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Title: Architecture Performance Simulator for the Disjoint Out-Of-Order Execution 
Processor (DOE) and the OpenDOE API 
 
 
 
Traditional methods of increasing single-core CPU performance have been very 
effective until designers hit the “Power Wall”. In order to overcome this issue, designers 
switched to multi-core architectures. This architectural switch to multicore CPUs has 
aided multitasking and multiprocessing on computers. However, the issue that remains 
is increasing the performance of a single process on a multicore chip. 
 
Many solutions were presented. Some were architectural techniques like speculative 
multithreading (SpMT) while others were higher-level software techniques like the 
OpenMP API. These techniques were successful on many applications, but those with 
an intrinsically sequential nature remained troublesome. This is due to the long delays 
and large power consumption that are incurred from the continuous inter-core 
communication, which has to occur between the threads, when the sequential nature of 
the application is explicit. In addition, APIs, like OpenMP, require advanced parallel 
programming skills that make the task complex for most programmers. Therefore, what 
we need is a multicore architecture that can divide a single application onto its different 
cores, while minimizing the penalties and overhead due to inter-core communication, as 
well as minimizing the effort required by the programmer. 
 
We are presenting the performance simulation of a processor that complies with the 
DOE architecture. The DOE, or Disjoint Out-of-Order Execution, processor is a latency 
tolerant, multicore system connected in a ring network. A single process is divided 
amongst the different cores using new instructions that we defined in accordance with 
the DOE architecture. We also introduced the OpenDOE API, a programming interface 
that allows the programmers to specify, using certain directives, the parallel regions and 
dependent variables. These pragmas are, then, translated by the compiler to our new 
instructions. The SimpleScalar tool set was used for the performance simulator and the 
PISA/MIPS instruction set was adopted. The assembler was also configured to identify 
the new instructions that we introduced. We were able to achieve good performance 
increase for balanced-load applications, and satisfactory increase for unbalanced 
applications compared to the base out-of-order architecture. 
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CHAPTER I 

INTRODUCTION 

A. Background 

Traditionally, processors have been designed as single-core chips. Whenever 

performance improvement was desired, in addition to the architectural modifications, 

designers often opted to increasing the number of transistors on a single die, and 

increasing the frequency at which the processor runs. This has been very effective, and 

processor manufacturers where able to achieve large performance increase between 

different generations of CPUs. The following trend lasted a few decades, until recently 

when the designers faced a new challenge, the “Power Wall”. In order to understand 

what the power wall is, we need to have a look at the definition of the dynamic power 

consumption of a CPU: 

𝑃𝑃 = 1
2� (𝑓𝑓𝑓𝑓𝑉𝑉2) 

where P is the power in watts (W), f is the frequency in hertz (Hz), C is the capacitance 

at the load in Farads (F), and V is the voltage powering the CPU in volts (V). According 

to the formula, it is evident that the increase in number of transistors, which in turn 

increases the load capacitance, and the increase in frequency, both play a major role in 

increasing the power consumed by the CPU.  The “Power Wall” is thus defined as the 

practical power limit for cooling microprocessors [1]. Thus increasing the power above 

this limit will cause severe damage to the CPU, and therefore isn’t feasible. This placed 

a constraint on the frequency forcing designers to find a replacement to the traditional 

methods of increasing performance. 

1 



 
 
 
 
 
 

In order to overcome this issue, designers started decreasing the frequency, and 

switched to multi-core architectures. The large number of transistors that they are 

capable of placing on a single die has aided in the success of this phenomenon. [2] 

Currently, common retail processors vary between dual and quad core processors, 

whereas high-performance, server processors, can reach up to six and eight cores per 

die. This architectural switch to multicore CPUs has aided multitasking and 

multiprocessing on computers whereby operating systems (OS) are capable of assigning 

different tasks or processes to different cores. In addition, new multithreaded 

architectures and APIs emerged, some using hardware techniques to automatically, and 

speculatively, parallelize a sequential application onto its different cores [3] [4] [5] [6] 

[7] [8], with the aid of compilers [7] [5] [9] [10] and others allowing programmers to 

specify parallel regions, fork new threads, and manually write parallel code that can 

make use of the resources available on modern processors [11]. However, these 

multithreaded solutions suffer from a major drawback: data communication delays due 

to thread synchronization. Whenever thread ‘A’ encounters an instruction that is data 

dependent on another thread ‘B’, two highly-expensive things occur: 1) Thread ‘A’ has 

to stall until the thread ‘B’ has generated the result that is needed by ‘A’, and 2) Thread 

‘B’ has to communicate that result to thread ‘A’ which is time consuming. This also 

puts a constraint on the ability to parallelize some applications that are, in essence, hard 

to parallelize. This difficulty arises from the nature of most applications, since they have 

been written for serial execution.  
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B. Motivation 

One of the suggested solutions is the Disjoint Out-of-Order Execution processor (DOE) 

that was presented in [12]. In this thesis, we are augmenting the work that has been 

already done by presenting a cycle-accurate architectural performance simulation of the 

DOE Architecture, along with the OpenDOE API that helps in parallelizing hard-to-

parallelize applications. The DOE architecture [12] is a synchronization-free, latency-

tolerant, multithreaded architecture that uses a technique similar to the continual flow 

pipeline architecture (CFP) [13] to deal with inter-core data dependence. It buffers the 

dependent instructions in a special buffer, the dependent thread buffer (DTB), allowing 

independent instructions to continue through the pipeline. Accompanying it, is the 

OpenDOE API [14], an OpenMP-like programming interface that provides the 

programmer with special directives for identifying parallel regions/loops and the shared 

variables between them. These directives are then translated by the compiler into special 

instructions that will be explained in detail. Our work builds upon what was presented 

in [14] by providing a cycle-accurate performance simulator with two new features: 1) 

Delayed forks and 2) chunks within loops, along with a working assembler that can 

understand our new instructions and translate them into their corresponding binary 

encoding. The SimpleScalar Tool Set was used to build the performance simulator [15]. 

We simulated multiple benchmarks and were able to achieve up to 70% performance 

gain with openDOE.  

 

 

 

3 



 
 
 
 
 
 

C. Organization 

A literature review is presented in chapter 2, followed by the description of the 

DOE architecture and the OpenDOE API in chapter 3. Chapter 4 will describe the 

Implementation of the simulator, chapter 5 will present the methodology used for 

testing the simulator, and chapter 6 will present the results we got and how the 

optimizations we provided helped us. Finally, Chapter 7 will conclude the thesis. 
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CHAPTER II 

LITERATURE REVIEW 
 

Previously, before the introduction of the OpenDOE API in [14], DOE was 

presented as an architecture that combines speculative multithreading with a latency 

tolerant architecture similar to the continual flow pipeline [12]. In their work, 

Sharafeddine et. al described the DOE architecture as a multi-core architecture, 

organized as a ring network, and uses a hardware predictor to speculatively assign tasks 

to the different cores. Each core in the ring network is a latency tolerant core, similar, in 

essence, to the continual flow pipeline architecture. However, latency-tolerance in DOE 

focuses on inter-thread data dependence instead of cache misses. We present in this 

section a review of Speculative Multithreaded (SpMT) Architectures and the Continual 

Flow Pipeline Architecture (CFP). 

 

A. Speculative Multithreading (SpMT) and the Multiscalar Processor 

Technology trends have reached a limit to the performance increase in single-

core superscalar processors. In effect, processor designers have moved from high-

performance to high-throughput processing that uses distributed components, which 

gave rise to multithreaded architectures [16]. Given that the current techniques of 

extracting instruction level parallelism (ILP) are not as effective as they used to be, and 

given the availability of hardware that can execute multiple threads at the same time, 

Speculative Multithreading became an interesting option of research. Speculative 

Multithreaded Processors can execute sequential programs in parallel by dividing them 
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speculatively into threads [3]. We present this review because the Multiscalar Processor 

is one of the first attempts to provide a multithreaded architecture that can benefit 

sequential applications. 

 

1. SpMT in Multiscalar 

The first attempt at SpMT was the Multiscalar processor introduced in [4]. This 

processor performs static division of a sequential program into tasks in the compiler, 

while maintaining the sequential aspect of the program in inter- and intra-task execution 

by sequentially assigning tasks to different cores. These cores are arranged in a circular 

ring with a head and tail pointers. New tasks are assigned to the tail pointer core and 

tasks commit from the head pointer core. Within each core, sequential semantics are 

also preserved. In order to do so, a view of a single register file (RF) and Memory is 

maintained.  For the RF, they added to each task a “create-mask” and an “accum mask”. 

The create-mask is statically generated by the compiler and carries the register values 

that the task may produce. When the respective value is produced, it is forwarded to the 

next tasks (Cores). The accum mask is the union of all the create-masks of the 

predecessor tasks of the current task and it contains the reservations (values needed) of 

that task. When values arrive from the predecessor tasks, they are cleared from the 

accum mask. 

The Multiscalar performs two types of speculation, control speculation (branch 

prediction and speculation) and data speculation (optimistically allowing loads to 

execute and instructions to forward their data to other cores). If any of the two types of 

speculations performed was incorrect, the task should be squashed and the correct state 
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should be recovered. To highlight how Multiscalar programs work, this is an 

explanation presented by the authors. The task sequencer dispatches tasks speculatively 

based on a task descriptor. This task descriptor is a set of bits statically formed by the 

compiler, and contains information on which tasks follow this task and the create-mask 

of the current task. In order for the hardware to know which values it should forward, 

the compiler should mark instructions that should forward values by adding a forward to 

that specific instruction. In order for the following instruction to release any register 

values that were in this task’s create-mask but did not get created/forwarded due to 

control speculation, a release instruction should be added in order to trigger the waiting 

threads to proceed. In addition to that, the compiler should also mark the last instruction 

in the thread with a “stop bit” for the hardware to know that it has reached the end of the 

thread.  

 

2. Hardware-aided SpMT  

In [8] the authors discussed four different bottlenecks of a traditional 

superscalar processor, and then proposed a solution for of these bottlenecks using 

SpMT. The first bottleneck they discuss is true data dependences (RAW hazards) that 

enforce serialization. They argue that a lot of effort has been put on control and name 

(false data) dependence, where as true data dependences have been ignored. The second 

bottleneck is the instruction window size. They discuss that branch superscalar 

processors depend on branch prediction to exploit parallelism beyond a single basic 

block, however they describe this process as “Sequential in nature”. The third 

bottleneck, also depending on window size, is the complexity of designing a wider issue 
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machine. They explain that the amount of ILP a superscalar processor can exploit 

greatly depends on the instruction window size however studies have shown that 

increasing the size causes a great overhead on the fetch and forwarding logic of the 

superscalar processor; specifically affecting the clock cycle. The Final bottleneck they 

talk about is the instruction fetch bandwidth. They argue that the factors that limit it are 

branch prediction accuracy and throughput, as well as the potential to fetch non-

contiguous instructions. 

To overcome these four bottlenecks described above, the authors proposed the 

following architecture: First, to overcome the issue of instruction window size, their 

SpMT architecture breaks down the program into smaller, non-adjacent, windows. 

These threads are divided based on control speculation, and each thread performs 

control speculation during execution. The thread creation mechanism they propose is 

done fully in hardware. Second, they use data speculation to overcome inter-thread data 

dependencies. They provide mechanism to predict the data dependences, as well as the 

actual data that will flow through them. The predicted data is then used in execution. 

Third, since thread speculation is done on loop-closing branches, meaning that the code 

is the same for simultaneous threads, they provide a fetch engine that feeds different 

threads with the fetched code. Thus, they avoid increasing the fetch bandwidth that is 

required by each thread. Finally, their architecture does not require any instruction-set 

architecture (ISA) modification since all the mechanisms are completely handled by 

hardware. 

Another implementation of SpMT is presented in [6]. They present a “low-

overhead dual core” SpMT model that exploits the following benefits: cache 
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prefetching, branch pre-computation, and instruction reuse. They dedicate one core for 

the execution of non-speculative threads and the other for that of speculative threads. 

For data speculation, they use a “register dependence violation detection scheme” at the 

register level, and a novel memory ordering mechanism that selectively recovers from 

memory violations. They only re-execute instructions affected by data dependence 

when a violation is detected; other instructions are executed then buffered and later on 

committed by the non-speculative thread. To overcome the performance loss caused by 

wrong path execution in conventional SpMT processors (as discussed by Multiscalar, 

threads are left to execute with potentially wrong data values), they proposed a “Wrong 

Path Predictor”. Finally, they performed a study on different hardware spawning 

policies (Fork on Call, Loop Continuation, and Run Ahead) and their performance 

benefits. They also try to dynamically combine the three policies and were able to 

achieve an average 20% performance gain. As for their exploitation of the above-

mentioned benefits, they got 58% benefit from instruction and data Cache prefetching, 

33% from instruction reuse, and 9% from branch precomputation.  

A more recent hardware technique for SpMT is the work of Cintra and Torellas 

[7]. Their focus was on thread squashes due to data dependence violation, providing 

run-time dependence learning mechanisms to avoid these squashes in a distributed CC-

NUMA directory-based architecture. They would then predict violations and apply one 

of three mechanisms: 1) delayed disambiguation for false dependences, 2) value 

prediction for same-word dependences, and 3) stall and release for unpredictable, same-

word dependences. The first line of defense is the Delay and Disambiguate mechanism. 

It starts by allowing the consumer thread to proceed, even when a data dependence 
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violation is observed, because of the probability that this dependence is just false 

sharing. Then, before the thread commits, a check is done to make sure whether or not 

the violation was false sharing. If the violation turned out to be true, the next 

mechanism would come to work: Value Predict. The value that should be produced by 

the producer thread is predicted and sent to the consumer. Before the consumer commits 

the value is checked to make sure the prediction was correct. When this fails, there are 

two options: an aggressive mechanism called Stall and Release, or a conservative 

approach called Stall and Wait. In both cases the consumer thread is stalled, but the first 

mechanism releases the thread as soon as the first producer commits. This is risky since 

a newer producer might right the value which will cause the consumer to be squashed. 

The conservative approach is to wait until the consumer thread becomes non-

speculative (meaning that all the previous threads have committed). In that case, the last 

producer would have already written the value and the thread can continue normally.  

 

3. Compilers and SpMT 

a. The use of compilers for SpMT 

One of the key works that invested the compiler in a SpMT environment was 

task selection presented in [10]. In the Multiscalar architecture, compiler task selection 

plays a very important part in achieving high performance. A good task selection could 

result in dividing the program into independent tasks, leading to high performance, 

whereas a bad task selection could result in dividing the program into dependent tasks, 

hence decreasing performance. Vijaykumar and Sohi discussed in their paper, Task 

Selection for a Multiscalar Processor, the fundamental performance issues regarding 
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compiler task selection. They identified control flow speculation, data communication, 

data dependence speculation, load imbalance, and task overhead as the main 

performance issues, and stated that they are related to task characteristics of task size, 

inter-task control flow, and inter-task data dependence. Task size affects load imbalance 

and overhead, inter-task control flow affects control speculation, and inter-task 

dependence affects data communication and data dependence speculation.  

Regarding the effect of the task size, a small size would lead to high overhead 

and would not create proper parallelism. A large task size also presents its own 

problems, such as causing misspeculations, overflowing the address resolution buffer, 

which leads to task stalls, and loss of parallelism. Improper task selection leading to a 

large variation in the task size would lead to a load imbalance, which negatively affects 

performance.  

Control flow misspeculations would cause a decrease in performance. Inter-

task control flow takes place during task selection. However, the resolution of control 

flow from one task to the next takes place at the end of the task, therefore a task must 

have as many successors as can be tracked by the hardware prediction tables. If that 

number is exceeded, then performance decreases due to the inaccuracy in the 

speculation. 

During task selection, data dependencies in the tasks are identified. This leads 

to inter-task dependence. The position of the dependence in the task determines the 

delay and misspecualtion penalty. The time between the execution of the task and 

another dependent task depends on whether the current task is waiting for a value from 

a preceding task, and whether there are other tasks ahead of the current task in the 
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program order. Hence, data dependencies can cause delays in execution, especially 

when dealing with large tasks. 

It is therefore of utmost importance to try and execute optimal task selection in 

order to improve performance. Selecting the optimal tasks, however, is a very 

complicated process, and there is no actual guideline on how to perfectly obtain the best 

task selection results. As a result, certain heuristics were used to try and obtain the best 

task selection results. Vijaykumar and Sohi concluded that the heuristics to obtain the 

best results should select a task that is neither large nor small, hence avoiding large 

overhead and misspeculations, but ensuring a certain level of parallelism. The heuristics 

should also ensure that the number of successors of a task is at most the same number as 

the tasks tracked by the control flow speculation hardware. Regarding data 

dependencies, the heuristics should ensure that the data dependence is present in the 

task in order to reduce communication between dependent tasks and therefore reducing 

delays and misspeculation penalties. However, if that is not possible, the dependent 

tasks should be ordered appropriately. 

 

b. Optimizing compilers to enhance SpMT thread spawning 

The efficiency of SpMT relies on the parallelism of the threads the processor is 

executing. In [5], Pedro Marcuello and Antonio González proposed a different way of 

partitioning threads than of previous methods. Instead of relying on heuristics that 

search for known structures in the code, such as loops, the proposed method they say is 

based on the threads profile, where the thread is created due based on certain properties 

of the code that will benefit parallelism.  Dividing programs into efficient parallel 
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threads is basic and straightforward in the case of sequential numerical programs, but 

difficulties occur in the case of irregular and non-numerical programs. SpMT is one 

way to tackle these difficulties by speculatively spawning threads, a task which is done 

by the compiler.  Thread-spawning is defined by two operations, known as a spawning 

pair. The first is called the spawning point, which is the instruction where a new thread 

is spawned. The second is called the control quasi-independent point, which is where 

the thread begins its execution.  While executing the instruction stream, the processor 

reaches a spawning point, which is where it identifies an instruction that has a high 

probability of being executed in the near future, which is where the control quasi-

independent point is set. The processor then creates a new thread starting from the 

quasi-independent point that executes in parallel with the already existing thread. The 

first thread stops executing when it reaches the quasi-independent point itself. This is 

known as the joint point. Gonzalez focused on setting effective methods and procedures 

to identify the spawning points and control quasi-independent point, and began by 

stating three main requirements that a spawning pair should abide by. The first 

requirement states that the probability of reaching the control quasi-independent point 

should be high, while the second requirement states that number of instructions between 

the spawn point and the quasi-independent point should not be too large or small. The 

third requirement stated that the instructions following the quasi-independent point 

should contain few dependencies with the previous of following threads, or 

dependencies that are predictable. Thread spawning techniques usually focused on the 

first requirement, and pointed out the optimal position for the spawning pair points. An 

example is in the case of loop iterations, where the first instruction of the loop was 
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considered as both the spawning point and control quasi-independent point, since there 

is a high probability that the code would reach the beginning of the loop again. 

Gonzalez focused on finding a method that would implement all three of the 

requirements, and not just focus on typical program constructs such as loops and 

subroutines. The method proposed in the paper relies on creating a dynamic control 

flow graph of the program. The edges of the graph are weighted with their frequency. 

The least frequent program blocks are deleted in order to reduce the graph size. After 

the graph is simplified, the probabilities of reaching each block are calculated. Then, 

pairs of nodes are evaluated to become spawning and control-quasi independent points. 

The pairs that do not qualify as good candidates are deleted from the graph. A good 

candidate is one that applies the three requirements mentioned earlier. One spawning 

point could have plenty of candidates for a control quasi-independent point, but when 

the processor reaches a spawning point, it only spawns a thread at one control point, 

hence the possible control points must be ordered according to which one would benefit 

our system the most.  They are ordered according to three criteria which are: 

• Maximizing distance between spawn point and control quasi-independent 

point 

• Consideration of the number of independent instructions of previous 

instructions 

• Maximizing the number of independent instructions or dependent but 

predictable instructions 

After testing this method, results pointed out a sevenfold increase in speed. 

This method also was shown to outperform traditional heuristics by 20% as a best case. 
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In reality, this speedup was shown to be around 5 times better than normal heuristics, 

outperforming them by 15%. 

Another compiler designed in the prospect of enhancing SpMT is the Mitosis 

compiler by Quinones et al. [9] They introduced a novel technique that uses what they 

called p-slices, or precompute slices, which are small pieces of coded added by the 

compiler in every thread to compute the “live-ins” or data that is consumed by this 

thread but not produced by it. They claim that this code can be highly optimized 

because techniques of recovering from incorrect threads are already available. The p-

slices are derived from the original code of the application, and therefore they claim that 

this makes them more accurate than hardware predictors. The mitosis compiler 

performs the following tasks: 1) identify the potential producer and consumer threads 

by selecting the pair that provides the highest benefit when parallelized, 2) generate the 

p-slices and optimizes them, then it 3) maximizes the accuracy of the p-slices. During 

execution, the thread has two execution modes depending on whether it is executing the 

body of the thread or the p-slice. If the p-slice is being executed, the data produced is 

stored in a special buffer and is used as an input for the body. Like other SpMT 

architectures, when the thread becomes non-speculative all its data is committed. They 

use compiler optimizations like branch pruning, memory and register dependence 

speculation, and early thread squashing to reduce the length of p-slices. They were able 

to achieve 2.2x performance gain over single-threaded execution for a subset of the 

Olden benchmarks. 
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4. DOE and conventional SpMT architectures 

Although DOE isn’t a Speculative Multithreaded (SpMT) architecture, it shares 

a lot of features with SpMT: cores are arranged in a circular ring with head and tail 

pointers, as shown in Figure 1, and cooperate on executing a single application. The 

application is distributed among the existent cores (although the distribution is static 

instead of speculative).  

In order to have an idea about the potential performance gain that DOE can 

achieve in comparison with conventional SpMT architectures on a single thread, 

consider Figure 2. A single thread is split, by the programmer, into almost equally sized 

tasks (T1, T2, and T3). Each task assigned to one of a number of existing cores, so that 

they are concurrently executed. The dotted arrows show the inter-task dependences, 

which are data dependences between instructions of different tasks. 

 

Figure 1 - DOE processor architecture block diagram [12] 
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Figure 2 - DOE vs. conventional SpMT execution [12] 

It is clear that the majority of task instructions are independent of previous 

instructions of previous tasks. However, instructions that are consumers in the inter-task 

dependence relation limit the performance that can be gained out of such a parallel 

architecture. Consumer instructions have to wait for the producer instructions to have 

their operands ready, thus stalling the execution of the task where the consumer 

instruction belongs. Moreover, this requires a lot of communication between the cores 

on data produced by tasks and consumed by successive ones. In Figure 2(b), it is 

obvious how T2 stalls shortly after it starts because its execution reached an instruction 

dependent on another in T1, and thus has to wait. Upon analyzing Figure 2(b), one can 

deduce that such stalls also depend on the position of the consumer dependent 

instructions within a task. 

DOE deals with the dependence issue differently from the costly 

communication required in SpMT architectures. When T2 in DOE encounters a 

dependent instruction, it defers its execution and the execution of all successive 
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dataflow instructions until T1 finishes executions and reports data to T2. When data is 

reported, the independent instructions stop execution to clear the way for the waiting 

dependents, until they are all executed, after which the core of T2 merges results from 

the dependent and independent threads, and continues in normal mode until the end of 

the task T2. Then the core of T2 reports its data to T3, and so on, until the full program 

is executed. By this approach, the positions of the dependent instructions within the task 

are no more of negative significance, and thus, DOE hides the communication delay 

between cores. DOE would suffer a partial data stall when a task runs out of 

independent instructions, or reaches its end before the completion of the previous task, 

and here comes the importance in balancing the task sizes and amount of dependent 

instructions between cores. 

 

B. Continual Flow Pipeline (CFP) and Checkpoint Processing and Recovery 

(CPR) 

1. Motivation behind CFP 

In order to provide a precise state for cases of exceptions and branch 

mispredictions, Smith et al. introduced the re-order buffer (ROB) in [17], which is 

basically a buffer to hold the instruction results to write them to the register file in 

program order. A tail pointer points to the most recent instruction that has been 

decoded, and the head pointer points to the oldest one. The ROB writes the register file 

in order as follows: when an instruction finishes execution and it has its result ready, it 

writes it in the corresponding entry in the ROB, and is marked as ready to commit. If 

this instruction is located on the head of the ROB, it is committed to the register file, 
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and the ROB head pointer is incremented to indicate a free entry, and to give a chance 

to subsequent instructions to drain from the ROB and commit in program order.  

A problem arises when this instruction located on the head of the ROB is a 

load that misses the cache. A miss to DRAM could cost around 150 cycles in best cases. 

This is a great overhead that has a major impact on the processor performance, where 

all instructions subsequent to this load in the ROB have to be delayed until the load data 

is ready, and the ROB commits the load to the register file. The worst-case scenario 

could be that the ROB is full, and thus any such load miss would stall the front-end 

pipeline because of structural hazards on the ROB. The best case could be when the 

ROB has empty entries allowing for more instruction fetch and decode while data of the 

load is being retrieved, but eventually we will bump into the worst case wall since the 

number of ROB entries is by far less than the number of cycles required for load miss 

data retrieval, leading the ROB to scale up rapidly.  

One way to deal with this problem is to increase the sizes of the cycle-critical 

structures like the ROB and the cache. This is not preferred for a couple of reasons. 

Increasing the size of the ROB in a way that would allow it to scale up quickly means 

hardware complexity and area occupation. This induces a threat on clock rate and 

energy consumption since the ROB is a complex multi-ported cycle-critical hardware. 

Caches are actually the major power-consuming blocks in any microprocessor, where 

they might consume up to 50% its energy [18]; thus, it is not desirable to further 

increase the capacity of caches, although this would reduce the probability of load 

misses. So, the challenge is how to achieve better performance and larger instruction 

window in cases of load misses without having to resort to such critical solutions. 
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2. CFP and CPR as a solution 

One solution, the Continual Flow Pipeline (CFP), was proposed in [13]. The 

key observation behind the idea of CFP is that many more instructions are data-

independent from the load than the data-dependent instructions. This revealed a 

reasonable question about the pipeline execution mechanism: why to stall the pipeline 

and delay the instructions that are data-independent from the load that misses? Why not 

track instructions that are dependent on the load, buffer them aside, and clear the way 

for instructions that are miss-independent? 

This is exactly what CFP architecture does. The Slice Processing Unit (SPU) in 

a CFP handles the miss-dependent instructions, which are called slices, while the miss is 

pending [13]. It removes the slices aside from the pipeline flow and places them into a 

Slice Data Buffer (SDB) instead of the ROB, clearing the way for the miss-independent 

instructions to flow normally. When the missing data of the load (which is the first slice 

in the SDB) is ready, the front-end pipeline freezes, allowing the ROB to fully drain, 

and execution is switched to the instructions in the SDB by renaming them and moving 

them to the ROB. When the execution of the slices is done, results are appropriately 

merged to keep a precise state of the register file, and execution resumes as normal, 

until a load miss is encountered again, and the whole process repeats. 

Identifying miss-dependent instructions is done by dynamic data-dependence 

prediction, whereby a poison bit propagates from the first slice (the missed load) to 

subsequent consumer instructions in the stream. This is done at the decode through the 

registers, where a register written by an instruction that reads poisoned registers, is itself 

flagged as poisoned. Therefore, the responsibility of the slice-processing unit SPU is to 

20 



 
 
 
 
 
 
detect poisoned instructions, and deal with them appropriately as previously stated. 

Keeping a precise state of the register file is done by checkpointing, introduced in [19].  

In [19], a novel introduction of checkpointing is provided to solve some of the 

problems that arise from large instruction windows, in an attempt to increase instruction 

level parallelism (ILP). One of the problems was the complexity and scaling up of 

cycle-critical blocks like the ROB and the register file. By occasionally checkpointing 

the map table, a precise state is provided for cases of exceptions and branch 

mispredictions. The ROB is therefore eliminated, which dumps the obligation of single 

instruction retirement, and allows for bulk retirement. This also relieves the pipeline 

from a major cycle-critical structure, which is the ROB. In the checkpoint processing 

and recovery architecture (CPR), checkpoints of the map table are taken at low-

confidence branches, to allow for execution roll back in cases of mispredicted branches 

and exceptions. Other occasions of checkpoints are also explained in [19] to ensure 

narrow periods of precise state confidence. Recovery from mispredicted branches 

therefore requires pipeline flush and roll back to the last valid checkpoint. Flushed 

instructions could turn out to be executed again if the mispredicted branch was not of a 

low confidence, and therefore was not checkpointed upon. A checkpoint buffer is used 

to store the occasional checkpoints. Overall, CPR detaches the misprediction recovery 

and register file reclamation from the ROB, and allows values to be written directly to 

the register file, allowing retirement of many instructions per cycle, and therefore 

outperforming ROB-based architectures. 

In CFP architecture, as soon a load miss is encountered a checkpoint of the 

register file is taken, since it so far includes the precise state of data just before the load. 
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This first checkpoint would be a safe way back in case any exception is encountered in 

the subsequent stage. Execution resumes normally and instructions are committed from 

the ROB to the register file in order. When the load data is ready, it is reported to the 

first slice in the SDB, and the ROB is left to drain, then another checkpoint of the 

register file state is captured, before the slices are renamed for potential hazards and 

moved to the ROB. Note that while draining the ROB, slices in the SDB can catch 

results from the data bus to matching operands, hence the ROB is said to be reporting 

data to the SDB. Execution now resumes on the slices, where instructions become in-

order ready for execution after having their operands available. If any exception is 

encountered at this stage, the execution can be directed to start again from the last 

checkpoint captured. Otherwise, registers data from the last register file checkpoint and 

the current register file state are merged together appropriately to form a final precise 

state of the register file, on which subsequent execution can confidently rely. 

The CFP approach allowed for a larger instruction window, where instructions 

can be executed in-flight with memory latency tolerance, without significantly 

impacting the clock rate, area occupation, or energy consumption. 

 

3. Comparison to DOE 

The CFP approach that DOE implements is slightly different from the one 

originally introduced in [13]. While in [13] the poison bits – bits that are associated with 

each instruction to indicate that it is a consumer in a data dependence relationship – are 

propagated from the producer load that misses (also called the first slice instruction) to 

subsequent consumer instructions dynamically, poison bits in DOE are just ready in the 
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rename map table generated by the compiler as a bit mask to identify this set of 

influence registers. This way, data dependences are identified for all instructions in the 

stream. But once the execution of the program is split over the many cores, inter-task 

data dependences limit parallelism. 

DOE successfully hides the communication latency between cores by dividing 

the execution stream in each core into two disjoint threads: the dependent thread and the 

independent thread. At the decode stage of each core, instructions are identified as 

dependent by the poison bits, and hence are buffered aside into a Dependent Thread 

Buffer (DTB), equivalent to the SDB presented in [13], clearing the way for 

independent instructions, that have their operands ready, for execution with no stalls 

other than the structural ones. After the dependent thread in a core finishes execution, it 

reports its results to the DTB instructions waiting for inputs. When a previous core is 

done executing both the dependent and the independent threads, it reports its results to 

the current core and specifically the instructions waiting in the DTB, which in turn are 

renamed again, and proceed to execution. When a core completes the execution of the 

dependent thread, results are reported to the subsequent core, and so on. Hence, latency 

tolerance between cores is achieved. Figure 2 shows an example comparing DOE to 

conventional SpMT processor on inter-core latency tolerance. It is clear that a program 

is executed faster on DOE than on conventional SpMT processor. 

By merging the benefits of Speculative Multithreading (SpMT) with those of 

Continual Flow Pipelining (CFP), and by using many small instead of wide cores, DOE 

successfully underwent the challenges of minimizing power consumption, thread startup 

and commit overheads, task load imbalance, data and control mispredictions, inter-task 
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data dependences, and inter-core data communication delay, and achieved a significant 

parallel performance. DOE was shown in [12] to achieve a noticeable performance in 

multitasking applications over an equivalent large superscalar, where it scored up to 

2.5x performance in throughput-based applications, and outperformed conventional 

speculative multithreaded architectures of similar configuration by 15% on average on 

single-threaded programs.  

After looking at previous architectures that are related to DOE, and that helped 

in providing the essence of DOE, we shall present a small literature review on 

multithreaded programming environments. Since a major part of this work is assessing 

the effectiveness of the OpenDOE API, we need to take a look at previous APIs and 

programming environments that aided programmers in writing parallel applications. 

 

C. Multithreaded Programming Environments 

With the widespread of multi-core systems, and the need of providing 

applications that can benefit from these systems, different multithreaded programming 

environments have surfaced. These environments provided developers with different 

APIs that helped in controlling the needed communication between different threads of 

an application.  Depending on the type of system at hand, or the need of the application, 

programmers have a wide variety of environments to choose from. Two major types of 

environments are the shared memory environments and the message passing 

environments.   
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1. Shared Memory Environments 

There are two types of systems that utilize the shared memory environment. 

These systems are either centralized shared memory systems, or distributed shared 

memory systems. Centralized shared memory systems are comprised of multiprocessors 

that share a single space of random access memory (RAM) and different cores on this 

processor access the same memory address space. This type of memory addressing is 

referred to as Uniform Memory Addressing (UMA). Distributed shared memory 

systems are systems with multiple processor chips, each with its own local memory, but 

the address space is globally shared across all processors. Therefore, each processor can 

directly access any memory (whether local or remote) using direct loads and stores. 

This type of addressing is referred to as Non-Uniform Memory Addressing (NUMA) 

[2]. One of the most common APIs used in these types of systems is OpenMP. 

 

a. OpenMP 

OpenMP, or Open Multi-Processing, is an API defined by a group of hardware 

and software vendors. It is used in UMA and NUMA shared memory systems to aid the 

programmer in writing multithreaded applications. The API provides a set of directives 

[11] that can be used to transform any sequential code into a multithreaded application. 

In addition to the directives, OpenMP provides a runtime library and a set of 

environment variables. 

Our proposed API (OpenDOE) shares most of the clauses of OpenMP, and 

adds the “depends” clause which is used to declare dependent variables in parallel 

regions. [14] 
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2. Message Passing Environments 

Message passing systems are usually distributed systems, comprised of 

multiple processor chips, each with its own local memory, and each processor can only 

directly access its local memory space. If any remote memory needs to be read or 

written, it is done using certain messages that are exchanged between the processes that 

are running on the respective processors [2]. Depending on the standard being used, 

these messages are defined by certain APIs. One of the most common APIs is the 

Message Passing Interface or MPI. 
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CHAPTER III 

PROJECT DESCRIPTION 

 

In this section, we will present the DOE processor architecture, the DOE core 

microarchitecture and execution model, and the OpenDOE API. 

  

A. The Disjoint Out-of-Order Execution (DOE) Architecture 

We are implementing the DOE architecture described in [12] and [14]. It is a 

latency tolerant, multicore architecture, organized as a ring network as shown in Figure 

1. All the cores in the ring take turn at executing the different threads of one application. 

These threads are defined by the programmer using the openDOE directives and 

assigned to the different cores using the task dispatcher, along with the register and 

memory poisoning that identifies which registers/memory locations are shared between 

the parent and child threads. Two new instructions, “frk” (fork) and “jn” (join), are 

responsible for forking a new thread and committing a complete thread. Other 

instructions, like “plw” (poisoned load word) and “spm” (set poison mask), are 

responsible for marking the corresponding memory location or register as poisoned. 

These instructions are generated by the compiler through the translation of the 

openDOE C/C++ directives.  

The order of task assignment onto the different cores in the ring is in 

accordance with the sequential order of the threads in the application, meaning that only 

the newest thread can fork and only the oldest thread can commit (or join). A HEAD 

and TAIL pointer are used to track the oldest and newest thread in the network. If the 
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TAIL is free, a new thread can be forked by the newest core and will be assigned to the 

core at the TAIL pointer. If, however, the ring is full, the forking of the new thread will 

be delayed until the TAIL is free again. Once a thread is at the HEAD, and it has 

finished executing all of its assigned instructions, it can join/commit.  When a thread 

commits, the HEAD pointer is freed and the final register file (RF) of that core is 

forwarded to the child thread, which is now the new HEAD of the ring network. Each 

core within the ring network performs latency-tolerant CFP execution by effectively 

splitting each thread into: 1) a set of instructions that do not depend on the thread in the 

previous core and are therefore called independent instructions, and 2) a set of 

instructions that do depend on the thread in the previous core and are therefore called 

dependent instructions. The DOE core architecture and the execution model will be 

described in the next subsection. 

 

Figure 3 - DOE Core Microarchitecture 

 

B. DOE Core Microarchitecture and Execution Model 

The DOE core microarchitecture (Figure 3) is a 4-wide out-of-order 

architecture similar to the conventional superscalar defined by Smith et al. [8] It 
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includes the standard pipeline stages: Instruction Fetch, Instruction Decode and 

Dispatch, Instruction Execute, Instruction Writeback and Instruction Commit. The 

Instruction Set Architecture (ISA) in use is an extended version of 64-bit PISA1 that we 

designed to include extra DOE-specific instructions that will be described later on in the 

thesis. Out of order execution is managed through the Reservation Stations (RS) and a 

Re-order Buffer (ROB) is used for in-order commit of instructions and for register 

renaming.  

 

Figure 4 - RF Architecture 

1 A MIPS like ISA defined and used by the SimpleScalar team [19]. 
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Figure 5 - DOE Registers 

The Register File (RF) is augmented with: 1) poison bits to determine which 

registers require data that depends on the parent thread, 2) the join address, which is the 

PC at which the thread should end and the new thread should start, and 3) the chunk 

value which will be discussed later on in the thesis. Furthermore, the RF is split into two 

independent contexts. One context is used while executing independent instructions, 

this context will be referred to as the Independent Register File (IRF). The second 

context is used when executing dependent instructions and will be referred to as the 

Dependent Register File (DRF). (Figure 4) Each context contains the registers shown in 

Figure 5: 1) 32 General Purpose Registers (GPRs), 2) 32 Floating Point Registers 

(FPRs), 3) 2 multiplication registers (HI, LO), 4) the condition code register (FCC), and 

5) the 2 DOE registers (JNPC, CHNK). In order to achieve our aim of providing CFP-

like latency tolerance and buffer the dependent instructions aside, two architectural 

components are added: 1) the Dependent Thread Buffer (DTB) [12] which is a buffer 

used to store the dependent instructions and make way for independent instructions, this 

avoids stalls and blocking of the pipeline, and 2) a memory dependence predictor which 

is used to predict dependence between loads and stores when the address register is 

poisoned. As for memory, a store redo log (SRL) is used to commit stores in-order into 

the speculative cache. A detailed description of the speculative cache, the SRL, and the 
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register file can be found in Sharafeddine et al.’s work [12]. As it can be inferred, all the 

architectural differences are mainly in the front end of the pipeline; everything from the 

execution units and onward is identical to the conventional superscalar processor.  

Execution within each DOE core is portrayed in the finite state machine of 

Figure 6. A description of all the states is provided in Table 1. Initially, one core is in 

normal execution state while all other cores are in IDLE state. Whenever a thread is 

forked into a new core, that core moves from the IDLE state to the CFP_Exec state, 

where it is executing independent instructions and poisoning dependent instructions, 

until one of the following occurs: 1) The core tries to join but it isn’t the HEAD yet. In 

this case the jn instruction is sent to the DTB and the core moves to WAITING state. 2) 

A syscall is encountered, and syscalls have to be executed in their correct sequential 

order for the processor to be at a precise state. In this case the syscall is sent to the DTB 

and the core also moves to the WAITING state. 3) The DTB is full, in which case the 

core has to stall and moves to the WAITING state. 4) The parent thread commits. In this 

case there are two options: a) If the DTB was empty, then there are no poisoned 

instructions and the core moves to the N_EXEC state and continues normal execution. 

b) If the DTB was not empty, then there are poisoned instructions, so the core moves to 

the P_EXEC state where it commences the execution of the poisoned (DTB) 

instructions.  
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Figure 6 - DOE Core FSM 

When the core gets to the WAITING state, it remains there until a condition identical to 

4) occurs and moves it to either the N_EXEC state or the P_EXEC state. Once the 

parent thread commits and the core moves to P_EXEC state, it starts re-renaming the 

DTB instructions and executing them. Once the DTB is empty, the core either moves to 

N_EXEC state if there are more instructions that need to be executed, or it moves back 

to IDLE state if the last instruction in the DTB was the jn instruction. Finally, once the 

core gets to the N_EXEC state, it finishes executing the remaining instructions then 

joins and goes back to the IDLE state.  
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State Name Description 

IDLE Idle State The core is idle, waiting to be activated by 
a fork instruction. 

CFP_EXEC Continual Flow Pipeline Execution State 
The core has been forked and it is 
executing independent instructions and 
poisoning dependent instructions. 

WAITING Waiting State The core is waiting for the parent to 
commit. 

P_EXEC Poisoned Execution State The core is replaying the DTB 
instructions. It is the head. 

N_EXEC Normal Execution State The core is executing the remaining 
instructions. It is the head. 

Table 1 - DOE States 

To illustrate the details of the execution, assume core i-1 is forking core i. The 

first thing that occurs is the copying of the parent (i-1) RF into the child’s (i) IRF. The 

IRF will then contain all the available registers from core i-1 in addition to a set of 

poisoned registers for those that are not yet available. At this point, core i gets activated 

and starts fetching, decoding, and executing instructions from its instruction window in 

the I-Cache. When an instruction is decoded, and the input registers are read from the 

IRF, two options are available: 1) If neither of the two registers is poisoned, then this is 

an independent instruction and it is dispatched into execution. 2) If any of the two 

registers is poisoned, then this is a dependent instruction and therefore the destination 

register is marked as poisoned in the IRF and the instruction is first sent to the RS to get 

any needed operands, then it is assigned resources in the ROB and SRL, and finally it is 

forwarded to the DTB. Loads and stores, however, have a different consideration. A 

memory predictor is used to determine which stores are poisoned and whether a load 

depends on a poisoned store or not. More details are provided in [12]. The execution of 

independent instructions, and the buffering of the dependent ones in the DTB, continues 

until one of the conditions described in the paragraph above is encountered to take the 

core out of CFP_EXEC state. During this stage, since instructions are being committed 
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out of order, stores are sent to the SRL so that dependent and independent stores will be 

reordered and sent into memory in their correct order. If either of the DTB or the SRL 

gets filled up, the core has to stall and wait for core i-1 to commit before it can continue. 

When core i-1 commits, core i switches to P_EXEC state, it drains the pipeline of any 

remaining independent instructions and the final state of core i-1’s register file is copied 

into the DRF of core i. The DRF is now used to read the previously-poisoned operands 

as the processor replays the DTB instructions by re-renaming them and dispatching 

them into execution. Once all the dependent instructions are executed, the SRL is used 

to commit all the stores into memory and the IRF and DRF are merged using the set of 

poison bits in the IRF as a mask [12]. After that, normal execution is returned as the 

core continues to fetch and execute the remaining instructions in its instruction window. 

One thing that has to be taken into consideration is maintaining the precise 

state of the machine. Since we are using a ROB, whenever an independent branch is 

mispredicted a rollback action is taken in the ROB to recover. Since the dependent 

instructions were also assigned a place in the ROB, this will be used to remove them 

from the DTB during a rollback. However, when a dependent branch mispredicts, the 

entire thread has to be aborted and restarted. This is due to the fact that the processor is 

committing out-of-order instructions during this phase, and therefore the processor is in 

an imprecise state and cannot be returned to a precise state unless the thread is restarted. 

To achieve this, one checkpoint is used in the RF. This is explained in more detail in 

[14] and [12]. 
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C. The OpenDOE API 

1. API Description 

Alongside the DOE architecture, we are presenting a supporting Application 

Programming Interface (API) that we called openDOE. Our aim is to take advantage of 

the architectural features provided in the DOE architecture and simplify the 

parallelization process for the programmer, allowing him to parallelize code that is 

otherwise unparallelizable on conventional multicore processors. The openDOE API is 

an openMP-like programming interface; thus the nomenclature. It provides the 

programmer with three basic components: compiler directives, a runtime library, and 

environment variables. The API is designed for parallelizing C/C++ applications using 

two parallelization constructs as described in Table 2.  

Directive Type Description 
#pragma doe parallel 

sections 
Parallelization 

construct 
Used to mark the beginning of a 

parallel sections block 

#pragma doe section Parallelization 
construct 

Used to mark a section within the 
parallel sections block 

#pragma doe parallel for 
#pragma doe parallel while 

Parallelization 
construct 

Used to mark the beginning of a 
parallel for loop or while loop 

depend(x) Clause 
Used to define a variable (x) as a 

shared variable between the threads 
that should be poisoned. 

chunk(n) Clause 

Used to define a “chunk”, or the 
number of iterations executed by a 

thread before the next one is forked. 
When no chunk is defined, then a 

new thread is forked every iteration. 
Table 2 - openDOE Directives 

These constructs are: 1) The #pragma doe parallel sections construct with several 

#pragma doe section constructs to define different sections that can be executed in 

parallel, and thus a fork will occur between each two sections. 2) The #pragma doe 

parallel for/while construct to parallelize a for loop or a while loop by forking on each 

35 



 
 
 
 
 
 
iteration, or on every set of iterations, depending on the clause provided with the 

construct.  

The API also provides several clauses to be used with the parallelization 

constructs as described in Table 2. These clauses are: 1) The depend(x) clause which 

marks variable x as a shared variable between the parent and the child threads, and thus 

signals the compiler to mark this variable as poisoned. The method in which this clause 

will be translated and how the poisoning will be done is described next. 2) The chunk(n) 

clause, which is used to parallelize a loop in chunks of n, meaning that a thread will fork 

a new thread every n iterations instead of forking every iteration. Similar to OpenMP, 

execution starts in the main thread and a new thread is forked whenever a parallel 

construct is encountered.  

The directives we described above are translated by the compiler into a set of 

new instructions that we defined for the DOE architecture as depicted in Table 3. The 

spm.g and spm.f instructions are used to set the poison bit mask that will be used to 

mark the poisoned general purpose registers (spm.g) and floating point registers (spm.f). 

The frk instruction will fork a new thread starting at lbl and assign it to the core at the 

TAIL of the ring network. The jn instruction marks the end of the thread and 

commences the joining operation by which the thread commits and sends its RF to its 

child thread. The plw and pl.d instructions represent poisoned load word and poisoned 

load double respectively. These instructions have two different functionalities 

depending on the state of the core: 1) If the core is in CFP_EXEC mode, then these 

instruction will only mark the destination register as poisoned and they won’t load 

anything from memory (since a poisoned load means that the memory location is not 
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yet available for the thread). 2) If the core is in P_EXEC or N_EXEC mode, then the 

instructions function similar to the regular lw and l.d instructions as defined by the PISA 

instruction set [20]. The scv instruction sets the chunk size which will be used to define 

the number of iterations executed by every thread. The full list of PISA instructions can 

be found in [20]. 

Instruction  Name Operands Example Description 

spm.g  M Set Poison 
Mask, GPR 

M: 32 bit mask, each 
representing a general 
purpose register 

spm.g  0x00100100 

Sets the mask for poisoned 
GPRs: a 1 represents a poisoned 
register and a 0 represents a 
non-poisoned register 

spm.f  M Set Poison 
Mask, FPR 

M: 32 bit mask, each 
representing a floating 
point register 

spm.f  0x00100100 

Sets the mask for poisoned 
FPRs: a 1 represents a poisoned 
register and a 0 represents a 
non-poisoned register 

frk  lbl Fork 
lbl: PC at which the 
forked thread should start 
(i.e. join PC) 

frk  f0 Forks a new thread starting at 
the PC = lbl (f0 in the example) 

jn Join   Marks the end of the thread 

plw  rt,o(rs) Poisoned 
Load Word 

rt: Destination register 
o: address offset 
rs: Source register, base 
address 

plw  $1,0($3) 

Similar to a regular lw, except 
that it marks the destination 
register (r1) as poisoned if in 
CFP_EXEC state 

pl.d  ft,o(rs) 
Poisoned 
Load 
Double 

ft: Destination register 
o: address offset 
rs: Source register, base 
address 

pl.d  $1,0($3) 

Similar to a regular l.d, except 
that it marks the destination 
register (f1) as poisoned if in 
CFP_EXEC state 

scv  n Set Chunk 
Value n: Chunk value scv  5 

Sets the CHNK register to a 
value equal to n. Thus defines 
the chunk size for the threads. 

Table 3 - DOE Instructions 
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Figure 7 - DOE Example 1: left – C code; right – DOE Assembly 

The following examples represent different utilizations of the openDOE 

directives. Example 1, shown in Figure 7, represents a while loop where the dependent 

variable (x0) is stored in a register and being updated and used between the loop 

iterations. Since this is the case, notice the utilization of spm.f in the beginning of the 

loop to mark whichever register is using x0 as poisoned. To elaborate on the usage of 

smp.g and spm.f, assume that we need to poison both $r1 and $r4. We generate the 32 

bit mask such that bit 0 corresponds to $r0 and bit 31 represents $r31; i.e. all the general 

purpose registers. In that case, the mask would be 0…0100102 or 0x12. Thus the 

instruction would be: spm.g 0x12.  In the example shown, register $f4 is poisoned, thus 

spm.f 0x10. Notice that every new thread is forked at the label f0, and thus each thread 

starts by incrementing its own base addresses of any arrays, incrementing the loop 

induction variable, checking the loop condition, and then it either branches back and 

forks a new thread if it isn’t the last iteration, or it exits the loop if it is the last iteration. 
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Example 2, shown in Figure 8, represents a for loop where the dependent variable is an 

array.  

 

Figure 8 - DOE Example 2: left – C code; right – DOE Assembly 

In this case, the array entries are being loaded from memory and stored back 

into memory every iteration, therefore the poisoning has to be done using memory and 

not using registers. In order to achieve this, all the instances of lw or l.d that are used to 

load the array value that is generated by the previous iteration should be replaced by plw 

or pl.d. In the case of this example, the array entry that should be poisoned is R[i-1] 

since it is the dependent variable between each two consecutive iterations of the outer 

loop.  

Example 3, shown in Figure 9, represents a parallel sections example. In this 

case, the first thread forks the next thread then does its job before joining, while the 

second thread starts by setting its poisoned registers or memory (depending on the 

dependent variables) and then does its job before it exits.  
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Figure 9 - DOE Example 3: left – C code; right – DOE Assembly 

In the case of chunks, a different approach should be taken by the compiler in 

generating the assembly. First, all the base addresses of arrays and the induction 

variable are incremented by a value relative to the chunk value. Then, the scv 

instruction is used, followed by the chunk value, before every fork. After the fork, the 

base addresses and induction variable are decremented by the same amount to return 

them to their original value, and the loop body is kept as it is. The increment of the 

induction variable is kept in its original location within the loop body. After the loop 

body, the jn is placed followed by the fork’s label, a check for the induction variable, 

and the branch instruction.  
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Figure 10 - DOE Chunk Example: left – C Code; right – DOE Assembly 

To clarify what this means, assume the example provided in Figure 10. In the C 

code, we have a loop with 10 iterations changing the values of an array (A[]), of size 11, 

from index 1 till index 10. The shared variable is (A[]) because each iteration i depends 

on A[i-1]. The chunk value is assigned to be 5, therefore this loop will be distributed 

over 2 threads, each executing 5 iterations. The assembly translation of the loop is also 

provided in the figure. The instructions in the red box first increment the base address of 

the array and the induction variable by 20 (5 x 4 bytes for an integer array) and 5 

respectively. This way, when the second thread starts at f0, it will start executing the 5th 

iteration (i = 6) with A[6]. So on and so forth until the thread that leaves the loop is 

forked. In the example, when the third thread is forked, i = 11. Therefore, the thread 

checks the induction variable and finds that it is equal to the maximum iterate and won’t 

branch back. Each thread that executes the branch will start by preparing the base 

addresses and induction variable for the next thread that will be forked and forking that 

thread. After forking, the parent thread would go back and restore its base addresses and 

induction variable (second red box in figure) then perform the loop body (blue box in 
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figure), increment the base address and induction variable (dark red box in figure), and 

branch back. A hardware counter would be keeping track of how many forks were 

decoded by the thread. Only the first instance would actually be executed, the rest will 

be just used to increment the counter. Once the counter’s value equals the chunk value 

the jn would be executed; all the previous joins are disregarded. Therefore, each thread 

would have executed the number of iterations equal to the chunk value before joining. 

Notice that the incrementing and decrementing that is happening in every iteration (red 

boxes in figure) will not have any effect on the iterations that do not execute the fork 

(since they cancel themselves out). The flow chart in Figure 11 summarizes the 

algorithm. 
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Figure 11 - Chunk Algorithm Flow Chart 
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2. Comparison to openMP 

The openDOE API provides the following advantages over openMP: 

• It allows the parallelization of dependent code, which is otherwise 

unparallelizable using openMP, by introducing the depend clause which 

marks the dependent variables between the threads and leaves the rest of the 

work to the hardware. 

• It removes the need for synchronization constructs since the latency tolerant 

DOE architecture takes care of synchronization in the hardware itself by 

deferring any memory accesses in the child thread that are accessing a 

variable that it shares with the parent thread till after the parent thread 

commits. 

• It removes the need for data attribute clauses (private, shared, etc…) and 

replaces them all with the depend clause. 

• It provides the ability to parallelize while loops  

• It can support the parallelization of for loops that have conditional breaks. 

This will be discussed in the future works section. 

• Finally, and most importantly, it provides an easy-to-use API for the 

programmer that greatly simplifies the effort required by him to parallelize 

any kind of application. 
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CHAPTER IV 

IMPLEMENTATION 

In this chapter, we will discuss the implementation of the project, as described 

in Chapter III. 

 

A. Implementing DOE on SimpleScalar 

As discussed earlier, we are using the SimpleScalar tool suite to implement the 

DOE performance simulator. The tool suite contains many simulator models, two 

functional simulators (sim-safe, sim-fast),  one program profiling simulator (sim-

profile), one cache simulator (sim-cache), and one detailed performance simulator (sim-

outorder). Since we are interested in a performance model of DOE, we built our 

performance simulator onto the sim-outorder model. We will provide a short description 

of sim-outorder, followed by a description of the DOE model, which is in turn followed 

by detailed steps of implementing different aspects of the DOE architecture. 

 

1. The Sim-Outorder Model 

The base sim-outorder model simulates a four-wide, out-of-order, superscalar 

processor. It includes 5 pipe stages: instruction fetch, instruction dispatch (which 

includes the decode stage), instruction execute, instruction writeback, and instruction 

commit. The model implements a 64-bit PISA instruction set architecture. The RF is 

made up of the following 32-bit registers: 32 General Purpose Registers (GPR), 32 

Floating Point Registers (FPR), a HI and a LO register for multiplication, and a control 

register (FCC). A structure called the RUU is implemented in the model, it acts as a 
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combined RS and ROB. Two levels of caches are defined and implemented. A 

Load/Store Queue (LSQ) is used for executing Loads and Stores. Different branch 

predictors are implemented and the user has the flexibility of choosing which one to use 

in his simulator. Something peculiar about the sim-outorder model is that the actual 

execution of the instruction, and the update of the registers, occurs in the dispatch stage. 

The rest of the pipe stages are just there to generate a timing trace for the instructions to 

provide an accurate timing model. We utilized this property of the sim-outorder model 

to design our DOE architecture on top of it. 

Number of Cores 4 
Number of Pipeline Stages 13 
Pipeline Width 4-wide 
ROB Size 128 
RS Size 60 
LSQ Size LQ: 30 

SQ: 24 
DTB Size 256 
SRL Size 256 

Table 4 - Simulator Parameters 

 

2. The DOE Model 

Since the DOE model was built on top of the sim-outorder model, it shared all 

the resources that are available in sim-outorder. Table 4 represents the parameters of the 

modeled DOE architecture. Each DOE core contains, in addition to all the sim-outorder 

resources described above, a fast forward buffer, called “fwdBuff”, which is used to 

fork new threads, a 256 entry DTB, and a load/store hash table used as a perfect 

memory predictor. However, DOE is a multicore architecture, and since SimpleScalar is 

not a multicore simulator, we had to figure out a simple, yet accurate way to model the 

execution of multiple threads in parallel without having to rollback time. We made use 
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of the sim-outorder property described above to come up with a simple, yet accurate, 

solution to implement the forking and multithreading required in DOE. This will be 

evident in the following subsections. 

 

a. Forking Implementation 

In order to implement the fork on SimpleScalar, we were able to make use of 

the property described above. The following algorithm gets executed when a frk 

instruction is decoded: 

• The lbl is saved in a special register called the “regs_JPC”. This resembles 

the Program Counter (PC) at which the forking thread should join and the 

forked thread should begin, or the join PC. 

• The TAIL is checked to make sure that there is a free core. If the TAIL is 

active the fork is buffered, if not, the fork is exercised using the steps that 

will be described. If the fork is buffered, the tail is checked again, every 

cycle, at the beginning of the dispatch stage. When the tail becomes inactive 

the fork will be exercised. 

• A fork() subroutine is called: 

- First, the mask that would have been set by spm.g and spm.f is used 

to mark the poisoned registers in the child’s RF. 

- The current PC and the next PC are stored to restore them when the 

fork subroutine completes. 

- Then, the instructions from the current PC to the join PC are fast-

forwarded and their results are stored in a special buffer called the 

47 



 
 
 
 
 
 

“fwdBuff”. If it is a regular fork, the current PC is the fork PC, if it is 

a delayed fork, the current PC would be whichever instruction was 

currently being dispatched. 

- At the end of the subroutine, the TAIL is activated, and all of its 

resources are reset. The final RF of the parent core is copied to the 

child core, and the parent’s PC is returned to the current PC. 

• At this point, the parent thread will continue fetching and dispatching 

instructions after the fork, but instead of re-executing them, the results are 

read from the “fwdBuff”. If it hadn’t been for the property described above, 

we wouldn’t have been able to take this approach. 

• Meanwhile, the child thread starts fetching and executing instructions 

starting from PC = lbl. As described in chapter 3, it starts by setting its own 

induction variable and base addresses for arrays, then either loops back if 

there are iterations remaining or exits the loop if there are no more iterations. 

The thread uses the poison bits that are set using the spm instructions to mark 

dependent instructions, but since it has the complete RF from its parent, it 

still executes them to maintain correctness and a precise state. More details 

about CFP Execution will be provided in subsections c and d. 

 

b. Joining Implementation 

Whenever the jn instruction is decoded in the dispatch stage, a check is made 

to make sure the core has forked earlier. If the previous fork was never exercised, then 

the join will be ignored, and the delayed fork will be discarded. If, however, the last 
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fork was executed, then the core will enter into joining state if it was in normal 

execution or poison execution modes. The fetch and dispatch stages are stalled, and the 

pipeline is left to drain. When the last remaining instruction in the RUU is committed, 

the core is then deactivated, assuming that this core is the HEAD, and the HEAD 

pointer is incremented. If the core was in CFP execution mode, then the jn instruction is 

buffered since the core is not the HEAD yet. 

  

c. CFP Execution and Normal Execution 

During the dispatch stage, the first thing that is checked is the execution mode. 

If we are in CFP execution, the following occurs: 

• First, instructions are read from the fetch queue and decoded. 

• If the instruction is not a fast forwarded instruction, it is executed. If it is a 

fast forwarded instruction, then the results are read from the “fwdBuff”. 

• The opcode is checked to determine whether the instruction requires special 

considerations. Instructions that require special considerations include: frk, 

jn, syscall, plw, and pl.d. 

• Then, input operands are checked for poisoning. If any input operand is 

poisoned, the instruction is marked as poisoned. If the poisoned instruction is 

a store, its address needs to be added in the hash table. 

• If a load instruction didn’t have any of its input registers poisoned, its 

address has to be hashed into the hash table. If there is a matching store 

address, then the load is marked as poisoned, if not, then the load is not 

poisoned. 
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• If the instruction is marked as poisoned, the output registers are first marked 

as poisoned, then the instruction is checked in case it was a mispredicted 

branch to stall the pipeline and wait for the parent thread to commit. This 

approach is taken with mispredicted branches for simplicity, since 

architecturally, the thread should restart if a poisoned branch mispredicts. 

The mispredicted branch will recover when it is sent into execution in the 

poisoned execution mode, and when it recovers a delay is set to model the 

restart of the thread from the beginning. Then, the instruction is sent into the 

DTB, and a NOP is sent to the RUU to occupy the required resources for this 

instruction. When the DTB gets full, the thread will stall. If the instruction is 

a store, the SRL counter is incremented. If the SRL is full, the thread also 

stalls. 

• If the instruction is not poisoned, we should first clear the poison bits of the 

output registers. If the instruction is a store, the address should also be 

removed from the hash table if it was already there. Finally, the instruction is 

sent to the RUU and LSQ to continue its flow in the pipeline. 

If we are in normal execution, then the steps are similar to the ones described 

above except for the poisoning. In other words, instructions are fetched, decoded, 

executed or read from the fwdBuff, and then sent to the RUU and LSQ. 

 

d. Poisoned Execution 

If the execution mode in the dispatch stage was poisoned execution, the 

following occurs: 
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• Instead of reading the instructions from the fetch queue, instructions are read 

from the DTB one by one.  

• The instructions are then decoded, but not executed (since they have already 

been executed before sending them to the DTB).  

• The instruction’s opcode is also checked for special considerations. In this 

case, the only special consideration is the jn instruction. 

• Finally, the instruction is sent to the RUU and LSQ to flow through the 

pipeline. 

 

e. Chunks 

In order to implement forking on a loop in chunks, the following 

considerations were taken: 

• A counter was used to track the current chunk iteration, this register was 

called “chunk_iter”. And the chunk value is saved in the regs_CHNK 

register when the scv instruction executes. 

• When forking, first, the chunk iterate is incremented if the chunk value is 

larger than 0. Then, the forking algorithm described above is applied only if 

the chunk value is 0 (i.e. no chunks) or if the chunk iterate is 1 (i.e. this is the 

first iteration in the chunk, and it has to fork the new thread). For any chunk 

iterate larger than 1, the fork instruction only increments the chunk iterate. 

• When joining, the joining algorithm described above is applied only if the 

chunk value is 0 (i.e. no chunks) or if the chunk iterate is equal to the chunk 

value, meaning that we have reached the end of the chunk and this thread has 
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to join. For any chunk iterate value less than the chunk value, the join is 

ignored. 

 

B. The openDOE API 

To implement the openDOE API, the gcc compiler and the assembler have to 

be altered to compile our openDOE directives, translate them into openDOE 

instructions, and assemble these instructions into binary. However, since the compiler 

was out of the scope of our work, we only added the new instructions into the assembler 

so that it can understand them and translate them to binary. To replace the compiler, we 

manually implemented the algorithm described in the project description. This was done 

by using the compiler to generate the assembly of the application, then inserting the new 

instructions manually into that assembly code. The code was then assembled using the 

assembler that we altered to generate the final binary file that was used as an input to 

the simulator. 
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 CHAPTER V 

METHODOLOGY 

In order to test our simulator, the following process was used. We started by 

identifying three numerical benchmarks from the ACM library for numerical 

applications. These benchmarks varied between applications that are hard to parallelize 

in openMP because of the dependent nature of the algorithm and will therefore require a 

major code rewrite, and applications that cannot be parallelized by openMP since the 

algorithm contains structures that are not supported by openMP (while loops and 

conditional breaks). The benchmarks were compiled using the cross-gcc compiler for 

the PISA instruction set architecture, and the corresponding assembly was generated. 

We then manually inspected the assembly code and manually modified it and inserted 

the new openDOE instructions based on the algorithms we discussed in the above 

examples in Chapter 3. Ideally, this is supposed to be done by the compiler, but since 

developing a compiler is beyond our scope we took the approach of manually adding 

the instructions. After adding the instructions into the assembly, we assembled the final 

code and generated the binary that was then executed on the sim-outorder model of 

SimpleScalar.  

 

A. Benchmarks Used 

In order to test our simulator, we used three real life benchmarks, and a couple 

of simple benchmarks that we wrote ourselves to test the functionality. The real life 

benchmarks were all taken from [21], and they all represent numerical applications that 

are hard to parallelize using openMP. The openMP equivalent of the Romberg 
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algorithm is found in Appendix A. It can be easily inferred that the openMP equivalent 

is much more complicated that the openDOE version of the code.  

 

1. Newton Raphson Method Algorithm 

The Newton-Raphson method is an algorithm used to approximate the root of a 

function. It is an iterative algorithm which contains two properties that make it un-

parallelizable in openMP: 1) the loop in the algorithm is a while loop, and while loops 

cannot be parallelized using openMP, and 2) the loop has a conditional break, which is 

also not allowed in openMP. In each iteration, the algorithm calculates a new 

approximation using the formula defined by the Newton Raphson method: 𝑥𝑥1 = 𝑥𝑥0 −

𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)

. If 𝑎𝑎𝑎𝑎𝑠𝑠 �𝑓𝑓(𝑥𝑥0)
𝑓𝑓′(𝑥𝑥0)

� < 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜, then the root is found (x0) and the algorithm exits 

the loop. If not, it sets x0 = x1 and repeats. Note that we removed the conditional break 

because we still haven’t supported conditional breaks yet; more details can be found in 

the future works section. If a certain number of maximum iterations pass, the loop exits 

without converging to a root. A pseudo code of the algorithm (with chunks) is provided 

in Figure 12, and the actual algorithm is found in Appendix A along with its assembly.  
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Figure 12 - Pseudo Code for Newton's Algorithm: left – C code, right – Assembly code 

It is clear from the code that the shared variable between each two successive 

iterations is x0, therefore it was declared in the openDOE depend clause. The code was 

then compiled using the following Linux command:  

sslittle-na-sstrix-gcc -S -fverbose-asm -g -O2 newton_short.c -o newton_short.s 

After compiling the algorithm and generating its assembly, we inspected the output to 

determine how and where to place the new instructions based on the algorithm provided 

above. We found out that x0 was placed by the compiler in register $f4 and was used 

throughout the loop without reading or writing to memory, therefore we needed to 

poison the corresponding register.  The spm instruction was added before the frk 

instruction at the beginning of the loop to mark $f4 as poisoned. Note that since $f4 is 

the 5th floating point register, the mask would be 0…0100002 = 0x10 and the instruction 

would be spm.f 0x10. After the frk, the loop body remains the same. Before the end of 

the loop, the jn instruction is placed followed by the fork’s label “f0” after which the 

induction variable is incremented, checked, and the branch is placed. This way, each 
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thread starts at f0 by incrementing its own induction variable, then it compares it to the 

maximum iteration value, and either branches back to fork a new thread and execute the 

loop body, or skips the branch and commences with the exit routine. 

After adding the assembly instructions, the assembly file was then assembled 

using the following Linux command to generate the binary file: 

sslittle-na-sstrix-gcc  –o  newton_short  newton_short.s 

The binary file is then simulated using the DOE SimpleScalar model using the 

following command: 

./sim-outorder  newton_short 

The results were obtained from the simulator output, and they will be discussed in the 

next chapter. 

 

2. Romberg Algorithm 

The Romberg Method is an algorithm used to calculate the integral of a 

function using the Romberg Array. It is an iterative algorithm that uses a two 

dimensional array R[11][11] to calculate the integral of the function 𝑓𝑓(𝑥𝑥) = 1
1−𝑥𝑥

. The 

equations defining the Romberg method can be found on the Wikipedia article. It starts 

by initializing R[0][0], then enters an outer loop. The outer loop contains two inner 

loops. The first one is used to calculate a sum by accumulation. Following that loop, 

R[i][0] is calculated. Finally, the second inner loop is used to calculate R[i][j] for j from 

1 to I, which is a function of R[i][j-1] and R[i-1][j-1]. A pseudo code of the algorithm is 

presented in Figure 13 and the full code can be found in Appendix A. This algorithm is 

a good candidate because it is very hard to parallelize it using openMP since it contains 
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a lot of scalars, and loops within loops which will make parallelizing it in openMP very 

complicated. The openMP version of this algorithm is also provided in Appendix A. 

 

Figure 13 - Pseudo Code for Romberg Algorithm: left – C code, right – Assembly code 

In this case, there were multiple approaches that we considered. Because of all 

the different loops, different options were parallelizing the outer loop, parallelizing each 

inner loop on its own, parallelizing only the second inner loop, considering each loop as 

a section and parallelizing the outer loop as two sections, etc… We started with the 

option of parallelizing the outer loop. In that case, the dependent variable between 

different iterations of the outer loop is anything that accesses R[i-1]. We compiled the 

code using the same Linux command presented above, and started working on the 

generated assembly file. It was evident that since R is an array, the different required 

entries were loaded from memory and then stored into memory whenever they needed 

to be used. Hence, no register poisoning was initialized, instead all the l.d instructions 

that were used to load instances of R[i-1] were replaced with the pl.d instruction. There 

are only two such instances, one while calculating R[0][0], and another while 

calculating R[i][j] in the second inner loop. At the beginning of the outer loop, the frk 
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instruction is placed. After that, the loop body is the same with the changes we 

described above (pl.d instead of l.d in certain instances). Finally, the jn instruction is 

placed, followed by “f0”, the label of the fork instruction, after which the base 

addresses of all arrays are calculated and the induction variable is incremented, 

compared to the maximum iterate, and the branch is placed. Thus, every new thread 

starts at “f0”, calculates its base addresses and induction variable, then either loops 

back and forks a new thread or exits the loop if the loop is complete. 

The new assembly file was also assembled using the same instruction 

described above, then the output binary was simulated using the DOE model. The 

results were promising, but we didn’t get as much improvement as we expected due to 

load unbalancing, since the thread sizes were increasing every iteration. This, along 

with a proposed solution, will be discussed in the results and recommendation sections. 

 

3. Tri Diagonal Matrix Algorithm         

The Tri-Diagonal Matrix Algorithm is a simplified form of Gaussian 

elimination used in linear algebra. Since the algorithm is quite complex, and its details 

are out of the scope of this work, a description can be found on the Wikipedia page for 

the algorithm. As far as the code is concerned, it includes a set of loops. Most of them 

are small loops that initialize the arrays and set the values for some arrays, and do not 

have any dependence between the iterations, and therefore we are not interested in these 

loops. The loop that is of interest to us is shown in the pseudo code of Figure 14. Every 

iteration, it updates c_star[i] and d_star[i] as a function of c_star[i-1] and d_star[i-1], 

therefore the shared variables are c_star[] and d_star[]. After compiling the C code of 
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the application, we changed the assembly to match that shown in Figure 14. Since the 

loop is small, we decided to implement chunks in it, therefore the same algorithm 

described in Chapter 3 was used here (Notice the increment and decrement of the 

induction variable and base addresses by a value relative to the chunk value). In the 

loop body, all the loads of c_star[i-1] and d_star[i-1] have been replaced by pl.d. The 

rest of the code is similar to what has been described in the past 2 subsections. The full 

C Code and Assembly for this algorithm can be found in Appendix A. 

 

Figure 14 – Pseudo Code for Tri Diagonal Algorithm: left – C code, right – Assembly code 

Note: A modified version of the Tri Diagonal loop was also used where we replaced 

c_star[i-1] and d_star[i-1] with c[i-1] and d[i-1] respectively. This makes the loop a 
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completely parallel loop without any dependence and the intention behind this is 

showing how a highly-parallel algorithm would function with our architecture. 

 

4. Functional Testing Benchmarks 

The following simple benchmarks were used for functional testing to make 

sure different parts of the simulator were working.  

 

a. Parallel Sections 

The first benchmark was a simple application where three functions are called 

sequentially, and each call depends on the output of the previous function call. This 

benchmark was used to test the parallel sections construct. Figure 15 below represents a 

pseudo code of the parallel sections C algorithm, followed by the pseudo code of the 

respective assembly.  

 

Figure 15 - Parallel Sections Examples: left – C code, right – Assembly code 

The openDOE directives were added to the C code as shown in the figure, and 

then the code was compiled as described above. In the generated assembly, before each 
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function call, a frk was placed pointing to the next function call. Before each fork, the 

spm instruction was used to mark the poisoned registers, and before each label (c1 and 

c2) the jn instruction was placed. Between the frk and jn instructions is the prologue, the 

actual call, and the epilogue for each function call. Since the second thread requires 

variable ‘y’ from the first thread, and since this variable is stored in register $18, the 

mask for spm.g was 0…010000000000000000002 = 0x40000. Similarly for the third 

thread, the variable, ‘z’, is stored in register $17 and the corresponding mask is 

0x20000. This benchmark was only used to test the functionality of the parallel sections; 

no actual results were measured because it is not a representative benchmark for 

performance. 

 

b. Chunks 

In order to test out the chunks, a simple test loop was used. The loop C code is 

shown in Figure 16 along with its assembly. The loop works on the array A[] 

calculating the different entries as a function of the previous entry. The chunk(5) clause 

is used, setting the chunk value to 5, meaning that each thread executes 5 iterations 

instead of 1. 

The openDOE parallel for directive was added to the C code along with the 

depend and chunk clauses. The code was compiled, and in the generated assembly the 

following changes were made. As described in the project description, the first thing 

that should was done is adding the scv and frk instructions at the beginning of the loop. 

Also, the base addresses and induction variable are incremented and then decremented 

by a value relative to the chunk size. Then comes the loop body, which remains the 
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same with the exception of the plw instruction that has to be used to load A[i-1], 

followed by the incrementing of the base addresses and the induction variable, which in 

turn are followed by the jn instruction. The fork label “f0” is placed after these 

instructions, and then the induction variable is checked and the branch is placed.  

  

 

Figure 16 - Chunk Example 

This way, each thread starts at “f0”, with its required induction variable (i.e. thread 1 

starts at 6, thread 2 starts at 11), and base addresses of its arrays. It checks the induction 

variable and either loops back or exits the loop. This is similar to the algorithm 

described in Chapter 3 above. This benchmark is also only used for functional 

simulation and will not be discussed in the results section. 
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B. Testing Process 

In order to test the DOE performance simulator, we first used the “functional” 

benchmarks described above to make sure that the simulator is functionally correct. 

During this stage, we found some major bugs and fixed them on the way. Once we 

made sure that the simulator was free of major bugs, we ran the three benchmarks 

described above and extracted the time spent executing the loop of interest. To compare 

our results, we used the baseline sim-outorder model. The baseline model was modified 

to have the same parameters and buffer sizes as the DOE model. The same benchmarks 

were then run on the baseline model, and a dispatch trace was used to extract the time 

spent within the same loop of interest. Both numbers were then compared. Some of the 

benchmarks did not give positive results at first, and therefore we ran them with 

different configurations, changing the number of iterations in the loop, and using 

different chunk sizes.  
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CHAPTER VI 

RESULTS 

In this chapter we will discuss the results that we got from running the three 

benchmarks (Newton’s Algorithm, Romberg Algorithm, and Tri Diagonal Algorithm) 

on the DOE simulator, while using the openDOE API to parallelize them, in comparison 

to running them on the baseline sim-outorder model. Table 5 below represents the 

percent change in cycle time between running the loop on openDOE, with the specified 

configuration, and running it on the baseline sim-outorder model. 

 Configuration  

 Iterations Chunks % 
Change 

Newton 

7 0 -272.22 
20 5 -54.24 
20 0 -88.81 

100 20 1.74 
100 0 -32.25 

Romberg 10 0 41.19 

Tri 
Diagonal 

9 3 -46.41 
100 10 8.60 
200 10 10.25 
200 0 -24.16 

Modified 200 10 70 
Table 5 – Results 

 

A. Newton’s Algorithm 

First of all, we started off with 7 iterations for the Newton Algorithm loop, and 

without any chunks. When we simulated that benchmark, the results were horrible. As 

shown in the table above, we got a 270% decrease in performance with respect to the 
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base model. This was due primarily to the fact that the loop is small. Parallelizing it 

added a huge amount of overhead due to the delays that are added for copying the 

register files between forks and executing the stores in the SRL at the end of poisoned 

execution. Because of that, we decided to increase the number of iterations and 

implement chunks to make the number of instructions executed by a thread larger; this 

way the overhead would be small relative to the number of instructions that the thread is 

actually executing. We started off with 20 iterations and chunks of 5. The results were 

better, but we still didn’t get positive performance (50% decrease from the table). We 

then went up to 100 iterations and chunks of 20. At this number, we were able to 

breakeven with a 1% increase in performance relative to the base model. During the 

testing, we tried out 20 iterations and 100 iterations without any chunks. We found that 

the total time for 20 iterations and no chunks was 557 cycles compared to 455 cycles 

with chunks of size 5. Similarly with 100 iterations and no chunks we got 2735 cycles 

compared to 2032 with chunks of 20. This means that applying chunks gave us 18% 

better performance with 20 iterations and 26% with 100 iterations. This proved the 

benefit of utilizing chunks, and thus justifies our decision of adding it to our design. 

 

B. Romberg Algorithm 

The outer loop of the Romberg Algorithm has 10 iterations. When we 

simulated it on the DOE model, we found that executing the loop took 22429 cycles 

compared to 38136 cycles on the baseline model. This gives us a good 41% increase in 

performance. We anticipated better performance increase, however the problem with 

this algorithm is the load imbalance. The inner loops get bigger every iteration, 
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especially the first one which loops from 1 till 2i giving it an exponential increase. This 

phenomenon caused the threads to almost double in size every time a new thread is 

forked. Further work will be done to overcome this issue and will be described in the 

future works section. 

 

C. Tri Diagonal Algorithm 

The trend of the Tri Diagonal Algorithm was similar to that of Newton’s 

Algorithm but a little more positive. We started off with 9 iterations and chunks of size 

3. This gave us 224 cycles for DOE compared to 153 for the baseline model, which is a 

46% degradation in performance. We then increased the numbers to 100 iterations with 

chunks of size 10, this gave us better results: 2063 cycles for DOE and 2257 cycles for 

the baseline (around 8% performance increase). Finally, we increased the number of 

iterations to 200 while keeping the chunk size equal to 10, this gave us 4090 cycles for 

DOE compared to 4557 for the baseline model, or around 10% increase in performance. 

Again, to appreciate the value of chunks, we tried running the benchmark with 200 

iterations and without chunks. We got 5658 cycles, or about 40% less than the number 

we got with chunks of size 10. We also ran the modified version of Tri Diagonal which 

does include any dependence in the loop. With this highly parallel version we were able 

to gain around 70% performance increase, which is very optimistic given the minimal 

effort required by the programmer.  

 

 

 

66 



 
 
 
 
 
 

D. Effect of Chunks 

 

Figure 17 - Chunk Results 

In order to study the effect of chunks, we used the loop in the Tri Diagonal 

algorithm with two different configurations (100 iterations and 200 iterations) and 

varied the chunk size from 0 to 100. We ran all the configurations on the SimpleScalar 

DOE model and registered the number of cycles needed in the loop for each case. The 

results we got are shown in the graph above. It can be inferred from the graph that the 

optimal chunk size is 10. This is due to the size of an iteration within the loop and the 

resulting size of the thread. Having chunks smaller or larger than 10 will result in a 

thread size that is either too small or too large with respect to the hardware resources 

available and therefore the efficiency will drop. Note that the red mark on the orange 

graph (100 iterations, chunk size 5) represents a discrepancy. It is an erroneous result 

since the simulator did not function correctly while executing this configuration, and 

therefore should be disregarded. 
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E. Comparison to OpenMP 

The three benchmarks we tested suffer limitations when it comes to 

parallelizing them with openMP. 

• For the case of the Newton algorithm, the algorithm consist of a small loop 

with a severe amount of dependence between the iterations as well as 

dependence within each iteration itself. The ratio of parallel to dependent 

instructions is severely low leaving very minimal room for parallelization. In 

addition to that the nature of the loop constitutes a problem for openMP 

since both while loops and dynamic conditional breaks are not supported. 

This means that it requires a major rewrite of the code which is not feasible 

given the minimal parallel potential of the loop. 

• For the case of the Romberg Algorithm, while referring to appendix A 

section B one can see the huge effort required by the programmer to 

parallelize the loop in openMP. Due to the highly sequential nature of the 

loop and the fact that it contains scalar quantities along with vector 

quantities, parallelizing the loop in openMP requires a major rewrite of the 

loop. Even with the rewrite, we got performance degradation by almost 30% 

compared to the sequential execution of the algorithm. 

• Finally, for the case of the Tri Diagonal algorithm, the loop iterations are 

highly dependent on each other and also constitutes of computations 

involving scalar and vector quantities. This makes parallelizing the loop 

challenging in openMP and also requires a major rewrite of the code. 
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Therefore, we can infer, that even though some of these applications can be 

parallelized by openMP, the effort required by the programmer is very high and 

requires a major rewrite of the code compared to the solution that openDOE 

provides.   
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

Traditionally, uni-core processors have been the trend. And designers have 

been capable of achieving performance increase through architectural enhancements 

and increasing the frequency at which the processor runs. However, the rapid increase 

in the size of transistors has caused this trend to come to an end due to the power wall. 

Hence, designers opted to reducing the frequencies, while making use of the large 

number of transistors by transforming the chip into a multicore chip. Multicore 

processors were very helpful in aiding multi-tasking and multi-threading on computers. 

However, a very important question was raised: How can we efficiently make use of the 

multiple cores available on modern processors to increase the performance of a 

sequential application. Many solutions were presented. The hardware solutions were 

SpMT, in all of it variations and forms, that provided new architectures with supporting 

compilers that were capable of speculatively partitioning a sequential application into 

multiple threads and running these threads concurrently on multiple cores. Software 

solutions included APIs, like openMP, which allowed the programmer to manually 

parallelize a sequential application by using certain compiler directives. All of these 

solutions were beneficial to a certain extent, however they lacked in two areas: 1) the 

overhead in delays and power consumption that SpMT and openMP created, due to 

inter-core communication and stalling, makes these architectures unfeasible for 

applications with a lot of dependencies between the threads, and 2) the effort required 

by the programmer for parallelizing applications using the APIs like openMP is huge, 

and many applications remain unparallelizable, or very difficult to parallelize and 
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require complete code rewrites. Therefore, we presented a solution for the 

aforementioned problem, the DOE architecture and openDOE API. Through its latency 

tolerant cores, and its CFP-like execution of inter-thread dependent instructions, DOE 

cores buffer dependent instructions in the DTB, allowing the independent instructions to 

flow through the pipeline, then replays the buffered instructions when the parent thread 

commits. This approach solved the issue of delays and communication due to the inter-

core dependences. The API is a modified version of openMP that makes the effort 

required by the programmer much simpler. We built upon previous work done on the 

topic [12] [14] by presenting a cycle accurate simulator that uses the algorithm we 

described in the implementation section, and including the support for chunks and 

delayed forks in the simulator. We presented the architecture and the API, and provided 

a description of both. We then provided the details of the performance simulator and 

how we implemented on SimpleScalar. Finally, we discussed the benchmarks we used 

and provided the results. Based on what we found, this is a promising field of study that 

has potential to be advanced. We were able to get between 40 and 70 percent increase in 

performance on applications that are considered very difficult to parallelize.  

Our work doesn’t end here. The following list provides future plans will be 

worked on for this project: 

• Although our architecture supports conditional breaks in loops, we still 

didn’t implement this feature. To make this work, an instruction would be 

added that would flush the child cores of the breaking thread before it exits 

the loop. 
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• For now, the chunk size has to be a multiple of the maximum number of 

iterations in the loop. We are planning on removing this restriction, either 

architecturally or through the help of the compiler. 

• Even though we got 40% performance increase for the Romberg algorithm, 

we are working on finding a solution for such cases of load imbalance. A 

proposed solution is adding a predictor which predicts whether to fork or not 

based on the size of the previously forked threads. This will make the 

threads’ sizes closer to each other. 
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APPENDIX A 

BENCHMARK C CODE AND ASSEMBLY 

A. Newton’s Algorithm 

1. C/openDOE Code 

#include<stdio.h> 
#include<math.h> 
int main() 
{ 
  double x0,h,err,root,x1; 
  int miter,iter; 
  x0 = 2; 
  err = 0.0000000001; 
  miter = 20; 
  iter=1; 
#pragma doe parallel while depend(x0) chunk(5) 
  while(iter<=miter) 
  { 
    h= ((x0) * (x0) - 5)/(2*(x0)); 
    x1=x0-h; 
    if(fabs(h)<err) 
    { 
      root=x1; 
    } 
    else 
      x0=x1; 
    iter++; 
  } 
} 

 

2. DOE Assembly 

main: 
 .frame $sp,24,$31  # vars= 0, regs= 1/0, args= 16, extra= 0 
 .mask 0x80000000,-8 
 .fmask 0x00000000,0 
 .def x0; .val 36; .scl 4; .type 0x7; .endef 
 .def h; .val 32; .scl 4; .type 0x7; .endef 
 .def err; .val 40; .scl 4; .type 0x7; .endef 
 .def x1; .val 32; .scl 4; .type 0x7; .endef 
 .def miter; .val 4; .scl 4; .type 0x4; .endef 
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 .def iter; .val 3; .scl 4; .type 0x4; .endef 
 subu $sp,$sp,24 
 sw $31,16($sp) 
 jal __main 
 
 .loc 1 12 
 .set noreorder 
 l.d $f4,$LC0 
 
 .loc 1 13 
 .set reorder 
 .set noreorder 
 l.d $f8,$LC1 
 
 .loc 1 14 
 .set reorder 
 li $4,0x00000014  # 7 
 
 .loc 1 16 
 li $3,0x00000001  # 1 
 
 .loc 1 18 
 mov.d $f6,$f4 
$L16: 
 .loc 1 28 
   .set noreorder 
   addu  $3,$3,5 
   scv 5 
   spm.f 0x10 
   frk f0 
   subu  $3,$3,5 
   .set reorder 
 
 .loc 1 20 
 mul.d $f0,$f4,$f4 
 add.d $f2,$f4,$f4 
 sub.d $f0,$f0,$f6 
 div.d $f0,$f0,$f2 
 
 .loc 1 22 
 abs.d $f2,$f0 
 
 .loc 1 21 
 sub.d $f0,$f4,$f0 
 
 .loc 1 22 
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 .set noreorder 
 c.lt.d $f2,$f8 
 #nop 
 .set reorder 
 bc1t $L18 
 
 .loc 1 27 
 mov.d $f4,$f0 
$L18: 
 .loc 1 28 
 addu $3,$3,1 
   .set noreorder 
  jn 
f0: 
 
 .loc 1 29 
 slt $2,$4,$3 
 beq $2,$0,$L16 
 
 .loc 1 30 
 la $4,$LC2 
 jal printf 
 
 .loc 1 31 
 lw $31,16($sp) 
 addu $sp,$sp,24 
 j $31 
 .end main 
 

 

3. PISA Assembly 

main: 
 .frame $sp,24,$31  # vars= 0, regs= 1/0, args= 16, extra= 0 
 .mask 0x80000000,-8 
 .fmask 0x00000000,0 
 .def x0; .val 36; .scl 4; .type 0x7; .endef 
 .def h; .val 32; .scl 4; .type 0x7; .endef 
 .def err; .val 40; .scl 4; .type 0x7; .endef 
 .def x1; .val 32; .scl 4; .type 0x7; .endef 
 .def miter; .val 4; .scl 4; .type 0x4; .endef 
 .def iter; .val 3; .scl 4; .type 0x4; .endef 
 subu $sp,$sp,24 
 sw $31,16($sp) 
 jal __main 
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 .loc 1 12 
 .set noreorder 
 l.d $f4,$LC0 
 
 .loc 1 13 
 .set reorder 
 .set noreorder 
 l.d $f8,$LC1 
 
 .loc 1 14 
 .set reorder 
 li $4,0x00000064  # 100 
 
 .loc 1 16 
 li $3,0x00000001  # 1 
 
 .loc 1 18 
 mov.d $f6,$f4 
$L16: 
 .loc 1 20 
 mul.d $f0,$f4,$f4 
 add.d $f2,$f4,$f4 
 sub.d $f0,$f0,$f6 
 div.d $f0,$f0,$f2 
 
 .loc 1 22 
 abs.d $f2,$f0 
 
 .loc 1 21 
 sub.d $f0,$f4,$f0 
 
 .loc 1 22 
 .set noreorder 
 c.lt.d $f2,$f8 
 #nop 
 .set reorder 
 bc1t $L18 
 
 .loc 1 27 
 mov.d $f4,$f0 
$L18: 
 
 .loc 1 28 
 addu $3,$3,1 
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 .loc 1 29 
 slt $2,$4,$3 
 beq $2,$0,$L16 
  .set reorder 
 .loc 1 30 
 la $4,$LC2 
 jal printf 
 
 .loc 1 31 
 lw $31,16($sp) 
 addu $sp,$sp,24 
 j $31 
 .end main 

 

B. Romberg Algorithm 

1. C/openDOE Code 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
int pow1(int, int); 
void main() 
{ 
  int n = 10; 
  double a = 0.0; 
  double b = 2.0; 
  double R[11][11];  
  int i, j, k; 
  double h, sum; 
  h = b - a; 
  R[0][0] = 0.5 * h * ((1.0/ (1.0 + a)) + (1.0/ (1.0 + b)));    
#pragma doe parallel for depend(R[]) 
  for (i = 1; i <= n; i++) 
  {  
     h *= 0.5; 
     sum = 0; 
     for (k = 1; k <= pow1(2,i)-1; k+=2) 
     { 
       sum += 1.0/(1.0 + a + k * h); 
     }  
     R[i][0] = 0.5 * R[i-1][0] + sum * h;   
     for (j = 1; j <= i; j++) 
     { 
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       R[i][j] = R[i][j-1] + (R[i][j-1] - R[i-1][j-1]) / (pow1(4,j)-1);  
     } 
   } 
} 

 

2. C/openMP Code 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include "omp.h" 
 
void main() 
{ 
  int n = 10; 
  double a = 0.0; 
  double b = 2.0; 
  double R[n+1][n+1];  
 
  int i, j, k; 
  double sum1, h1; 
  int powi[n], pow4[n]; 
 
  
  h1 = b - a; 
  R[0][0] = 0.5 * h1 * ((1.0/ (1.0 + a)) + (1.0/ (1.0 + b)));  
   
  omp_set_num_threads(4); 
 
  double h[n],sum[n]; 
 
#pragma omp parallel for shared (h,powi,sum) 
  for (i = 0; i < n; i++){ 
    sum[i] = 0; 
  
    h[i] = h1*pow(0.5,i+1); 
  
    powi[i] = pow(2,i+1)-1; 
  
    pow4[i] = pow(4,i+1)-1; 
  
  } 
 
   
  for (i = 1; i <= n; i++) 
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  {  
    sum1 = 0; 
#pragma omp parallel for reduction(+:sum1) shared (sum,h) 
 
    for (k = 1; k <= powi[i-1]; k+=2) 
      { 
 sum1 += 1.0/(1.0 + a + k * h[i-1]); 
      }  
 
    sum[i-1] = sum1; 
 
  } 
   
 
#pragma omp parallel for ordered shared (R,sum,h) 
  for (i = 1; i <= n; i++) 
  {  
     R[i][0] = 0.5 * R[i-1][0] + sum[i-1] * h[i-1];   
  }  
   
#pragma omp parallel for ordered shared (R) private(j) 
 
  for (i = 1; i <= n; i++) 
  {  
     for (j = 1; j <= i; j++) 
     { 
       R[i][j] = R[i][j-1] + (R[i][j-1] - R[i-1][j-1]) / (pow4[j-1]);  
     } 
   } 
   
} 

3. DOE Assembly 

main: 
 .frame $sp,1064,$31  # vars= 968, regs= 9/5, args= 16, extra= 0 
 .mask 0x80ff0000,-48 
 .fmask 0x3ff00000,-4 
 .def n; .val 23; .scl 4; .type 0x4; .endef 
 .def a; .val 60; .scl 4; .type 0x7; .endef 
 .def R; .val -1048; .scl 1; .dim 11,11; .size
 968; .type 0xf7; .endef 
 .def i; .val 19; .scl 4; .type 0x4; .endef 
 .def j; .val 17; .scl 4; .type 0x4; .endef 
 .def k; .val 16; .scl 4; .type 0x4; .endef 
 .def h; .val 54; .scl 4; .type 0x7; .endef 
 .def sum; .val 52; .scl 4; .type 0x7; .endef 
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 subu $sp,$sp,1064 
 sw $31,1016($sp) 
 sw $23,1012($sp) 
 sw $22,1008($sp) 
 sw $21,1004($sp) 
 sw $20,1000($sp) 
 sw $19,996($sp) 
 sw $18,992($sp) 
 sw $17,988($sp) 
 sw $16,984($sp) 
 s.d $f28,1056($sp) 
 s.d $f26,1048($sp) 
 s.d $f24,1040($sp) 
 s.d $f22,1032($sp) 
 s.d $f20,1024($sp) 
 jal __main 
 
 .loc 1 23 
 li $23,0x0000000a  # 10 
 
 .loc 1 24 
 .set noreorder 
 mtc1 $0,$f22 
 mtc1 $0,$f23 
 
 .loc 1 35 
 .set reorder 
 li $19,0x00000001  # 1 
 .set noreorder 
 l.d $f26,$LC0 
 .set reorder 
 addu $22,$sp,16 
 addu $20,$sp,104 
 move $21,$0 
 
 .loc 1 32 
 mov.d $f28,$f22 
 
 .loc 1 35 
 mov.d $f24,$f22 
 
 .loc 1 33 
 s.d $f22,16($sp) 
 
 .loc 1 35 
$L25: 
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 .loc 1 38 
 .set noreorder 
 frk f0 
   mtc1 $0,$f20 
 mtc1 $0,$f21 
 
 .loc 1 39 
 .set reorder 
 li $16,0x00000001  # 1 
 
 .loc 1 37 
 mul.d $f22,$f22,$f26 
 
 .loc 1 39 
$L26: 
 li $4,0x00000002  # 2 
 move $5,$19 
 jal pow1 
 subu $2,$2,1 
 slt $2,$2,$16 
 bne $2,$0,$L27 
 
 .loc 1 41 
 mtc1 $16,$f2 
 #nop 
 cvt.d.w $f2,$f2 
 mul.d $f2,$f2,$f22 
 add.d $f0,$f28,$f24 
 add.d $f0,$f0,$f2 
 div.d $f0,$f24,$f0 
 add.d $f20,$f20,$f0 
 
 .loc 1 39 
 addu $16,$16,2 
 j $L26 
$L27: 
 
 .loc 1 43 
 mul.d $f0,$f20,$f22 
 addu $2,$22,$21 
 .set noreorder 
 pl.d $f2,0($2) 
 #nop 
 .set reorder 
 mul.d $f2,$f2,$f26 
 add.d $f2,$f2,$f0 
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 .loc 1 44 
 li $17,0x00000001  # 1 
 
 .loc 1 43 
 s.d $f2,0($20) 
 
 .loc 1 44 
 blez $19,$L24 
 addu $16,$20,8 
 subu $18,$20,80 
$L33: 
 
 .loc 1 46 
 li $4,0x00000004  # 4 
 move $5,$17 
 jal pow1 
 .set noreorder 
 pl.d $f4,-8($16) 
 .set reorder 
 .set noreorder 
 l.d $f0,-8($18) 
 #nop 
 .set reorder 
 sub.d $f0,$f4,$f0 
 subu $2,$2,1 
 mtc1 $2,$f2 
 #nop 
 cvt.d.w $f2,$f2 
 div.d $f0,$f0,$f2 
 add.d $f4,$f4,$f0 
 
 .loc 1 44 
 addu $17,$17,1 
 slt $2,$19,$17 
 addu $18,$18,8 
 
 .loc 1 46 
 s.d $f4,0($16) 
 
 .loc 1 44 
 addu $16,$16,8 
 beq $2,$0,$L33 
 
 .loc 1 35 
   .set noreorder 
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$L24: 

jn 
f0: 
 addu $20,$20,88 
 addu $21,$21,88 
 addu $19,$19,1 
 slt $2,$23,$19 
 beq $2,$0,$L25 
 
 .loc 1 51 
  .set reorder 
 lw $31,1016($sp) 
 lw $23,1012($sp) 
 lw $22,1008($sp) 
 lw $21,1004($sp) 
 lw $20,1000($sp) 
 lw $19,996($sp) 
 lw $18,992($sp) 
 lw $17,988($sp) 
 lw $16,984($sp) 
 l.d $f28,1056($sp) 
 l.d $f26,1048($sp) 
 l.d $f24,1040($sp) 
 l.d $f22,1032($sp) 
 l.d $f20,1024($sp) 
 addu $sp,$sp,1064 
 j $31 
 .end main 

 

4. PISA Assembly 

main: 
 .frame $sp,1064,$31  # vars= 968, regs= 9/5, args= 16, extra= 0 
 .mask 0x80ff0000,-48 
 .fmask 0x3ff00000,-4 
 .def n; .val 23; .scl 4; .type 0x4; .endef 
 .def a; .val 60; .scl 4; .type 0x7; .endef 
 .def R; .val -1048; .scl 1; .dim 11,11; .size
 968; .type 0xf7; .endef 
 .def i; .val 19; .scl 4; .type 0x4; .endef 
 .def j; .val 17; .scl 4; .type 0x4; .endef 
 .def k; .val 16; .scl 4; .type 0x4; .endef 
 .def h; .val 54; .scl 4; .type 0x7; .endef 
 .def sum; .val 52; .scl 4; .type 0x7; .endef 
 subu $sp,$sp,1064 
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 sw $31,1016($sp) 
 sw $23,1012($sp) 
 sw $22,1008($sp) 
 sw $21,1004($sp) 
 sw $20,1000($sp) 
 sw $19,996($sp) 
 sw $18,992($sp) 
 sw $17,988($sp) 
 sw $16,984($sp) 
 s.d $f28,1056($sp) 
 s.d $f26,1048($sp) 
 s.d $f24,1040($sp) 
 s.d $f22,1032($sp) 
 s.d $f20,1024($sp) 
 jal __main 
 
 .loc 1 23 
 li $23,0x0000000a  # 10 
 
 .loc 1 24 
 .set noreorder 
 mtc1 $0,$f22 
 mtc1 $0,$f23 
 
 .loc 1 35 
 .set reorder 
 li $19,0x00000001  # 1 
 .set noreorder 
 l.d $f26,$LC0 
 .set reorder 
 addu $22,$sp,16 
 addu $20,$sp,104 
 move $21,$0 
 
 .loc 1 32 
 mov.d $f28,$f22 
 
 .loc 1 35 
 mov.d $f24,$f22 
 
 .loc 1 33 
 s.d $f22,16($sp) 
 
 .loc 1 35 
$L25: 
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 .loc 1 38 
 .set noreorder 
 mtc1 $0,$f20 
 mtc1 $0,$f21 
 
 .loc 1 39 
 .set reorder 
 li $16,0x00000001  # 1 
 
 .loc 1 37 
 mul.d $f22,$f22,$f26 
 
 .loc 1 39 
$L26: 
 li $4,0x00000002  # 2 
 move $5,$19 
 jal pow1 
 subu $2,$2,1 
 slt $2,$2,$16 
 bne $2,$0,$L27 
 
 .loc 1 41 
 mtc1 $16,$f2 
 #nop 
 cvt.d.w $f2,$f2 
 mul.d $f2,$f2,$f22 
 add.d $f0,$f28,$f24 
 add.d $f0,$f0,$f2 
 div.d $f0,$f24,$f0 
 add.d $f20,$f20,$f0 
 
 .loc 1 39 
 addu $16,$16,2 
 j $L26 
$L27: 
 
 .loc 1 43 
 mul.d $f0,$f20,$f22 
 addu $2,$22,$21 
 .set noreorder 
 l.d $f2,0($2) 
 #nop 
 .set reorder 
 mul.d $f2,$f2,$f26 
 add.d $f2,$f2,$f0 
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 .loc 1 44 
 li $17,0x00000001  # 1 
 
 .loc 1 43 
 s.d $f2,0($20) 
 
 .loc 1 44 
 blez $19,$L24 
 addu $16,$20,8 
 subu $18,$20,80 
$L33: 
 
 .loc 1 46 
 li $4,0x00000004  # 4 
 move $5,$17 
 jal pow1 
 .set noreorder 
 l.d $f4,-8($16) 
 .set reorder 
 .set noreorder 
 l.d $f0,-8($18) 
 #nop 
 .set reorder 
 sub.d $f0,$f4,$f0 
 subu $2,$2,1 
 mtc1 $2,$f2 
 #nop 
 cvt.d.w $f2,$f2 
 div.d $f0,$f0,$f2 
 add.d $f4,$f4,$f0 
 
 .loc 1 44 
 addu $17,$17,1 
 slt $2,$19,$17 
 addu $18,$18,8 
 
 .loc 1 46 
 s.d $f4,0($16) 
 
 .loc 1 44 
 addu $16,$16,8 
 beq $2,$0,$L33 
 
 .loc 1 35 
$L24: 
 addu $20,$20,88 
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 addu $21,$21,88 
 addu $19,$19,1 
 slt $2,$23,$19 
 beq $2,$0,$L25 
 
 .loc 1 51 
 lw $31,1016($sp) 
 lw $23,1012($sp) 
 lw $22,1008($sp) 
 lw $21,1004($sp) 
 lw $20,1000($sp) 
 lw $19,996($sp) 
 lw $18,992($sp) 
 lw $17,988($sp) 
 lw $16,984($sp) 
 l.d $f28,1056($sp) 
 l.d $f26,1048($sp) 
 l.d $f24,1040($sp) 
 l.d $f22,1032($sp) 
 l.d $f20,1024($sp) 
 addu $sp,$sp,1064 
 j $31 
 .end main 

 

C. Tri Diagonal Algorithm 

1. C/openDOE Code 

int main(int argc, char **argv) { 
  int N = 101; 
  int i = 0; 
  double delta_x = 1.0/N; 
  double delta_t = 0.001; 
  double r = delta_t/(delta_x*delta_x); 
  double a[N-1]; 
  double b[N];  
  double c[N-1]; 
  double d[N]; 
  double f[N];                                                                                                                                                                           
  double c_star[N]; 
  double d_star[N]; 
  for (i = 0; i < (N-1); i++) 
    a[i] = c[i] = -r/2.0; 
  for (i = 0; i < N; i++){ 
    b[i] = 1.0+r; 
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    d[i] = 0.0; 
    f[i] = 0.0; 
    c_star[i] = 0.0; 
    d_star[i] = 0.0; 
  } 
  f[5] = 1; f[6] = 2; f[7] = 1; 
  for (i=1; i<N-1; i++) { 
    d[i] = r*0.5*f[i+1] + (1.0-r)*f[i] + r*0.5*f[i-1]; 
  } 
  c_star[0] = c[0] / b[0]; 
  d_star[0] = d[0] / b[0]; 
#pragma doe parallel for depend(c_star[], d_star[]) 
  for (i=1; i<N; i++) { 
    double m = 1.0 / (b[i] - a[i] * c_star[i-1]); 
    c_star[i] = c[i] * m; 
    d_star[i] = (d[i] - a[i] * d_star[i-1]) * m; 
  } 
  for (i=N-1; i-- > 0; ) { 
    f[i] = d_star[i] - c_star[i] * d[i+1]; 
  } 
  return 0; 
} 

 

2. DOE Assembly 

main: 
 .frame $fp,56,$31  # vars= 8, regs= 7/0, args= 16, extra= 0 
 .mask 0xc01f0000,-8 
 .fmask 0x00000000,0 
 .def N; .val 17; .scl 4; .type 0x4; .endef 
 .def i; .val 4; .scl 4; .type 0x4; .endef 
 .def r; .val 34; .scl 4; .type 0x7; .endef 
 .def a; .val 12; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def b; .val 10; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def c; .val 11; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def d; .val 18; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def f; .val 16; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def c_star; .val 20; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
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 .def d_star; .val 19; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 subu $sp,$sp,56 
 sw $fp,44($sp) 
 move $fp,$sp 
 sw $31,48($sp) 
 sw $20,40($sp) 
 sw $19,36($sp) 
 sw $18,32($sp) 
 sw $17,28($sp) 
 sw $16,24($sp) 
 jal __main 
 
 .loc 1 3 
 li $17,0x00000065  # 101 
 
 .loc 1 7 
 subu $sp,$sp,808 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 6 
 .set reorder 
 .set noreorder 
 l.d $f2,$LC0 
 
 .loc 1 7 
 .set reorder 
 addu $12,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 move $4,$0 
 
 .loc 1 7 
 addu $10,$sp,16 
 subu $sp,$sp,808 
 .set noreorder 
 #.set volatile 
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 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 .set noreorder 
 l.d $f4,$LC1 
 
 .loc 1 7 
 .set reorder 
 addu $11,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 li $6,0x00000064  # 100 
 
 .loc 1 7 
 addu $18,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 move $5,$12 
 
 .loc 1 7 
 addu $16,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 move $3,$11 
 
 .loc 1 7 
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 addu $20,$sp,16 
 subu $sp,$sp,816 
 addu $19,$sp,16 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
$L5: 
 
 .loc 1 20 
 s.d $f4,0($3) 
 s.d $f4,0($5) 
 
 .loc 1 19 
 addu $5,$5,8 
 addu $3,$3,8 
 addu $4,$4,1 
 slt $2,$4,$6 
 bne $2,$0,$L5 
 
 .loc 1 21 
 move $4,$0 
 beq $17,$0,$L8 
 move $8,$19 
 move $7,$20 
 move $6,$16 
 .set noreorder 
 mtc1 $0,$f4 
 mtc1 $0,$f5 
 .set reorder 
 move $5,$18 
 move $3,$10 
 add.d $f6,$f2,$f4 
$L10: 
 
 .loc 1 22 
 s.d $f6,0($3) 
 
 .loc 1 23 
 s.d $f4,0($5) 
 
 .loc 1 24 
 s.d $f4,0($6) 
 
 .loc 1 25 
 s.d $f4,0($7) 
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 .loc 1 26 
 s.d $f4,0($8) 
 
 .loc 1 21 
 addu $8,$8,8 
 addu $7,$7,8 
 addu $6,$6,8 
 addu $5,$5,8 
 addu $3,$3,8 
 addu $4,$4,1 
 slt $2,$4,$17 
 bne $2,$0,$L10 
$L8: 
 
 .loc 1 29 
 .set noreorder 
 mtc1 $0,$f4 
 mtc1 $0,$f5 
 .set reorder 
 .set noreorder 
 l.d $f0,$LC1 
 
 .loc 1 31 
 .set reorder 
 li $4,0x00000001  # 1 
 subu $6,$17,1 
 slt $2,$4,$6 
 
 .loc 1 29 
 s.d $f4,40($16) 
 s.d $f0,48($16) 
 s.d $f4,56($16) 
 
 .loc 1 31 
 beq $2,$0,$L13 
 addu $5,$18,8 
 addu $3,$16,8 
 sub.d $f8,$f4,$f2 
 mul.d $f6,$f2,$f0 
$L15: 
 
 .loc 1 32 
 .set noreorder 
 l.d $f2,8($3) 
 #nop 
 .set reorder 
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 mul.d $f2,$f6,$f2 
 .set noreorder 
 l.d $f4,0($3) 
 #nop 
 .set reorder 
 mul.d $f4,$f8,$f4 
 .set noreorder 
 l.d $f0,-8($3) 
 #nop 
 .set reorder 
 mul.d $f0,$f6,$f0 
 add.d $f2,$f2,$f4 
 add.d $f2,$f2,$f0 
 
 .loc 1 31 
 addu $4,$4,1 
 slt $2,$4,$6 
 addu $3,$3,8 
 
 .loc 1 32 
 s.d $f2,0($5) 
 
 .loc 1 31 
 addu $5,$5,8 
 bne $2,$0,$L15 
$L13: 
 
 .loc 1 35 
 .set noreorder 
 l.d $f0,0($11) 
 .set reorder 
 .set noreorder 
 l.d $f2,0($10) 
 #nop 
 .set reorder 
 div.d $f0,$f0,$f2 
 s.d $f0,0($20) 
 
 .loc 1 36 
 .set noreorder 
 l.d $f0,0($18) 
 .set reorder 
 .set noreorder 
 l.d $f2,0($10) 
 #nop 
 .set reorder 
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 div.d $f0,$f0,$f2 
 
 .loc 1 38 
 li $4,0x00000001  # 1 
 slt $2,$4,$17 
 
 .loc 1 36 
 s.d $f0,0($19) 
 
 .loc 1 38 
 beq $2,$0,$L18 
 .set noreorder 
 mtc1 $0,$f6 
 mtc1 $0,$f7 
 .set reorder 
 addu $6,$19,8 
 addu $9,$18,8 
 addu $5,$12,8 
 addu $3,$20,8 
 addu $8,$11,8 
 addu $7,$10,8 
 .loc 1 38 
 .set noreorder 
$L20: 
 addu $4,$4,10 
 addu $7,$7,80 
 addu $8,$8,80 
 addu $3,$3,80 
 addu $5,$5,80 
 addu $9,$9,80 
 addu $6,$6,80 
   scv 10 
   frk f3 
 subu $4,$4,10 
 subu $7,$7,80 
 subu $8,$8,80 
 subu $3,$3,80 
 subu $5,$5,80 
 subu $9,$9,80 
 subu $6,$6,80 
 .loc 1 39 
$Lb0: 
 .begin $Lb0 39 
 .def m; .val 36; .scl 4; .type 0x7; .endef 
$Le1: 
 .bend $Le1 39 
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 l.d $f2,0($5) 
 pl.d $f0,-8($3) 
 #nop 
 mul.d $f2,$f2,$f0 
 l.d $f4,0($7) 
 #nop 
 sub.d $f4,$f4,$f2 
 div.d $f4,$f6,$f4 
 
 .loc 1 40 
 l.d $f0,0($8) 
 #nop 
 mul.d $f0,$f0,$f4 
 s.d $f0,0($3) 
 
 .loc 1 41 
 l.d $f2,0($5) 
 pl.d $f0,-8($6) 
 #nop 
 mul.d $f2,$f2,$f0 
 l.d $f0,0($9) 
 #nop 
 sub.d $f0,$f0,$f2 
 mul.d $f0,$f0,$f4 
 
 .loc 1 38 
 addu $4,$4,1 
 addu $7,$7,8 
 addu $8,$8,8 
 addu $3,$3,8 
 addu $5,$5,8 
 addu $9,$9,8 
 
 .loc 1 41 
 s.d $f0,0($6) 
 
 .loc 1 38 
 addu $6,$6,8 
  jn 
f3: 
 slt $2,$4,$17 
 bne $2,$0,$L20 
$L18: 
 
 .loc 1 44 
 la $4,$LC2 
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 jal printf 
 
 .loc 1 45 
 subu $4,$17,1 
 move $2,$4 
 subu $4,$4,1 
 blez $2,$L23 
 sll $2,$4,3 
 addu $7,$2,$16 
 addu $6,$2,$19 
 addu $5,$2,$20 
 addu $3,$2,$18 
$L25: 
 
 .loc 1 46 
 .set noreorder 
 l.d $f2,0($5) 
 .set reorder 
 .set noreorder 
 l.d $f0,8($3) 
 #nop 
 .set reorder 
 mul.d $f2,$f2,$f0 
 .set noreorder 
 l.d $f0,0($6) 
 .set reorder 
 move $2,$4 
 
 .loc 1 45 
 subu $4,$4,1 
 
 .loc 1 46 
 sub.d $f0,$f0,$f2 
 
 .loc 1 45 
 subu $5,$5,8 
 subu $3,$3,8 
 subu $6,$6,8 
 
 .loc 1 46 
 s.d $f0,0($7) 
 
 .loc 1 45 
 subu $7,$7,8 
 bgtz $2,$L25 
$L23: 
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 .loc 1 48 
$Lb2: 
 .begin $Lb2 48 
$Le3: 
 .bend $Le3 48 
 move $2,$0 
 
 .loc 1 49 
 move $sp,$fp   # sp not trusted here 
 lw $31,48($sp) 
 lw $fp,44($sp) 
 lw $20,40($sp) 
 lw $19,36($sp) 
 lw $18,32($sp) 
 lw $17,28($sp) 
 lw $16,24($sp) 
 addu $sp,$sp,56 
 j $31 
 .end main 

 

3. PISA Assembly 

main: 
 .frame $fp,56,$31  # vars= 8, regs= 7/0, args= 16, extra= 0 
 .mask 0xc01f0000,-8 
 .fmask 0x00000000,0 
 .def N; .val 17; .scl 4; .type 0x4; .endef 
 .def i; .val 4; .scl 4; .type 0x4; .endef 
 .def r; .val 34; .scl 4; .type 0x7; .endef 
 .def a; .val 12; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def b; .val 10; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def c; .val 11; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def d; .val 18; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def f; .val 16; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def c_star; .val 20; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 .def d_star; .val 19; .scl 4; .dim 1; .size
 4; .type 0xd7; .endef 
 subu $sp,$sp,56 
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 sw $fp,44($sp) 
 move $fp,$sp 
 sw $31,48($sp) 
 sw $20,40($sp) 
 sw $19,36($sp) 
 sw $18,32($sp) 
 sw $17,28($sp) 
 sw $16,24($sp) 
 jal __main 
 
 .loc 1 3 
 li $17,0x00000065  # 101 
 
 .loc 1 7 
 subu $sp,$sp,808 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 6 
 .set reorder 
 .set noreorder 
 l.d $f2,$LC0 
 
 .loc 1 7 
 .set reorder 
 addu $12,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 move $4,$0 
 
 .loc 1 7 
 addu $10,$sp,16 
 subu $sp,$sp,808 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
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 .loc 1 19 
 .set reorder 
 .set noreorder 
 l.d $f4,$LC1 
 
 .loc 1 7 
 .set reorder 
 addu $11,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 li $6,0x00000064  # 100 
 
 .loc 1 7 
 addu $18,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 move $5,$12 
 
 .loc 1 7 
 addu $16,$sp,16 
 subu $sp,$sp,816 
 .set noreorder 
 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
 
 .loc 1 19 
 .set reorder 
 move $3,$11 
 
 .loc 1 7 
 addu $20,$sp,16 
 subu $sp,$sp,816 
 addu $19,$sp,16 
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 #.set volatile 
 lw $2,0($sp) 
 #.set novolatile 
$L5: 
 
 .loc 1 20 
 s.d $f4,0($3) 
 s.d $f4,0($5) 
 
 .loc 1 19 
 addu $5,$5,8 
 addu $3,$3,8 
 addu $4,$4,1 
 slt $2,$4,$6 
 bne $2,$0,$L5 
 
 .loc 1 21 
 move $4,$0 
 beq $17,$0,$L8 
 move $8,$19 
 move $7,$20 
 move $6,$16 
 .set noreorder 
 mtc1 $0,$f4 
 mtc1 $0,$f5 
 .set reorder 
 move $5,$18 
 move $3,$10 
 add.d $f6,$f2,$f4 
$L10: 
 
 .loc 1 22 
 s.d $f6,0($3) 
 
 .loc 1 23 
 s.d $f4,0($5) 
 
 .loc 1 24 
 s.d $f4,0($6) 
 
 .loc 1 25 
 s.d $f4,0($7) 
 
 .loc 1 26 
 s.d $f4,0($8) 
 

100 



 
 
 
 
 
 
 .loc 1 21 
 addu $8,$8,8 
 addu $7,$7,8 
 addu $6,$6,8 
 addu $5,$5,8 
 addu $3,$3,8 
 addu $4,$4,1 
 slt $2,$4,$17 
 bne $2,$0,$L10 
$L8: 
 
 .loc 1 29 
 .set noreorder 
 mtc1 $0,$f4 
 mtc1 $0,$f5 
 .set reorder 
 .set noreorder 
 l.d $f0,$LC1 
 
 .loc 1 31 
 .set reorder 
 li $4,0x00000001  # 1 
 subu $6,$17,1 
 slt $2,$4,$6 
 
 .loc 1 29 
 s.d $f4,40($16) 
 s.d $f0,48($16) 
 s.d $f4,56($16) 
 
 .loc 1 31 
 beq $2,$0,$L13 
 addu $5,$18,8 
 addu $3,$16,8 
 sub.d $f8,$f4,$f2 
 mul.d $f6,$f2,$f0 
$L15: 
 
 .loc 1 32 
 .set noreorder 
 l.d $f2,8($3) 
 #nop 
 .set reorder 
 mul.d $f2,$f6,$f2 
 .set noreorder 
 l.d $f4,0($3) 
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 #nop 
 .set reorder 
 mul.d $f4,$f8,$f4 
 .set noreorder 
 l.d $f0,-8($3) 
 #nop 
 .set reorder 
 mul.d $f0,$f6,$f0 
 add.d $f2,$f2,$f4 
 add.d $f2,$f2,$f0 
 
 .loc 1 31 
 addu $4,$4,1 
 slt $2,$4,$6 
 addu $3,$3,8 
 
 .loc 1 32 
 s.d $f2,0($5) 
 
 .loc 1 31 
 addu $5,$5,8 
 bne $2,$0,$L15 
$L13: 
 
 .loc 1 35 
 .set noreorder 
 l.d $f0,0($11) 
 .set reorder 
 .set noreorder 
 l.d $f2,0($10) 
 #nop 
 .set reorder 
 div.d $f0,$f0,$f2 
 s.d $f0,0($20) 
 
 .loc 1 36 
 .set noreorder 
 l.d $f0,0($18) 
 .set reorder 
 .set noreorder 
 l.d $f2,0($10) 
 #nop 
 .set reorder 
 div.d $f0,$f0,$f2 
 
 .loc 1 38 
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 li $4,0x00000001  # 1 
 slt $2,$4,$17 
 
 .loc 1 36 
 s.d $f0,0($19) 
 
 .loc 1 38 
 beq $2,$0,$L18 
 .set noreorder 
 mtc1 $0,$f6 
 mtc1 $0,$f7 
 .set reorder 
 addu $6,$19,8 
 addu $9,$18,8 
 addu $5,$12,8 
 addu $3,$20,8 
 addu $8,$11,8 
 addu $7,$10,8 
$L20: 
 
 .loc 1 39 
$Lb0: 
 .begin $Lb0 39 
 .def m; .val 36; .scl 4; .type 0x7; .endef 
$Le1: 
 .bend $Le1 39 
 .set noreorder 
 l.d $f2,0($5) 
 .set reorder 
 .set noreorder 
 l.d $f0,-8($3) 
 #nop 
 .set reorder 
 mul.d $f2,$f2,$f0 
 .set noreorder 
 l.d $f4,0($7) 
 #nop 
 .set reorder 
 sub.d $f4,$f4,$f2 
 div.d $f4,$f6,$f4 
 
 .loc 1 40 
 .set noreorder 
 l.d $f0,0($8) 
 #nop 
 .set reorder 
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 mul.d $f0,$f0,$f4 
 s.d $f0,0($3) 
 
 .loc 1 41 
 .set noreorder 
 l.d $f2,0($5) 
 .set reorder 
 .set noreorder 
 l.d $f0,-8($6) 
 #nop 
 .set reorder 
 mul.d $f2,$f2,$f0 
 .set noreorder 
 l.d $f0,0($9) 
 #nop 
 .set reorder 
 sub.d $f0,$f0,$f2 
 mul.d $f0,$f0,$f4 
 
 .loc 1 38 
 addu $4,$4,1 
 slt $2,$4,$17 
 addu $7,$7,8 
 addu $8,$8,8 
 addu $3,$3,8 
 addu $5,$5,8 
 addu $9,$9,8 
 
 .loc 1 41 
 s.d $f0,0($6) 
 
 .loc 1 38 
 addu $6,$6,8 
 bne $2,$0,$L20 
$L18: 
 
 .loc 1 44 
 la $4,$LC2 
 jal printf 
 
 .loc 1 45 
 subu $4,$17,1 
 move $2,$4 
 subu $4,$4,1 
 blez $2,$L23 
 sll $2,$4,3 
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 addu $7,$2,$16 
 addu $6,$2,$19 
 addu $5,$2,$20 
 addu $3,$2,$18 
$L25: 
 
 .loc 1 46 
 .set noreorder 
 l.d $f2,0($5) 
 .set reorder 
 .set noreorder 
 l.d $f0,8($3) 
 #nop 
 .set reorder 
 mul.d $f2,$f2,$f0 
 .set noreorder 
 l.d $f0,0($6) 
 .set reorder 
 move $2,$4 
 
 .loc 1 45 
 subu $4,$4,1 
 
 .loc 1 46 
 sub.d $f0,$f0,$f2 
 
 .loc 1 45 
 subu $5,$5,8 
 subu $3,$3,8 
 subu $6,$6,8 
 
 .loc 1 46 
 s.d $f0,0($7) 
 
 .loc 1 45 
 subu $7,$7,8 
 bgtz $2,$L25 
$L23: 
 
 .loc 1 48 
$Lb2: 
 .begin $Lb2 48 
$Le3: 
 .bend $Le3 48 
 move $2,$0 
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 .loc 1 49 
 move $sp,$fp   # sp not trusted here 
 lw $31,48($sp) 
 lw $fp,44($sp) 
 lw $20,40($sp) 
 lw $19,36($sp) 
 lw $18,32($sp) 
 lw $17,28($sp) 
 lw $16,24($sp) 
 addu $sp,$sp,56 
 j $31 
 .end main 
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APPENDIX B 

SIMPLESCALAR CONFIGURATION 

In the following appendix we will present the SimpleScalar configuration that 

we used. 

-fetch:ifqsize             32 # instruction fetch queue size (in insts) 
-fetch:mplat                3 # extra branch mis-prediction latency 
-fetch:speed                1 # speed of front-end of machine relative to execution core 
-bpred                  bimod # branch predictor type 
{nottaken|taken|perfect|bimod|2lev|comb} 
-bpred:bimod     4096 # bimodal predictor config (<table size>) 
-bpred:2lev      1 4096 12 1 # 2-level predictor config (<l1size> <l2size> <hist_size> 
<xor>) 
-bpred:comb      4096 # combining predictor config (<meta_table_size>) 
-bpred:ras                 16 # return address stack size (0 for no return stack) 
-bpred:btb       1024 4 # BTB config (<num_sets> <associativity>) 
# -bpred:spec_update       <null> # speculative predictors update in {ID|WB} (default 
non-spec) 
-decode:width               4 # instruction decode B/W (insts/cycle) 
-issue:width                4 # instruction issue B/W (insts/cycle) 
-issue:inorder          false # run pipeline with in-order issue 
-issue:wrongpath        false # issue instructions down wrong execution paths 
-commit:width               4 # instruction commit B/W (insts/cycle) 
-ruu:size                 128 # register update unit (RUU) size 
-rs:size                   60 # reservation stations (RS) size 
-lsq:size                 108 # load/store queue (LSQ) size 
-lq:size                   60 # The size of the load queue 
-sq:size                   48 # The size of the store queue 
-cache:dl1       dl1:64:64:8:l # l1 data cache config, i.e., {<config>|none} 
-cache:dl1lat               1 # l1 data cache hit latency (in cycles) 
-cache:dl2       ul2:256:64:8:l # l2 data cache config, i.e., {<config>|none} 
-cache:dl2lat               6 # l2 data cache hit latency (in cycles) 
-cache:il1       il1:64:64:8:l # l1 inst cache config, i.e., {<config>|dl1|dl2|none} 
-cache:il1lat               1 # l1 instruction cache hit latency (in cycles) 
-cache:il2                dl2 # l2 instruction cache config, i.e., {<config>|dl2|none} 
-cache:il2lat               6 # l2 instruction cache hit latency (in cycles) 
-cache:flush            false # flush caches on system calls 
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-cache:icompress        false # convert 64-bit inst addresses to 32-bit inst equivalents 
-mem:lat         120 4 # memory access latency (<first_chunk> <inter_chunk>) 
-mem:width                  8 # memory access bus width (in bytes) 
-tlb:itlb        itlb:16:4096:4:l # instruction TLB config, i.e., {<config>|none} 
-tlb:dtlb        dtlb:32:4096:4:l # data TLB config, i.e., {<config>|none} 
-tlb:lat                   30 # inst/data TLB miss latency (in cycles) 
-res:ialu                   4 # total number of integer ALU's available 
-res:imult                  1 # total number of integer multiplier/dividers available 
-res:memport                2 # total number of memory system ports available (to CPU) 
-res:fpalu                  4 # total number of floating point ALU's available 
-res:fpmult                 1 # total number of floating point multiplier/dividers available 
# -pcstat              <null> # profile stat(s) against text addr's (mult uses ok) 
-bugcompat              false # operate in backward-compatible bugs mode (for testing 
only) 
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