

AMERICAN UNIVERSITY OF BEIRUT

A FRAMEWORK FOR LTE-A PROXIMITY-BASED

DEVICE-TO-DEVICE

SERVICE REGISTRATION AND DISCOVERY

by

SALAM ADNAN DOUMIATI

A thesis

submitted in partial fulfillment of the requirements

for the degree of Master of Engineering

to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

January 2015

AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT RELEASE FORM

Student Name:

Doumiati___ Salam_____________Adnan_______________________ _ ______

Last First Middle

 Master’s Thesis Master’s Project Doctoral Dissertation

 I authorize the American University of Beirut to: (a) reproduce hard or electronic

copies of my thesis, dissertation, or project; (b) include such copies in the archives and

digital repositories of the University; and (c) make freely available such copies to third

parties for research or educational purposes.

 I authorize the American University of Beirut, three years after the date of

submitting my thesis, dissertation, or project, to: (a) reproduce hard or electronic

copies of it; (b) include such copies in the archives and digital repositories of the

University; and (c) make freely available such copies to third parties for research or

educational purposes.

__

Signature Date

v

ACKNOWLEDGMENTS

 At this moment of accomplishment, it gives me great pleasure in expressing my

gratitude to all those people who have supported me and had their contributions in

making this thesis possible. First and foremost, I must acknowledge and thank The

Almighty Allah for blessing, protecting and guiding me throughout this period.

 I would like to express my gratitude to my supervisor Prof. Hassan Artail for

the useful comments, remarks and engagement through the learning process of this

master thesis. I have been extremely lucky to have a supervisor who cared so much

about my work, and who responded to my questions and queries so promptly. You have

been a tremendous mentor for me. One simply could not wish for a better or friendlier

supervisor.

 I would like to thank the rest of my thesis committee Prof. Zaher Dawy and

Prof. Haidar Safa for their valuable advices and constructive criticisms. I would like

also to expand my thanks to Dr. Ahmad El Hajj for his friendly assistance with various

problems all the time.

 Words are short to express my deep sense of gratitude towards all my friends in

lifting me uphill this phase of life. Thank you Houry Seraydarian, Lama Shaer, Rasha

Al Khansa, Nour Kouzayha, Adel Ejjeh, Nizar El Zarif, Gilbert Badaro, Joe Akl Korban

for the undying love and unconditional support you have provided me. Thank you Farah

Saab, Joseph Loutfi and Khaled Bakhit for the unforgettable moments we shared in

Qatar during AICCSA’14 conference. Thank you Raneen Daher, Nour Baalbaki, Karim

Jamal Eddin, Zaher Masri, Mahmoud Kaissi, Ali Fakhreddine and Maxcim Yassine for

believing in me that I can finish my manuscript on time.

 I would especially express my warm thanks to the one who taught me to always

be “To ∞ and beyond”.

 A special thanks to my family. Words cannot express how grateful I am to Mom

and Dad. Your prayers for me were what sustained me thus far. I would like to pay high

regards to my sister Dr. Samah, my brothers Dr. Moustapha and Dr. Hassan and my

sister-in-law Dr. Nisrine for their sincere encouragement and inspiration throughout my

research work.

Finally, I would like to thank my lovely little angle, my niece, HANA for being

my “Porte-Bonheur”.

vi

AN ABSTRACT OF THE THESIS OF

Salam Adnan Doumiati for Master of Engineering

 Major: Electrical and Computer Engineering

Title: A Framework for LTE-A Proximity-Based Device-to-Device Service Registration

and Discovery

This thesis contributes in a major way to the mainstream efforts that aim to realize

the goals of LTE Advanced (LTE-A), which in turn were set to reach data rates that

near 1 Gigabits per second in the downlink and 500 Megabits per second in the uplink

for the future wireless communication networks. This work adapts the paradigm of

Cloud Computing over the framework of Device-to-Device (D2D) proximal

communications in order to offload major traffic volumes from the core network and

thus enable it to grant higher data rates to mobile users. Existing approaches to the

evolution of cellular network technologies have been driven by the ever-increasing need

for capacity and coverage. Our proposed work introduces a platform in which mobile

devices, mostly smart phones, can offer network services to other nearby devices, and

thus acts as service end points (providers), thus resembling in this respect to hotspots.

Hence, proximity-based D2D is accomplished while at the same time, the service

provider mobile devices form transient focal points in the network, and hence act as

dynamic base stations, or in Cloud Computing terminology, Cloudlets. With the Cloud

Computing interface, mobile devices seeking particular services can discover providers

and subsequently communicate with them directly, but with the help of the network

whose role is limited to assisting in the service provider discovery process. In this way,

our platform will serve to shift wireless network traffic from the core network, and thus

achieve the objective of traffic offloading, but perhaps more importantly, serve the

community at large by creating an environment of widespread collaboration among

mobile users. This capability can introduce several positive aspects within any

community, through 1) helping tourism and foreign nationals by making it simple and

seamless to obtain needed services; 2) improving social ties among the members of the

society; and of course 3) helping the economy through creating a more conducive

environment for thriving businesses. From an implementation point of view, our

solution is in line with the recommendation of 3GPP in terms of utilizing the 3GPP-

proposed network elements designated for offering proximity based services, and

introducing no changes to the rest of the LTE system. Our analytical and experimental

results proved the viability and effectiveness of the system in helping mobile users

discover needed services offered by providers who are in proximity, and therefore

communicate with them directly in a peer to peer fashion.

vii

CONTENTS

ACKNOWLEDGMENTS .. v

ABSTRACT ... vi

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS .. xiii

Chapter

I. INTRODUCTION ... 1

 A. Background .. 2

1. D2D Concept .. 2

 a. Comparison of D2D With Other Technologies 4

2. Cloud Computing Concept ... 5

 B. Objectives / Significance .. 7

II. RELATED WORK .. 11

 A. In the Literature .. 11

1. D2D Identification .. 11
 a. Without Network Support Mode ... 12

 b. Network-Assisted Mode ... 12

2. Architecture Enhancements .. 14

 B. In the Standards .. 14

viii

III. D2D SERVICE REGISTRATION AND DISCOVERY 19

 A. System Model .. 19

 B. System Design Requirements .. 22

1. ProSe-Enabled Mobile Device ... 22
2. Registered UE ... 23
3. Application Registered ... 25

 a. App Registration for a UE in Consumer Mode 29

 b. App Registration for a UE in Provider Mode 30

4. Service Discovery ... 34

 C. Illustrating Scenario .. 42

IV. SERVICE DISCOVERY ANALYSIS ... 43

 A. Performance Measures .. 43

1. Signaling Overhead .. 43

2. Discovery Effectiveness ... 71

V. EXPERIMENTAL RESULTS ... 83

 A. Requester’s Intention ... 83

 B. Provider Discovery ... 96

1. System Environment .. 96
2. System Performance ... 98

VI. CONCLUSION AND FUTURE WORK.. 109

 A. Conclusion .. 109

 B. Future Work .. 111

BIBLIOGRAPHY………………………...…………………………………….113

ix

ILLUSTRATIONS

 Figure Page

1.1 D2D communication concept ... 3

1.2 D2D pair ... 9

3.1 Overview of the LTE-A network with the ProSe functional components 20

3.2 Control plane for PC3 interface [35] .. 23

3.3 ProSe Function discovery ... 24

3.4 Control plane for PC4a interface [35] ... 24

3.5 UE registration .. 25

3.6 Downloading Apps by the user equipment from a Third Party Application Server. 26

3.7 Envisioned application user interface for an SaaS application 28

3.8 Application registration: consumer mode ... 29

3.9 ProSe apps on mobile phone ... 30

3.10 Proposed database of Application Server (case of SaaS Application) 31

3.11 Application Registration: provider mode ... 32

3.12 High level service discovery system (matching on keywords level) 35

3.13 PC2 interface [35] ... 37

3.14 PC4b interface [35] ... 39

3.15 Proposed service discovery system ... 40

3.16 Service discovery in [35] .. 41

4.1 Threshold distance .. 43

4.2 UE_1 moving distance .. 44

4.3 Diameter header content [40] ... 46

4.4 AVP header content [40] .. 47

x

4.5 Description of a point as two coordinates [43] ... 48

4.6 “Location-Estimate” information element content [43] ... 48

4.7 Shape description of a point [43] .. 49

4.8 Providers distribution .. 64

4.9 Number of requesters’ effect on the traffic a inner traffic b wireless medium

 traffic ... 67

4.10 Request’s rate effect on traffic a inner traffic b wireless medium traffic 68

4.11 Number of Matching ProSe Functions’s effect on the traffic a inner traffic b

 wireless medium traffic .. 69

4.12 (a) Traffic for a pedestrian requester (b) Traffic for a requester driving a vehicle. 70

4.13 Score of each keyword per service versus the number of concatenated services ... 74

4.14 Services’ popularities and providers’ choices .. 75

4.15 Service matching between requester and provider ... 76

4.16 Keywords matching between requester and provider ... 77

4.17 Score per keyword per provider versus the number of intended services 79

4.18 Requester changing directions to reach provider pmh .. 80

4.19 Number of providers discovered in proximity versus the length of the area 82

4.20 Sequence diagram of the entire system design ... 82

5.1 Similarity matrix ... 85

5.2 (a) Normalized similarity matrix (b) Upper triangle diagonal of the matrix 87

5.3 (a) Similarity Number Matrix (b) Upper triangle diagonal of the matrix 88

5.4 Concatenated list ... 89

5.5 Requester’s choice from the concatenated service keywords list 90

5.6 Average Number of hits and false positives versus minimum number of necessary

 common keywords to put in one pool (a) 3 keywords/request (b) 5

 keywords/request. ... 91

xi

5.7 Average number of hits and false positives versus the number of requesters’

 keywords ... 93

5.8 Average number of hits and false positives versus the number of requesters’

 keywords for different threshold values ... 95

5.9 D2D throughput as a function of the D2D link distance [23]. 97

5.10 Providers’ and requesters’ areas ... 98

5.11 Provider’s chosen service and keywords .. 99

5.12 Requester’s request creation ... 99

5.13 List of providers matching keywords ... 100

5.14 (a) List of providers matching keywords along with their matching indices and

 distances (b) Filtered list ... 101

5.15 Average number of discovered providers versus the percentage number of

 providers in the network (regardless of proximity) .. 103

5.16 Average number of discovered providers versus the number of providers’

 keywords (regardless of proximity) .. 104

5.17 Average number of discovered providers versus the number of requesters’

 keywords (regardless of proximity) .. 105

5.18 Average number of discovered providers (per request) in requester’s proximity

 versus the length of the simulation’s area. .. 106

5.19 (a) the average number and (b) the standard deviation of discovered providers

 versus the requester’s speed (Pedestrian scenario, Dmax=25m). 107

5.20 (a) the average number and (b) the standard deviation of discovered providers

 versus the requester’s speed (Vehicle scenario, Dmax=25m)….…….…………..108

xii

TABLES

Table Page

1.1 Comparison between D2D and other technologies ... 5

2.1 ProSe Standards .. 18

3.1 IDs held by each entity ... 33

4.1 Diameter header size ... 46

4.2 AVP header size .. 47

4.3 Coding of type shape [43] ... 49

4.4 Diameter protocol information elements [40] .. 50

4.4 Diameter protocol information elements [40] (Continued) 51

4.4 Diameter protocol information elements [40] (Continued) 52

4.5 ProSe standards information elements .. 53

4.6 Newly created AVPs ... 54

4.7 Packet’s size .. 63

4.8 Parameters used in the equations .. 65

4.9 Packets’ size and number of times they are sent (inner traffic) 66

4.10 Packets’ size and number of times they are sent (wireless medium traffic) 66

5.1 Services and associated information ... 84

5.2 Default parameters .. 97

xiii

ABBREVIATIONS

3GPP Third-Generation Partnership Project, 1

LIPA Local IP Access, 1

SIPTO Selected IP Traffic Offload, 1

IP Internet Protocol, 1

eNodeB Evolved Node B, 1

QoS Quality of service, 2

ProSe Proximity-Based Services, 2

D2D Device-to-Device, 2

UE User Equipments, 2

LTE-A Long Term Evolution-Advanced, 3

EPC Evolved Packet Core, 3

E-UTRAN Evolved Universal Terrestrial Radio Access Network, 3

WLAN Wireless Local Area Network, 4

STaaS Storage as a Service, 5

PaaS Platform as a Service, 5

NaaS Network as a Service, 5

IaaS Infrastructure as a Service, 5

DaaS Data as a Service, 5

M2M Machine-to-Machine, 8

_P Provider, 9

_R Requester, 9

App ID_X Application Identification, 9

SAE System Architecture Evolution, 11

OFDMA Orthogonal Frequency Division Multiple Access, 12

SIP Session Initiation Protocol, 13

URI Uniform Resource Indicator, 13

NAS Non-Access Stratum, 13

PSCF Proximity Service Control Function, 14

P-GW Packet Data Network GateWay, 14

PDN Packet Data Network, 14

xiv

MME Mobility Management Entity, 14

TSG Technical Specifications Group, 14

SA Service and System Aspects, 14

RAN Radio Access Network, 14

WG Working Group, 15

TR Technical Report, 15

TS Technical Specs, 15

E-UTRA Evolved UMTS Terrestrial Radio Access, 15

PLMN Public Land Mobile Network, 16

EPS Evolved Packet System, 16

HSS Home Subscriber Server, 20

SLP Secure User Plane Location Platform, 20

IMS IP Multimedia Core Network Subsystem, 21

SP Service Provider, 21

SR Service Requester, 21

SLP Secure User Plane Location Platform, 21

SUPL Secure User Plane, 21

U-plane User-plane, 21

OMA Open Mobile Alliance, 21

HPLMN Home Public Land Mobile Network, 22

APIs Application Programming Interfaces, 22

FQDN Fully Qualified Domain Name, 23

DNS Domain Name Service Function, 23

IMSI International Mobile Subscriber Identity, 24

SIM Subscriber Identity Module, 24

EPUID EPC ProSe Subscriber ID, 26

App Server Application Server, 26

ALUID Application Layer User ID, 26

PFID ProSe Function ID, 27

Guid Globally Unique Identifier, 31

TTL Time to Live, 33

LCS Location Services, 38

xv

MLP Mobile Location Protocol, 38

Dmax Maximum distance separating two UEs defined to be in proximity, 43

DT Threshold distance to update the location, 44

 Distance corresponding to the time elapsed between a UE sending a

 location update until the core network reacts, 44

AVP Attribute-Value Pair, 46

GAD Universal Geographical Area Description, 49

NAI Network Access Identifier, 50

PIR ProSe-Subscriber-Information-Request, 55

PIA ProSe-Subscriber-Information-Answer, 56

REQ Message Request, 57

L Total Number of PLMNs, 63

 l Number of PLMNs containing providers having matched keywords with

 the request, 63

ω Number of Keywords matching applications at one provider, 63

U Total number of UEs, 64

v Average Speed, 64

Tm Time to move Dmax/2 meters, 64

 Tr Request Period, 64

Nr Number of Request in Tm per UE, 64

RWP Random Waypoint Mobility Model, 72

Q Total Number of Requesters Keywords, 72

Y Requester’s Set of Keywords, 72

 yq One of the Q requester’s keywords , 72

M Total Number of Concatenated Lists, 72

Cl Set of Concatenated Lists, 72

clm One of the M concatenated lists , 72

|clm| Length of clm, 72

 Term Frequency of Keyword yq in clm, 72

 Number of Concatenated Lists that have yq in it, 72

Ct Intended Concatenated List, 73

C Total Number of Services in Ct, 73

xvi

 One of the C services in , 73

 Number of Keywords in , 73

 Term Frequency of Keyword in , 73

 Number of Services that Contain Keyword , 73

 Matching Services between Request and Concatenated Services, 73

 Total Number of SR, 73

 Total Number of Providers, 75

PV Set of Providers, 75

pvp One provider , 75

SP Set of Providers’ Services, 75

spp Corresponding Service to each Provider, 75

W Total Number of Keywords Chosen by a Provider, 75

K Provider’s Keyword, 75

 Provider’s keyword from ’s keywords set, 75

H Number of Providers Having Matching services, 75

SM Set of Matching Services between Requester and Provider, 75

a Length of the Area, 80

A’ Subarea in the simulation area A, 80

fXY (x,y) Spatial Node Distribution, 80

LD Levenshtein Distance, 84

sk, sl Services k and l, 85

gk,l Weight of Similarity between two Services, 85

T Threshold That Defines the Requester’s Knowledge, 89

std Standard Deviation, 90

t Time of Sending the Request, 99

dist Euclidean Distance between Requester and Provider, 100

1

CHAPTER I

INTRODUCTION

The usage of smart phones, tablets and various new applications throughout the

world has exploded during the recent years throughout the world and will continue to

increase exponentially according to the Wireless World Research Forum who envisions

in 2020 Seven Trillion wireless devices serving Seven Billion people [1]. This growth

will lead to huge mobile data traffic on the network. According to Cisco predictions in

[2], the global mobile data traffic will outgrow global fixed data traffic by three times,

reaching 10.8 exabytes per month (1 exabyte equals 1018 bytes), or an annual rate of

130 exabytes, by 2016. Thus, the flag has been raised to find ways in order to increase

network capacity and accommodate the bandwidth consuming applications and

services.

The most straightforward solution is to improve the capacity of cellular

networks by adding new base stations, but this is very expensive for the operators.

Therefore, The Third-Generation Partnership Project (3GPP) has defined data

offloading as an alternative solution to cope with this problem. 3GPP Rel-10 has been

working on two key data offloading areas: Local IP Access (LIPA) and Selected IP

Traffic Offload (SIPTO) [3]. LIPA allows a direct communication between an IP-

enabled mobile terminal and a local network where both are connected to the same base

station (eNodeB). SIPTO, on the other hand, offloads selective IP traffic to the Internet

at home or in enterprise environments.

2

However, there are two main shortcomings in these two methods:

 They only relieve core network congestion, not radio congestion, since the

data-offload points are positioned at or above eNodeBs, and not at the

mobile terminals.

 They do not maintain the quality of service (QoS) for relevant applications

that use the cellular network [4].

Accordingly, the 3GPP SA1 (services) working group has been studying since 2011 a

new Rel-12 item, named Study on Proximity-Based Services (FS_ProSe), targeting the

potential requirements for an operator to integrate Device-to-Device (D2D)

communication in their network [5]. This technology has been proposed as a promising

concept for improving user experiences and resource utilization in cellular networks by

taking advantage of users’ proximity.

A. Background

1. D2D Concept

In order to appreciate the usefulness of D2D, it is worth reminding how regular

conventional cellular communications work. Normally, two mobile devices (e.g., smart

phones), referred to as User Equipments (UEs) communicate via a radio uplink to the

Base Station (known as eNodeB), via a core network uplink and then downlink, and

finally through a radio downlink, even if the two UEs are right next to each other.

 On the other hand, in D2D, mobile devices in proximity of each other can

establish a direct local link and bypass the base station or access point, but after

coordinating with the core network via the eNodeB. This type of communication is

3

referred to as local offloading or local source-sink application. The difference between

conventional cellular communication and D2D can be illustrated in Figure 1.1.

Figure 1.1 D2D communication concept

Hence, device-to-device communication promises several gains in cellular networks, in

addition to offloading data:

 It enables very high bit rates, low delays and low power consumption [6].

 It improves spectrum reuse and system throughput since the radio resources may

be simultaneously used by cellular and D2D links.

 It offers a hop gain since the link in the D2D mode is single rather than using

both an uplink and downlink resource [4].

In this section, we provide a brief overview of the architecture of the Long Term

Evolution-Advanced (LTE-A) cellular network, showing the main entities. This will

help in reading the thesis, given that we make reference to the entities that make up the

network. The core network of the LTE system, also known as Evolved Packet Core

(EPC), is responsible for the overall control of user equipment and establishment of the

bearers (connections) to the devices via the Evolved Universal Terrestrial Radio Access

Network (E-UTRAN) consisting of eNodeBs (Base Stations).

EPC

D2D Communication

Cellular Communication

eNodeB

UE1 UE2

4

a. Comparison of D2D With Other Technologies

D2D present many advantages over the existing technologies used for peer-to-

peer communication like Wireless Local Area Network (WLAN) [7] and Bluetooth [8]:

 These two aforementioned technologies require the user intervention: by doing

manual device pairing in Bluetooth and by entering user-defined settings for the

access points in WLAN [9]. However, in D2D, the operation is fairly transparent

to the user.

 The access of these technologies is uncertain in terms of their availability:

Bluetooth has a star topology which may prevent a new user to be connected if

the number of slaves overcomes the predefined number. As for WLAN, there is

a condition of channel freedom so that users can transmit. This uncertainty may

annoy the users who will stay in a trial-and-error process to access the channel

[9]. However, users in D2D communication are allocated resources by the

infrastructure in a guaranteed way.

 Although such technologies can operate without any infrastructure assistance,

they lack of node synchronization and assisting security procedures which can

be offered by the cellular network in case of D2D communication [10].

 Bluetooth and WLAN do not assure the Quality of Service QoS of the ongoing

session since it depends on the channel conditions. However, in D2D

communication, the QoS of the radio bearer between the D2D pairs is assigned,

controlled and maintained by the cellular network [11].

 D2D communication is a source of income for wireless operators other than

Bluetooth and WLAN which work independently [11].

5

The comparison between these different technologies can be summarized in the

following table:

Table 1.1 Comparison between D2D and other technologies

 Bluetooth WLAN D2D

User Intervention

Availability

Synchronization

Security

QoS

Source of Income

2. Cloud Computing Concept

By relying on sharing resources to achieve coherence, Cloud Computing is

intensively progressing and reaching new levels by giving permission to Internet users

for sharing infrastructures, platforms, and software provided by the cloud. Globally,

Apple with its iCloud, Google with its Drive, Amazon with its Cloud Drive, Microsoft

with its Skydrive, Dropbox and many others offer Storage as a Service (STaaS). Also,

Google with App Engine, Amazon with AWS Elastic Beanstalk, Microsoft with

Windows Azure Compute and Heroku also offer platform as a service (PaaS), and these

are only two types of available cloud computing services. Many other types of services

are also available: Network as a Service (NaaS), Infrastructure as a Service (IaaS), Data

as a Service (DaaS), etc. This trend does not only affect ICT companies offering

services to consumers, as it also affects companies having their own private smaller

clouds (referred to as cloudlets) to offer services, data, and storage to their employees

and users [12]. Cloudlets, “smaller clouds” are based on powerful computers that

usually serve nearby users and excel at offloading content and tasks from mobile

devices [13-15].

6

It is a popular belief that mobile devices are not powerful enough to run

compute-intensive tasks and applications. However, very recently, researchers are

starting to realize that mobile phones, like other computing devices, also follow

Moore’s Law, and have seen a huge leap forward in terms of CPU speed and memory

capacity, even more than other categories of devices in recent years. Thus, it has

become increasingly possible for mobile devices to rely on themselves or on other

nearby devices for obtaining network services. In this regard, researchers at AT&T Labs

[16] proposed to use mobile devices as mobile cloudlets. When a certain mobile device

needs to execute a task, it can either do it using its own resources or use resources of a

nearby mobile device by delegating tasks when in need. The proposed framework relies

on broadcast messages for discovering mobile cloudlets. As was elaborated, the real

difficulty of using mobile devices as cloudlets is the fact that they are mobile, and can

become out of range without prior notice and prevent the tasks that were already started

from being successfully completed. The work in [16] suggests that the discovery phase

be repeated periodically or in response to specific events such as moving or walking.

Nevertheless, the study in [16] does not describe a communication protocol for

supporting and maintaining the formation of cloudlets.

The issue of device capabilities is not the only concern, as although 4G networks

such as LTE and LTE-A have very high efficient physical and MAC layer paradigms,

they are still suffering from the increasing loads on the backhaul due to the increasing

demand for services and for reducing end-user latency. Hence, new and disruptive

network paradigms are needed to improve the end-user experience in terms of offered

services, reduced service latency, increased throughput, while keeping the overall

overhead minimal on the network backhaul. A byproduct of such paradigms is

7

offloading large amounts of traffic from the core network, thus contributing to the

objectives of 3GPP. One of these new paradigms is the D2D communication, which is

represented as a promising component in the next generation. D2D is defined as a direct

communication between two mobile devices without or with minimal intervention from

the base stations or the core network of the cellular network. Eventually, D2D is the

new trending topic of the cellular networks for the operators.

B. Objectives / Significance

The aim of this research is to develop a comprehensive D2D communication for

data under the support of the existing LTE-based cellular system. We seek to

accomplish this through the design of a system that works within the framework of the

existing LTE network entities with new added functions to support proximity services.

The key functions of D2D communications include service registration, peer

discovery, D2D bearer establishment, and switching the path to D2D data offloading. In

our work, we will mostly focus on the first two steps, meaning service registration and

peer discovery, as they represent the bulk of the work to implement D2D.

The topic of device-to-device communication gained a lot of attention from researchers

who proposed solutions for the following challenges:

 Resource allocation (e.g. spectrum and energy) between cellular communication

and ad hoc D2D communication users, and resource management to coordinate

interference by using power control [17] and by using multi-antenna

transmission techniques [18].

 Deciding on whether users should communicate in D2D or in cellular mode,

referred to as proper mode selection [19]. Researchers have assumed that D2D

8

communication setup is already supported in LTE-A, but this assumption is not

totally valid since existing LTE-A proposed architectures and protocols are not

ready yet to support D2D.

Few works have been done to propose enhancements at the network architecture level in

order to integrate D2D communication in LTE-A. The main contribution of our work is

going beyond the high level architecture to develop a detailed design for handling D2D

data traffic, such that the impact on the current design (entities, communication

protocols, functions and roles, packets design) is minimized. That is, one of our

objectives is to generate a design that can be implemented with minimal changes to the

existing LTE infrastructure, by exploring the existing functionalities of the elements of

the LTE-A architecture.

The other potential contribution is to extend the concept of network services

adopted in the LTE-A literature and the use cases proposed in the ProSe standards. On

one hand, the D2D technology is used in the literature in the context of multicasting

[20], [21], peer-to-peer communication [22], video dissemination [23-25], Machine-to-

Machine (M2M) communication [26], and cellular offloading [27]. On another hand,

the ProSe use cases presented in the 3GPP study item [5] are categorized under

commercial or social use, network offloading and public safety. Some scenarios are

presented in this study item but it mainly focuses on public safety where E-UTRAN

coverage is absent. We believe that users having ProSe-enabled devices and being in

proximity can benefit from this situation in a broader context: we propose for the

services offered to be any mobile application, commercial or personal, that runs on a

mobile device in response to the request of others for the purpose of benefiting these

other devices, and is ProSe compliant. For this, our goal is to design a system that

9

would allow providers of arbitrary services, who are subscribers to the cellular system,

to advertise their services through the LTE-A system, and other users (also subscribers)

to discover such services and consume them by bringing the cloudlets concept to the

D2D framework. An example would be a new restaurant owner advertising the food

services her restaurant offers, like food orders, customizable meals, reservation,

delivery options, etc.

Figure 1.2 shows a pair of devices communicating through D2D technology. It

illustrates two users (UE_R and UE_P) running the same application on their devices

(with application identification App ID_X, a unique identifier characterizing this

particular application) which can run in consumer mode or provider mode.

Figure 1.2 D2D pair

The mobile app, in need of a certain service (UE_R), runs in consumer mode

and asks the app on the other device holding the resources (running in provider mode

UE_P) to provide it with. We seek to accomplish this through designing a system that

works within the framework of the existing LTE network entities trying to make

minimal changes to it.

App ID_X

Consumer
Mode

ON

App ID_X

Provider
Mode

ON

Data

UE_R UE_P

10

The significance of this work is that it will use the existing entities without

adding new major ones. To that end, we suggest some modifications in the exchanged

messages between the user equipment (UE) and the Evolved Packet Core (EPC),

propose some additional functions to the entities, and one table to the Application

Server. For this reason, we take [5] as a baseline for our discovery scheme, and more

specifically the Evolved Packet Core (EPC)-level discovery, where the core network is

involved in determining the proximity of the devices.

In the rest of this report, Chapter II discusses related work and reveals the

contributions of the proposed system, which we describe in Chapter III. Chapter IV

provides an analytical analysis of the system’s average performance. Chapter V presents

the experimental results and discusses their significance. Chapter VI finishes the thesis

with concluding remarks and suggestions for future works.

11

CHAPTER II

RELATED WORK

This chapter is divided into two main parts where the first section presents the

work done so far by the researchers in the literature while the second part details the

related work achieved in the standards.

A. In the Literature

This section reviews the proposed schemes for Device-to-Device (D2D)

identification followed by the suggested enhancements for the protocol architecture and

System Architecture Evolution (SAE) in order to incorporate D2D communication in

the LTE-A.

1. D2D Identification

Peer discovery has a similar functionality as that of cell search in LTE by which

the UE determines the time and frequency parameters that are necessary to demodulate

the downlink and determine the cell identity [28]. In addition to time and frequency,

devices should also meet in space. The discovery of devices willing to participate in a

D2D communication is a challenge in terms of energy consumption, since scanning for

devices may end up draining the device battery [29]. The literature on this topic is

divided between relying on UE’s abilities in discovering other mobile devices or

integrating the network core in this process.

12

a. Without Network Support Mode

Without any coordination with the network, the discovery process can be made

possible via some procedure, but it would be time and energy consuming. Some authors

[29] base their discovery process proposal on the transmission of beacons between the

devices using Orthogonal Frequency Division Multiple Access (OFDMA) and building

on the existing beacon design of the 3GPP Long Term Evolution (LTE). To resolve the

problem of synchronization when multiplexed together in the same OFDMA symbols,

the devices are divided into groups that use different patterns to transmit in different

beaconing opportunities.

A new mobile communication system is introduced in [30] to realize a new form

of proximity-aware networking. This system is founded on an implementation of

“wireless sense” named FlashLinQ, which allows devices to discover each other and

communicate directly. In their design, the authors kept the involvement of the network

at a minimum, mainly to provide synchronization signals to devices. FlashLinQ is the

base for a new technology named as LTE Direct (invented by Qualcomm [31])

integrated in the 3GPP standard [32] that studies the architecture enhancements to

support Proximity-based Services (ProSe).

b. Network-Assisted Mode

Other researchers adopted schemes that benefit from network assistance. Two

mechanisms for D2D communication session setup and management are proposed:

through detecting D2D traffic, or by using dedicated System Architecture Evolution

(SAE) signaling [9]. In the first option, the potential D2D traffic is earmarked on the fly

by the gateway after processing the IP headers of the data packets and tunnel headers.

13

Although this method works for any peer-to-peer IP traffic without service

differentiation, it adds overhead to the network. Concerning the second option, by using

dedicated signaling, a D2D Session Initiation Protocol (SIP) session request can be

separated from a generic SIP session request: UE1 calls UE2 using a SIP invite message

with a specific address format, where the well-known SIP Uniform Resource Indicator

(URI) of UE2 is specified, followed by an extension indicating the preference for a local

session. The SIP invite message, encapsulated in a Non-Access Stratum (NAS) control

message, is received by a light SIP handler added to the Mobility Management Entity

(MME). With this approach, the NAS messages corresponding to D2D will be

processed by the handler, while the ordinary ones are handled by the MME. The

advantage of using dedicated signaling is that it does not require a SIP server in the

Internet, thus leading to faster session setup. Reported simulation results showed an

increase of throughput up to 65 percent for a network with D2D communication, when

compared to an ordinary cellular network. It is noteworthy to mention here that the

work in [9] does not discuss the peer discovery process and does not explain how UE1

can know the URI of UE2.

The identification of D2D traffic by an existing or added architectural LTE

entity has been an active research subject. For example, some authors [10] present two

alternatives for detecting D2D candidates in a network assisted scheme, differentiated

by whether the detection takes place before or after the start of the D2D session. In the

a-priori scheme, the role of the network can be expanded or reduced: the eNodeB can

only broadcast the assignment of beacon resources so that the server and the client find

each other, or the eNodeB can work as a mediator between them by redirecting the

request of the client to the D2D server (pre-registered), so that the latter generates the

14

beacon. However, in the a-posteriori scheme, the eNodeB identifies the D2D pairs

either by a token agreed on by the two devices, or by analyzing the source and

destination IP addresses.

2. Architecture Enhancements

The authors in [4] proposed to add a Proximity Service Control Function (PSCF)

to the Packet Data Network GateWay (P-GW), which is the gateway that terminates the

interface towards the Packet Data Network (PDN), which in turn refers mostly to the

Internet. The addition of PSCF was for detecting the presence of D2D traffic flow and

allocating a pair identity to the communicating UEs.

On the other hand, other authors [33] introduce a new logical entity called the

D2D server, separated from the other existing entities (but interfacing with them), that is

responsible for device identifier allocation, policy management, assistance in location

determination, call establishment, UE capability tracking, service support, and mobility

tracking. They also propose enhancements to the Mobility Management Entity (MME)

so that it supports new D2D related information during the attach procedure, and

therefore be able to identify the devices’ D2D service capabilities.

B. In the Standards

D2D communication gained a lot of attention from the 3rd Generation

Partnership Project (3GPP) which conducted an intensive work at the Technical

Specifications Groups (TSGs) level (Service and System Aspects (SA) that describes

the service requirements and the overall architecture of the 3GPP system, and Radio

Access Network (RAN) that studies the radio aspects) and their corresponding Working

15

Groups (WGs). A series of documents were developed in Release 12 under the title of

Proximity Services (ProSe). These services are defined in [5] as services that can be

provided by the 3GPP system based on UEs being in proximity to each other. The

standardization work for D2D followed the 3GPP development stages: It started by a

“Study Item” that delivered a “Technical Report” (TR) [5] describing the use cases for

Proximity Services from the user point of view.

A “Work Item” was then divided into three stages, each for a specific purpose:

Stage 1 for studying service aspects; Stage 2 for describing technical realization on the

architecture level to integrate these services; and Stage 3 for detailing protocols

implementing the architecture in Stage 2, and also defining security aspects. It delivered

several “Technical Reports” (TR) [32], [34] that led to “Technical Specs” (TS) [35],

[36], [37]. Another group was working on the radio aspects for D2D technology to

define evaluation models [38]. In the following, an overview of each “Technical

Report” and “Technical Specs” is presented.

In [5], a feasibility study for Proximity Services (ProSe) is presented. This study

identifies the ProSe key features consisting of ProSe discovery and ProSe

communication. The discovery process occurs when the user equipment (UE)

announces its identity using the LTE air interface (Evolved UMTS Terrestrial Radio

Access, E-UTRA) to another UE which will recognize that it is in its vicinity. This

announcement makes the discovery open or close, depending on whether it needs an

explicit permission from UE or not. As for ProSe communication, it describes the

communication path established between two UEs making it direct (direct mode), or

routed via the local eNodeB (i.e., locally routed). Moreover, this study presents the

services that can benefit from two users having ProSe-enabled devices and being in

16

proximity to each other by analyzing different use cases (social networking

applications, public safety, parking services, etc.) and scenarios (e.g., subscribers from

different Public Land Mobile Networks (PLMNs), roaming subscribers). It should be

mentioned here that this study mainly focuses on public safety usage within and outside

the network coverage. Furthermore, the functional requirements for the operators are

also indicated in the context of integrating this technology in their networks and

monitoring it to provide users a seamless switch from the user plane communication

path through the Evolved Packet Core (EPC) to a ProSe E-UTRA communication path

and vice versa. Finally, this study highlights the charging and security requirements for

users using ProSe.

The ProSe concept introduced in [5] led to updates in [36] and [37] by adding

special normative specifications for ProSe. The document [36] initially described the

service requirements for the Evolved Packet System (EPS) that comprises the Evolved

Packet Core (E-UTRA) and the evolved radio access network (E-UTRAN) to maintain

its characteristics in terms of latency, user data rates, system capacity, coverage, and

operational costs. As for [37], it initially described the service aspects of charging and

billing for the 3GPP system, but as additional services were introduced, new charging

requirements were added for the use of both ProSe features: Discovery and

Communication. Knowing that D2D technology may add traffic to the system, new

requirements were considered. Definitions for ProSe Discovery and Communication

were extracted from [5] along with the requirements for Proximity Services and for

public safety, and added to [37].

Considering the above, the TRs and TSs [5], [36], [37] describing the service

aspects led to a technical realization stage, namely Stage 2. In this TR [32], many

17

solutions are proposed to enhance the existing architecture and integrate ProSe

functionality, while at the same time presenting the key issues that should be considered

and evaluating their impacts on the existing network. The solutions related to ProSe

discovery are mainly divided into two types: EPC-level discovery and direct discovery.

In the first type, the network acts as a mediator between the two UEs, detects their

proximity and notifies them about it. The other type is a direct one, where UEs

recognize by themselves their neighboring UEs using the LTE air interface. This TR

describes a high level architecture for each solution showing the entities needed and the

interfaces between them, along with the other 3GPP existing entities, plus the required

functions to make a PLMN support ProSe.

Some of the solutions presented in the above TR phase were documented in

normative specifications in the new technical specification [35], mainly related to the

EPC-level discovery. This TS mentions the roles of the newly added entities and the

interfaces between them. Moreover, it describes the information flow procedure for UE

registration, application registration, UE proximity request to the network, UE location

reporting to the EPC, and proximity alert from the network to the concerned UEs (steps

derived from the previous TR [32]). Although, this technical specification defines the

protocol stacks on the control and user planes for each interface, it does not describe

them in details. This was left for future work in the next stage, meaning Stage 3.

The ProSe features were also studied from the security perspective since ProSe

pose threats for the user’s privacy, delivering a technical report [34] that studied the

security requirements in Stage 3. This subject is however out of the scope of the subject

of this thesis. On the other hand, other groups, like the Radio Access Network (RAN)

group, worked on the radio aspects and ended up by writing a technical report [38],

18

where evaluation models for channel, traffic, and mobility were presented. It also

defined the performance evaluation metrics for discovery and communication.

Nevertheless, the work of 3GPP is still at the concept level, as it is missing key

design elements, and needs to be generalized to suit real-world scenarios. For example,

how a service provider develops and deploys his offered service application for other

network users to discover and interact with is not yet clear.

We conclude this subsection with Table 2.1, which summarizes the standards

that are related to ProSe.

Table 2.1 ProSe Standards

Technic

al Specs

Group

Description Stage Specs Number Goal

G
ro

u
p
 S

er
v
ic

es
 a

n
d
 S

y
st

em
 A

sp
ec

ts

S
er

v
ic

e
A

sp
ec

ts

Stage1

(Study

Item)

TR 22.803

[5]

To study use

cases and service

requirements

Stage 1

(Work

Item)

TS 22.278

[36]

To specify

service

requirements for

the Evolved

Packet System

TS 22.115

[37]

To specify

service

requirements

(charging and

billing)

T
ec

h
n
ic

al

R
ea

li
za

ti
o
n

Stage 2

TR 23.703 [32]

 To define the

architectural

enhancements
TS 23.303

[35]

S
ec

u
ri

ty

A
sp

ec
ts

Stage 3

TR 33.833

[34]

To study the

threats and the

security

requirements

G
ro

u
p

R
A

N

RAN

TR 36.843

[38]

To define the

evaluation

models (channel,

traffic, mobility)

19

CHAPTER III

D2D SERVICE REGISTRATION AND DISCOVERY

In this chapter, we provide the complete design of D2D service registration and

discovery architecture and describe the interaction between the different components of

the system. Our work extends the approach described in the standards [38], by removing

the requirement for the requesting device to know the ID of the providing device, and

more importantly, laying out the grounds for overlaying a mobile computing framework

over the capability of proximity-based device-to-device communications. In this

section, we describe our system model before discussing our proposed framework in the

section that follows.

A. System Model

The two most involved processes of D2D communications are service

advertisement and service discovery. In our proposed system, service registration and

discovery involve the network in the discovery process, thus avoiding the time and

energy consumption issues associated with discovering D2D candidates without

network support, as in [29], [30]. Our proposed architecture also adopts the a-priori

scheme [10] where D2D pairs are detected before the start of the D2D session.

Moreover, we keep the involvement of the core network to a minimum: mainly for a

Service Provider (SP) to register a service and for a Service Requester (SR) asking for a

service to discover the SP is in its proximity.

Below, we detail the various components of the proposed system and their

interactions with one another. The two main steps of D2D data communication are

20

service registration and service discovery. We base our design on the Evolved Packet

Core (EPC)-level discovery mentioned in [32] where it is the responsibility of the

network to determine the proximity of the user equipment and inform them about it.

“Proximity”, as defined in [5], takes different criteria for discovery and communication:

for discovery, the criteria include radio range and geographic range as for

communication, it include others like: range, channel conditions, achievable Quality of

Service (QoS). Since our work focuses on ProSe discovery, we mean by “Proximity” a

geographical range i.e. two UEs in near distance to each other.

The high level architecture of our design is illustrated in Figure 3.1.

Figure 3.1 Overview of the LTE-A network with the ProSe functional components

Figure 3.1, which is based on [35], shows the already existing entities in the

LTE-A network: base stations (eNodeB), Mobility Management Entity (MME), Serving

Gateway (S-GW), Packet Data Network GateWay (P-GW), Home Subscriber Server

(HSS), Secure User Plane Location Platform (SLP), with the additional logical function

Evolved UTRAN
(E-UTRAN)

Service NetworkEvolved Packet Core (EPC)

HSS

SLP

ProSe
FunctionP

C
5

PC2

MME

S/PGW

PC1

PC1

eNodeB

PC3

PC3

PC4a

PC4b

S6a

LT
E-

Uu

LT
E-

Uu

S1

UE
Consumer

 Mode

UE
Provider

Mode

ProSe App
Server

OFDM-based
 Air Interface

21

ProSe Function. This last element turns the Public Land Mobile Network (PLMN) into

a network that supports Proximity Services. The D2D UE pair (one in consumer mode

and the other in provider mode) communicates with the core network via the eNodeB as

part of the connection setup. The core entities involved in the discovery process are all

the existing ones in the figure except the S/P-GW as they connect UEs to the external

network, like the IP Multimedia Core Network Subsystem (IMS), which is not our case.

The key functional elements for this process are described below:

 The MME is responsible for all mobility related functions (tracking and paging).

In our framework, it also caches a copy of the user’s ProSe profile after being

authenticated by the HSS, and informs the eNodeB about the user’s permission.

 The HSS is a data repository for subscribers’ profiles that

authenticates/authorizes user access to the system, and more specifically will

check whether the requesting users are ProSe subscribers or not.

 The SLP can be a server residing in the network or a network equipment stack.

It obtains location information for the UE using Secure User Plane (SUPL)

which is supposed to be the user-plane (U-plane) location technology developed

by OMA (Open Mobile Alliance [39]) for positioning over wireless network,

based on secure user plane IP tunnels.

 The ProSe Function generates the IDs of the ProSe users after being authorized

by the HSS and handles these IDs along with their corresponding application

layer user IDs. It also stores a list of authorized applications IDs to use EPC-

level ProSe discovery. Moreover, the ProSe Function plays the role of location

services client (SLP agent) to communicate with the SLP and be aware of the

UEs’ locations to determine their proximity. It should be noted that according to

22

[35] there is only one ProSe Function per Home Public Land Mobile Network

(HPLMN).

 The ProSe Application Server contains the applications offering services

developed using Application Programming Interfaces (APIs) for ProSe which

are provided by the 3GPP operator during the service agreement. It is the entity

on the service network from which the user downloads the apps. It also stores

the identities of the ProSe users, as defined at the network level, and maps these

identities to the application layer user identities which identify specific users

within an application. Moreover, the ProSe function ID corresponding to each

user is also saved there.

Note that the above entity roles are based on [35]. Further functions added to these

entities will be discussed in the next section.

B. System Design Requirements

A mobile user willing to participate in a D2D communication in order to benefit

from Proximity-based Services (ProSe) should fulfill the following criteria, as is

discusses next.

1. ProSe-Enabled Mobile Device

A user must be first equipped with an LTE-A mobile device that can

communicate with the Core Network via the corresponding interfaces. Moreover, this

device should have the capability to run ProSe applications on it, meaning the

applications having the ProSe capability features: the ability to discover, to be

discovered, and to communicate with the discovered devices.

23

2. Registered UE

This ProSe enabled device should be subscribed to an operator service in order

to be authorized to run ProSe enabled applications on it. The registration of the device

occurs in the Home Public Land Mobile Network (HPLMN) where the subscriber’s

profile is held in a logical function, named ProSe Function which makes this PLMN a

network that supports Proximity Services. It is assumed that each PLMN contains only

one logical ProSe Function. The ProSe Control signaling for the registration process of

the user device occurs over PC3, a reference point between the ProSe Function and the

UE, which relies on Evolved-Packet Core (EPC) user plane for transport, meaning over

Internet Protocol (IP), as it is shown in Figure 3.2.

UE

IP

PC3 Control

RLC

MAC

L1

RLC

MAC

L1

UDP/IP

L2

L1

UDP/IP

L2

L1

UDP/IP

L2

L1

Serving GWeNodeBLTE-Uu S1-U

UDP/IP

L2

L1

GTP-U

IP

PDN GWS5/S8

IP

L2

L1

ProSe FcnSGi

PC3 Control

PDCP
PDCP GTP-U

Relay
GTP-UGTP-U

Relay

Figure 3.2 Control plane for PC3 interface [35]

To allow for this IP communication, the user should be aware of the IP address

of the ProSe Function, that’s why he needs to start a ProSe function discovery. From the

HPLMN ID broadcasted by the HPLMN, the UE constructs a Fully Qualified Domain

Name (FQDN) that uniquely identifies a ProSe Function and interacts with the Domain

Name Service Function (DNS) to translate this FQDN and get the corresponding IP

address of the ProSe Function. By this, the ProSe Function ID is known to the UE.

The ProSe Function discovery is depicted in Figure 3.3.

24

Figure 3.3 ProSe Function discovery

To register the device on the ProSe Function, the user identifies his UE to the

network by sending, over PC3, his International Mobile Subscriber Identity (IMSI - the

unique number associated with each mobile phone and stored in the Subscriber Identity

Module, SIM). The ProSe function authenticates him by checking with the Home

Subscriber Server (HSS) if he or she is allowed to use ProSe features that consist of

ProSe discovery and ProSe communication for this device. This information about

authentication/authorization access is exchanged between the HSS and ProSe Function

over the PC4a interface by using Diameter Protocol as shown in Figure 3.4.

ProSe Fcn HSS PC 4 a

Diameter

IP

L 2

L 1

Diameter

IP

L 2

L 1

SCTP SCTP

Figure 3.4 Control plane for PC4a interface [35]

After authenticating the UE, the ProSe Function creates an EPC ProSe

Subscriber ID (EPUID) for the registered device and sends this ID back to the UE in

UE HPLMN DNS

Broadcast HPLMN ID

Construct
FQDN

 FQDN

ProSe Function ID

25

order to be used later during the discovery process as it is illustrated in Figure 3.5.

UE , in this figure, can be either a Requester or a Provider.

Figure 3.5 UE registration

By this, the UE is registered as ProSe subscriber and ready to run applications

that support Proximity Services on it, named as ProSe enabled applications.

3. Application Registered

The user equipped with a ProSe-enabled device and registered in the network as

a ProSe subscriber, can download a ProSe application (offering services to other ProSe-

enabled devices) from an application server through an operator application distributor

or Application Store. This server may be operated by the 3GPP network operator or by

a third-party service provider. In the latter case, the developers should sign a contract

with the 3GPP operator in order to authenticate their application server and get an

Application Developer ID as well as an Application ID which globally defines this

specific application and identifies their 3
rd

 party App Server platform. Moreover, in

order to make these apps having the ProSe capability features, meaning the ability to

discover, be discoverable and to communicate with the discovered device, the third-

party service provider should build the applications based on Application Programming

UE
ProSe

Function
HSS

UE Registration Request [IMSI]

Construct
EPUID

Check Authorization for [IMSI]

 [IMSI] Authenticated

UE Registration Response [EPUID]

26

Interfaces (APIs) provided by the 3GPP operator in the service agreement as shown in

Figure 3.6.

Figure 3.6 Downloading Apps by the user equipment from a Third Party Application

Server

The communication between the user and the Application Server occurs over

PC1, the reference point connecting the application instance to the server. The

Application Server assigns him an Application Layer User ID (ALUID) to identify him

within the context of this specific application as it is illustrated in Figure 3.6. Note that

the Application Registration is the same for the requester as well as for the provider.

UE_A represents either case.

To activate the ProSe features on these applications, the user should also

authenticate and authorize them through the ProSe Function that caches a list of all the

IDs of the applications allowed to use ProSe features. Note that the authentication is

done on a per-application basis. The user identifies his authorized device to the network

by his EPC ProSe Subsriber ID (EPUID) and sends it to the ProSe Function along with

the ID of the application (Application ID) he wishes to authorize and his own ID on this

application (ALUID). This message containing all these IDs is sent through PC3, the

EPC

3rd Party App Server

3. Building Apps
based on ProSe

APIs

e.g. App X:
(APP ID_X,
ALUID_A)

5. App A
(App ID_X,
ALUID_A)

4. Downloading Apps
(App ID_X, ALUID_A)

1. Authentication
 Request

2. Series of APIs
(Application Developer ID,

App ID_X)

Registered UE_A

27

reference point connecting the UE to the ProSe function which checks that the user as

well as the application requested is authorized. Once authenticated, the ProSe Function

forwards this message to the App Server adding to it its own ID (the ProSe Function ID

(PFID)) in order to indicate that this user has requested to use ProSe for that application.

The App Server stores the IDs (ALUID, EPUID and PFID) to map between the

application IDs and the users’ ID in the discovery step and sends a ProSe Registration

Response message to the ProSe Function as a sign of success for the application

registration. To terminate this process, the ProSe Function replies to the UE by an

acknowledgment containing the authorized discovery range class for this application.

According to [5], the discovery range class can be short, medium or maximum based on

geographical distance or radio conditions. This range defines how far a UE holding this

app can discover another radio signal or can be discoverable. The user has the freedom

to choose one of these allowed ranges while requesting to communicate with a nearby

device holding this app.

In our design, we propose to develop the applications on the application server

to run in two modes: consumer (default) mode and provider mode. Some devices may

be willing to lend their extra resources in terms of software, data, or network to other

mobile devices, playing the role of mobile cloudlets. By this, the D2D pair will be a UE

in the consumer mode and the other in provider mode (mobile cloudlet). An app runs in

consumer mode when the user is requesting services, and runs in provider mode when

the user is willing to share his device’s resources. After downloading the app to his

device, the user can choose whether he will allow the app to run in provider mode

through a configuration interface, which could look like the prototype in Figure 3.7.

28

As shown in the figure, in the first screen, the user who wants to be a provider

for a certain service turns the “Provider Mode” on and fills the corresponding

information.

Figure 3.7 Envisioned application user interface for an SaaS application

 Discovery type: open or restricted

According to [32], the open discovery type lets the mobile device be found by another

UE, different than the restricted one where the UE can only be seen by a certain group

of people. In our design, the restricted type can be linked to a group ID in a social

network chosen by the user. As its name shows, the drop down list of the “Social

Network Name” contains the names of the social networks to which a user belongs:

“Facebook”, “Twitter”…

 Application name

The names of the ProSe applications existing on the mobile device are linked in a way

to this user app interface in order to appear in the drop down list corresponding to this

field. The user can add (+) or remove (–) applications to apply the provider mode rules.

Provider Mode

Discovery Type Open

Restricted

Group ID

Availability

Application Name

Page 1/2

Please Select...

Application Association Page

Page 2/2

App 1 Keywords...

Application List & Keywords Association

App 2 Keywords...

App 3 Keywords...

Please Select...

Social Network Name

29

 Availability

The user defines the time during which he or she will be available as a provider for this

service using the digital clock gear.

Once the information are filled, the “Next” button leads the user to the second

page named as “Application List & Keywords Association” where the names of the

apps chosen in page 1 will appear. Once checked, the user can add (by using the + sign)

and remove (by using the – sign) the keywords corresponding to each app.

a. App Registration for a UE in Consumer Mode

If the UE is running on consumer mode, no additional messages for application

registration are exchanged between the mobile device and the application since the app

is running in its default mode. The steps followed by the UE are as mentioned earlier in

Section 3.2.3 and can be summarized by the following sequence diagram.

Figure 3.8 Application registration: consumer mode

UE_R
Consumer Mode

ProSe Function_R App Server

Application Registration Request
[EPUID_R, App ID_X, ALUID_R]

Store
[ALUID_R,
EPUID_R,
PFID_R]

ProSe Registration Request
[ALUID_R, EPUID_R, PFID_R]

ProSe Registration Response

App ID_X
Allowed Range:

Short/Medium/Long?

Application Registration Response
(Allowed Range:Short/Medium/Long?

30

b. App Registration for a UE in Provider Mode

If the UE specifies provider mode, it should satisfy certain criteria to prove its

capability to serve a mobile cloudlet, restricting by this the providers’ number by the

network. Depending on which of the three intended mobile cloudlet service types the

device will offer (SaaS, DaaS, and NaaS), the criteria will be different since in our

design we assume that each application corresponds to a certain type of service meaning

to say an application for Data as a Service is different than the one for Software as a

Service but may exist on the same server. For example, in the case of SaaS, the device

is expected to host software apps that are to be run under the supervision of the

downloaded ProSe App (provider) as possible services to same-type consumer apps. In

case of DaaS, the device is supposed to host the necessary data (e.g., song files) to be

sent to consumer apps. Finally, for NaaS, the device must have, for example, an active

WiFi connection to the Internet (e.g., via subscription or privilege) and can configure

itself as a hotspot for requesting devices running the same-type consumer app to

connect through to the Internet. We note that the same UE can host different apps each

one corresponding to a certain type: SaaS, DaaS and NaaS as depicted in Figure 3.9.

Figure 3.9 ProSe apps on mobile phone

ProSe App 2
SaaS

ProSe App 1
DaaS

Mobile Apps Databases Files

31

After choosing the provider mode from the application user interface, the UE

should prove its capabilities to the Application Server. In the case of Data as a Service

(DaaS), for instance, the user, through an interface, could configure the local SQLite

database to store the names and other metadata of available video and image files that

are to be shared with nearby LTE-A users. If the UE does not fulfill the required

criteria to be accepted as a provider, the provider mode requested will be rejected.

Otherwise, if the App server proves the user’s competency to be in provider

mode, it sets the Boolean value for “Provider” to “True” in the “Subscriber” table

present in its schematic database that is shown in Figure 3.10. The “Applications” and

“Subscriber” tables are connected by a one-to-many relation since each application has

many subscribers who downloaded it; they are related by the Application ID (App ID)

playing the role of the key between them. This key if of type a Globally Unique

Identifier (guid) that identifies a particular application within all the applications

existing on this server.

Figure 3.10 Proposed database of Application Server (case of SaaS Application)

The “Subscriber” table contains fields related to the user’s profile: the

Application Layer User ID (ALUID) which is the user’s ID on the application server,

the EPC ProSe Subscriber ID (EPUID) of string type is the user’s ID in the network and

the Provider field which is of Boolean type that is checked when the application is

running on provider mode. The “Subscriber” and “App Provider” tables are connected

by a one-to-one relation via the Application Layer User ID (ALUID) which plays the

Social Network Group Table
GroupID: guid <<PK>>

SocialNetworkID: integer()
SocialNetworkName: string()

TTL: integer()
Keywords:string()

App Provider
ALUID: string() <<FK>>

GroupID: guid <<FK>>

ALUID: guid() <<PK>>
EPUID: string()

Subscriber
App ID: guid() <<FK>>

Provider: Boolean()

Applications
App ID: guid() <<PK>>

1:n 1:1 1:1

32

role of the key between them. The other fields existing in the “App Provider” table will

be discussed later in the context of their usage. We note that this database corresponds

to Software as a Service Application, and so, the database of the other applications will

only differ by the attributes appearing in the “App Provider” table.

The UE working in provider mode should register the services he or she offers

in the network as well as in the App server in order to be discoverable by other UEs as it

is shown in Figure 3.11. When the user checks the “Provider mode” field; he will be

asked if he wants to be discoverable by anyone holding this application (open

discovery) or only by restricted people (restricted discovery). The application could be

linked to social network where the user can choose a group of people to discover him or

her (or the user can precise a group ID).

Figure 3.11 Application Registration: provider mode

UE_P
Provider Mode

ProSe Function_P App Server

Application Registration Request
[EPUID_P, App ID_X, ALUID_P,

Open/Restricted, Keywords[], TTL]

Store
[ALUID_P,
EPUID_P,
 PFID_P,

Open/Restricted,
Keywords[]+
Synonyms[],

TTL]

ProSe Registration Request
[ALUID_P, EPUID_P, PFID_P,

Open/Restricted, Keywords[], TTL]

ProSe Registration Response

App ID_X
Allowed Range:

Short/Medium/Long?

Application Registration Response
(Allowed Range:Short/Medium/Long?

33

For instance, a professor wants to share an excel file containing the grades only

for his students. Note that the user should also precise a Time to Live (TTL) which

indicates the duration of his availability as a provider. Once TTL expires, the “Provider”

field will be set to “false”. In addition to this, the user should mention some keywords

that help in discovering its offered service for other users running their applications in

consumer mode. These keywords will be concatenated with a semi colon and sent to the

App Server which has an additional function to find all its corresponding synonyms.

Now, the application server, playing the role of a directory, saves all these

information related to this user cloudlet in its database. Now that the user’s device as

well as the ProSe application running on it is authorized, the user can start sending

proximity requests to the network. The records for each entity are summarized in Table

3.1. The application server holds the association between the IDs at the application level

(ALUID) and the network level (EPUID). We should point out that nothing precludes a

device running in provider mode to also run in consumer mode by requesting a same-

type service, but different in the specific offerings.

Table 3.1 IDs held by each entity

 At

the

About

UE ProSe Function App Server

User

IMSI IMSI

EPC ProSe Subscriber ID

(EPUID)

EPUID EPUID

Application

Application Layer User ID

(ALUID)

ALUID of both

UEs

 (until request ends)

ALUID

Application ID Application ID

ProSe Function ProSe Function ID

(PFID)

PFID

34

4. Service Discovery

A key function in the discussed framework is service discovery. Part of this

functionality is identifying the general D2D service type, which is implicitly provider

through same-type ProSe-compliant applications (services). That is, a device wishing to

discover devices running an app (service) must already be a subscriber to this service in

order to run it as a client that knows how to communicate with the provider. However,

discovery has to be more specific. For example, an SaaS cloudlet could offer parking

information services, while another SaaS cloudlet may offer Mexican food ordering

services. It follows that a ProSe-compliant SaaS app interested in finding free parking

spots in nearby parking garages should only communicate with SaaS provider apps

running on nearby devices that offer parking information.

To realize the above capability, when a device subscribes to a Prose application

as a provider, it should supply to the network (application server) a set of keywords.

With this setup, a user wanting a particular proximal service will supply search

keywords that are compared against the registered keywords (and their synonyms) to

determine the appropriate cloudlets, and present them to the user. Obviously, multiple

matches could occur, in which case, the user is free to select which one to connect to.

As it is shown in Figure 3.12, a phone in provider mode downloads from the

Application Server many ProSe Apps of the SaaS and DaaS types, where the first app

communicates with the mobile apps running on the user equipment while the other one

has access to databases and files present on the phone. The application server acts as a

directory by saving users’ information related to the type of the application downloaded

on their UEs as well as to the keywords defining this app. We show the profiles of two

users BBB and CCC are saved in the App server’s database and both users are in the

35

requester’s vicinity. Note that the phone (provider mode) illustrated in this figure can be

user BBB or CCC.

Figure 3.12 High level service discovery system (matching on keywords level)

User BBB’s UE holds a DaaS app and an SaaS app,where the first one is defined

by keywords X, M, N, O while the second by A, B, C, D. Assuming a phone in

consumer mode, holding ProSe App 2 (SaaS) is searching for an application using the

keywords B,D,E,F,G (step 1). The Application Server detects 2 matches with the

registered keywords for user BBB and 3 matches for user CCC (step 2). It responds

back by sending the number of matches and indices of the matched keywords, along

with the provider ID to the consumer phone to choose which provider it wants to

contact. If user CCC, with the higher number of matches is chosen, the consumer will

inform the ProSe Function about this (step 4) in order to establish a bearer between him

and the provider.

Application Server

ProSe App Name

ProSe App 1

ProSe App 2

Category

DaaS

SaaS

User ID

BBB

BBB, CCC

Keywords

X; M; N; O; P

A; B; C; D; K, B; C; D; E; J

ProSe
Function

 Consumer
Mode

User BBB

ProSe
App 2
SaaS

ProSe
App 1
DaaS

User CCC

Mobile
Apps

Files
Databases

ProSe
App 2
SaaS

Mobile
Apps

ProSe
App 2
SaaS

SaaS: B; C; D; E; J
DaaS: X; M; N; O; P

SaaS:
 A; B; C; D; K

SaaS:
B; D; E; F; G

1

User BBB = 1; 2
User CCC = 1; 2; 3

3

2

List of matches

List:
User BBB

(2 matches)
= 1; 2

User CCC
(3 matches)

= 1; 2; 3

4

36

In more technical terms, a device sends a proximity request to the network

through messages that ask the ProSe Function to find nearby targeted devices, or to alert

it when other devices come around. The user defines the proximity criteria when he

selects a range class for this app. That is, a user who has chosen “short” range class

(e.g., short class corresponds to 10 m) will not be informed about a UE 20 m away.

In [35], when UE_A is interested in finding UE_B, it contacts the network in

order to be alerted when this device comes to its vicinity. It is therefore assumed that

UE_A knows the Application User ID of UE_B. In our proposed work, we remove this

assumption by making UE_A search for an Application ID along with identifying

keywords for the desired service. The importance of keywords usage here is that they

narrow down the list of providers having the same application. For instance, if UE_R is

interested in finding a UE running an application that offers Mexican restaurant food

services and wants to be alerted by the network when such UE is around or comes to its

vicinity. If UE_R searches only by the ID of the application (i.e., without any

keywords), it will get a list of all providers offering restaurant services (i.e, all types of

cuisines), which may be a rather long list, thus annoying the requesting user.

Technically, since the discovery is EPC-level based, UE_R needs to contact the

ProSe Function of his HPLMN to help it in finding these cloudlets. For this purpose, all

UE_R has to do is to send a proximity request message to the ProSe Function,

identifying itself by its EPC ProSe Subscriber ID (EPUID_R), its ID in the application,

(ALUID_R), the Application ID and one or more keywords describing the service it is

searching for. Moreover, UE_R should precise in this message the range class of the

application he or she wants and provide the ProSe Function with its current location in

order to be used for proximity calculations. Note that the request should also be defined

37

by a certain time (a time window). The request will thus be defined by EPUID_R,

Application ID, ALUID_R, time window, range, UE_R’s location, and the keyword(s).

Since ProSe Function_R is not aware of the EPC ProSe IDs of UEs in provider mode

for this application nor of the ID of the ProSe Function they are subscribed to, ProSe

Function_R to contact the Application Server for translating ALUID_R into subscriber

IDs. This is done over PC2, the interface between the ProSe Function_R and the

Application Server, as depicted in Figure 3.13.

ProSe Fcn ProSe ASPC2

PC2-AP

IP

L2

L1

PC2-AP

IP

L2

L1

TransportTransport

Figure 3.13 PC2 interface [35]

ProSe Function_R sends the Application ID, the application layer user ID of the

requester (ALUID_R) and the keywords to the App Server. We should note that ALUID

will be stored inside ProSe Function until the time window expires. The application

server searches for the cloudlets that are defined under this Application ID as providers

(subscribers with the “Provider” field in the “Subscriber” table set to True) and searches

through their registered keywords to find a match with the keywords supplied by UE_R.

Since the consumer and the provider may be registered with different ProSe

Functions, ProSe Function_R needs to know the IDs of the other ProSe Functions. The

server responds back by sending all the matching EPUIDs with the keywords requested,

their corresponding ProSe function Ids and their available resources to ProSe

38

Function_R. The latter saves this information temporarily and contacts each ProSe

Function found in the list by sending a Proximity Request containing the EPUID to the

corresponding ProSe Function. The ProSe Functions of the providers use EPUID to

retrieve the profile of the UEs and contact the HSS to get their last known locations. As

we know, the users’ locations saved in the HSS database are on tracking area level,

which is why each ProSe Function will compare the last know location of the provider

to the requester’s location and checks if they are likely to meet or no (different tracking

area) doing by this a rough filtering. If they are in the same area, the provider’s ProSe

Function (ProSe Function_P) sends an acknowledgment to ProSe Function_R. Then,

knowing the involved ProSe functions, ProSe Function_R asks each ProSe Function to

start the location reporting from their corresponding Secure User Plane Location

Platform (SLP). The Secure User Plane Location Platform (SLP) is a new entity that is

specified in [35], whose responsibility is to keep track of the UE’s locations by sending

updates of registered UEs’ locations (periodically, or in response to triggering events) to

the corresponding ProSe Functions (playing the role of Location Services (LCS) client)

over PC4b through the Mobile Location Protocol (MLP) shown in Figure 3.14.

For instance, SLP_R, keeping track of UE_R’s location, updates ProSe

Function_R about UE_R ’s location by sending a Location Services (LCS) report. In

our case, ProSe Function_R will have to collect the location updates from ProSe

Function_P, provided by SLP_P since UE_R has initiated the discovery. After being

detected in proximity, each prose function cancels the location reporting from their

corresponding SLPs

39

ProSe Fcn SLPPC4b

MLP

IP

L2

L1

MLP

IP

L2

L1

TCPTCP

Figure 3.14 PC4b interface [35]

Finally, ProSe Function_R creates a reply packet to the UE_R containing a list

of the ALUIDs each with its corresponding EPUID, sorted by their distances from the

UE (nearest to farthest) and the count as well as the indices of the matched keywords.

After compromising between keywords and position, UE_R chooses a certain cloudlet

and informs the network about its choice by sending a Decision Message containing the

ALUIDs and EPUIDs of both the requester and the provider. The Prose Function_R

only keeps the information related to the chosen cloudlet and deletes the remaining

ones. EPUID known, the Prose Function maps it with the corresponding ProSe Function

ID. Assume the UE chosen as cloudlet is UE_P. Thus completing the discovery stage.

If no providers are in range, the network responds to UE_R’s request by sending an

empty list prompting it that it will alert it when a provider enters its range.

40

The sequence diagram of discovery is depicted in Figure 3.15.

Figure 3.15 Proposed service discovery system

UE_R
ProSe

Function_R
Application

Server
UE_...P SLP_R SLP_...P

ProSe
Function_...P

Proximity Request
 [EPUID_R, APP ID, ALUID_R, Range, R’s Loc., Window, Keywords]

Map Request
[ALUID_R, Keywords]

Search for providers with
matching keywords & get

their counts & indices

Map Response
 [EPUID_P, PFID_P,

Keywords_P’s indices]

HSS

Proximity Request
[EPUID_P, EPUID_R, R’s Loc. Window]

Location Request
[EPUID_P]

Intermittent Location Reporting(R)

LCS Location Reporting Request [EPUID_P]

Location Response
[EPUID_P, P’s Loc.]

Proximity Request Ack [EPUID_P, P’s Loc]

LCS Location Reporting Request [EPUID_R]

LCS Location Report [EPUID_R]

Intermittent Location Reporting(P)

LCS Location Report [EPUID_P]

ProSe Location Update [EPUID_P, P’s Loc.]

Create a list of (EPUID_Ps +
keywords’s counts &indices)

sorted from nearest to farthest

Proximity Request Ack

Proximity Alert [List]

Compensate btw
Distance &

Matching Keywords
Decision Message [EPUID_P1]

41

By comparing our proposed discovery system in Figure 3.15 to the one

mentioned in the standards [35] and illustrated in Figure 3.16, we see the difference in

terms of generalizing the search request by removing the assumption that the requester

knows the application layer user id of the targeted UE and by integrating the metadata

search option.

Figure 3.16 Service discovery in [35]

UE_A
ProSe

Function_A
Application

Server
UE_B SLP_A SLP_B

ProSe
Function_B

Proximity Request
 [EPUID_A, APP ID, ALUID_A, , ALUID_B, Range, A’s Loc., Window]

Map Request
 [ALUID_A, ALUID_B]

HSS

LCS Location Reporting Request (B)

Proximity Request Ack

Proximity Request Ack [B’s loc.]

Map Response
 [EPUID_B, PFID_B]

Proximity Request
 [EPUID_B, EPUID_A, A’s Loc., Window]

Location Request (B)

Location Response (B)

LCS Location Reporting Request (A)

Intermittent Location Reporting (A)

LCS Location Report (B)

ProSe Location Update [EPUID_B, B’s loc.]

UE_B & UE_A
in Proximity

Proximity Alert [APP ID, ALUID_B]

Proximity Alert [APP ID, ALUID_A]

Proximity Alert [EPUID_B, APP ID, ALUID_A]

LCS Cancel Location Reporting (A)

LCS Cancel Location Reporting (B)

Cancel Proximity Request
[EPUID_B, EPUID_A]

Intermittent Location Reporting (B)

LCS Location Report (A)

42

C. Illustrating Scenario

At the end of this chapter, we present an illustrating scenario corresponding to

an application offering Software as a Service (SaaS), relating to available parking lots in

a busy downtown of a major city. We suppose that Mary, Peter and John are mobile

users holding UE ProSe enabled devices, registered in the ProSe Function of the same

operator network as ProSe subscribers, and running on their UEs an authorized ProSe

app named “FindAPark”, downloaded from an application server and also registered in

the network. Peter and John’s devices periodically receive parking spot availability

information from their respective lot database, which in turn gets updates from sensors

installed in the lot. When Mary enters the downtown searching for a place to park her

car, she uses her “FindAPark” to ask the network to help her find nearby UEs providing

parking info. Moreover, she indicates in her request the discovery range class she wants

for this app (e.g., “short” range class) and some keywords (e.g. short-term parking, low

rate). According to Mary’s location and preferences, the network identifies Peter for

being in her proximity and offering matching services and sends his application layer

user ID in the list of the response message to Mary. Although John is a provider, but he

is not within Mary’s “short” range, which is why his ID was not part of the list. Once

Mary is aware of Peter’s ID, they can start their D2D communication, where Mary may

see a map of the available parking spots, select one, and pay securely using her credit

card.

43

CHAPTER IV

SERVICE DISCOVERY ANALYSIS

In this chapter, we present our simulation results to gain insights into the

performance aspects of our proposed discover system. The performance metrics

considered are as follows: 1) signaling overhead: the signaling messages added to the

existing system in the standard [35] 2) the effect of the number of keywords chosen by

the requesters and providers as well as others parameters’ impact such as: number of

providers in the network, area of simulation’s dimensions and distance separating the

requester and provider.

A. Performance Measures

1. Signaling Overhead

EPC-level discovery can create signaling in the network for activating and

maintaining location reporting from the SLP since it keeps track of the user’s location.

In our system, we consider that a UE updates its location to the SLP only when it moves

a significant distance. To analyze this threshold, we start by defining where

corresponds to the maximum distance separating two UEs defined to be in proximity.

Supposing three UEs in Figure 4.1, where UE_1 is far away from UE_2 by Dmax meters

and UE_3 is very close to UE_2. The average distance by this would be .

Figure 4.1 Threshold distance

UE_1 UE_2

UE_3

Dmax

44

Hence, the UE would update its location to its corresponding SLP only when it

moves a distance defined by:

where is the distance corresponding to the time elapsed between when a UE

sends a location update until the core network reacts. As it is illustrated below, when

UE_1 goes far from UE_2 by from its initial position (dotted square), it sends a

location report to its SLP informing it about its new location.

Figure 4.2 UE_1 moving distance

The signaling overhead depends on the dynamics of the cell, i.e. the traffic that

flows between entities and the mobility of the mobile providers. In a static scenario,

where nodes do not change their positions frequently and communication sessions are

set-up for a longer period, the signaling overhead is limited. In a very dynamic scenario,

sessions can be disconnected and switched into normal cellular communication session.

In another case, if the requester is insisting on being involved in D2D sessions even

after being disconnected, he should reinitiate his request to the prose function in order to

find a new provider in its vicinity, by this all the steps aforementioned will be repeated

leading to an increase in the network traffic.

UE_1 UE_2
Dmax / 2

UE_1
Dmax / 2

UE_3

45

For simulation purposes, we study different scenarios:

 UEs registered to the same Public Land Mobile Network (PLMN)

 UEs registered to different PLMN

These cases were particularly chosen knowing that the signaling load arises

across inter-PLMN interfaces since the prose function of the requester should

communicate with each provider’s PLMN in order to retrieve the user’s profile and

location. However, in both cases, we consider dynamic nodes to imitate real case

scenarios where mobile users can be pedestrians or riding vehicles changing frequently

by this their positions. This change will cause more traffic since users need to keep

updating the SLPs about their current locations.

In this part, we assume that the UEs participating in this discovery are already

registered in the network and the applications running on these mobile phones are also

registered on the Application Server. Our purpose in this section is to analyze the

signaling overhead in the service discovery step. Assume that there is no caching in the

ProSe Function. In case caching exists, the number of sent messages exchanged should

be multiplied by .

We start by defining the information elements that may exist in each packet and

the type of encoding used along with a brief description. The messages are exchanged

using the diameter protocol [40].All diameter messages start by a diameter header as

defined in [35] where further explanation about each field can be found. The content of

this header is illustrated in Figure 4.3. Our goal is to calculate the total size of this

header by summing up the size of each field and is found to be equal to 160 bits as it is

shown in Table 4.1.

46

Figure 4.3 Diameter header content [40]

Table 4.1 Diameter header size

Fields Size (bits)

Version 8

Message Length 24

Command Flags 8

Command Code 24

App ID 32

Hop-by-Hop Identifier 32

End-to-End Identifier 32

Total Size 160

As Figure 4.3 shows, the diameter header is followed by a series of AVPs where

AVP is defined to be Attribute-Value Pair which is the basic unit inside the Diameter

message that carries the Data (Authentication Data, Security Data, Data pertaining to

Application etc). Each AVP has its own header followed by the corresponding data. For

this reason, it is necessary to compute the AVP header size (which is the same for all

AVPs) in order to be used in calculating the size of each AVP. The AVP header is

shown in Figure 4.4 as defined in [40]. Further information about each field in this

header can be found there.

47

Figure 4.4 AVP header content [40]

The size of the AVP header is calculated as the sum of all the header’s fields.

The details of the computations are found in Table 4.2.

Table 4.2 AVP header size

AVP Header Fields Size (bits)

AVP Code 32

AVP Flags 8

AVP Length 24

Vendor-ID (opt) 32

Data …

Total Size 96 + Data

Hence, the total size of the AVP header is , where the data size

depends on the AVPs that belong to the diameter protocol. The information elements of

these AVPs along with their type of encoding, description and size appear in Table 4.4.

Note that if the AVP is of type grouped, the Data field is then specified as a sequence of

AVPs and its total size is the sum of these AVPs.

Before discussing the table, it is good to mention here that for computation

purposes, some assumptions are taken into consideration:

 host name is of 24 characters: accesspoint7.example.com

 realm name is of 11 characters: example.com

48

 the grouped Proxy-info AVP contains only 1 AVP of length 1 byte

 User-name is of type dot-string of an average of 4 characters according to

rfc2486: fred@example.com [41], [42].

 The shape type chosen for “Location-Estimate” information element is ellipsoid

point. The ellipsoid point is that of a point on the surface of the ellipsoid, and

consists of a latitude and a longitude [43] as it is shown in Figure 4.5. This type

can be well used in locating a mobile device in order to compare its proximity to

another device.

Figure 4.5 Description of a point as two coordinates [43]

The organization of “Location-Estimate” information element is depicted in

Figure 4.6.

 8 7 6 5 4 3 2 1

Type of shape

Shape description

Octet 2

Etc...

Octet 1

Figure 4.6 “Location-Estimate” information element content [43]

49

Table 4.3 represents the coding of the different type shapes. Since the type of

shape chosen is “Ellipsoid point”, the corresponding coding will be “0000”.

Table 4.3 Coding of type shape [43]

Bits

4 3 2 1

0 0 0 0 Ellipsoid Point

0 0 0 1 Ellipsoid point with

uncertainty Circle

0 0 1 1 Ellipsoid point with

uncertainty Ellipse

0 1 0 1 Polygon

1 0 0 0 Ellipsoid point with altitude

1 0 0 1 Ellipsoid point with altitude

and uncertainty Ellipsoid

1 0 1 0 Ellipsoid Arc

other values reserved for future use

The coding of an ellipsoid point is described in Figure 4.7.

 8 7 6 5 4 3 2 1

spare 0 0 0 0

 S

Degrees of latitude

Degrees of longitude

Octet 7

Octet 6

Octet 5

Octet 3

Octet 4

Octet 2

Octet 1

Figure 4.7 Shape description of a point [43]

The meaning of these fields can be summarized as follows: S, Sign of latitude

(Bit value 0 for North indication while Bit value 1 for South), Degrees of latitude (Bit 1

of octet 4 is the low order bit), Degrees of longitude (Bit 1 of octet 7 is the low order

bit). An example of “Location-Estimate: information element in Universal Geographical

Area Description (GAD) shapes can be found in [43].

50

Now that we defined our assumptions, we can calculate the size of each

information element as shown in Table 4.4.

Table 4.4 Diameter protocol information elements [40]
Information

Element

Type of Encoding Description Size (bits)

Session-Id UTF8String

It is used to identify a specific session.

 Its recommended format:

 <DiameterIdentity>;<high 32 bits>;<low 32

bits>[;<optional value>]

 <high 32 bits> and <low 32 bits> are decimal

representations of the high and low 32 bits of a

monotonically increasing 64-bit value.

DiameterIdentity is in ASCII form in order to be

compatible with existing DNS infrastructure.

Example, in which there is no optional value:

accesspoint7.example.com;1876543210;523

Example, in which there is an optional value:

accesspoint7.example.com;1876543210;523;mobile

@200.1.1.88

(24×8)+3

2+32=

256

Vendor-

Specific-

Application-

Id

Grouped The Vendor-Id AVP is an informational AVP

pertaining to the vendor who may have authorship of

the vendor-specific Diameter application.

 <Vendor-Specific-Application-Id> ::=

 < AVP Header: 260 >

 { Vendor-Id } (Unsigned 32)

 [Auth-Application-Id] (Unsigned 32)

 [Acct-Application-Id] (Unsigned 32)

32+32+32

=

96

Auth-

Session-

State

Enumerated

Integer 32

It specifies whether state is maintained for a

particular session.

STATE_MAINTAINED 0 Or

NO_STATE_MAINTAINED 1

32

Origin-Host DiameterIdentity It MUST be present in all Diameter messages. This

AVP identifies the endpoint that originated the

Diameter message. Its format is derived from the

OctetString Basic AVP Format.

 DiameterIdentity = FQDN/Realm

Fully Qualified Domain Name (FQDNs) are

 represented in ASCII form

The realm is the string in the Network Access

Identifier NAI that immediately follows the '@'

character. It is used to determine whether messages

can be satisfied locally or whether they must be

routed or redirected.

248 =

192

51

Table 4.4 Diameter protocol information elements [40] (Continued)
Origin-Realm DiameterIdentity This AVP contains the Realm of the

originator of any Diameter message and

MUST be present in all messages

118 =

88

Destination-

Host

DiameterIdentity This AVP MUST be present in all

unsolicited agent initiated messages,

MAY be present in request messages,

and MUST NOT be present in answer

messages

248=

192

Destination-

Realm

DiameterIdentity It contains the realm to which the

message is to be routed. The

Destination-Realm AVP MUST NOT

be present in answer messages

811=

88

Proxy-info Grouped It contains the identity and local state

information of the Diameter node that

creates and adds it to a message.

A relay or proxy agent MAY include

the Proxy-Info AVP in requests if it

requires access to any local state

information when the corresponding

response is received.

 Proxy-Info ::= < AVP Header: 284 >

 { Proxy-Host }

 { Proxy-State }

 * [AVP]

where Proxy-Host is of type

DiameterIdentity. It contains the

identity of the host that added the

Proxy-Info AVP

 The Proxy-State is of type OctetString.

It contains state information that would

otherwise be stored at the Diameter

entity that created it.

192+8+8=

208

Route-Record DiameterIdentity A relay or proxy agent MUST append a

Route-Record AVP to all requests

forwarded.

A relay or proxy agent MUST check for

forwarding loops when receiving

requests. A loop is detected if the server

finds its own identity in a Route-Record

AVP.

248=

192

User-name UTF8String 48=

32

Result-Code Unsigned 32 All Diameter answer messages in IETF-

defined Diameter application

specifications MUST include one

Result-Code AVP. The Result-Code

data field contains an IANA-managed

32-bit address space representing errors.

32

52

Table 4.4 Diameter protocol information elements [40] (Continued)
Experimental-

Result

Grouped It indicates whether a particular

vendor-specific request was

completed successfully or whether

an error occurred.

Experimental-Result ::=

 < AVP Header: 297 >

 { Vendor-Id }

(Unsigned32)

 { Experimental-Result-

Code } (Unsigned32)

32+32=

64

Failed-AVP Grouped It provides debugging information in

cases where a request is rejected or

not fully processed due to erroneous

information in a specific AVP.

A Diameter answer message

SHOULD contain an instance of the

Failed-AVP AVP that corresponds

to the error indicated by the Result-

Code AVP.

 <Failed-AVP> ::= < AVP Header:

279 >

 1* {AVP}

8

Location-Estimate OctetString It shall contain an estimate of the

location of an MS in universal

coordinates and the accuracy of the

estimate. It is expressed in GAD

shapes [43].

A bit string encoding a geographical

description shall consist of the

following parts:

Type of Shape: 4 bits + 4 bits spare

Shape Description = 6×8 = 48 bits

(Assume ellipsoid point)

56

Supported-Features Grouped It may inform the destination host

about the features that the origin

host supports for the application

[44].

Supported-Features ::=

 < AVP header: 628 10415 >

 { Vendor-Id } (Unsigned32)

 { Feature-List-ID }

(Unsigned32)

 { Feature-List } (Unsigned32)

 *[AVP]

32+32+32=

96

53

Other information elements that belong to ProSe standards [45], [46] also appear

in these diameter messages. The type of encoding used for these information elements

as well as their corresponding desciption and size appear in Table 4.5. For simulation

purposes,we assume that the EPUID requester consists of 4 characters.

Table 4.5 ProSe standards information elements

Information

Element

Type of

Encoding

Description Size (bits)

Requesting-

EPUID

UTF8string It refers to an identifier for EPC-level ProSe

Discovery

4×8=

32

Time

window

Unsigned 32 It contains the maximum number of seconds of

validity of the proximity request

32

App-Layer-

User-Id

UTF8String It contains an identity identifying a user within

the context of a specific application (e.g.

alice@social.net

16×8=

128

Range Enumerated

Int 32

 32

PRR-Flags Unsigned 32 It contains a bit mask 32

PRA-Flags Unsigned 32 It contains a bit mask 32

PLR-Flags Unsigned 32 It contains a bit mask 32

PLA-Flags Unsigned 32 It contains a bit mask 32

ProSe-

Subscription-

Data

Grouped ProSe-Subscription-Data ::=

 <AVP header: xxx 10415>

 { ProSe-Permission-List } (Unsigned 32)

 *[PLMN-Allowed-Discovery]

 *[AVP]

ProSe-Permission-List contains a bit mask set to

1 to indicate that the user is allowed to use EPC-

level ProSe Discovery

PLMN-Allowed-Discovery ::=

 <AVP header: xxx 10415>

 [Visited-PLMN-Id] (OctetString)

 [Discovery-Allowed] (Unsigned32)

*[AVP]

 Discovery-Allowed contains a bit mask that

indicates if UE is authorized to announce or

monitor or both

32 + (8+32)

=

72

Visited-

PLMN-Id

OctetString The ID of the visited Public Land Mobile

Network [47]
8

54

Note that we created new AVPs in order to encapsulate the needed information

for our system discovery. In creating these AVPs, we respected the standards where “a

new AVP being defined MUST use one of the data types listed in the standard” [41].

For instance, for each message, we have included a Flag of encoding type: Unsigned 32,

same type used in the standards. The “Provider-EPUID” as well as “Requesting-

EPUID” are UTF-8 strings. The remaining information elements along with their type

of encoding and sizes can be found in Table 4.6.

Table 4.6 Newly created AVPs

Information Element Type of

Encoding

Size (bits)

MRQ-Flags Unsigned 32 32

PRQ-Flags Unsigned 32 32

MRP-Flags Unsigned 32 32

LRP-Flags Unsigned 32 32

PRAK-Flags Unsigned 32 32

DCM-Flags Unsigned 32 32

Provider-EPUID UTF8string 4×8 =

32

Provider-PFID Unsigned 32 32

App ID Unsigned 32 32

Keywords UTF-8 5(88) + 48= 352

Keywords-Indices UTF-8 38 + 28 =40

Some messages are found in the standards [45], [46]. Below is the format of

each of these messages. Our newly added AVPs are marked in bold.

55

Proximity Request (2) [46]:

< ProSe-Proximity-Request > ::=
< Diameter Header: CC5, REQ, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
*[Supported-Features]
{ PRR-Flags }
{ Requesting-EPUID }
{ Provider-EPUID }
{ Time-Window }
{ Location-Estimate }
*[AVP]
*[Proxy-Info]
*[Route-Record]

ProSe-Subscriber-Information-Request (PIR) Command or Location Request [45]:

< ProSe-Subscriber-Information-Request > ::=
< Diameter Header: xxx, REQ, PXY, xxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
{ Provider-EPUID }
{ User-Name }
*[Supported-Features]
*[AVP]
*[Proxy-Info]
*[Route-Record]

56

ProSe-Subscriber-Information-Answer (PIA) Command or location response [45]:

< ProSe-Subscriber-Information-Answer > ::=
< Diameter Header: xxx, PXY, xxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
{ Provider-EPUID }
[ProSe-Subscription-Data]
[Visited-PLMN-Id]
*[Supported-Features]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]

ProSe Proximity Answer [46]:

< ProSe-Proximity-Answer > ::=
 < Diameter Header: CC5, PXY, 16777xxx >

< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
*[Supported-Features]
{ PRA-Flags }
{ Provider-EPUID }
[Location-Estimate]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]

57

Note that [WLAN-Link-Layer-Id] was omitted since it is an AVP of conditional

category and it is present only if the requesting UE has requested EPC support for

WLAN direct discovery which is not the case in our scenarios.

ProSe-Location-Update-Request [46]:

< ProSe-Location-Update-Request > ::=
< Diameter Header: CC6, REQ, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
*[Supported-Features]
{ PLR-Flags }
{ Provider-EPUID }
{ Location-Estimate }
*[AVP]
*[Proxy-Info]

 *[Route-Record]

Since not all the messages used in our system appear in the standards, we

created new messages having a compatible format with the aforementioned ones.

 In fact, there are two types of messages: message request and message response which

can be defined explicitly in the Diameter header: “REQ” for a message request and a

blank for the response. Another difference between these two types of messages is that

the AVPs: “Origin-Host” and “Origin-Realm” appear in both types; however, only

“Destination-Host” and “Destination-Realm” exist in the request messages. Therefore,

to be compliant with the standards, we included the “REQ” in the header of the message

requests and left it empty for the message responses. Moreover, we respected the AVP

issue regarding the Hosts and Realms. Furthermore, we integrated the AVPs created in

Table 4.6 to encapsulate the needed data. Note that we kept the AVPs related to the

58

Diameter protocol the same as in the standards. Going with this analogy, we represent

below the format of the newly created messages.

Proximity Request (1):

< ProSe-Proximity-Request > ::=
< Diameter Header: CC5, REQ, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
*[Supported-Features]
{ PRQ-Flags }
{ Requesting-EPUID }
{Requesting-ALUID}
{Application-Id}
{ Time-Window }
{ Location-Estimate }
{Range}
{Requesting-Keywords}
*[AVP]

 *[Proxy-Info]
 *[Route-Record]

Map Request:

< ProSe-Map-Request > ::=
< Diameter Header: CC5, REQ, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
*[Supported-Features]
{MRQ-Flags}
{Application-Id}
{Requesting-Keywords}
*[AVP]
*[Proxy-Info]

 *[Route-Record]

59

Map Response:

< ProSe-Map-Response > ::=
< Diameter Header: CC5, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
*[Supported-Features]
{ MRP-Flags }
*{ Provider-EPUID }
*{Provider-PFID}
*{Keywords-Indices}
*[AVP]
*[Failed-AVP]
*[Proxy-Info]

 *[Route-Record]

Proximity Request Ack (2):

< ProSe-Request-Ack > ::=
< Diameter Header: CC5, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
*[Supported-Features]
 {PRAK-Flags }
*[AVP]
*[Failed-AVP]
*[Proxy-Info]

 *[Route-Record]

60

LCS Location Reporting Request:

< ProSe-LCS-Location Reporting-Request > ::=
< Diameter Header: xxx, REQ, PXY, xxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }

{ Provider-EPUID } { Requesting-EPUID }
*[Supported-Features]
{LRQ-Flags}
*[AVP]
*[Proxy-Info]

 *[Route-Record]

LCS Location Report:

< ProSe-LCS-Location-Report > ::=
< Diameter Header: xxx, PXY, xxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Location-Estimate]
*[Supported-Features]
*[AVP]
*[Failed-AVP]
*[Proxy-Info]
*[Route-Record]

61

Proximity Alert:

< ProSe-Proximity-Alert > ::=
< Diameter Header: CC5, REQ, PXY, 16777xxx >
< Session-Id >
[Vendor-Specific-Application-Id]
{ Auth-Session-State }
{ Origin-Host }
{ Origin-Realm }
[Destination-Host]
{ Destination-Realm }
*[Supported-Features]
{ PRR-Flags }
{ Application-Id }
*{ Provider-EPUID }
*{Keywords-Indices}
*[AVP]
*[Proxy-Info]

 *[Route-Record]

Decision Message:

< ProSe-Decision-Message > ::=
< Diameter Header: xxx, PXY, xxxxxx >
< Session-Id >
[Vendor-Specific-Application-Id]
[Result-Code]
[Experimental-Result]
{ Auth-Session-State }
{ DCM-Flags}
 { Origin-Host }
{ Origin-Realm }
*[Supported-Features]
{ Application-Id }
{Provider-EPUID}
*[AVP]
*[Failed-AVP]
*[Proxy-Info]

 *[Route-Record]

After knowing the format of each message, we can now calculate the size of

these packets by adding the size of each AVP and its corresponding header as well as

the diameter header. The size of each packet in bits can be found in Table 4.7.

62

For computation purposes, some assumptions are made:

 To calculate the size, we only consider the mandatory AVPs. For instance,

“supported features” is optional, hence it should not be counted in our

computations All flags are conditional but it shall be present only when the

Result-Code AVP is DIAMETER_SUCCESS. We assume that there is always

success, hence we should consider the flags in calculating the traffic

 Failed-AVP is a conditional AVP containing the AVPs that caused the failure.

Since we assume that all is success , we do not consider this information element

in computing the traffic

 Provider-EPUID consists of 4 characters

 There are 5 keywords of 8 characters each, separated by a “;”

 Assume there are 5 providers matching the keywords but only 3 are near.

Therefore, the list contains 3 providers. (in the

Proximity Alert message)

 Assume there are 3 matching keywords on average. By this, 3 indices

separated by “;” are considered. in the Proximity Alert

message)

63

Table 4.7 Packet’s size

Packet Size (bits)

Proximity Request (1) 3832

Map Request 3072

Map Response 2704

Proximity Request (2) 3032

Location Request 2624

Location Response 2584

Proximity Request Ack (1) or

called ProSe Proximity

Answer

2312

Proximity Request Ack (2) 2312

LCS Location Reporting

Request

2624

LCS Location Report 2336

ProSe Location Update 2776

Proximity Alert 3416

Decision Message 2440

The next step for the traffic calculation is to find the number of times a message

is sent between the entities. Some probabilities should be estimated for this purpose.

If L is the total number of PLMNs and l is the number of PLMNs that contain

providers having matched keywords with the requesters, ω is the number of keywords

matching applications at one provider, the probability of matching at least one keyword

in order to include the provider in the list of candidate providers will be 0.63 according

to the matching problem [48].

64

To get the 0.63, we assume that the number of keywords saved in the application server

database corresponding to a provider is equal to the number of keywords submitted by

the requester.

The probability of having the PLMN of the provider different from the one of the

requester can be written as follows:

In order to calculate the traffic flowing between the ProSe and its corresponding

SLP, we start by defining some parameters. Note that many providers can belong to the

same ProSe as it is shown in the Figure 4.8.

Figure 4.8 Providers distribution

Let U be the number of UEs, v the average speed, Tm the time to move

meters, Tr request period, ppicked the probability that a ProSe Function is picked by a

UE, Nr number of request in Tm per UE, pm the probability that 2 or more UEs

requesting in Tm location updates about same provider.

ProSe 1 ProSe 2 ProSe 3

SLP 1 SLP 2 SLP 3

P1 P2 P3 P4 P5 P6

65

Therefore, the traffic between the SLP and ProSe will be multiplied by 1 minus

the probability of having 2 or more UEs requesting location updates about the same

provider. Some parameters used in the equations are defined in Table 4.8.

Table 4.8 Parameters used in the equations

Parameter Definition

N Number of requesters

r Request rate

Tr Request period

L Number of PLMNs

Nr Number of request in Tm per UE

M Number of all providers

K Number of providers holding a particular application

U Number of UEs

l Number of ProSe Matching

v average speed

Tm Time to move meters

In the following tables, we estimate the number of times a message is sent

between the entities along with their corresponding size already calculated in Table 4.7.

We divide the messages into two parts: inner traffic (Table 4.9) which is related to

66

messages exchanged between the core entities and wireless medium traffic (Table 4.10)

which corresponds to the messages exchanged between the UE and the core network.

Note that the sequence diagram showing all these LTE messages used to transport the

request and reply information between the different core entities was previously

presented in Figure 3.15.

Table 4.9 Packets’ size and number of times they are sent (inner traffic)

Packet Number of times sent Size (bits)

Map Request 3072

Map Response 2704

Proximity

Request (2)
 3032

Location Request 2624

Location

Response
 2584

Proximity

Request Ack (1)

or called ProSe

Proximity

Answer

2312

Proximity

Request Ack (2)
 2312

LCS Location

Reporting

Request

 2624

LCS Location

Report
 2336

ProSe Location

Update
 2776

Table 4.10 Packets’ size and number of times they are sent (wireless medium traffic)

Packet Number of times sent Size (bits)

Proximity Request (1) 3832

Proximity Alert Case 1:

Case 2:

Case 1: Code Ok

List: :

App ID

EPUID_Providers

Keyword_Provider

Case 2: Notification Code

3416

Decision Message 2440

67

To study the parameters affecting the two types of traffic in the network, i.e

inner traffic and wireless medium traffic, we conducted many experiments. Our default

network, during these experiments, contains a total of 4 PLMNs where only 2 represent

matching ProSe Functions. This means that the providers having the matching

keywords with the requester’s keywords belong to these 2 PLMNs. The requester is a

pedestrian moving with an average velocity of 1.4 m/s and sending one request per

second. We consider the maximum distance separating two UEs defined to be in

proximity equal to 25 m [23].

In the first experiment, we change the number of requesters between 2 and 20 in

a step of 2 and keep the other parameters according to the default values. We plot the

traffic versus the number of requesters in Figure 4.9.

 a b

Figure 4.9 Number of requesters’ effect on the traffic a inner traffic b wireless

medium traffic

As the graphs show, the traffic increases with the increase of the number of

requesters. It starts by around 500 bits/s in case of inner traffic and 200 bits/s in case

of wireless medium traffic for 2 requesters then it reaches 3900 bits/s in case of inner

traffic and 2000 bits/s in case of wireless medium traffic for 20 requesters. This can

be analyzed by the fact that the more requesters exist in the network, the more the

0

1000

2000

3000

4000

2 7 12 17

Tr
af

fi
c

 (
b

it
s

/s
)

Number of Requesters

0

500

1000

1500

2000

2500

2 7 12 17

Tr
af

fi
c

 (
b

it
s

/s
)

Number of Requesters

68

number of packets (requests) sent in the wireless medium i.e, wireless medium traffic

are to be processed by the network i.e, inner traffic and hence the traffic boosts.

In the next experiment, we fix the number of requesters participating in the

network to 10 and change the number of requests sent per second per UE between 1 and

5. Hence, r will be equal be between

 and

 .

The other parameters’ values remain the same. In Figure 4.10, we represent the traffic

variation versus the request rate.

 a b

Figure 4.10 Request’s rate effect on traffic a inner traffic b wireless medium traffic

As the graphs show, the traffic increases with the increase of the request rate.

For 1 request per second per UE, the traffic is 2000 bits/s in case of inner traffic and

1000 bits/s in case of wireless medium traffic while it reaches 9800 bits/s for 5

requests per second per UE in case of inner traffic and 5000 bits/s in case of wireless

medium traffic. It is evident that when the number of requests sent by the request

increases, the traffic in the network inflates.

Now, we fix again the request rate to 1 request per second per UE and change

the number of matching prose functions between 1 and 3 as shown in Figure 4.11. In

0

2000

4000

6000

8000

10000

0.02 0.04 0.06 0.08

Tr
af

fi
c

(b
it

s
/s

)

Request Rate (per second per UE)

0

1000

2000

3000

4000

5000

6000

0.02 0.04 0.06 0.08

Tr
af

fi
c

(b
it

s
/s

)

Request Rate (per second per UE)

69

this graph, we can see that the traffic increases with the augmentation of the number of

matching ProSe Functions. It starts by around 1520 bits/s for only 1 matching ProSe

Function and grows to reach around 2100 bits/s for 3 matching ProSe Functions in case

of inner traffic while it starts by 760 bits/s for 1 matching ProSe Function in case of

wireless medium traffic and reaches 1000 bits/s for 3 matching ProSe Functions. This

can be analyzed by the fact that when the providers having matching keywords belong

to different PLMNs, their corresponding ProSe Functions will be asked by the

requester’s ProSe Function in order to check their current positions. However, if these

providers are registered in the same ProSe Function, the requester’s ProSe Function will

contact only this entity (one ProSe Function) and hence the traffic is lower.

 a b

Figure 4.11 Number of Matching ProSe Functions’s effect on the traffic a inner traffic

b wireless medium traffic

In the last experiment, we fix back the number of matching ProSe Functions to 2

and change the requesters’ speed. We consider here two scenarios: in the first scenario,

the requesters are pedestrians while in the second one they are driving vehicles. For the

first case, we vary the speed between 1 and 3 m/s in Figure 4.12 (a) while we change it

between 12 and 24 m/s for the second case, in Figure 4.12 (b). In both cases, the traffic

grows exponentially with the increase of the requesters’ velocities. On a hand, in the

1500

1600

1700

1800

1900

2000

2100

2200

1 2 3

Tr
af

fi
c

(b
it

s
/s

)

Number of ProSe Functions
Matching Keywords

750

800

850

900

950

1000

1 2 3

Tr
af

fi
c

(b
it

s
/s

)

Number of ProSe Functions
Matching Keywords

70

pedestrians’ scenario, the traffic starts by 1857 bits/s for a requester walking at 1 m/s

and reaches a value of 1885 bits/s for a requester walking at 3m/s. On the other hand, in

the scenario where the requesters are driving vehicles, the traffic expands from 1914.6

bits/s for a requester driving at a normal speed equal to 12 m/s to 1916 bits/s for a

requester moving at much higher speed. This can be analyzed by the fact that when the

requester moves fast, he needs to update the network about his current location more

frequently increasing by this the traffic in the network. It is good to mention here that

we have only considered the inner traffic and not the wireless medium traffic since

 does not depend on the velocity. Moreover, we have excluded the “location

update” message from our computations because these will be required by the LTE

system overall and there will be other applications using it, besides our system [35].

 a b

Figure 4.12 (a) Traffic for a pedestrian requester (b) Traffic for a requester driving a

vehicle.

1855

1860

1865

1870

1875

1880

1885

1890

1 2 3

Tr
af

fi
c

(b
it

s/
s)

Pedestrian's Velocity (m/s)

1914.6
1914.8

1915
1915.2
1915.4
1915.6
1915.8

1916
1916.2

12 14 16 18 20 22 24

Tr
af

fi
c

(b
it

s/
s)

Vehicle's Velocity (m/s)

71

2. Discovery Effectiveness

In this section, we study the sources of errors that could occur at the search

engine side (added to the Application Server) due to many causes:

 Number of keywords entered by the requester

The keywords used by the requester depend on his knowledge about the service.

He may enter vague or targeted keywords that would affect on the result of the

candidate providers sent back by the network (could contain irrelevant results relatively

to his intended one). That is because several services belonging to the same category

may share the same keywords. For instance, Service_1 and Service_2 belong to

“Restaurants” category but differ by the type of cuisine they offer (Service_1: “Fast

Food”, Service_2: “Vegetarian Food”). These services may share common keywords

like “Restaurant”, “Food”… Therefore, when a requester enters “Restaurant” as a

keyword to search for a “Fast Food” restaurant, he will get Service_2 (“Vegetarian

Food”) as a provider candidate though this service was not in his intention. To represent

this probability of error in our analysis, the keywords of the services having similar ones

are concatenated into lists called “Concatenated lists”. The similarity between these two

services (in terms of number of common keywords) is compared to a threshold. If the

number of these common keywords is above this threshold, the services’ keywords will

be concatenated, otherwise no aggregation will occur. Further details about the

requester’s intention will be discussed in the next chapter.

 Number of keywords registered by the providers in the network to tag their

services

When the provider registers his service in the network, he chooses a number of

keywords that help the requester in finding him. However, there is a probability that the

72

requester uses keywords other than the ones selected by the providers to tag their

services, and hence these providers will not be discovered.

 Number of providers in the network

Many providers can be offering different services in the network. However, there is a

probability that these services are not the ones intended by the requesters.

Besides all these sources of errors, the requesters’ speed and the size of the area

they are moving in, influence also the probability of finding a provider in the requesters’

proximity. In our analysis, we consider the providers fixed at predefined positions while

the requesters moving according to Random Waypoint Mobility model (RWP) [49]. We

took this assumption since the providers should be more or less stable in order to stay

connected with the requester and offer their services. The RWP is a very popular and

commonly used mobility model describing the movement behavior of a mobile node in

a given system area: a node chooses randomly a destination point in this area and moves

with a constant speed to reach it, then it pauses there for a certain time, chooses another

destination point and speed and so on.

For proper nomenclature, several variables must be defined. The sets are written

in upper case letters whereas the corresponding samples are written in lower case. In

order to make it clearer, we will divide the analysis process into steps.

Step 1: Concatenated list corresponding to the requester’s intention

To find the concatenated list containing the service intended by the requester, we

compare each of the requester’s keywords to all the constructed concatenated lists using

the ranking function. This formula is widely adopted in the literature to measure the

relevance scores of matching files to a given query in information retrieval [51]:

73

where is one of the requester’s keywords , denotes

one of the concatenated lists while is the length of ,

obtained by counting the number of keywords in this list.
 indicates the term

frequency of keyword in , designates the number of concatenated lists that

have in it.

However, the equation aforementioned calculates the score per keyword only.

Therefore, the score of each over the keywords in the request will be

Only the one having the maximum score will be the intended concatenated list (:

(

Step 2: Services having matching keywords with the request

After finding the intended concatenated list , we compute the relevance

score of each keyword along the C concatenated services (in (

 using the equation below:

where denotes each keyword present in the request sent by the requester,

is one of the total number of services in and is the number of keywords in

 . It is good to mention here that the number of services in the concatenated list

depends on a threshold, which is the minimum required number of common words to

consider two services as similar (Further details will be discussed in the next chapter).

74

 is the term frequency of keyword in (can be 1 or 0 whether the keyword

exists or not in this service’s pool) while denotes the number of services that contain

keyword .

Having keywords , the score of each service will be equal to:

The result will be a list of matching services :

In order to study the effect of the number of concatenated services in a list on

the score of each keyword per service, we assume that the average number of keywords

is 22 per service (), the keyword exists in (
) and only one

service contains it (). We plug these values in the equation of

and plot the score of each keyword per service versus the number of concatenated

services in Figure 4.13.

Figure 4.13 Score of each keyword per service versus the number of concatenated

services

1 2 3 4 5
0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of Concatenated Services

S
c

o
re

 o
f

E
a

c
h

 K
e

y
w

o
rd

 p
e
r

s
e

rv
ic

e

75

As the plot illustrates, the score of each keyword per service increases with the

increase of the number of concatenated services. The likelihood of matching user

keywords with services increases as the number of services per service category

increases. This is justifiable since there are more similar services in this category in

which the user is interested, and hence, his or her keywords are more likely to match.

Step 3: Providers choosing their services

Now that the requester’s services are known, we need to match them with the

providers’ services. Each provider from providers

chooses randomly a service from 50 services, where their choice depends on the

popularity of this service. This can be illustrated by choosing from a cumulative pool

depending on the occurrences of the service as shown in Figure 4.14.

Figure 4.14 Services’ popularities and providers’ choices

For instance, service_2 which has a popularity of 5 will appear 5 times in the

cumulative pool (S2, S2, S2, S2, S2) as depicted in the figure above. The result will be a

list of providers with their corresponding services :

PV providers

Cumulative Pool

S1,S2, S2, S2,

S2, S2, S3, S3

Weighted

Random

Matching

(PV, SP)

=

{(pvp , spp)}

Service Popularity Occurences

1

2

3

1 1

5 5

2 2

76

Step 4: Providers choosing their keywords

Each provider who has already chosen his service in Step 4, chooses

randomly keywords from ’s keywords set .

By this, the list of providers contains the provider’s ID , the service he has

chosen and the keywords he has selected:

Step 5: Providers having matching services

Now, we need to compare the requester’s services to the providers’ chosen

services in order to check which provider is offering the intended ones. In other terms,

we need to compare to as illustrated in Figure 4.15.

Figure 4.15 Service matching between requester and provider

The providers matching the requested services will be the set of

providers where with

their corresponding services and keywords

where . Note here that the number of providers having

matching services depends on the number of requester’s keywords. That’s can be

explained by the fact that when the requester enters more keywords, the number of

matching services increases and hence a larger variety of services will be searched

SR={srr}
Service

Matching

(PM , SM, (K))

=

{(pmh , smh , (K)h)}

SP={spp}

77

for among the providers’ services which may lead to higher probability of matching.

Moreover, the number of providers also depends on the total number of providers in

the network. That’s because the greater the number of providers in the network, the

larger the probability of finding the intended services.

Step 6: Providers having matching services and matching keywords

Now that the providers offering the services are known along with the keywords

they have selected from this service’s pool, we need to compare these keywords

 against the requester’s ones as illustrated in Figure 4.16.

Figure 4.16 Keywords matching between requester and provider

For instance, we compare the keywords of the services , , present in

the request to the matching providers (output of Step 5). Assume 3 matching providers

 having as matching services respectively. Since the services

are matching ones, we mean by same as and . We

can see that has 2 providers offering it while has none. The requester chose the

first and second keywords of service denoted as

 while the provider

 selected the first, third, fourth, seventh and ninth keywords of . Therefore, while

SR , Y

PM, SM, (K)

sr1 sr2 sr3

y1
sr1

y2
sr1

y1
sr2

y5
sr2

y1
sr3

pm1, sr1 pm2, sr2

Search in Search in

(k1
sr1)1

pm3, sr2

y10
sr2

(k3
sr1)1 (k2

sr2)2 (k3
sr2)2 (k6

sr2)2 (k1
sr2)3 (k2

sr2)3 (k5
sr2)3(k4

sr1)1(k7
sr1)1(k9

sr1)1
(k10

sr2)3

78

searching for the requester’s keywords in the providers’ keywords, only
 or (marked

in bold) will be found. Note that the requester and the provider may choose the same

service but selecting different keywords and hence this provider will not be considered

as a matching provider (case of the provider). Note here that Step 5 helped in

minimizing the processing time and complexity of the searching process. That’s

because the network is searching now only among the providers having the matching

services and not among the total number of providers (filter a subset out of a set).

The matching weight of each provider (number of keywords matched) can be

calculated using the ranking function [51]:

where stands for the keyword w belonging to provider h, is a service r

in the set of R intended services while is its length, meaning the number of

keywords in it.
 designates the term frequency of the keyword in while

 indicates the number of services that contain keyword in it. By this, we get

the score of each keyword in the provider’s pool. In order to calculate the provider’s

score, we sum the scores of all his keywords and hence it depends here on the number

of keywords chosen by the provider: the more the number of keywords, the greater the

score.

The number of matching providers will be equal to

79

Note here that not all the providers resulting from step 5 appear in this list

again because the provider may have the service but did not use the adequate keywords

while tagging himself as a provider for this service; and hence he will not be found

since his is equal to 0.

In order to study the effect of the number of requester’s keywords on the score,

we assume that each two keywords in the request correspond to a certain service

(, only one service contains these keywords () and appears only

once in the service’s pool (
). We vary the number of intended services

(which increases with the number of requester’s keywords) and plot its effect on the

score in Figure 4.17.

Figure 4.17 Score per keyword per provider versus the number of intended services

1 2 3 4 5

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Intended Services

S
c

o
re

 p
e

r
K

e
y

w
o

rd
 p

e
r

P
ro

v
id

e
r

80

Step 7: Providers having matching services and matching keywords and being in

proximity

In this step, the requester’s position should be compared to the position of each

provider found in Step 6. We use the analytical expression in [50] for the spatial

node distribution of Random Waypoint movement process to approximate the

distribution in a square area of size .

 As it was proved in [50], this distribution is independent of the speed of nodes.

In Figure 4.18, we illustrate how a requester R can reach the provider’s

proximity in a simulation area of dimensions . The provider’s proximity is

represented by a circle around of radius . As we can see, the requester can

change directions, pause for a certain time, and then continue moving to reach .

Figure 4.18 Requester changing directions to reach provider pmh

x

a

a
Dmax

x
R

pmh

1
2

3

81

Therefore, the probability that a requesting node is located in a certain subarea

 can be computed by integrating over this subarea where is the

proximity of provider . The boundaries of this subarea can be represented as

follows:

Hence, the probability that a requester exists in can be written as:

Solving this double integral leads to the following result:

Note that this probability corresponds to a requester appearing in the proximity of only

one provider. Therefore, should be multiplied by the total number of

providers resulting from Step 6 in order to find the probability of finding R in the

proximity of all the providers having matching keywords with the request.

Figure 4.19 shows that the number of providers discovered in proximity

decreases with the increase of the length of the area. If the requester sends a request

when it is still far away from the provider (300m), the probability of finding him is too

small and thus the number of providers found is approximately 0. However, when the

requester approaches more and more (50m) from the region where the provider exists,

the probability of discovering providers having matching keywords increases and thus

the number of providers found becomes greater (3).

82

Figure 4.19 Number of providers discovered in proximity versus the length of the area

The entire system design can be summarized in the sequence diagram illustrated

below:

Figure 4.20 Sequence diagram of the entire system design

50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

Length of the Area (m)

N
u

m
b

e
r

o
f

P
ro

v
id

e
rs

 D
is

c
o

v
e
re

d
 i
n

 P
ro

x
im

it
y

Requester

Y={yq}

Matched Services

SR,Y

{(srr,yq)}

List of Providers

PV, SP, (K)

{(pvp, spp, (K)p)} Weighted

Matched

Providers

{(pmh, smh,

(k)h)}

1. Match {srr} with {spp}

à {(pmh, smh, (k)h)}

2. Match {yq} with {(kw)h}

Proximity

Matching

Concatenated

Lists of

Keywords

Modeling

 User

Intent

Matched Providers in

Proximity

{Prd}

1. Find dist(R,pmh)

2. dist(R,pmh) should be

 <= Dmax meters

Dictionary of
Services with

Keywords

83

CHAPTER V

EXPERIMENTAL RESULTS

A. Requester’s Intention

To study the performance of our system, we simulated the components and

functions of the framework in Matlab, and created a pool of 50 services with associated

(and in some cases overlapping) keywords (plus their synonyms). When registering a

service, a provider randomly chooses one of the 50 services, and then a random number

of keywords from the chosen service’s keywords. When a requester looks for a

particular service, the simulated network checks for similarity against services in the

pool using the Minimum Edit Distance algorithm. Upon the start of the simulation, the

requesters start moving within a area according to the Random

WayPoint mobility pattern while the providers stay fixed at predefined positions.

Because of overlapping keywords among services, and among service providers,

a request may result at times in false positives whose number also depends on the

requester’s simulated uncertainty and experience in choosing the right keywords. The

50 services are defined by a set of keywords gathered from Sensor Tower [52], and

expanded by the keywords’ synonyms obtained using Microsoft’s Office automation

tools [53]. These services categories were selected depending on their popularity. For

instance, we consider 7 services for “Social Media” category knowing that it is one of

the main applications for D2D technology along with file sharing and gaming. It is good

to mention here that the keywords can be of any type: verb, noun or adjective,

simulating by this the user’s freedom in choosing his or her words.

84

Table 5.1 provides some statistics about the generated services, including the

numbers of keywords and synonyms per service. It is good to mention here that the

difference in the number of words denoted per service for each category in the 3
rd

column of this table is due to the dependency on the number of synonyms retrieved

from the server. The average number of keywords is found to be 22 while the maximum

and minimum are 41 and 11 respectively. After this step, repeating words were removed

(repetition resulting from [53] for keywords that are also synonyms), so that each

service is described by a set of distinct words. For clarification, we mean by using the

term “keywords” in the rest of the thesis, the “keyword” itself or its “synonym”.

Table 5.1 Services and associated information

Category Number of

Services

Number of Keywords

per Service

Restaurants 10 [22,14,17,28,12,41,18,21,22,20]

Music 7 [17,16,19,21,14,23,20]

Social Media 7 [25,19,22,21,31,20,33]

Real-Time News 4 [16,18,37,25]

School Tutoring 5 [29,19,21,34,21]

Games 4 [28,18,24,11]

Weather Services 2 [20,15]

Language Translation 3 [17,29,21]

Parking 4 [18,25,31,23]

Traffic 4 [40,23,20,18]

Total 50

It was natural to end up with keywords that are shared by several services. For

this reason, we measured the similarity among the services using Minimum Edit

Distance algorithm or so called Levenshtein Distance (LD). This algorithm describes

how similar or dissimilar two strings are by calculating the minimum number of

“character edit operations” needed to turn one string into the other. These operations

can be to delete, insert or substitute a character into this string.

85

The pseudo code for the Minimum Edit Distance algorithm can be found below [54]:

int LD(String s, String t) {

m = s.length

n = t.length int[m][n]

d = empty int table for i from 0 to m

d[i, 0] := i for j from 0 to n d[0, j] := j

for j from 1 to n

for i from 1 to m

if s[i] = t[j] then d[i, j] := d[i-1, j-1] else d[i,

j] := minimum(d[i-1, j] + 1,d[i, j-1] + 1,d[i-1, j-1] + 1)

 return d[m, n]}

Applying this algorithm, we generated a similarity matrix as illustrated

in Figure 5.1 where and are two different set of services’ keywords and is the

weight of similarity between them.

Figure 5.1 Similarity matrix

This matrix is a symmetric matrix of dimensions due to the fact that

comparing service to service is the same as comparing service to service . We

mean by the weight of similarity, the normalized similarity number which is divided it

by the length of the union of service and service that can be found in the equation

below:

sl

sk gk,l

86

The pseudo code of the proposed algorithm can be written as follows:

For each service sk in 50 services

Counter =0;

For each keyword ki in the set of keywords of sk, Kk

For each service l, l # k

{

For each keyword kj in Kl
If ki == kj

Counter++;

 }

 Weight of similarity between sk and sl

 gk,l = counter/length(sk U sl)
 Counter = 0;

In order to visualize the distribution of this similarity matrix, a surface plot is

drawn as shown in Figure 5.2. In (a) all the matrix is represented while in (b) only the

upper triangle diagonal of the matrix is shown (knowing that it is symmetric as

previously discussed). Based on this plot, we can see that the normalized similarity

number varies between 0 and 0.4828. It is evident that the similarity number

reaches a high value when the services belong to the same category and gets a low one

when services belong to different ones. For instance, the similarity number for services

8 and 48 is high equal to 0.4828 since both services belong to the same category of

applications: “Games”. However, is equal to 0 for services 1 and 49 since service

50 belongs to the “Traffic” category which is independent of the “School Tutoring” one,

having no common keywords. Moreover, we calculated the average and standard

deviation for this matrix and found to be 0.0788 and 0.0754 respectively, which will be

used later. Note that the similarity numbers equal to 0 were excluded from this

computation because they show the independency of two services belonging to different

categories and the average similarity means the average of only those services that are

similar.

87

In order to see the matrix from another perspective, we plotted it in terms of the

number of common keywords (without normalization) between two similar services as

seen in Figure 5.3. It is worthy to note that the average similarity and standard deviation

were 3.4818 and 3.0227, respectively while the similarity number values range between

0 and 20.

 (a)

 (b)

Figure 5.2 (a) Normalized similarity matrix (b) Upper triangle diagonal of the matrix

0
10

20
30

40
50

0
10

20
30

40
50
0

0.1

0.2

0.3

0.4

0.5

Service kService l

N
o

rm
a
li
z
e
d

 S
im

il
a
ri

ty
 N

u
m

b
e
r

(g
k
,l
)

05101520253035404550

0

10

20

30

40

50

0

0.1

0.2

0.3

0.4

0.5

Service kService l

N
o

rm
a
li
z
e
d

 S
im

il
a
ri

ty
 N

u
m

b
e
r

88

 (a)

 (b)

Figure 5.3 (a) Similarity Number Matrix (b) Upper triangle diagonal of the matrix

To simulate the requester’s intent (i.e., ability of the requester to specify the

desired service through a set of keywords), we concatenate the keywords of the services

having a similarity number greater than a given threshold which defines the

requester’s knowledge, i.e a high threshold means that the requester chooses targeted

words while discovering a service. In the simulation, this will be translated by letting

0
10

20
30

40
50

0
10

20
30

40
50
0

5

10

15

20

Service kService l

S
im

il
a
ri

ty
 N

u
m

b
e
r

05101520253035404550

0

10

20

30

40

50

0

5

10

15

20

Service kService l

S
im

il
a
ri

ty
 N

u
m

b
e
r

89

the requester choose from a smaller pool which resulted from a less number of services’

keywords aggregated. A equal to 0 induces that the service has no common

keywords with the other one, therefore no additional keywords are appended to its own

keywords (like in and in Figure 5.4). If and , the keywords of

services and will be aggregated (like in). By this, the “concatenated’ lists

 are created. Note that the aggregation of services having similar keywords will cause

redundant words. However, the simulator will not delete these repeated words since this

imitates the probability of mobile users selecting some words more than the others.

Figure 5.4 Concatenated list

In order to simulate the requester’s intention in looking for a service, the

simulator maps the index of the requester’s randomly chosen service to one of the

concatenated lists of services. Then, the requester chooses keywords

from the list of concatenated sets of keywords as shown in Figure 5.5, which represents

the concatenation list of three sets of keywords belonging to three similar services

 where the intended service is one of them. The figure also illustrates

that the user in this particular example had intended to select service , and for this he

specified keywords

 . In this case, his request will result in

s1 Keywords Keywords of other services with gk,l > Tcl1

cl2

s3 Keywords Keywords of other services with gk,l > Tcl3

s4 Keywords Keywords of other services with gk,l > Tcl4

s2 Keywords

cl50 s50 Keywords

.

.

.

90

a “hit” (i.e., matching at least one keyword of), but we also observe a false positive,

since a match also occurred with and . Note that the user could have chosen for

example

 , in which case a “miss” will result.

Figure 5.5 Requester’s choice from the concatenated service keywords list

It is obvious that the similarity threshold and the number of requester’s

keywords are the parameters affecting the discovery performance on the ProSe

Function. For this reason, we study the influence of their variations on the number of

hits and false positives.

We start by testing the threshold’s effect (the number of common keywords

between 2 services) on the system performance, and for this we vary the threshold

within the range, starting with the and ending with the

 in steps of . In

these simulations, which were repeated 1000 times, we fix the number of requester’s

keywords to 3 and 5 respectively. Accordingly, we generate plots for the average

number of hits and false positives versus the minimum necessary number of common

keywords in order to put these services’ keywords in one pool, as shown in Figure 5.6

(a) and (b).

y1 y2 y3 y4 y5 y6 y7 y8 y9 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y1 y2 y3 Ct

Keywords of sr1 Keywords of sr2 Keywords of sr3

91

 (a)

 (b)

Figure 5.6 Average Number of hits and false positives versus minimum number of

necessary common keywords to put in one pool (a) 3 keywords/request (b) 5

keywords/request.

0 2 4 6 8 10 12 14 16 18
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum Necessary Common Keywords to Put in 1 Pool

R
a

te

Hit

False Positive

Mean+Std

0 2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Minimum Necessary Common Keywords to Put in 1 Pool

R
a

te

Hit

False Positive

Mean+Std

92

As these figures show, the average number of hits grows exponentially with the

increase of the threshold until it reaches a value of 1 after the threshold reaches a value

corresponding to the in the case of 3 keywords/

request, Figure 5.6 (a) and in the case of 5

keywords/ request, Figure 5.6 (b). On the other hand, the number of false positives

decreases with the increase of the threshold until it reaches a minimum of 0.88 for a

threshold equal to for the first case and a minimum

of 0.98 for a threshold equal to for the second case

It is good to mention also that the average number of false positives becomes

less than the one of hits after a value of 6 common keywords in both cases

 . We can say that these graphs illustrate the requester’s precision

in selecting his keywords. In other terms, a 0 value means no common keywords are

needed in order to decide whether these services should be concatenated or no, therefore

all the services will be in one pool. When the requester chooses keywords from this

large pool, the probability of choosing his intended one is very low. That’s when the

requester is not specific in choosing his keywords; the average number of false positives

is 1 while the average number of hits is very low equal to 0.25. However, when the

necessary common keywords to put in one pool increases, fewer services fulfilling the

criterion will be concatenated, and consequently, the requester will choose from a

smaller pool, increasing by this the probability of choosing the targeted keywords, and

hence the intended service. If we compare 5.6 (a) and (b), we can find that the average

number of hits reaches a maximum of 1 for a less value for the threshold since the more

the requester chooses keywords, the more is the probability of finding the indented

service.

93

In the second experiment, in order to study the impact of the number of

requester’s keywords on the simulator’s performance, we fix the threshold to

 , and vary the requester’s number of keywords between 1 and 6.

We chose this particular value based on the results from the previous experiment, where

the number of hits is greater than the number of false positives for this threshold value.

As before, we plot the average number of hits and false positives versus the number of

requester’s keywords, as shown in Figure 5.7.

Figure 5.7 Average number of hits and false positives versus the number of requesters’

keywords

As the figure reveals, the average number of hits increases exponentially with

the increase of number of keywords and reaches a maximum of 0.98 for 6 keywords.

The number of false positives also increases with the increase of the number of

keywords and reaches a value of 0.98 for 6 keywords. The increase in the average

number of false positives can be attributed to the fact that when a requester chooses

1 2 3 4 5 6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Requesters' Keywords

R
a
te

Hit

False Positive

94

more keywords, the probability of choosing from services other than the intended one

becomes higher.

In order to test the requester’s knowledge while entering the keywords, we plot

the variation of the average number of hits and false positives versus the number of

requester’s keywords for different threshold values as shown in Figure 5.8 (a) and (b)

respectively. These graph show that the average number of hits for the same number of

keywords increases with the increase of the threshold used while the average number of

false positives decreases. For instance, if the requester chooses 3 keywords, the average

number of hits is less than 0.2 if the threshold considered is while it is 1

if . This simulates the precision of the requester while choosing

targeted keywords for discovering the intended service. The explanation for this can be

that a higher value for the threshold leads to less number of concatenated services since

these services should have a high similarity number in order to have their keywords

aggregated. In real life, some services are defined by exact keywords with no similar

keywords with other services. For instance, a ‘Game’ service has specified keywords

like “win”, “player”, “competition” that cannot be found in other services.

95

 (a)

 (b)

Figure 5.8 Average number of hits and false positives versus the number of requesters’

keywords for different threshold values

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of Requesters' Keywords

H
it

 R
a
te

Mean-Std

Mean

Mean+Std

Mean+2Std

Mean+3Std

Mean+4Std

Mean+5Std

1 2 3 4 5 6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Requesters' Keywords

F
a
ls

e
 P

o
s
it

iv
e
 R

a
te

Mean-Std

Mean

Mean+Std

Mean+2Std

Mean+3Std

Mean+4Std

Mean+5Std

96

B. Provider Discovery

1. System Environment

After testing the requester’s intention, we study the simulator’s performance in

terms of helping the requester in discovering near providers offering his or her desired

service. For this purpose, we consider a simulation environment of a 750 users moving

in an area of for 1000 s. These nodes are divided into providers and

requesters with a percentage of 6% of providers in the network. We assume that each

provider holds, on his mobile phone, one service of the 50 services existing in the

network as shown in Table 5.1. While registering it in the network, the provider chooses

a random number of keywords (between 3 and 8) from the initial pool dictionary

(Figure 5.2) in order to be used as tags to be discovered by. As for the requester, we

assume that he or she is entering 3 keywords in the request (based on Figure 5.6) which

are used to select from the concatenated list (Figure 5.4) that aggregates similar services

having similarity number greater or equal to of the

matrix. We assume 3 keywords / request and not 5 keywords/ request taking into

consideration the requester’s potential in entering keywords. As for mobility, we

assume, on a hand, that the requesters are moving according to the Random Way Point

mobility pattern since it imitates the human’s mobility. On the other hand, we suppose

that the providers are fixed at predefined positions since they should be more or less

stable in order to stay connected with the requester and offer his or her service. By

default, we assume that the requesters are pedestrians having a velocity between 0.1 and

3 meters per second, can pause for a time between 0 and 300s, walk in all directions

(between -180 and 180 degrees) for duration between 30 and 500s. The results are

reported by a time step of 10s. Note that a provider is considered to be in proximity of

97

the requester when the distance separating them is not more than 25 m [23] so that when

the session between the provider and requester starts, we can guarantee that the

communication stays held. Figure 5.9, extracted from this reference, justifies the choice

of the maximum distance since the throughput between D2D pairs decreases when the

distance between them increases, reaching a minimum of 2.5 Mb/s for 25 m.

Figure 5.9 D2D throughput as a function of the D2D link distance [23].

The parameters’ default values applied in our simulations are summarized in

Table 5.2.

Table 5.2 Default parameters

Parameter Default Value

Simulation Time 1000 s

Total Number of UEs 750

Number of providers 6% of Total Number of UEs

Number of Services 50

Number of Services per Provider 1

Number of Providers’ Keywords Randi[3,8]

Number of Requester’s Keywords 3

Threshold (Mean + Std) of Similarity Number

Area (length, length) (400×400) m
2

Maximum Distance between D2D pairs 25 m

Mobility Pattern Random Way Point

Speed Interval [0.1 3] m/s (Pedestrian)

Pause Interval [0 300] s

Walk Interval [30 500] s

Direction Interval [-180 180] degrees

Time Step 10

98

2. System Performance

When the simulation starts running, the requesters move in an area of

 while the providers are fixed at predefined positions in an area of

 . Figure 5.10 illustrates a prototype of 20 requesters

(R1…R20) and 5 providers (P1 … P5) marked in red, all distributed in the simulation

area. We represent here that the providers’ offering depends on the requesters’ demand.

For instance, P1 emerges where there is a large number of requesters (R3, R4 and R5) in

busy areas like cities, downtowns, etc. However, R16 exists in a place far from the city

and hence has no providers appear around it.

Figure 5.10 Providers’ and requesters’ areas

Each provider registers himself or herself in the network by choosing randomly

one of the 50 services, from which he or she will choose a random number of keywords

between 3 and 8. Figure 5.11 represents providers choosing from 50 services a

number of keywords (selected in gray). As an example, provider chooses as a

service to share with requesters and picks 5 keywords out of its 9 keyword’s pool.

Providers’ Area

Requesters’ Area

X

X

X

X

R1

R2

X

P1

P2

P3

P4 P5

R11

^

^

^

R3^

R7^
R6^

R10^

R3^

R8^

R4^

R5^

R9^

R3^

R12^

R13^

R14^
R15^

R16^R17^

R18^

R19^

R20^

99

Note that two providers can choose the same service as it is the case for and

 offering as a service.

Figure 5.11 Provider’s chosen service and keywords

At time , a requester creates a request in order to search for a service by

entering a number of keywords (according to the requester’s intention previously

discussed).

This request may contain keywords

 that belong to services

 and other than the intended one as marked in bold in Figure 5.12.

Figure 5.12 Requester’s request creation

At the first stage, the simulator searches for the providers’ ids offering the

services matching with the entered keywords using also Minimum Edit Distance

algorithm. In our example, the simulator looks up for in its database

illustrated in Figure 5.11. It finds that offer while and both propose

.

.

.

pv1

pv2

pv3

pvP

.

.

.

sp1

sp2

sp2

spP

SystemRequester (SR,Y)=

(sr1 , y1
sr1

,y2
sr1

)

(sr2 ,y1
sr2

,y5
sr2

,y10
sr2

)

 (sr3 ,y1
sr3

)

100

as service. Hence, and are considered as matching providers and will be

named as and . It can happen that a service does not appear in the

database; hence, no providers are offering it, as it is the case for . At the next stage,

the simulator compares the requester’s keywords with the ones of the providers having

these services and creates a list (Figure 5.13) containing the following information: the

provider ID, the matching weight (the number of matches with the requester’s

keywords) and their indices. The matching index is the order of the providers’ keyword

relatively to the requesters’ keywords present in the request. For instance, if we recall

the requesters’ keywords

 , we find that provider

has 1 match with the requester’s keywords while has 3. As for indices, has

the 1
st
 keyword

 while has the third, fourth and fifth

 .

Figure 5.13 List of providers matching keywords

However, even if has a higher matching weight, he can be far away from

the requester and thus he cannot establish a D2D session with him. For this reason, the

distance between the requester and each provider in the list should be computed. We

assume that the network is aware of the requester’s position at time and asks for the

providers’ positions. (i.e and) in order to calculate the Euclidean distance

between them. According to the Euclidean distance formula, the distance between two

points in the plane with coordinates and is

given by:

Provider ID Matching Weight Matching Indices

pm1

pm3

1 1

3 3,4,5

101

In order to consider a provider is in the requester’s proximity, this distance

should be less than 25m as aforementioned. The simulator filters the list in Figure 5.13

by removing all the providers having . The new list will be as depicted in

Figure 5.14 (b).

 (a)

 (b)

Figure 5.14 (a) List of providers matching keywords along with their matching indices

and distances (b) Filtered list

For instance, assume is far from the requester by 30 m while by 18m.

Though has a higher matching weight than , he is further away from the

requester and hence he should be discarded from the list that will be sent to the

requester as shown in Figure 5.14 (b). Note that if this list contains more than one

provider, the requester will compromise between the number of matches and distances

for providers according to his utility. For example, if the list includes in addition to

provider , a provider with a matching weight of 4 and a distance of 24 m, the

requester will have the freedom to choose the nearest one with less matching

weight or the one having higher number of matching keywords .

Provider ID Matching Weight Matching Indices Distance

pm1

pm3

1 1 18

3 3,4,5 30

Provider ID Matching Weight Matching Indices Distance

pm1 1 1 18

102

As we can see, the sources of no perfect matching (errors) between the request

and the corresponding service on the simulator level can be summarized below:

 A requester not specifying all the keywords registered for the service in the

network

 A provider not registering all the relevant keywords of his offered service

 A small number of providers in the network

For this reason, to test our system’s performance, we consider the following

metrics: the variation of number of providers in the network, the number of keywords

the providers choose while registering themselves in the prose function’s database and

the number of keywords the requester inserts while discovering a service. In addition to

this, we study the influence of the dimensions of the simulation area as well as the

requester’s speed on the number of providers discovered.

In the first experiment, we vary the percentage number of providers between

and of the total number of UEs in the network and we repeat the simulations 1000

times. Note that the other simulation’s parameters are assigned to the default values

presented in Table 5.2. We plot the average number of discovered providers versus the

number of providers in the network in Figure 5.15.

As the plot shows, the average number of discovered providers increases almost

linearly with the increase of the number of providers in the network. It starts by an

average of 0.25 discovered providers for 1% providers of the total number of UEs in the

network then reaches a value of 2.4 for 10%. This can be explained by the fact that

when the number of providers increases in the network, the probability of having

providers matching the desired service by the requester increases.

103

Figure 5.15 Average number of discovered providers versus the percentage number of

providers in the network (regardless of proximity)

In the second experiment, we fix the number of providers to be 6% providers of

the total number of UEs and change the number of keywords the providers choose while

registering their service in the network between 3 and 8. All the values for the other

parameters are according to Table 5.2. In Figure 5.16, we plot the average number of

discovered providers versus the number of providers’ keywords.

As the plot reveals, the average number of discovered providers grows with the

increase of the number of providers’ keywords. It begins by a small value of 0.79 for 3

keywords chosen by the provider and ends by much higher one: average of 1.8

discovered providers for 8 keywords. This points out that when the network’s database

contains more keywords per provider, the probability of finding him having more

matching keywords with the requesters’ keywords becomes higher.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Percentage Number of Providers (%)

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

D
is

c
o

v
e

re
d

 P
ro

v
id

e
rs

104

Figure 5.16 Average number of discovered providers versus the number of providers’

keywords (regardless of proximity)

In the third experiment, we vary the number of the keywords inserted by the

requester between 1 and 6. The other parameters are compliant with Table 5.2. We plot

the average number of discovered providers versus number of requester’s keywords in

Figure 5.17.

As we can see in Figure 5.17, the average number of discovered providers rises

with the number of requester’s keywords’ increment. It starts by an average of 0.5 for 1

keyword per requester and grows to reach 2.3 for 6 keywords. The analysis for this can

be that the more the requester inserts keywords, the more he is giving information about

his desired service, the more the simulator is certain while choosing the corresponding

providers.

3 4 5 6 7 8

0.8

1

1.2

1.4

1.6

1.8

2

Number of Providers' Keywords

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

D
is

c
o

v
e

re
d

 P
ro

v
id

e
rs

105

Figure 5.17 Average number of discovered providers versus the number of requesters’

keywords (regardless of proximity)

In the next experiment, we vary the area of the simulation environment between

 and . It is good to remind you here that the area the

providers are enclosed in is a factor of the length of the total area (between

 and). We consider here two scenarios for the requesters moving in

a Random Way Point mobility pattern: in the first one, the requesters are pedestrians

moving according to the parameters defined in Table 5.2, while in the second scenario,

the requesters are driving vehicles in a speed between 12 and 24 m/s for a duration

ranging between 30 and 300s and can pause between 0 and 120s. We plot the average

number of discovered providers versus the length of the simulation area for the two

scenarios in Figure 5.18.

1 2 3 4 5 6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Number of Requesters' Keywords

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

D
is

c
o

v
e

re
d

 P
ro

v
id

e
rs

106

Figure 5.18 Average number of discovered providers (per request) in requester’s

proximity versus the length of the simulation’s area.

As the plots present, the average number of discovered providers decreases

when the area increases in both scenarios: when the requester is a pedestrian or driving

a vehicle. In pedestrian case, the average number starts by 0.16 for an area of

 until it reaches around 0 for . As for vehicle, it starts by 0.14

for 100m until it reaches around 0 for 1000m. This can be analyzed by the fact that

when the area is small and condensed with providers, the probability of finding a nearby

provider matching with the desired service increases.

In the last experiment, we plot (a) the average number and (b) the standard

deviation of discovered providers versus the requester’s speed for both scenarios:

walking requester (Figure 5.19) and driving vehicle (Figure 5.20). In our

representations, we omit the case of pauses times. In both scenarios, we consider that

the providers are fixed at predefined positions, choosing the same services in the 1000

200 400 600 800 1000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Length of Simulation Area (m)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

D
is

c
o

v
e
re

d
 P

ro
v
id

e
rs

 (
p

e
r

re
q

u
e
s
t)

Pedestrian

Vehicle

107

runs and selecting 5 keywords from the service’s pool. The requester is still choosing 3

keywords each time. Note that the maximum distance to consider a provider is in the

requester’s proximity is considered to be equal to 25. Obviously, the average number of

discovered providers is not the same at all speeds since the requester may get near of

some providers but at the same time get away from others. Hence, an important

observation is that the distribution is independent of the speed of the requesters.

 (a)

 (b)

Figure 5.19 (a) the average number and (b) the standard deviation of discovered

providers versus the requester’s speed (Pedestrian scenario, Dmax=25m).

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Speed (Pedestrian)

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

D
is

c
o

v
e
re

d
 P

ro
v
id

e
rs

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Speed (Pedestrian)

S
td

 N
u

m
b

e
r

o
f

D
is

c
o

v
e
re

d
 P

ro
v
id

e
rs

108

 (a)

 (b)

Figure 5.20 (a) the average number and (b) the standard deviation of discovered

providers versus the requester’s speed (Vehicle scenario, Dmax=25m).

12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Speed (Vehicle)

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

D
is

c
o

v
e

re
d

 P
ro

v
id

e
rs

12 14 16 18 20 22 24
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Speed (Vehicle)

S
td

 N
u

m
b

e
r

o
f

D
is

c
o

v
e

re
d

 P
ro

v
id

e
rs

109

CHAPTER VI

CONCLUSION AND FUTURE WORK

A. Conclusion

In this work, we presented a general design of a cloudlet-inspired D2D scheme,

where a requester asks for an application through keywords, leaving it up to the network

to locate devices in proximity that offer the requested services. Our proposed design

was meant to extend the application services usually used in D2D communication by

integrating mobile cloud services into this technology: Software as a Service (SaaS),

Infrastructure as a Service (IaaS) and Platform as a Service (PaaS). The first type of

services was addressed in our study whereas IaaS and PaaS will be the subject of future

work. Our proposed work aimed also at designing a system for D2D communication

(with Software as a Service) that fits the LTE architecture and abides by the relevant

standards, showing all the enhancements to the network core (architectural elements,

elements design, signaling, and functions) that are needed for service registration and

peer discovery. Finally, it should be noted that the proposed work took the Third

Generation Partnership Project (3GPP) Long Term Evolution (LTE) system as a

baseline.

Moreover, we have modeled the requester’s intention while entering his

keywords searching for a certain application by testing his ability to specify his desired

service through a set of keywords. We found that the number of these keywords entered

affects the probability of hit and false positives (number of candidate providers, having

matching keywords, sent back by the network). We defined a threshold that induces the

110

requesters’ knowledge about this service since many applications belonging to the same

category may have common keywords. A high threshold induces that the requester is

using targeted keywords in his request.

Furthermore, we tested analytically and experimentally many parameters

affecting the system performance. The sources of no perfect matching (errors) between

the request and the corresponding service on the simulator level are 1) a requester not

specifying all the keywords registered for the service in the network 2) a provider not

registering all the relevant keywords of his offered service 3) a small number of

providers in the network. For this reason, to test our system’s performance, we

considered the following metrics: 1) the number of keywords the requester inserts while

discovering a service 2) the number of keywords the providers choose while registering

themselves in the prose function’s database 3) the variation of number of providers in

the network. In addition to this, we study the influence of the dimensions of the

simulation area as well as the requester’s speed on the number of providers discovered.

Experiments showed that 1) the more the requester inserts keywords, the more he is

giving information about his desired service, the more the simulator is certain while

choosing the corresponding providers 2) when the network’s database contains more

keywords per provider, the probability of finding him having more matching keywords

with the requesters’ keywords becomes higher 3) when the number of providers

increases in the network, the probability of having providers matching the desired

service by the requester increases. Results also showed that when the simulation area is

small and condensed with providers, the probability of finding a nearby provider

matching with the desired service increases. Besides, an important observation was that

111

the distribution is independent of the speed of the requesters since the requester may get

near of some providers but at the same time get away from others.

B. Future Work

For future work, we will explore the remaining cloud services namely Network

as a Service (NaaS). This service may need additional signaling messages and

functionalities for the existing nodes in the LTE-A network knowing that this service

turns the provider’s mobile to a hotspot WiFi Access Point for other devices that do not

have access to the Internet.

Furthermore, charging in ProSe is also a subject to be tackled in our future work.

We need to examine the required functionalities in the core network to collect charging

data from the requester to ensure that users are charged for the resources they demand

and use. The providers also need a consistent and predictable way to measure usage in

order to benefit from the amount of resources they are renting. Note that we need to

propose some incentives for the providers to lend their extra resources.

Moreover, in our scheme, we have considered that UEs are registered to same or

different Public Land Mobile Networks (PLMNs) but without considering the scenario

when the UEs are roaming. However, this should be examined in our future work since

additional entities should be addressed (Home Prose Function and Visited ProSe

Function) along with the reference point between them in order to control the

authorization and configuration of the UE for discovery. The location reporting is also

an issue in this scenario since it has to be transferred between networks in order to

determine the proximity of the UEs.

112

Besides, our proposed scheme consider only exact keywords search to retrieve

applications of interest. So in future work, we will extend our scheme by adding the

concept of fuzzy keyword search [55] on a hand and Natural Language Processing

(NLP) on the other hand. First, the fuzzy keyword search would enhance system

usability by returning the matching files when users’ searching inputs exactly match the

predefined keywords or the closest possible matching files based on keyword similarity

semantics, when exact match fails. As for the NLP, which is a field of computer

science, artificial intelligence, and linguistics concerned with the interactions between

computers and human, we can turn the search more interactive by letting the requester

enter his keywords by speaking to his phone. It is good to mention here, that in the case

of fuzzy keyword search, we will still use edit distance to quantify keywords

similarity and assume a predefined edit distance against which the result is compared

 . We will construct fuzzy keyword sets that incorporate not only the exact

keywords but also the ones differing slightly due to minor typos, format inconsistencies,

etc.

Finally, one closely related issue that must also be considered in any future work

is the privacy protection requirements. The most important problem to dig into is how

can the network revoke authorization and prevent malicious UEs from using ProSe

capabilities.

113

BIBLIOGRAPHY

[1] K. David, S. Dixit, and N. Jefferies, “2020 Vision The Wireless World Research

Forum Looks to the Future,” IEEE Vehicular Technology Magazine, vol. 5, no. 3, pp.

22–29, September 2010.

[2] K. Samdanis, T. Taleb, and S. Schmid, “Traffic offload enhancements for

eUTRAN,” Commun. Surveys Tuts., vol. 14, no. 3, pp. 884–896, 2012.

[3] 3GPP, “3GPP TSG services and system aspects: Local IP access and selected IP

traffic offload (LIPA-SIPTO) (Release 10),” 3GPP, Tech. Rep. TR 23.829, Aug. 2011.

[4] Yang, Mi Jeong, Soon Yong Lim, Hong Joon Park, and Nam Hoon Park. "Solving

the data overload: Device-to-device bearer control architecture for cellular data

offloading." IEEE Vehicular Technology Magazine 8, no. 1 (2013).

[5] 3GPP, “3GPP TSG SA: Feasibility Study for Proximity Services (ProSe) (Release

12),” 3GPP, Tech. Rep. TR 22.803, Aug. 2012.

[6] K. Doppler and M. Xiao, Eds., “Innovative Concepts in Peer-to-Peer and Network

Coding,” WINNER+/CELTIC Deliverable CELTIC/CP5-026 D1.3, 2008.

[7] IEEE Std. 802.11, “IEEE Standard for Information Technology-

Telecommunications and information exchange between systems-Local and

metropolitan area networks-Specific requirements Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (PHY) Specifications 1999 reaff 2007,”

2007.

[8] “Bluetooth,” http://www.bluetooth.com.

[9] P. J¨anis, C.-H. Yu, K. Doppler, C. Ribeiro, C. Wijting, K. Hugl, O. Tirkkonen, and

V. Koivunen, “Device-to-Device Communication Underlaying Cellular

Communications systems,” International Journal of Communications, Network and

System Sciences, vol. 2, no. 3, pp. 169– 178, 2009.

[10] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Mikl´os, and Z.

Tur´anyi, “Design aspects of network assisted device-to-device communications,” IEEE

Communications Magazine, vol. 50, no. 3, pp.170–177, March 2012.

[11] L. Lei, Z. Zhong, C. Lin, and X. Shen. "Operator controlled device-to-device

communications in LTE-advanced networks." IEEE Wireless Communications, no. 3

(2012): 96-104.

[12] J. Rawadi, H. Artail, H. Safa, “Providing Local Cloud Services to Mobile Devices

with Inter-cloudlet Communication”, 17th IEEE Mediterranean Electrotechnical

Conference (MELECON2014), Beirut, Lebanon, April, 2014.

114

[13] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies. “The Case for VM-based

Cloudlets in Mobile Computing”, IEEE Pervasive Computing, v. 8, n. 4, 2009.

[14] M. Satyanarayanan, “Mobile computing: the next decade”, Proc. 1st ACM

Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond

(MCS ’10), 2010.

[15] D. Bernstein and D. Vij. “Intercloud Directory and Exchange Protocol Detail using

XMPP and RDF”, Proc. IEEE 6th World Congress on Services, 2010.

[16] E. Miluzzo, R. Cáceres and Y. Chen. “Vision: mClouds – Computing on Clouds of

Mobile Devices”, International Workshop on Mobile Cloud Computing and Services

(MCS ’12) with MobiSys 2012, 2012.

[17] C.-H. Yu et al., “Power Optimization of Device-to-Device Communication

Underlaying Cellular Communication,” IEEE Int’l. Conf. Commun., ICC, Dresden,

Germany, June 2009.

[18] J. P. Jänis et al., “Interference-Avoiding MIMO Schemes for Device-to-Device

Radio Underlaying Cellular Networks,” IEEE Pers. Indoor and Mobile Radio Commun.

Symp., Tokyo, Japan, Sept. 2009.

[19] K. Doppler et al., “Mode Selection for Device-to-Device Communication

Underlaying an LTE-Advanced Network,” IEEE Wireless Commun. and Networking

Conf., Sydney, Australia, Apr. 2010.

[20] J. Du, W. Zhu, J. Xu, Z. Li, and H. Wang, “A compressed HARQ feedback for

device-to-device multicast communications,” in Proceedings of IEEE VTC-Fall, 2012,

pp. 1–5.

[21] B. Zhou, H. Hu, S.-Q. Huang, and H.-H. Chen, “Intracluster deviceto- device relay

algorithm with optimal resource utilization, IEEE Transactions on Vehicular

Technology, vol. 62, no. 5, pp. 2315–2326, Jun. 2013.

[22] L. Lei, Z. Zhong, C. Lin, and X. Shen, “Operator controlled deviceto-device

communications in LTE-advanced networks,” IEEE Wireless Communications, vol. 19,

no. 3, pp. 96–104, 2012.

[23] K. Doppler, M. Rinne, C. Wijting, C. Ribeiro, and K. Hugl, “Device-to- device

communication as an underlay to LTE-advanced networks,” IEEE Communications

Magazine, vol. 47, no. 12, pp. 42–49, 2009.

[24] N. Golrezaei, A. F. Molisch, and A. G. Dimakis, “Base-station assisted device-to-

device communications for high-throughput wireless video networks,” in Proceedings

of IEEE ICC, 2012, pp. 7077–7081.

[25] J. C. Li, M. Lei, and F. Gao, “Device-to-device (D2D) communication in MU-

MIMO cellular networks,” in Proceedings of IEEE GLOBECOM, 2012, pp. 3583–3587.

115

[26] N. K. Pratas and P. Popovski, “Low-rate machine-type communication via wireless

device-to-device (D2D) links,” arXiv preprint arXiv:1305.6783, 2013.

[27] X. Bao, U. Lee, I. Rimac, and R. R. Choudhury, “DataSpotting: offloading cellular

traffic via managed device-to-device data transfer at data spots,” ACM SIGMOBILE

Mobile Computing and Communications Review, vol. 14, no. 3, pp. 37–39, 2010.

[28] E. Dahlman, S. Parkvall, and J. Sköld, 4G: LTE/LTEAdvanced for Mobile

Broadband, Academic Press, ISBN: 012385489X, 2011.

[29] K. Doppler, C. B. Ribeiro, and J. Kneckt, “Advances in D2D communications:

Energy efficient service and device discovery radio,” in Proc. International Conference

on Wireless Communication, Vehicular Technology, Information Theory and Aerospace

& Electronic Systems Technology (Wireless VITAE). IEEE, Feb. 2011, pp. 1–6.

[30] M. Scott Corson et al., “Toward Proximity-Aware Internetworking,” IEEE

Wireless Communication, Dec. 2010, pp. 26–33.

[31] http://www.qualcomm.com/solutions/wirelessnetworks/technologies/lte/lte-direct.

[32] 3GPP TR 23.703, “Study on architecture enhancements to support Proximity

Services (ProSe) (Release 12)”, v. 1.0.0, December, 2013.

[33] Raghothaman, Balaji, Eric Deng, Ravikumar Pragada, Gregory Sternberg, Tao

Deng, and Kiran Vanganuru. "Architecture and protocols for LTE-based device to

device communication." In Computing, Networking and Communications (ICNC), 2013

International Conference on, pp. 895-899. IEEE, 2013.

[34] 3GPP TR 33.833, “Study on security issues to support Proximity Services

(Release 12)”, v. 0.4.0, February 2014.

[35] 3GPP TS 23.303, “Proximity-based services (ProSe); Stage 2 (Release 12),

v.12.0.0, February 2014.

[36] 3GPP TS 22.278, “Service requirements for the Evolved Packet System (EPS)

(Release 12)”, v. 12.4.0, September, 2013.

[37] 3GPP TS 22.115, “Service aspects; Charging and Billing (Release 13)”, v.13.0.0,

December, 2013.

[38] 3GPP TR 36.843, “Study on LTE device to device proximity services-Radio

aspects (Release 12)”, v. 1.0.0, November, 2013.

[39] Open Mobile Alliance, OMA AD SUPL: "Secure User Plane Location

Architecture", (http://www.openmobilealliance.org).

[40] http://tools.ietf.org/html/rfc3588#page-79.

[41] http://tools.ietf.org/html/rfc2486.

http://www.openmobilealliance.org/

116

[42] http://tools.ietf.org/html/rfc821.

[43] 3GPP TS 23.032, “Universal Geographical Area Description (GAD) (Release 11)”,

v.11.0.0, September, 2012.

[44] 3GPP TS 29.229, “Cx and Dx interfaces based on the Diameter protocol, Protocol

details (Release 12), v12.3.0, September, 2014.

[45] 3GPP TS 29.344, “Proximity-Services (ProSe) Function to Home Subscriber

Server (HSS) aspects; Stage 3, (Release 12)”, v0.2.0, May 2014.

[46] 3GPP TS 29.345, “Inter-Proximity-Services (ProSe) Function signaling aspects;

Stage 3, (Release 12), v0.2.0, June 2014.

[47] 3GPP TS 29.272, “Mobility Management Entity (MME) and Serving GPRS

Support Node (SGSN) related interfaces based on Diameter protocol (Release 12)”,

v.12.5.0, June 2014.

[48] http://probabilityandstats.wordpress.com/2010/02/18/the-matching-problem/

[49] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa. "Stochastic properties of the

random waypoint mobility model: epoch length, direction distribution, and cell change

rate." In Proceedings of the 5th ACM international workshop on Modeling analysis and

simulation of wireless and mobile systems, pp. 7-14. ACM, 2002.

[50] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa. "Stochastic properties of the

random waypoint mobility model." Wireless Networks 10, no. 5 (2004): 555-567.

[51] A. A. Moffat and T. C. Bell, “Managing gigabytes: compressing and indexing

documents and images”, Morgan Kaufmann, (1999).

[52] SensorTower website, www.sensortower.com

[53] Considerations for server-side Automation of Office, Available. [online].

http://support.microsoft.com/kb/257757

[54] http://heuristicswiki.wikispaces.com/Levenshtein+distance+(Heuristic).

[55] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. "Fuzzy keyword search

over encrypted data in cloud computing." In INFOCOM, 2010 Proceedings IEEE, pp. 1-

5. IEEE, 2010.

