty per unit of 

carbon emitted. We will first determine the optimal order quantities for disjoint and 

joint models, and then we will compare the two models. 

 

1. Disjoint ordering problem 

The model is as follows. 

1 2

1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2
1 1 2 2 1 1 2 2,

1 2 1 2

ˆ ˆˆ ˆ
ˆ ˆmin  ( )

2 2 2 2Q Q

A D h Q A D h Q A D A D h Q h Q
c D c D t c D c D

Q Q Q Q
          

  

Then it can be easily shown that the optimal order quantities of both products are 

given by 
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* 1 1 1
1,

1 1

* 2 2 2
2,

2 2

ˆ2( )

ˆ( )

ˆ2( )

ˆ( )

t

t

A tA D
Q

h th

A tA D
Q

h th











 

The corresponding total cost and emission per unit time are 

*

1 1 1 1 1 2 2 2 2 2 1 1 2 2 1 1 2 2
ˆ ˆˆ ˆ ˆ ˆ2( ) ( ) 2( ) ( ) ( )tTC A tA D h th A tA D h th c D c D t c D c D           

1 1 1 1 2 2 2 2 1 1 2 2
1 1 2 2

1 2

ˆ ˆ( ) ( )
ˆ ˆ

2 2
t

m n A D m n A D h Q h Q
E c D c D

Q Q

 
       

Similar to the non-policy scenario in Section III. C, minimum emissions occur 

by ordering 1Q̂ and 2Q̂  in (2).  

Therefore, the order quantities that minimize costs do not necessarily 

minimize emissions. But the presence of a tax will push the optimal order quantities 

towards the order quantities minimizing emissions. 

 

2. Joint ordering Problem 

In this case, utilizing the fact that 
1 2

2

1

j

j

Q D
Q

D
 (see Section III. D), the model 

becomes
2 2

1 1

1

1 1 2 1 1 21 1

1 1 2 2 1 1 2 2

1 1

ˆ ˆˆ( ) ( )
ˆ ˆmin  

2 2j

D D

D Dj j

Q
j j

Q h h Q h hAD AD
c D c D t c D c D

Q Q

 
      

 
  
 

 

Then, the optimal order quantities are given by 

2 2

1 1

1 1

2 2

* 1
1 ,

1 2 1 2

* 2
2 ,

2 1 2 1

ˆ2( )

ˆ ˆ( )

ˆ2( )

ˆ ˆ( )

j t D D
D D

j t D D
D D

A tA D
Q

h h t h h

A tA D
Q

h h t h h




  




  

 

The corresponding total cost per unit time is 
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1 1 1 2 2 1 1 2 2
ˆˆ ˆ ˆ2( ) ( ) ( )A tA D h th c D c D t c D c D      , 

The total emissions per unit time and the order quantities minimizing emissions have 

the same expression as (3) and (4). Again, the order quantities that minimize costs do 

not necessarily minimize emissions. 

Let us note 

2

1

2

1

1 2

1 2

ˆ ˆ ˆ D
D

D
D

h h h

h h h

 

 
 

The carbon tax problem under joint ordering is similar to the one developed by 

Chen et al. (2013). So their results are applicable to this model. 

In particular: 

o The relative reductions in emissions 'E  and relative increases in direct 

costs '

tZ  are positive and strictly increasing with tax t. with '

tZ < 'E and both 

converging to 
2(1 )

1








with 

ˆ
ˆ

=

A
h

A
h

  

o '

tZ and 'E are both increasing for  >1 and decreasing for  <1. 

 

3. Cost Analysis of Joint Replenishment Effectiveness 

Lemma 4 Joint replenishment saves on costs if and only if 

 

1 2 1 2 1 22

1 2

1 ˆ ˆ( )
1

1 (1 )

A A tA tA tm tm
c tr

tn tn 

    
 

  
, where 2 1t t t   , and

2

1 1 2 2

2 2 2 1 1 1

1

ˆ ˆ2( ) 2( )

ˆ ˆ( ) ( )

c

A tA A tA

D h th D h th



 


 

 
 
 
 

, with 1 1
1

1 1 1

ˆ2( )

ˆ( )

A tA
t

D h th





and 2 2

2

2 2 2

ˆ2( )

ˆ( )

A tA
t

D h th





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Proof. See Appendix V. 

Similar to the non-policy scenario in Section IV. A, Lemma 4 indicates the 

presence of a certain threshold for joint fixed costs that depends on the closeness of the 

disjoint order cycles. Beyond that threshold, joint replenishment is not beneficial in 

terms of costs.  

 

4. Emission Analysis of Joint Replenishment Effectiveness  

Lemma 5 Joint replenishment saves on emissions if and only 1 2r r r  , where 

1 1 2 1 2 1 2
1

1 2

ˆ ˆ( )

(1 (1 ))

u A A tA tA tm tm
r

tn tn 

    


  
, 2 1 2 1 2 1 2

2

1 2

ˆ ˆ( )

(1 (1 ))

u A A tA tA tm tm
r

tn tn 

    


  
, with 

2

2

1

4
( )

2

b b c
u

  



, 

2

2

2

4
( )

2

b b c
u

  



, 

1 1 2 2

1 2

2 2 2 1 1 1

2 21 1 2 2

3

2 2 2 1 1 1

ˆ ˆ

ˆ ˆ( ) ( )

ˆ ˆ 1
( )

ˆ ˆ( ) ( ) 2

A tA A tA
P P

D h th D h th
b

A tA A tA
P t

D h th D h th

 


 


 
  

 

,

4

3

P
c

P
  , 1 1

1

1 1 1 1

ˆˆ

ˆ ˆ( )

A h
P

A tA h th
 

 
, 2 2

2

2 2 2 2

ˆˆ

ˆ ˆ

A h
P

A tA h th
 

 
, 

2

1

2 2

1 1

1 2 1 2
3

1 21 2 1 2

ˆ ˆ( ) ( (1 ))

ˆ ˆ 1 (1 )

D
D

D D
D D

h h n n
P

tn tnh h th th

 

 

  
 

    
, and

1 2

1 2 1 2

1 2

4

1 2 1 2

( (1 ))
( )

(1 (1 ))

ˆ ˆ( )

n n
m m t m m

tn tn
P

A A tA tA

 

 

 
  

  


  
  

Proof. See Appendix VI.  

Similar to the non-policy scenario in Section IV. B, Lemma 5 indicates that 

joint ordering saves on emissions if the joint fixed costs are between two boundaries 

that depend on the closeness of the two cycles. 
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Lemma 6 As t goes to infinity, joint replenishment either saves on both costs 

and emissions or it does not save on both.   

Proof. See Appendix VII 

The following numerical example shows illustrates lemmas 4, 5 and 6. 

 

5. Numerical example 1 

Suppose a retailer is managing the inventory of two products. The retailer 

might order the products individually or jointly. Table 3 presents the costs and 

emissions parameters. The tax rate is initially zero. Depending on t  and on the ratio r 

of fixed costs in joint ordering to fixed costs in disjoint ordering, four cases are possible 

as discussed in Section IV. C. 1 and as shown in figure 7a.  

 

Table 3 Cost and emission parameters for numerical example 1 

Parameter Value Parameter Value 

m1 0 A1 10 

m2 0 A2 Variable 

n1 1.5 h1 1 

n2 1 h2 1 

ĥ1 1 D1 50 

ĥ2 1 D2 50 

t 0 

 

Suppose the state imposed a tax of $1 per unit emissions, the new curves and 

regions are shown in figure 7b. Imposing the tax led to moving both curves closer to 

each other’s. The cost curve shifted downward, the emission curve shifted upward for 

large t . Therefore the region where joint replenishment saves on costs becomes 

tighter, while the region where joint replenishment saves on emission becomes larger.  
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Figure 7a Behavior of r*, r1, and r2 for numerical example 1, tax= 0 

 

Figure 7b Behavior of r*, r1, and r2, t=1 

 

Figure 7c Behavior of r*, r1, and r2, t=2

 

Figure 7d Behavior of r*, r1, and r2, t=10 
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This leads to restricting the regions where joint replenishment saves either on costs or 

on emissions. If the tax rate is increased to 2 per unit emissions, the regions where joint 

replenishment saves either on costs or on emissions become more restricted as shown in 

figure 7c. Further increasing the tax rate will lead to the disappearance of these regions 

as shown in figure 7d.  

Therefore, in the presence of carbon tax, the retailer is pushed toward choosing 

the ordering strategy that balances both costs and emissions.  

 

B. Cap and trade model 

A firm is allocated a limit or cap C on carbon emissions. If its amount of 

carbon emissions exceeds the carbon cap, it can buy the right to emit extra carbon from 

the carbon trading market. Otherwise, it can sell its surplus carbon credit. Denote by X 

the quantity sold or bought and denote by p is the price of carbon unit. Note that X is 

positive when selling X units of carbon credit and is negative in the case of purchasing 

|X| units of carbon credit. In this section we will first develop the models for disjoint and 

joint ordering, and then we will compare the models to determine the conditions under 

which joint ordering is beneficial with respect to costs and emissions. 

Under disjoint ordering, the model is as follows, 

1 2

1 1 1 1 2 2 2 2
1 1 2 2

,
1 2

min  
2 2Q Q

A D h Q A D h Q
c D c D

Q Q
pX       

subject to 1 1 2 2 1 1 2 2
1 1 2 2

1 2

ˆ ˆˆ ˆ
ˆ ˆ

2 2

A D A D h Q h Q
c D c D X C

Q Q
           (5) 

From (5) 1 1 2 2 1 1 2 2
1 1 2 2

1 2

ˆ ˆˆ ˆ
ˆ ˆ( )

2 2

A D A D h Q h Q
X C c D c D

Q Q
        
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The model becomes 

1 2

1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 2
1 1 2 2 1 1 2 2

,
1 2 1 2

(
ˆ ˆˆ ˆ

ˆ ˆmin  )
2 2 2 2Q Q

A D h Q A D h Q A D A D h Q h Q
c D c D c D c D pC

Q Q Q
p

Q
          

 

 The emissions per unit time are

1 1 1 1 2 2 2 2 1 1 2 2
1 1 2 2

1 2

ˆ ˆ( ) ( )
ˆ ˆ

2 2

m n A D m n A D h Q h Q
c D c D

Q Q

 
      

 The disjoint ordering model under cap-and-trade policy is identical to the model under 

tax policy where the carbon price acts as the carbon tax. The difference is an extra 

constant cost term ( pC ) in the cap-and-trade model that does not impact the size of 

the order quantities. Therefore the cap-and-trade policy under disjoint ordering is 

equivalent to a carbon tax policy with t=p. 

Under joint ordering, the model is as follows (Noting that 
1 2

2

1

j

j

Q D
Q

D
 and 

letting 2

11 2
ˆ ˆ ˆ D

Dh h h  and 2

11 2
D

Dh h h  ) 

1

1

1 2 2
1

1

1 
2j

j

Q
j

hA
Min c D

Q
c D p

D

Q
X     

Subject to
1

2
1

2

1

1 1

ˆ
ˆ ˆ

2

j

j

hÂ
c D c

QD
X C

Q
D           (6) 

From (6), 
11

1 1 2 2

1

=
ˆ

ˆ ˆ
2

j

j

hÂ
c D

QD

Q
c DX C     

The model becomes 

1

1 11 1

1 1

1 1 2 2 1 1 2 2

ˆ
ˆ ˆmin  ( )

2 2j

j j

Q
j j

h hA Â
c D c D p c D c D

Q QD D
pC

Q Q
         

Total emissions per unit time have the same expression as (3). 
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This model is also identical to the carbon tax model with t=p. The difference is the 

same extra constant term ( pC ) in the cap-and-trade model.  

In conclusion, the cap-and-trade policy is equivalent to the carbon tax policy, 

and its analysis can be done similar to Section V. A. 

 In addition, the model under joint ordering is identical to the model developed by 

developed by (Hua, Cheng, & Wang, 2011), therefore their results hold, in particular: 

1. The retailer is induced to reduce emissions under cap-and-trade policy. 

2. The retailer can both reduce costs and emissions. 

3. Retailer’s emissions and the quantity ordered do no depend on the carbon 

cap. 

 

C. Strict cap policy 

In this policy, each company is given a ceiling C on its emissions that cannot 

be exceeded. The ceiling, or carbon cap, is based on the nature of the company. In this 

case, the cost function is the same as the non-policy model in Chapter III), but a 

constraint on emissions is added. 

In the following, we formulate the models for disjoint in Section V. C. 1 and 

joint ordering in Section V. C. 2, then we draw some insights from analyzing the joint 

model and we present numerical examples in Section V. C. 3 and V. C. 4 showing the 

effect of strict carbon cap policies on the effectiveness of joint and disjoint ordering 

regarding costs and emissions. 

 

1. Disjoint Ordering Problem 

In this case, the model is as follows. 
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1 2

1 1 1 1 2 2 2 2
1 1 2 2

,
1 2

min  
2 2Q Q

A D h Q A D h Q
c D c D

Q Q
      

Subject to 1 1 1 1 2 2 2 2 1 1 2 2
1 1 2 2

1 2

ˆ ˆ( ) ( )
ˆ ˆ

2 2

m n A D m n A D h Q h Q
c D c D C

Q Q

 
       

This model could not be solved analytically. Nevertheless, both the objective 

function and the constraint are convex in 1Q and 2Q . In fact the second partial 

derivatives of the objective function with respect to 1Q  and 2Q  are respectively 1 1

3

1

2A D

Q
 

and 2 2

3

2

2A D

Q
which are positive terms. The second partial derivatives of the constraint 

with respect to 1Q  and 2Q  are respectively 1 1

3

1

ˆ2A D

Q
 and 2 2

3

2

ˆ2A D

Q
which are also positive 

terms. Therefore the model has a solution if the cap is not smaller than the minimum 

emissions per unit time min 1 1 1 2 2 2 1 1 2 2
ˆ ˆˆ ˆ ˆ ˆ2 2TE A D h A D h c D c D    . 

 

2. Joint ordering Problem 

In this case, the model becomes 

1

11

1 1 2 2

1

min  
2j

j

j
Q

Q hAD
c D c D

Q
    

subject to 
11

1 1 2 2

1

ˆˆ
ˆ ˆ

2

j

j

Q hAD
c D c D C

Q
         (7) 

If the constraint (7) is not binding, then the optimal order quantities are 

2

1

* * 1
1 , 1

1 2

2
j c j D

D

AD
Q Q

h h
 


 and 

1

2

* * 2
2 , 2

2 1

2
j c j D

D

AD
Q Q

h h
 


 

If the constraint is binding, then 
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11
1 1 2 2

1

ˆˆ
ˆ ˆ

2

j

j

Q hAD
C c D c D

Q
     

Let 1 1 2 2
ˆ ˆ ˆC C c D c D   , 

The equation can be written as 
11

1

ˆˆ
ˆ

2

j

j

Q hAD
C

Q
  , This equations has two solution if 

2

1
ˆˆ ˆ4 8C AhD 0, i.e. when 1 1 1 2 2

ˆˆ ˆ ˆ2C AhD c D c D   , in other words when the carbon 

cap is bigger than the minimum possible carbon emissions. 

The two solutions are,  

2

1

1,1

2

1

1,2

ˆˆ ˆ ˆ2

ˆ

ˆˆ ˆ ˆ2

ˆ

C C AhD
Q

h

C C AhD
Q

h

 


 


 

In conclusion, for the joint case, 

* *

1, 1,1 1, 1,2

* *

1, , 1,1 1, 1,1

*

1,2 1, 1,2

 if 

 if  

 if 

j j

j c j

j

Q Q Q Q

Q Q Q Q

Q Q Q

  


 




 

The joint model turns out to be identical to the model in (Chen, Benjaafar, & 

Elomri, 2013), with minor changes in the parameters. Therefore the results of (Chen, 

Benjaafar, & Elomri, 2013) hold, in particular: 

1. If C>TEmin, emission is linearly non-decreasing in C while cost is non-

increasing and convex in C 

2. if 
ˆ

ˆ

A A

hh
 , then increasing the order quantity to 1,1Q will reduce emissions 

3. if
ˆ

ˆ

A A

hh
 , then decreasing the order quantity to 1,2Q  will reduce 

emissions. 
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4. A large deviation in the order quantity (up to a limit if decreasing) will 

lead to a small increase in costs. 

 

3. Numerical Example 2 

In this example, we will compare the effect of strict carbon cap policy on the 

effectiveness of joint and disjoint ordering with respect to costs and emissions. The 

parameter values are given in Table 4. Figure 8 plots r*, r1 and r2 when no policy is 

applied. The values are obtained from the relations given in Sections III.1 and III.2. 

Figure 9 plots r*, r1 and r2 if a strict carbon cap policy of 560 is applied. The values are 

found by setting the ratio r so that the costs (emissions) with joint replenishment equal 

the costs (emissions) with disjoint ordering. 

 

Table 4 Cost and emission parameters of numerical example 2 

Parameter Value Parameter Value 

m1 15 A1 50 

m2 12 A2 Variable 

n1 1 h1 0.5 

n2 1 h2 0.2 

ĥ1 2 D1 50 

ĥ2 2 D2 40 

c1 5 c2 2 
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Figure 8 Behavior of r*, r1 and r2 if no policy is applied 

 

 
Figure 9 Behavior of r*, r1 and r2 under strict carbon cap policy 

 

Observations 

Observing the graphs we can draw the following remarks 

1. Joint replenishment saves on costs if r is below a certain 

threshold r* under strict carbon cap policy. 

2. Joint replenishment saves on emissions if r is between two 

boundaries r1 and r2 under strict carbon cap policy. 
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3. Carbon Cap policy limits the impact of joint and disjoint ordering 

on emissions.  

The first two observations are common to all policies. The third observation is 

what differentiates the carbon cap policy from other policies. This is due to the fact that 

there is the constraint is binding in both joint and disjoint models, so the maximum 

emissions one can get is the set cap in both models. Therefore, whatever ordering policy 

the retailer is choosing, emissions will be within the cap. 

 

4. Numerical example 3 

In this subsection we will consider a mini case study where we compare the 

effect of three carbon policies on a small shop 

Suppose a small shop is ordering two products from one manufacturer located 

at a distance of 100 Km. If products are ordered individually, the quantities of each 

product are carried by a 12’ truck having a fuel economy of 12 mpg. If the products are 

ordered jointly, the order quantities of the two products are carried by a 15’ truck having 

a fuel economy of 10 mpg. The driver is paid $0.35 per mile (Truck Driving Per Mile 

Salary, 2014), each gallon costs $2.814 (Gasoline and Diesel Fuel Update, 2015) and 

each liter of fuel emits 2.61 Kg of (CO2) (Ubeda, F.J.Arcelus, & J.Faulin, 2011). From 

these given, transportation costs are $73 for each product if they are ordered 

individually, and are $79 if the two products are ordered jointly. Table 5 shows the costs 

and emissions parameters for each product. We assumed that product 2 needs to be 

stored at low temperature in contrast with Product 1 so it has higher emissions from 

holding. 
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Table 5 Cost and emission parameters for numerical example 3 

Parameter Product 1 Product 2 

Unit Cost ($) 7 11 

Holding Cost ($) 1.5 2.5 

Fixed Packaging Costs ($) 15 20 

Transportation Costs ($) 73 73 

Total fixed costs in disjoint scenario 

($) 
15+73=88 93 

Emissions from holding (Kg 

CO2/item per year) 
4.5 13.6 

mi :Fixed emission from packaging 

(Kg CO2) 
0.25 0.25 

ni 1.17 1.1 

Emission from purchasing (Kg 

CO2/item) 
0 0 

Annual Demand Rate 580 210 

  

In table 5, 1A  and n1 were found as follows 

$0.35
$2.814

1

100 100 *
2* * 2*

1.6 *12 1.6

mile
gal

km miles km
mile gal mile

km km
A   , transportation costs in the joint 

case are found similarly. 

2 CO

1

100 *3.785
2* *2.61

1.6 *12$73
*

$73 $45 $73

l
gal kg

l
km miles

miles gal

km

n 


, where the first part is the share of 

transportation costs to total fixed costs, and the second part is the emission per dollar 

transportation cost. 

In joint replenishment the total fixed costs are $15 + $20 + $79 = $114. 

Optimal order quantities, costs and emissions are calculated for the joint and 

disjoint scenarios under different carbon policies as shown in table 6. 
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Table 6 Impact of different carbon policies 

 

No policy 
Carbon Tax 

Policy 
Strict Cap Policy 

Carbon Cap and 

Trade 

Ordering Strategy Disjoint Joint Disjoint Joint Disjoint Joint Disjoint Joint 

Q1 261 234 254 226 248 234 254 226 

Q2 125 85 118 82 111 85 118 82 

Total Costs 7073.8 6934.1 7128.2 6976.5 7076.5 6934.1 7075.7 6924 

Total Emissions 1838.9 1430.8 1792.1 1404.1 1748.3 1430.8 1792.1 1404.1 

r x 0.629 x 0.629 x 0.629 x 0.629 

r* x 0.98 x 0.98 x 0.98 x 0.98 

r1 x 0 x 0 x 0 x 0 

r2 x 1.04 x 1.03 x 0.94 x 1.03 

Change in costs x x 0.8% 0.6% 0.04% 0.00% 0.03% -0.15% 

Change in 

emissions 
x x -2.5% -1.9% -4.9% 0.0% -2.5% -1.9% 

Change in costs 

without variable 

costs 

x x 7.7% 7.5% 0.4% 0.00% 0.27% -1.8% 

 

Carbon tax is not implemented in the US, so we used the $30 per metric ton of 

CO2 tax applied in British Columbia (P.F., 2014). For the strict cap policy, we set a cap 

of 1750 kg/ CO2 per year. In this numerical example, the ratio of joint fixed costs to 

disjoint fixed costs is below r*, and between r1 and r2 for the three policies. Thus joint 

replenishment must saves on both costs and emissions as shown in table 6. Moreover, 

applying carbon tax and strict cap policies leads to a small increase in total costs but 

reduces emissions significantly. For example, under the carbon tax policy, the cost 

increased by 0.8% and 0.6% over the no-policy model under disjoint and joint 

replenishment, while emissions decreased by 2.5% and 1.9%. It is worth mentioning 

that such savings in emissions are considered significant given the flat emission cost 

structure in the EOQ framework that we adopt. The smallness of the costs increase is 

partly done to the presence of significant variable costs i ic D  which are independent of 

the order quantity.  
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As for policy effectiveness, strict carbon policy shows the best results in the 

disjoint case. It reduces emissions the most, and increases costs the least. However in 

the joint case, it did not have any impact because the emissions level was already below 

the cap. Under the cap-and-trade policy, a decrease in costs and emissions was 

achieved; however the surplus of carbon credit is sold to a firm who wants to use it, 

limiting hence the benefits from the shown reduction in emissions.  
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CHAPTER VI 

CONCLUSION 

There is a growing interest in green supply chains with the main goal of 

reducing carbon emissions. Ordering products jointly might seem a way to reduce 

carbon emissions. However, it is not always the case as ordering products jointly might 

increase emissions in some cases, as we demonstrate in this thesis, for the case of two 

products. 

This thesis also identifies (quantitative) conditions on the cost and emission 

parameters that favor joint replenishment, which allows a useful graphical sensitivity 

analysis in the form of “strategy regions.” Joint replenishment saves on costs if the ratio 

of fixed costs in joint case to those in the disjoint case is smaller than a certain 

threshold, and joint replenishment saves on emissions if this ratio is between two 

boundaries.  

This thesis also studies the impact of three carbon policies: Carbon tax, strict 

carbon cap, and carbon cap and trade on costs and emissions under ordering. It is found 

that these policies strike a good balance between costs and emissions allowing to reduce 

emissions with limited additional cost. 

Future work could include further analysis of some of the carbon policies 

under disjoint and joint replenishment. In particular, the carbon cap policies for which 

our study was mostly numerical deserves further attention in future work. In addition, 

analyzing the effect of joint replenishment of multiple (>2) products on emissions is an 

important area for future research, as our study considers only two products. 
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APPENDIX I 

PROOF OF LEMMA 1 

 

Let 
1 2

A ( )r A A  , letting 
int int

C C
disjo jo

 implies that 

2

11 1 1 2 2 2 1 1 2 2 1 1 2 1 1 2 2
2 2 2 ( )D

DA D h A D h c D c D AD h h c D c D       . 

It can be shown that 1 1 1 2 2 2

1 2 1 1 2 2

2 2

2( )( )

A D h A D h
r

A A D h D h




 
, i.e. 

2

22 1 1 1 2 2
2 1

1 1 1 2 2 2 2 2 1 1

1 2

2 2 1 1

1 1
=

2 2 2 21 ( )
2 2

1
2 2

r
A D h A D h A A

A D h A D h D h D h

A A

D h D h


  

  


 
 

  
 

. 

Note 

2

1 2

2 2 1 1

1

2 2
c

A A

D h D h

 
 
 
 

  
 

, knowing that 1 2
1 2 1 2

1 1 2 2

2 2
, ,

A A
t t t t t

D h D h
     , 

where t1 and t2 are the respective disjoint order cycles for products 1 and 2, the above 

inequality can be written as
2

1

1
r

c t


 
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APPENDIX II 

PROOF OF LEMMA 2 

To prove that the region where joint replenishment saves on costs becomes 

stricter the farther the two order cycles lengths are from each other, we must prove that 

*r is decreasing as t gets larger and larger. 

t increases by increasing 2A , decreasing 
2

D , decreasing 2h , decreasing 1A , 

increasing 
1

D , and increasing 1h . 

Recall that
1 1 1 2 2 2

1 2 1 1 2 2

2
2 2

2( )( )

( )
*

A D h A D h

A A D h D h
r




 
   

1-Changing 2A  

Let us denote by 
2

( *) 'Ar the derivative of *r with respect to 2A , we can show 

that 
 2

1 1 2 2 1 1 1 2 2 2 2 2

1 1 1 12

21 2 1 1 2 2

2*( )*( 2 2 )
( *) ' *(2 2 )

22( )( )
A

D h D h A D h A D h D h
r A A D h

AA A D h D h

 
 

 
 which 

is negative for 1 2 2
2

1 1

A D h
A

D h
 and positive otherwise which means that *r is decreasing as 

2A  gets larger and larger, therefore decreasing as t gets larger and larger. 

2-Changing
2

D  

Let us note 
2

( *) 'Dr the derivative of *r with respect to 2D . We can show that 

 2

1 2 1 1 1 2 2 2 2 2

1 1 2 1 1 12

21 2 1 1 2 2

2*( )*( 2 2 )
( *) ' *(2 2 )

22( )( )
D

A A A D h A D h A h
r D h h A D h

DA A D h D h

 
 

 
which is 

positive for 2 1 1
2

1 2

A D h
D

A h
 and negative otherwise. Therefore *r increases as 2D increases 
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for small 2D . Hence *r decreases with decreasing 2D  for small 2D , i.e. *r decreases as 

t gets larger and larger. 

3-Changing 2h  

Let us note 
2

( *) 'hr the derivative of *r with respect to 2h . We can show that 

 2

1 2 1 1 1 2 2 2 2 2

1 1 2 1 1 12

21 2 1 1 2 2

2*( )*( 2 2 )
( *) ' *(2 2 )

22( )( )
h

A A A D h A D h A D
r D h D A D h

hA A D h D h

 
 

 
which is 

positive for 2 1 1
2

1 2

A D h
h

A D
 and negative otherwise. Therefore *r increases as 2h increases 

for small 2h . Hence *r decreases with decreasing 2h  for small 2h , i.e. *r decreases as 

t gets larger and larger. 

Using similar arguments, we can show that *r  decreases as 1A  decreases for 

small 1A , and r* increases as 
1

D  and 1h  increase for large 
1

D  and 1h . 
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APPENDIX III 

PROOF OF LEMMA 3 

Letting int intE Edisjo jo  implies  

2

11 1 21 1 1 1 2 2 2 2 1 1 2 2 1 2 1 1 2 1

1 2 1 1
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2
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1 1 2 2 1
1 2 1

1 2 1 2

2 2 2
, , j D
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Q Q Q

h h h h
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The above inequality can be written as 

2

1
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We get, 
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The above inequality can be reduced to 

1 2
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2 2 1 1 24
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P P
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Let us consider the equation

1 2
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2 2 1 1 24

32 21 2
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It is a second degree equation, it has two roots if 
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The expression 
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 increases then decreases with 

respect to r , therefore 
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is positive for 

1 2r r r  , i.e. for 1 2r r r   

If 0   , then joint ordering can never have fewer emissions than disjoint 

ordering.  
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APPENDIX IV 

IMPACT OF OTHER PARAMETERS 

 

In this appendix, we plot the graphs showing the effects of changing the 

emission parameters of Product 1 only. Changing the same parameters for the other 

product has the exact opposite effect.  

Base scenario 

 

Figure 10 Behavior of r*, r1, and r2 for base case  

 

Changing n1 

i) By -50% 

 

Figure 11a Changing n1 by -50% 
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ii) By -25% 

 

Figure 11b Changing n1 by -25% 

 

iii) By 25% 

 

Figure 11c Changing n1 by 25% 

 

iv) By 50% 

 

Figure 11d Changing n1 by 50% 
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Changing ĥ1 

i) By -50% 

 

Figure 12a Changing ĥ 1 by -50% 

 

ii) By -25% 

 

Figure 12b Changing ĥ 1 by -25% 
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iii) By 25% 

 

Figure 12c Changing ĥ 1 by 25% 

 

iv) By 50% 

 

Figure 12d Changing ĥ 1by 50% 
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New base case (m1 is set to 10) 

 

Figure 13a Base case for m1 

 

Changing m1  

i) By -50% 

 

Figure 13b Changing m1 by -50% 
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ii) By -25% 

 

Figure 13c Changing m1 by -25% 

 

iii) By 25% 

 

Figure 13d Changing m1 by 25% 

 

iv) By 50% 

 

Figure 13e Changing m1 by50% 
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APPENDIX V 

PROOF OF LEMMA 4 
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Dividing the numerator and the denominator by 1 2 1 1 2 2
ˆ ˆ( )( )D D h th h th  yields to 

the following inequality 
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APPENDIX VI 

PROOF OF LEMMA 5 

Letting int intE Edisjo jo  implies  
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After dividing the two terms in the above inequality by 
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equation, it has two roots if the discriminant 
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therefore 1 2 1 2 1 2

1 2 1 2

ˆ ˆ( )

( )(1 (1 ))

u A A tA tA tm tm
r

A A tn tn 

    


   
. 
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1 2u u u   implies that 1 2r r r  , with 1 1 2 1 2 1 2
1

1 2

ˆ ˆ( )

(1 (1 ))

u A A tA tA tm tm
r

tn tn 

    


  
 and 

2 1 2 1 2 1 2
2

1 2

ˆ ˆ( )

(1 (1 ))

u A A tA tA tm tm
r

tn tn 

    


  
 

If 0  , then joint ordering can never have fewer emissions than disjoint 

ordering. 
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APPENDIX VII 

PROOF OF LEMMA 6 

 

To prove the existence of only two cases where joint replenishment either saves on both 

costs and emissions or does not save on neither costs nor emissions, we must prove that 

as t goes to infinity, r* and r2 are equal, and r1 is less than or equal to zero. 

Recall that 1 1 2 1 2 1 2
1

1 2

ˆ ˆ( )

(1 (1 ))

u A A tA tA tm tm
r

tn tn 

    


  
and 

2 1 2 1 2 1 2
2

1 2

ˆ ˆ( )

(1 (1 ))

u A A tA tA tm tm
r

tn tn 

    


  
, with  

2

2

1

4
( )

2

b b c
u

  



, and 

2

2

2

4
( )

2

b b c
u

  



. 

From Appendix VI 
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It can be easily shown that 

2

1 2

2

2 2 1 12

22 2

2 11 2 2 1

2

2 2 1 12 2 1 1 2 2 1 1

1 2

2 2 1 1

ˆ ˆ4

ˆ ˆ
1

lim
ˆ ˆˆ ˆ ˆ ˆ4

ˆ ˆˆ ˆ ˆ ˆ
1

ˆ ˆ

ˆ ˆ

t
b

A A

t D h D h

A AA A A A

t D h D hD h D h D h D h

A A

D h D h



 
 
 
  

      
        
              

 
 
 

 



60 

 

From Appendix VI 
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as t goes to infinity, we can verify that 
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It can be easily shown that 
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As for r*, from Appendix V 
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As t goes to infinity, we can easily show that 
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