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AN ABSTRACT OF THE THESIS OF

Ali El Hadi Adnan Zeineddine for Master of Science
Major: Physics

Title: A General Solution to Mimetic Dust with Astrophysical and Cosmological Applications

The purpose of this thesis is to investigate solutions for the recently proposed
model of dark matter, mimetic dark matter. The model, proposed by Chamsed-
dine and Mukhanov in 2013[15], suggests a reformulation of Einstein’s Theory of
Gravitation through isolating the conformal degree of freedom in a covariant way.
In order to perform that, the physical metric is written in terms of an auxiliary
metric and a scalar field appearing through its first derivatives. As a result, the
conformal degree of freedom becomes dynamic even in the absence of matter.
The extra degree of freedom has been shown to imitate the potential motion of
dust. This thesis provides a review of Einstein’s Theory of Relativity in addi-
tion to astrophysical and cosmological applications. Furthermore, it examines the
mimetic dust and provides particular and general solutions for specific behavior of
this dust by specifying an arbitrary function,f(r), related to the initial conditions.

The aim of this thesis is to prove that mimetic matter indeed behaves as
dust. As expected for regular dust, this mimetic dust will undergo gravitational
collapse. As for the cosmological implications, it will be shown that mimetic
dust provides a mean of describing a spatially flat, “matter dominated” universe.
Finally, further directions of research will be indicated.
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Chapter 1

Motivation

“ After the untenability of the theory of action at a distance had thus been

proved in the domain of electrodynamic, confidence in the correctness of New-

ton’s action-at-a-distance theory of gravitation was shaken. One had to believe

that Newton’s Law of Gravity could not embrace the phenomena of gravitation in

their entirely, any more than Coulomb’s Law of electrostatics and magnetostatics

embraced the totality of electromagnetic processes.” Albert Einstein, 1913 ad-

dressing the Congress after Hertz verified Maxwell’s suggestion that the e↵ects of

electromagnetism propagate at finite speeds. The first chapter of this thesis will

be devoted to briefly describing the Theory of Relativity as well as Dark Matter.

In addition, some notes on the proposed Mimetic Dark Matter will be highlighted

in order to provoke the curiosity of the reader. Finally, an outline of this thesis

will be presented.
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1.1 Geometria

Geometry, the measurement of the earth, was and still is integrated in every as-

pect of the scientific journey of mankind. Since the ancient Greek whom studied

planes and solid figures, Geometry has always been an interesting science. From

Hippias who studied curves such as quadratix, to Euclid who wrote 13 books on

geometry, to Archimedes who studied the spirals, till Nichomedes and the study

of the conchoid, the relation between matter and space was the common theme as

they all attempted to study points and their relation in space. Descartes, Henry

More, Newton with his philosophical foundations upon geometrical principles, as

well as Kante, where all interested in geometry. They were recently followed by

Gauss, Lobachevsky and Poincaré. However, it was not until Riemann’s theory of

manifolds which introduced the study of curved space that scientists found new

applications to mechanics and other principles. Riemannian Geometry was mas-

tered by several. namely Christo↵el, Schur, and Ricci-Curbastro. Even though

the theory was adopted by many, the applications of this new non-Euclidean Ge-

ometry were not taken seriously until Albert Einstein based his entire Theory

of General Relativity on it. It is this theory, in addition to Klein’s introduc-

tion of groups and invariant transformations of the geometry, as well as Hermann

Minkowski modification and connection of space and time, that made the Theory

of Relativity possible. By 1905, Einstein had already formulated the relativistic

electrodynamics of moving bodies, which was in itself an invariant linear trans-

formation of the Lorentz group. Therefore, it can be seen that Einstein and

the world owe it all to geometry, which upon it non-Newtonian physics - Special

Relativity and General Relativity afterwards - was built upon.
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1.2 The Desire for a Complete Theorem: Gen-

eral relativity

“That the special theory of relativity is only the first step of a necessary develop-

ment became completely clear to me only in my e↵orts to represent gravitation

in the framework of this theory”, A. Einstein (Autobiographical Notes, 1949) [2].

Einstein regarded his Theory of Relativity as based on a simple fundamen-

tal idea; the relativity of all motion. That is, one can detect and measure the

motion of a body relative to another but cannot assert any meaning to the ab-

solute motion. Before General Relativity, Special Relativity attempted to make

use of this idea but was restricted to uniform translatory motions, given that all

gravitational e↵ects are neglected. “ The laws of physics must be such a nature

that they apply to systems of reference in any kind of motion”[1]. The second

postulate of Special Relativity was the constancy of speed of light. The speed of

light ‘c’ is constant in all reference frames.

The General Theory of Relativity, however, deals with all kinds of motion and

in the presence of any kind of gravitational e↵ects. From here, two postulates

have been made: The Principle of Covariance and the Principle of Equivalence.

The Principle of Covariance states that the general laws of physics should be

expressed independent of the choice of the coordinate system (or else this would

assert some meaning to the absolute motion). The equivalence principle states

the local equivalence between acceleration and gravity, and requires that a free

falling observer must result in a co-moving local Minkowski space. From these two

principles, Einstein then proceeded to state the relation of the four co-ordinates
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to measurement in space and time. He deduced that if a law of nature is expressed

by equating all the components of a tensor to zero, it is generally covariant, and

hence by examining the laws of the formation of tensors, we acquire the means of

formulating generally covariant laws[1]. Mathematically speaking, the expression

of the formula for an interval in a covariant language has a simple form:

ds2 = gikdx
idxk (1.1)

where the Latin indices i and k run over 0, 1, 2, 3 (while Greek indices run over

1,2 3) according to Einstein’s summation convention.

1.3 From the Light to the Dark: Dark Matter

“An era is said to end when all its basic illusions are exhausted”, Arthur Miller

The belief that the mass of the Universe was entirely due to that of the stars

was undoubted in 1900. 100 years later, however it became well established that

stars in addition to cold gases constitute only 1% of the mass of the Universe. The

rest of the mass can be roughly estimated by ⇠ 3% hot baryons (matter made up

of protons and neutrons) , ⇠ 30% cold dark matter, and ⇠ 66% dark energy. To

completely understand this dark matter, physicists utilized di↵erent aspects of

physics and astronomy. For example, statistical mechanics and thermodynamics

were required to explain the creation of this dark matter during the hot expansion

of the universe. On the other hand, particle physics was employed to generate

possible candidates to this dark matter and to study its interactions with ordi-

nary matter. In order to study dark matter on large scales, and to consider how
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the Universe could be made a laboratory to study this dark matter, General rela-

tivity, astrophysics and cosmology were embedded[3]. One of the first frontiers to

suggest the existence of gravitational e↵ects not contributed to baryon and visible

matter was the Swiss astronomer Fritz Zwicky[4]. In 1933, Zwicky published one

of the first observations concerning this matter where he observed large velocity

dispersion of the members of the Coma galaxy cluster[5]. Unfortunately, Zwicky’s

paper did not get any feedback and interest from the physics society and up un-

til the first half of the Twentieth Century till the late 1970’s and 1980’s where

the cold matter, moving with non-relativistic velocities when structure formed

in the Universe, paradigm appeared. “Today, extensive data from large scale

galaxies, supernovas, microwave background radiation, enhanced the Standard

Model of cosmology, where structure formed through gravitational amplification

of small density perturbations with the help of cold dark matter”[5]. Finally, this

introduction serves to highlight the importance of Dark matter. There will be a

separate section devoted for the most popular candidates of DM.

Imagine not needing to utilize all the branches of physics to explain Dark

Matter! What if there exists a way to unveil the darkness of this matter? It is

the recent work of Chamseddine and Mukhanov on modifying the gravitational

theory that enabled them to “mimic” the e↵ects of “dark matter” without the

need of matter! Amazing isn’t it.

1.4 Why Read My Thesis: The Apocalypse

In the following chapters to come, I will elaborate more on General Relativity

and Dark matter in two separate chapters. Chapter two will be devoted to dis-
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cuss thoroughly General relativity, focusing on an interesting choice of reference

system, the synchronous reference system. In chapter three, I will try to give

a some insight on dark matter through listing the proposed candidates so far.

In addition, chapter three will include all the information on the new proposed

mimetic dark matter, equations and results. However, the applications that this

work aims for are both astrophysical and cosmological. In chapter four, I will

define the general gravitational collapse along with the accepted cosmological

models. In chapter five, I will try to show that results using the modifications

and constraints of mimetic dark matter do indeed reproduce the ones obtained

previously through the usual gravitational field equations. Finally, some conclud-

ing remarks will be presented in chapter six, along with some thoughts on future

work to be.
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Chapter 2

General Relativity: Briefing

“ Either the well was very deep, or she fell very slowly, for she had plenty of time

as she went down to look about her and to wonder what was going to happen

next.” Lewis Carroll, Alice in Wonderland.

The aim of this chapter is to briefly restate the main postulates and equa-

tions of General Relativity as well along with their consequences. In addition an

interesting choice of reference system, called the synchronous reference system,

will be discussed in details as it will be the basis of the later chapters.

2.1 The Beginning

Before dwelling into the concepts and equations of General Relativity it would

be wise enough to consider the early version of it: the theory of special relativity.

Special relativity (SR) is based on the invariance of the speed of light, c, in all

reference frames. Speed has units of space and time, so if there exists a constant

quantity relating both, then it is obvious that space and time are joined together

forming space time with a converging factor fortunately being c (which will be
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set equal to unity throughout our discussion)[6]. The Cartesian coordinates as

given by space-time are chosen to be as follows:

x0 = t

x1 = x

x2 = y

x3 = z

(2.1)

The xµ are coordinates on the manifold in which SR in studied upon, the

Minkowski spacetime. Minkowski spacetime is four dimensional, thus vectors are

fixed and called four-vectors. The Minkowski metric ⌘ik is defined as:

⌘ik =

2

66666664

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

3

77777775

(2.2)

The dot product of two vectors in Minkowski space is defined as:

A · B = ⌘ikA
iBk = A0B0 � A1B1 � A2B2 � A3B3 (2.3)

The space time interval is thus:

ds2 = ⌘ikdx
idxk = dt2 � dx2 � dy2 � dz2 (2.4)

Finally, one can define the proper time ⌧ when a particle is fixed:

ds2 = d⌧ 2 (2.5)
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2.2 General Relativity: Postulates and Equa-

tions

2.2.1 Postulates

Before stating the vital equations of General relativity required for the develop-

ment of this thesis, a recap of the basic postulates will be presented. The two

postulates are brief yet of extreme importance. The first postulate is the princi-

ple of general covariance. It states that all physical laws are independent of the

choice of a particular coordinate system. In other words, the equations expressing

physical laws must be written in terms of tensors[7]. The second postulate is the

principle of equivalence. Weinberg formulated this principle is the following state-

ment: “At every space-time point in an arbitrary gravitational field it is possible

to choose a “locally inertial coordinate system” such that, within a su�ciently

small region of the point in question, the laws of nature take the same form as in

unaccelerated Cartesian coordinate systems in the absence of gravitation”[18].

2.2.2 The Metric

“Space acts on matter, telling it how to move. In turn, matter reacts back on

space, telling it how to curve” John Wheeler.[9]

The metric gik is a generalization of the Minkowski metric mentioned earlier.

The metric holds in it all the characteristics of the manifold. When speaking

about curvatures, one’s imagination is limited since everything around us seems

to be flat. However, one can make an analogy of the space-matter with a bowling

ball resting on a trampoline. As the ball curves the trampoline, it forces all

objects around it to be attracted to it. This is how matter curves space time.
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2.2.3 Mathematics and Equations

We recall that in the usual Galilean coordinates one finds that the di↵erentials

dAi of a vector Ai also form a vector, whereas the derivatives @Ai/@x
k of the

components of a vector with respect to the coordinates yield a tensor[8]. Unfor-

tunately, this is not the case in curvilinear coordinates since dAi is not a vector

and @Ai/@x
k is not a tensor. The di↵erence can be made obvious if we conduct

a parallel translation of a vector. In the usual Galilean system of coordinates

the components of vector do not change. However, in curvilinear coordinates the

components of a vector will change under translation. Thus, the usual di↵erenti-

ation cannot be utilized and a “Covariant Di↵erentiation” is needed and defined

by:

DAi = dAi � �Ai (2.6)

where

�Ai = ��i
�lA

kdxl (2.7)

The quantity �i
�l is called a�ne connections or Christo↵el symbols. A�ne

connections can be related to the metric tensor (which was th Minkowski tensor

⌘ in SR, now it’s gµ⌫ in GR) in the following manner:

�i
kl =

1

2
gim(

@gmk

@xl
+

@gml

@xk
� @gkl

@xm
) (2.8)

In addition to the stated property of the a�ne connection, it is used to cal-

culate the Ricci tensor which is responsible for the calculation of the curvature.

It is reasonable, after studying how translation along a curved space di↵ers from

that of flat space, to discuss the motion in a gravitational field (curved space).

The motion of a particle is determined in GR from the principle of least action.
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It was realized in SR, however, it can be applied in GR since the di↵erence is

embedded in the ds2 expression. According to the principle of least action:

�S = �mc�

Z
ds = 0 (2.9)

Hence, in GR, that is in the presence of a gravitational field, a particle moves

along extremal, called the geodesic line. It is nevertheless not a straight-line

and its spatial motion is not uniform nor rectilinear. In comparison to special

relativity regarding the free motion of a particle, the same can be applied to GR

but using covariant derivatives and a�ne connections.

Dui = 0 (2.10)

and using the definition of covariant derivative, D, we obtain

dui + �i
klu

kdxl = 0

Hence, we obtain the desired equation of motion after dividing by ds2

d2xi

ds2
+ �i

kl

dxk

ds

dxl

ds
= 0 (2.11)

If we compare the obtained EOM with the classical one, it might be inferred that

the motion of the particle in a gravitational field is governed by the �i
kl. On the

other hand, the first term d2xi/ds2 might be regarded as the 4-acceleration of the

particle.
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Let us now define the four-momentum of a particle in a gravitational field

pi = mcui (2.12)

Squaring both sides and substituting �@S/@xi for pi (where S is the action in eq.

2.9) we find:

gik
@S

@xi

@S

@xk
�m2c2 = 0 (2.13)

This is the known Hamilton-Jacobi equation for a particle in a gravitational field.

The resemblance of this equation will occur while studying the mimetic dark mat-

ter.

As mentioned earlier, the metric contain the information regarding the cur-

vature of the manifold. Since the a�ne connections are not tensors and thus

can be zero or non-zero depending on a mere choice of coordinates, the Rie-

mann curvature tensor contains all the information needed. The Riemann tensor

is a four-component tensor and is somehow deduced in the same fashion as the

Christo↵el’s symbols. A parallel transport around a closed loop reveals that there

exists a tensor that deduces the curvature. This fourth rank tensor is given in

terms of the connection coe�cients as:

Ri
klm =

@�i
km

@xl
� @�i

kl

@xm
+ �i

nl�
n
km � �i

nm�
n
kl (2.14)

There are two important contractions of this tensor which are beneficial, the

Ricci Tensor and the Ricci scalar. However, because curvatures are the core

of this theory it would be useful if some properties of this Riemann tensor are
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stated. For example, to explore the symmetry properties, one can change the

mixed tensor into a completely covariant one such that:

Riklm = ginR
n
klm

Riklm =
1

2
(
@2gim
@xk@xl

+
@2gkl

@xi@xm
� @2gil
@xk@xm

� @2gkm
@xi@xl

)+gnp(�
n
kl�

p
im��n

km�
p
il) (2.15)

It is simple to observe that the tensor is antisymmetric in the index pairs (i, k)

and (l, m) while being symmetric under the interchange of the two pairs with

each other. In fact, only 20 components out of the 256 are in independent. Thus,

we can write some properties:

1- For the antisymmetric:

Riklm = Rkilm = Rikml (2.16)

2- For the symmetric:

Riklm = Rlmik (2.17)

3- The cyclic sum of the components of Riklm is zero:

Riklm +Rimkl +Rilmk = 0 (2.18)

13



4- The Bianchi identity:

@Rn
ikl

@xm
+

@Rn
imk

@xl
+

@Rn
ilm

@xk
= 0 (2.19)

We now turn our sight to the contractions of the Riemann Tensor:

1- The Ricci Tensor; a symmetric tensor

Rik = glmRlimk = Rl
ilk (2.20)

Rik =
@�l

ik

@xl
� @�l

il

@xk
+ �l

ik�
m
lm � �m

il �
l
km = Rki (2.21)

2- The Ricci Scalar or scalar curvature:

R = gikRik = gilgkmRiklm (2.22)

2.2.4 Einstein’s Equations

The final subsection of this section will be devoted to Einstein’s equations of the

gravitational field. The equations are obtained in a standard fashion by varying

the total action, that is, from the principle of least action.

Two actions will be varied. The action Sg related to the gravitational field, and

the action Sm related to matter. Hence, the aim is to find �(Sg + Sm) = 0.

Start by varying the the gravitational action Sg =
R
R
p
�gd⌦.

�

Z
R
p
�gd⌦ = �

Z
gikRik

p
�gd⌦
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=

Z
(Rik

p
�g�gik +Rikg

ik�
p
�g + gik

p
�g�Rik)d⌦

Using the fact that

dg = ggikdgik = �ggikdg
ik

so,

�
p
�g = � 1

2
p
�g

= �1

2

p
�ggik�g

ik

Thus,

�

Z
R
p
�gd⌦ =

Z
(Rik �

1

2
gikR)�gik

p
�gd⌦+

Z
gik�Rik

p
�gd⌦ (2.23)

Using a locally geodesic system of coordinates where the a�ne connections

vanish and the first derivatives of the metric are zero we can obtain:

gik�Rik = gik{ @�

@xl
�l
ik �

@�

@xk
��l

il}

Now,
R
gik�Rik

p
�gd⌦ can be transformed by Gauss’s law into an integral

over the hyperspace surrounding the four-volume. Knowing that the variation

vanishes at the integration limits, this term drops and hence we are left with:

�Sg = � 1

16⇡k

Z
(Rik �

1

2
gikR)�gik

p
�gd⌦ (2.24)

The variation of the matter action is straight forward and is given by:

�Sm =
1

2

Z
Tik�g

ikp�gd⌦ (2.25)
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where Tik is the energy momentum tensor of the matter.

Now that we have defined both actions, from the least action principle applied

to �(Sg + Sm) = 0 we obtain:

� 1

16⇡k

Z
(Rik �

1

2
gikR� 8⇡kTik)�g

ikp�gd⌦ = 0 (2.26)

Rik �
1

2
gikR� 8⇡kTik = 0 (2.27)

Rik �
1

2
gikR = 8⇡kTik (2.28)

Define Gik as the Einstein Tensor such that:

Gik = Rik �
1

2
gikR (2.29)

The Einstein Equation possesses some characteristics:

1- By definition, Gik is a tensor.

2- Assuming that the gravitational field equations are uniform in scale, so

that only N=2 derivatives of the metric are allowed, Gik either contains linear

second derivatives or quadratic first derivatives of the metric.

3- Tik is symmetric, so must be Gik

4- Since Tik is a conserved quantity, then the covariant di↵erentiationGi
k;m = 0

.
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2.3 The Synchronous

The arbitrariness of the choice of space-time coordinate system to define the

position and time of a body raises the question of how actual distances and time

intervals can be determined. We will first relate the proper time, ⌧ , to the time

coordinate x0. Then, we will determine the quantity dl of the spatial distance.

Consider two infinitesimally separated events occurring at the same point in

space. The di↵erentials of space will be zero ( dx1 = dx2 = dx3 = 0) and

our interval between the two events will be given by:

ds2 = d⌧ 2

ds2 = gikdx
idxk = g00(dx

0)2

Hence,

d⌧ =
p
g00dx

0 (2.30)

So the proper time related to the time between any two events occurring at

the same spatial point, that is, relation that determines the actual time of a

change of the coordinate x0, is given by:

⌧ =

Z
p
g00dx

0 (2.31)

The second task is to determine the actual distance. It is accustomed in SR

to define dl as the interval separating two infinitesimal events occurring at the

same moment. Unfortunately, it is not possible in GR to determine dl by setting

dx0 = 0 in ds due to the fact that in the presence of a gravitational field the
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proper time at di↵erent points in space has di↵erent dependence in the coordi-

nate x0.

In order to find dl we will imagine a small hypothetical experiment to find

the conditions for obtaining dl. Suppose that a light signals arrives at a point

A, with coordinates x↵, from an infinitesimally close point B, with coordinates

x↵ + dx↵, and then goes back The observed time at point B for this round trip is

twice the distance between the two points.

ds2 = g↵�dx
↵dx� + 2g0↵dx

0dx↵ + g00(dx
0)2 (2.32)

Note that we sum over Greek indices from 1 to 3.

Setting ds2 = 0 we obtain two solutions:

dx0(1) =
1

g00
{�g0↵dx

↵ �
q

(g0↵g0� � g↵�g00)dx↵dx�}

dx0(2) =
1

g00
{�g0↵dx

↵ +
q

(g0↵g0� � g↵�g00)dx↵dx�}
(2.33)

The solutions correspond to the propagation of light from A to B. The total

time interval between departure and arrival is given by dx0(2)�dx0(1) and is equal

to:

dx0(2) � dx0(1) =
2

g00

q
(g0↵g0� � g↵�g00)dx↵dx� (2.34)

Multiplying by
p
g00/2 we obtain the dl as:

dl2 = (�g↵� +
g0↵g0�
g00

)dx↵dx� (2.35)

Let

�↵� = (�g↵� +
g0↵g0�
g00

) (2.36)
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be the three-dimensional metric tensor determining the geometric properties

of space. Thus,

dl2 = �↵�dx
↵dx� (2.37)

It is unfortunate to say that since metric gik generally depends on x0, then the

space metric would change with time and hence the integration of dl2 would be

meaningless. It is only in the case where gik does not depend on time, that we

can speak of defined distances.

We will now utilize the experiment considered earlier to check whether it is

possible to synchronize clocks located at di↵erent points in space. This is known

as the concept of simultaneity in the general theory of relativity. The exchange

of light signals between two infinitesimally neighboring points serves as a mean

to achieve this synchronization. So we go back to points A and B previously

discussed and regard that as simultaneous with the moment x0 at the point A

that the reading of the clock at point B which is half way between the moments

of departure and return of the signal to that point.

x0 +�x0 = x0 +
1

2
(dx0(1) + dx0(2))

Substituting equation (2.33) in the above equation we obtain:

�x0 = �g0↵dx
↵

g00
⌘ g↵dx

↵ (2.38)

The obtained relation enables us to synchronize clocks in any infinitesimal region

in space. This synchronization, however, is only possible along any open curve.

If we consider synchronization along a closed contour we will obtain �x0 6= 0 and

thus conclude that it is impossible to synchronize clocks over all space. This is
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only permissible if the components g0↵ = 0. It should be noted that the lack to

synchronize all clocks is due to the arbitrariness of the reference frames and not

a property of space-time itself. In any gravitational field it is always possible to

choose the reference system so that g0↵ = 0 and make it possible to completely

synchronize the clocks.

Now that we have established the condition for synchronizing clocks at di↵er-

ent points in space, we are ready to define the synchronous reference frame. If a

reference frame has its metric components g0↵ = 0 in addition to g00 = 1, that

is, the proper time coincides with the x0 = t coordinate at each point in space,

then it is said to be synchronous.

The interval element will have the form:

ds2 = dt2 � �↵�dx
↵dx� (2.39)

The synchronous reference frame has the following:

1- The time lines are geodesic in the four-space.

2- The four-vector ui = dxi/ds, which is tangential to the world line x↵ =

constant has components u↵ = 0, u0 = 1.

3- ui satisfies the geodesic equation dui

ds + �i
klu

kul = �l
00 = 0

To construct a synchronous reference system geometrically in any space-time,

choose the starting surface to be any space-like hyper-surface. This hyper-surface

will have normals at each point having time-like direction[8]. If we construct the

family of geodesic lines normal to this hyper-surface and choose them to be as

the time coordinate lines and determine the time coordinate t as the length s of
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the geodesic line measured from the initial hyper-surface then we obtain a syn-

chronous reference system.

Finally, it is worthy to mention that the transformation to a synchronous ref-

erence system can be done using the Hamilton-Jacobi equation (setting the mass

to unity)

gik
@S

@xi

@S

@xk
= 1 (2.40)

since we utilize the fact that the trajectories of a particle in a gravitational

field are just the geodesic lines.

The matter filling the space cannot in general be at rest relative to the syn-

chronous system because under pressure matter moves along lines that are not

geodesic whereas the world-line of a rest particle is a time-line and hence is

geodesic in the synchronous reference. Fortunately, an exception arises. When

the pressure is zero there exist “dust” particles which move along geodesic lines.

From here, the condition for a synchronous reference frame does not contradict

the condition that it be co-moving with matter.

We must highlight the fact that a singularity arises from the use of the syn-

chronous reference system. However, since the singularity is not a physical one,

that is, it is not a characteristic of space-time, and is merely related to the char-

acteristic of the reference frame, this singularity disappears when we change (by

simple means of coordinate transformation) to another non-synchronous reference

frame[8].
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Chapter 3

Mimetic Dark Matter

It is convenient before defining MDM, to introduce some of the basic aspects of the

current models of DM. This would serve as a historical overview as well as a good

comparison between the proposed model and the models found in the literature.

Hence, this chapter will be divided into two sections, one pertaining to DM and

the other to MDM. The DM section will only touch on some characteristics and

candidates of DM, while in the MDM section, a detailed discussion of the model

will be presented.

3.1 Dark Matter

We have already stated in the introduction that a fairly large amount of the

constitutes of the Universe is attributed to DM. This section is devoted to the

characteristics of DM as well as its most probable candidates.
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3.1.1 Characteristics

It is well established now that dark matter cannot consist of baryons. This

is attributed to two main arguments. First, if dark matter did indeed consist of

baryonic material, then the cosmic microwave background (CMB) and cosmic web

of structure would look radically di↵erent[11]. Secondly, the baryon-to-photon

ratio of the Universe dictates the amount of line elements created during big-bang

nucleosynthesis. In addition, the amount of deuterium and 4He constrain give

similar constraints on the baryon density in the Universe as those coming from the

CMB observations. Upon this, a once accepted candidate, the Massive Compact

Halo Object (MaCHO) class is cosmologically insignificant. Furthermore, dark

matter cannot be made up of sub-kev-particles, that is, light particles. Since

light particles are known to be relativistic at early times of the Universe, and

hence can ‘fly’ out of small scale perturbations, then it is only possible that DM

consists of light particles if they were created via phase transition in the early

Universe (QCD Axions for example).

Dark matter can not possess any electromagnetic characteristics other than

neutrality. This is due to the fact that if it did possess small electric or magnetic

moment then it would couple to the photon-baryon fluid before recombination.

If this recombination was to occur,, it would have altered the sub-degree-scale

features of the CMB.

Finally, we address the issue of self-interaction. Since few is known about DM,

there is no reason for physicists to exclude the idea that DM particles interact

with each other or other new dark particles mediated by a new dark gauge bosons

[12].
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3.1.2 Candidates

There are several candidates for DM. In this section we are going to list briefly

the most popular among them, along with a brief description of each.

1- The weakly-interacting massive particles (WIMPs):

Introduced by Steigman & Turner, the main feature of WIMPs is that they

possess interactions near typical weak-force interactions (coupling ⇠ 10�2) and

masses near the weak scale (⇠ 100GeV ). Candidates of WIMPs include the

super-symmetric neutralino (the lowest-mass eigenstate of the supersymmetric

partners of neutral Standard Model gauge bosons)and the Kaluza-Klein photon

[11].

2- Axions:

Postulated by the PecceiQuinn theory in 1977, the Axions emerge out of a

solution to the strong-CP problem in particle physics. The axions are predicted

to have very low mass (⇠ 10�6eV ) and very low interaction cross sections. Ax-

ions have no electric charge, interact minimally with ordinary matter and will

transform to and from photons in the presence of a magnetic field.

3- Gravitinos:

Being the supersymmetric partners of gravitons, the gravitino’s mass can be of

the order of few eV to few TeV. Their masses depends on how the supersymmetry

is broken. Considering the light gravitinos as candidates for DM, one must tweak

the Standard model of cosmology. For heavier gravitinos, one must assume that

they do not interact with the Standard Model, and that they acquire WIMP like

behavior, more precisely a superWIMP. Gravitinos are not as favoured as WIMPs

as dark-matter candidates because of the di�culty of getting the abundance just

right and because they are much harder to detect using conventional methods[19].
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4- Sterile Neutrinos:

Also called inert neutrinos, Sterile neutrinos do not interact via any of the

fundamental interactions of the Standard Model other than gravity. Regarding

DM, sterile neutrinos are thought to be created in the early Universe in di↵erent

manners. The creation process dictates its e↵ects on smaller-scale structures of

the universe. Sterile neutrinos have Yukawa interactions with ordinary leptons

and Higgs bosons, where by the Higgs mechanism can mix with active neutri-

nos and thus have a small decay probability to an active neutrino or a photon.

Finally, since no X-ray detection of this decay was observed, in addition to the

observations of the small-scale Universe, the simplest model of the sterile neutrino

(Dodelson-Widrow neutrinos) is abandoned as a candidate to DM.

3.2 Mimetic Dark Matter

3.2.1 Conformal Transformation and The Scindo

Consider a space-time (M, gik), where M is a smooth manifold of dimension n.

and gik is a Lorentzian metric on M . If ⌦ is a smooth, strictly positive function

then

g̃ik(x) = ⌦2(x)gik(x) (3.1)

is a conformal transformation with ⌦ being the conformal factor.

Now suppose we partition the physical metric gik of Einstein’s theory of grav-

ity into a scalar field � and an auxiliary metric g̃ik defined by:
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gik = (g̃lm@l�@m�)g̃ik ⌘ P g̃ik (3.2)

Performing a conformal transformation given by eq. (3.1) of the auxiliary

metric g̃ik yields

g̃ik ! ⌦2g̃ik

) g̃ik ! ⌦�2g̃ik
(3.3)

Inserting eq. (3.3) into eq.(3.2) we obtain:

gik = (g̃lm@l�@m�)g̃ik

) gik = (⌦�2g̃lm@l�@m�)⌦
2g̃ik

) gik = (g̃lm@l�@m�)g̃ik

So we can see that the physical metric is invariant if we perform a conformal

transformation of the auxiliary metric. That is, gik �! gik when g̃ik �! ⌦2g̃ik

3.2.2 The Action and Equations of Motion

The fact that we bisected the physical metric into a scalar field and an auxiliary

metric does not forbid us from performing the usual variation of the action, that

is, applying the principle of least action. As done in section 2.2.4, we define S as

the general action constituting of the “gravitational Lagrangian” and the “matter

Lagrangian (Lm)”. However, the action will be in terms of the physical metric,
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which in return is in terms of the scalar field � and the auxiliary metric g̃ik:

S = �1

2

Z
d4x

p
�g(g̃ik,�){R(gik(g̃ik,�)) + Lm} =

Z
dx4L (3.4)

Since gik is invariant under the conformal transformation g̃ik �! ⌦2g̃ik and

since the above action is solely a function of the gik then the action is in itself

invariant under the transformation.

Now variation of the action, �S

�S =

Z
dx4 �L

�gik
�gik

�S = �1

2

Z
d4x�{

p
�g(g̃ik,�)(R(gik(g̃ik,�)) + Lm)}

The variation �Rik
p
�g vanishes as seen in section 2.2.4 and the remaining

part will produce the same equations. That is,

�S =

Z
dx4 �L

�gik
�gik = �1

2

Z
d4x

p
�g{Rik � 1

2
gikR� T ik}�gik

= �1

2

Z
d4x

p
�g{Gik � T ik}�gik (3.5)

where Gik is the Einstein tensor, and T ik is the energy momentum tensor for

the matter.

One realizes that there exists a di↵erence between this variation and the

standard one done previously. The variation of the physical metric �gik now

depends on the variation of the auxiliary metric �g̃ik and that of the scalar field

��. Using eq. (3.2) gik = (g̃lm@l�@m�)g̃ik ⌘ P g̃ik the variation of the metric
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becomes:

�gik = P �g̃ik + g̃ik�P

�P = �{(g̃lm@l�@m�)}

= �g̃ik@l�@m�+ g̃ik�(@l�)@m�+ g̃ik�(@m�)@l�

= �g̃ik@l�@m�+ 2g̃ik@l��@m�

Since the auxiliary metric processes the same “mathematical” properties as

the physical metric, that is, it is a tensor, we can use the lowering and raising

(g̃ik & g̃ik) operators as we did before, then we can write:

) �P = �g̃mig̃nk�g̃ik@m�@n�+ 2g̃mn@m��@n�

) �gik = P �g̃mn(�
m
i �

n
k � gikg

jmgln@j�@l�) + 2gikg̃
jl@j��@l� (3.6)

Substituting eq.(3.6) into the action in eq.(3.5) we obtain the action as :

�S = �1

2

Z
d4x

p
�g(Gik � T ik)

⇥ P �g̃mn(�
m
i �

n
k � gikg

jmgln@j�@l�) + 2gikg̃
jl@j��@l�} (3.7)
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Putting the principle of least action to good use we obtain the equations of

motion as such:

(Gik � T ik)� (G� T )gimgkn@m�@n� = 0 (3.8)

1p
�g

@j(
p
�g(G� T )gjl@l�) = rj((G� T )@j�) = 0 (3.9)

The rj is the total derivative, or in tensor language, the covariant derivative

with respect to the metric gik. One can observe that the auxiliary metric serves

as a means to an end, for it does not appear explicitly in the EOM. It is only

through the physical metric that the auxiliary metric appear implicitly. On the

other hand, the scalar field � happens to appear explicitly and hence plays an

important role in our discussion.

The contravariant partner of eq.(3.2)can be written as gik = P�1g̃ik and hence

the scalar field satisfies the constraint equation:

gik@i�@k� = 1 (3.10)

Examining equation (3.10), it overlaps with equation (2.13) described in chapter

two, which is the Hamilton-Jacobi equation with the mass set to unity. Thus,

if the action S is identified with � then the field satisfies the H-J equation for a

unit mass relativistic particle in a gravitational field.

If we take the trace of eq. (3.8)we obtain:

(G� T )(1� gik@i�@k�) = 0 (3.11)
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Due to constraint equation (3.10) this equation is satisfied even when G 6= T .

In addition the trace G � T is determined by eq. (3.9) and eq.(3.10) and even in

the absence of matter,that is, T ik the equations for the gravitational field have

nontrivial solutions for the conformal mode. Once the H-J equation is solved for

� then equation (3.9) determines G � T .

Einstein’s gravity is the unique low energy e↵ective theory of spin-2 massless

field[13]. That is, the gravitational force is mediated by a massless spin-2 particle

(with helicity =2). Massless spin 2 particles such as gravitons have two trans-

verse degrees of freedom (with 3 degrees of freedom taken away due to their zero

mass, due to gauge invariance). However, we can see now that in addition to

the two transverse degrees of freedom, the gravitational field acquires an extra

longitudinal degree of freedom shared by the scalar field � and a conformal factor

of the physical metric, yet is subjected to a constrain due to conformal invariance.

3.2.3 The Extra Degree of Freedom

In order to analyze the extra degree of freedom discussed in section 3.2.2, we

rewrite the equation of motion using the following:

Gik = T ik + T̃ ik (3.12)

where

T̃ ik = (G� T )gimgkn@m�@n� (3.13)

The energy-momentum tensor for a perfect fluid, that is, a fluid that is

isotropic in its rest frame, has the form:
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Tik = ("+ p)uiuk + pgik

gikuiuk = �1

) T ik = ("+ p)U iUk � pgik

where " is the energy density, p is the pressure and ui is the 4-velocity. If we

set p = 0 and make the following identifications:

" ⌘ G� T, ui = gim@m� (3.14)

thus the two energy momentum tensors T ik and T̃ ik overlap.

Hence, the extra degree of freedom can imitate the potential motion of “dust”

with energy " ⌘ G�T and the scalar field plays the role of the velocity potential.

In the absence of matter, that is, when T = 0,

G = gikGik

= gikRik �
gikgik
2

R

= R� 2R = �R

and which does not vanish for generic solutions.

Now the normalization of the velocity for vector is as stated uiuk = 1. If we

apply this for the defined ui = gim@m� , we obtain the same scalar field equation

(3.10). Finally, the conservation law fot T̃ ik gives

riT̃
i
k = 0
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) @k�ri((G� T )@i�) + (G� T )@iri@
k� = 0 (3.15)

Di↵erentiating eq.(3.10) we obtain, rk(gik@i�@k�) = 0 and hence

@i�rk@i� = 0

rk@i� = ri@k�

and thus the conservation law for T̃ ik leads to equation ( 3.9).

3.2.4 Finding a Solution

It was found suitable to work in the synchronous reference system described in

Section 2.3 in order to find an explicit solution of the equation. Recalling that

the metric takes the form

ds2 = dt2 � �↵�dx
↵dx�

with �↵� being the spatial metric. In addition taking the hypersurfaces of

constant time to be the same as the hypersurface of constant �, that is, �(xi) ⌘ ⌧ ,

we find that equation (3.10) is satisfied.

Moreover, equation (3.9) becomes:

@0(
p

det�(G� T )) = 0 (3.16)

where det� is the determinant of the spatial metric �↵�

. Thus if we integrate once we obtain:
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G� T =
C(xµ)p
det�

(3.17)

where C(xµ) is a constant of integration depending on spatial coordinates.

Finally, if we take a particular case, the Friedman Universe, where

�↵� = a2(⌧)�↵� (3.18)

where " = C
a3 .

So the proposed model predicts dark matter without dark matter, which is

imitated by an extra degree of freedom of the gravitational field. With respect to

the gravitational interaction, this new mimetic dark matter behaves precisely in

the same way as the usual dark matter (in particular, it is influenced by the grav-

itational instability), but it does not participate in any other interaction besides

the gravitational one. The amount of this mimetic dark matter is determined by

the constant of integration C(xµ).
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Chapter 4

Some Astrophysical and

Cosmological Applications

In this chapter, some applications to astrophysics and cosmology will be stated.

From the astrophysical point of view, gravitational collapse associated with mimetic

dust will be briefly explained as well as for a general collapse. As for the cos-

mological applications, we will discuss the Friedmann-Robertson-Walker metric,

mainly in flat space (Einstein-de Sitter), in addition to some cosmological models,

namely the matter dominated universe.

4.1 Singularities and Gravitational Collapse

It was due to GR that physicists could attempt a quantitative discussion of the

cosmological problem. Although Einstein did not obtain satisfying results after

applying his gravitational field equations to study the homogeneity and isotropy

of the universe, he proposed to modify them by adding a constant called, the cos-

mological constant. However, Alexander Friedmann, retrieved time-dependent

34



cosmological solutions to the initial field equations. These solutions described

an expanding, or contracting universe. The Friedmann solution has a distinct

feature: it predicts a geometrical singularity in the past. This means that the

expansion started in an explosion-like manner at a certain moment where the

three-dimensional space was just a point. The Friedmann singularity might be

regarded as a cosmological one. On the other hand, there exist non-cosmological

singularities in the solutions representing limited physical systems.

A singularity can be simply defined as a point where the laws of physics (as we

know them till now) break down. For this reason, we will consider the simplest

way to arrive to a non-cosmological singularity. The fate of an isolated star is

a clear example of a singularity. First proposed by Oppenheimer and Snyder,

the fate of a su�ciently heavy star when it has consumed all its thermonuclear

sources of energy is a collapse. This is due to the fact that a state of equilibrium

cannot exist if the star’s mass is su�ciently large and will hence contract under

its own gravitational field till the matter reaches the center. Upon reaching the

center, a gravitational collapse will occur leading to the formation of a geometrical

singularity. It is labeled as a geometrical singularity since the curvature is infinite

and the metric degenerate. Upon this, it would be impossible to determine the

Christo↵el’s symbols and all the quantities that follow. Hence, we are not capable

of formulating a mathematical description for the equations of motion at the

singularity.

The di↵erence between this singularity and the cosmological singularity is that

in the latter, the whole universe shrinks into one point, while in the former there is

a singular half-worldline of the 4-D space where all points outside this half-world

line behave perfectly regular. A detailed discussion will be as follows. Consider
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a spherically symmetric star (or sphere of dust). Outside the sphere nothing

strange happens and we have the usual Schwarzschild solution for vacuum. After

the collapse, the Schwarzschild solution still holds for r > rg where rg is the

Schwarzschild radius. However, approaching this radius, the situation changes.

Inside this sphere, the light cones are inclined inwards towards the singularity,

and therefore anything arriving at the sphere will fall into the singularity. This

sphere has been denoted by the term horizon, more precisely the event horizon.

Consequently, the collapsing matter, star, dust, or mimetic matter, being inside

the sphere will be unable to send any signals outwards and will appear black to an

outside observe . From here, the term black holes has been proposed to stress the

fact that anything can cross the horizon inwards but nothing can escape it.[16]

4.2 Cosmology

4.2.1 The Copernican Principle

The Copernican principle states that the Universe is no special entity and is the

same everywhere. It is related to two basic mathematical properties a manifold

might possess: isotropy and homogeneity. Isotropy applies at some specific point

in space where the universe is the same in all directions. Homogeneity on the other

hand, refers to the fact that the metric is the same throughout the space, that is,

the curvature of any two points at a given time t is the same[6]. Upon observing

distant galaxies however, they appear to be moving away from us. This indicates

that the Universe is not static but changing with time. Hence, a construction

of cosmological model should be based on the assumptions of homogeneity and

isotropy of space but not of time. In GR language, this means that we can

slice the Universe in space-like manner such that each slice is homogeneous and
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isotropic. Upon this, we consider our spacetime to be R ⇥ ⌃ R denoting the

time direction and ⌃ denoting the homogeneous and isotropic three-manifold.

Therefore, we can consider our metric to be of the form:

ds2 = dt2 � a2(t)�↵�(u)du
↵du� (4.1)

where t is the time-like coordinate, and u↵ are the coordinates on ⌃. In ad-

dition, �↵� is the maximally symmetric metric on ⌃. The function a(t) is known

as the scale factor, and it tells us the relative sizes of the spatial surfaces at a

moment t. Finally we note that the metric is in comoving frame, the synchronous

reference system. Only a comoving observer will think that the universe looks

isotropic; in fact on Earth we are not quite comoving, and as a result we see a

dipole anisotropy in the cosmic microwave background as a result of the conven-

tional Doppler e↵ect[6].

4.2.2 FRW Metric and Cosmological Models

As shown in the above section, the general metric for describing the universe

can be considered to be of the form (4.1). After solving for �↵� , the maximally

symmetric tensor, we obtain the following metric:

ds2 = dt2 � a2(t)


dr2

1� kr2
+ r2

�
d✓2 + sin2✓d�2

��
(4.2)

where the constant k can be �1, 0, or +1.

The case for k = �1 is known as an open universe, in which the preferred

three-surfaces are “three-hyperboloids” ; k = 0 is a flat universe, in which the

preferred three-surfaces are flat space; and k = +1 is a closed universe, in which
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the preferred three-surfaces are three-spheres.

The FRW metric is the only possible homogeneous isotropic metric, so it is

left to calculate the scale factor through Einstein’s equations. However, using the

simplest case, vacuum, would result in the Minkowski space. Hence, we introduce

some energy and momentum to extract some information through choosing a

perfect fluid with pressure p and density ⇢. The end result would be the well-

known equations: the Friedmann equations.

✓
ȧ

a

◆2

=
8⇡G

3
⇢� k

a2

ä

a
= �4⇡G

3

�
⇢+ 3p

�
(4.3)

Since the Friedmann equations govern the evolution of RW metrics, one often

speaks of Friedman-Robertson-Walker (FRW) cosmology.

The expansion rate of the universe is measured by the Hubble parameter:

H ⌘ ȧ

a
(4.4)

and the change of this quantity with time is parameterized by the deceleration

parameter:

q ⌘ � äa

ȧ2
= �

✓
1 +

Ḣ

H2

◆
(4.5)

In order to predict the evolution of the Universe, we need a relation between

the density ⇢ and the pressure p. This relationship is known as the equation
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of state. We will consider two cosmological models (for flat space, for which,

k = 0):[17]

1- Matter dominated universe.

2- Radiation dominated universe.

1 � Matter dominated : Here matter refers to type a of material that

exerts negligible pressure, that is, dust. Starting with the fluid equation:

⇢̇+ 3
ȧ

a
⇢ = 0

) d

dt
(⇢a3) = 0

(4.6)

⇢a3 is a constant in time, thus

In a matter dominated universe, the energy density decreases as the volume

increases, so

⇢ / 1

a3
(4.7)

and we can write:

a(t) / t
2
3 (4.8)

In this solution, the Universe expands forever, but the rate of expansion H(t)

decreases with time

H ⌘ ȧ

a
=

2

3t
(4.9)

2 � Radiation dominated : Particles of light move, at the speed of light,

hence, their kinetic energy leads to a pressure force. This force is called the
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Figure 4.1: A schematic illustration of the evolution of a Universe containing
radiation and matter. Once matter comes to dominate the expansion rate speeds
up, so the densities fall more quickly with time[17].

radiation pressure, which using the standard theory of radiation can be shown to

be p = 1
3⇢.

by the same means and calculations done in the matter dominated part, we get:

⇢ / 1

a4

and consequently:

a(t) / t
1
2

(4.10)

Finally, i n a flat universe, the density is equal to the critical density, given

by:

⇢crtical =
3H2

8⇡G
(4.11)
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Chapter 5

Solutions to Mimetic Dust

We saw in chapter three, that MDM possesses an extra degree of freedom which

can imitate the potential motion of dust. In addition, it was found suitable

to work in the synchronous reference frame. Based on this, this chapter will be

devoted first to a treatment of out equations in the synchronous frame and second

to the examination of the solution obtained as an application to astrophysics and

cosmology.

5.1 The Synchronous System

5.1.1 The Metric

We have seen earlier that the conditions for obtaining the synchronous reference

system are:

g0↵ = 0 ; g00 = 1 (5.1)

such that the interval will be:
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ds2 = (dx0)2 � �↵�dx
↵dx� (5.2)

In addition, we will assume spherically central symmetry such that our interval

will be:

ds2 = dt2 � e�(t,r)dr2 � eµ(t,r)(d✓2 + sin2 ✓d�2) (5.3)

) our metric will have the form:

gik =

2

66666664

1 0 0 0

0 �e�(t,r) 0 0

0 0 �eµ(t,r) 0

0 0 0 �eµ(t,r) sin2 ✓

3

77777775

(5.4)

and in contravariant notation:

gik =

2

66666664

1 0 0 0

0 �e��(t,r) 0 0

0 0 �e�µ(t,r) 0

0 0 0 �e�µ(t,r) csc2 ✓

3

77777775

(5.5)

5.1.2 The Christo↵el Symbols

Recall that the Christo↵el Symbols (A�ne Connections) play a major role in de-

termining the curvature of the manifold. Hence, we calculate them for the given

metric above using the following equation:
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�i
kl =

1

2
gim(

@gmk

@xl
+

@gml

@xk
� @gkl

@xm
)

�0
00 = 0 ; �1

00 = 0 ; �2
00 = 0 ; �3

00 = 0

�0
10 = 0 ; �1

01 =
�̇

2
; �2

01 = 0 ; �3
01 = 0

�0
20 = 0 ; �1

02 = 0 ; �2
02 =

µ̇

2
; �3

02 = 0

�0
30 = 0 ; �1

03 = 0 ; �2
03 = 0 ; �3

03 =
µ̇

2

�0
11 = ; �1

11 =
�0

2
; �2

11 = 0 ; �3
11 = 0

�0
12 = 0 ; �1

12 = 0 ; �2
12 =

µ0

2
; �3

12 = 0

�0
13 = 0 ; �1

13 = 0 ; �2
13 = 0 ; �3

13 =
µ0

2

�0
22 =

µ̇

2
eµ ; �1

22 = �µ0

2
eµ�� ; �2

22 = 0 ; �3
22 = 0

�0
23 = 0 ; �1

23 = 0 ; �2
23 = 0 ; �3

23 = cot ✓
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�0
33 =

µ̇

2
eµ sin2 ✓; �1

33 = �µ0

2
eµ�� sin2 ✓ ; �2

33 = � sin ✓ cos ✓ ; �3
33 = 0

Note: Throughout the calculations, dots will represent partial derivatives with

respect to t, while accent (primes) represents partial derivatives with respect to

r.

5.1.3 Ricci Tensor

The Ricci tensor defined in chapter two tends to determine the curvature of

space-time. It is given by equation (2.21)

Rik =
@�l

ik

@xl
� @�l

il

@xk
+ �l

ik�
m
lm � �m

il �
l
km = Rki (5.6)

The Ricci tensor was calculated and found to be:

R00 =
1

4
{��̇2 � 2(µ̇2 + �̈+ 2µ̈)}

R00 = �1

2
(�̈+ �̇2)� (µ̈+

1

2
µ̇2)

(5.7)

R01 =
1

2
{µ0(�̇� µ̇)� 2µ̇0} (5.8)

R11 =
1

4
{2(�0µ0 � µ02 � 2µ00 + 2�̇µ̇e�) + e�(�̇2 + �̈)} (5.9)
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R22 =
1

4
e��{4e� + eµ�0µ0 � 2eµµ02 � 2eµµ00+

e�+µ�̇µ̇+ 2e�+µµ̇2 + 2e�+µµ̈} (5.10)

R33 =
1

4
e�� sin2 ✓{4e� + eµ�0µ0 � 2eµµ02 � 2eµµ00+

e�+µ�̇µ̇+ 2e�+µµ̇2 + 2e�+µµ̈} (5.11)

Finally, we calculate the Ricci Scalar defined by:

R = gikRik = gilgkmRiklm (5.12)

R =
1

2
{�4e�µ � 2e���0µ0 + 3e��µ02 + 4e��µ00 � �̇2�

2�̇µ̇� 3µ̇2 � 2�̈� 4µ̈} (5.13)
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5.1.4 Einstein’s Equations

Einstein’s equations are calculated using equations (2.29) and are given by:

Gik = Rik �
1

2
gikR

G00 =
1

4
{4e�� + 2e���0µ0 � 3e��µ02 � 4e��µ00 + 2�̇µ̇+ µ̇2} (5.14)

G10 =
1

2
{µ0(�̇� µ̇)� 2µ̇0} (5.15)

G11 =
1

4
{µ02 � e��µ(4 + 3eµµ̇2 + 4eµµ̈)} (5.16)

G22 = �1

4
eµ��{�0µ0 � µ02 � 2µ00 + e��̇2+

e��̇µ̇+ e�µ̇2 + 2e��̈+ 2e�µ̈} (5.17)
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G33 = �1

4
sin2 ✓eµ��{�0µ0 � µ02 � 2µ00 + e��̇2+

e��̇µ̇+ e�µ̇2 + 2e��̈+ 2e�µ̈} (5.18)
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5.2 The Dust

We have seen in section 3.2.3 that the extra degree of freedom may imitate the

potential motion of dust. Dust is a special case of a perfect fluid which has zero

pressure. Hence, the energy-momentum tensor has the form:

Tik =

2

66666664

⇢ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

77777775

(5.19)

We know that the Einstein’s equations are related to energy momentum tensor

by:

Gik = 8⇡Tik

Hence,

G11 = T11 = 0

G22 = G33 = T22 = 0

G10 = T10 = 0

G00 = T00 = ⇢

(5.20)

One would solve these equations and obtain solutions for the metric coe�-

cients.

However, we are going to study the case of no matter, by setting T = 0 in eq.

(3.16) and thereby neglecting matter. Then we are solving for G00 corresponding

to pure “mimetic dark matter” and no matter. Thus the last equation in (5.20)
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does not hold anymore and G00 is empty.

Now, using the fact that:

G = gikGik

G = g00G00 ) G = G00 (5.21)

and consequently, G is also empty. However, this empty equation will be

compensated by eq. (3.17) with T = 0. So, the aim now is to solve the following

system of equations

G11 = 0

G22 = G33 = 0

G10 = 0

@0(
p

det�G) = 0 , (
p
det�G) = J(r)

(5.22)

where J(r) is a constant of integration (denoted C(xi) in eq.(3.17)), and study

how mimetic matter will behave in the synchronous gauge.

5.3 System of Equations

It was found suitable to start with the G01 equation, since it yields a relation

between the two metric coe�cients e� and eµ.

G01 = 0

So,
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) 1

2
{µ0(�̇� µ̇)� 2µ̇0} = 0

) {2 lnµ0 + µ� �}• = 0

) 2 lnµ0 + µ� � = A(r)

) µ02 = 4(e�µ · e� · f 2(r))

) e� =
eµµ02

4f 2(r)
(5.23)

where f 2(r) is an integration factor depending only on r, and the choice of the

combination 4f 2(r) is to serve later as a simplification in our equations[10].

Now, the G00 and G11 equations will have the form:

G00 = e�µ{1� f 2 � 1

µ0ff
0}+ 3

4
µ̇2 +

µ̇µ̇0

µ0

G11 =
1

4
{µ02 � µ02

4f 2
(4 + 3eµµ̇2 + 4eµµ̈)}

We have seen that the G↵� = 0 and that the G00 equation is empty and equal

to G.

Thus, we can write our equations:

G00 = e�µ{1� f 2 � 1

µ0ff
0}+ 3

4
µ̇2 +

µ̇µ̇0

µ0 = G (5.24)
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G11 =
1

4
{µ02 � µ02

4f 2
(4 + 3eµµ̇2 + 4eµµ̈)} = 0 (5.25)

We turn now to study the G11 equation, since G11 = 0 then,

G11 = (1� f 2) + eµ(µ̈+
3

4
µ̇2) = 0 (5.26)

We now write equation (5.22) as a total derivative with respect to time such

that:

{e
3
2

2
µ̇2 + 2e

µ
2 (1� f 2)}• = 0

) e
3
2

2
µ̇2 + 2e

µ
2 (1� f 2) = B(r) (5.27)

where B(r) is a second integration factor depending only on r.

Now,
d

dt
e

µ
2 =

µ̇

2
e

µ
2

d

dt
µ = 2e

�µ
2
d

dt
e

µ
2

) (
d

dt
e

µ
2 )2 + (1� f 2) =

B

2e
µ
2

) de
µ
2

q
f 2 + B

2e
µ
2
� 1

= dt

and hence,
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Z
1q

f 2 + B

2e
µ
2
� 1

de
µ
2 = t+H(r) (5.28)

where H(r) is a third integration factor depending only on r.

It useful to derive one last expression relating the Einstein’ Scalar G, to an

arbitrary function of r. This will be very interesting when compared to MDM.

From equation (5.22):

f 2 = 1 + eµ(µ̈+
3

4
µ̇2)

) 2ff 0

µ0 = eµ(µ̈+
3

4
µ̇2 +

µ̈0

µ0 +
3

2

µ̇µ̇0

µ0 )

Substituting the values of f , f 2 and f 0 in equation (5.20) we obtain:

G = �3µ̈� 2
µ̈0

µ0 �
3

2
µ̇2 � 2

µ̇µ̇0

µ0 (5.29)
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From equations (5.22) and (5.23) we find that:

e
3
2µ
µ̇2

2
+ 2e

µ
2 (µ̈+

3

4
µ̇2) = B(r)

Taking the derivative with respect to r we obtain:

@B

@r
=

3

4
µ0e

3
2µµ̇2 + e

3
2µµ̇µ̇0 � 3µ0e

3
2µ(µ̈+

3

4
µ̇2)� 2e

3
2µ(µ̈0 +

3

2
µ̇µ̇0)

@B

@r
= µ0e

3
2µ(

3

2
µ̇2 � 2

µ̇µ̇0

µ0 � 2
µ̈0

µ0 � 3µ̈)

However, the term in the parenthesis is nothing but G,

) G =
@B

@r

e�
3
2µ

µ0 (5.30)

If we take a look at eq. (3.16), setting T = 0 and calculating det �

det � = g11 ⇥ g22 ⇥ g33

= e� ⇥ eµ ⇥ eµsin2✓

Using the relation (5.23), we obtain,

p
det � =

sin ✓

2f
e

3
2µµ0 (5.31)

Hence, eq. (3.16) becomes

G = 2fJ(r)
e�

3
2µ

µ0 (5.32)
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Comparing (5.30) and (5.32) we find that there is an obvious resemblance

between the obtain G from MDM and that of Einstein’s equations. A fact that

gives hope that MDM might be able to explain several phenomena.

The condition (3.17) with T = 0 takes the form:

p
det �G =

sin ✓

2f
e

3
2µµ0{e�µ{1� f 2 � 1

µ0ff
0}+ 3

4
µ̇2 +

µ̇µ̇0

µ0 } (5.33)
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5.4 f = 1 Parabolic Solution

Now we will consider the case where f = 1, eq.(5.26) becomes:

G11 = eµ(µ̈+
3

4
µ̇2) = 0

) (µ̈+
3

4
µ̇2) = 0 (5.34)

A solution for this equation is:

eµ = {F (r)t+D(r)} 4
3 (5.35)

where F and D are constants of integration depending only on r. This equa-

tion satisfies the equations including eq.(3.16) upon using the derivatives of the

solution found in Appendix B.

p
det �G = e

3
2µ{µ03

4
µ̇2 +

µ̇µ̇0

µ0 } = 2J (5.36)

It was found useful to perform a simple change of variable where

eµ(r,t) = R(r, t)2

We state the results using the same treatment of the above equations:

ds2 = dt2 � e�(r,t)dr2 �R(r, t)2{d✓2 + sin2✓d�2} (5.37)
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G11 = �e��r0
2 + 2rr̈ + ṙ2 + 1 = 0

G22 = G33 = �e��

r
(2r00 � r0�0) +

ṙ�̇

r
+ �̈+

�̇2

2
+

2r̈

r
= 0

G00 = �e�

r2
(2rr00 + r0

2 � rr0�0) +
1

r2
(rṙ�̇+ ṙ2 + 1) = G

G02 = 2ṙ0 � �̇r0 = 0

(5.38)

The G10 equation now gives the relation:

e� =
R02

f 2

)
p

det� =
R2R0

f

=) G =
fJ

R2R0

(5.39)

where f(r) is just a constant of integration depending only on r.

The metric then becomes:

ds2 = dt2 �R02dr2 �R2{d✓2 + sin2✓d�2} (5.40)

The solution for the case of parabolic model,that is, f = 1 is obtained by inte-

grating the following equation (Using simple separation of variables):

Ṙ = {F (r)

2R
� (1� f(r)2)} (5.41)

) R(r, t) =
1

2
(9F )

1
3 (t+ ↵(r))

2
3 (5.42)

where ↵(r) and F (r) are just constants of integration depending only on r. We
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constrain the function J(r) to be equal to F 0(r) hence, we can now write,

G =
F 0(r)

R2R0 (5.43)

Let us define now the quantity C(r) as

C(r) =

Z r

0

Jdr (5.44)

This quantity C(r) will determine the “density” of MDM and is given as:

C(r) = F (r0), F (r = 0) = 0 (5.45)

If F is constant then: G = 0 and this case would relate to the absence to any

mimetic matter and thus we obtain:

R2 =
1

4
(9F )

2
3 (t+ ↵(r))

4
3

e� =
↵02

{ 3
(9F ))2/3

(t+ ↵)2/3}

(5.46)

Setting F (r0) = Rg, where Rg is some gravitational radius, and ↵ = �r, we

obtain the following metric:

ds2 = dt2 � dr2

{ 3
(9Rg))2/3

(t� r)2/3}
� 1

4
(9Rg)

2
3 (t� r)

4
3 (d✓2 + sin2✓d�2) (5.47)

Thus we obtain the Schwarzschild solution in a comoving frame (synchronous

system). We note that there is no singularity as t approaches r since (t � r) =

const for a given RG. This singularity was thought to exists up until it was proven

not to be physical by a simple change of the coordinate system used.
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Now when F (r) is not constant, we have seen in (5.42) that the determinant

is equal to R2R0 for f = 1. Then in terms of the expressions of R and R0 we have:

det� = R2 ⇥R2 ⇥R0

det� =
1

16
(9F )2(t+ ↵)2(↵0)2

(5.48)

Hence, according to eq. (3.17) the energy-density equation becomes:

G =
2F 0

(9F )(t+ ↵)(↵0)
(5.49)

Thus, we see that when t approaches �↵, that is, when t approaches the mo-

ment �↵ corresponding to the arrival of the center R = 0, gravitational collapse

will occur.

Now we consider a di↵erent scenario. Assume that there is a non-zero limit

as r ! 0 , and that there are no “empty” regions of space. Here we shall see

that there is no gravitational collapse since the field will be evolving outwards

and will mimic an Einstein-de Sitter universe (flat FRW universe). Let us choose

a new radial coordinate r̄ such that F (r) = 8
9 r̄

3.

Now the solution (5.42) becomes

R(r̄, t) = r̄(t+ ↵(r̄))
2
3 (5.50)

The metric becomes:

ds2 = �(t+ ↵)
4
3{A2dr2 + r2(d✓2 + sin2✓d�2)}+ dt2 (5.51)

where we adopted the new coordinate r̄ and dropped the bar, and where A is
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given by:

A =
3(t+ ↵) + 2r↵0

3(t+ ↵)
) A = 1 +

2r↵0

3(t+ ↵)
(5.52)

The energy density G is:

G =
4

3

1

(t+ ↵)2A
(5.53)

There are two singularities associated with the energy density, one for t+↵ =

0 and for A = 0. However, these two singularities cross at r = 0 and thus

correspond to the same singularity.

For the case where ↵ = 0 we have:

ds2 = dt2 � t
4
3{dr2 + r2(d✓2 + sin2✓d�2)} (5.54)

which is nothing but the Einstein-de Sitter model.

Notice that the singularity now is at t = 0.

Define ⇥ to be :

⇥ =
@

@r
logG

) ⇥ = �{A
0

A
+

2↵0

t+ ↵
}

(5.55)

We see that for arbitrary ↵, ⇥ tends to 0, as t ! 1 for an arbitrary choice of

initial conditions. We also note that at the singularity, ⇥ in infinite and we call

the singularity point(t� ↵ or A = 0 or both) ”The Big Bang”. In addition, the

energy-density, approaches the Einstein-de Sitter model as t ! 1. As t ! 1,
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Y ! 1 and the metric can be written as:

ds2 = dt2 � t
4
3{dr2 + r2(d✓2 + sin2✓d�2)} (5.56)

Hence, we can conclude that for inhomogeneous expanding non-vanishing distri-

bution of mimetic matter the parabolic case of MDM will evolve in the Einstein-de

Sitter universe.
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5.5 General Solution: f arbitrary function of r

For the purpose of finding the general solution of the system of equations (5.22),

having the condition imposed by MDM satisfied, we will use the old coordinate

system. That is, we will work with equations (5.14� 5.18).

We have seen that from the G01 = 0 equation one finds the relation 5.23 . In

addition, from the G11 = 0 equation, one finds the solution for f = 1 (5.35). In

order to extend this solution for an arbitrary f(r) we will do the following: using

equation (3.17) for T = 0 we obtain:

@0(
p
det �G) =

1

16µ0 e
�µ

s
e3µsin2✓

f 2
µ02{4µ̇(�4ff 0� (1�f 2)µ0)�8(�1+f 2)µ̇0+

eµ(9µ̇3µ0 + 18µ̇2µ̇0 + 8µ̈µ̇0 + 4µ̇(3µ̈µ0 + 2µ̈0)} = 0 (5.57)

The second line of equation (5.57) is identically zero when implementing the

solution (5.35). In order to generalize the solution we demand:

4µ̇(�4ff 0 � (1� f 2)µ0)� 8(�1 + f 2)µ̇0 = 0 (5.58)

Substituting the values for the derivatives of µ using Appendix B we obtain:

1

(Ft+D)2
{16
3
F (Ft+D)(�4ff 0)� 43

9
F (F 0t+D0)(f 2 � 1)�

32

3
F 0(Ft+D)(f 2 � 1) +

32

3
F (F 0t+D0)(f 2 � 1)} = 0

Separating the time components and the spatial one we obtain:
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{16
3
F 2(�4ff 0)� 43

9
FF 0(f 2 � 1)}t

+
16

3
FD(�4ff 0) +

32

9
FD0(f 2 � 1)� 32

3
DF 0(f 2 � 1) = 0

Thus, we obtain two equations:

{16
3
F 2(�4ff 0)� 43

9
FF 0(f 2 � 1)} = 0 (5.59a)

16

3
FD(�4ff 0) +

32

9
FD0(f 2 � 1)� 32

3
DF 0(f 2 � 1) = 0 (5.59b)

Substituting (5.59a) in (5.59b):

FD(�4ff 0) +
2

3
FD0(f 2 � 1)� 2DF 0(f 2 � 1) = 0

) F 0D = FD0

Dropping the constants of integration: F (r) = D(r)

(5.60)

From equation (5.59):

Fff 0 +
1

3
F 0(f 2 � 1) = 0

ln(f 2 � 1)
1
2 = lnF

�1
3

) F = (f 2 � 1)�
3
2

) From 4.60 D = (f 2 � 1)�
3
2

(5.61)
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The eµ coe�cient now becomes:

eµ = F
4
3 (t+ 1)

4
3

) eµ = (f 2 � 1)�2(t+ 1)
4
3

(5.62)

While the e� coe�cient will have the form:

e� =
1

4f 2
eµµ02

Obtaining the value of µ0 from Appendix B

) e� =
4f 02

(f 2 � 1)4
(t+ 1)

4
3

(5.63)

The metric now becomes solely in terms of f and f 0 and is given by:

ds2 = dt2 � (t+ 1)
4
3


4f 02

(f 2 � 1)4
dr2 +

1

(f 2 � 1)2
d⌦2

�
(5.64)

where d⌦2 = d✓2 + sin2 ✓d�2. We emphasize that f 6= 1 and is not a constant,

but an arbitrary function of r.

We would like to note that F is related to the “amount” of mimetic dust and

thus f plays the role of specifying this amount.

Let us consider the case where:

f 2 =
1

r
+ 1 ) r2 =

1

(f 2 � 1)2
(5.65)

f 0 = �1

2

1q
1
r + 1r2

) f 02 =
1

4

1

(1r + 1)r4
(5.66)
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hence the metric (5.64) becomes:

ds2 = dt2 � (t+ 1)
4
3


1

1
r + 1

dr2 + r2d⌦2

�
(5.67)

In the limit of r >> 1 we retrieve the well known flat Friedmann-Robertson-

Walker metric. And thus we can write the metric as:

ds2 = dt2 � a(t)2

dr2 + r2d⌦2

�
(5.68)

where a(t) = (t+ 1)
2
3 .

From (5.68) It is shown that

a(t) / t
2
3 (5.69)

So we have a spatially flat, “matter dominated” universe[14].

We now analyze the Ricci scalar in terms o↵ our solution: plugging the solu-

tion along with its relation to f(r) into eq5.13 we obtain:

R = � 4

3(t+ 1)2
(5.70)

We know that

�R = 8⇡GT (5.71)

and since T = T00 = ⇢
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�R = 8⇡G⇢

from the Friedmann equation we obtain

�R = 3H2

) H =

r
�R

3

(5.72)

Thus substituting eq. (5.70) in (5.72):

H =
2

3

1

t+ 1
(5.73)

So we obtain the Hubble parameter H(t) for a matter-dominated Universe.
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Chapter 6

Conclusion and Future Work

This chapter of the thesis serves as a quick recap of what has been done. In ad-

dition, remarks concerning future work will be indicated. The first chapter was

dedicated to serve as a motivation. It touches on the subjects to be presented

throughout the thesis, mainly The General Theory of Relativity, Dark Matter,

and their relation to produce the Mimetic Dark Matter model. In the second

chapter, a brief yet condensed description of General Relativity is presented. It

starts with the transition from Special Relativity to General Relativity. The

postulates of GR are highlighted with a clear description of the metric and its

derivatives. Following that, Einstein’s equations are derived through the least

action principle along with their relationship to the energy-momentum tensor.

Finally, a co-moving frame of reference, called the synchronous reference system,

is presented as it is the basis of our work.

Chapter three is the heart of the thesis. Although in the first section, a quan-

titative description of the usual dark matter is presented, the following sections

contain the formalism of the recently proposed model: Mimetic Dark Matter.
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Mimetic dark matter was proposed by Chamseddine and Mukhanov[15] as a re-

sult of a reformulation of Einstein’s Theory of Gravity. Defining the physical

metric in terms of an auxiliary metric and a scalar field, we can isolate the

conformal degree of freedom in a covariant way. Upon that, the gravitational

field acquire a longitudinal degree of freedom on top of the two associated to

the graviton. The resulting equations of motion mimic a prefect pressure-less

fluid, dust. In chapter four, we shed the light on the basic applications that we

aimed to achieve through mimetic dark mater. The astrophysical application is

related to the gravitational collapse of dust in addition to the formation of the

event horizon and black holes. Singularities in General Relativity are defined

and discussed briefly to highlight the importance of non-cosmological singulari-

ties. Furthermore, some cosmological applications were also stated. The FRW

metric in addition to the cosmological models of the Universe are explained.

Finally, chapter five is considered the grand finale. Most of our contribution

is in this chapter. We proved that mimetic matter, being a form of mimetic dust

can undergo a gravitational collapse and resulting in a Shwarzschild sphere which

at its boundary the event horizon is formed and inside it a black hole exists.

Moreover, we proved that the arbitrary function f(r) pertaining to the initial

conditions and “amount of mimetic dust” gives a spatially flat matter dominated

universe. Further directions of research include the possibility of retrieving the

radiation dominated and cosmological constant dominated universe through the

addition of a “potential” which would serve as an input pressure as well as the

dominance in the late stages of the Universe.
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Appendix A

Abbreviations

SR Special Relativity

GR General Relativity

DM Dark Matter

MDM Mimetic Dark Matter

c Speed of Light

EOM Equation of Motion

CMB Cosmic Microwave Background
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Appendix B

Derivatives of eµ

eµ = (F (r)t+D(r)
4
3 ) µ =

4

3
ln(Ft+D) (B.1)

µ̇ =
4

3

F

Ft+D
(B.2)

µ̈ =
4

3

F 2

(Ft+D)2
(B.3)

µ0 =
4

3

F 0t+D0

Ft+D
(B.4)

µ̇0 =
4

3

F 0

Ft+D
� 4

3
F
(F 0t+D0)

(Ft+D)2
(B.5)

µ00 =
4

3

F 00t+D00
Ft+D

� 4

3

(F 0t+D0)2

(Ft+D)2
(B.6)
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µ̇00 =
4

3

F 00

Ft+D
� 8

3
F 0 (F

0t+D0)

(Ft+D)2
� 4

3
F
(F 00t+D00)
(Ft+D)2

+
8

3
F
(F 0t+D0)2

(Ft+D)3
(B.7)

µ̈0 = �8

3

FF 0

(Ft+D)2
+

8

3
F 2 (F

0t+D0)

(Ft+D)3
(B.8)
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