

AMERICAN UNIVERSITY OF BEIRUT

ARCHITECTURE PERFORMANCE SIMULATOR FOR THE
DISJOINT OUT-OF-ORDER EXECUTION PROCESSOR

(DOE) AND THE OpenDOE API

by
ADEL JIHAD EJJEH

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Engineering
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon

January 2015

ACKNOWLEDGMENTS

Special thanks to my advisor Prof. Haitham Akkary for all the support he
provided me during my two and a half years working under his supervision.

Special thanks are for Dr. Mageda Sharafeddine for all the assistance she
provided throughout my work on the thesis from setting up the environment to choosing
the test benchmarks.

Finally, I would like to thank Prof. Hazem Hajj and Prof. Wassim Masri for
giving me their time and agreeing to be on my thesis committee and for all the
comments and suggestions that they have provided or will be providing.

v

AN ABSTRACT OF THE THESIS OF

Adel Jihad Ejjeh for Master of Engineering

Major: Electrical and Computer Engineering

Title: Architecture Performance Simulator for the Disjoint Out-Of-Order Execution
Processor (DOE) and the OpenDOE API

Traditional methods of increasing single-core CPU performance have been very
effective until designers hit the “Power Wall”. In order to overcome this issue, designers
switched to multi-core architectures. This architectural switch to multicore CPUs has
aided multitasking and multiprocessing on computers. However, the issue that remains
is increasing the performance of a single process on a multicore chip.

Many solutions were presented. Some were architectural techniques like speculative
multithreading (SpMT) while others were higher-level software techniques like the
OpenMP API. These techniques were successful on many applications, but those with
an intrinsically sequential nature remained troublesome. This is due to the long delays
and large power consumption that are incurred from the continuous inter-core
communication, which has to occur between the threads, when the sequential nature of
the application is explicit. In addition, APIs, like OpenMP, require advanced parallel
programming skills that make the task complex for most programmers. Therefore, what
we need is a multicore architecture that can divide a single application onto its different
cores, while minimizing the penalties and overhead due to inter-core communication, as
well as minimizing the effort required by the programmer.

We are presenting the performance simulation of a processor that complies with the
DOE architecture. The DOE, or Disjoint Out-of-Order Execution, processor is a latency
tolerant, multicore system connected in a ring network. A single process is divided
amongst the different cores using new instructions that we defined in accordance with
the DOE architecture. We also introduced the OpenDOE API, a programming interface
that allows the programmers to specify, using certain directives, the parallel regions and
dependent variables. These pragmas are, then, translated by the compiler to our new
instructions. The SimpleScalar tool set was used for the performance simulator and the
PISA/MIPS instruction set was adopted. The assembler was also configured to identify
the new instructions that we introduced. We were able to achieve good performance
increase for balanced-load applications, and satisfactory increase for unbalanced
applications compared to the base out-of-order architecture.

vi

 TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... v

ABSTRACT .. vi

ILLUSTRATIONS .. xi

TABLES ... xii

Chapter

I. INTRODUCTION .. 1

A. Background .. 1

B. Motivation ... 3

C. Organization .. 4

II. LITERATURE REVIEW .. 5

A. Speculative Multithreading (SpMT) and the Multiscalar Processor 5

1. SpMT in Multiscalar ... 6
2. Hardware-aided SpMT .. 7
3. Compilers and SpMT .. 10

a. The use of compilers for SpMT 10
b. Optimizing compilers to enhance SpMT thread

spawning ... 12
4. DOE and conventional SpMT architectures 16

B. Continual Flow Pipeline (CFP) and Checkpoint Processing and

Recovery (CPR) .. 18

vii

1. Motivation behind CFP .. 18
2. CFP and CPR as a solution 20
3. Comparison to DOE .. 22

C. Multithreaded Programming Environments 24

1. Shared Memory Environments 25
a. OpenMP .. 25

2. Message Passing Environments 26

III. PROJECT DESCRIPTION .. 27

A. The Disjoint Out-of-Order Execution (DOE) Architecture 27

B. DOE Core Microarchitecture and Execution Model 28

C. The OpenDOE API ... 35

1. API Description .. 35
2. Comparison to openMP ... 44

VI. IMPLEMENTATION ... 45

A. Implementing DOE on SimpleScalar 45

1. The Sim-Outorder Model ... 45
2. The DOE Model ... 46

a. Forking Implementation 47
b. Joining Implementation 48
c. CFP Execution and Normal Execution 49
d. Poisoned Execution 50
e. Chunks ... 51

B. The openDOE API .. 52

V. METHODOLOGY ... 53

A. Benchmarks Used ... 53

1. Newton Raphson Method Algorithm 54

viii

2. Romberg Algorithm .. 56
3. Tri Diagonal Matrix Algorithm 58
4. Functional Testing Benchmarks 60

a. Parallel Sections ... 60
b. Chunks ... 61

B. Testing Process ... 63

VI. RESULTS .. 64

A. Newton’s Algorithm .. 64

B. Romberg Algorithm .. 65

C. Tri Diagonal Algorithm .. 66

D. Effect of Chunks ... 67

E. Comparison to OpenMP ... 68

VII. CONCLUSION AND FUTURE WORK 70

Appendix

A. BENCHMARK C CODE AND ASSEMBLY 73

A. Newton’s Algorithm .. 73

1. C/openDOE Code ... 73
2. DOE Assembly .. 73
3. PISA Assembly .. 75

B. Romberg Algorithm .. 77

1. C/openDOE Code ... 77
2. C/openMP Code ... 78
3. DOE Assembly .. 79
4. PISA Assembly .. 83

ix

C. Tri Diagonal Algorithm .. 87

1. C/openDOE Code ... 87
2. DOE Assembly .. 88
3. PISA Assembly .. 97

B. SIMPLESCALAR CONFIGURATION 107

BIBLIOGRAPHY ... 109

x

ILLUSTRATIONS

Figure Page

Figure 1 - DOE processor architecture block diagram [11] .. 16

Figure 2 - DOE vs. conventional SpMT execution [11] ... 17

Figure 3 - DOE Core Microarchitecture ... 28

Figure 4 - RF Architecture .. 29

Figure 5 - DOE Registers .. 30

Figure 6 - DOE Core FSM .. 32

Figure 7 - DOE Example 1: left – C code; right – DOE Assembly 38

Figure 8 - DOE Example 2: left – C code; right – DOE Assembly 39

Figure 9 - DOE Example 3: left – C code; right – DOE Assembly 40

Figure 10 - DOE Chunk Example: left – C Code; right – DOE Assembly 41

Figure 11 - Chunk Algorithm Flow Chart .. 43

Figure 12 - Pseudo Code for Newton's Algorithm ... 55

Figure 13 - Pseudo Code for Romberg Algorithm ... 57

Figure 14 – Pseudo Code for Tri Diagonal Algorithm ... 59

Figure 15 - Parallel Sections Examples .. 60

Figure 16 - Chunk Example .. 62

xi

TABLES

Table Page

Table 1 - DOE States .. 33

Table 2 - openDOE Directives .. 35

Table 3 - DOE Instructions ... 37

Table 4 - Simulator Parameters .. 46

Table 5 – Results ... 64

xii

To

My Beloved Family and Fiancé

CHAPTER I

INTRODUCTION

A. Background

Traditionally, processors have been designed as single-core chips. Whenever

performance improvement was desired, in addition to the architectural modifications,

designers often opted to increasing the number of transistors on a single die, and

increasing the frequency at which the processor runs. This has been very effective, and

processor manufacturers where able to achieve large performance increase between

different generations of CPUs. The following trend lasted a few decades, until recently

when the designers faced a new challenge, the “Power Wall”. In order to understand

what the power wall is, we need to have a look at the definition of the dynamic power

consumption of a CPU:

𝑃𝑃 = 1
2� (𝑓𝑓𝑓𝑓𝑉𝑉2)

where P is the power in watts (W), f is the frequency in hertz (Hz), C is the capacitance

at the load in Farads (F), and V is the voltage powering the CPU in volts (V). According

to the formula, it is evident that the increase in number of transistors, which in turn

increases the load capacitance, and the increase in frequency, both play a major role in

increasing the power consumed by the CPU. The “Power Wall” is thus defined as the

practical power limit for cooling microprocessors [1]. Thus increasing the power above

this limit will cause severe damage to the CPU, and therefore isn’t feasible. This placed

a constraint on the frequency forcing designers to find a replacement to the traditional

methods of increasing performance.

1

In order to overcome this issue, designers started decreasing the frequency, and

switched to multi-core architectures. The large number of transistors that they are

capable of placing on a single die has aided in the success of this phenomenon. [2]

Currently, common retail processors vary between dual and quad core processors,

whereas high-performance, server processors, can reach up to six and eight cores per

die. This architectural switch to multicore CPUs has aided multitasking and

multiprocessing on computers whereby operating systems (OS) are capable of assigning

different tasks or processes to different cores. In addition, new multithreaded

architectures and APIs emerged, some using hardware techniques to automatically, and

speculatively, parallelize a sequential application onto its different cores [3] [4] [5] [6]

[7] [8], with the aid of compilers [7] [5] [9] [10] and others allowing programmers to

specify parallel regions, fork new threads, and manually write parallel code that can

make use of the resources available on modern processors [11]. However, these

multithreaded solutions suffer from a major drawback: data communication delays due

to thread synchronization. Whenever thread ‘A’ encounters an instruction that is data

dependent on another thread ‘B’, two highly-expensive things occur: 1) Thread ‘A’ has

to stall until the thread ‘B’ has generated the result that is needed by ‘A’, and 2) Thread

‘B’ has to communicate that result to thread ‘A’ which is time consuming. This also

puts a constraint on the ability to parallelize some applications that are, in essence, hard

to parallelize. This difficulty arises from the nature of most applications, since they have

been written for serial execution.

2

B. Motivation

One of the suggested solutions is the Disjoint Out-of-Order Execution processor (DOE)

that was presented in [12]. In this thesis, we are augmenting the work that has been

already done by presenting a cycle-accurate architectural performance simulation of the

DOE Architecture, along with the OpenDOE API that helps in parallelizing hard-to-

parallelize applications. The DOE architecture [12] is a synchronization-free, latency-

tolerant, multithreaded architecture that uses a technique similar to the continual flow

pipeline architecture (CFP) [13] to deal with inter-core data dependence. It buffers the

dependent instructions in a special buffer, the dependent thread buffer (DTB), allowing

independent instructions to continue through the pipeline. Accompanying it, is the

OpenDOE API [14], an OpenMP-like programming interface that provides the

programmer with special directives for identifying parallel regions/loops and the shared

variables between them. These directives are then translated by the compiler into special

instructions that will be explained in detail. Our work builds upon what was presented

in [14] by providing a cycle-accurate performance simulator with two new features: 1)

Delayed forks and 2) chunks within loops, along with a working assembler that can

understand our new instructions and translate them into their corresponding binary

encoding. The SimpleScalar Tool Set was used to build the performance simulator [15].

We simulated multiple benchmarks and were able to achieve up to 70% performance

gain with openDOE.

3

C. Organization

A literature review is presented in chapter 2, followed by the description of the

DOE architecture and the OpenDOE API in chapter 3. Chapter 4 will describe the

Implementation of the simulator, chapter 5 will present the methodology used for

testing the simulator, and chapter 6 will present the results we got and how the

optimizations we provided helped us. Finally, Chapter 7 will conclude the thesis.

4

CHAPTER II

LITERATURE REVIEW

Previously, before the introduction of the OpenDOE API in [14], DOE was

presented as an architecture that combines speculative multithreading with a latency

tolerant architecture similar to the continual flow pipeline [12]. In their work,

Sharafeddine et. al described the DOE architecture as a multi-core architecture,

organized as a ring network, and uses a hardware predictor to speculatively assign tasks

to the different cores. Each core in the ring network is a latency tolerant core, similar, in

essence, to the continual flow pipeline architecture. However, latency-tolerance in DOE

focuses on inter-thread data dependence instead of cache misses. We present in this

section a review of Speculative Multithreaded (SpMT) Architectures and the Continual

Flow Pipeline Architecture (CFP).

A. Speculative Multithreading (SpMT) and the Multiscalar Processor

Technology trends have reached a limit to the performance increase in single-

core superscalar processors. In effect, processor designers have moved from high-

performance to high-throughput processing that uses distributed components, which

gave rise to multithreaded architectures [16]. Given that the current techniques of

extracting instruction level parallelism (ILP) are not as effective as they used to be, and

given the availability of hardware that can execute multiple threads at the same time,

Speculative Multithreading became an interesting option of research. Speculative

Multithreaded Processors can execute sequential programs in parallel by dividing them

5

speculatively into threads [3]. We present this review because the Multiscalar Processor

is one of the first attempts to provide a multithreaded architecture that can benefit

sequential applications.

1. SpMT in Multiscalar

The first attempt at SpMT was the Multiscalar processor introduced in [4]. This

processor performs static division of a sequential program into tasks in the compiler,

while maintaining the sequential aspect of the program in inter- and intra-task execution

by sequentially assigning tasks to different cores. These cores are arranged in a circular

ring with a head and tail pointers. New tasks are assigned to the tail pointer core and

tasks commit from the head pointer core. Within each core, sequential semantics are

also preserved. In order to do so, a view of a single register file (RF) and Memory is

maintained. For the RF, they added to each task a “create-mask” and an “accum mask”.

The create-mask is statically generated by the compiler and carries the register values

that the task may produce. When the respective value is produced, it is forwarded to the

next tasks (Cores). The accum mask is the union of all the create-masks of the

predecessor tasks of the current task and it contains the reservations (values needed) of

that task. When values arrive from the predecessor tasks, they are cleared from the

accum mask.

The Multiscalar performs two types of speculation, control speculation (branch

prediction and speculation) and data speculation (optimistically allowing loads to

execute and instructions to forward their data to other cores). If any of the two types of

speculations performed was incorrect, the task should be squashed and the correct state

6

should be recovered. To highlight how Multiscalar programs work, this is an

explanation presented by the authors. The task sequencer dispatches tasks speculatively

based on a task descriptor. This task descriptor is a set of bits statically formed by the

compiler, and contains information on which tasks follow this task and the create-mask

of the current task. In order for the hardware to know which values it should forward,

the compiler should mark instructions that should forward values by adding a forward to

that specific instruction. In order for the following instruction to release any register

values that were in this task’s create-mask but did not get created/forwarded due to

control speculation, a release instruction should be added in order to trigger the waiting

threads to proceed. In addition to that, the compiler should also mark the last instruction

in the thread with a “stop bit” for the hardware to know that it has reached the end of the

thread.

2. Hardware-aided SpMT

In [8] the authors discussed four different bottlenecks of a traditional

superscalar processor, and then proposed a solution for of these bottlenecks using

SpMT. The first bottleneck they discuss is true data dependences (RAW hazards) that

enforce serialization. They argue that a lot of effort has been put on control and name

(false data) dependence, where as true data dependences have been ignored. The second

bottleneck is the instruction window size. They discuss that branch superscalar

processors depend on branch prediction to exploit parallelism beyond a single basic

block, however they describe this process as “Sequential in nature”. The third

bottleneck, also depending on window size, is the complexity of designing a wider issue

7

machine. They explain that the amount of ILP a superscalar processor can exploit

greatly depends on the instruction window size however studies have shown that

increasing the size causes a great overhead on the fetch and forwarding logic of the

superscalar processor; specifically affecting the clock cycle. The Final bottleneck they

talk about is the instruction fetch bandwidth. They argue that the factors that limit it are

branch prediction accuracy and throughput, as well as the potential to fetch non-

contiguous instructions.

To overcome these four bottlenecks described above, the authors proposed the

following architecture: First, to overcome the issue of instruction window size, their

SpMT architecture breaks down the program into smaller, non-adjacent, windows.

These threads are divided based on control speculation, and each thread performs

control speculation during execution. The thread creation mechanism they propose is

done fully in hardware. Second, they use data speculation to overcome inter-thread data

dependencies. They provide mechanism to predict the data dependences, as well as the

actual data that will flow through them. The predicted data is then used in execution.

Third, since thread speculation is done on loop-closing branches, meaning that the code

is the same for simultaneous threads, they provide a fetch engine that feeds different

threads with the fetched code. Thus, they avoid increasing the fetch bandwidth that is

required by each thread. Finally, their architecture does not require any instruction-set

architecture (ISA) modification since all the mechanisms are completely handled by

hardware.

Another implementation of SpMT is presented in [6]. They present a “low-

overhead dual core” SpMT model that exploits the following benefits: cache

8

prefetching, branch pre-computation, and instruction reuse. They dedicate one core for

the execution of non-speculative threads and the other for that of speculative threads.

For data speculation, they use a “register dependence violation detection scheme” at the

register level, and a novel memory ordering mechanism that selectively recovers from

memory violations. They only re-execute instructions affected by data dependence

when a violation is detected; other instructions are executed then buffered and later on

committed by the non-speculative thread. To overcome the performance loss caused by

wrong path execution in conventional SpMT processors (as discussed by Multiscalar,

threads are left to execute with potentially wrong data values), they proposed a “Wrong

Path Predictor”. Finally, they performed a study on different hardware spawning

policies (Fork on Call, Loop Continuation, and Run Ahead) and their performance

benefits. They also try to dynamically combine the three policies and were able to

achieve an average 20% performance gain. As for their exploitation of the above-

mentioned benefits, they got 58% benefit from instruction and data Cache prefetching,

33% from instruction reuse, and 9% from branch precomputation.

A more recent hardware technique for SpMT is the work of Cintra and Torellas

[7]. Their focus was on thread squashes due to data dependence violation, providing

run-time dependence learning mechanisms to avoid these squashes in a distributed CC-

NUMA directory-based architecture. They would then predict violations and apply one

of three mechanisms: 1) delayed disambiguation for false dependences, 2) value

prediction for same-word dependences, and 3) stall and release for unpredictable, same-

word dependences. The first line of defense is the Delay and Disambiguate mechanism.

It starts by allowing the consumer thread to proceed, even when a data dependence

9

violation is observed, because of the probability that this dependence is just false

sharing. Then, before the thread commits, a check is done to make sure whether or not

the violation was false sharing. If the violation turned out to be true, the next

mechanism would come to work: Value Predict. The value that should be produced by

the producer thread is predicted and sent to the consumer. Before the consumer commits

the value is checked to make sure the prediction was correct. When this fails, there are

two options: an aggressive mechanism called Stall and Release, or a conservative

approach called Stall and Wait. In both cases the consumer thread is stalled, but the first

mechanism releases the thread as soon as the first producer commits. This is risky since

a newer producer might right the value which will cause the consumer to be squashed.

The conservative approach is to wait until the consumer thread becomes non-

speculative (meaning that all the previous threads have committed). In that case, the last

producer would have already written the value and the thread can continue normally.

3. Compilers and SpMT

a. The use of compilers for SpMT

One of the key works that invested the compiler in a SpMT environment was

task selection presented in [10]. In the Multiscalar architecture, compiler task selection

plays a very important part in achieving high performance. A good task selection could

result in dividing the program into independent tasks, leading to high performance,

whereas a bad task selection could result in dividing the program into dependent tasks,

hence decreasing performance. Vijaykumar and Sohi discussed in their paper, Task

Selection for a Multiscalar Processor, the fundamental performance issues regarding

10

compiler task selection. They identified control flow speculation, data communication,

data dependence speculation, load imbalance, and task overhead as the main

performance issues, and stated that they are related to task characteristics of task size,

inter-task control flow, and inter-task data dependence. Task size affects load imbalance

and overhead, inter-task control flow affects control speculation, and inter-task

dependence affects data communication and data dependence speculation.

Regarding the effect of the task size, a small size would lead to high overhead

and would not create proper parallelism. A large task size also presents its own

problems, such as causing misspeculations, overflowing the address resolution buffer,

which leads to task stalls, and loss of parallelism. Improper task selection leading to a

large variation in the task size would lead to a load imbalance, which negatively affects

performance.

Control flow misspeculations would cause a decrease in performance. Inter-

task control flow takes place during task selection. However, the resolution of control

flow from one task to the next takes place at the end of the task, therefore a task must

have as many successors as can be tracked by the hardware prediction tables. If that

number is exceeded, then performance decreases due to the inaccuracy in the

speculation.

During task selection, data dependencies in the tasks are identified. This leads

to inter-task dependence. The position of the dependence in the task determines the

delay and misspecualtion penalty. The time between the execution of the task and

another dependent task depends on whether the current task is waiting for a value from

a preceding task, and whether there are other tasks ahead of the current task in the

11

program order. Hence, data dependencies can cause delays in execution, especially

when dealing with large tasks.

It is therefore of utmost importance to try and execute optimal task selection in

order to improve performance. Selecting the optimal tasks, however, is a very

complicated process, and there is no actual guideline on how to perfectly obtain the best

task selection results. As a result, certain heuristics were used to try and obtain the best

task selection results. Vijaykumar and Sohi concluded that the heuristics to obtain the

best results should select a task that is neither large nor small, hence avoiding large

overhead and misspeculations, but ensuring a certain level of parallelism. The heuristics

should also ensure that the number of successors of a task is at most the same number as

the tasks tracked by the control flow speculation hardware. Regarding data

dependencies, the heuristics should ensure that the data dependence is present in the

task in order to reduce communication between dependent tasks and therefore reducing

delays and misspeculation penalties. However, if that is not possible, the dependent

tasks should be ordered appropriately.

b. Optimizing compilers to enhance SpMT thread spawning

The efficiency of SpMT relies on the parallelism of the threads the processor is

executing. In [5], Pedro Marcuello and Antonio González proposed a different way of

partitioning threads than of previous methods. Instead of relying on heuristics that

search for known structures in the code, such as loops, the proposed method they say is

based on the threads profile, where the thread is created due based on certain properties

of the code that will benefit parallelism. Dividing programs into efficient parallel

12

threads is basic and straightforward in the case of sequential numerical programs, but

difficulties occur in the case of irregular and non-numerical programs. SpMT is one

way to tackle these difficulties by speculatively spawning threads, a task which is done

by the compiler. Thread-spawning is defined by two operations, known as a spawning

pair. The first is called the spawning point, which is the instruction where a new thread

is spawned. The second is called the control quasi-independent point, which is where

the thread begins its execution. While executing the instruction stream, the processor

reaches a spawning point, which is where it identifies an instruction that has a high

probability of being executed in the near future, which is where the control quasi-

independent point is set. The processor then creates a new thread starting from the

quasi-independent point that executes in parallel with the already existing thread. The

first thread stops executing when it reaches the quasi-independent point itself. This is

known as the joint point. Gonzalez focused on setting effective methods and procedures

to identify the spawning points and control quasi-independent point, and began by

stating three main requirements that a spawning pair should abide by. The first

requirement states that the probability of reaching the control quasi-independent point

should be high, while the second requirement states that number of instructions between

the spawn point and the quasi-independent point should not be too large or small. The

third requirement stated that the instructions following the quasi-independent point

should contain few dependencies with the previous of following threads, or

dependencies that are predictable. Thread spawning techniques usually focused on the

first requirement, and pointed out the optimal position for the spawning pair points. An

example is in the case of loop iterations, where the first instruction of the loop was

13

considered as both the spawning point and control quasi-independent point, since there

is a high probability that the code would reach the beginning of the loop again.

Gonzalez focused on finding a method that would implement all three of the

requirements, and not just focus on typical program constructs such as loops and

subroutines. The method proposed in the paper relies on creating a dynamic control

flow graph of the program. The edges of the graph are weighted with their frequency.

The least frequent program blocks are deleted in order to reduce the graph size. After

the graph is simplified, the probabilities of reaching each block are calculated. Then,

pairs of nodes are evaluated to become spawning and control-quasi independent points.

The pairs that do not qualify as good candidates are deleted from the graph. A good

candidate is one that applies the three requirements mentioned earlier. One spawning

point could have plenty of candidates for a control quasi-independent point, but when

the processor reaches a spawning point, it only spawns a thread at one control point,

hence the possible control points must be ordered according to which one would benefit

our system the most. They are ordered according to three criteria which are:

• Maximizing distance between spawn point and control quasi-independent

point

• Consideration of the number of independent instructions of previous

instructions

• Maximizing the number of independent instructions or dependent but

predictable instructions

After testing this method, results pointed out a sevenfold increase in speed.

This method also was shown to outperform traditional heuristics by 20% as a best case.

14

In reality, this speedup was shown to be around 5 times better than normal heuristics,

outperforming them by 15%.

Another compiler designed in the prospect of enhancing SpMT is the Mitosis

compiler by Quinones et al. [9] They introduced a novel technique that uses what they

called p-slices, or precompute slices, which are small pieces of coded added by the

compiler in every thread to compute the “live-ins” or data that is consumed by this

thread but not produced by it. They claim that this code can be highly optimized

because techniques of recovering from incorrect threads are already available. The p-

slices are derived from the original code of the application, and therefore they claim that

this makes them more accurate than hardware predictors. The mitosis compiler

performs the following tasks: 1) identify the potential producer and consumer threads

by selecting the pair that provides the highest benefit when parallelized, 2) generate the

p-slices and optimizes them, then it 3) maximizes the accuracy of the p-slices. During

execution, the thread has two execution modes depending on whether it is executing the

body of the thread or the p-slice. If the p-slice is being executed, the data produced is

stored in a special buffer and is used as an input for the body. Like other SpMT

architectures, when the thread becomes non-speculative all its data is committed. They

use compiler optimizations like branch pruning, memory and register dependence

speculation, and early thread squashing to reduce the length of p-slices. They were able

to achieve 2.2x performance gain over single-threaded execution for a subset of the

Olden benchmarks.

15

4. DOE and conventional SpMT architectures

Although DOE isn’t a Speculative Multithreaded (SpMT) architecture, it shares

a lot of features with SpMT: cores are arranged in a circular ring with head and tail

pointers, as shown in Figure 1, and cooperate on executing a single application. The

application is distributed among the existent cores (although the distribution is static

instead of speculative).

In order to have an idea about the potential performance gain that DOE can

achieve in comparison with conventional SpMT architectures on a single thread,

consider Figure 2. A single thread is split, by the programmer, into almost equally sized

tasks (T1, T2, and T3). Each task assigned to one of a number of existing cores, so that

they are concurrently executed. The dotted arrows show the inter-task dependences,

which are data dependences between instructions of different tasks.

Figure 1 - DOE processor architecture block diagram [12]

16

Figure 2 - DOE vs. conventional SpMT execution [12]

It is clear that the majority of task instructions are independent of previous

instructions of previous tasks. However, instructions that are consumers in the inter-task

dependence relation limit the performance that can be gained out of such a parallel

architecture. Consumer instructions have to wait for the producer instructions to have

their operands ready, thus stalling the execution of the task where the consumer

instruction belongs. Moreover, this requires a lot of communication between the cores

on data produced by tasks and consumed by successive ones. In Figure 2(b), it is

obvious how T2 stalls shortly after it starts because its execution reached an instruction

dependent on another in T1, and thus has to wait. Upon analyzing Figure 2(b), one can

deduce that such stalls also depend on the position of the consumer dependent

instructions within a task.

DOE deals with the dependence issue differently from the costly

communication required in SpMT architectures. When T2 in DOE encounters a

dependent instruction, it defers its execution and the execution of all successive

17

dataflow instructions until T1 finishes executions and reports data to T2. When data is

reported, the independent instructions stop execution to clear the way for the waiting

dependents, until they are all executed, after which the core of T2 merges results from

the dependent and independent threads, and continues in normal mode until the end of

the task T2. Then the core of T2 reports its data to T3, and so on, until the full program

is executed. By this approach, the positions of the dependent instructions within the task

are no more of negative significance, and thus, DOE hides the communication delay

between cores. DOE would suffer a partial data stall when a task runs out of

independent instructions, or reaches its end before the completion of the previous task,

and here comes the importance in balancing the task sizes and amount of dependent

instructions between cores.

B. Continual Flow Pipeline (CFP) and Checkpoint Processing and Recovery

(CPR)

1. Motivation behind CFP

In order to provide a precise state for cases of exceptions and branch

mispredictions, Smith et al. introduced the re-order buffer (ROB) in [17], which is

basically a buffer to hold the instruction results to write them to the register file in

program order. A tail pointer points to the most recent instruction that has been

decoded, and the head pointer points to the oldest one. The ROB writes the register file

in order as follows: when an instruction finishes execution and it has its result ready, it

writes it in the corresponding entry in the ROB, and is marked as ready to commit. If

this instruction is located on the head of the ROB, it is committed to the register file,

18

and the ROB head pointer is incremented to indicate a free entry, and to give a chance

to subsequent instructions to drain from the ROB and commit in program order.

A problem arises when this instruction located on the head of the ROB is a

load that misses the cache. A miss to DRAM could cost around 150 cycles in best cases.

This is a great overhead that has a major impact on the processor performance, where

all instructions subsequent to this load in the ROB have to be delayed until the load data

is ready, and the ROB commits the load to the register file. The worst-case scenario

could be that the ROB is full, and thus any such load miss would stall the front-end

pipeline because of structural hazards on the ROB. The best case could be when the

ROB has empty entries allowing for more instruction fetch and decode while data of the

load is being retrieved, but eventually we will bump into the worst case wall since the

number of ROB entries is by far less than the number of cycles required for load miss

data retrieval, leading the ROB to scale up rapidly.

One way to deal with this problem is to increase the sizes of the cycle-critical

structures like the ROB and the cache. This is not preferred for a couple of reasons.

Increasing the size of the ROB in a way that would allow it to scale up quickly means

hardware complexity and area occupation. This induces a threat on clock rate and

energy consumption since the ROB is a complex multi-ported cycle-critical hardware.

Caches are actually the major power-consuming blocks in any microprocessor, where

they might consume up to 50% its energy [18]; thus, it is not desirable to further

increase the capacity of caches, although this would reduce the probability of load

misses. So, the challenge is how to achieve better performance and larger instruction

window in cases of load misses without having to resort to such critical solutions.

19

2. CFP and CPR as a solution

One solution, the Continual Flow Pipeline (CFP), was proposed in [13]. The

key observation behind the idea of CFP is that many more instructions are data-

independent from the load than the data-dependent instructions. This revealed a

reasonable question about the pipeline execution mechanism: why to stall the pipeline

and delay the instructions that are data-independent from the load that misses? Why not

track instructions that are dependent on the load, buffer them aside, and clear the way

for instructions that are miss-independent?

This is exactly what CFP architecture does. The Slice Processing Unit (SPU) in

a CFP handles the miss-dependent instructions, which are called slices, while the miss is

pending [13]. It removes the slices aside from the pipeline flow and places them into a

Slice Data Buffer (SDB) instead of the ROB, clearing the way for the miss-independent

instructions to flow normally. When the missing data of the load (which is the first slice

in the SDB) is ready, the front-end pipeline freezes, allowing the ROB to fully drain,

and execution is switched to the instructions in the SDB by renaming them and moving

them to the ROB. When the execution of the slices is done, results are appropriately

merged to keep a precise state of the register file, and execution resumes as normal,

until a load miss is encountered again, and the whole process repeats.

Identifying miss-dependent instructions is done by dynamic data-dependence

prediction, whereby a poison bit propagates from the first slice (the missed load) to

subsequent consumer instructions in the stream. This is done at the decode through the

registers, where a register written by an instruction that reads poisoned registers, is itself

flagged as poisoned. Therefore, the responsibility of the slice-processing unit SPU is to

20

detect poisoned instructions, and deal with them appropriately as previously stated.

Keeping a precise state of the register file is done by checkpointing, introduced in [19].

In [19], a novel introduction of checkpointing is provided to solve some of the

problems that arise from large instruction windows, in an attempt to increase instruction

level parallelism (ILP). One of the problems was the complexity and scaling up of

cycle-critical blocks like the ROB and the register file. By occasionally checkpointing

the map table, a precise state is provided for cases of exceptions and branch

mispredictions. The ROB is therefore eliminated, which dumps the obligation of single

instruction retirement, and allows for bulk retirement. This also relieves the pipeline

from a major cycle-critical structure, which is the ROB. In the checkpoint processing

and recovery architecture (CPR), checkpoints of the map table are taken at low-

confidence branches, to allow for execution roll back in cases of mispredicted branches

and exceptions. Other occasions of checkpoints are also explained in [19] to ensure

narrow periods of precise state confidence. Recovery from mispredicted branches

therefore requires pipeline flush and roll back to the last valid checkpoint. Flushed

instructions could turn out to be executed again if the mispredicted branch was not of a

low confidence, and therefore was not checkpointed upon. A checkpoint buffer is used

to store the occasional checkpoints. Overall, CPR detaches the misprediction recovery

and register file reclamation from the ROB, and allows values to be written directly to

the register file, allowing retirement of many instructions per cycle, and therefore

outperforming ROB-based architectures.

In CFP architecture, as soon a load miss is encountered a checkpoint of the

register file is taken, since it so far includes the precise state of data just before the load.

21

This first checkpoint would be a safe way back in case any exception is encountered in

the subsequent stage. Execution resumes normally and instructions are committed from

the ROB to the register file in order. When the load data is ready, it is reported to the

first slice in the SDB, and the ROB is left to drain, then another checkpoint of the

register file state is captured, before the slices are renamed for potential hazards and

moved to the ROB. Note that while draining the ROB, slices in the SDB can catch

results from the data bus to matching operands, hence the ROB is said to be reporting

data to the SDB. Execution now resumes on the slices, where instructions become in-

order ready for execution after having their operands available. If any exception is

encountered at this stage, the execution can be directed to start again from the last

checkpoint captured. Otherwise, registers data from the last register file checkpoint and

the current register file state are merged together appropriately to form a final precise

state of the register file, on which subsequent execution can confidently rely.

The CFP approach allowed for a larger instruction window, where instructions

can be executed in-flight with memory latency tolerance, without significantly

impacting the clock rate, area occupation, or energy consumption.

3. Comparison to DOE

The CFP approach that DOE implements is slightly different from the one

originally introduced in [13]. While in [13] the poison bits – bits that are associated with

each instruction to indicate that it is a consumer in a data dependence relationship – are

propagated from the producer load that misses (also called the first slice instruction) to

subsequent consumer instructions dynamically, poison bits in DOE are just ready in the

22

rename map table generated by the compiler as a bit mask to identify this set of

influence registers. This way, data dependences are identified for all instructions in the

stream. But once the execution of the program is split over the many cores, inter-task

data dependences limit parallelism.

DOE successfully hides the communication latency between cores by dividing

the execution stream in each core into two disjoint threads: the dependent thread and the

independent thread. At the decode stage of each core, instructions are identified as

dependent by the poison bits, and hence are buffered aside into a Dependent Thread

Buffer (DTB), equivalent to the SDB presented in [13], clearing the way for

independent instructions, that have their operands ready, for execution with no stalls

other than the structural ones. After the dependent thread in a core finishes execution, it

reports its results to the DTB instructions waiting for inputs. When a previous core is

done executing both the dependent and the independent threads, it reports its results to

the current core and specifically the instructions waiting in the DTB, which in turn are

renamed again, and proceed to execution. When a core completes the execution of the

dependent thread, results are reported to the subsequent core, and so on. Hence, latency

tolerance between cores is achieved. Figure 2 shows an example comparing DOE to

conventional SpMT processor on inter-core latency tolerance. It is clear that a program

is executed faster on DOE than on conventional SpMT processor.

By merging the benefits of Speculative Multithreading (SpMT) with those of

Continual Flow Pipelining (CFP), and by using many small instead of wide cores, DOE

successfully underwent the challenges of minimizing power consumption, thread startup

and commit overheads, task load imbalance, data and control mispredictions, inter-task

23

data dependences, and inter-core data communication delay, and achieved a significant

parallel performance. DOE was shown in [12] to achieve a noticeable performance in

multitasking applications over an equivalent large superscalar, where it scored up to

2.5x performance in throughput-based applications, and outperformed conventional

speculative multithreaded architectures of similar configuration by 15% on average on

single-threaded programs.

After looking at previous architectures that are related to DOE, and that helped

in providing the essence of DOE, we shall present a small literature review on

multithreaded programming environments. Since a major part of this work is assessing

the effectiveness of the OpenDOE API, we need to take a look at previous APIs and

programming environments that aided programmers in writing parallel applications.

C. Multithreaded Programming Environments

With the widespread of multi-core systems, and the need of providing

applications that can benefit from these systems, different multithreaded programming

environments have surfaced. These environments provided developers with different

APIs that helped in controlling the needed communication between different threads of

an application. Depending on the type of system at hand, or the need of the application,

programmers have a wide variety of environments to choose from. Two major types of

environments are the shared memory environments and the message passing

environments.

24

1. Shared Memory Environments

There are two types of systems that utilize the shared memory environment.

These systems are either centralized shared memory systems, or distributed shared

memory systems. Centralized shared memory systems are comprised of multiprocessors

that share a single space of random access memory (RAM) and different cores on this

processor access the same memory address space. This type of memory addressing is

referred to as Uniform Memory Addressing (UMA). Distributed shared memory

systems are systems with multiple processor chips, each with its own local memory, but

the address space is globally shared across all processors. Therefore, each processor can

directly access any memory (whether local or remote) using direct loads and stores.

This type of addressing is referred to as Non-Uniform Memory Addressing (NUMA)

[2]. One of the most common APIs used in these types of systems is OpenMP.

a. OpenMP

OpenMP, or Open Multi-Processing, is an API defined by a group of hardware

and software vendors. It is used in UMA and NUMA shared memory systems to aid the

programmer in writing multithreaded applications. The API provides a set of directives

[11] that can be used to transform any sequential code into a multithreaded application.

In addition to the directives, OpenMP provides a runtime library and a set of

environment variables.

Our proposed API (OpenDOE) shares most of the clauses of OpenMP, and

adds the “depends” clause which is used to declare dependent variables in parallel

regions. [14]

25

2. Message Passing Environments

Message passing systems are usually distributed systems, comprised of

multiple processor chips, each with its own local memory, and each processor can only

directly access its local memory space. If any remote memory needs to be read or

written, it is done using certain messages that are exchanged between the processes that

are running on the respective processors [2]. Depending on the standard being used,

these messages are defined by certain APIs. One of the most common APIs is the

Message Passing Interface or MPI.

26

CHAPTER III

PROJECT DESCRIPTION

In this section, we will present the DOE processor architecture, the DOE core

microarchitecture and execution model, and the OpenDOE API.

A. The Disjoint Out-of-Order Execution (DOE) Architecture

We are implementing the DOE architecture described in [12] and [14]. It is a

latency tolerant, multicore architecture, organized as a ring network as shown in Figure

1. All the cores in the ring take turn at executing the different threads of one application.

These threads are defined by the programmer using the openDOE directives and

assigned to the different cores using the task dispatcher, along with the register and

memory poisoning that identifies which registers/memory locations are shared between

the parent and child threads. Two new instructions, “frk” (fork) and “jn” (join), are

responsible for forking a new thread and committing a complete thread. Other

instructions, like “plw” (poisoned load word) and “spm” (set poison mask), are

responsible for marking the corresponding memory location or register as poisoned.

These instructions are generated by the compiler through the translation of the

openDOE C/C++ directives.

The order of task assignment onto the different cores in the ring is in

accordance with the sequential order of the threads in the application, meaning that only

the newest thread can fork and only the oldest thread can commit (or join). A HEAD

and TAIL pointer are used to track the oldest and newest thread in the network. If the

27

TAIL is free, a new thread can be forked by the newest core and will be assigned to the

core at the TAIL pointer. If, however, the ring is full, the forking of the new thread will

be delayed until the TAIL is free again. Once a thread is at the HEAD, and it has

finished executing all of its assigned instructions, it can join/commit. When a thread

commits, the HEAD pointer is freed and the final register file (RF) of that core is

forwarded to the child thread, which is now the new HEAD of the ring network. Each

core within the ring network performs latency-tolerant CFP execution by effectively

splitting each thread into: 1) a set of instructions that do not depend on the thread in the

previous core and are therefore called independent instructions, and 2) a set of

instructions that do depend on the thread in the previous core and are therefore called

dependent instructions. The DOE core architecture and the execution model will be

described in the next subsection.

Figure 3 - DOE Core Microarchitecture

B. DOE Core Microarchitecture and Execution Model

The DOE core microarchitecture (Figure 3) is a 4-wide out-of-order

architecture similar to the conventional superscalar defined by Smith et al. [8] It

28

includes the standard pipeline stages: Instruction Fetch, Instruction Decode and

Dispatch, Instruction Execute, Instruction Writeback and Instruction Commit. The

Instruction Set Architecture (ISA) in use is an extended version of 64-bit PISA1 that we

designed to include extra DOE-specific instructions that will be described later on in the

thesis. Out of order execution is managed through the Reservation Stations (RS) and a

Re-order Buffer (ROB) is used for in-order commit of instructions and for register

renaming.

Figure 4 - RF Architecture

1 A MIPS like ISA defined and used by the SimpleScalar team [19].

29

Figure 5 - DOE Registers

The Register File (RF) is augmented with: 1) poison bits to determine which

registers require data that depends on the parent thread, 2) the join address, which is the

PC at which the thread should end and the new thread should start, and 3) the chunk

value which will be discussed later on in the thesis. Furthermore, the RF is split into two

independent contexts. One context is used while executing independent instructions,

this context will be referred to as the Independent Register File (IRF). The second

context is used when executing dependent instructions and will be referred to as the

Dependent Register File (DRF). (Figure 4) Each context contains the registers shown in

Figure 5: 1) 32 General Purpose Registers (GPRs), 2) 32 Floating Point Registers

(FPRs), 3) 2 multiplication registers (HI, LO), 4) the condition code register (FCC), and

5) the 2 DOE registers (JNPC, CHNK). In order to achieve our aim of providing CFP-

like latency tolerance and buffer the dependent instructions aside, two architectural

components are added: 1) the Dependent Thread Buffer (DTB) [12] which is a buffer

used to store the dependent instructions and make way for independent instructions, this

avoids stalls and blocking of the pipeline, and 2) a memory dependence predictor which

is used to predict dependence between loads and stores when the address register is

poisoned. As for memory, a store redo log (SRL) is used to commit stores in-order into

the speculative cache. A detailed description of the speculative cache, the SRL, and the

30

register file can be found in Sharafeddine et al.’s work [12]. As it can be inferred, all the

architectural differences are mainly in the front end of the pipeline; everything from the

execution units and onward is identical to the conventional superscalar processor.

Execution within each DOE core is portrayed in the finite state machine of

Figure 6. A description of all the states is provided in Table 1. Initially, one core is in

normal execution state while all other cores are in IDLE state. Whenever a thread is

forked into a new core, that core moves from the IDLE state to the CFP_Exec state,

where it is executing independent instructions and poisoning dependent instructions,

until one of the following occurs: 1) The core tries to join but it isn’t the HEAD yet. In

this case the jn instruction is sent to the DTB and the core moves to WAITING state. 2)

A syscall is encountered, and syscalls have to be executed in their correct sequential

order for the processor to be at a precise state. In this case the syscall is sent to the DTB

and the core also moves to the WAITING state. 3) The DTB is full, in which case the

core has to stall and moves to the WAITING state. 4) The parent thread commits. In this

case there are two options: a) If the DTB was empty, then there are no poisoned

instructions and the core moves to the N_EXEC state and continues normal execution.

b) If the DTB was not empty, then there are poisoned instructions, so the core moves to

the P_EXEC state where it commences the execution of the poisoned (DTB)

instructions.

31

Figure 6 - DOE Core FSM

When the core gets to the WAITING state, it remains there until a condition identical to

4) occurs and moves it to either the N_EXEC state or the P_EXEC state. Once the

parent thread commits and the core moves to P_EXEC state, it starts re-renaming the

DTB instructions and executing them. Once the DTB is empty, the core either moves to

N_EXEC state if there are more instructions that need to be executed, or it moves back

to IDLE state if the last instruction in the DTB was the jn instruction. Finally, once the

core gets to the N_EXEC state, it finishes executing the remaining instructions then

joins and goes back to the IDLE state.

32

State Name Description

IDLE Idle State The core is idle, waiting to be activated by
a fork instruction.

CFP_EXEC Continual Flow Pipeline Execution State
The core has been forked and it is
executing independent instructions and
poisoning dependent instructions.

WAITING Waiting State The core is waiting for the parent to
commit.

P_EXEC Poisoned Execution State The core is replaying the DTB
instructions. It is the head.

N_EXEC Normal Execution State The core is executing the remaining
instructions. It is the head.

Table 1 - DOE States

To illustrate the details of the execution, assume core i-1 is forking core i. The

first thing that occurs is the copying of the parent (i-1) RF into the child’s (i) IRF. The

IRF will then contain all the available registers from core i-1 in addition to a set of

poisoned registers for those that are not yet available. At this point, core i gets activated

and starts fetching, decoding, and executing instructions from its instruction window in

the I-Cache. When an instruction is decoded, and the input registers are read from the

IRF, two options are available: 1) If neither of the two registers is poisoned, then this is

an independent instruction and it is dispatched into execution. 2) If any of the two

registers is poisoned, then this is a dependent instruction and therefore the destination

register is marked as poisoned in the IRF and the instruction is first sent to the RS to get

any needed operands, then it is assigned resources in the ROB and SRL, and finally it is

forwarded to the DTB. Loads and stores, however, have a different consideration. A

memory predictor is used to determine which stores are poisoned and whether a load

depends on a poisoned store or not. More details are provided in [12]. The execution of

independent instructions, and the buffering of the dependent ones in the DTB, continues

until one of the conditions described in the paragraph above is encountered to take the

core out of CFP_EXEC state. During this stage, since instructions are being committed

33

out of order, stores are sent to the SRL so that dependent and independent stores will be

reordered and sent into memory in their correct order. If either of the DTB or the SRL

gets filled up, the core has to stall and wait for core i-1 to commit before it can continue.

When core i-1 commits, core i switches to P_EXEC state, it drains the pipeline of any

remaining independent instructions and the final state of core i-1’s register file is copied

into the DRF of core i. The DRF is now used to read the previously-poisoned operands

as the processor replays the DTB instructions by re-renaming them and dispatching

them into execution. Once all the dependent instructions are executed, the SRL is used

to commit all the stores into memory and the IRF and DRF are merged using the set of

poison bits in the IRF as a mask [12]. After that, normal execution is returned as the

core continues to fetch and execute the remaining instructions in its instruction window.

One thing that has to be taken into consideration is maintaining the precise

state of the machine. Since we are using a ROB, whenever an independent branch is

mispredicted a rollback action is taken in the ROB to recover. Since the dependent

instructions were also assigned a place in the ROB, this will be used to remove them

from the DTB during a rollback. However, when a dependent branch mispredicts, the

entire thread has to be aborted and restarted. This is due to the fact that the processor is

committing out-of-order instructions during this phase, and therefore the processor is in

an imprecise state and cannot be returned to a precise state unless the thread is restarted.

To achieve this, one checkpoint is used in the RF. This is explained in more detail in

[14] and [12].

34

C. The OpenDOE API

1. API Description

Alongside the DOE architecture, we are presenting a supporting Application

Programming Interface (API) that we called openDOE. Our aim is to take advantage of

the architectural features provided in the DOE architecture and simplify the

parallelization process for the programmer, allowing him to parallelize code that is

otherwise unparallelizable on conventional multicore processors. The openDOE API is

an openMP-like programming interface; thus the nomenclature. It provides the

programmer with three basic components: compiler directives, a runtime library, and

environment variables. The API is designed for parallelizing C/C++ applications using

two parallelization constructs as described in Table 2.

Directive Type Description
#pragma doe parallel

sections
Parallelization

construct
Used to mark the beginning of a

parallel sections block

#pragma doe section Parallelization
construct

Used to mark a section within the
parallel sections block

#pragma doe parallel for
#pragma doe parallel while

Parallelization
construct

Used to mark the beginning of a
parallel for loop or while loop

depend(x) Clause
Used to define a variable (x) as a

shared variable between the threads
that should be poisoned.

chunk(n) Clause

Used to define a “chunk”, or the
number of iterations executed by a

thread before the next one is forked.
When no chunk is defined, then a

new thread is forked every iteration.
Table 2 - openDOE Directives

These constructs are: 1) The #pragma doe parallel sections construct with several

#pragma doe section constructs to define different sections that can be executed in

parallel, and thus a fork will occur between each two sections. 2) The #pragma doe

parallel for/while construct to parallelize a for loop or a while loop by forking on each

35

iteration, or on every set of iterations, depending on the clause provided with the

construct.

The API also provides several clauses to be used with the parallelization

constructs as described in Table 2. These clauses are: 1) The depend(x) clause which

marks variable x as a shared variable between the parent and the child threads, and thus

signals the compiler to mark this variable as poisoned. The method in which this clause

will be translated and how the poisoning will be done is described next. 2) The chunk(n)

clause, which is used to parallelize a loop in chunks of n, meaning that a thread will fork

a new thread every n iterations instead of forking every iteration. Similar to OpenMP,

execution starts in the main thread and a new thread is forked whenever a parallel

construct is encountered.

The directives we described above are translated by the compiler into a set of

new instructions that we defined for the DOE architecture as depicted in Table 3. The

spm.g and spm.f instructions are used to set the poison bit mask that will be used to

mark the poisoned general purpose registers (spm.g) and floating point registers (spm.f).

The frk instruction will fork a new thread starting at lbl and assign it to the core at the

TAIL of the ring network. The jn instruction marks the end of the thread and

commences the joining operation by which the thread commits and sends its RF to its

child thread. The plw and pl.d instructions represent poisoned load word and poisoned

load double respectively. These instructions have two different functionalities

depending on the state of the core: 1) If the core is in CFP_EXEC mode, then these

instruction will only mark the destination register as poisoned and they won’t load

anything from memory (since a poisoned load means that the memory location is not

36

yet available for the thread). 2) If the core is in P_EXEC or N_EXEC mode, then the

instructions function similar to the regular lw and l.d instructions as defined by the PISA

instruction set [20]. The scv instruction sets the chunk size which will be used to define

the number of iterations executed by every thread. The full list of PISA instructions can

be found in [20].

Instruction Name Operands Example Description

spm.g M Set Poison
Mask, GPR

M: 32 bit mask, each
representing a general
purpose register

spm.g 0x00100100

Sets the mask for poisoned
GPRs: a 1 represents a poisoned
register and a 0 represents a
non-poisoned register

spm.f M Set Poison
Mask, FPR

M: 32 bit mask, each
representing a floating
point register

spm.f 0x00100100

Sets the mask for poisoned
FPRs: a 1 represents a poisoned
register and a 0 represents a
non-poisoned register

frk lbl Fork
lbl: PC at which the
forked thread should start
(i.e. join PC)

frk f0 Forks a new thread starting at
the PC = lbl (f0 in the example)

jn Join Marks the end of the thread

plw rt,o(rs) Poisoned
Load Word

rt: Destination register
o: address offset
rs: Source register, base
address

plw $1,0($3)

Similar to a regular lw, except
that it marks the destination
register (r1) as poisoned if in
CFP_EXEC state

pl.d ft,o(rs)
Poisoned
Load
Double

ft: Destination register
o: address offset
rs: Source register, base
address

pl.d $1,0($3)

Similar to a regular l.d, except
that it marks the destination
register (f1) as poisoned if in
CFP_EXEC state

scv n Set Chunk
Value n: Chunk value scv 5

Sets the CHNK register to a
value equal to n. Thus defines
the chunk size for the threads.

Table 3 - DOE Instructions

37

Figure 7 - DOE Example 1: left – C code; right – DOE Assembly

The following examples represent different utilizations of the openDOE

directives. Example 1, shown in Figure 7, represents a while loop where the dependent

variable (x0) is stored in a register and being updated and used between the loop

iterations. Since this is the case, notice the utilization of spm.f in the beginning of the

loop to mark whichever register is using x0 as poisoned. To elaborate on the usage of

smp.g and spm.f, assume that we need to poison both $r1 and $r4. We generate the 32

bit mask such that bit 0 corresponds to $r0 and bit 31 represents $r31; i.e. all the general

purpose registers. In that case, the mask would be 0…0100102 or 0x12. Thus the

instruction would be: spm.g 0x12. In the example shown, register $f4 is poisoned, thus

spm.f 0x10. Notice that every new thread is forked at the label f0, and thus each thread

starts by incrementing its own base addresses of any arrays, incrementing the loop

induction variable, checking the loop condition, and then it either branches back and

forks a new thread if it isn’t the last iteration, or it exits the loop if it is the last iteration.

38

Example 2, shown in Figure 8, represents a for loop where the dependent variable is an

array.

Figure 8 - DOE Example 2: left – C code; right – DOE Assembly

In this case, the array entries are being loaded from memory and stored back

into memory every iteration, therefore the poisoning has to be done using memory and

not using registers. In order to achieve this, all the instances of lw or l.d that are used to

load the array value that is generated by the previous iteration should be replaced by plw

or pl.d. In the case of this example, the array entry that should be poisoned is R[i-1]

since it is the dependent variable between each two consecutive iterations of the outer

loop.

Example 3, shown in Figure 9, represents a parallel sections example. In this

case, the first thread forks the next thread then does its job before joining, while the

second thread starts by setting its poisoned registers or memory (depending on the

dependent variables) and then does its job before it exits.

39

Figure 9 - DOE Example 3: left – C code; right – DOE Assembly

In the case of chunks, a different approach should be taken by the compiler in

generating the assembly. First, all the base addresses of arrays and the induction

variable are incremented by a value relative to the chunk value. Then, the scv

instruction is used, followed by the chunk value, before every fork. After the fork, the

base addresses and induction variable are decremented by the same amount to return

them to their original value, and the loop body is kept as it is. The increment of the

induction variable is kept in its original location within the loop body. After the loop

body, the jn is placed followed by the fork’s label, a check for the induction variable,

and the branch instruction.

40

Figure 10 - DOE Chunk Example: left – C Code; right – DOE Assembly

To clarify what this means, assume the example provided in Figure 10. In the C

code, we have a loop with 10 iterations changing the values of an array (A[]), of size 11,

from index 1 till index 10. The shared variable is (A[]) because each iteration i depends

on A[i-1]. The chunk value is assigned to be 5, therefore this loop will be distributed

over 2 threads, each executing 5 iterations. The assembly translation of the loop is also

provided in the figure. The instructions in the red box first increment the base address of

the array and the induction variable by 20 (5 x 4 bytes for an integer array) and 5

respectively. This way, when the second thread starts at f0, it will start executing the 5th

iteration (i = 6) with A[6]. So on and so forth until the thread that leaves the loop is

forked. In the example, when the third thread is forked, i = 11. Therefore, the thread

checks the induction variable and finds that it is equal to the maximum iterate and won’t

branch back. Each thread that executes the branch will start by preparing the base

addresses and induction variable for the next thread that will be forked and forking that

thread. After forking, the parent thread would go back and restore its base addresses and

induction variable (second red box in figure) then perform the loop body (blue box in

41

figure), increment the base address and induction variable (dark red box in figure), and

branch back. A hardware counter would be keeping track of how many forks were

decoded by the thread. Only the first instance would actually be executed, the rest will

be just used to increment the counter. Once the counter’s value equals the chunk value

the jn would be executed; all the previous joins are disregarded. Therefore, each thread

would have executed the number of iterations equal to the chunk value before joining.

Notice that the incrementing and decrementing that is happening in every iteration (red

boxes in figure) will not have any effect on the iterations that do not execute the fork

(since they cancel themselves out). The flow chart in Figure 11 summarizes the

algorithm.

42

Figure 11 - Chunk Algorithm Flow Chart

43

2. Comparison to openMP

The openDOE API provides the following advantages over openMP:

• It allows the parallelization of dependent code, which is otherwise

unparallelizable using openMP, by introducing the depend clause which

marks the dependent variables between the threads and leaves the rest of the

work to the hardware.

• It removes the need for synchronization constructs since the latency tolerant

DOE architecture takes care of synchronization in the hardware itself by

deferring any memory accesses in the child thread that are accessing a

variable that it shares with the parent thread till after the parent thread

commits.

• It removes the need for data attribute clauses (private, shared, etc…) and

replaces them all with the depend clause.

• It provides the ability to parallelize while loops

• It can support the parallelization of for loops that have conditional breaks.

This will be discussed in the future works section.

• Finally, and most importantly, it provides an easy-to-use API for the

programmer that greatly simplifies the effort required by him to parallelize

any kind of application.

44

CHAPTER IV

IMPLEMENTATION

In this chapter, we will discuss the implementation of the project, as described

in Chapter III.

A. Implementing DOE on SimpleScalar

As discussed earlier, we are using the SimpleScalar tool suite to implement the

DOE performance simulator. The tool suite contains many simulator models, two

functional simulators (sim-safe, sim-fast), one program profiling simulator (sim-

profile), one cache simulator (sim-cache), and one detailed performance simulator (sim-

outorder). Since we are interested in a performance model of DOE, we built our

performance simulator onto the sim-outorder model. We will provide a short description

of sim-outorder, followed by a description of the DOE model, which is in turn followed

by detailed steps of implementing different aspects of the DOE architecture.

1. The Sim-Outorder Model

The base sim-outorder model simulates a four-wide, out-of-order, superscalar

processor. It includes 5 pipe stages: instruction fetch, instruction dispatch (which

includes the decode stage), instruction execute, instruction writeback, and instruction

commit. The model implements a 64-bit PISA instruction set architecture. The RF is

made up of the following 32-bit registers: 32 General Purpose Registers (GPR), 32

Floating Point Registers (FPR), a HI and a LO register for multiplication, and a control

register (FCC). A structure called the RUU is implemented in the model, it acts as a

45

combined RS and ROB. Two levels of caches are defined and implemented. A

Load/Store Queue (LSQ) is used for executing Loads and Stores. Different branch

predictors are implemented and the user has the flexibility of choosing which one to use

in his simulator. Something peculiar about the sim-outorder model is that the actual

execution of the instruction, and the update of the registers, occurs in the dispatch stage.

The rest of the pipe stages are just there to generate a timing trace for the instructions to

provide an accurate timing model. We utilized this property of the sim-outorder model

to design our DOE architecture on top of it.

Number of Cores 4
Number of Pipeline Stages 13
Pipeline Width 4-wide
ROB Size 128
RS Size 60
LSQ Size LQ: 30

SQ: 24
DTB Size 256
SRL Size 256

Table 4 - Simulator Parameters

2. The DOE Model

Since the DOE model was built on top of the sim-outorder model, it shared all

the resources that are available in sim-outorder. Table 4 represents the parameters of the

modeled DOE architecture. Each DOE core contains, in addition to all the sim-outorder

resources described above, a fast forward buffer, called “fwdBuff”, which is used to

fork new threads, a 256 entry DTB, and a load/store hash table used as a perfect

memory predictor. However, DOE is a multicore architecture, and since SimpleScalar is

not a multicore simulator, we had to figure out a simple, yet accurate way to model the

execution of multiple threads in parallel without having to rollback time. We made use

46

of the sim-outorder property described above to come up with a simple, yet accurate,

solution to implement the forking and multithreading required in DOE. This will be

evident in the following subsections.

a. Forking Implementation

In order to implement the fork on SimpleScalar, we were able to make use of

the property described above. The following algorithm gets executed when a frk

instruction is decoded:

• The lbl is saved in a special register called the “regs_JPC”. This resembles

the Program Counter (PC) at which the forking thread should join and the

forked thread should begin, or the join PC.

• The TAIL is checked to make sure that there is a free core. If the TAIL is

active the fork is buffered, if not, the fork is exercised using the steps that

will be described. If the fork is buffered, the tail is checked again, every

cycle, at the beginning of the dispatch stage. When the tail becomes inactive

the fork will be exercised.

• A fork() subroutine is called:

- First, the mask that would have been set by spm.g and spm.f is used

to mark the poisoned registers in the child’s RF.

- The current PC and the next PC are stored to restore them when the

fork subroutine completes.

- Then, the instructions from the current PC to the join PC are fast-

forwarded and their results are stored in a special buffer called the

47

“fwdBuff”. If it is a regular fork, the current PC is the fork PC, if it is

a delayed fork, the current PC would be whichever instruction was

currently being dispatched.

- At the end of the subroutine, the TAIL is activated, and all of its

resources are reset. The final RF of the parent core is copied to the

child core, and the parent’s PC is returned to the current PC.

• At this point, the parent thread will continue fetching and dispatching

instructions after the fork, but instead of re-executing them, the results are

read from the “fwdBuff”. If it hadn’t been for the property described above,

we wouldn’t have been able to take this approach.

• Meanwhile, the child thread starts fetching and executing instructions

starting from PC = lbl. As described in chapter 3, it starts by setting its own

induction variable and base addresses for arrays, then either loops back if

there are iterations remaining or exits the loop if there are no more iterations.

The thread uses the poison bits that are set using the spm instructions to mark

dependent instructions, but since it has the complete RF from its parent, it

still executes them to maintain correctness and a precise state. More details

about CFP Execution will be provided in subsections c and d.

b. Joining Implementation

Whenever the jn instruction is decoded in the dispatch stage, a check is made

to make sure the core has forked earlier. If the previous fork was never exercised, then

the join will be ignored, and the delayed fork will be discarded. If, however, the last

48

fork was executed, then the core will enter into joining state if it was in normal

execution or poison execution modes. The fetch and dispatch stages are stalled, and the

pipeline is left to drain. When the last remaining instruction in the RUU is committed,

the core is then deactivated, assuming that this core is the HEAD, and the HEAD

pointer is incremented. If the core was in CFP execution mode, then the jn instruction is

buffered since the core is not the HEAD yet.

c. CFP Execution and Normal Execution

During the dispatch stage, the first thing that is checked is the execution mode.

If we are in CFP execution, the following occurs:

• First, instructions are read from the fetch queue and decoded.

• If the instruction is not a fast forwarded instruction, it is executed. If it is a

fast forwarded instruction, then the results are read from the “fwdBuff”.

• The opcode is checked to determine whether the instruction requires special

considerations. Instructions that require special considerations include: frk,

jn, syscall, plw, and pl.d.

• Then, input operands are checked for poisoning. If any input operand is

poisoned, the instruction is marked as poisoned. If the poisoned instruction is

a store, its address needs to be added in the hash table.

• If a load instruction didn’t have any of its input registers poisoned, its

address has to be hashed into the hash table. If there is a matching store

address, then the load is marked as poisoned, if not, then the load is not

poisoned.

49

• If the instruction is marked as poisoned, the output registers are first marked

as poisoned, then the instruction is checked in case it was a mispredicted

branch to stall the pipeline and wait for the parent thread to commit. This

approach is taken with mispredicted branches for simplicity, since

architecturally, the thread should restart if a poisoned branch mispredicts.

The mispredicted branch will recover when it is sent into execution in the

poisoned execution mode, and when it recovers a delay is set to model the

restart of the thread from the beginning. Then, the instruction is sent into the

DTB, and a NOP is sent to the RUU to occupy the required resources for this

instruction. When the DTB gets full, the thread will stall. If the instruction is

a store, the SRL counter is incremented. If the SRL is full, the thread also

stalls.

• If the instruction is not poisoned, we should first clear the poison bits of the

output registers. If the instruction is a store, the address should also be

removed from the hash table if it was already there. Finally, the instruction is

sent to the RUU and LSQ to continue its flow in the pipeline.

If we are in normal execution, then the steps are similar to the ones described

above except for the poisoning. In other words, instructions are fetched, decoded,

executed or read from the fwdBuff, and then sent to the RUU and LSQ.

d. Poisoned Execution

If the execution mode in the dispatch stage was poisoned execution, the

following occurs:

50

• Instead of reading the instructions from the fetch queue, instructions are read

from the DTB one by one.

• The instructions are then decoded, but not executed (since they have already

been executed before sending them to the DTB).

• The instruction’s opcode is also checked for special considerations. In this

case, the only special consideration is the jn instruction.

• Finally, the instruction is sent to the RUU and LSQ to flow through the

pipeline.

e. Chunks

In order to implement forking on a loop in chunks, the following

considerations were taken:

• A counter was used to track the current chunk iteration, this register was

called “chunk_iter”. And the chunk value is saved in the regs_CHNK

register when the scv instruction executes.

• When forking, first, the chunk iterate is incremented if the chunk value is

larger than 0. Then, the forking algorithm described above is applied only if

the chunk value is 0 (i.e. no chunks) or if the chunk iterate is 1 (i.e. this is the

first iteration in the chunk, and it has to fork the new thread). For any chunk

iterate larger than 1, the fork instruction only increments the chunk iterate.

• When joining, the joining algorithm described above is applied only if the

chunk value is 0 (i.e. no chunks) or if the chunk iterate is equal to the chunk

value, meaning that we have reached the end of the chunk and this thread has

51

to join. For any chunk iterate value less than the chunk value, the join is

ignored.

B. The openDOE API

To implement the openDOE API, the gcc compiler and the assembler have to

be altered to compile our openDOE directives, translate them into openDOE

instructions, and assemble these instructions into binary. However, since the compiler

was out of the scope of our work, we only added the new instructions into the assembler

so that it can understand them and translate them to binary. To replace the compiler, we

manually implemented the algorithm described in the project description. This was done

by using the compiler to generate the assembly of the application, then inserting the new

instructions manually into that assembly code. The code was then assembled using the

assembler that we altered to generate the final binary file that was used as an input to

the simulator.

52

 CHAPTER V

METHODOLOGY

In order to test our simulator, the following process was used. We started by

identifying three numerical benchmarks from the ACM library for numerical

applications. These benchmarks varied between applications that are hard to parallelize

in openMP because of the dependent nature of the algorithm and will therefore require a

major code rewrite, and applications that cannot be parallelized by openMP since the

algorithm contains structures that are not supported by openMP (while loops and

conditional breaks). The benchmarks were compiled using the cross-gcc compiler for

the PISA instruction set architecture, and the corresponding assembly was generated.

We then manually inspected the assembly code and manually modified it and inserted

the new openDOE instructions based on the algorithms we discussed in the above

examples in Chapter 3. Ideally, this is supposed to be done by the compiler, but since

developing a compiler is beyond our scope we took the approach of manually adding

the instructions. After adding the instructions into the assembly, we assembled the final

code and generated the binary that was then executed on the sim-outorder model of

SimpleScalar.

A. Benchmarks Used

In order to test our simulator, we used three real life benchmarks, and a couple

of simple benchmarks that we wrote ourselves to test the functionality. The real life

benchmarks were all taken from [21], and they all represent numerical applications that

are hard to parallelize using openMP. The openMP equivalent of the Romberg

53

algorithm is found in Appendix A. It can be easily inferred that the openMP equivalent

is much more complicated that the openDOE version of the code.

1. Newton Raphson Method Algorithm

The Newton-Raphson method is an algorithm used to approximate the root of a

function. It is an iterative algorithm which contains two properties that make it un-

parallelizable in openMP: 1) the loop in the algorithm is a while loop, and while loops

cannot be parallelized using openMP, and 2) the loop has a conditional break, which is

also not allowed in openMP. In each iteration, the algorithm calculates a new

approximation using the formula defined by the Newton Raphson method: 𝑥𝑥1 = 𝑥𝑥0 −

𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)

. If 𝑎𝑎𝑎𝑎𝑠𝑠 �𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)

� < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜, then the root is found (x0) and the algorithm exits

the loop. If not, it sets x0 = x1 and repeats. Note that we removed the conditional break

because we still haven’t supported conditional breaks yet; more details can be found in

the future works section. If a certain number of maximum iterations pass, the loop exits

without converging to a root. A pseudo code of the algorithm (with chunks) is provided

in Figure 12, and the actual algorithm is found in Appendix A along with its assembly.

54

Figure 12 - Pseudo Code for Newton's Algorithm: left – C code, right – Assembly code

It is clear from the code that the shared variable between each two successive

iterations is x0, therefore it was declared in the openDOE depend clause. The code was

then compiled using the following Linux command:

sslittle-na-sstrix-gcc -S -fverbose-asm -g -O2 newton_short.c -o newton_short.s

After compiling the algorithm and generating its assembly, we inspected the output to

determine how and where to place the new instructions based on the algorithm provided

above. We found out that x0 was placed by the compiler in register $f4 and was used

throughout the loop without reading or writing to memory, therefore we needed to

poison the corresponding register. The spm instruction was added before the frk

instruction at the beginning of the loop to mark $f4 as poisoned. Note that since $f4 is

the 5th floating point register, the mask would be 0…0100002 = 0x10 and the instruction

would be spm.f 0x10. After the frk, the loop body remains the same. Before the end of

the loop, the jn instruction is placed followed by the fork’s label “f0” after which the

induction variable is incremented, checked, and the branch is placed. This way, each

55

thread starts at f0 by incrementing its own induction variable, then it compares it to the

maximum iteration value, and either branches back to fork a new thread and execute the

loop body, or skips the branch and commences with the exit routine.

After adding the assembly instructions, the assembly file was then assembled

using the following Linux command to generate the binary file:

sslittle-na-sstrix-gcc –o newton_short newton_short.s

The binary file is then simulated using the DOE SimpleScalar model using the

following command:

./sim-outorder newton_short

The results were obtained from the simulator output, and they will be discussed in the

next chapter.

2. Romberg Algorithm

The Romberg Method is an algorithm used to calculate the integral of a

function using the Romberg Array. It is an iterative algorithm that uses a two

dimensional array R[11][11] to calculate the integral of the function 𝑓𝑓(𝑥𝑥) = 1
1−𝑥𝑥

. The

equations defining the Romberg method can be found on the Wikipedia article. It starts

by initializing R[0][0], then enters an outer loop. The outer loop contains two inner

loops. The first one is used to calculate a sum by accumulation. Following that loop,

R[i][0] is calculated. Finally, the second inner loop is used to calculate R[i][j] for j from

1 to I, which is a function of R[i][j-1] and R[i-1][j-1]. A pseudo code of the algorithm is

presented in Figure 13 and the full code can be found in Appendix A. This algorithm is

a good candidate because it is very hard to parallelize it using openMP since it contains

56

a lot of scalars, and loops within loops which will make parallelizing it in openMP very

complicated. The openMP version of this algorithm is also provided in Appendix A.

Figure 13 - Pseudo Code for Romberg Algorithm: left – C code, right – Assembly code

In this case, there were multiple approaches that we considered. Because of all

the different loops, different options were parallelizing the outer loop, parallelizing each

inner loop on its own, parallelizing only the second inner loop, considering each loop as

a section and parallelizing the outer loop as two sections, etc… We started with the

option of parallelizing the outer loop. In that case, the dependent variable between

different iterations of the outer loop is anything that accesses R[i-1]. We compiled the

code using the same Linux command presented above, and started working on the

generated assembly file. It was evident that since R is an array, the different required

entries were loaded from memory and then stored into memory whenever they needed

to be used. Hence, no register poisoning was initialized, instead all the l.d instructions

that were used to load instances of R[i-1] were replaced with the pl.d instruction. There

are only two such instances, one while calculating R[0][0], and another while

calculating R[i][j] in the second inner loop. At the beginning of the outer loop, the frk

57

instruction is placed. After that, the loop body is the same with the changes we

described above (pl.d instead of l.d in certain instances). Finally, the jn instruction is

placed, followed by “f0”, the label of the fork instruction, after which the base

addresses of all arrays are calculated and the induction variable is incremented,

compared to the maximum iterate, and the branch is placed. Thus, every new thread

starts at “f0”, calculates its base addresses and induction variable, then either loops

back and forks a new thread or exits the loop if the loop is complete.

The new assembly file was also assembled using the same instruction

described above, then the output binary was simulated using the DOE model. The

results were promising, but we didn’t get as much improvement as we expected due to

load unbalancing, since the thread sizes were increasing every iteration. This, along

with a proposed solution, will be discussed in the results and recommendation sections.

3. Tri Diagonal Matrix Algorithm

The Tri-Diagonal Matrix Algorithm is a simplified form of Gaussian

elimination used in linear algebra. Since the algorithm is quite complex, and its details

are out of the scope of this work, a description can be found on the Wikipedia page for

the algorithm. As far as the code is concerned, it includes a set of loops. Most of them

are small loops that initialize the arrays and set the values for some arrays, and do not

have any dependence between the iterations, and therefore we are not interested in these

loops. The loop that is of interest to us is shown in the pseudo code of Figure 14. Every

iteration, it updates c_star[i] and d_star[i] as a function of c_star[i-1] and d_star[i-1],

therefore the shared variables are c_star[] and d_star[]. After compiling the C code of

58

the application, we changed the assembly to match that shown in Figure 14. Since the

loop is small, we decided to implement chunks in it, therefore the same algorithm

described in Chapter 3 was used here (Notice the increment and decrement of the

induction variable and base addresses by a value relative to the chunk value). In the

loop body, all the loads of c_star[i-1] and d_star[i-1] have been replaced by pl.d. The

rest of the code is similar to what has been described in the past 2 subsections. The full

C Code and Assembly for this algorithm can be found in Appendix A.

Figure 14 – Pseudo Code for Tri Diagonal Algorithm: left – C code, right – Assembly code

Note: A modified version of the Tri Diagonal loop was also used where we replaced

c_star[i-1] and d_star[i-1] with c[i-1] and d[i-1] respectively. This makes the loop a

59

completely parallel loop without any dependence and the intention behind this is

showing how a highly-parallel algorithm would function with our architecture.

4. Functional Testing Benchmarks

The following simple benchmarks were used for functional testing to make

sure different parts of the simulator were working.

a. Parallel Sections

The first benchmark was a simple application where three functions are called

sequentially, and each call depends on the output of the previous function call. This

benchmark was used to test the parallel sections construct. Figure 15 below represents a

pseudo code of the parallel sections C algorithm, followed by the pseudo code of the

respective assembly.

Figure 15 - Parallel Sections Examples: left – C code, right – Assembly code

The openDOE directives were added to the C code as shown in the figure, and

then the code was compiled as described above. In the generated assembly, before each

60

function call, a frk was placed pointing to the next function call. Before each fork, the

spm instruction was used to mark the poisoned registers, and before each label (c1 and

c2) the jn instruction was placed. Between the frk and jn instructions is the prologue, the

actual call, and the epilogue for each function call. Since the second thread requires

variable ‘y’ from the first thread, and since this variable is stored in register $18, the

mask for spm.g was 0…010000000000000000002 = 0x40000. Similarly for the third

thread, the variable, ‘z’, is stored in register $17 and the corresponding mask is

0x20000. This benchmark was only used to test the functionality of the parallel sections;

no actual results were measured because it is not a representative benchmark for

performance.

b. Chunks

In order to test out the chunks, a simple test loop was used. The loop C code is

shown in Figure 16 along with its assembly. The loop works on the array A[]

calculating the different entries as a function of the previous entry. The chunk(5) clause

is used, setting the chunk value to 5, meaning that each thread executes 5 iterations

instead of 1.

The openDOE parallel for directive was added to the C code along with the

depend and chunk clauses. The code was compiled, and in the generated assembly the

following changes were made. As described in the project description, the first thing

that should was done is adding the scv and frk instructions at the beginning of the loop.

Also, the base addresses and induction variable are incremented and then decremented

by a value relative to the chunk size. Then comes the loop body, which remains the

61

same with the exception of the plw instruction that has to be used to load A[i-1],

followed by the incrementing of the base addresses and the induction variable, which in

turn are followed by the jn instruction. The fork label “f0” is placed after these

instructions, and then the induction variable is checked and the branch is placed.

Figure 16 - Chunk Example

This way, each thread starts at “f0”, with its required induction variable (i.e. thread 1

starts at 6, thread 2 starts at 11), and base addresses of its arrays. It checks the induction

variable and either loops back or exits the loop. This is similar to the algorithm

described in Chapter 3 above. This benchmark is also only used for functional

simulation and will not be discussed in the results section.

62

B. Testing Process

In order to test the DOE performance simulator, we first used the “functional”

benchmarks described above to make sure that the simulator is functionally correct.

During this stage, we found some major bugs and fixed them on the way. Once we

made sure that the simulator was free of major bugs, we ran the three benchmarks

described above and extracted the time spent executing the loop of interest. To compare

our results, we used the baseline sim-outorder model. The baseline model was modified

to have the same parameters and buffer sizes as the DOE model. The same benchmarks

were then run on the baseline model, and a dispatch trace was used to extract the time

spent within the same loop of interest. Both numbers were then compared. Some of the

benchmarks did not give positive results at first, and therefore we ran them with

different configurations, changing the number of iterations in the loop, and using

different chunk sizes.

63

CHAPTER VI

RESULTS

In this chapter we will discuss the results that we got from running the three

benchmarks (Newton’s Algorithm, Romberg Algorithm, and Tri Diagonal Algorithm)

on the DOE simulator, while using the openDOE API to parallelize them, in comparison

to running them on the baseline sim-outorder model. Table 5 below represents the

percent change in cycle time between running the loop on openDOE, with the specified

configuration, and running it on the baseline sim-outorder model.

 Configuration

 Iterations Chunks %
Change

Newton

7 0 -272.22
20 5 -54.24
20 0 -88.81

100 20 1.74
100 0 -32.25

Romberg 10 0 41.19

Tri
Diagonal

9 3 -46.41
100 10 8.60
200 10 10.25
200 0 -24.16

Modified 200 10 70
Table 5 – Results

A. Newton’s Algorithm

First of all, we started off with 7 iterations for the Newton Algorithm loop, and

without any chunks. When we simulated that benchmark, the results were horrible. As

shown in the table above, we got a 270% decrease in performance with respect to the

64

base model. This was due primarily to the fact that the loop is small. Parallelizing it

added a huge amount of overhead due to the delays that are added for copying the

register files between forks and executing the stores in the SRL at the end of poisoned

execution. Because of that, we decided to increase the number of iterations and

implement chunks to make the number of instructions executed by a thread larger; this

way the overhead would be small relative to the number of instructions that the thread is

actually executing. We started off with 20 iterations and chunks of 5. The results were

better, but we still didn’t get positive performance (50% decrease from the table). We

then went up to 100 iterations and chunks of 20. At this number, we were able to

breakeven with a 1% increase in performance relative to the base model. During the

testing, we tried out 20 iterations and 100 iterations without any chunks. We found that

the total time for 20 iterations and no chunks was 557 cycles compared to 455 cycles

with chunks of size 5. Similarly with 100 iterations and no chunks we got 2735 cycles

compared to 2032 with chunks of 20. This means that applying chunks gave us 18%

better performance with 20 iterations and 26% with 100 iterations. This proved the

benefit of utilizing chunks, and thus justifies our decision of adding it to our design.

B. Romberg Algorithm

The outer loop of the Romberg Algorithm has 10 iterations. When we

simulated it on the DOE model, we found that executing the loop took 22429 cycles

compared to 38136 cycles on the baseline model. This gives us a good 41% increase in

performance. We anticipated better performance increase, however the problem with

this algorithm is the load imbalance. The inner loops get bigger every iteration,

65

especially the first one which loops from 1 till 2i giving it an exponential increase. This

phenomenon caused the threads to almost double in size every time a new thread is

forked. Further work will be done to overcome this issue and will be described in the

future works section.

C. Tri Diagonal Algorithm

The trend of the Tri Diagonal Algorithm was similar to that of Newton’s

Algorithm but a little more positive. We started off with 9 iterations and chunks of size

3. This gave us 224 cycles for DOE compared to 153 for the baseline model, which is a

46% degradation in performance. We then increased the numbers to 100 iterations with

chunks of size 10, this gave us better results: 2063 cycles for DOE and 2257 cycles for

the baseline (around 8% performance increase). Finally, we increased the number of

iterations to 200 while keeping the chunk size equal to 10, this gave us 4090 cycles for

DOE compared to 4557 for the baseline model, or around 10% increase in performance.

Again, to appreciate the value of chunks, we tried running the benchmark with 200

iterations and without chunks. We got 5658 cycles, or about 40% less than the number

we got with chunks of size 10. We also ran the modified version of Tri Diagonal which

does include any dependence in the loop. With this highly parallel version we were able

to gain around 70% performance increase, which is very optimistic given the minimal

effort required by the programmer.

66

D. Effect of Chunks

Figure 17 - Chunk Results

In order to study the effect of chunks, we used the loop in the Tri Diagonal

algorithm with two different configurations (100 iterations and 200 iterations) and

varied the chunk size from 0 to 100. We ran all the configurations on the SimpleScalar

DOE model and registered the number of cycles needed in the loop for each case. The

results we got are shown in the graph above. It can be inferred from the graph that the

optimal chunk size is 10. This is due to the size of an iteration within the loop and the

resulting size of the thread. Having chunks smaller or larger than 10 will result in a

thread size that is either too small or too large with respect to the hardware resources

available and therefore the efficiency will drop. Note that the red mark on the orange

graph (100 iterations, chunk size 5) represents a discrepancy. It is an erroneous result

since the simulator did not function correctly while executing this configuration, and

therefore should be disregarded.

3000

4000

5000

6000

7000

8000

9000

0 5 10 20 25 50 100

Cy
cl

es

Chunk Size

Number of Cycles vs. Chunk Size for Tri Diagonal
Algorithm

200 iterations 100 iterations

67

E. Comparison to OpenMP

The three benchmarks we tested suffer limitations when it comes to

parallelizing them with openMP.

• For the case of the Newton algorithm, the algorithm consist of a small loop

with a severe amount of dependence between the iterations as well as

dependence within each iteration itself. The ratio of parallel to dependent

instructions is severely low leaving very minimal room for parallelization. In

addition to that the nature of the loop constitutes a problem for openMP

since both while loops and dynamic conditional breaks are not supported.

This means that it requires a major rewrite of the code which is not feasible

given the minimal parallel potential of the loop.

• For the case of the Romberg Algorithm, while referring to appendix A

section B one can see the huge effort required by the programmer to

parallelize the loop in openMP. Due to the highly sequential nature of the

loop and the fact that it contains scalar quantities along with vector

quantities, parallelizing the loop in openMP requires a major rewrite of the

loop. Even with the rewrite, we got performance degradation by almost 30%

compared to the sequential execution of the algorithm.

• Finally, for the case of the Tri Diagonal algorithm, the loop iterations are

highly dependent on each other and also constitutes of computations

involving scalar and vector quantities. This makes parallelizing the loop

challenging in openMP and also requires a major rewrite of the code.

68

Therefore, we can infer, that even though some of these applications can be

parallelized by openMP, the effort required by the programmer is very high and

requires a major rewrite of the code compared to the solution that openDOE

provides.

69

CHAPTER VII

CONCLUSION AND FUTURE WORK

Traditionally, uni-core processors have been the trend. And designers have

been capable of achieving performance increase through architectural enhancements

and increasing the frequency at which the processor runs. However, the rapid increase

in the size of transistors has caused this trend to come to an end due to the power wall.

Hence, designers opted to reducing the frequencies, while making use of the large

number of transistors by transforming the chip into a multicore chip. Multicore

processors were very helpful in aiding multi-tasking and multi-threading on computers.

However, a very important question was raised: How can we efficiently make use of the

multiple cores available on modern processors to increase the performance of a

sequential application. Many solutions were presented. The hardware solutions were

SpMT, in all of it variations and forms, that provided new architectures with supporting

compilers that were capable of speculatively partitioning a sequential application into

multiple threads and running these threads concurrently on multiple cores. Software

solutions included APIs, like openMP, which allowed the programmer to manually

parallelize a sequential application by using certain compiler directives. All of these

solutions were beneficial to a certain extent, however they lacked in two areas: 1) the

overhead in delays and power consumption that SpMT and openMP created, due to

inter-core communication and stalling, makes these architectures unfeasible for

applications with a lot of dependencies between the threads, and 2) the effort required

by the programmer for parallelizing applications using the APIs like openMP is huge,

and many applications remain unparallelizable, or very difficult to parallelize and

70

require complete code rewrites. Therefore, we presented a solution for the

aforementioned problem, the DOE architecture and openDOE API. Through its latency

tolerant cores, and its CFP-like execution of inter-thread dependent instructions, DOE

cores buffer dependent instructions in the DTB, allowing the independent instructions to

flow through the pipeline, then replays the buffered instructions when the parent thread

commits. This approach solved the issue of delays and communication due to the inter-

core dependences. The API is a modified version of openMP that makes the effort

required by the programmer much simpler. We built upon previous work done on the

topic [12] [14] by presenting a cycle accurate simulator that uses the algorithm we

described in the implementation section, and including the support for chunks and

delayed forks in the simulator. We presented the architecture and the API, and provided

a description of both. We then provided the details of the performance simulator and

how we implemented on SimpleScalar. Finally, we discussed the benchmarks we used

and provided the results. Based on what we found, this is a promising field of study that

has potential to be advanced. We were able to get between 40 and 70 percent increase in

performance on applications that are considered very difficult to parallelize.

Our work doesn’t end here. The following list provides future plans will be

worked on for this project:

• Although our architecture supports conditional breaks in loops, we still

didn’t implement this feature. To make this work, an instruction would be

added that would flush the child cores of the breaking thread before it exits

the loop.

71

• For now, the chunk size has to be a multiple of the maximum number of

iterations in the loop. We are planning on removing this restriction, either

architecturally or through the help of the compiler.

• Even though we got 40% performance increase for the Romberg algorithm,

we are working on finding a solution for such cases of load imbalance. A

proposed solution is adding a predictor which predicts whether to fork or not

based on the size of the previously forked threads. This will make the

threads’ sizes closer to each other.

72

APPENDIX A

BENCHMARK C CODE AND ASSEMBLY

A. Newton’s Algorithm

1. C/openDOE Code

#include<stdio.h>
#include<math.h>
int main()
{
 double x0,h,err,root,x1;
 int miter,iter;
 x0 = 2;
 err = 0.0000000001;
 miter = 20;
 iter=1;
#pragma doe parallel while depend(x0) chunk(5)
 while(iter<=miter)
 {
 h= ((x0) * (x0) - 5)/(2*(x0));
 x1=x0-h;
 if(fabs(h)<err)
 {
 root=x1;
 }
 else
 x0=x1;
 iter++;
 }
}

2. DOE Assembly

main:
 .frame $sp,24,$31 # vars= 0, regs= 1/0, args= 16, extra= 0
 .mask 0x80000000,-8
 .fmask 0x00000000,0
 .def x0; .val 36; .scl 4; .type 0x7; .endef
 .def h; .val 32; .scl 4; .type 0x7; .endef
 .def err; .val 40; .scl 4; .type 0x7; .endef
 .def x1; .val 32; .scl 4; .type 0x7; .endef
 .def miter; .val 4; .scl 4; .type 0x4; .endef

73

 .def iter; .val 3; .scl 4; .type 0x4; .endef
 subu $sp,$sp,24
 sw $31,16($sp)
 jal __main

 .loc 1 12
 .set noreorder
 l.d $f4,$LC0

 .loc 1 13
 .set reorder
 .set noreorder
 l.d $f8,$LC1

 .loc 1 14
 .set reorder
 li $4,0x00000014 # 7

 .loc 1 16
 li $3,0x00000001 # 1

 .loc 1 18
 mov.d $f6,$f4
$L16:
 .loc 1 28
 .set noreorder
 addu $3,$3,5
 scv 5
 spm.f 0x10
 frk f0
 subu $3,$3,5
 .set reorder

 .loc 1 20
 mul.d $f0,$f4,$f4
 add.d $f2,$f4,$f4
 sub.d $f0,$f0,$f6
 div.d $f0,$f0,$f2

 .loc 1 22
 abs.d $f2,$f0

 .loc 1 21
 sub.d $f0,$f4,$f0

 .loc 1 22

74

 .set noreorder
 c.lt.d $f2,$f8
 #nop
 .set reorder
 bc1t $L18

 .loc 1 27
 mov.d $f4,$f0
$L18:
 .loc 1 28
 addu $3,$3,1
 .set noreorder
 jn
f0:

 .loc 1 29
 slt $2,$4,$3
 beq $2,$0,$L16

 .loc 1 30
 la $4,$LC2
 jal printf

 .loc 1 31
 lw $31,16($sp)
 addu $sp,$sp,24
 j $31
 .end main

3. PISA Assembly

main:
 .frame $sp,24,$31 # vars= 0, regs= 1/0, args= 16, extra= 0
 .mask 0x80000000,-8
 .fmask 0x00000000,0
 .def x0; .val 36; .scl 4; .type 0x7; .endef
 .def h; .val 32; .scl 4; .type 0x7; .endef
 .def err; .val 40; .scl 4; .type 0x7; .endef
 .def x1; .val 32; .scl 4; .type 0x7; .endef
 .def miter; .val 4; .scl 4; .type 0x4; .endef
 .def iter; .val 3; .scl 4; .type 0x4; .endef
 subu $sp,$sp,24
 sw $31,16($sp)
 jal __main

75

 .loc 1 12
 .set noreorder
 l.d $f4,$LC0

 .loc 1 13
 .set reorder
 .set noreorder
 l.d $f8,$LC1

 .loc 1 14
 .set reorder
 li $4,0x00000064 # 100

 .loc 1 16
 li $3,0x00000001 # 1

 .loc 1 18
 mov.d $f6,$f4
$L16:
 .loc 1 20
 mul.d $f0,$f4,$f4
 add.d $f2,$f4,$f4
 sub.d $f0,$f0,$f6
 div.d $f0,$f0,$f2

 .loc 1 22
 abs.d $f2,$f0

 .loc 1 21
 sub.d $f0,$f4,$f0

 .loc 1 22
 .set noreorder
 c.lt.d $f2,$f8
 #nop
 .set reorder
 bc1t $L18

 .loc 1 27
 mov.d $f4,$f0
$L18:

 .loc 1 28
 addu $3,$3,1

76

 .loc 1 29
 slt $2,$4,$3
 beq $2,$0,$L16
 .set reorder
 .loc 1 30
 la $4,$LC2
 jal printf

 .loc 1 31
 lw $31,16($sp)
 addu $sp,$sp,24
 j $31
 .end main

B. Romberg Algorithm

1. C/openDOE Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int pow1(int, int);
void main()
{
 int n = 10;
 double a = 0.0;
 double b = 2.0;
 double R[11][11];
 int i, j, k;
 double h, sum;
 h = b - a;
 R[0][0] = 0.5 * h * ((1.0/ (1.0 + a)) + (1.0/ (1.0 + b)));
#pragma doe parallel for depend(R[])
 for (i = 1; i <= n; i++)
 {
 h *= 0.5;
 sum = 0;
 for (k = 1; k <= pow1(2,i)-1; k+=2)
 {
 sum += 1.0/(1.0 + a + k * h);
 }
 R[i][0] = 0.5 * R[i-1][0] + sum * h;
 for (j = 1; j <= i; j++)
 {

77

 R[i][j] = R[i][j-1] + (R[i][j-1] - R[i-1][j-1]) / (pow1(4,j)-1);
 }
 }
}

2. C/openMP Code

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "omp.h"

void main()
{
 int n = 10;
 double a = 0.0;
 double b = 2.0;
 double R[n+1][n+1];

 int i, j, k;
 double sum1, h1;
 int powi[n], pow4[n];

 h1 = b - a;
 R[0][0] = 0.5 * h1 * ((1.0/ (1.0 + a)) + (1.0/ (1.0 + b)));

 omp_set_num_threads(4);

 double h[n],sum[n];

#pragma omp parallel for shared (h,powi,sum)
 for (i = 0; i < n; i++){
 sum[i] = 0;

 h[i] = h1*pow(0.5,i+1);

 powi[i] = pow(2,i+1)-1;

 pow4[i] = pow(4,i+1)-1;

 }

 for (i = 1; i <= n; i++)

78

 {
 sum1 = 0;
#pragma omp parallel for reduction(+:sum1) shared (sum,h)

 for (k = 1; k <= powi[i-1]; k+=2)
 {
 sum1 += 1.0/(1.0 + a + k * h[i-1]);
 }

 sum[i-1] = sum1;

 }

#pragma omp parallel for ordered shared (R,sum,h)
 for (i = 1; i <= n; i++)
 {
 R[i][0] = 0.5 * R[i-1][0] + sum[i-1] * h[i-1];
 }

#pragma omp parallel for ordered shared (R) private(j)

 for (i = 1; i <= n; i++)
 {
 for (j = 1; j <= i; j++)
 {
 R[i][j] = R[i][j-1] + (R[i][j-1] - R[i-1][j-1]) / (pow4[j-1]);
 }
 }

}

3. DOE Assembly

main:
 .frame $sp,1064,$31 # vars= 968, regs= 9/5, args= 16, extra= 0
 .mask 0x80ff0000,-48
 .fmask 0x3ff00000,-4
 .def n; .val 23; .scl 4; .type 0x4; .endef
 .def a; .val 60; .scl 4; .type 0x7; .endef
 .def R; .val -1048; .scl 1; .dim 11,11; .size
 968; .type 0xf7; .endef
 .def i; .val 19; .scl 4; .type 0x4; .endef
 .def j; .val 17; .scl 4; .type 0x4; .endef
 .def k; .val 16; .scl 4; .type 0x4; .endef
 .def h; .val 54; .scl 4; .type 0x7; .endef
 .def sum; .val 52; .scl 4; .type 0x7; .endef

79

 subu $sp,$sp,1064
 sw $31,1016($sp)
 sw $23,1012($sp)
 sw $22,1008($sp)
 sw $21,1004($sp)
 sw $20,1000($sp)
 sw $19,996($sp)
 sw $18,992($sp)
 sw $17,988($sp)
 sw $16,984($sp)
 s.d $f28,1056($sp)
 s.d $f26,1048($sp)
 s.d $f24,1040($sp)
 s.d $f22,1032($sp)
 s.d $f20,1024($sp)
 jal __main

 .loc 1 23
 li $23,0x0000000a # 10

 .loc 1 24
 .set noreorder
 mtc1 $0,$f22
 mtc1 $0,$f23

 .loc 1 35
 .set reorder
 li $19,0x00000001 # 1
 .set noreorder
 l.d $f26,$LC0
 .set reorder
 addu $22,$sp,16
 addu $20,$sp,104
 move $21,$0

 .loc 1 32
 mov.d $f28,$f22

 .loc 1 35
 mov.d $f24,$f22

 .loc 1 33
 s.d $f22,16($sp)

 .loc 1 35
$L25:

80

 .loc 1 38
 .set noreorder
 frk f0
 mtc1 $0,$f20
 mtc1 $0,$f21

 .loc 1 39
 .set reorder
 li $16,0x00000001 # 1

 .loc 1 37
 mul.d $f22,$f22,$f26

 .loc 1 39
$L26:
 li $4,0x00000002 # 2
 move $5,$19
 jal pow1
 subu $2,$2,1
 slt $2,$2,$16
 bne $2,$0,$L27

 .loc 1 41
 mtc1 $16,$f2
 #nop
 cvt.d.w $f2,$f2
 mul.d $f2,$f2,$f22
 add.d $f0,$f28,$f24
 add.d $f0,$f0,$f2
 div.d $f0,$f24,$f0
 add.d $f20,$f20,$f0

 .loc 1 39
 addu $16,$16,2
 j $L26
$L27:

 .loc 1 43
 mul.d $f0,$f20,$f22
 addu $2,$22,$21
 .set noreorder
 pl.d $f2,0($2)
 #nop
 .set reorder
 mul.d $f2,$f2,$f26
 add.d $f2,$f2,$f0

81

 .loc 1 44
 li $17,0x00000001 # 1

 .loc 1 43
 s.d $f2,0($20)

 .loc 1 44
 blez $19,$L24
 addu $16,$20,8
 subu $18,$20,80
$L33:

 .loc 1 46
 li $4,0x00000004 # 4
 move $5,$17
 jal pow1
 .set noreorder
 pl.d $f4,-8($16)
 .set reorder
 .set noreorder
 l.d $f0,-8($18)
 #nop
 .set reorder
 sub.d $f0,$f4,$f0
 subu $2,$2,1
 mtc1 $2,$f2
 #nop
 cvt.d.w $f2,$f2
 div.d $f0,$f0,$f2
 add.d $f4,$f4,$f0

 .loc 1 44
 addu $17,$17,1
 slt $2,$19,$17
 addu $18,$18,8

 .loc 1 46
 s.d $f4,0($16)

 .loc 1 44
 addu $16,$16,8
 beq $2,$0,$L33

 .loc 1 35
 .set noreorder

82

$L24:

jn
f0:
 addu $20,$20,88
 addu $21,$21,88
 addu $19,$19,1
 slt $2,$23,$19
 beq $2,$0,$L25

 .loc 1 51
 .set reorder
 lw $31,1016($sp)
 lw $23,1012($sp)
 lw $22,1008($sp)
 lw $21,1004($sp)
 lw $20,1000($sp)
 lw $19,996($sp)
 lw $18,992($sp)
 lw $17,988($sp)
 lw $16,984($sp)
 l.d $f28,1056($sp)
 l.d $f26,1048($sp)
 l.d $f24,1040($sp)
 l.d $f22,1032($sp)
 l.d $f20,1024($sp)
 addu $sp,$sp,1064
 j $31
 .end main

4. PISA Assembly

main:
 .frame $sp,1064,$31 # vars= 968, regs= 9/5, args= 16, extra= 0
 .mask 0x80ff0000,-48
 .fmask 0x3ff00000,-4
 .def n; .val 23; .scl 4; .type 0x4; .endef
 .def a; .val 60; .scl 4; .type 0x7; .endef
 .def R; .val -1048; .scl 1; .dim 11,11; .size
 968; .type 0xf7; .endef
 .def i; .val 19; .scl 4; .type 0x4; .endef
 .def j; .val 17; .scl 4; .type 0x4; .endef
 .def k; .val 16; .scl 4; .type 0x4; .endef
 .def h; .val 54; .scl 4; .type 0x7; .endef
 .def sum; .val 52; .scl 4; .type 0x7; .endef
 subu $sp,$sp,1064

83

 sw $31,1016($sp)
 sw $23,1012($sp)
 sw $22,1008($sp)
 sw $21,1004($sp)
 sw $20,1000($sp)
 sw $19,996($sp)
 sw $18,992($sp)
 sw $17,988($sp)
 sw $16,984($sp)
 s.d $f28,1056($sp)
 s.d $f26,1048($sp)
 s.d $f24,1040($sp)
 s.d $f22,1032($sp)
 s.d $f20,1024($sp)
 jal __main

 .loc 1 23
 li $23,0x0000000a # 10

 .loc 1 24
 .set noreorder
 mtc1 $0,$f22
 mtc1 $0,$f23

 .loc 1 35
 .set reorder
 li $19,0x00000001 # 1
 .set noreorder
 l.d $f26,$LC0
 .set reorder
 addu $22,$sp,16
 addu $20,$sp,104
 move $21,$0

 .loc 1 32
 mov.d $f28,$f22

 .loc 1 35
 mov.d $f24,$f22

 .loc 1 33
 s.d $f22,16($sp)

 .loc 1 35
$L25:

84

 .loc 1 38
 .set noreorder
 mtc1 $0,$f20
 mtc1 $0,$f21

 .loc 1 39
 .set reorder
 li $16,0x00000001 # 1

 .loc 1 37
 mul.d $f22,$f22,$f26

 .loc 1 39
$L26:
 li $4,0x00000002 # 2
 move $5,$19
 jal pow1
 subu $2,$2,1
 slt $2,$2,$16
 bne $2,$0,$L27

 .loc 1 41
 mtc1 $16,$f2
 #nop
 cvt.d.w $f2,$f2
 mul.d $f2,$f2,$f22
 add.d $f0,$f28,$f24
 add.d $f0,$f0,$f2
 div.d $f0,$f24,$f0
 add.d $f20,$f20,$f0

 .loc 1 39
 addu $16,$16,2
 j $L26
$L27:

 .loc 1 43
 mul.d $f0,$f20,$f22
 addu $2,$22,$21
 .set noreorder
 l.d $f2,0($2)
 #nop
 .set reorder
 mul.d $f2,$f2,$f26
 add.d $f2,$f2,$f0

85

 .loc 1 44
 li $17,0x00000001 # 1

 .loc 1 43
 s.d $f2,0($20)

 .loc 1 44
 blez $19,$L24
 addu $16,$20,8
 subu $18,$20,80
$L33:

 .loc 1 46
 li $4,0x00000004 # 4
 move $5,$17
 jal pow1
 .set noreorder
 l.d $f4,-8($16)
 .set reorder
 .set noreorder
 l.d $f0,-8($18)
 #nop
 .set reorder
 sub.d $f0,$f4,$f0
 subu $2,$2,1
 mtc1 $2,$f2
 #nop
 cvt.d.w $f2,$f2
 div.d $f0,$f0,$f2
 add.d $f4,$f4,$f0

 .loc 1 44
 addu $17,$17,1
 slt $2,$19,$17
 addu $18,$18,8

 .loc 1 46
 s.d $f4,0($16)

 .loc 1 44
 addu $16,$16,8
 beq $2,$0,$L33

 .loc 1 35
$L24:
 addu $20,$20,88

86

 addu $21,$21,88
 addu $19,$19,1
 slt $2,$23,$19
 beq $2,$0,$L25

 .loc 1 51
 lw $31,1016($sp)
 lw $23,1012($sp)
 lw $22,1008($sp)
 lw $21,1004($sp)
 lw $20,1000($sp)
 lw $19,996($sp)
 lw $18,992($sp)
 lw $17,988($sp)
 lw $16,984($sp)
 l.d $f28,1056($sp)
 l.d $f26,1048($sp)
 l.d $f24,1040($sp)
 l.d $f22,1032($sp)
 l.d $f20,1024($sp)
 addu $sp,$sp,1064
 j $31
 .end main

C. Tri Diagonal Algorithm

1. C/openDOE Code

int main(int argc, char **argv) {
 int N = 101;
 int i = 0;
 double delta_x = 1.0/N;
 double delta_t = 0.001;
 double r = delta_t/(delta_x*delta_x);
 double a[N-1];
 double b[N];
 double c[N-1];
 double d[N];
 double f[N];
 double c_star[N];
 double d_star[N];
 for (i = 0; i < (N-1); i++)
 a[i] = c[i] = -r/2.0;
 for (i = 0; i < N; i++){
 b[i] = 1.0+r;

87

 d[i] = 0.0;
 f[i] = 0.0;
 c_star[i] = 0.0;
 d_star[i] = 0.0;
 }
 f[5] = 1; f[6] = 2; f[7] = 1;
 for (i=1; i<N-1; i++) {
 d[i] = r*0.5*f[i+1] + (1.0-r)*f[i] + r*0.5*f[i-1];
 }
 c_star[0] = c[0] / b[0];
 d_star[0] = d[0] / b[0];
#pragma doe parallel for depend(c_star[], d_star[])
 for (i=1; i<N; i++) {
 double m = 1.0 / (b[i] - a[i] * c_star[i-1]);
 c_star[i] = c[i] * m;
 d_star[i] = (d[i] - a[i] * d_star[i-1]) * m;
 }
 for (i=N-1; i-- > 0;) {
 f[i] = d_star[i] - c_star[i] * d[i+1];
 }
 return 0;
}

2. DOE Assembly

main:
 .frame $fp,56,$31 # vars= 8, regs= 7/0, args= 16, extra= 0
 .mask 0xc01f0000,-8
 .fmask 0x00000000,0
 .def N; .val 17; .scl 4; .type 0x4; .endef
 .def i; .val 4; .scl 4; .type 0x4; .endef
 .def r; .val 34; .scl 4; .type 0x7; .endef
 .def a; .val 12; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def b; .val 10; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def c; .val 11; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def d; .val 18; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def f; .val 16; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def c_star; .val 20; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef

88

 .def d_star; .val 19; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 subu $sp,$sp,56
 sw $fp,44($sp)
 move $fp,$sp
 sw $31,48($sp)
 sw $20,40($sp)
 sw $19,36($sp)
 sw $18,32($sp)
 sw $17,28($sp)
 sw $16,24($sp)
 jal __main

 .loc 1 3
 li $17,0x00000065 # 101

 .loc 1 7
 subu $sp,$sp,808
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 6
 .set reorder
 .set noreorder
 l.d $f2,$LC0

 .loc 1 7
 .set reorder
 addu $12,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 move $4,$0

 .loc 1 7
 addu $10,$sp,16
 subu $sp,$sp,808
 .set noreorder
 #.set volatile

89

 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 .set noreorder
 l.d $f4,$LC1

 .loc 1 7
 .set reorder
 addu $11,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 li $6,0x00000064 # 100

 .loc 1 7
 addu $18,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 move $5,$12

 .loc 1 7
 addu $16,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 move $3,$11

 .loc 1 7

90

 addu $20,$sp,16
 subu $sp,$sp,816
 addu $19,$sp,16
 #.set volatile
 lw $2,0($sp)
 #.set novolatile
$L5:

 .loc 1 20
 s.d $f4,0($3)
 s.d $f4,0($5)

 .loc 1 19
 addu $5,$5,8
 addu $3,$3,8
 addu $4,$4,1
 slt $2,$4,$6
 bne $2,$0,$L5

 .loc 1 21
 move $4,$0
 beq $17,$0,$L8
 move $8,$19
 move $7,$20
 move $6,$16
 .set noreorder
 mtc1 $0,$f4
 mtc1 $0,$f5
 .set reorder
 move $5,$18
 move $3,$10
 add.d $f6,$f2,$f4
$L10:

 .loc 1 22
 s.d $f6,0($3)

 .loc 1 23
 s.d $f4,0($5)

 .loc 1 24
 s.d $f4,0($6)

 .loc 1 25
 s.d $f4,0($7)

91

 .loc 1 26
 s.d $f4,0($8)

 .loc 1 21
 addu $8,$8,8
 addu $7,$7,8
 addu $6,$6,8
 addu $5,$5,8
 addu $3,$3,8
 addu $4,$4,1
 slt $2,$4,$17
 bne $2,$0,$L10
$L8:

 .loc 1 29
 .set noreorder
 mtc1 $0,$f4
 mtc1 $0,$f5
 .set reorder
 .set noreorder
 l.d $f0,$LC1

 .loc 1 31
 .set reorder
 li $4,0x00000001 # 1
 subu $6,$17,1
 slt $2,$4,$6

 .loc 1 29
 s.d $f4,40($16)
 s.d $f0,48($16)
 s.d $f4,56($16)

 .loc 1 31
 beq $2,$0,$L13
 addu $5,$18,8
 addu $3,$16,8
 sub.d $f8,$f4,$f2
 mul.d $f6,$f2,$f0
$L15:

 .loc 1 32
 .set noreorder
 l.d $f2,8($3)
 #nop
 .set reorder

92

 mul.d $f2,$f6,$f2
 .set noreorder
 l.d $f4,0($3)
 #nop
 .set reorder
 mul.d $f4,$f8,$f4
 .set noreorder
 l.d $f0,-8($3)
 #nop
 .set reorder
 mul.d $f0,$f6,$f0
 add.d $f2,$f2,$f4
 add.d $f2,$f2,$f0

 .loc 1 31
 addu $4,$4,1
 slt $2,$4,$6
 addu $3,$3,8

 .loc 1 32
 s.d $f2,0($5)

 .loc 1 31
 addu $5,$5,8
 bne $2,$0,$L15
$L13:

 .loc 1 35
 .set noreorder
 l.d $f0,0($11)
 .set reorder
 .set noreorder
 l.d $f2,0($10)
 #nop
 .set reorder
 div.d $f0,$f0,$f2
 s.d $f0,0($20)

 .loc 1 36
 .set noreorder
 l.d $f0,0($18)
 .set reorder
 .set noreorder
 l.d $f2,0($10)
 #nop
 .set reorder

93

 div.d $f0,$f0,$f2

 .loc 1 38
 li $4,0x00000001 # 1
 slt $2,$4,$17

 .loc 1 36
 s.d $f0,0($19)

 .loc 1 38
 beq $2,$0,$L18
 .set noreorder
 mtc1 $0,$f6
 mtc1 $0,$f7
 .set reorder
 addu $6,$19,8
 addu $9,$18,8
 addu $5,$12,8
 addu $3,$20,8
 addu $8,$11,8
 addu $7,$10,8
 .loc 1 38
 .set noreorder
$L20:
 addu $4,$4,10
 addu $7,$7,80
 addu $8,$8,80
 addu $3,$3,80
 addu $5,$5,80
 addu $9,$9,80
 addu $6,$6,80
 scv 10
 frk f3
 subu $4,$4,10
 subu $7,$7,80
 subu $8,$8,80
 subu $3,$3,80
 subu $5,$5,80
 subu $9,$9,80
 subu $6,$6,80
 .loc 1 39
$Lb0:
 .begin $Lb0 39
 .def m; .val 36; .scl 4; .type 0x7; .endef
$Le1:
 .bend $Le1 39

94

 l.d $f2,0($5)
 pl.d $f0,-8($3)
 #nop
 mul.d $f2,$f2,$f0
 l.d $f4,0($7)
 #nop
 sub.d $f4,$f4,$f2
 div.d $f4,$f6,$f4

 .loc 1 40
 l.d $f0,0($8)
 #nop
 mul.d $f0,$f0,$f4
 s.d $f0,0($3)

 .loc 1 41
 l.d $f2,0($5)
 pl.d $f0,-8($6)
 #nop
 mul.d $f2,$f2,$f0
 l.d $f0,0($9)
 #nop
 sub.d $f0,$f0,$f2
 mul.d $f0,$f0,$f4

 .loc 1 38
 addu $4,$4,1
 addu $7,$7,8
 addu $8,$8,8
 addu $3,$3,8
 addu $5,$5,8
 addu $9,$9,8

 .loc 1 41
 s.d $f0,0($6)

 .loc 1 38
 addu $6,$6,8
 jn
f3:
 slt $2,$4,$17
 bne $2,$0,$L20
$L18:

 .loc 1 44
 la $4,$LC2

95

 jal printf

 .loc 1 45
 subu $4,$17,1
 move $2,$4
 subu $4,$4,1
 blez $2,$L23
 sll $2,$4,3
 addu $7,$2,$16
 addu $6,$2,$19
 addu $5,$2,$20
 addu $3,$2,$18
$L25:

 .loc 1 46
 .set noreorder
 l.d $f2,0($5)
 .set reorder
 .set noreorder
 l.d $f0,8($3)
 #nop
 .set reorder
 mul.d $f2,$f2,$f0
 .set noreorder
 l.d $f0,0($6)
 .set reorder
 move $2,$4

 .loc 1 45
 subu $4,$4,1

 .loc 1 46
 sub.d $f0,$f0,$f2

 .loc 1 45
 subu $5,$5,8
 subu $3,$3,8
 subu $6,$6,8

 .loc 1 46
 s.d $f0,0($7)

 .loc 1 45
 subu $7,$7,8
 bgtz $2,$L25
$L23:

96

 .loc 1 48
$Lb2:
 .begin $Lb2 48
$Le3:
 .bend $Le3 48
 move $2,$0

 .loc 1 49
 move $sp,$fp # sp not trusted here
 lw $31,48($sp)
 lw $fp,44($sp)
 lw $20,40($sp)
 lw $19,36($sp)
 lw $18,32($sp)
 lw $17,28($sp)
 lw $16,24($sp)
 addu $sp,$sp,56
 j $31
 .end main

3. PISA Assembly

main:
 .frame $fp,56,$31 # vars= 8, regs= 7/0, args= 16, extra= 0
 .mask 0xc01f0000,-8
 .fmask 0x00000000,0
 .def N; .val 17; .scl 4; .type 0x4; .endef
 .def i; .val 4; .scl 4; .type 0x4; .endef
 .def r; .val 34; .scl 4; .type 0x7; .endef
 .def a; .val 12; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def b; .val 10; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def c; .val 11; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def d; .val 18; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def f; .val 16; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def c_star; .val 20; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 .def d_star; .val 19; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef
 subu $sp,$sp,56

97

 sw $fp,44($sp)
 move $fp,$sp
 sw $31,48($sp)
 sw $20,40($sp)
 sw $19,36($sp)
 sw $18,32($sp)
 sw $17,28($sp)
 sw $16,24($sp)
 jal __main

 .loc 1 3
 li $17,0x00000065 # 101

 .loc 1 7
 subu $sp,$sp,808
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 6
 .set reorder
 .set noreorder
 l.d $f2,$LC0

 .loc 1 7
 .set reorder
 addu $12,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 move $4,$0

 .loc 1 7
 addu $10,$sp,16
 subu $sp,$sp,808
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

98

 .loc 1 19
 .set reorder
 .set noreorder
 l.d $f4,$LC1

 .loc 1 7
 .set reorder
 addu $11,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 li $6,0x00000064 # 100

 .loc 1 7
 addu $18,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 move $5,$12

 .loc 1 7
 addu $16,$sp,16
 subu $sp,$sp,816
 .set noreorder
 #.set volatile
 lw $2,0($sp)
 #.set novolatile

 .loc 1 19
 .set reorder
 move $3,$11

 .loc 1 7
 addu $20,$sp,16
 subu $sp,$sp,816
 addu $19,$sp,16

99

 #.set volatile
 lw $2,0($sp)
 #.set novolatile
$L5:

 .loc 1 20
 s.d $f4,0($3)
 s.d $f4,0($5)

 .loc 1 19
 addu $5,$5,8
 addu $3,$3,8
 addu $4,$4,1
 slt $2,$4,$6
 bne $2,$0,$L5

 .loc 1 21
 move $4,$0
 beq $17,$0,$L8
 move $8,$19
 move $7,$20
 move $6,$16
 .set noreorder
 mtc1 $0,$f4
 mtc1 $0,$f5
 .set reorder
 move $5,$18
 move $3,$10
 add.d $f6,$f2,$f4
$L10:

 .loc 1 22
 s.d $f6,0($3)

 .loc 1 23
 s.d $f4,0($5)

 .loc 1 24
 s.d $f4,0($6)

 .loc 1 25
 s.d $f4,0($7)

 .loc 1 26
 s.d $f4,0($8)

100

 .loc 1 21
 addu $8,$8,8
 addu $7,$7,8
 addu $6,$6,8
 addu $5,$5,8
 addu $3,$3,8
 addu $4,$4,1
 slt $2,$4,$17
 bne $2,$0,$L10
$L8:

 .loc 1 29
 .set noreorder
 mtc1 $0,$f4
 mtc1 $0,$f5
 .set reorder
 .set noreorder
 l.d $f0,$LC1

 .loc 1 31
 .set reorder
 li $4,0x00000001 # 1
 subu $6,$17,1
 slt $2,$4,$6

 .loc 1 29
 s.d $f4,40($16)
 s.d $f0,48($16)
 s.d $f4,56($16)

 .loc 1 31
 beq $2,$0,$L13
 addu $5,$18,8
 addu $3,$16,8
 sub.d $f8,$f4,$f2
 mul.d $f6,$f2,$f0
$L15:

 .loc 1 32
 .set noreorder
 l.d $f2,8($3)
 #nop
 .set reorder
 mul.d $f2,$f6,$f2
 .set noreorder
 l.d $f4,0($3)

101

 #nop
 .set reorder
 mul.d $f4,$f8,$f4
 .set noreorder
 l.d $f0,-8($3)
 #nop
 .set reorder
 mul.d $f0,$f6,$f0
 add.d $f2,$f2,$f4
 add.d $f2,$f2,$f0

 .loc 1 31
 addu $4,$4,1
 slt $2,$4,$6
 addu $3,$3,8

 .loc 1 32
 s.d $f2,0($5)

 .loc 1 31
 addu $5,$5,8
 bne $2,$0,$L15
$L13:

 .loc 1 35
 .set noreorder
 l.d $f0,0($11)
 .set reorder
 .set noreorder
 l.d $f2,0($10)
 #nop
 .set reorder
 div.d $f0,$f0,$f2
 s.d $f0,0($20)

 .loc 1 36
 .set noreorder
 l.d $f0,0($18)
 .set reorder
 .set noreorder
 l.d $f2,0($10)
 #nop
 .set reorder
 div.d $f0,$f0,$f2

 .loc 1 38

102

 li $4,0x00000001 # 1
 slt $2,$4,$17

 .loc 1 36
 s.d $f0,0($19)

 .loc 1 38
 beq $2,$0,$L18
 .set noreorder
 mtc1 $0,$f6
 mtc1 $0,$f7
 .set reorder
 addu $6,$19,8
 addu $9,$18,8
 addu $5,$12,8
 addu $3,$20,8
 addu $8,$11,8
 addu $7,$10,8
$L20:

 .loc 1 39
$Lb0:
 .begin $Lb0 39
 .def m; .val 36; .scl 4; .type 0x7; .endef
$Le1:
 .bend $Le1 39
 .set noreorder
 l.d $f2,0($5)
 .set reorder
 .set noreorder
 l.d $f0,-8($3)
 #nop
 .set reorder
 mul.d $f2,$f2,$f0
 .set noreorder
 l.d $f4,0($7)
 #nop
 .set reorder
 sub.d $f4,$f4,$f2
 div.d $f4,$f6,$f4

 .loc 1 40
 .set noreorder
 l.d $f0,0($8)
 #nop
 .set reorder

103

 mul.d $f0,$f0,$f4
 s.d $f0,0($3)

 .loc 1 41
 .set noreorder
 l.d $f2,0($5)
 .set reorder
 .set noreorder
 l.d $f0,-8($6)
 #nop
 .set reorder
 mul.d $f2,$f2,$f0
 .set noreorder
 l.d $f0,0($9)
 #nop
 .set reorder
 sub.d $f0,$f0,$f2
 mul.d $f0,$f0,$f4

 .loc 1 38
 addu $4,$4,1
 slt $2,$4,$17
 addu $7,$7,8
 addu $8,$8,8
 addu $3,$3,8
 addu $5,$5,8
 addu $9,$9,8

 .loc 1 41
 s.d $f0,0($6)

 .loc 1 38
 addu $6,$6,8
 bne $2,$0,$L20
$L18:

 .loc 1 44
 la $4,$LC2
 jal printf

 .loc 1 45
 subu $4,$17,1
 move $2,$4
 subu $4,$4,1
 blez $2,$L23
 sll $2,$4,3

104

 addu $7,$2,$16
 addu $6,$2,$19
 addu $5,$2,$20
 addu $3,$2,$18
$L25:

 .loc 1 46
 .set noreorder
 l.d $f2,0($5)
 .set reorder
 .set noreorder
 l.d $f0,8($3)
 #nop
 .set reorder
 mul.d $f2,$f2,$f0
 .set noreorder
 l.d $f0,0($6)
 .set reorder
 move $2,$4

 .loc 1 45
 subu $4,$4,1

 .loc 1 46
 sub.d $f0,$f0,$f2

 .loc 1 45
 subu $5,$5,8
 subu $3,$3,8
 subu $6,$6,8

 .loc 1 46
 s.d $f0,0($7)

 .loc 1 45
 subu $7,$7,8
 bgtz $2,$L25
$L23:

 .loc 1 48
$Lb2:
 .begin $Lb2 48
$Le3:
 .bend $Le3 48
 move $2,$0

105

 .loc 1 49
 move $sp,$fp # sp not trusted here
 lw $31,48($sp)
 lw $fp,44($sp)
 lw $20,40($sp)
 lw $19,36($sp)
 lw $18,32($sp)
 lw $17,28($sp)
 lw $16,24($sp)
 addu $sp,$sp,56
 j $31
 .end main

106

APPENDIX B

SIMPLESCALAR CONFIGURATION

In the following appendix we will present the SimpleScalar configuration that

we used.

-fetch:ifqsize 32 # instruction fetch queue size (in insts)
-fetch:mplat 3 # extra branch mis-prediction latency
-fetch:speed 1 # speed of front-end of machine relative to execution core
-bpred bimod # branch predictor type
{nottaken|taken|perfect|bimod|2lev|comb}
-bpred:bimod 4096 # bimodal predictor config (<table size>)
-bpred:2lev 1 4096 12 1 # 2-level predictor config (<l1size> <l2size> <hist_size>
<xor>)
-bpred:comb 4096 # combining predictor config (<meta_table_size>)
-bpred:ras 16 # return address stack size (0 for no return stack)
-bpred:btb 1024 4 # BTB config (<num_sets> <associativity>)
-bpred:spec_update <null> # speculative predictors update in {ID|WB} (default
non-spec)
-decode:width 4 # instruction decode B/W (insts/cycle)
-issue:width 4 # instruction issue B/W (insts/cycle)
-issue:inorder false # run pipeline with in-order issue
-issue:wrongpath false # issue instructions down wrong execution paths
-commit:width 4 # instruction commit B/W (insts/cycle)
-ruu:size 128 # register update unit (RUU) size
-rs:size 60 # reservation stations (RS) size
-lsq:size 108 # load/store queue (LSQ) size
-lq:size 60 # The size of the load queue
-sq:size 48 # The size of the store queue
-cache:dl1 dl1:64:64:8:l # l1 data cache config, i.e., {<config>|none}
-cache:dl1lat 1 # l1 data cache hit latency (in cycles)
-cache:dl2 ul2:256:64:8:l # l2 data cache config, i.e., {<config>|none}
-cache:dl2lat 6 # l2 data cache hit latency (in cycles)
-cache:il1 il1:64:64:8:l # l1 inst cache config, i.e., {<config>|dl1|dl2|none}
-cache:il1lat 1 # l1 instruction cache hit latency (in cycles)
-cache:il2 dl2 # l2 instruction cache config, i.e., {<config>|dl2|none}
-cache:il2lat 6 # l2 instruction cache hit latency (in cycles)
-cache:flush false # flush caches on system calls

107

-cache:icompress false # convert 64-bit inst addresses to 32-bit inst equivalents
-mem:lat 120 4 # memory access latency (<first_chunk> <inter_chunk>)
-mem:width 8 # memory access bus width (in bytes)
-tlb:itlb itlb:16:4096:4:l # instruction TLB config, i.e., {<config>|none}
-tlb:dtlb dtlb:32:4096:4:l # data TLB config, i.e., {<config>|none}
-tlb:lat 30 # inst/data TLB miss latency (in cycles)
-res:ialu 4 # total number of integer ALU's available
-res:imult 1 # total number of integer multiplier/dividers available
-res:memport 2 # total number of memory system ports available (to CPU)
-res:fpalu 4 # total number of floating point ALU's available
-res:fpmult 1 # total number of floating point multiplier/dividers available
-pcstat <null> # profile stat(s) against text addr's (mult uses ok)
-bugcompat false # operate in backward-compatible bugs mode (for testing
only)

108

BIBLIOGRAPHY

[1] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The

Hardware/Software Interface, Burlington: Morgan Kaufmann, 2009.
[2] J. L. Hennessy and D. A. Patterson, Computer architecture: A quantitative

approach, San Francisco: Morgan Kaufmann, 2007.
[3] G. Sohi and A. Roth, "Speculative multithreaded processors," Computer, vol. 34,

no. 4, pp. 66-73, 2001.
[4] G. S. Sohi, S. E. Breach and T. N. Vijaykumar, "Multiscalar processors," in ISCA

'95 Proceedings of the 22nd annual international symposium on Computer
architecture, Italy, 1995.

[5] P. Marcuello and A. Gonzalez, "Thread-spawning schemes for speculative
multithreading," in Proceedings of the Eigth International Symposium on High-
Performance Computer Architecture, 2002.

[6] S. T. Srinivasan, H. Akkary, T. Holman and K. Lai, "A minimal dual-core
speculative multi-threading architecture," in Proceedings of the IEEE International
Conferance on Computer Design: VLSI in Computers and Processors, 2004.

[7] M. Cintra and J. Torrellas, "Eliminating squashes through learning cross-thread
violations in speculative parallelization for multiprocessors," in Proceedings of the
Eigth International Symposium on High-Performance Computer Architecture,
2002.

[8] J. E. Smith and G. S. Sohi, "The microarchitecture of superscalar processors,"
Proceedings of the IEEE , vol. 83, no. 12, pp. 1609-1624, 1995.

[9] C. G. Quiñones, C. Madriles, J. Sanchez, P. Marcuello, A. Gonzalez and D. M.
Tullsen, "Mitosis compiler: an infrastructure for speculative threading based on
pre-computation slices," in PLDI '05 Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, 2005.

[10] T. N. Vijaykumar and G. S. Sohi, "Task selection for a multiscalar processor," in
Proceedings of the 31st Annual ACM/IEEE International Symposium on
Microarchitecture, Dallas, 1998.

[11] B. Barney, "OpenMP Tutorial, Lawrence Livermore National Laboratory," 12 11
2014. [Online]. Available: https://computing.llnl.gov/tutorials/openMP/.

[12] M. Sharafeddine, K. Jothi and H. Akkary, "Disjoint out-of-order execution
processor," ACM Transactions on Architecture and Code Optimization (TACO),
vol. 9, no. 3, 2012.

[13] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi and M. Upton, "Continual flow
pipelines," in ASPLOS XI Proceedings of the 11th international conference on

109

Architectural support for programming languages and operating systems, 2004.
[14] H. Akkary, S. Ramly and K. Serhan, "Synchronization-free multithreading

architecture and application programming interface," in Mediterranean
Electrotechnical Conference (MELECON), 2014 17th IEEE, Beirut, 2014.

[15] T. Austin, D. Ernst, E. Larson, C. Weaver, R. Desikan, R. Nagarajan, J. Huh, B.
Yoder, D. Burger and S. Keckler, SimpleScalar tutorial.

[16] G. Sohi, "Instruction issue logic for high-performance, interruptible, multiple
functional unit, pipelined computers," IEEE Transactions on Computers, vol. 39,
no. 3, pp. 349-359, 1990.

[17] J. Smith and A. R. Pleszkun, "Implementation of precise interrupts in pipelined
processors," in ISCA '85 Proceedings of the 12th annual international symposium
on Computer architecture, Boston, 1985.

[18] C. Zhang, F. Vahid and W. Najjar, "A highly configurable cache architecture for
embedded systems," in Proceedings of the 30th annual international symposium on
Computer architecture (ISCA), New York, 2003.

[19] H. Akkary, R. Rajwar and S. T. Srinivasan, "Checkpoint Processing and Recovery:
Towards Scalable Large Instruction Window Processors," in MICRO 36
Proceedings of the 36th annual IEEE/ACM International Symposium on
Microarchitecture, 2003.

[20] D. Burger and T. Austin, The SimleScalar Tool Set, Version 2.0.
[21] T. Hopkins, "Collected Algorithms," ACM, [Online]. Available:

http://netlib.org/toms/.

110

	OpenDOEThesis
	A. Background
	B. Motivation
	C. Organization
	A. Speculative Multithreading (SpMT) and the Multiscalar Processor
	1. SpMT in Multiscalar
	2. Hardware-aided SpMT
	3. Compilers and SpMT
	a. UThe use of compilers for SpMT
	b. UOptimizing compilers to enhance SpMT thread spawning

	4. DOE and conventional SpMT architectures

	B. Continual Flow Pipeline (CFP) and Checkpoint Processing and Recovery (CPR)
	1. Motivation behind CFP
	2. CFP and CPR as a solution
	3. Comparison to DOE

	C. Multithreaded Programming Environments
	1. Shared Memory Environments
	a. UOpenMP

	2. Message Passing Environments

	A. The Disjoint Out-of-Order Execution (DOE) Architecture
	B. DOE Core Microarchitecture and Execution Model
	C. The OpenDOE API
	1. API Description
	2. Comparison to openMP

	A. Implementing DOE on SimpleScalar
	1. The Sim-Outorder Model
	2. The DOE Model
	a. UForking Implementation
	b. UJoining Implementation
	c. UCFP Execution and Normal Execution
	d. UPoisoned Execution
	e. UChunks

	B. The openDOE API
	A. Benchmarks Used
	1. Newton Raphson Method Algorithm
	2. Romberg Algorithm
	3. Tri Diagonal Matrix Algorithm
	4. Functional Testing Benchmarks
	a. UParallel Sections
	b. UChunks

	B. Testing Process
	A. Newton’s Algorithm
	B. Romberg Algorithm
	C. Tri Diagonal Algorithm
	D. Effect of Chunks
	E. Comparison to OpenMP
	A. Newton’s Algorithm
	1. C/openDOE Code
	2. DOE Assembly
	3. PISA Assembly

	B. Romberg Algorithm
	1. C/openDOE Code
	2. C/openMP Code
	3. DOE Assembly
	4. PISA Assembly

	C. Tri Diagonal Algorithm
	1. C/openDOE Code
	2. DOE Assembly
	3. PISA Assembly
	4.

	Approval

