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An Abstract of the Dissertation of

Hady Mounir Ali Zeineddine for Doctorate of Philosophy
Major: Electrical and Computer Engineering

Title: Rate-Compatible Coding: An Inter-frame Coding Scheme and
Architecture-Aware Construction of Raptor Codes

Coping with wireless channel variability is a major challenge in channel cod-
ing. Typically, feedback-based techniques such as link adaptation and hybrid
automatic-repeat-request (HARQ) are used to match the appropriate code-rate
to the instantaneous channel quality, in order to achieve high-throughput com-
munication over varying wireless channel conditions. Rate-compatible coding is
a crucial element of HARQ schemes, and therefore has been subject to intense
research in recent years.

In this dissertation, two related topics on rate-compatible coding are consid-
ered. First, the channel variation problem is considered in the broadcast commu-
nication scenario, in which schemes such as HARQ performs poorly. Drawing from
the analogy between basic automatic-repeat-request and erasure coding, we pro-
pose to incorporate the rate-decreasing process into frame-level coding to achieve
better complexity versus coding-performance tradeoff. The proposed scheme is
called increment-based inter-frame coding. The corresponding coding algorithms
and architectures are developed, and the coding performance of the scheme is as-
sessed via asymptotic analysis and simulations. The results show that the proposed
scheme yields higher data-rates compared to other conventional schemes such as
HARQ and the state-of-the-art two-stage scheme involving both error-correcting
and erasure coding. With regard to rate-compatible coding, the impact of the pro-
posed scheme is two-fold: 1) it extends the application space of rate-compatible
codes, and 2) imposes new design-requirements on these codes.
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Second, Raptor codes are proposed to be deployed as rate-compatible codes
at the physical layer. The motivation is that Raptor features could ensure good
performance of these codes under various communication scenarios, including the
proposed inter-frame coding scheme. However, these features themselves make the
design of hardware-efficient decoders more challenging. A code design flow is thus
proposed to combine the aspects of coding-performance and hardware-efficient de-
coding of short/moderate-length codes within one multi-step framework. Methods
involved in each step of the flow are discussed, and the resulting decoder archi-
tecture is developed accordingly. Overall, simulation and implementation results
indicate that the proposed flow can produce Raptor codes that combine good
coding-performance and hardware-efficiency of decoding.
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Chapter 1

Introduction

With the advent of wireless communications, channel coding has gained increased
importance. Channel codes are deployed to ensure reliable communication of data
over the typically noisy wireless channels. A major step in channel coding is
matching the code-rate to the corresponding channel-state. This channel-to-rate
matching is required to achieve high communication data-rates: a code-rate higher
than the appropriate rate implies a high probability of decoding failure at the
receiver side, while a lower code-rate requires transmitting excessive redundancy
bits, leading to power inefficiency and data-rate loss.

A major problem in matching the code-rate to the channel sate is the variation
of the channel-state itself, manifested as temporal and frequency variations in
the signal-to-noise-plus-interference ratio. The overall impact of this variation is
that the appropriate code-rate varies across the different transmitted frames. This
means that the code-rate has to be adjusted, in case of fast channel variations,
on frame-by-frame basis. The problem becomes more complicated in broadcast
communication where the channel-state variation is now two-folded: 1) per single
receiver, the channel-state varies across different frame-transmissions and 2) per
single frame-transmission, the channel-state varies across different receivers.

The typical techniques developed to deal with the channel-state variation in
unicast communication assume that rate-compatible channel codes are deployed.
Rate-compatibility of a code means that for any two possible code-rate values
Rh, Rl, Rh > Rl, the rate Rl-encoded frame is a concatenation of the rate Rh-
frame and additional redundancy bits. Rate-compatible codes have to be designed
to perform well under the different scenarios is which the channel-state variation
problem arises.

In this dissertation, the problem of channel-to-rate matching is approached in
two directions. In the first direction, it is shown that channel-to-rate matching
can be performed on the receiver side, via an increment-based inter-frame cod-
ing approach. This turns out to be especially useful to enhance date rates in
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broadcast communication, at the cost of a limited hardware overhead. The pro-
posed increment-based inter-frame coding scheme deploys rate-compatible codes,
therefore, extending the space of applicability of rate-compatible coding.

In the second direction, the deployment of Raptor codes as rate-compatible
physical-layer channel codes is considered. For their peculiar features, Raptor
codes are projected to perform well in all the scenarios arising in typical and
new (like the proposed increment-based inter-frame coding) applications of rate-
compatible coding. It is shown that Raptor codes can be constructed to result
in hardware-efficient decoder implementations using an architecture-aware con-
struction flow, that is developed here. Simulation results suggest the developed
construction flow can produce codes that are good-performing as well.

Several papers were published based on the work presented here, basically on
the first direction on architecture-aware Raptor codes [1–4]; others on the sec-
ond direction of increment-based inter-frame coding are submitted and still under
review [5,6].

1.1 Background and Motivation

The Channel-to-Rate Matching Problem: Channel-to-rate matching is typically
achieved in unicast communication through a feedback-based scheme, as is done
for example in LTE [7]. Instantaneous channel-state information (CSI) is fed back
to the sender so that the appropriate code-rate is set prior to transmission. For the
cases where obtaining instantaneous CSI is costly or infeasible due to fast/abrupt
channel-state variations, hybrid automatic repeat request (HARQ) techniques [8,9]
are used. HARQ has been adopted in several wireless communication standards
(e.g. IEEE 802.16e/WiMAX [10] and 3GPP-LTE [11]). One of its most significant
variations, the incremental-redundancy (IR)-HARQ [9], effectively matches the
channel-state to the appropriate code-rate by successively increasing the encoding
frame-length.

In broadcast communication, the channel-to-rate matching problem has to be
reconsidered because feedback-based schemes do not scale well as the number of
receivers grows. The underlying reason is that per single frame transmission, the
channel-state varies also across different receivers. This means that for each frame,
the code-rate must be matched to the worst channel-state instance among all
receivers. Therefore, the average number of transmitted bits per frame is typically
larger than the average number of bits required by each receiver for successful
recovery of the transmitted frames.

In regard to this conclusion, the channel-to-rate matching problem can be re-
formulated into the more general problem of finding a coding scheme that achieves
a good tradeoff between complexity and date-rate. Evaluating the complexity of
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a scheme includes identifying the required hardware resources and the complexity
of the underlying operations.

The state-of-the-art solution to this problem is based on a two-stage forward
error-control scheme in which application-layer (APP-layer) erasure coding is com-
bined with conventional physical-layer (PHY-layer) channel coding. The frames
that fail PHY-layer decoding are discarded, whereas symbols in the successfully
decoded frames are collected and forwarded to erasure decoding. Erasure decod-
ing is then used to recover symbols erased due to channel decoding failures. This
two-stage scheme however does not solve the matching problem for every frame;
rather, it allows the communication to be done reliably even under some channel
decoding failures, which usually occur when the code-rate is higher than the ap-
propriate channel-matched instantaneous rate. This scheme has been included in
the 3GPP multimedia broadcast/multicast services (MBMS) [12] and digital video
broadcasting-handheld (DVB-H) [13] standards.

Erasure coding incurs a loss in the achieved data rates. The loss is due to the
underlying erasure-channel abstraction itself: an unsuccessfully decoded frame is
discarded, i.e., effectively erased. This deficiency is addressed in [14–16] by apply-
ing post-decoding processing on the frames on which decoding fails. However, these
schemes incur a high complexity overhead [14] and/or impose certain assumptions
on the bit-error rate in the unsuccessfully-decoded frames, thus, limiting their
applicability [15,16].

The Rate-compatible Coding Problem: In channel-to-rate matching procedures,
it is assumed that the code-rate can be progressively decreased, that is the deployed
channel code is rate-compatible. In general, for each mainstream class of error-
correcting codes, a subclass of rate-compatible codes can be constructed. Two
mainstream codes in communications are the Turbo [17] and LDPC [18–22] codes.
These two classes of codes can achieve close-to-capacity performance while their
iterative decoding algorithms allow efficient hardware implementation. Recently,
polar codes [23] have been introduced and shown to be capacity-achieving, but both
the finite-length performance and the hardware-efficiency of the corresponding
decoders are still in need of further exploration.

A vast literature on the design of rate-compatible LDPC codes exists, e.g. [24–
32]. The design methods are divided into two classes: code puncturing and code
extension. Basically, the classification of a method is done according to the direc-
tion, in relation to the code rate, of the code design flow. In code puncturing, a
low-rate mother code is first designed, and higher-rate codes are obtained by punc-
turing bits from it. Conversely, code extension essentially extends the parity-check
matrix of a high-rate daughter code to obtain lower-rate codes. Both methods are
shown to result in codes with asymptotically good performance. In particular,
code extension was used to design near-capacity protograph-based LDPC code
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sequences [31].

As is shown in [33], the coding performance of Turbo codes, in IR-HARQ,
deteriorates significantly when the signal-to-noise ratio (SNR) level varies across
different portions of the transmitted frame, the latter scenario called intra-frame
varying channel conditions in this dissertation. This performance degradation is
attributed to the structure of the involved code and the iterative decoding al-
gorithm. For the same latter reasons, performance degradation under intra-frame
varying channel conditions will also be observed in LDPC codes, particularly in the
protograph-based extended LDPC codes [31] that are otherwise capacity-achieving
over AWGN channels with fixed SNR values. The intra-frame varying channel
conditions phenomenon happens in unicast communication when the channel is
fast-fading. Its significance here is reconsidered because of the following: in the
increment-based inter-frame coding scheme, developed for channel-to-rate match-
ing in the first part of the work presented here, the occurrence of the intra-frame
varying channel conditions scenario is expected and frequent.

Raptor coding [34] can be viewed, broadly, as a subclass of LDPC code exten-
sion. A Raptor code consists of a high-rate precode concatenated with a rateless
LT code [35]. Raptor codes are characterized by the following important features:
1) each output bit is generated independently from other bits, 2) concatenating an
increment of bits to the encoded frame does not change the number of bit-nodes in
the decoding graph, and 3) the minimum distance of a Raptor code sequence can
be well approximated by characterizing the weight spectrum of its precode, In [36],
Raptor codes were considered for HARQ schemes and shown to have superior per-
formance to LDPC codes at low signal-to-noise ratios(SNR). The aforementioned
properties of Raptor codes suggest that these codes can be potentially deployed
as PHY-layer channel codes yielding good performance in the different commu-
nication scenarios. This point will be made clear in the dissertation, when the
background is thoroughly explained.

The Architecture-aware Raptor Code Construction Problem: Any LDPC code
can be equivalently described by a Tanner bi-partite graph. LDPC decoding typ-
ically applies iterative message passing algorithms, where in each iteration, mes-
sages are exchanged along the edges connecting the two partitions of the corre-
sponding Tanner graph. The signal flow during decoding is, therefore, determined
by the Tanner graph topology corresponding to the LDPC code; the LDPC de-
coder architecture has to mimic, to a large extent, such graph topology. This
implies that a strong relation exists between the hardware-efficiency of a LDPC
decoder architecture and the underlying code structure, the latter determining the
corresponding graph topology. All in all, the code structure has a major impact
on the involved memory and interconnect organization, as well as on the memory
access patterns, operation scheduling, and signal flow between different blocks.
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It can be thus concluded, based on the aforementioned observation, that hardware-
efficient LDPC decoder architectures can be obtained by appropriate structuring of
the code. This design flow practice is called architecture-aware code construction.
Typically, it consists of inserting appropriate regularity features in the structure
of the code, and therefore, in the structure of the corresponding graph. Such
regularity is hardware-friendly because it leads to regular memory-access patterns
and signal flow, which in turn result in hardware-efficient implementations. The
relation between the code structure and hardware-efficiency of decoding will be
further detailed in the dissertation.

A major problem in deploying Raptor codes can be stated as follows: the pe-
culiar features of Raptor codes, which make these codes potential candidates as
good-performing codes, impose serious challenges on obtaining hardware-efficient
decoder implementations. Example hardware-unfriendly features include the ran-
dom LT-encoding, the variable check-degree distribution, and the two-code com-
position of the Raptor code. These irregularity and randomness features lead to
low resource utilization, high control overhead, complex data movement patterns,
in addition to stringent memory requirements, thus resulting in a highly ineffi-
cient decoder implementation. Overall, this imposes the problem of designing
Raptor codes with two apparently contradicting requirements: 1) the code should
be architecture-aware and 2) pertains the peculiar hardware-unfriendly features of
Raptor coding.

1.2 Contributions

The research work presented in this dissertation addresses the problems raised in
the previous section. It is composed of two parts. The first part proposes a novel
increment-based inter-frame (IIF) coding approach which results in the application
of channel-to-rate matching on the receiver side. Such approach is especially useful
in the broadcast communication scenarios. The second part is on the development
of frameworks and methods that result in architecture-aware construction of the
highly irregular Raptor codes.

In the first part of the work presented in this dissertation, a novel inter-frame
coding approach is developed to solve the channel-to-rate matching problem under
varying channel-state conditions, in broadcast communication. The main advan-
tage of the proposed scheme is that, compared to the state-of-the-art two-stage
scheme, it can achieve significantly higher data rates, with almost the same com-
plexity as LT erasure decoding [35]. Therefore, its hardware implementation over-
head at the PHY-layer can be kept limited.

The basic feature of the proposed approach is that the appropriate code-rate
is assigned to each frame on the receiver side. This is done by incorporating as-
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pects of Incremental-Redundancy HARQ (IR-HARQ) [9] to coding. In particular,
the coding scheme is increment-based in the sense that encoding is applied on
increments corresponding to the transmitted frames, generating subframes rather
than complete frames. The inter-frame decoding procedure performs iteratively
two inter-related operations: 1) intra-frame decoding to recover the transmit-
ted frames, and 2) progressive concatenation of increments to frames that are
unsuccessfully-decoded prior to retrying intra-frame decoding on them.

The contributions in this part are stated next. First, the inter-frame encoding
and decoding algorithms are proposed. Second, the corresponding inter-frame
encoder and decoder architectures are developed. It can be concluded from the
developed architectures that: 1) the major hardware units involved in inter-frame
decoding are already available in any typical communication system, 2) the decoder
can be implemented to support inter-frame code descriptions that are determined
in real time, and, 3) in terms of hardware resources, the required memory size is
the limiting factor in the design of large inter-frame codes. Third, the channel-
state variation in relation to inter-frame decoding is modeled as a probability
distribution over Z+, which is crucial in developing a generic yet simple framework
for designing and analyzing inter-frame codes.

Fourth, the improvement brought by inter-frame coding to the achievable date
rates is quantitatively studied using the developed channel model. This is done
through a mathematical characterization of the asymptotic coding-performance of
the inter-frame coding scheme, followed by comparing this performance to that of
the other conventional schemes. The analysis done on the coding-performance is
asymptotic in nature; it is performed using a four-step procedure that includes: 1)
setting an “optimality” criterion for inter-frame coding, 2) bipartite graph mod-
eling of the inter-frame code, 3) analyzing asymptotically the decoding progress,
and 4) proving the “optimality” of inter-frame coding through constructing op-
timal edge degree distributions. A significant result is that under the channel
model developed in this work, iterative graph-based erasure decoding can be viewed
as a special case of inter-frame decoding. Subsequently, the performed modeling,
analysis and distribution construction generalize the corresponding steps done in
graph-based erasure codes.

Overall, it can be concluded that a significant enhancement in the date-rate
is achieved by inter-frame coding. The extent of such enhancement is dependant
of the channel-state statistical parameters. Compared to the IR-HARQ scheme
having target frame-error-rate (FER) of 10−3, inter-frame coding increases the
data rate by a factor reaching 5× when the number of receivers is infinitely large.
Relative to the state-of-the-art two-stage scheme, inter-frame coding increases the
data rate by a factor that can reach 1.55×. Simulation results show that significant
data-rate enhancement compared to the two-stage scheme is also observed for
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finite-length inter-frame codes, for example when the number of frames included
in inter-frame coding is 121 or 1210.

In the second part of the work presented in this dissertation, architecture-aware
Raptor code construction is considered. A three-stage code construction flow is
proposed; it includes: code structuring, row-merging for precode construction, and
subcode-generation for LT construction. The flow simplifies the design process by
partitioning the design of the code, and thereafter decoder, into a set of disjoint,
albeit related, subproblems. The construction flow generates both the LT code
and precode starting from one regular matrix. On the other hand, it decouples
code structuring, crucial to obtain hardware regularity and avoid short cycles
in the Raptor bi-partite graph, from the inherently irregular pseudo-random LT
encoding. A major consequence is that decoding of the highly irregular Raptor code
is mapped into sequential row-processing of a regular matrix ; a hardware-efficient
architecture of this row-processor is subsequently developed. A major requirement
for this mapping to be possible is the design of reconfigurable fixed-throughput
check-function units that can process LDPC nodes as well as LT subcodes, in a
sense that will be detailed later in the dissertation. In general, the design of such
units can be challenging; however, three different designs of the reconfigurable
check-function unit are developed, assuming a specific LT construction method.
In this dissertation, each of the three stages of the construction flow is discussed,
and the corresponding proposed solutions are linked to miscellaneous issues of
hardware-efficiency an/or coding-performance.

The coding-performance of some sample codes, constructed according to the
proposed construction flow, under additive white gaussian noise (AWGN) channels
is simulated. The resulting frame-error-rate (FER) curves are comparable to that
of standardized LDPC codes. This shows the potential of the proposed construc-
tion scheme to generate codes that have good coding-performance. Besides, the
number of decoding iterations and memory size required in the decoding of the
constructed Raptor codes are obtained, demonstrating the impact of the differ-
ent proposed construction techniques on the hardware-efficiency of decoding. As
a proof of concept, a serial Raptor decoder is synthesized in 65 nm, 1.2 V CMOS
technology. Hardware simulations show that the decoder, decoding a rate-0.4 code
instance, achieves a throughput of 36 Mb/s at SNR of 1.5 dB, dissipates an average
power of 27 mW and occupies an area of 0.55 mm2.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows. In Chapter 2, the problem
setup is defined and some terminology is set.

Chapter 3 presents the background material and motivates the proposed re-
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search directions. First, the channel-state variation problem is defined. Then, the
conventional solutions to this problem in each of unicast and broadcast commu-
nication scenario are described. The drawbacks of these solutions in broadcast
communication are thus clarified. Second, the rate-compatible coding problem is
considered. The techniques to design rate-compatible LDPC codes are described
and evaluated. Raptor coding is then discussed. Finally, an overview of the itera-
tive LDPC decoder architecture is given; the main considerations in its design are
identified along with the state-of-art design directions.

In Chapter 4, the increment-based inter-frame coding approach is proposed.
First, the inter-frame encoding and decoding algorithms are described. Second,
the corresponding architectures are presented. Third, the corresponding channel
model is described. Fourth, mathematical characterization of the asymptotic cod-
ing performance of the proposed inter-frame coding scheme is done. The obtained
performance is then compared to that of the state-of-the-art methods. Finally,
some simulation results are presented.

Chapter 5 is on the architecture-aware construction of Raptor codes. First, the
deployment of Raptor codes is motivated, partially in light of the developed inter-
frame coding scheme. Next, the proposed construction framework is presented
along with the resulting decoder architecture and scheduling. Each of the stages
of the proposed framework is considered next, along with the architectural impli-
cations of the different design options. Finally, several aspects of the constructed
Raptor codes, corresponding to their coding-performance and hardware-efficiency
of decoding, are obtained via simulations.

Chapter 6 concludes the dissertation. It summarizes some main conclusions
drawn from the work done, and discusses some resulting open questions.
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Chapter 2

Problem Setup

In this chapter, the setup of the problem is described. A note on the terminology
is however due prior to the description. Unless stated otherwise, symbols that
are defined in this chapter have their definitions valid throughout the rest of the
dissertation. Otherwise, a symbol defined elsewhere has its definition valid only
within the section or chapter including it.

The communication scenario assumed in this dissertation can be summarized
as follows. On the sender/transmitter side, an information sequence of NF ·K bits,
called here data bits, is to be sent to a number NR of receivers. This sequence can
be viewed alternatively as a sequence of NF K-bit information/data blocks. Each
receiver is supposed to recover this sequence1, with a probability of failure below
a certain target failure-rate. To keep the problem definition as general as possible,
no further assumptions are made concerning the nature of the application involved
in this communication process. If the number of Receivers NR is equal to 1, the
communication scenario is unicast; other-wise it is a broadcast communication
scenario.

Figure 2.1 illustrates the problem setup, on the transmitter side, assumed
throughout this work. The NF ·K date bits are encoded using an APP-layer
erasure encoding procedure with rate RE = NF

NT
. The occurrence of this encoding

step depends on the overall communication scheme deployed to achieve the reli-
ability of communication between the sender and receiver. In case no APP-layer
erasure encoding is applied, RE can be thought to be equivalently 1 and NT = NF .
The resulting (NT ·K)-bit sequence is partitioned into NT blocks. Each block con-
sists of K-bits or equivalently L symbols, where each symbol includes K/L bits.
A block is forwarded to the PHY-layer channel encoder that generates a rate-RL

encoded frame, where RL = K
N+D·∆ and D,∆, N ∈N are parameters to be defined

1A relaxed requirement is that the ratio of the number of unrecovered bits to NF ·K is very
close to 0
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next. This encoder is called “intra-frame” in this work to differentiate it from
the APP-layer encoder and the inter-frame encoder described in Chapter 4. It
is designed to be rate-compatible. Therefore, the rate-RL encoded frame can be
viewed as a concatenation of a rate-RH N -bit encoded frame, where RH = K

N
,

and D vectors or increments of size ∆ bits each. The jth increment, is denoted
by ∆(f, j), where 1≤ j ≤D and f is the frame index. The sequence of the NT

(N+D ·∆)-bit frames is then forwarded to a process that produces the bit stream
to be transmitted over the wireless channel. One of the operations performed by
this process is setting the code-rate of the frames to RL ≤ R ≤ RH by choosing
the first K/R bits of each input (N+D · ∆)-bit frame for transmission. The re-
sulting intra-frame code-size, or equivalently frame-length, is equal by definition
to K/R. The inter-frame encoding process, proposed in Chapter 4 can be viewed
as an example of such a process. Two notes should be made in this regard. First,
the setup is made general enough to fit the proposed inter-frame coding scheme
as well as the conventional solutions discussed in the following chapter. Second, it
is assumed that the step of partitioning the bit sequence into blocks is done only
at the APP-layer. Such assumption is made here solely for simplicity; it has no
bearing on the validity of the results obtained in this work.

At the receiver side, it is assumed that the log-likelihood ratios (LLRs) of the
transmitted bits are fed as input to a recovery process that restores the NT blocks.
This recovery process is the focus of this dissertation, in which two aspects of it
will be discussed. In Chapter 4, the recovery process is proposed to be the inter-
frame decoding process. This process, and any other conventional process, includes
the PHY-layer channel-decoding (typically soft-decoding) as a major component.
This channel-decoding is called here “intra-frame” to differentiate it from inter-
frame decoding. The design of hardware-efficient and good-performing intra-frame
Raptor decoders is the focus of Chapter 5. The following related terminology is
defined. An N -LLR vector corresponding to the first N -bit portion of a transmit-
ted frame f , f ≤ NT , is denoted by ΛN(f), whereas a ∆-LLR vector corresponding
to ∆(f, j) is denoted Λ∆(f, j).

A note should be made on the term coding-performance used throughout the
dissertation. In the context of intra-frame coding, the performance of a code is
measured in terms of its frame-error-rate (FER) versus the signal-to-noise ratio
(SNR), obtained under for the considered wireless channel. In the context of
inter-frame coding (Chapter 4), the term coding-performance is equivalent to the
achievable data-rate. It is measured in terms of the resulting effective frame-length
defined as: the average number of bits, per K-bit information/data block, that
needs to be transmitted so that the probability that the receiver fails to recover
the (NF ·K)-bit information sequence is below some target value. It is therefore
equal to the total number of transmitted bits divided by NF .
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Chapter 3

Background Material

The problem addressed in this dissertation is a composition of two related problems
that can be briefly stated as follows:

1. Enhancing the achievable date-rates in broadcast communication, by apply-
ing channel-to-rate matching on the receiver side; this is the premise of the
proposed increment-based inter-frame (IIF) coding approach. This approach
extends the application of rate-compatible coding to the broadcast commu-
nication scenario.

2. The development of architecture-aware rate-compatible codes that perform
well when applied in both the unicast scenario (conventional application)
and broadcast scenario (proposed application).

The composition of this problem induces the division of the current chapter into
two parts. In the first part, the problem of the variation of the channel-state across
the different transmitted frames is stated. Then, the state-of-the-art approach to
this problem in the unicast communication scenario is clarified by describing the
hybrid automatic repeat request (HARQ) scheme. This latter scheme requires the
deployment of efficient rate-compatible codes for good performance. The channel-
state variation problem in the broadcast communication scenario case is then dis-
cussed. The discussion includes the particular challenges faced in the broadcast
scenario, in addition to the the existing solutions and their drawbacks. In the
second part of this section, the design of rate-compatible codes is considered. The
existing work on the design of rate-compatible LDPC codes is discussed. Of these
codes, Raptor codes, being a main subject of the presented work, are explained.
Then, the problems dealt with in the design of hardware-oriented codes are clar-
ified by giving a general overview of the state-of-the-art iterative LDPC decoder
architectures.
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3.1 The Channel-State Variation Problem

A defining characteristic of the mobile wireless channel is the variation of the chan-
nel strength over time and frequency; such variation can be divided into large-scale
and small-scale fading [37]. Large-scale fading is usually due to power decay with
distance and shadowing while small-scale fading is typically due to constructive
and destructive interference of the multiple signal paths between the transmitter
and receiver. The signal quality is also affected by inter-user interference, an ex-
ample of which is the intra-cell and inter-cell interference in cellular systems, which
is time-varying as well. A key property of wireless communication can be then be
stated as follows: the state of the channel over which the frames are transmitted
varies across different frames.

In terms of the setup described in Chapter 2, a major impact of the channel-
state variation problem is that the appropriate code-rate R, 0 ≤ R ≤ 1, varies
across different frames. This, in turn, poses the problem of matching the code-
rate to the corresponding channel-state, under varying channel conditions. This
channel-to-rate matching is required to achieve high communication data-rate: a
code-rate higher than the appropriate rate implies a high probability of decoding
failure at the receiver side, while a lower code-rate requires transmitting excessive
redundancy bits, leading to power inefficiency and data-rate loss.

The variation of the appropriate code-rate is quantitatively illustrated in Fig. 3.1.
The corresponding plots in the figure show the frame error-rate (FER), defined
as the rate of decoding-failure of a frame, versus the frame-length over a fad-
ing channel. The simulation setup can be summarized as follows: the wireless
channel is modeled as a Pedestrian-B (PedB) fading channel [38], subject to
white Gaussian noise with fixed variance. A K-bit block is encoded via an LTE
turbo code [38] into a (N +D · ∆ < 3K)-bit encoded frame f with parameters
(K,N,∆) = (4096, K/0.75, 0.1N). The modulation scheme used is 16-QAM. For
every 1≤ i≤D, the transmission of the (N+i ·∆)-bit portion of the frame over
the wireless channel is simulated and decoding is applied on the corresponding
log-likelihood ratio values. Two FER values are output ∀i: one assumes that the
N -bit portion and each of the increments ∆(f, j), 1≤ j≤ i, are transmitted over
decorrelated channel instances; the other assumes the whole (N+ i ·∆) portion is
transmitted over a fully correlated channel instance. For both values, the simula-
tion assumes an independent channel instance for every instance of the (N+i ·∆)-
bit portion transmission. Overall, the simulation results show a clear example of
the case where the FER changes relatively gradually rather than abruptly, as the
code-rate changes.

Channel-state Correlation: The previously described simulations assume
an independent channel instance for every single frame transmission. This block-
fading channel assumption overlooks the possible correlation in the channel-state
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Figure 3.1: FER versus frame-length. The x-coordinates are measured in terms of
the number of increments concatenated to the N -bit portion.

across consecutive frame transmissions. In general, the magnitude of this cor-
relation is dependant on the channel characteristics, an example of which is the
channel coherence time. It is dependant, as well, on the time elapsed between
two consecutive frame transmissions which is application-dependant. As will be
shown in the next section, different approaches are typically applied in unicast
communication, depending on whether the channel-state changes relatively slowly
(slow fading, significant correlation) or fast (fast fading, little correlation). In the
broadcast communication scenario, the correlation does not affect the correctness
of the inter-frame coding solution proposed in this work, since such correlation can
be mitigated by increasing the inter-frame code size and using interleaving. Yet,
these latter measures do have an impact on the required hardware resources and
latency time, subjects that will be discussed in Chapter 4. Another correlation
figure to be considered is the intra-frame channel-state correlation defined here
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as: the magnitude of correlation between the 1) channel-state under which the
transmission of the N -bit portion of a frame f occurs, and 2) the channel-state
under which the transmission of the corresponding increments, ∆(f, i), occurs.
The significance of the intra-frame channel-state correlation in the design of rate-
compatible codes will be clarified later in this chapter, when discussing the HARQ
scheme (3.2) and rate compatible LDPC-code extension (3.4), and in the chapter
on architecture-aware Raptor code construction (5).

Problem Setup Revisited In light of the channel-state variation problem,
the partitioning of the information sequence into K-bit blocks has to be revisited.
A plausible solution to the cross-frame channel-state variation is to encode the
NF ·K information bits into one frame with an appropriate code-rate. The moti-
vation is that if the frame-length is large enough, the availability of the statistical
channel-state information (CSI) would be sufficient to determine the optimal code-
rate, as is suggested by the basic communication theory of Shannon. Two practical
reasons make this solution implausible. First, the decoder typically has to receive
the whole frame before starting the decoding procedure. This would lead to a large
latency between the generation of the information sequence at the sender side and
recovering it at the receiver side. Second and more importantly, is that the chan-
nel decoder, usually implemented in hardware as an ASIC (Application-Specific
Integrated-Circuits) solution for power and throughput reasons, has to support
now much larger frame-lengths as the information block-length is multiplied by
a factor of NF , (from K to NF · K). This is clearly impractical in virtually any
hardware-based system.
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3.2 The Unicast Scenario: HARQ schemes

In the unicast communication scenario, the channel-state variation problem is
typically managed through a feedback-based scheme, as is done for example in
LTE [7]. The approach used in this scheme depends on the time period over
which the channel quality changes. For a slow variation in channel quality, the
channel-state information (CSI) at the transmitter is updated upon feedback from
the receiver, initiating what is called link adaptation: the modulation type and
code-rate are changed to cope with the change in the reported channel quality.
Link adaptation however does not deal with the case of decoding-failure events.
In addition, for relatively fast variations in the channel quality, the channel-state
information on the sender side becomes obsolete quickly and has to be updated
with an impractically high frequency; thus making the link-adaptation error-prone,
costly and/or even infeasible. Numerous Automatic Repeat Request techniques
are developed to approach this problem [7].

Automatic repeat request (ARQ) is an acknowledge-based error-control mech-
anism. In its most basic form, error-detection bits are added to the data bits,
typically generated using the cyclic redundancy check (CRC) codes. On the re-
ceiver side, the redundant bits are used to detect an error event occurrence in the
transmitted frame. A 1-bit flag on data recovery success or failure, corresponding
respectively to detection of an error event or not, is fed-back to the transmitter. In
case an error is detected, the frame is retransmitted. This procedure is clearly in-
efficient and variations of the ARQ mechanism are developed to incorporate more
efficient recovery procedures.

Hybrid-ARQ (HARQ) is one such variation that combines forward error cor-
rection to ARQ procedure. HARQ has been widely adopted in wireless commu-
nication standards (e.g. IEEE 802.16e/WiMAX [10] and 3GPP-LTE [11]). It
involves successive feedback-based retransmissions to achieve high throughput. A
rate-RH encoding frame is transmitted, and then an extra “retransmission” is
invoked each time the feedback from the receiver indicates a decoding failure.
HARQ schemes are mainly based on either Chase-combining [8] or incremental-
redundancy (IR) [9]. Chase-combining involves repetition coding: retransmissions
consist of bits that were within the initially transmitted rate-RH frame, on which
the receiver applies maximal-ratio combining prior to retrying to decode the frame.
In the IR-HARQ scheme illustrated in Fig.3.2, retransmissions consist of additional
redundancy bits. Rate-compatible coding is, therefore, a fundamental component
of IR-HARQ. In the rest of this dissertation, it is assumed that the ith retrans-
mission corresponding to frame f is the increment ∆(f, i). The transmission of
increment ∆(f, i) means that the code-rate goes from K

N+(i−1)·∆ down to K
N+i·∆ .

IR-HARQ can be thus viewed as matching the channel-state to the appropriate
code-rate by successively increasing the encoding frame-length to its appropriate
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Compared to Chase-combining, IR-HARQ achieves coding gain and, thus,
should have better performance. However, it is shown in [33] that this is not
always true, as will be briefly described here. The reported theoretical results
in [33] were obtained using the accumulated mutual information metric condi-
tioned on the signal-to-noise ratio (SNR) level. Besides, simulations were applied,
using turbo codes, to verify the theoretical findings. Two significant results were
deduced. First, the analysis shows that IR-HARQ outperforms Chase-combining,
and that the corresponding gain tends to increase with the initial code rate (i.e.
RH) but decrease with the signal-to-noise (SNR) variation between retransmis-
sions. Second, when the 1) SNR disparity between the initial transmission and
the successive retransmissions is high and 2) the initial rate-RH frame is trans-
mitted through a channel instance with low SNR, the simulation results deviate
considerably from the theoretical results. The gain achieved by IR-HARQ over
Chase-combining tends to be less than that predicted by the theoretical model. In
the extreme case where the systematic part of the turbo codeword is effectively
erased, the Chase-combining scheme could outperform some IR-HARQ schemes.
This result is reasonably attributed to the structure and iterative decoding method
of the turbo code. The latter scenario of high SNR disparity between the initial
transmission and the successive retransmissions could be due to the low intra-
frame channel-state correlation, defined in Section 3.1. The scenario of low intra-
frame channel-state correlation will be called intra-frame varying channel condition
throughout the rest of this dissertation. Overall, the following conclusion can be
made: while IR-HARQ outperforms Chase-combining, the structure of the deployed
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rate-compatible code and its corresponding decoding method can make it difficult to
realize this performance gain in some scenarios, particularly in the case of intra-
frame varying channel condition. This point will be revisited later in this chapter,
in the discussion on the design of rate compatible LDPC codes (Section 3.4).

Several enhancements were proposed to the initial HARQ method. For ex-
ample, to enhance throughput, adaptive IR-HARQ was proposed and analyzed
in [39, 40], where different retransmissions can have different lengths. It is note-
worthy that while the IR-HARQ is typically implemented at the PHY-layer, the
concept of IR-HARQ can be extended to upper-layers as in [41], where it is applied
over the erasure channel.

A perfect example in which the link adaptation and HARQ techniques are used
to achieve reliable and efficient data communication is LTE [7, 42]. Considering
link adaptation for downlink transmissions for instance, the feedback from the
receiver called channel quality information (CQI) indicates directly the appropriate
combination of modulation-scheme and code-rate out of 16 possible choices. The
possible modulation schemes are QPSK, 16QAM, and 64QAM, while the code-rate
varies approximately from 0.93 down to 0.076. A 1/3-turbo code is deployed as
the mother code which is used to realize any of the possible code-rates through
puncturing and/or repetition. A circular-buffer rate-matching algorithm is used to
select the bits for transmission from the rate-1/3 frame as briefly described: each
of the systematic-bit partition, even-indexed parity-bit partition and odd-indexed
parity-bit partition is interleaved separately, and then placed in a circular buffer via
a very simple permutation. Transmission or retransmission is done by choosing a
starting point, called Redundancy Version (RV), and reading the required number
of bits for transmission serially with wrap around to the beginning of the buffer if
the end of the buffer is reached. For efficient HARQ schemes, a number of different
starting points (RVs) are chosen. The resulting HARQ is, therefore, a hybrid of
chase-combining and incremental-redundancy HARQ techniques.
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3.3 The Broadcast Scenario: Existing Solutions

and Drawbacks

In broadcast communication, the channel-to-rate matching problem has to be re-
considered. Feedback-based schemes, like HARQ, do not scale well as the num-
ber of receivers grows. The underlying reason is that the channel-state variation
in the broadcast scenario is two-folded: 1) per single receiver, the channel-state
varies across different frame-transmissions and 2) per single frame-transmission,
the channel-state varies across different receivers. The impact of this two-folded
variation will be clarified in this section when discussing the application of HARQ
in the broadcast scenario.

In general, three conventional schemes are typically deployed, jointly or dis-
jointly, to achieve reliable communication in the broadcast scenario: 1) PHY-layer
forward error correction (FEC), 2) HARQ, and 3) erasure coding. For clarity,
these schemes will be evaluated qualitatively, and the resulting arguments will be
illustrated by numerical examples from Fig. 3.1 where necessary.

1. PHY-layer FEC with no feedback: To achieve a small FER, each K-bit
information block has to be encoded using a very low code-rate. Considering the
uncorrelated channel curve in Fig. 3.1 as an example, a frame-length of (N+6·∆)
is required to achieve a FER of ∼ 10−3. From the curve itself, it can be deduced
that approximately 99.4% of the successfully decoded frames, could have also been
successfully decoded if the frame-length was set to (N+5·∆), instead of (N+6·∆).
This observation points out to the coding inefficiency of PHY-layer FEC stand-
alone solution: for the vast majority of the transmitted frames, much smaller frame
lengths are sufficient for successful decoding.

2. IR-HARQ: In the unicast scenario, HARQ is optimal in the sense that the
number of retransmission trials is equal to the number of retransmissions required
for successful decoding by the receiver. However, applying the HARQ technique
in the considered broadcast scenario is not sufficient to result in such optimal per-
formance, as explained next. For simplicity, assume that all the receivers have the
same statistical channel-state description. Furthermore, as stated in 3.2, for each
frame f , the first N -bit portion of f is initially transmitted and the ith retrans-
mission consists of ∆(f, i). Per frame, the number of transmitted increments must
be greater than or equal to the number of increments required by each receiver.
This means the number of transmitted increments must match the receiver with
the worst instantaneous channel-state condition. If the number of users is large
enough, then for every frame, there exists with high probability a receiver whose
corresponding channel is temporarily bad, and therefore requires a large number
of transmitted increments. It can be checked that the underlying phenomenon
of matching the number of retransmissions to the worst channel-state instance,
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has its counterpart in any other feedback-based scheme. This conclusion is nu-
merically illustrated in Chapter 4 where the date-rate values obtained by each of
the IR-HARQ and the proposed increment-based inter-frame coding scheme are
compared, under the channel model developed there.

3. Erasure coding/Two-stage scheme: The state-of-the-art scheme in broad-
cast communication is based on a two-stage forward error-control scheme in which
APP-layer erasure coding is combined with conventional PHY-layer channel cod-
ing. The use of erasure coding is illustrated as follows: the information sequence
of NF · L symbols is encoded, using a rate-RE erasure code, into L·NF

RE
encoding

symbols. These symbols are partitioned into NT = NF
RE

K-bit/L-symbol blocks,
each of which is forwarded to the PHY-layer encoder to produce a rate-R frame
that is transmitted over the channel. At the receiver side, each of the NT frames is
intra-frame decoded; if decoding fails, the L symbols corresponding to the frame
are considered erased; otherwise, the corresponding L symbols are recovered and
collected. The collected symbols are then used, via erasure decoding, to recover
the original NF · L information symbols.

Erasure coding is typically deployed at the APP-layer forming, together with
PHY-layer intra-frame coding, a two-stage forward error-control scheme. This
scheme is motivated by several factors. First, the simplicity of the erasure-channel
model implies that the corresponding decoding algorithms are significantly sim-
pler than the intra-frame decoding algorithms. Thus, erasure decoding can be
efficiently implemented in software, making it flexible and adaptable to the type
of application involved. Second, due to this combination of flexibility and relative-
simplicity, the erasure-code size can be made much longer than the PHY-layer
frame-length so that the erasure code spans multiple PHY-layer frames. There-
fore, erasure coding is used to withstand any type of channel-state variation that
leads to a relatively high intra-frame decoding-failure rate, i.e. high FER. Third,
contrary to the feedback-based retransmission schemes, coding scales well as the
number of receivers goes up. It can withstand, for any receiver, an erasure rate
that converges to 1−RE as the number of transmitted frames NT goes to infinity.

Of the codes proposed to be deployed for erasure-coding are Reed-Solomon
codes [43] and LT/Raptor codes [24, 35]. Due to their linear-time encoding and
decoding and their excellent coding performance, Raptor codes were included in
the 3GPP multimedia broadcast/multicast services (MBMS) [12] and digital video
broadcasting-handheld (DVB-H) [13] standards. RaptorQ [44] is an enhancement
of Raptor codes, to support larger block sizes and achieve better coding perfor-
mance [45]. Beside the encoding procedure, a key factor in achieving this coding
performance is the inactivation decoding method of [46], which combines the low
complexity of the belief-propagation method, originally assumed in [24], with the
decoding guarantee of Gaussian elimination. While Raptor coding is typically im-
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plemented in software, hardware accelerators are proposed to enhance the power
and decoding throughput [47].

An optimization problem resulting from the two-stage scheme is how to deter-
mine the appropriate combination of intra-frame code-rate R, and erasure code-
rate RE, to minimize the overall redundancy involved in encoding the information
sequence and, thus, optimize the coding performance metric. This problem is con-
sidered in [48, 49] under various assumptions on the channel model and commu-
nication scenarios. It is considered again in Chapter 4, under the channel model
developed there, in order to compare the coding performance of the two-stage
scheme to that of the proposed inter-frame coding.

The main drawback of the two-stage scheme is due to the underlying erasure-
channel abstraction it involves: a frame of which intra-frame decoding fails is
dropped and the corresponding symbols are considered erased. The erasure-
channel abstraction is most appropriate for a polarized physical channel behaviour,
in which the channel is either extremely noisy (deep fading) such that the received
frame is nearly erased, or good enough for the frame to be successfully decoded.
However, as illustrated in Fig. 3.1, most decoding failures at intra-frame code-
length of N can be recovered by sending few additional increments of redundancy
bits, that is by decreasing the code-rate beyond K/N and retrying intra-frame
decoding. This is the actually the main motivation of IR-HARQ in unicast com-
munication. To quantitatively illustrate the data-rate loss due to the erasure-
channel abstraction, the following example is considered: assume intra-frame de-
coding of two frames results in one decoding failure (i.e. one frame dropping) and
one decoding success. Overall, in the conventional two-stage scheme, a total of
2 · N bits are transmitted to accumulate the K systematic bits included in the
successfully-decoded frame. On the other hand, if concatenating i increments to
the unsuccessfully-decoded N -bit frame is sufficient for successful intra-frame de-
coding, then (N+i ·∆)<2 ·N bits need to be transmitted to accumulate K bits.
For unicast scenarios, this is achieved through feedback-based HARQ schemes.
However, feedback-based schemes do not scale well as the number of receivers
grows.

The deficiency caused by erasure-channel abstraction is addressed in [14–16] by
applying post-decoding processing on the frames on which intra-frame decoding
fails. In [14], a “revive” stage is added which consists of applying the sum-product
algorithm on the LT-code graph corresponding to these frames. The enhance-
ment in the data-rate, however, is offset by a reported significant increase in the
overall decoding complexity. Furthermore, the proposed LT-decoding is similar to
the message-passing algorithm applied in the PHY-layer low-density parity-check
(LDPC) decoding, and therefore should be implemented in ASIC to achieve rea-
sonable throughput and power figures. Beside the resulting significant hardware
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overhead, this limits the flexibility of LT-coding in terms of graph-connectivity
and code-size. In [15,16], searching/testing procedures based on packet-combining
are devised to correct the errors in the unsuccessfully-decoded frames. The main
drawback of these techniques is that in order to attain good coding performance
at tolerable complexity, the unsuccessfully-decoded frames are assumed to include
very few errors (e.g. less than 10−2 in [16]). Such assumption limits the appli-
cability of these techniques. Overall, these solutions can be viewed as variations
of the two-stage scheme involving different complexity versus coding performance
tradeoffs.

All in all, it can be concluded that data rates that are higher than those
obtained from the three described solutions are achievable. Yet, a reasonable re-
quirement is that any solution achieving higher data-rates should involve a good
tradeoff between complexity and coding performance. That is, the enhancement
in the coding performance must not come along an excessive increase in the com-
plexity of the overall scheme. Evaluating the complexity of a scheme includes
identifying the required hardware resources and the complexity of the underlying
operations. In Chapter 4, a novel increment-based inter-frame coding scheme is
proposed and shown to involve a good tradeoff between complexity and coding
performance. It should be noted here that, like the HARQ scheme, this scheme
involves rate-compatible coding. However,the discussion of the requirements im-
posed by the proposed inter-frame coding scheme on the design of rate-compatible
codes will be delayed to Chapter 5, proceeded by the review of the state-of-the-art
rate-compatible LDPC code design (next in this chapter) and the description of
the proposed inter-frame coding scheme (Chapter 4).
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3.4 Rate-Compatible LDPC Code Design

The rate-compatible code design problem was first considered for BCH [9] and
convolutional [50] codes. This was later followed by the design of rate-compatible
turbo [51–53] and LDPC codes. A main target of the research is to explore the
design of hardware-efficient rate-compatible codes, which are decoded using the
LDPC iterative message-passing algorithms. The Raptor coding solution is pro-
posed to achieve this goal, and is studied accordingly. Raptor codes [24] can be
viewed as a distinctive subclass of LDPC codes. Therefore, the Raptor design chal-
lenges can be fully understood within the context of the rate-compatible LDPC
code-design problem, a survey on which is presented next.

The design of protograph-based rate-compatible LDPC codes [54] is, in partic-
ular, crucial due to the fact that these codes are amenable to hardware-efficient
decoder architectures. A protograph is a Tanner graph with a relatively small
number of nodes, connected by a small number of edges, which also allows parallel
edges. A protograph is represented by a protomatrix whose entries indicate the
number of edges connecting the respective variable and check nodes. The tanner
graph of the code is then obtained from the protograph using the following copy-
and-permutation operation: the protograph is replicated by a factor of Q; then,
the Q edges, formed by replicating 1 edge in the protograph, are permuted. If the
involved permutations, are cyclic shifts, the resulting codes are called Quasi-Cyclic.
The protograph-based LDPC code construction is illustrated in Fig. 3.3. Being
constructed by replicating a small protomatrix, the code has hardware-efficient
partially-parallel decoder architectures, as discussed in 3.6. It is noteworthy that
protograph-based LDPC codes are a subclass of the multi-edge type LDPC codes
proposed in [55].

In general, construction of rate-compatible LDPC codes can be done through
two main methods: 1) code puncturing and 2) code extension. A combination of
these two methods can be used as well to achieve good coding-performance over
a wide range of code-rates. From a code construction point of view, no hard line
exists between these two classes of methods: code extension itself can be viewed
as a special form of code puncturing and vice versa. The distinction is, however,
clearer when examining the LDPC parity-check matrix, and consequently, the
decoding procedure.

3.4.1 Code Puncturing

Code puncturing involves encoding a data block, of length K, using a low-rate
(RL) mother code. A higher-rate (RH > RL) coded-frame is then obtained by
puncturing K

RL
− K

RH
bits of the rate-RL frame, where the punctured bits are

not transmitted over the channel. On the decoder side, the iterative decoding
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Figure 3.3: Protograph-based LDPC code construction.

algorithm is applied on the tanner graph of the mother code, with the LLRs of
the punctured bits set to 0. To ensure rate-compatibility, the following condition
must be satisfied: ∀RH > RH′ > RL, the punctured-bit set in the rate-RH′ code,
is a subset of the punctured-bit set of the rate-RH code.

The asymptotic performance of punctured LDPC codes has been subject to
several studies (see e.g. [25–27,56]). In [26], the average weight-distribution of the
LDPC codes, and their asymptotic growth rate as well, are analyzed. Accord-
ingly, it is proved that capacity-achieving codes under ML decoding, of any rate
and for any memoryless binary-input output-symmetric (MBIOS) channel, can
be constructed by puncturing some original LDPC code with small enough rate.
In [25], it is shown that for any ensemble of LDPC codes of rate R1, there exists
an ensemble of punctured LDPC codes of the same rate, with parent code-rate
R2 < R1, having the same threshold under the belief propagation algorithm. The
puncturing, in [27], is done in the following way: the bits are grouped according
to their corresponding variable-node degrees, and for each degree d, a fraction πd
of the degree-d bits is punctured. The fractions πj, j ≥ 1, are optimized for per-
formance of the message passing algorithm under additive white Gaussian noise
(AWGN) channels. The resulting rate-compatible puncturing results in a small
performance loss, that is the punctured codes are good (in terms of the Eb/N0

SNR threshold) across a range of rates when compared with the optimal codes
for each rate. The obtained gap-to-capacity is in the range of 0.2 − 1 dB, with
the gap increasing as the code-rate increases, that is as more bits are punctured.
The phenomena of the gap-to-capacity increasing with rate is avoided in [56] by
applying joint-optimization across all the considered rates.

The performance degradation with increasing rates, observed in some punc-
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tured LDPC codes, can be attributed to the puncturing step itself. To clarify this
point, random puncturing is considered: it is equivalent to transmitting the origi-
nal rate-RL frame over a binary erasure channel. Assume the portion of punctured
bits, 1 − RL

RH
, exceeds the maximum erasure-rate for which iterative decoding of

the mother code under binary erasure channel succeeds. Then, decoding of the
rate-RH frame transmitted over the wireless channel fails, regardless of the chan-
nel noise level. This threshold is called the puncturing threshold [25]. Typically,
as the portion of punctured bits approach the threshold, performance deteriorates
rapidly. This problem is aggravated in the case of finite-length code design, where
frame-lengths are in the range of few Kbits. In an extreme case, bad puncturing
can lead to the creation of a stopping set, leading to a decoding failure probabil-
ity of 1, under the conventional iterative decoding and regardless of the wireless
channel condition.

The design of finite-length punctured LDPC codes consists, typically, of choos-
ing a good-performing mother-code followed by applying a heuristic to determine
the appropriate puncturing pattern, that is the set of punctured bits. In [57], the
mother-code was designed using the progressive edge growth algorithm with some
variable degree distribution, under the constraint that the submatrix of the parity-
check matrix corresponding to parity bits is lower triangular for fast encoding. A
similar approach is followed in [28], where the parity-bit part of the parity-check
matrix is deterministically constructed, while the design of the systematic-partition
is oriented to yield a target degree distribution. In [29], a technique is developed
to construct the low-rate mother-code protograph from a higher rate protograph,
while optimizing the resulting AWGN and erasure decoding thresholds. The punc-
turing heuristics are tailored to deal with a general form of the phenomena dis-
cussed in the previous paragraph. For example, the notion of recovery tree of a
punctured-bit node was introduced in [30]. For a variable/bit-node v, a recov-
ery tree T (v) is the shortest tree, in the Tanner graph of the mother code, with
the following properties: 1) the root node is v, 2) the neighboring bit-nodes of a
check-node in the tree, are also in the tree, and 3) and the leaves are unpunctured
bit-nodes. If the tree is of depth 2, that is v has at least 1 check-node neighbor
whose all bit-node neighbors, excluding v, are unpunctured, the bit corresponding
to v is recovered in 1 iteration for a channel noise level of 0. It is called one-step-
recoverable (1-SR). In general, if the depth T(v) is 2 · m, the bit corresponding
to v is recovered in m iterations for a channel noise level of 0. It is then called
m-step-recoverable (m-SR). A grouping-and-sorting algorithm is then developed
to determine the puncturing pattern/order of the code. Variable nodes are parti-
tioned into groups Gi, i ≥ 1, where Gi is the set of i-step-recoverable nodes. The
algorithm tries to maximize the size Gi, progressively as i increases. The bits in
Gi−1 are punctured prior to puncturing bits in Gi. Within a single Gi, the nodes
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are sorted in an increasing order of the number of unpunctured nodes in the re-
covery trees, and punctured accordingly. A variation of this method is proposed
in [58], where the puncturing order of variable nodes is determined according to
a proposed cost function. The proposed cost function tries to maximize the mini-
mum reliability among those provided from all check nodes and allocate survived
check nodes (connected to only 1 punctured bit-node) evenly to all punctured
variable nodes. In addition, the puncturing algorithm prevents the formation of
a stopping set from the punctured variable nodes. In [59], the puncturing scheme
is tailored to have the punctured bits “far” apart from each other in the Tanner
graph of the mother code. Further improvement can be brought to the puncturing
algorithm by considering additional criteria, an example of which is approximate
cycle extrinsic message degree (ACE). The ACE measures, per cycle, the number
of edges connecting the cycle to the rest of the graph; the algorithm proposed
in [60] aims, in broad sense, to avoid the case that a punctured bit is involved in
a high number of low-ACE cycles.

The puncturing-pattern generation, per code, involves a considerable hard-
ware overhead. In general, the puncturing procedures do not have simple ASIC
(application specific integrated circuits) implementations. Alternatively, it is not
memory-efficient to store the puncturing patterns for each mother code instance.
A major simplification to the problem is brought by protograph-based LDPC code
construction. The puncturing can be applied on the protograph of the code rather
on the whole tanner graph, and therefore the memory required to store the punc-
turing pattern is significantly reduced. Such block-level puncturing, has two main
draw-backs: first, the number of realizable rates is limited since the frame-length
changes in multiples of the replication factor of the code; and second, it becomes
difficult, under some protograph-based designs, to avoid the formation of stop-
ping sets by the punctured bits [29]. Yet, such approach yielded less than 0.3 dB
gap to capacity over binary-input AWGN channels for a rate range of [8

9
, 8

16
] in

protograph-based E2RC-like codes [56]. In addition, block-level puncturing was
also applied in [61], on a rate-1/2 short-length LDPC code defined in WiMax
standard. Puncturing within blocks was merely used, to realize a code-rate that
is between two discrete rates obtained from block-level puncturing. With such
puncturing scheme, a bit-error-rate (BER) performance degradation of less than
0.2 dB was reported.

A detailed evaluation of puncturing depends on the details of both the LDPC
mother-code and the puncturing scheme. However, three observations can be made
regarding 1) the code-rate range, 2) the convergence speed of decoding, and 3) the
number of operations performed in one decoding iteration. First, the minimum al-
lowable rate of the code is the mother-code rate, and rates beyond the mother-code
rate can only be obtained through repetition. Second, decoding of a punctured
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code combines both erasure- and error- correcting, since it involves recovering the
punctured bits and correcting the erroneous unpunctured bits. This suggests that
for a certain code-rate, the average number of iterations needed to decode a punc-
tured LDPC code is higher than its counterpart in a fixed-rate LDPC code. To
illustrate this conclusion, consider the puncturing scheme based on the group-and-
sorting algorithm in [30]: as the needed code-rate increases, a larger portion of bits
are punctured, then the maximum value of i, (iMAX) such that some i-SR nodes are
punctured, increases. Under the two-phase message-passing (TPMP) algorithm,
this means that at least iMAX iterations are needed so that all variable nodes have
nonzero posterior LLRs. This analysis is supported in [62], where decoding of a
punctured rate-0.75 code required approximately 10 additional iterations to con-
verge compared to the decoding of a dedicated/fixed rate-0.75 code. This problem
is approached in [63] through a combination of turbo-decoding message-passing
algorithm and efficient check node layering/reordering. However, more study is
needed to understand fully the extent of improvement brought by such scheme,
especially as the mother-code rate decreases. Besides, check node layering is a
technique usually used to design efficient decoder architectures, and using it to in-
crease convergence speed would, therefore, restrict the decoder-architecture design
space. The third observation is that the number of operations, being computa-
tions or memory-accesses, done in one decoding iteration is higher for punctured
codes than for dedicated fixed-rate codes. This can be justified by the fact that
the number of performed operations in a single decoding iteration is proportional
to the node and/or edge count in the tanner graph of the code. For a rate RH ,
the numbers of edges and nodes in the low-rate mother-code are greater than
their counterparts in the dedicated (fixed-rate) rate-RH code. For instance, in
the LDPC codes defined in the WiMax standard (IEEE802.16 [10]), a dedicated
rate-5/6 LDPC code has 4 edges per information bit as compared to 6.33 edges
for the code formed by puncturing a rate-1/2 mother-code.

3.4.2 Code Extension

Code extension methods generate progressively low-rate codes starting from a high-
rate daughter code, as illustrated in Fig.3.4. Considering two rates RH > RL, the
parity matrix HL of a rate-RL code is generated from the parity matrix HH of
a rate-RH code by adding an equal number, K

RL
− K

RH
, of rows and columns to

HH. In rate-compatible coding, the linear constraints satisfied by the original K
RH

-
bit frame, persist in the new lower-rate code. Therefore, the top right submatrix
of HL, formed from the rows of HH and the added K

RL
− K

RH
columns, is a zero

submatrix. Unlike the case of punctured codes, the tanner graph on which iterative
decoding is applied grows as the code-rate goes down.
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Figure 3.4: LDPC code extension, applied on the protomatrix instead of the parity-
check matrix. The rate changes from 2/3 to 1/2, and then to 0.4.

One advantage of constructing rate-compatible codes using extension is that
the LDPC tanner graph can be extended indefinitely. Thus, there exists no lower
bound on the minimum code-rate as the information block-length K goes to∞. In
practice, two considerations determine the minimum rate: a possible widening gap
to capacity as rate decreases and the availability of sufficient hardware resources.

Several code extension techniques were proposed in literature. The construc-
tion framework in [64] includes a combination of code puncturing and extension to
obtain a wide range of possible rates, but no specific extension procedure is pro-
posed except imposing the constraint that the weights of the added columns have
to be greater or equal to 3. The construction in [57] is based on three elements: 1)
high-level structuring of the extended matrix, 2) some optimized variable degree
distribution and 3) and progressive edge-growth techniques to avoid short cycles
and approach the target distributions. In [65] , code extension uses both check
splitting, to vary the check-node degrees with decreasing rates, and edge growth
techniques to obtain the target variable degree distributions.

Recently, a method to design near-capacity protograph-based extended codes
was proposed in [31]. An example code sequence was constructed, over a rate
range of [0.32, 0.83], showing less than 0.2 dB asymptotic gap to the corresponding
capacity limits. Similar techniques were used in [32, 66] to obtain coding-efficient
protograph-based short-length codes. The design method progressively repeats
the following: it adds one check node and one variable node to the protograph
and then searches for the optimal edge-connection between these new nodes and
the protograph. This is equivalent to searching for the best integer values of the
entries of the row added to the protomatrix. The search space is restricted by
constraints aiming to ensure low searching complexity, good coding thresholds,
and linear minimum-distance growth. The search step is based on the PEXIT
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method [67], an EXIT-based (extrinsic information transfer) method that can
deduce the decoding threshold of a code from its protomatrix.

3.4.3 Protograph-based LDPC Code Extension: Assess-
ment

Protograph-based LDPC extended codes have excellent coding-performance at dif-
ferent block-lengths and are amenable, via their structure, to efficient decoder
implementations as discussed in 3.6. However, three observations can be made
on the protograph-based LDPC code extension, pointing out to possible needed
improvements.

First, code extension, in general, increases both the vertical and horizontal di-
mensions of the protomatrix, with decreasing code-rates. As is shown in 3.6, such
variation restricts the decoder architecture design-space in terms of scheduling,
interconnect, and memory organization. However, the effect of such restriction on
the hardware-efficiency of decoding can be made limited for most decoder archi-
tectures.

Second, the growth of the minimum distance of short-length codes as rate
decreases is, in general, difficult to control alongside the “waterfall” coding perfor-
mance1. The problem is aggravated when the permutation groups involved in the
replication of the protographs, are restricted to cyclic shifts where: the obtained
minimum distances, in certain classes of quasi-cyclic codes, clearly deviate from the
corresponding general protograph-based LDPC ensemble bounds [68]. Presence of
low-weight codewords leads to relatively high error-floors as well as to failure in
LDPC error-detection if the decoding converges to another codeword. Simulation
results in [32] show good error-floors for the constructed code instances, however,
more study is needed on the analysis and control of the minimum-distance as the
rate and/or information block-length K vary.

Third, the performance of the extended LDPC codes under the communication
scenarios involving intra-frame varying-channel condition is not clear. For sake of
illustration, two of these scenarios are discussed next, assuming the codes are
constructed according to the protomatrix extension shown in Fig.3.4. The initial
code has a rate of 2/3 and 1×3 protomatrix; upon concatenating the first increment
to the frame, the rate becomes 1/2 and the protomatrix dimensions 2×4; similarly,
the rate goes down to 2/5 and the protomatrix dimensions change to 3 × 5 upon
transmitting the second increment.

1. Out-of-order increment concatenation: the second increment is assumed to
be transmitted over the channel while the first increment is not. This behav-

1“Waterfall” performance corresponds to the steep part of the frame-error-rate curve plotted
versus Eb/N0.
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ior, while unlikely in HARQ, can happen frequently in other communication
schemes, namely the increment-based inter-frame coding proposed in Chap-
ter 4. In the context of the intra-frame varying channel condition problem,
the first increment is assumed to be transmitted over an AWGN channel
with a noise level of standard deviation σ →∞. The code-rate is then 1/2,
but decoding is applied on the whole 3 × 5 protomatrix shown next, where
the bit-nodes corresponding to the fourth column in the protomatrix are
considered punctured. 2 1 2 0 0

1 0 1 1 0

1 0 2 1 1


Combining the last two rows, and therefore, omitting the fourth punctured
column leads to the following equivalent protomatrix, which describes the
obtained rate-1/2 code: [

2 1 2 0
2 0 3 1

]
It can be clearly seen, that the resulting code protomatrix is determined by
the order of increment-concatenation. It is not therefore the following rate-
1/2 code protomatrix, assumed in the code design and which is obtained by
in-order increment concatenation:[

2 1 2 0
1 0 1 1

]
In general, beside the resulting decoding hardware-efficiency problems, the
performance of the code, effectively subject to random puncturing due to
out-of-order increment concatenation, can be significantly degraded.

2. Bad initial channel-condition: assume the initial frame is transmitted un-
der very bad channel conditions, while the increments are transmitted under
significantly improved channel conditions. This scenario is similar to that
observed in [33], and described in 3.1. This scenario can occur in unicast
communication, with IR-HARQ applied, when the corresponding channel is
fast-fading such that the time period separating the transmission of the ini-
tial frame and its corresponding increments is large enough for the channel
to decorrelate. It can also occur when a synchronization error between the
sender and receiver causes the initial rate-RH transmission to go undetected
by the receiver. This scenario is relevant as well in the proposed increment-
based inter-frame coding scheme.
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To illustrate the problem faced in such scenario, the following extreme case
is assumed: the initial rate-RH frame is transmitted over an AWGN noisy
channel with standard deviation σ → ∞, that is the channel converges to
an erasure channel with erasure rate → 1, then the corresponding channel
changes abruptly to a noiseless channel. A number of increments is assumed
to be transmitted over the noiseless channel.
Consider the protograph-based LDPC code example; the initial rate-2/3
frame is assumed erased, while the two increments are received in perfect
reliability, i.e. with LLRs of ±∞. The decoding is applied on the code
described by the whole 3 × 5 protomatrix. Consider the submatrix that is
formed by the rows corresponding to the increments and the columns corre-
sponding to the initial frame, it is:[

1 0 1
1 0 2

]
Since the number of 1-entries in each row is more than 1, the check-to-bit
messages going from the check nodes corresponding to the added increments
will have zero value. Therefore, all the messages exchanged in the iterative
decoding algorithm will have zero value. In general, if the resulting code
extension is such that each of the added rows has more than one 1-entry
in the first K

RH
positions corresponding to the bit-nodes of the initial frame,

then the following happens: these bit-nodes would form a stopping set, and
the frame can never be recovered using iterative decoding regardless of how
many rows are added. That is, iterative decoding cannot recover the block
regardless of the number of transmitted increments.

In regard of these observations, code extension techniques require further en-
hancement to increase their reliability and applicability in different schemes. Rap-
tor coding can be viewed, in a broad sense, as a subclass of code extension with
distinctive properties that make it a potential solution for the aforementioned
problems. It is discussed next.
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3.5 Raptor codes

A Raptor code [24] is composed of a fixed-rate precode concatenated with a rateless
LT-code [35]. The LT-code has a minimum distance that is bounded by the mini-
mum bit-node degree and, hence, exhibits an error floor at relatively high BERs.
A precode is, thus, needed to attain high code minimum-distance and avoid high
error floors.

In this section, the next section, and in Chapter 5 on the architecture-aware
Raptor code construction, the definitions of K, N and rate R are changed slightly
from their previous definitions in Chapter 2, as will be made clear next.

3.5.1 Encoding

Given a block of K data bits, the encoding process is done in two stages. First,
the block is encoded using the precode into a new frame of KLT bits. Next, the
KLT -bit codeword is LT-encoded to generate N = K

R
output bits, for some code-

rate R. Each LT output bit is generated independently as follows. A pre-designed
distribution D on the integers 1, · · · , dmax is sampled to obtain an integer d, called
the output degree, then d bits of the KLT -bit frame are chosen at random, and
their modulo-2 sum (XOR) is transmitted. The design of the distribution D is
crucial for the resulting code to yield good error-correcting performance.

Similar to LDPC codes, an LT-code can be represented by a bipartite (Tanner)
graph with KLT variable/bit-nodes representing the input bits on one side, and
N check-nodes representing the output bits on the other (see Fig. 3.5). An edge
exists between check-node i and bit-node j if bit j is an input to the XOR whose
output is check-node i. In this case, nodes i and j are said to be neighbors. The
degree of a node i, denoted by degi, is the number of edges connected to it. If all
the variable(check) nodes in the graph have the same degree, the graph (code) is
called regular, otherwise it is irregular. The girth is defined to be the minimum
cycle-length in the graph.

An LT-code can be equivalently represented by an N×KLT matrix HLT = [hij],
where hij = 1 if bit-node j is connected to check-node i, and 0 otherwise. By abuse
of notation, HLT is called the parity-check matrix of the LT code in the rest of this
document. If the precode is an LDPC code, the Raptor code can be represented
by a bipartite graph with the check-node partition composed of LT and LDPC
check nodes as shown in Fig. 3.5.

3.5.2 Decoding

A Raptor code can be decoded using Gallager’s two-phase message-passing (TPMP)
algorithm used for LDPC codes [18], where two types of messages are exchanged
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Figure 3.5: Bipartite graph G and parity-check matrix HR of a Raptor code. A
length-4 cycle is highlighted on G and HR.

between bit-nodes and check-nodes in an iterative manner. By abuse of the nota-
tion defined in Chapter 2, let Λi be the intrinsic channel reliability value of the ith
check-node, CTBij[τ ] the check-to-bit message from check-node i to bit-node j at
iteration τ , and BTCji[τ ] the bit-to-check message from bit-node j to check-node
i at iteration τ . We denote by Cj the index set of the check-node neighbors of
bit-node j (so degj = |Cj|), and by Bi the index set of the bit-node neighbors of
check-node i (so degi = |Bi|)). We use the notation CTBj[τ ] to denote the 1×|Cj|
vector of check messages to bit-node j at iteration τ , and CTB[τ ] to denote all
KLT vectors CTBj[τ ] of check messages at iteration τ . BTCi[τ ] and BTC[τ ] are
similarly defined. For simplicity, we drop the subscripts i, j and iteration index τ
when the context is clear or when arbitrary nodes are considered. The decoding
algorithm is described as follows:

1. At iteration τ , 0 ≤ τ ≤ τf :
Phase 1 : Compute for each bit-node j the message BTCji[τ ] to every check-
node i ∈ Cj according to

BTCji[τ ] =
∑
i′∈Cj
i′ 6=i

CTBi′j[τ − 1], j = 1, · · · , KLT ,

with initial conditions BTCji[0] = 0 for j = 1, · · · , KLT , and i ∈ Cj.
Phase 2 : Compute for each check-node i, the message CTBij[τ ] to every
bit-node j ∈ Bi:

. If node i is an LT check-node, then
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|CTBij[τ ]| =

{ |Λi|, degi = 1;

ψ−1
(
ψ(|Λi|) +

∑
j′∈Bi,j′ 6=j ψ(|BTCj′i[τ ]|)

)
, degi > 1.

sgn(CTBij[τ ]) =

{
sgn(Λi), degi = 1;

sgn(Λi) ·
∏

j′∈Bi,j′ 6=j sgn(BTCj′i[τ ]), degi > 1.

(3.1)

. If node i is an LDPC check-node, then

|CTBij[τ ]| = ψ−1

∑
j′∈Bi
j′ 6=j

ψ(|BTCj′i[τ ]|)

 ;

sgn(CTBij[τ ]) =
∏
j′∈Bi
j′ 6=j

sgn(BTCj′i[τ ]). (3.2)

where ψ(x) = − log(tanh(x/2)).

2. Decision phase: At the final iteration τf , bit j is set to 0 or 1 according to
the sign of

∑
i∈Cj CTBij[τf ].

Decoding is terminated when either the maximum number of decoding iterations
is reached or when the decoded bits satisfy all the check-constraints of the LDPC
precode.

3.5.3 Code Properties

Raptor coding, being a rate-compatible encoding procedure, shares common fea-
tures with code puncturing and extension. A Raptor code can be, alternatively,
described by a LDPC-like (KLT −K +N)× (KLT +N) parity-check matrix:[

HP 0(KLT−K)×N

HLT IN×N

]
where HP is the precode parity-check matrix, HLT the LT parity-check matrix,
IN×N the N -dimensional identity matrix and 0(KLT−K)×N the (KLT −K)×N zero
matrix. The first KLT columns correspond to the KLT LT input-bits while the
next N columns correspond to the N LT output bits. Therefore, a Raptor code of
a certain rate, can be viewed as an LDPC code having its first KLT bits punctured.
On the other hand, Raptor coding shares the following key feature with LDPC code
extension: rate-compatible change of the code-rate is achieved by augmenting the
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bipartite graph of the code, or equivalently extending its parity-matrix. For this
reason, Raptor coding can be viewed as a subclass of code extension.

Raptor codes were initially designed to operate over erasure-channels. The
performance of the designed codes over AWGN channels was shown, through sim-
ulations, to be good [69]. The application of Raptor codes over binary-input sym-
metric channels was analyzed in [34], and good-performing degree distributions
were designed and tested. As part of the current research work on raptor codes
with relatively low-rate (e.g. 5/6) precodes, the following results are obtained:
for any rate R ∈ {1

4
, 1

2
, 2

3
, 5

6
}, a LT degree distribution can be designed such that

the Raptor decoding threshold is less than 0.2 dB away from capacity, for AWGN
channels.

A main result proved in [34], is that, except for the case of binary erasure
channel, no universally-optimal LT degree distribution exists for Raptor codes
at different-rates. This means that for close-to-capacity Raptor code design, the
following condition must be satisfied: to decrease the LT code-rate, RLT = KLT

N
,

by ∆R, the additional KLT
(RLT+∆R)

− KLT
RLT

LT output bits are generated according to a
degree distribution that is a function of the initial rate RLT . This condition implies
a modification in the original Raptor encoding procedure, diminishing further the
distinction between Raptor and LDPC extended codes.

Raptor-like protograph-based LDPC codes were constructed in [32,66], by ex-
tending the protomatrix of the daughter code Bp as follows:[

BP 0(KLT−K)×N

Bextension IN×N

]

The similarity to Raptor coding is achieved by imposing the condition that the
N×N bottom right submatrix is an identity matrix rather than a lower-triangular
submatrix. In light of this, BP can be viewed as the precode parity-check matrix
and Bextension the LT parity-check matrix. However, the code has two properties
differentiating it from conventional Raptor codes: 1) most of the LT-input bits are
transmitted first, i.e. the first KLT bits are almost unpunctured and 2) the LT
output bits are generated (deterministically) on the protograph level. Therefore,
while the codes show good coding performance over AWGN channels, they retain
two problems of the LDPC extended codes: 1) it is not clear how the growth of
the minimum distance with the decreasing code rate is controlled/designed for
short-length codes, and 2) the performance under the some intra-frame varying
channel condition scenarios can seriously degrade, an example of which is the bad
initial channel-condition scenario already discussed in 3.4.3 .

35



3.6 Iterative Decoder Architectures

A main requirement in the design of LDPC codes is their architecture-awareness,
that is the existence of corresponding hardware-efficient decoder implementations.
This requirement persists in Raptor code design as well. The link between the code
properties and decoder efficiency is clarified, next, through a general overview of
the LDPC iterative decoder architectures and the main optimizations involved to
enhance their hardware-efficiency.

In general, an iterative decoder architecture, illustrated in Fig. 3.6, is composed
of three main components: 1) a check-node processor including check-function
units (CFUs) to compute the check-to-bit messages and a check-node memory to
store these messages, 2) a bit-node processor including bit-function units (BFUs) to
compute the bit-to-check messages and a bit-node memory to store these messages,
and 3) an interconnect network to communicate the messages between the check-
node and bit-node processors. Fully-parallel decoder architectures are not efficient
in the sense that they involve both a large number of processors and register files
and an extremely complex interconnect that has to mimic the full topology of the
corresponding Tanner graph; besides, it is has to be operate on tanner graphs of
different sizes due to varying information-block lengths and/or rates. Memory is
needed by the check-node and bit-node processors in serial and partially-parallel
architectures in which a portion of the messages is processed per clock cycle. This
need to memory stems from the edge-interleaving between the bit-node and check-
node partitions of the tanner graph. For example, check-to-bit messages computed
by the check-node processor in the same clock cycle will be processed by the bit-
node processor in different clock cycles, thus requiring memory to store them.

BFU 
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N
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CFU 

Check-Node

Memory        th 
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messagesBit-Node 
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BTC
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Processor

CTB

Figure 3.6: An iterative decoder architecture overview. The interconnect network
communicates th messages per clock cycle in either direction.

A vast literature exists on the design and implementation of efficient decoder
architectures, e.g. [61, 70–76]. The research in this field has evolved towards in-
cluding key optimizations and design guidelines. For sake of a clear overview, these

36



optimizations will be discussed in light of the hardware-efficiency challenges they
aim to resolve:

1. Efficient Memory Organization and Interconnect: An interconnect
network is required to exchange the messages between the check-node pro-
cessor and the bit-node processor. In partially-parallel decoders, the memory
plays a role in the exchange mechanism by reading and writing a number of
messages, th, per clock cycle. For random or unstructured codes, two com-
plications arise: first, there exists no regular memory-access pattern and,
therefore, a conventional th-port memory must be designed, and, second,
generating the memory addresses per clock cycle may require complex opera-
tions. These complications can be resolved through protograph-based LDPC
coding. Memory address generation is simplified due to the fact that the code
is described using the much smaller protomatrix along with the correspond-
ing permutations. Besides, efficient memory organization is made possible
by having the memory partitioned into several banks, each accessing a small
number of messages, much less than th, per clock cycle (see e.g. [77, 78]).
Of these protograph-based LDPC codes, the most architecture-aware is a
quasi-cyclic code with (Mb · Q) × (Nb · Q) parity-check matrix that is com-
posed of Q × Q submatrices; each of these submatrices is either an all-zero
Q×Q matrix or a cyclic-shift of the Q×Q identity matrix. The code can be
fully described by a Mb×Nb integer base matrix, the entries of which are the
cyclic-shift offsets, or −1 if the corresponding Q×Q submatrix in the parity-
check matrix is all-zero. For their simple description and good performance
at short to moderate block-lengths, quasi-cyclic codes have been adopted in
many systems such as WiMAX (IEEE80.16e) and WLAN (IEEE802.11n).
The organization of memory and interconnect follows the scheduling of oper-
ations done per one decoding iteration, that is the order in which the edges
or nodes of the graph are processed. For sake of illustration, two possible
styles of decoding scheduling of a quasi-cyclic code, described by Mb × Nb

base matrix that is replicated by a factor of Q, are briefly discussed next.
In the first style (e.g. [72]), the check-node processor processes Mb nodes
per cycle. Each processed node belongs to a different block row, where a
block row is the expansion by Q of a row in the base matrix. The check
nodes are processed in Q cycles. In the case of TPMP implementation, the
bit-node processor processes Nb nodes per cycle, where each node belongs
to a different block column. The bit-nodes are processed in Q cycles. The
bit-node memory is partitioned into Nb-banks each storing messages of the
bit-nodes corresponding to a single column of the base matrix. Similarly,
the check-node memory is partitioned into Mb-banks each storing messages
of the check-nodes corresponding to a single row of the base matrix. The
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interconnect between the Nb bit-function units and Mb check-function units
is hardwired or contains limited reconfigurability as the right exchange is
ensured through memory access. In the second style (e.g. [73]), Q messages
are exchanged per cycle, corresponding to the edges in a single non-zero sub-
matrix of the parity-check matrix. Second, in processing a check-node c with
degree degc, the check node processor receives the bit-to-check messages in
degc subsequent clock cycles, and therefore, the corresponding check-function
units process these messages serially. As a result of the scheduling style, a
possible memory organization is to then to partition the bit(check)-node
memory into Q banks each connected to a bit(check)-function unit. In this
case, interconnect is needed to permute the Q messages according to the
corresponding offset in the base matrix. Unlike the first style, the second
style allows the decoder to operate efficiently on codes with different dimen-
sions of the base matrix (Mb and Nb). Besides, it is more suitable for the
turbo-decoding message-passing algorithm described in the third point on
convergence speed.

2. Memory-Size Requirement/ Operation count and complexity: Two
messages are exchanged along one tanner-graph edge in a single decoding
iteration. Therefore, in partially-parallel decoder architectures, a total num-
ber of messages that is nearly equal to double the number of edges has to be
stored in the bit-node processor (bit-to-check messages) and check-node pro-
cessor (check-to-bit messages) for later use. Several optimizations are made
to reduce this very-high memory size requirement. The memory requirement
is first cut be nearly half by making use of the following observation: the
bit-to-check message sent from bit-node v to check-node c, in iteration τ ,
can be retrieved as such:

BTCvc[τ ] = (Λv +
∑
c′∈Cv

CTBc′v[τ − 1])− CTBcv[τ − 1].

where Λv is the intrinsic LLR value of bit-node v. Therefore, instead of
storing both check-to-bit and bit-to-check messages, it is enough to store
the check-to-bit messages and the posterior LLR value of each bit-node v,
Λv +

∑
c′∈Cv CTBc′v[τ − 1]. The memory-size requirement is further reduced

by using the Min-Sum approximation [79] in the check-to-bit message com-
putation as following:

CTBcv[τ ] =

 ∏
v′∈Bc
v′ 6=v

sgn(BTCv′c[τ ])

×min v′∈Bc
v′ 6=v

(|BTCv′c[τ ]|).
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The min-sum approximation causes a coding-performance degradation; there-
fore variations of the algorithm with different complexity-performance trade-
offs were developed accordingly, such as the the min-sum-plus-correction-
factor [80], the normalized min-sum, and the offset-based min-sum [81]. Us-
ing the min-sum approximation, the check-to-bit messages resulting from
processing check-node c with degree degc can be retrieved from the follow-
ing values: 1) degc bits showing the signs of each of CTBcv[τ ], v ∈ Bc, 2)
the minimum value of BTCvc[τ ] and the second minimum-value of BTCvc[τ ],
and 3) the index/position of the minimum value. Thus, it is sufficient for the
memory to store these values per one check node c, instead of storing the degc
check-to-bit messages. The min-sum algorithm reduces the memory require-
ment significantly. It breaks the dependence of the required memory-size on
the edge-count, and, along with the aforementioned bit-node memory-saving
simplification, makes this requirement dependant solely on the number of
nodes in the Tanner graph. Beside memory savings, the min-sum approxi-
mation leads to a great reduction in the complexity of check-node processing.
Check node processing, applying the exact equations, involves the operations
of evaluating the ψ(·) function, ψ(x) = − log(tanh(x/2)), and adding. In par-
ticular, the ψ(·) function is too complex to be implemented in combinational
logic and is either subject to simplifying approximations or implemented as
a look-up table, i.e. as a read-only-memory (ROM). The min-sum approxi-
mation, on the other hand, involves simple comparison, which clearly leads
to a major reduction in the complexity and count of the involved operations.
The min-sum approximation is now widely used to design hardware-efficient
decoder implementations.

3. Decoding Convergence Speed: The decoding convergence speed is mea-
sured as the average number of iterations needed by the decoding algorithm
to converge to the correct codeword. A higher convergence speed implies
higher decoding throughput or, equivalently, lower energy overhead. In re-
gard of this aim, the turbo-decoding message-passing algorithm (TDMP) [82,
83] was proposed to replace the conventional two-phase message-passing
(TPMP) algorithm in LDPC decoding. TDMP was originally developed
for quasi-cyclic LDPC codes, where the code structural properties make it
much simpler to implement; however, its concept can be generalized to any
LDPC code. The concept can be illustrated through an example. As a pre-
lude, the following terminology is defined: two check node c and c′ are called
neighbors if they are check-node neighbors to the same bit node, call it v in
this example. Processing of check-node c in iteration i produces new check-
to-bit messages that are used then to update the bit-to-check messages of
the bit-node neighbours of c. It is in iteration i+ 1 that the updated bit-to-
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check message of v will be used in processing check node c′. Therefore, the
extrinsic information obtained from processing node c is used in processing
its neighbor c′ in the subsequent iteration i + 1, thus slowing the decoding.
In TDMP, the results of processing node c at iteration i, are then directly
forwarded to update the extrinsic posterior values of the bit-node neighbors
of c. Then, if node c′ is processed later in the iteration, its processing will be
using the results of node-c processing. This is similar to iterative decoding of
turbo codes and thus the name turbo-decoding message-passing algorithm.
TDMP can be shown to nearly cut the average number of decoding iterations
to half, doubling the convergence speed.
TDMP timing condition: In terms of hardware, a timing-condition must
be satisfied so that the actual decoding algorithm performance follows its
simulated one, assuming floating point implementations. Following the ter-
minology of the example, the condition is that processing each of check nodes
c and c′ must be spread enough in time, that is the posterior LLR value of
v has to updated using the check-to-bit message from c, before being for-
warded to c′. In quasi-cyclic codes, this condition can be satisfied, fully or
partially, through shuffling the base matrix to control the spacing between
non-negative entries in the columns, reordering the processing of submatrices
in a block row [73], reordering the rows in a block row [61,72], and avoiding
deep pipelining.
For its speed advantage, turbo-decoding message-passing has become the al-
gorithm of choice in virtually all recently proposed decoder implementations.

The rate-compatibility of a code has a limited impact on the design of the
decoder-architecture. This is clear for the punctured LDPC codes where decoding
is applied on a single mother-code graph for all rates. In addition, with a decod-
ing scheduling of the second style, the resulting decoder architecture can handle
efficiently the variation in the dimensions of the base matrix caused by code ex-
tension. However, as pointed out previously in the section, some aspects of the
design space can be restricted such as shuffling the rows of the base matrix and
the memory organization.

The case of Raptor decoding is different in the following sense: the distinct
features of the Raptor codes, which can collectively be used to resolve the problems
raised in 3.4.3, lead themselves to new challenges, unknown in the LDPC case, in
the design of hardware-efficient Raptor decoders. This issue will be discussed in
Chapter 5.

40



Chapter 4

Increment-based Inter-frame
Coding

This chapter includes the first part of the research work presented in this disserta-
tion, namely the increment-based inter-frame (IIF) coding scheme. The proposed
scheme is intended to be deployed in the broadcast communication scenario, and
is motivated by the observation described next. The feedback-based retransmis-
sion schemes, such as HARQ, do not scale well as the number of receivers grows
as described in Section 3.2. Therefore, these schemes are replaced, in broadcast
communication, by a second stage of coding in order to recover from PHY-level
intra-frame decoding failures. The introduced stage of coding consists of erasure
coding: it involves an erasure channel abstraction, leading thus to a loss in the
achievable date-rates. A natural question arises from this observation: Can a
scheme be developed such that, like erasure coding, it scales well as the number of
receivers grows, while avoiding the erasure-channel abstraction?

The proposed increment based inter-frame coding is one such scheme. The
scheme incorporates aspects of IR-HARQ to coding. The basic feature of the
proposed approach is that the assignment of the appropriate code-rate to a frame
is done on the receiver side. In particular, the coding scheme is increment-based in
the sense that inter-frame encoding is applied on the increments corresponding to
the transmitted frames. Inter-frame encoding therefore generates subframes rather
than complete frames. Inter-frame decoding proceeds iteratively to recover all the
unsuccessfully decoded frames by progressively decreasing their code-rates and
retrying channel decoding on them. The inter-frame decoding procedure performs
iteratively two inter-related operations: 1) intra-frame decoding to recover the
transmitted frames, and 2) progressive concatenation of increments to frames that
are unsuccessfully-decoded prior to retrying intra-frame decoding on them.

The main premise of the proposed scheme is that it involves an efficient complexity-
performance tradeoff that has two features. The first is the data-rate enhancement
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achieved over the state-of-the-art two-stage scheme, and the second is the resem-
blance of the inter-frame decoding procedure to that of LT erasure decoding [35]
stated as: beside intra-frame decoding, inter-frame decoding involves nearly the
same scheduling and operations of the iterative LT erasure decoding. The data-
rate enhancement is achieved because, unlike the case in the two-stage scheme, an
unsuccessfully-decoded frame is not discarded; rather, its code-rate is decreased
and intra-frame decoding is reapplied on it. The resemblance of increment-based
inter-frame decoding scheduling to that in iterative erasure-decoding is due to the
following property: only frames that are successfully-decoded are involved in the
process of decreasing the code-rate, or equivalently incrementing the LLR-vector,
of the unsuccessfully-decoded frames. It is noteworthy that such property is not
confined to inter-frame coding; it is used for example in [84] to design efficient
channel codes for the HARQ schemes.

It is, furthermore, shown that the asymptotic coding performance of the pro-
posed inter-frame coding scheme is equal to that of IR-HARQ in unicast com-
munication, under the channel model developed here. However, the proposed
inter-frame coding scheme scales much better than IR-HARQ for broadcast com-
munication, i.e. as the number of receivers grows up.

The chapter is divided as shown next. First, the proposed inter-frame encoding
and decoding algorithms are presented and analyzed. Second, architectures of the
inter-frame encoder and decoder along with the corresponding decoding schedul-
ing are developed. It can be concluded from the developed architectures that: 1)
the major hardware units involved in inter-frame decoding are already available in
any typical communication system, 2) the decoder can be implemented to support
inter-frame code descriptions that are determined in real time, and, 3) in terms of
hardware resources, the required memory size is the limiting factor in the design
of large inter-frame codes. Third, the channel variation in relation to inter-frame
decoding is modeled as a probability distribution over Z+, which is crucial in de-
veloping a generic yet simple framework for designing and analyzing inter-frame
codes. Fourth, the asymptotic performance of inter-frame coding is analyzed and
optimized. A coding-optimality criterion is first defined. Then, the optimality
of inter-frame coding, under certain assumptions on the channel model, is proven
using a multi-step procedure involving modeling, analysis, and optimal degree-
distribution construction. It is then shown that inter-frame coding increases the
data rate by a factor that is dependant on the corresponding channel parameters
and that can reach ∼ 1.55×, compared to the two-stage scheme. Compared to the
IR-HARQ scheme having target frame-error-rate (FER) of 10−3, inter-frame cod-
ing increases the data rate by a factor reaching 5× when the number of receivers is
infinitely large. Fifth, simulations performed using the developed channel model
highlight a potential tradeoff between the required memory size and coding per-
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formance in the design of small/moderate-size inter-frame codes. They also show
significant data-rate enhancements compared to the two-stage scheme, when the
number of frames included in inter-frame coding is 121 or 1210.
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4.1 Algorithms

The inter-frame encoding and decoding procedures are described next.

4.1.1 Encoding

Inter-frame encoding generates KS ∆-bit subframes starting from an initial set of
NT =NF information blocks. Each block is intra-frame encoded into a (N+D ·∆)-
bit frame. Generation of theKS subframes, illustrated in Fig. 4.1, is done according
to aKS×NF “inter-frame” code generator matrix H=[h(i, j)], where h(i, j) denotes
the entry in row i and column j in H. Each column of H has a maximum of D
nonzero distinct positive integer entries that are less than D + 1. Subframe s,
s≤KS, is formed using row s of H, as follows:
Initialize subframe s to a ∆-bit zero vector. For each nonzero entry h(s, f)=a of
H, update subframe s to the output vector formed by bit-wise XORing of subframe
s with the increment ∆(f, a).

The rate-RH N -bit portion of each frame f ≤ NF and the KS ∆-bit subframes
are then transmitted over the channel, for a total of (NF · N+KS ·∆) bits. The
details of the transmission scheduling will not be considered in this dissertation.
Frame f and subframe s are said to be neighbors if h(s, f) 6= 0. The degree of
frame f is defined as the number of non-zero entries in column f of H. The degree
of subframe s is defined as the number of non-zero entries in row s of H.

4.1.2 Decoding

Input: The input to inter-frame decoding consists of H and the intrinsic LLR
values of the NF N -bit frames ΛN(f), for f ≤ Nf , and LLRs of the KS ∆-bit
subframes ΛS(s), for s≤KS.

Output: The output includes an NF -bit flag vector indicating decoding success
(recovery), or failure of the NF frames. For each successfully-decoded frame, the
corresponding K information bits are recovered.

The decoding procedure, illustrated in the flowchart in Fig. 4.2, applies itera-
tively two main steps. First, when intra-frame decoding of a frame f succeeds, the
corresponding increments ∆(f, i), i= 1, · · · , d, are recovered. For every subframe
s such that h(f, s) = a 6= 0 (i.e., subframe s is equal to ∆(f, a) ⊕ Ψ where Ψ is a
XOR of other increments), ΛS(s) is updated so that it corresponds to Ψ. Effec-
tively, this is equivalent to removing ∆(f, a) from the list of inputs to the XOR
operation forming the transmitted subframe s. Second, if the number of inputs to
s is effectively reduced to one increment ∆(f ′, b) for some b ≤ D, f ′ ≤ NF , then
ΛS(s) corresponds now to ∆(f ′, b). ΛS(s) is then concatenated to the LLR vector
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Figure 4.1: Inter-frame encoding example: Generating KS = 3 subframes from
NF =3 frames, with parameters (K,N,∆, D)=(4, 5, 2, 2).

of frame f ′, decreasing its code-rate. If decoding of frame f ′ has failed prior to
this concatenation, frame f ′ is rescheduled for intra-frame decoding.

The decoding procedure is detailed next. For simplicity of exposition, it is
reasonably assumed that each row of H has at least two non-zero entries.
Procedure: Three disjoint index sets R, U , P are formed, where R includes
the indices of the successfully-decoded frames, U the indices of the unsuccessfully-
decoded frames, and P the indices of the frames on which decoding will be ap-
plied/reapplied. Both U and R are initialized to ∅ and P to {1, · · · , NF}. The
inter-frame decoding procedure is:
If P =∅, quit decoding, else, pick randomly an element f from P . Apply intra-
frame decoding on the vector of LLR values corresponding to frame f . If intra-
frame decoding is unsuccessful, move f to U and go back to the beginning of the
step. If it is successful, proceed as follows:

1. f is moved from P to R.

2. The K information bits corresponding to frame f are recovered and used
through intra-frame encoding to obtain the increments ∆(f, k), k = 1, · · · , D,
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Figure 4.2: A flowchart showing the basic steps of inter-frame decoding.
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corresponding to frame f .

3. For every s where h(s, f) = a 6= 0:

a. The LLR vector corresponding to subframe s, ΛS(s), is updated: ΛS(s)←
ΛS(s)× (−1)∆(f,a), where the mth entry of (−1)∆(f,a) is −1 if the mth
bit of ∆(f, a) is 1, and 1 otherwise, and × is entry-wise multiplication.

b. Set h(s, f) to 0.

c. If the number of nonzero entries of row s of H reduces to 1, where
h(s, f ′) = b > 0, then: 1) if f ′ ∈ U , f ′ is moved to P , and 2) ΛS(s),
now equal to Λ∆(f ′, b), is concatenated to the LLR vector of f ′. By
abuse of notation, ∆(f ′, b), or equivalently subframe s, is said to be
concatenated to frame f ′.

Step 3 is invoked only when the corresponding frame f is successfully decoded.
This has two implications. First, the LLRs corresponding to the decoded frame f
are now set to ±∞, with the sign depending on the hard-decision of the intra-frame
decoding process of the frame; therefore the LLR update in step 3a is simplified into
changing signs of the LLR-vector ΛS(s), equivalent to performing ∆ 2-input XOR
operations. Second, step 3a will only be invoked a maximum number of times that
is equal to the number of nonzero entries of H, which is D·NF . Both implications
have their exact counterparts in the iterative erasure decoding algorithm where
the decoding procedure can be viewed as a series of successive edge-processing
steps. In LT decoding [35] for example, one edge in the LT bipartite graph, or
equivalently one non-zero entry of the generator matrix, is processed at most once
in the whole decoding procedure; besides, this edge processing consists of a number
of 2-input XOR operations.

From an algorithmic complexity perspective, the decoding procedure involves
the following operations per frame: the XOR-operation (step 3a) is performed D·∆
times, the intra-frame encoding procedure in step 2 is performed 1 time, and the
intra-frame decoding procedure is performed an average of X>1 times. Typically,
the intra-frame decoding procedure is much more computationally intensive com-
pared to intra-frame encoding and the D ·∆ XOR operations. The average number
of intra-frame decoding attempts per frame, denoted here by X, is dependent on
1) the intra-frame decoding failure-rate and its change with the concatenation of
the increments LLRs, and 2) the criteria with which a frame is selected from P for
intra-frame decoding. The first factor is a function of the channel and the deployed
intra-frame code. The second factor raises the problem of sorting the frames sched-
uled for intra-frame decoding according to the probability of intra-frame decoding
success, given the LLRs corresponding to each frame. Therefore, this problem
necessitates developing a method to estimate the probability of decoding success

47



of a frame without performing the computationally-intensive decoding itself. This
problem, however, is outside the scope of this work, and selecting a frame from P
in the described decoding procedure is done randomly.

Note that even in erasure coding, the average number of intra-frame decoding
processes divided over NF can be greater than 1. The reason is that while each
frame is decoded at most once, the number of transmitted frames NT rises due to
erasure encoding to NT = NF

RE
>NF , RE being the erasure code-rate.

Other variations of the proposed coding scheme can be developed, all centered
around the idea of progressively decreasing the code-rate of the unsuccessfully-
decoded frames and retrying decoding. One such variation is discussed briefly
next for illustration.

4.1.3 Modified Scheme

Encoding: The distinguishing feature of this scheme is that the subframes them-
selves are also subject to intra-frame encoding. The resulting modification in the
inter-frame encoding scheme involves adding a step to the previously described
procedure. Assume for simplicity that the fractions K

∆
,M and KS

M
,NRED are

both integers. The additional step consists of partitioning the KS subframes into
NRED sets, each including M subframes. For every set, the corresponding M
subframes are concatenated to form a K-bit vector which, in turn, is intra-frame
encoded into a N -bit encoded frame. This encoding is done such that the K
systematic-bits are included in the N -bit encoding frame. By abuse of notation,
the resulting NRED frames and the original NF frames are referred to as redundant
and systematic frames, respectively. The NRED redundant and NF systematic
frames are transmitted over the channel.
Decoding: The decoding procedure in the previous subsection is modified to
make use of the subframe intra-frame encoding step, as follows: first, when a
redundant frame is successfully-decoded, the LLRs of the subframes included in
it take the values of ±∞. Second, when all the systematic frames involved in
forming a subframe are successfully-decoded, this subframe can be recovered as
well, and if the redundant frame including it is unsuccessfully-decoded, it can
be rescheduled for decoding due to such recovery. Prior to starting decoding, a
copy of the generator matrix H is created, call it H(0). The NRED redundant
frames are also scheduled for intra-frame decoding and, therefore, their indices
NF + 1, · · · , NF +NRED are initially included in the set P . The decoding schedule
is then modified as follows:

• Case 1: The index f selected from P corresponds to a redundant frame, i.e.
f >NF . If the intra-frame decoding of the chosen frame succeeds, f is moved
to R and a 2-step procedure is followed:
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1. The LLRs of the corresponding M ∆-bit subframes are set to +∞ or
−∞ depending on the output of the decoding.

2. For each systematic frame f ′ /∈ R, i.e. not yet successfully-decoded, and
subframe s included in the redundant frame f such that h(s, f ′) =a is
the only non-zero entry in row s of H, the following is done: 1) frame f ′

is scheduled for decoding, i.e. f ′ is moved to P , and 2) the LLR-vector
of increment ∆(f ′, a), Λ∆(f ′, a), is set to the updated vector ΛS(s).

Otherwise, in case of decoding failure, the LLRs of the M subframes included
in frame f are set to their intrinsic (channel) values and f is moved to the
set U .

• Case 2: The index f selected from P corresponds to a systematic frame.
The steps (1) through (3) of the previously described decoding procedure
are followed, then a new step is added such that:

3.c′ If the number of nonzero entries of row s of H reduces to 0, this means
all the systematic frames involved in forming the subframe s are success-
fully decoded. If the redundant frame including s is not yet successfully
decoded (i.e., its index is not in R) then: 1) subframe s is recovered
using the corresponding systematic frames and H(0), 2) ∀1 ≤ i ≤ ∆,
the ith value of ΛS(s) is set to −∞ if the ith bit of subframe s is 1 and
to +∞ otherwise, and 3) the redundant frame including subframe s is
scheduled for intra-frame decoding (i.e. moved to P).
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4.2 Architectures

In this section, the hardware complexity of the inter-frame coding scheme is in-
vestigated by identifying the hardware resources and operations required to apply
the scheme at the PHY-layer. Toward this, the major blocks and operations of
the inter-frame encoder are briefly identified. Then, a high-level architecture of
the inter-frame decoder is developed and the corresponding decoding procedure
is mapped into a schedule of operations performed by the different blocks of the
architecture. Main conclusions on the overhead of inter-frame coding are then
drawn from the developed architecture.

4.2.1 Inter-frame Encoder

The inter-frame encoder architecture, shown in Fig. 4.3, is composed of six major
blocks: 1) intra-frame encoder, 2) frame memory, 3) subframe memory 4) XOR-
logic block, 5) encoding scheduler, and 6) transmission scheduler. The encoding
process is performed using these units as described next. The NF information
blocks are input, in order of their increasing indices, to the intra-frame encoder.
For each frame, this encoder outputs the corresponding N -bit frame and D ∆-bit
increments.

Assume information block f is encoded. The output N -bit frame is buffered
in the frame memory until it is transmitted. For every nonzero entry h(s, f) = a
in the fth column of H, the following is done: if h(s, f ′) = 0 ∀f ′ < f , a space
is allocated for subframe s in the subframe memory and the stored vector is set
to ∆(f, a); else if ∃f ′ < f such that h(s, f ′) 6= 0, then a space has been already
allocated to subframe s, and the corresponding stored vector is updated by XORing
it with increment ∆(f, a) using the XOR-logic block. If h(s, f ′) = 0 ∀f ′>f , then
this means that the generation of subframe s is complete and the subframe will
be stored in memory until it is transmitted. The encoding scheduler controls
and schedules all these operations, including memory allocation, read, write, and
update operations. The transmission scheduler schedules the transmission of the
formed frames and subframes. Its operation is dependant on the details of the
involved communication scheme and, therefore, will not be considered further here.

4.2.2 Inter-frame Decoder

The inter-frame decoder, shown in Fig. 4.4, is composed of five major blocks: 1)
intra-frame encoder and decoder, 2) LLR-memory, 3) concatenator, 4) XOR-logic
block, and 5) decoding-scheduling block. It is assumed here that a successfully-
decoded frame is forwarded directly to the upper layers, and therefore no PHY-
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Figure 4.3: A high-level architecture of the inter-frame (a) encoder, and (b) de-
coder.

layer memory is needed to store the recovered information blocks. The intra-frame
decoder is not dedicated solely to inter-frame coding, as it is used to apply channel
decoding in all the communication scenarios in which the communication system
is involved. The same can be said of the LLR-memory; for example, memory is
required to store the LLR values corresponding to unsuccessfully-decoded frames
if the system applies the IR-HARQ scheme in unicast communication. The con-
catenator is needed for IR-HARQ as well, to concatenate the LLRs of the original
transmission to those of the successive retransmissions. In comparison, the XOR-
logic and the decoding-scheduling blocks are dedicated solely to the inter-frame
decoding procedure. Therefore, their hardware-overhead consists a part of the
hardware overhead of inter-frame coding. The required number of XOR gates in
the XOR-logic block is a function of the target throughput of this block, and is
system dependant. An architecture of the decoder scheduling block is, in turn,
developed to qualitatively evaluate its hardware-overhead.

The decoding-scheduling block, illustrated in Fig. 4.5, consists of six major
units as described next:

1. Frame managing memory composed of 4 basic NF -row banks, denoted
here by FMR, FMD, FMP and FMA. The fth row of FMR, FMR(f), is set to 1
if frame f has been received and to 0 otherwise. FMD(f) is set to 1 if frame f
has been successfully-decoded and to 0 otherwise. FMP(f) stores the number
of subframes which LLRs are to be concatenated to ΛN(i) during intra-frame
decoding of frame f . FMA(f) stores the memory address of frame f in the
priority list described next. Each of FMR(f), FMD(f), FMP(f) and FMA(f)
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Figure 4.4: A high-level architecture of the inter-frame (a) encoder, and (b) de-
coder.

is initialized to 0. Each memory bank supports three basic operations: 1)
reading a row, 2) writing a row, and 3) incrementing/decrementing the value
of a row by 1.

2. Subframe managing memory composed of 3 KS-row memory banks sim-
ilar to those employed in the frame managing memory, and denoted here by
SMR, SMDeg, and SMA. SMR(s), is set to 1 if subframe s has been received
and to 0 otherwise. SMDeg(s) stores the number of neighbor frames of sub-
frame s that are not yet successfully-decoded. SMA(s) stores the address of
ΛS(s) in the LLR-memory. Each of SMR(s) and SMA(s) is initialized to 0,
and SMDeg(s) to the degree of subframe s.

3. Priority list to store the indices of the frames scheduled for intra-frame
decoding (i.e., indices in the set P). Unlike the case in the decoding proce-
dure described in Section 4.1.2, the indices are sorted according to a priority
scheme, and the frame of highest priority is chosen first for intra-frame de-
coding. The priority list supports four basic operations: 1) reading the frame
index with the highest priority value, 2) inserting a new index in the list,
3) removing an index from the list, and 4) updating the priority of an index
in the list. One way to implement such a list is to impose a doubly-linked
list structure on a memory bank, where each memory row corresponds to a
node in the list and includes the following: a frame index f , the correspond-
ing priority, the address of ΛN(f) in the LLR-memory, a right pointer to
a node with index of higher or equal priority, and a left pointer to a node
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Figure 4.5: An architecture of the decoding-scheduling block, showing the signal
flow during the decoding process. For clarity, some of the blocks and signals are
not shown here.
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with index of lower or equal priority. For each priority value v, a pointer is
required to store the start and end nodes, of the portion of the linked list
that corresponds to indices of priority v. In this context, a pointer to a node
is its address in the considered memory bank. It must be noted that for an
efficient implementation of the update operation, a pointer to the updated
node must be fed to the priority list unit.

4. Neighbor generator that serially produces for each input frame f the
following information for every neighboring subframe: its index s, its h(s, f)
value, and a flag showing whether there exists another neighbor subframe
of index s′>s. The operation is serial in the sense that this information is
generated for one neighbor at a time. An analogous operation is performed
when the input is a subframe index. The architecture of this unit depends
on the construction method of the inter-frame code generator matrices.

5. LLR-memory interface, between the LLR-memory and the scheduling block,
that performs the following operations: 1) allocate a space in the LLR-
memory to store the LLR vector corresponding to a frame (ΛN(f)) or sub-
frame (ΛS(s)), 2) free a previously allocated space in the LLR-memory, 3)
read an LLR vector, 4) write an LLR vector, and 5) update an LLR vec-
tor. The architecture of such interface depends on the organization of the
LLR-memory.

6. Control unit that controls the operations of the previous units.

Inter-frame decoding can then be mapped into a schedule of operations per-
formed by the various blocks of the inter-frame decoder. This schedule is described
next to prove the validity of the developed architecture and to identify the involved
operations as well. The exact scheduling depends on the details of transmission
of the frames and subframes, as well as on the throughput of the different blocks
such as the intra-frame decoder and LLR-memory. Instead, to keep the description
clear and general, the decoding schedule assumes the inter-frame decoding time
is divided into slots, where in each slot one of the three following events can take
place: 1) a new frame of the NF frames is received, 2) a new subframe of the KS

subframes is received, and 3) the intra-frame decoder is idle and therefore a frame
can be forwarded to intra-frame decoding. Depending on the “type” of the slot, a
series of operations is performed.

In the decoding schedule described next, the priority value of a frame f is
incremented by 1 every time a received neighbor subframe s has the set of its
unrecovered neighbor frames reduced to a singleton {f}. This means that the
LLR-vector ΛS(s) can now be concatenated to the LLR-vector corresponding to
frame f which is to be forwarded to the intra-frame decoder. The priority value
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is reset to −1 every time intra-frame decoding of frame f fails. The decoding
scheduling can then be described as follows:

1. If frame f is received, then: 1) FMR(f) is set to 1, 2) a space in the LLR-
memory is allocated for ΛN(f), and 3) a new node, including the index f
and the address of ΛN(f) in the LLR-memory, is inserted in the priority
list through the insert operation. The corresponding priority value is set to
FMP(f), and the pointer to the inserted node is written to FMA(f).

2. If subframe s is received:

i) SMR(s) is set to 1.

ii) If SMDeg(s) is nonzero and SMA(s) is zero, a space is allocated in
the LLR-memory for ΛS(s) and the address of this space is written to
SMA(s). The allocated space is reset to zero vector.

iii) If SMDeg(s) is nonzero, the LLR vector ΛS(s) is written in the LLR-
memory location which is deduced from the stored value SMA(s), such
that: the absolute value of each LLR is written in its allocated position
with no change, while the sign of the LLR is XORed with the value of
the corresponding memory entry, analogous to step 3a of the decoding
procedure in Section 4.1.2. To simplify the notation, this written vector,
with updated sign, is still called ΛS(s).

iv) If SMDeg(s) equals 1, then the received subframe s has only one neigh-
bor frame which is still unrecovered and a search procedure is initiated
to find the frame index as explained next. Using the neighbor generator,
the frame neighbors of subframe s are output serially, and it is checked
whether each neighbor f ′ is already recovered by reading FMD(f ′): if
FMD(f ′) = 0, 1) FMP(f ′) is incremented by 1, and 2) if frame f ′ is
already received, that is FMR(f ′) equals 1, the priority value corre-
sponding to f ′ in the priority list is incremented by 1 using the update
operation. The pointer to the node corresponding to frame f ′ in the
priority list is read from FMA(f ′).

3. If the intra-frame decoder is idle: if the highest priority value in the prior-
ity list is greater than -1, steps (i-vi) are performed, else only step (vi) is
performed.

i) The frame index of the highest priority, f , is read from the priority list
through the read operation. ΛN(f) is then read from the LLR-memory.
As mentioned in the description of the priority list, the address of ΛN(f)
in the LLR-memory is included in the read node.
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ii) A procedure is initiated to find the received subframes having frame f
as their only unrecovered neighbor, and then concatenate their corre-
sponding LLR vectors to that of f , as explained next. Using the neigh-
bor generator, the subframe neighbors of f are output serially and for
each subframe neighbor s, the SMR(s) and SMDeg(s) values are read: if
both SMR(s) and SMDeg(s) equal 1, the LLR vector ΛS(s) is read from
the LLR-memory. To do so, the value SMA(s) storing the address of
ΛS(s) in the LLR-memory is first read. ΛS(s) is then concatenated to
the LLR-vector corresponding to frame s, using the concatenator block.

iii) The LLR vector corresponding to frame s is forwarded to intra-frame
decoding.

iv) If decoding fails, the priority value in the node corresponding to frame
s in the priority list is reset to −1, and the list is updated accordingly
using the update operation.

v) If decoding succeeds, the (N +D ·∆)-bit encoding frame f is obtained
by re-applying intra-frame encoding on the recovered information block
f . Then, the following procedure is done:

a. The node including f is removed from the priority list using the re-
move operation. The space in the LLR-memory reserved for ΛN(f)
is freed.

b. Using the neighbor generator, the subframe neighbors of the recov-
ered frame f are output serially. For each neighbor, s, the following
steps are performed. First, SMDeg(s) is decremented by 1. Second,
if SMDeg(s) = 0 and SMA(s) 6= 0, the space allocated to ΛS(s) in
the LLR-memory, and which address is stored in SMA(s), is freed.
Third, if SMA(s) = 0 and SMDeg(s) > 0, this means that sub-
frame s is not yet received and that no space in the LLR-memory
is allocated to ΛS(s). Therefore, a space is allocated to ΛS(s) in
the LLR-memory and the address is stored in SMA(s). The allo-
cated space is reset to zero vector. Fourth, the sign vector of ΛS(s)
stored in the LLR-memory is updated by XORing it with ∆(f, a),
a = h(s, f), analogous to step 3a of the decoding procedure in 4.1.2.
Fifth, if SMDeg(s)=1 and SMR(s)=1, then only one of the neigh-
bor frames of subframe s is still unrecovered. The subframe index
s is added to a stack ST for processing in the following step.

c. For each subframe index s in stack ST, s is removed from ST and
a search procedure is initiated to find the index of its unique un-
recovered neighbor as such: using the neighbor generator, output
the frame neighbors of subframe s, and for each neighbor f ′ read
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FMD(f ′): if FMD(f ′) = 0, then frame f ′ is the unrecovered neigh-
bor. Consequently, two steps are done: 1) FMP(f ′) is incremented
by 1, and 2) if frame f ′ is already received, that is FMR(f ′)=1, the
priority value of f ′ in the priority list is incremented by 1 using the
update operation.

vi) If the number of received frames equals NF , the number of received
subframes equals KS, and the highest priority value in the priority list
is −1, terminate the inter-frame decoding procedure.

4.2.3 Discussion

Based on the description of the algorithms and architectures in the current and
previous sections, a number of conclusions can be made. These conclusions are
kept as general as possible, in accordance with the high-level description of the
architecture and the generic nature of the problem defined in this dissertation.

First, the major blocks of the decoder architecture are not dedicated solely to
inter-frame decoding. These blocks are the intra-frame decoder, concatenator and
LLR-memory. However, these blocks should be designed to handle efficiently some
phenomena that are exclusive to inter-frame decoding. An example phenomenon
is the out-of-order increment concatenation, described here by considering intra-
frame decoding of a frame f of length N + x · ∆. In IR-HARQ, such frame
is typically formed by the initial transmission of the corresponding N -bit frame
followed by the transmission of increments ∆(f, a), a=1, · · · , x. In comparison, in
inter-frame decoding the frame can correspond, albeit with different probabilities,
to the initially-transmitted N -bit frame and any of the possible combinations of
x subframe neighbors of f . These x subframes have f as their only unrecovered
neighbor.

Second, besides intra-frame encoding/decoding, the computation involved in
inter-frame encoding/decoding consists of applying D · ∆ XOR operations. For
typically deployed channel codes such as turbo and LDPC codes, the complexity
of these operations is far surpassed by the that of intra-frame decoding.

Third, memory-size is a limiting factor in the design of inter-frame codes with
relatively large NF . As discussed in 4.2.1, during inter-frame encoding, space is
allocated to subframe s if it at least one of its neighbor frames is already encoded.
If, in addition, at least one of its neighbor frames is not yet encoded, the generation
of the subframe is not accomplished, and therefore it cannot be transmitted. The
memory-size factor is more prominent in inter-frame decoding where vectors of
LLR values rather than bits are stored. The LLR-memory is used to store the
LLRs of the received frames that are not yet successfully-decoded and the LLRs
of the subframes that have unrecovered neighbor frames. Since the LLR-memory
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is not dedicated to inter-frame coding, the memory overhead of this coding is
measured in terms of the increase in the required memory-size, rather than the
memory-size itself, resulting from implementing the inter-frame coding scheme. It
is noteworthy that a possible approach to extend the LLR-memory size beyond the
available PHY-layer memory size is a cross-layer memory management/allocation
between the PHY-layer and the upper layers.

Fourth, the operation of the decoding-scheduling block is serial in the sense
that operations corresponding to at most one frame and one subframe are done
concurrently. An implicit assumption underlies such serial mode, which is that
the decoding-scheduling block does not cause a bottleneck in the throughput of
inter-frame decoding; in other words, the operations performed by the units of the
scheduling block1 consume a relatively tiny proportion of the time span of the whole
inter-frame decoding process, the latter spanning the reception of the NF frames
and KS subframes and the application of intra-frame decoding on the frames. This
can be illustrated by examining steps (1)-(3) of the decoding schedule. Each of
these steps can be viewed as a sequence of operations which number, on average,
is proportional to the maximum frame or subframe degree. Each operation, in
turn, involves reading, comparing, and writing a limited number of memory bits.
However, the serial-mode of the decoding-scheduling block has to be reconsidered
if the time consumed by its operations becomes relatively significant, for example
possibly when the throughput of the other blocks of the architecture is very high.

Beside its serial operation mode, the decoding-scheduling block has the related
property that the organization and operation-scheduling of the block is indepen-
dent of the inter-frame code generator matrix design. A significant implication
on the flexibility of inter-frame coding is that the developed architecture can sup-
port inter-frame codes which size-parameters, NF and KS, and generator matrix
H can be set in real-time. This is true under three reasonable conditions: 1) the
size-parameters are less than the maximum sizes supported by the units of the
decoding-scheduling block, such as the frame-managing memory and subframe-
managing memory, 2) the resulting inter-frame code does not cause LLR-memory
overflow, and 3) the neighbor generator can be reconfigured to match any of the
possible generator matrices H.

Another observation on the decoding-scheduling block is that most of its units
have a memory structure; this includes the frame-managing memory, the subframe-
managing memory, the priority list, and possibly the neighbor generator. To reduce
the hardware resources allocated exclusively to inter-frame decoding, these units
can be realized using the PHY-layer memory, part of which is already used to
realize the LLR-memory. Three consequences must be considered in this regard:

1These operations exclude all LLR-memory operations such as space allocation, reading, writ-
ing, etc.
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first, the operational-throughput of the decoding-scheduling block will deteriorate,
which can be overlooked under the assumption that the block does not cause a
bottleneck in the throughput of inter-frame decoding. Second, the operation of the
PHY-layer memory must be compatible with the memory-access patterns of the
decoding-schedule described in 4.2.2, possibly complicating its design. Third, the
size of the available LLR memory will be reduced by that of the memory portion
dedicated to the decoding-scheduling unit, throughout inter-frame decoding.

59



4.3 Channel Model

Beside complexity, the coding performance has to be considered when evaluating
the proposed inter-frame coding. The coding performance of an inter-frame code,
and therefore the progress of the corresponding decoding process, is clearly depen-
dant on a number of inter-related factors including the channel characteristics, the
intra-frame code/decoder structure and the transmission scheduling. The analy-
sis of each factor in itself is quite involved, and, besides, a multitude of possible
combinations of these factors exists. Therefore, obtaining a comprehensive result
on the performance of an inter-frame code is challenging.

In this dissertation, this challenge is resolved by setting some simplifying as-
sumptions on the intra-frame code, channel, and communication scenario. Conse-
quently, the behavior of the channel is relation to the inter-frame decoding process
is abstracted into a new model. The model is general enough to encompass dif-
ferent communication scenarios. Yet, its simplicity allows efficient simulation and
analysis of the inter-frame decoding process. The assumptions underlying the
proposed model are stated in the following:

Assumption 1: For any integer m ≥ 0, and any set of m distinct increments,
the performance of the code formed by concatenating the original N -bit frame to
the m increments matches that of a conventional code of rate K

N+m·∆ . That is, the
intra-frame decoding-performance is sensitive to the number but not the indices
of the concatenated increments. In practice, it can be formulated as a design
requirement of the intra-frame code that the aforementioned sensitivity to the
indices of the concatenated increments is made as small as possible. This design
problem is not trivial given the observation in [33] on the different sensitivity of
the turbo decoding-performance to the LLRs of different portions of the code.

Assumption 2: Given the channel statistical model, the channel-states over
which different frames are transmitted are assumed independent instances. Two
observations underly this assumption. First, the broadcast transmission may not
be contiguous in time thus leading to uncorrelated channel-states across different
transmissions. Second, for most reasonable cases, channel correlation does not
affect the asymptotic performance, i.e. as NF →∞, of inter-frame coding. There-
fore, in practice, the correlation problem can be approached by increasing NF and,
if needed, applying interleaving on matrix H. It should be noted that both mea-
sures, however, can result in increasing the number of LLR vectors that have to
be buffered in the LLR-memory, aggravating thus the LLR-memory size factor.

Assumption 3: The number of increments required to be concatenated to a
frame f for successful decoding is determined, solely, by the channel-state when
the N -bit portion of f is transmitted. This assumption ignores the channel-state
variations when the subframes are transmitted. It can be partially justified by
two facts. First, the number of increments required to be concatenated is discrete
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so it does not always follow channel-state variations. This observation is particu-
larly relevant when the original N -bit frame is transmitted over good channel-state
conditions such that, most probably, very few concatenated increments would be
sufficient for successful decoding. It is illustrated in the following scenario: when
the subframes, concatenated to f , are sent over some channel conditions, 1.5·∆ ex-
tra LLR values need to be concatenated to ΛN(f) to achieve intra-frame decoding
success; under better conditions the number is 1.2 ·∆, and under worse conditions
it is 1.8 ·∆. All three cases will result in the number of required increments being
2. The second fact is relevant when the original N -bit frame is transmitted over
bad channel conditions needing, therefore, a relatively large number of concate-
nated increments for successful decoding. The corresponding subframes are, most
probably, transmitted over independent channel instances, and therefore the over-
all channel behaviour during their transmission can be well approximated from
the statistical description of the channel. The number of increments required to
be concatenated to f for successful decoding can then be deduced accordingly.

Channel model: In regard of these assumptions, a received frame f is char-
acterized by an integer, κ(f) ≥ 0, defined as the number of LLR increments, each
∆-LLR wide, that should be concatenated to ΛN(f) for successful decoding of
frame f . Therefore, the channel behavior in inter-frame decoding can be modeled
as follows: it is characterized by a probability distribution over Z+, (δω)ω≥0, where
δω is the probability that a frame f transmitted over the channel has its κ-value
κ(f) = ω. To deduce (δω)ω≥0 , the following procedure is repeated several times:
First, the transmission of an N -bit frame f over the channel is simulated, then the
frame is decoded. If decoding is successful, the corresponding κ-value κ(f) is set
to 0. Otherwise, the following action is repeated, for k = 1, · · · , D, and stopped
when decoding is successful: simulate the transmission of increment ∆(f, k) over
the channel, and then concatenate the (N+(k−1) ·∆)-LLR vector from the previ-
ous iteration to Λ∆(f, k); decoding is applied on the formed LLR-vector, and if it
is successful, κ(f) is set to k. The distribution (δω)ω≥0 can be deduced accordingly.

The channel model developed simplifies the analysis and design of inter-frame
codes. The success of intra-frame decoding of a frame f is equivalent to having
κ(f) less than or equal to the number of subframe neighbors of f that have f
as their only unrecovered neighbor. Consequently, the outcome of inter-frame
decoding of NF frames depends solely on the corresponding NF κ-values and the
binary representation Hb =[hb(i, j)] of H, where hb(i, j) is set to 1 if h(i, j) 6=0 and
0 otherwise. The inter-frame code construction problem is thus that of matching
the distribution(s) (δω) to the appropriate Hb.
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4.4 Mathematical Characterization

In this section, the improvement brought by inter-frame coding to the achievable
date rates is quantitatively studied. This is done though a mathematical charac-
terization of the coding-performance of the inter-frame coding scheme, followed by
comparing this performance to that of the other conventional schemes in the next
section.

The coding-performance of a scheme is measured in terms of the resulting
effective frame-length defined as: the average number of bits, per frame, that
needs to be transmitted such that probability that the receiver fails to recover the
sent information is below some target value. By its definition, the effective frame-
length can be viewed as a reciprocal of the data-rate value, and thus studying one
is equivalent to studying the other.

In this section, an additional assumption is made on the distribution (δω),
which is that δω+1 = µ · δω, ω ≥ 1, for some parameter µ < 1. This means that
(δω) is fully described by two parameters, µ and δ =

∑
ω>0 δω, as such: δ0 = 1− δ

and δω = δ · (1 − µ) · µω−1 for ω ≥ 1. This geometric progression assumption is
motivated by two factors. First and most importantly, it makes it possible to derive
a compact and relatively simple analytic description of the outcome of inter-frame
decoding in subsection 4.4.3. This, in turn, makes it easier to construct compact
descriptions of optimal degree-distributions. As in other fields of mathematics, the
underlying rationale is that finding a solution to this special case, characterized
by the relation δω+1 = µ · δω, gives an indication on the possible existence of
a solution for the general problem. Second, although such assumption does not
capture all the possible communication scenarios, it is certainly not unrealistic
as illustrated in Fig. 3.1 which shows the frame-error-rate (FER), or equivalently
intra-frame decoding-failure rate, versus the length of the transmitted frame. The
plotted FER curves are nearly linear, on the logarithmic scale, specifically when
the number of concatenated increments is relatively small.

The analysis done on the coding-performance is asymptotic, meaning that it
assumes the number of frames, NF , included in an inter-frame code or in any other
conventional scheme to be infinitely large. The asymptotic nature of the analy-
sis is motivated by three main considerations. First, such analysis provides the
performance limit of the inter-frame coding process, as the inter-frame code-size
goes to ∞. One side result is that it becomes possible to quantify the perfor-
mance degradation caused by constructing inter-frame codes of relatively small
sizes. Second, some complications resulting from finite-size inter-frame codes can
be efficiently dealt with in the asymptotic design case. For example, channel-state
correlation across consecutive frame transmission can be approached by interleav-
ing the frames or including the consecutive frames into different inter-frame codes,
both techniques being unrestricted in the asymptotic case by any upper limit on
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the inter-frame code-size. Third, as will be clarified in the next paragraph, the
asymptotic performance of inter-frame decoding process can be well analyzed and
optimized using a small set of compact mathematical expressions and inequalities.

Analyzing the performance of inter-frame coding is done through a four-step
procedure that is described next. Step (1) specifies a lower bound on the effective
frame-length obtained in inter-frame coding, for a certain channel-state statistical
description, and sets the goal of the following steps which is proving whether such
lower bound is achievable by inter-frame coding. This latter question is called
the question on the optimality of inter-frame coding. Answering it is preceded,
in step (2), by mapping inter-frame decoding into a two-phase message-passing
algorithm applied on a bi-partite graph that corresponds to the inter-frame code.
This algorithm is a generalization of the decoding algorithms of the erasure codes
developed in [85,86]. This means that the analytical approach, developed in [87] to
analyze the asymptotic performance of these erasure codes, can be generalized to
describe the performance of the inter-frame decoding process. This generalization
is done in step (3), where it is shown that the outcome of the decoding process
can be analyzed using a compactly-expressed mathematical function that involves
the edge-degree distributions of the bi-partite graph and the channel parameters.
Accordingly, optimal codes are designed in step (4) by constructing the appropriate
edge degree-distributions, and the optimality of these codes is proven. As a result
of this multi-step procedure, the effective-frame length of inter-frame coding, under
some channel-state statistical description, is obtained. It is then compared, in
Section 4.5, to the effective frame-lengths obtained in the state-of-the-art two-stage
scheme and in a simple IR-HARQ scheme devised for the sake of illustration.

It should be noted that, due to the nature of the presented material in this
part of the dissertation, the notation is slightly modified for the current and next
section (4.5): indexing is made here by subscripting, or rarely subscripting, the
index and including it in brackets.

4.4.1 Optimality Question

The first step i analyzing the asymptotic performance of inter-frame coding is
done in this section as follows: a bound on the asymptotic performance is set, and
consequently a question is formulated on whether such bound is achieved by inter-
frame coding. Finding an answer to this question, called here the question on the
optimality of inter-frame coding, is then the subject of the following subsections.

The effective frame-length obtained in an inter-frame coding scheme with pa-
rameters (NF , KS, N,∆), is equal to:

NF ·N +KS ·∆
NF

= N · (1 +
KS

NF

· ∆

N
).
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Both the ∆ and N values are assumed to be predefined, in addition, they are
fixed across the proposed and conventional schemes. Finding the effective frame-
length attained by inter-frame coding, for a channel-characterizing distribution
(δ(ω)), is then equivalent to finding the minimum value of KS

NF
that is sufficient

for the inter-frame decoding process to succeed. The latter inter-frame decoding
success criterion can be defined in various ways, one of which is considered in the
optimality question formulated in the end of the subsection.

The bound set on KS
NF

in this section is based on the following observation: a
subframe s is concatenated to at most one frame throughout inter-frame decoding.
On the other hand, the minimum number of subframes that should be concatenated
to the frames, for successful intra-frame decoding of the NF received frames, is∑NF

f=1 κ(f). Therefore, for the recovery of all the received NF frames, the following
condition must be satisfied:

KS ≥
NF∑
f=1

κ(f) ⇐⇒
KS

NF

≥
∑NF

f=1 κ(f)

NF

.

For a channel-characterizing distribution (δ(ω)),
∑NF
f=1 κ(f)

NF
→
∑

ω(ω · δ(ω)) as NF →
∞, by the law of large numbers. Overall, the following can be concluded: to
recover the NF received frames with a probability the goes to 1 as NF → ∞, a
necessary condition is:

KS

NF

≥
∑
ω

(ω · δ(ω)).

The resulting lower bound on KS
NF

motivates the following question: Assuming
a channel-characterizing distribution (δ(ω)), are there inter-frame codes that can be
defined over increasing values of NF such that, as NF →∞: KS

NF
→
∑

ω≥1(ω ·δ(ω)),
and the probability that a randomly-chosen frame is successfully-decoded in the
inter-frame decoding process converges to 1. Such codes are said in this chapter
to be optimal because the average number of subframes transmitted per frame
converges to the optimal value of

∑
ω≥1(ω · δ(ω)). The existence of such optimal

codes means that, for a distribution (δ(ω)), the minimum effective frame-length
that is achieved by inter-frame coding is equal to N(1 + (

∑
ω ω · δ(ω)) · ∆

N
). The

existence of optimal codes is the subject of the rest of the section.

4.4.2 Bipartite Graph Model

The second step in the analysis of the performance of inter-frame coding is mapping
the corresponding decoding process into a two-phase message-passing algorithm
applied on a bi-partite graph. This mapping has two motivations. First, the
two-phase message-passing algorithm is suitable for asymptotic analysis. Second,
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the developed message-passing algorithm is a generalization of the algorithm corre-
sponding to erasure decoding of LDPC codes and of the codes described in [85,86].
This means that the analysis and design techniques of optimal erasure codes, pre-
sented in [85–87], can be used as a starting point for the analysis and design of
optimal inter-frame codes, as is seen in the next subsections.

The inter-frame code can be described using a bi-partite graph as illustrated in
Fig. 4.6. The first partition V includes NF variable nodes, each corresponding to
a frame, while the second partition C includes KS check nodes, each correspond-
ing to a subframe. By abuse of notation, v/c is used to index the corresponding
frame/subframe. An edge exists between variable v and check c if the correspond-
ing frame and subframe are neighbors; v and c are neighbor nodes. The degree of
a node is the number of edges connected to it. For each set of NF received frames,
variable-node v is associated to a value κ(v), sampled from (δ(ω)).

 NF variable nodes

1 1 0 0 1 0 0

0 2 0 1 2 0 0

0 0 1 0 0 1 1

0 0 0 2 0 2 0

2 0 0 0 3 0 2

 H0 2 0 0 1 0 3

v(1)
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M
C [c

(5) ,v
(7) ] 

M
C [c
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V
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),
c (1

)]
 

M
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),
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)]
 

κ-value of  v(7)=3 

degree of v(7)=2

v(2) v(3) v(4) v(5) v(6) v(7)

c(1) c(2) c(3) c(4) c(5)

Figure 4.6: Bipartite graph corresponding to an inter-frame code. Each variable
node is indexed by its κ-value. Note that since the the κ-value of node v(7) is
greater than its degree, frame 7 cannot be recovered.

The inter-frame decoding progress, for a given set of NF κ-values associated
with the received frames, is then mapped to a two-phase message passing algorithm
applied on the bi-partite graph. This algorithm, denoted here as the decoding-on-
graph procedure, is described in Algorithm1. It does not recover the frames; rather,
it mimics the progress of the actual inter-frame decoding process to conclude what
frames will be successfully-decoded throughout this process. The algorithm is
iterative, where two binary messages are exchanged along each edge of the bi-
partite graph, per iteration. These two messages are the variable-to-check and
check-to-variable messages. A check-to-variable message from check c to variable
v, MC [c, v], is set to 1 to indicate that the other neighbor frames of subframe c are
recovered and that subframe c can be concatenated to frame v. A variable-to-check
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message from v to c, MV [v, c], is set to 1 if the number of 1-valued check-to-bit
messages sent from all neighbors of v, excluding c, to v exceeds κ(v). This means
that the number of subframes, excluding subframe c, that can be concatenated
to v exceeds the necessary κ(v). On the other hand, the frame v is recovered,
or equivalently U(v) defined in Algorithm1 is set to 1, if the number of 1-valued
check-to-bit messages sent from all neighbors of v to v exceeds κ(v).

Algorithm 1 Decoding-on-Graph Algorithm

Input: Bipartite graph (V , C); Vector κ ∈ NNF

∀v ∈ V , N(v): set of check neighbours of variable v;
∀c ∈ C, N(c): set of variable neighbours of check c;
Output: Successful Decoding Vector U ∈ {0, 1}NF (1: decoding success, 0
decoding failure);
Procedure:
U ← (κ == 0)
for v = 1 to |V| do

for c ∈ N(v) do
MV [v, c]← (κ(v) == 0) . variable-to-check message initialization

end for
end for
for iterations = 1 to MaxIter do

for c = 1 to |C| do
for v ∈ N(c) do

MC [c, v]←
∏

v′∈N(c)

v′ 6=v

MV [v′, c] . check-to-variable

end for
end for
for v = 1 to |V| do

for c ∈ N(V ) do

MV [v, c]←
(
κ(v) −

∑
c′∈N(v)

c′ 6=c

MC [c′, v] ≤ 0

)
. variable-to-check

end for
end for
for v = 1 to |V| do

U(v) ←
(

(κ(v) −
∑

c′∈N(v)
MC [c′, v]) ≤ 0

)
. frame recovery flag

end for
end for

The proof that this algorithm determines accurately the result of the actual
inter-frame decoding process is intuitive, but the details are tedious. For sake of
brevity, only the outline of the proof is sketched here.

66



Proof. (Sketch) As a prelude, the following persisting 1-message property can be
proved: if a message, whether variable-to-check or check-to-variable, takes the
value 1 in iteration i, it will pertain this value of 1 in the following iterations
i+ 1, · · · .
In the first part of the proof, it is shown the if a frame v is not recovered in
the actual inter-frame decoding process, then U(v) is always set to zero in all the
iterations of the decoding-on-graph process. This can be proven by induction:
assuming it is true for iterations 1, · · · , i∗, it is proven to be true for iteration
i∗ + 1 as well. Now, assume in iteration i∗ + 1, there exists node v such that
U(v) is set to 1, while the corresponding frame v is not recovered in the actual
inter-frame decoding process. Define S(v) to be the set of subframe neighbors of v
which corresponding check-to-variable messages going to v in iteration i∗+ 1 have
the value 1. Since U(v) is set to 1, |S(v)| ≥ κ(v). Define set V ′ ⊂ V , V ′ = {v′ ∈
V ; v′ 6= v and v′ is a neighbor of s′ ∈ S(v)}. For every pair (s′, v′) ∈ (S(v),V ′), the
variable-to-check message from v′ to c′ has value 1 in iteration i∗. This implies that
U(v′) takes the value of 1 in iteration i∗ < i∗+ 1 and, by the induction assumption,
that every frame v′ ∈ V ′ is recovered. However, since frame v is not recovered,
no subframe s ∈ S(V ) is concatenated to any of its neighbor frames in V ′ during
inter-frame decoding. Since all the frame neighbors of the subframes in S(v) are
recovered, all the subframes in S(v) can be concatenated to frame v. Besides, since
|S(v)| ≥ κ(v), frame v will be recovered: contradiction with the assumption.
In the second part of the proof, it is shown the if a frame v is recovered in the
actual inter-frame decoding process, then there exists an iteration i∗ in the two-
phase algorithm, such that U(v) is set to 1 for iterations i∗, i∗ + 1, · · · . The proof
outline is sketched here, and the details are omitted. A subgraph G(v) of the
bipartite graph is defined recursively as follows: 1) G(v) contains variable node
v, and 2) for each variable node v′ ∈ G(v), G(v) contains the check node c and its
variable node neighbors if subframe c is concatenated to frame v′ in the inter-frame
decoding process. Besides a direction is imposed on the edges in this subgraph,
such that for each check node c and variable node v′, where v′ and c are neighbors
and {v′, c} ⊂ G(v): the edge is directed from c to v′ if subframe c is concatenated
to frame v′ in the inter-frame decoding process, and from v′ to c otherwise. Define
L(v) as the longest sequence of directed edges, from any variable node v′ ∈ G(v) to
v.
Consider the following set of messages in the decoding-on-graph process: for each
check node c and variable node v′, where v′ and c are neighbors and {v′, c} ⊂ G(v),
the set includes the check-to-variable message from c to v′ if the edge in G(v) is
directed from c to v′, and the variable-to-check message from v′ to c otherwise. It
can be proven that these messages are all set to 1 after a number of iterations that

is less than or equal to
L(v)+1

2
. This can be proven using the persisting 1-message
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property; however the proof is omitted for brevity.

The described algorithm generalizes a two-phase message-passing algorithm
that can be applied in erasure decoding of LDPC codes and of the codes defined
in [85, 86]. The erasure-decoding case can be obtained by limiting the possible
κ-values to 0 and 1, where the parameter δ = δ(1) of (δ(ω)) represents the erasure
rate while µ is set to 0.

4.4.3 Asymptotic Performance Analysis

The third step of analyzing the performance of inter-frame coding is done here as
follows: a compact2 mathematical expression that describes the outcome of the
decoding-on-graph process is derived in Theorem 1 of the subsection. The analysis
performed to obtain Theorem 1 follows the analysis technique developed in [87].
Therefore, the basic features of this technique are described first, followed by the
analysis of the inter-frame decoding case.
Preliminaries: The decoding-on-graph algorithm is analyzed when being applied
on bipartite graphs with the following properties: 1) (NF , KS)→ (∞,∞), and 2)
the graphs are constructed randomly according to two probability distributions:
the edge variable and check degree-distributions, (λ(i))i≥1 and (ρ(i))i≥1 respectively.
The following terminology is adopted from [85], and is restated here for clarity:
an edge in the bipartite graph drawn between variable node v and check node c
has as variable degree the degree of v, and as check degree the degree of c. Then,
λ(i)(ρ(i)), i ≥ 1, is the probability that an edge of the graph, picked randomly,
has variable(check) degree i. For any two distributions of (λ(i))i≥1 and (ρ(i))i≥1,
random graphs with the respective edge degree-distributions can be constructed,
and these two distributions characterize the constructed ensemble. The functions
λ(x) and ρ(x) are defined as follows: λ(x) =

∑
i λ(i) ·xi−1 and ρ(x) =

∑
i ρ(i) ·xi−1.

A basic result on the randomly constructed bipartite graph is stated in [87],
and is restated in this paragraph. Consider a variable node v: ∀l > 0, define the
neighbors of v within distance 2 · l, as the nodes that can be reached starting from
v through a sequence of 2 · l edges or less. Consider the subgraph G(v,l) including
v and all the neighbors of v within distance 2 · l: the probability that G(v,l) fails to
be a tree goes to zero as NF grows to infinity, for a fixed value of l. For simplicity
of exposition, it is assumed here that G(v,l) is a tree with probability 1. This
assumption, denoted here as tree assumption, does not impact the validity of the
derived results but makes the following derivations clearer.

The decoding-on-graph process is applied on a randomly constructed bipartite
graph. As in [87], it is viewed as a random discrete process and the evolution

2The term “compact”, used here to describe a mathematical expression, means that the
corresponding expression involves few well-defined terms.
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of one of its parameters Q(i) throughout the decoding process is analyzed, where
Q(i) is defined as the probability that a randomly picked check-to-variable message
at iteration i is 1. Besides its significance, it can be seen that {Q(i)} determines
the sequence {P(i)} defined as such: P(i) is the probability that a randomly picked
variable-to-check message at iteration i is 1. Let f(·) be the function defined over
[0, 1] such that f(·) maps Q(i) = y to Q(i+1) = f(y). Define y∗ ∈ [0, 1] as follows:

f(y) > y ∀0 ≤ y < y∗ and f(y∗) = y∗. (4.1)

The function f(·) is clearly increasing; therefore, the convergence value of the
sequence {Q(i)}, i = 1 · · ·∞, is Q(∞) = y∗. Besides, it is noteworthy that the
function f(y) − y indicates the speed of convergence of {Q(i)} to y∗. Therefore,
the inequality (4.1) describes the outcome of the decoding-on-graph process. Next
in this subsection, this inequality will be reformulated into another compact ex-
pression relating the degree-distributions and channel parameters. This refor-
mulated expression, obtained in Theorem 1, will be used to construct optimal
degree-distributions.
Analysis: Let g(x) be a function of 0 ≤ x ≤ 1, defined as the probability that
a randomly-picked variable-to-check message is 0 , given the probability that a
randomly-picked incoming check-to-variable message is 0 is x, then f(1 − x) =∑

i ρ(i).(1 − g(x))i−1 = ρ(1 − g(x)). The latter equality use the tree assumption
to deduce that the variable-to-check messages incoming to a check node of degree
i are independent random variables. Therefore, the probability that the outgoing
check-to-variable message is 1 is a product of i− 1 identical values, each equal to
1− g(x) . Define x∗ = 1− y∗, inequality (4.1) can be reformulated to:

ρ(1− g(x)) > 1− x ∀x ∈]x∗, 1]. (4.2)

For the erasure decoding case where δ(ω) = 0 for ω > 1, g(x) = δ(1) ·
∑

i λ(i) ·
xi−1 = δ(1) · λ(x), and therefore f(1 − x) = ρ(1 − δ · λ(x)). Similar to the afore-
mentioned reasoning, evaluation of g(x) uses the tree assumption to assume the
independence of the incoming check-to-variable messages. The inequality (4.2) is
thus equivalent to:

ρ(1− δ · λ(x)) > 1− x for 0 ≤ x∗ < x ≤ 1. (4.3)

The contribution of this subsection is the derivation of an expression, analo-
gous to that in (4.3), for the inter-frame decoding case. This is done as follows:
inequality (4.1) can be reformulated as shown in the following theorem.

Theorem 1. ( decoding-on-graph outcome characterization) For a distribution
(δ(ω)) described by (δ, µ), and degree-distributions, (λ(i))i≥1 and (ρ(i))i≥1:

ρ(1− δ · λ(z)) >
1− z
1− µ

, ∀z ∈]z∗, 1].
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where z∗ = (1− y∗) + µ · y∗ > µ.

Proof. Define g(d;ω)(x) as the probability that a randomly-picked variable-to-check
message is 0 given: 1) the corresponding variable-node v has degree d, 2) κ(v) = ω
and 3) the probability that a randomly-picked incoming check-to-variable message
is 0 is x. Similarly, define g(d)(x) as the probability that a randomly-picked variable-
to-check message is 0 given: 1) the corresponding variable-node v has degree d
and 2) the probability that a randomly-picked incoming check-to-variable message
is 0 is x. The function g(x) can be expressed as:

g(x) =
∞∑
d=1

λ(d) · g(d)(x) , g(d)(x) =
∑
ω

δ(ω) · g(d;ω)(x).

Then,

g(d;ω)(x) =

min(ω,d)−1∑
j=0

(
d− 1

j

)
· (1− x)j · xd−1−j.

The geometric progression property of δ(ω) is now used to express g(d)(x) as follows:

g(d)(x) =
∞∑
ω=0

δ(ω) ·

min(ω,d)−1∑
j=0

(
d− 1

j

)
· (1− x)j · xd−1−j


=

d−1∑
j=0

((
d− 1

j

)
· (1− x)j · xd−1−j ·

∞∑
ω=j+1

δ(ω)

)

=
d−1∑
j=0

((
d− 1

j

)
· (1− x)j · xd−1−j · δ(1) · µj ·

∞∑
ω=0

µω

)

=

(
δ(1) ·

∞∑
ω=0

µω

)
·
d−1∑
j=0

(
d− 1

j

)
· µj · (1− x)j · xd−1−j

=
δ(1)

1− µ
· (x+ µ · (1− x))d−1.

We have δ =
∑∞

ω=1 δ(ω), then δ = δ(1) +
∑∞

ω=2 δ(ω) = δ(1)(1 +
∑∞

ω=1 µ
ω) =

δ(1)

1−µ ,
Therefore:

g(x) =
∞∑
d=1

λ(d)g(d)(x) = δ · λ(x+ µ · (1− x)). (4.4)

Then, inequality (4.2) can be rewritten as:

ρ
(

1− δ · λ(x+ µ · (1− x))
)
> 1− x, x∗ < x ≤ 1.
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Then, by applying the following change of variable z = x+µ(1−x), the expression
becomes, for z∗ = (1− y∗) + µ · y∗ ≥ µ:

ρ
(

1− δ · λ(z)
)
>

1− z
1− µ

, z ∈]z∗, 1].

The derived analytic expression is a generalization of that corresponding to
erasure decoding: by setting µ to 0, the derived inequality reduces to ρ(1 − δ ·
λ(z)) > 1−z, 1−y∗ < z ≤ 1. This result is not unexpected since the decoding-on-
graph algorithm is itself a generalized form of a LDPC erasure-decoding message-
passing algorithm.

Ideally, decoding is successful if y∗ = 1, that is the sequence {Q(i)} converges
to 1. This means that the sequence {P(i)}, converges to 1 as well. This can
be checked from the following inequality: Q(i) ≤ Pm−1

(i−1), m here is the minimum

check-node degree3. However, such ideal scenario is impossible under the geometric
progression model of (δ(ω)). To see this, assume Q(∞) = y∗ = 1 or equivalently
x∗ = 0, ρ(1 − g(0)) equals 1 by inequality (4.2). This in turn implies that g(0),
evaluated to δ ·λ(µ) from (4.4), equals 0 which is clearly contradictory. Therefore,
the sequence {Q(i)} does not converge to 1, regardless of the channel parameters
(δ, µ) and the degree distributions. A related observation is that for any variable-
node v of degree d, the probability that decoding does not recover the frame
corresponding to v is lower bounded by the nonzero value of

∑∞
ω=d+1 δ(ω).

In light of this result, the optimality question raised in 4.4.1 is slightly modified
as follows: For any ε > 0, are there codes that can be defined over increasing values
of NF such that: as NF → ∞, 1) KS

NF
→
∑

ω≥1(ω · δ(ω)), and 2) the probability
that a randomly-chosen frame is successfully-decoded in the inter-frame decoding
process is greater than 1− ε?

4.4.4 Optimal Degree Distribution Construction

To obtain inter-frame codes that are optimal in the sense defined in subsec-
tion 4.4.1, the following methodology is devised: a sequence of degree-distribution

couples parameterized by J = 1 · · ·∞,
(
(λ(i))i≥1, (ρ(i))i≥1

)(J)
, is constructed such

that:
1. KS

NF
→
∑

ω≥1(ω · δ(ω)) = δ
1−µ , as (J,NF )→∞.

2. ∃ 0 < Z0 < 1 and J? ∈ Z+, such that:

ρ(J)(1− δ · λ(J)(z)) >
1− z
1− µ

, ∀J > J? and Z0 < z ≤ 1.

3The special case m = 1 is not considered here merely for simplicity of exposition.
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This inequality is that obtained in Theorem 1 of the previous subsection.
3. The minimum variable-node degree goes to ∞ as J →∞.

It is shown here that if these properties are satisfied, then the constructed
sequence of degree-distributions results in optimal inter-frame code design. First,
property (1) clearly means that KS

NF
converges to the optimal value of

∑
ω≥1(ω ·δ(ω))

as NF →∞. Second, properties (2) and (3) imply that for any ε > 0, there exists
an integer J(ε) ∈ Z+, such that the probability that a frame f is unrecovered

in the decoding of a random code constructed according to
(
(λ(i))i≥1, (ρ(i))i≥1

)(J)
,

converges to a value less than ε as NF → ∞ if J > J(ε). This latter result
can be proved by noticing that property (2) implies that, ∀J > J?, the value
z∗ defined in the previous subsection is less than Z0, or equivalently that the
sequence {Q(i)} converges to a value Q(∞) = y∗ that is greater than Y0 = 1−Z0

1−µ .
Let τ be the minimum variable-node degree, i.e. λ(i) = 0 for i < τ . Consider
the probability that a randomly-picked variable-to-check message is 0 given 1) the
corresponding variable-node v has degree τ and 2) the probability that a randomly-
picked check-to-variable message incoming to v is 0 is 1 − y∗: it is denoted by
g(τ)(1 − y∗) in the proof of Theorem 1 and equals δ · ((1 − y∗) + µ · y∗)τ−1 =
δ · ((1− y∗ · (1−µ))τ−1 < δ · ((1− Y0 · (1−µ))τ−1. Property (3) means that τ goes
to ∞ as J →∞, and therefore g(τ)(1− y∗) < δ · ((1− Y0 · (1− µ))τ−1 approaches
0 as J goes to ∞. Furthermore, it can be checked that the probability that a
frame corresponding to a randomly-picked variable node v is unrecovered, given
the probability that a randomly-picked check-to-variable message is 0 is x, is less
than g(τ)(x). Therefore, as the probability that a randomly-picked check-to-variable
message is 1 converges to y∗ > Y0, the probability that a frame corresponding to
a randomly-picked variable node is unrecovered converges to 0 as (J,NF )→∞.

A sequence of degree-distributions is constructed next. Then, it is proved that
this sequence satisfies properties (1)-(3), and thus results in optimal code design.
Some concluding remarks are finally made.

Degree-distributions: The distributions constructed here are a generalization
of the optimal distributions of the erasure codes in [85]. The erasure code distri-
butions are described briefly next. The λ-distribution is:

λ(i) =
1

H · (i− 1)
, i = 2, · · · , d+ 1.

for a chosen integer d and H =
∑d

i=1
1
i
. The average variable-node degree is:

av = (
∑
i

λ(i)

i
)−1 = (

d+1∑
i=2

1

H · i · (i− 1)
)−1 = H · (1 + 1/d).
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The function λ(x) ∼ − ln(1− x)/H (but strictly less).
The ρ-distribution is described as follows:

ρ(i) =
e−α · αi−1

(i− 1)!
i = 1, · · · ,∞.

Thus, ρ(x) = eα·(x−1). The average check-node degree is:

ac = (
∑
i

ρ(i)

i
)−1 = α/(1− e−α).

Then, we have for erasure codes:

ρ(1− δ · λ(x)) = e−α·δ·λ(x)

> e
α·δ
H
·ln(1−x) = (1− x)

α·δ
H = (1− x)

ac
av
·(1+1/d)·(1−e−α)·δ

≥ (1− x), ∀0 ≤ x ≤ 1.

The last inequality is valid when av
ac
≥ δ · (1 + 1/d).

Optimal IIF Degree Distributions: The proposed inter-frame code distributions
are constructed next. The λ-distribution is parameterized by two integers: the pa-

rameter J of the constructed distribution couple
(
(λ(i))i≥1, (ρ(i))i≥1

)(J)
and another

integer d. It is assumed that as J goes to ∞ so does d, however, no specific rela-
tion involving both of them is imposed. In the rest of the section and for sake of
notation simplicity, the super-index (J) will be omitted from the λ and ρ terms.
The constructed λ-distribution can be described as: (H =

∑d
i=1 i

−1)

λ(J ·(i−1)+1) =
1

H · (i− 1)
, i = 2, · · · , d+ 1.

and λ(k) = 0, otherwise.
The construction of the ρ-distribution involves two different distributions. Define
the distribution (β(α;i)), where:

β(α;i) =
e−α · αi−1

(i− 1)!
.

This distribution is similar to the ρ-distribution in erasure codes. Define another
distribution (Ω(i)), parameterized by the integer dc, as such:

Ω(i) =
1

i ·Hc

, i = 1, · · · , dc.

73



where Hc =
∑dc

i=1
1
i
. The parameter dc is chosen such that:

dc∑
i=1

1

i
≤ J · (1− µ) <

dc+1∑
i=1

1

i
.

From the definition of dc, it can be deduced that J
Hc
≥ 1

1−µ and that | J
Hc
− 1

1−µ |
goes to 0 as J → 0. The ρ-distribution is formed as follows:

ρ(i) =
dc∑
j=1

Ω(j) · β(j·H/δ;i).

Proof of Optimality: Property (3) is satisfied by the constructed degree-distributions,
as the minimum variable-node degree, obtained from a distribution (λ(i))

(J), is J+1
which clearly goes to ∞ as J →∞.
Property (1) is shown to be satisfied as stated in Lemma 1.

Lemma 1. KS
NF
→ δ

1−µ as (J, d)→ (∞,∞).

Proof. Each of the expressions KS · ac and NF · av represents the number of edges
in the bi-partite graph, therefore KS · ac = NF · av which implies that KS

NF
= av

ac
.

The average variable-node degree is:

av = (
∞∑
j

λ(j)

j
)−1

=

(
d+1∑
i=2

1

H · (i− 1) · (J · (i− 1) + 1)

)−1

= J ·H

(
d∑
i=1

1

i · (i+ 1/J)

)−1

.

The average check-node degree is:

ac =

(
∞∑
i=1

ρ(i)

i

)−1

=

(
∞∑
i=1

dc∑
j=1

Ω(j)β(j·H/δ;i)

i

)−1

=

(
dc∑
j=1

Ω(j) ·
∞∑
i=1

β(j·H/δ;i)

i

)−1

= Hc ·

(
dc∑
j=1

1

j
· δ
jH
· (1− e−j·H/δ)

)−1

=
Hc ·H
δ
·

(
dc∑
j=1

1− e−j·H/δ

j2

)−1

.
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The rate KS
NF

= av
ac

is then equal to:

av
ac

=
J · δ
Hc

·

(
d∑
i=1

1

i · (i+ 1/J)

)−1( dc∑
j=1

1− e−j·H/δ

j2

)
.

As (J, d)→∞, J
Hc
→ 1

1−µ by the definition of dc. In addition, as d→∞, H =∑d
i=1

1
i
→ ∞. Therefore, both

(∑d
i=1

1
i·(i+1/J)

)
and

(∑dc
j=1

1−e−j·H/δ
j2

)
converge to

the same finite value
(∑∞

i=1
1
i2

)
. Overall, av

ac
→ δ

1−µ .

The proof that property (2) is satisfied is more complicated; yet, it motivates the
specific construction of distributions (λ(i)) and (ρ(i)). Prior to explaining this, the
expressions of the λ(x) and ρ(x) functions are obtained as follows:

λ(x) =
d+1∑
i=2

xJ ·(i−1)

H · (i− 1)

=
1

H
·

d∑
i=1

(xJ)i

i
∼ (<)− 1

H
· ln(1− xJ).

where the finite sum
∑d

i=1
(xJ )i

i
is approximated to the following power series∑∞

i=1
(xJ )i

i
= − ln(1− xJ).

ρ(x) =
∞∑
i=1

ρ(i) · xi−1

=
∞∑
i=1

xi−1 ·
( ∑dc

j=1 Ω(j) · β(j·H/δ;i)

)
=

dc∑
j=1

Ω(j) ·
( ∑∞

i=1 β(j·H/δ;i) · xi−1
)

=
dc∑
j=1

1

j ·Hc

e
j·H
δ
·(x−1).

The construction of the degree-distributions, (λ(i)) and (ρ(i)), can now be motivated
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by observing the following:

ρ(1− δ · λ(x)) > ρ(1 +
δ

H
· ln(1− xJ))

=
dc∑
j=1

1

j ·Hc

ej·ln(1−xJ )

=
1

Hc

·
dc∑
j=1

(1− xJ)j

j

∼ − ln(xJ)

Hc

= − J

Hc

· ln(x)

≥ J

Hc

· (1− x)

>
1− x
1− µ

∀0 ≤ x < 1.

This result, based on the approximation
∑dc

j=1
(1−xJ )j

j
∼ − ln(xJ), is clearly

not accurate. For example, it can be noticed that while ρ(1 − δ · λ(x)) ≤ 1
∀x ∈ [0, 1], − ln(x) → ∞ as x → 0. However, such result hints that the relation
ρ(J)(1 − δ · λ(J)(z)) > 1−z

1−µ is valid for a sufficiently wide range of [0, 1] and for J

large enough, and hence that property (2) is satisfied. This is rigourously proven
next, using the following sequence of lemmas.

Lemma 2. If (1−xJ)dc < (1−x) ∀ 0 < Xl < x < 1, then 1
Hc
·
∑dc

i=1
(1−xJ )i

i
> 1−x

1−µ
∀ Xl < x < 1.

Lemma 3. ∀η > 0, ∃J0 such that e1−µ−η < d
1
J
c < e1−µ+η, ∀J > J0.

Lemma 4. For each value J ∈ Z+, there exists a single value Xc ∈ [0, 1] such that
(1 − xJ)dc > 1 − x if x < Xc, and (1 − xJ)dc < 1 − x otherwise. In addition, Xc

converges to e−(1−µ) as J →∞.

Proof. (Lemma 2)
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Define T (x) = 1
Hc
·
∑dc

i=1
(1−xJ )i

i
, and S(x) = 1−x

1−µ .

−∂S
∂x

=
1

1− µ

−∂T
∂x

=
J

Hc

· xJ−1

dc∑
i=1

(1− xJ)(i−1)

=
J

Hc

· xJ−1 ·
dc−1∑
i=0

(1− xJ)i

=
J

Hc

· xJ−1 · 1− (1− xJ)dc

1− (1− xJ)
=

J

Hc

· 1− (1− xJ)dc

x
.

If (1− xJ)dc < (1− x), then 1−(1−xJ )dc

x
> 1, and since by definition J

Hc
≥ 1

1−µ ,

then −∂T
∂x

> −∂S
∂x

. Since 1) −∂T
∂x

> −∂S
∂x
∀Xl < x ≤ 1 and 2) T (1) = S(1) = 0,

then T (x) > S(x) ∀Xl < x < 1.

Proof. (Lemma 3)
Define θ = η

2·(1−µ)−η , ε = η
2·(1−µ)

, and ν = η
2− η

1−µ
. Each of θ, ε, and ν goes to 0 as

η → 0.
Hc =

∑dc
j=1

1
j
, so Hc

ln(dc)
→ 1 as dc → ∞ or, equivalently, J → ∞. Therefore,

∃J1 such that ∀J > J1:

ln(dc) < Hc < (1 + θ) · ln(dc)

⇐⇒ dc < eHc < d(1+θ)
c

⇐⇒ eHc·(1−ε) = e
Hc
1+θ < dc < eHc

⇐⇒ e
Hc
J
·(1−ε) < dc

1
J < e

Hc
J .

By definition of dc,
J
Hc
→ 1

1−µ and J
Hc
≥ 1

1−µ . Therefore, ∃J2 such that ∀J > J2:

(1− µ)− ν < Hc

J
≤ (1− µ).

Then, ∀J > J0 = max(J1, J2):

e((1−µ)−ν)·(1−ε) < dc
1
J < e(1−µ)

=⇒ e(1−µ)−ν(1−ε)−ε(1−µ) < d
1
J
c < e(1−µ).

where ν · (1− ε) = ε · (1− µ) = η/2, therefore:

e1−µ−η < d
1
J
c < e1−µ+η ∀J > J0.
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Proof. (Lemma 4)
Define P (x) = (1− xJ)dc and Q(x) = 1− x.

∂P

∂x
= −dc · J · xJ−1 · (1− xJ)dc−1.

∂2P

∂x2
= −dc · J · (J − 1) · xJ−2 · (1− xJ)dc−1

+ dc · (dc − 1) · J2 · x2(J−1) · (1− xJ)dc−2

= −dc · J · xJ−2 · (1− xJ)dc−2
(

(J − 1) · (1− xJ)− (dc − 1) · J · xJ
)

= −dc · J · xJ−2 · (1− xJ)dc−2
(

(J − 1) + (1− dcJ) · xJ
)
.

Some properties of P (x) and Q(x) are: 1) ∂2P
∂x2 changes its sign once in the

range [0, 1], 2) P (0) = Q(0) = 1 and P (1) = Q(1) = 0, and 3) P ′(0) = P ′(1) =
0 > Q′(0) = Q′(1) = −1. It can be deduced from these properties that there exists
one value Xc such that P (x) > Q(x) if x < Xc and P (x) ≤ Q(x) otherwise.

The convergence value of Xc as J → ∞, is now considered. An arbitrarily
small value of η is chosen, and J0 is defined according to Lemma 3.

1 < − ln(P (x))

dc · xJ
= −dc ·

ln(1− xJ)

dcxJ

= 1 +
xJ

2
+
x2J

3
+ · · ·

< 1 + xJ + x2J + · · · = 1

1− xJ
.

Consider the value x1 = e−(1−µ)−2η. Since 1
1−xJ1

→ 1 as J →∞, then ∀χ > 0, ∃J3

such that: dc · xJ < − ln(P (x)) < (1 + χ) · dc · xJ ∀J > J3. Fix the value of χ.

− ln(P (x1)) < (1 + χ) · dc · xJ1 = (1 + χ) · (d
1
J
c · x1)J

< (1 + χ) · (e1−µ+η · e−(1−µ)−2η)J

= (1 + χ)e−η·J ∀J > max(J0, J3).

Since (1 + χ)e−η·J → 0 as J → ∞, ∃J4 such that (1 + χ)e−η·J < − ln(Q(x1))
∀J > J4. Therefore:

− ln(P (x1) < − ln(Q(x1)) ∀J > max(J0, J3, J4).

Now, consider the value x2 = e−(1−µ)+2η.

− ln(P (x2)) > (d
1
J
c · x2)J

> (e(1−µ)−η · e−(1−µ)+2η)J

= eηJ ∀J > J0.
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Since eηJ →∞ as J →∞, ∃J5 such that eηJ > − ln(Q(x2)) ∀J > J5. Therefore:

− ln(P (x2)) > eη·J > − ln(Q(x2)) ∀J > max(J0, J5).

Overall, define J6 = max(J0, J3, J4, J5):

P (x1) > Q(x1) and P (x2) < Q(x2) ∀J > J6.

Therefore:
e−(1−µ)−2η = x1 < Xc < x2 = e−(1−µ)+2η ∀J > J6.

Since η can be chosen arbitrarily small, then Xc converges to e−(1−µ) > µ as
J →∞.

From Lemma 4, it can be concluded that for an arbitrarily small γ: ∃J? such
that:

Xc < e−(1−µ)+γ ∀J > J?.

Therefore:

(1− xJ)dc < 1− x ∀x > e−(1−µ)+γ and J > J?.

This means, by Lemma 2, that:

ρ(1− δ · λ(x)) =
1

Hc

·
dc∑
i=1

(1− xJ)i

i
>

1− x
1− µ

∀x > e−(1−µ)+γ, J > J?.

Property (2) is thus satisfied.
A stronger result can be derived on the function ρ(1 − δ · λ(x)) = T (x). The

result is briefly described next. It can be observed from the proof of Lemma 4
that when x < e−(1−µ), − lnP (x) → 0 or equivalently P (x) → 1 as J → ∞. On
the other hand, when x > e−(1−µ), − lnP (x) → ∞ or equivalently P (x) → 0 as
J →∞. As seen in the proof of Lemma 2:

−Hc

J
· ∂T
∂x

=
1− (1− xJ)dc

x
=

1− P (x)

x
.

As J →∞, 1−P (x)
x
→ 1

x
= ∂ ln(x)

∂x
if x > e−1−µ, and 1−P (x)

x
→ 0 otherwise. Besides,

as J →∞, J
Hc
→ 1

1−µ . It can be thus concluded that the function ρ(1− δ ·λ(x)) =

T (x) converges to the piecewise function T(∞)(x), as J →∞, where:

T(∞)(x) =

{
1, x < e−(1−µ)

− ln(x)
1−µ , x ≥ e−(1−µ)
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Remarks: Overall, it is proved in the section that optimal codes exist, for a
channel-characterizing distribution (δ(ω)) described by a (δ, µ) pair.

Two related questions can then be raised. These questions form topics of
further research which are beyond the scope of the dissertation. The first question
is whether inter-frame coding is optimal under any arbitrary channel-characterizing
distribution (δ(ω)), that is when (δ(ω)) does not form a geometric progression.

The second question is motivated, in broadcast communication, by the fact
that the different channels corresponding to different receivers may be described
by different (δ, µ) pairs. Consequently, it can be formulated as the problem of
finding, for any two channels described by (δ(1), µ(1)) and (δ(2), µ(2)) respectively,
the inter-frame code with the minimum KS

NF
that can be deployed for successful

inter-frame decoding under both channels, as NF → ∞. A lower bound on the
achievable KS

NF
is max( δ(1)

1−µ(1) ,
δ(2)

1−µ(2) ). The optimal degree distributions, constructed
in this section, have δ and µ as parameters in their definition, and therefore may not
be appropriate for the current case of multiple distributions (δ(ω)). In this regard,
the following simple result can be stated: if δ(1) ≥ δ(2) and µ(1) > µ(2), then the
optimal degree-distribution designed for (δ(1), µ(1)) resulting in KS

NF
= δ(1)

1−µ(1) , results

also in successful inter-frame decoding for (δ(2), µ(2)). This result can be proved
by observing that if δ(1) ≥ δ(2) and µ(1) ≥ µ(2), then:

ρ
(

1− δ(1) · λ(z)
)
>

1− z
1− µ(1)

⇒ ρ
(

1− δ(2) · λ(z)
)
>

1− z
1− µ(2)

.

The details of the proof are omitted for brevity. The case where δ(1)−δ(2) and µ(1)−
µ(2) have different signs, is more challenging and requires further investigation.
This problem is denoted here as the problem of designing universal inter-frame
codes.

80



4.5 Asymptotic Coding Performance

In this section, the performance of inter-frame coding is compared to that of two
conventional solutions: IR-HARQ and the state-of-the-art two-stage scheme. This
comparison is done by computing the enhancement ratio, defined as the ratio of
the effective frame-length obtained in the conventional solution to that obtained
in inter-frame coding. The key result of the previous section is that the optimal
effective frame-length, obtained in inter-frame coding for a channel-characterizing
distribution (δ(ω)), is N + δ

1−µ ·∆ = N(1 + δ
1−µ ·

∆
N

).
It is assumed throughout this section that all the receivers, in the broadcast

communication, have the same channel-characterizing distribution (δ(ω)). This
single-distribution assumption is motivated by two considerations. First, the com-
parison setup has to be kept within the range of the results obtained in the pre-
vious sections. In this regard, the single-distribution assumption rules out the
scenarios for which the optimal value of KS

NF
is not derived in the chapter and, con-

sequently, for which an accurate estimation of the effective frame-lengths cannot
be made. One such scenario is the following: the channel-characterizing distribu-
tions corresponding to different receivers are described by different (δ, µ) couples
which, however, result in close or identical mean κ-value, i.e. ( δ

1−µ). Second,
the single-distribution assumption can be viewed as a simplification of the worst-
distribution assumption explained as follows: in broadcast communication where
receivers have different channel-characterizing distributions, the effective frame-
length should be large enough to account for the distribution with the highest
value of

∑
ω(ω · δ(ω)) = δ

1−µ . The worst-distribution assumption is that this distri-
bution has the highest value of each of δ and µ, as well. This means that the design
of the inter-frame code, and therefore the value of KS

NF
, is determined solely by this

distribution, as seen in Section 4.4. It is, therefore, the distribution considered in
evaluating the resulting effective frame-length obtained from inter-frame coding.

An underlying assumption made in this section is that the distribution (δ(ω))
does not change with the different schemes (IR-HARQ, two-stage, or inter-frame
coding) used. The possibility of (δ(ω)) varying with schemes, due to the resulting
change in transmission scheduling for example, is not considered here. Therefore,
the reported results can be fully attributed to the peculiar coding features of the
compared schemes.

4.5.1 IR-HARQ

Many variations of the IR-HARQ scheme exist. One simple IR-HARQ scheme is
assumed here and the resulting effective frame-length is obtained. The scheme can
be described as follows: for each frame f , the rate-RH N -bit portion of the frame is
initially transmitted. A retransmission is initiated as long as: 1) feedback from at
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least one receiver reports a decoding failure and 2) the number of retransmissions
corresponding to f are less than some upper bound n?. The ith retransmission, 1 ≤
i ≤ n?, consists of increment ∆(f,i). For this subsection, the following terminology
is defined: n(f) is the the number of transmitted increments for frame f , R is
the set of receivers, and κ(f ;i), i = 1, · · · , |R|, is the κ-value of frame f for the
ith receiver. It can be deduced from the description of the IR-scheme that n(f) is
equal to min(max1≤i≤|R| κ(f ;i), n

?), and that the frame-error-rate (FER) for each
receiver is equal to

∑
ω>n? δ(ω) = δ · µn? . Therefore, for a target FER of 10−a, n?

is set to d−a−log10(δ)
log10(µ)

e.
As the number of receivers, |R| goes to infinity, the value of max1≤i≤|R| κ(f ;i)

goes to ∞ and, therefore, n(f) → n?. This means that the feedback from the
receivers has no impact on the number of retransmissions when |R| → ∞. There-
fore, the IR-HARQ becomes equivalent to a stand-alone forward-error-correction
scheme with no feedback, and with the frame-length set to N · (1 + n? · ∆

N
). The

resulting enhancement ratio is:

1 + n? · ∆
N

1 + δ
1−µ ·

∆
N

The enhancement ratio is plotted versus µ in Fig. 4.7 for ∆
N

= 0.1, δ ∈ {0.3, 0.5, 0.7},
and FER values in {10−1, 10−2, 10−3}. Two observations can be made accordingly.
First, the sensitivity of the enhancement ratio to the variations of δ is significantly
less than its sensitivity to variations in FER and µ. Second, the enhancement ratio
values are considerably high. For example, even for a relatively low target FER
of 10−2, the enhancement ratio exceeds 2 for µ ∼ 0.75, and reaches 3 or above as
µ→ 0.9.

The enhancement ratios plotted in Fig.4.7 assumes an infinitely large number
of receivers. Next the case of finite values of |R| is considered. For 1 ≤ n < n?,
the probability that n(f) = n is equal to (1−µn ·δ)|R|− (1−µn−1 ·δ)|R|. Therefore,
the expected value of n(f), for some value of |R| is:

E(n(f)) = n? −
n?−1∑
i=0

(1− µi · δ)|R| =
n?−1∑
i=0

(1− (1− µi · δ)|R|).

It can be easily checked that E(n(f)) converges to a finite value as the target
FER 10−a converges to 0, or equivalently as a → ∞, by noting that: 1) E(n(f))
increases as a → ∞ since n? increases with a, and 2) E(n(f)) is upper bounded

since n(f) ≤
∑|R|

i=1 κ(f ;i) and, therefore, E(n(f)) ≤ |R| · δ
1−µ . This convergence can

be qualitatively justified by the fact that if |R| � 10a, then the probability that
max1≤i≤|R| κ(f ;i) ≥ n? is very small, therefore, so is the probability that n(f) varies
with the increase in n?.
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Figure 4.7: Enhancement ratio compared to IR-HARQ as |R| → ∞.

The growth of E(n(f)) as |R| increases, for a fixed target FER 10−a, is illus-
trated in Fig. 4.8. The curves show the enhancement ratio for 1 ≤ |R| ≤ 100,
target FER of 10−1 and 10−2, and (δ, µ) ∈ {(0.5, 0.5), (0.8, 0.6), (0.6, 0.8)}. It can
be deduced from these curves that the enhancement brought by inter-frame coding
over the IR-scheme is significant, even when the number of receivers is small. For
example, the enhancement ratios for a target FER of 10−2 and |R| = 10 exceeds
the corresponding enhancement ratio, for a target FER of 10−1 and |R| → ∞,.
The latter values themselves are significant, standing at 1.18, 1.25, and 1.46 for
(δ, µ) equal to (0.5, 0.5), (0.8, 0.6), and (0.6, 0.8) respectively.

4.5.2 Two-stage Scheme

To evaluate the coding-performance of the state-of-the-art two-stage scheme, the
combination of the intra-frame code-rate and the erasure code-rate that results in
the lowest effective frame-length should be found.

For clarity of the following discussion, the two-stage scheme is briefly described
here. On the transmitter side, the NF ·K information bits are encoded into NT ·K
bits, using an erasure code of rate RE = NF

NT
. The resulting (NT ·K)-bit sequence is

then partitioned into NT K-bit blocks that are intra-frame encoded into NT rate-R
frames that are transmitted over the channel. On the receiver side, intra-frame
decoding is applied on each received frame: if decoding fails, the frame is dropped
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Figure 4.8: Enhancement ratio compared to IR-HARQ versus |R|, for FER∈
{10−1, 10−2} and (δ, µ) = (0.5, 0.5) (a), (δ, µ) = (0.8, 0.6) (b), and (δ, µ) = (0.6, 0.8)
(c).

and considered erased; else, if decoding succeeds, the K bits corresponding to the
frame are recovered and collected. The collected bits, resulting from the intra-
frame decoding of the NT frames, are then forwarded into erasure decoding. In
case of erasure-decoding success, the NF ·K information bits are recovered. The
transmitter is assumed to know the distribution (δ(ω)). Besides, for simplicity, no
further feedback from the receiver to the transmitter is assumed.

For the asymptotic case, that is when NF →∞, the optimal rate of the erasure-
code RE is 1 − Γ, Γ being the frame-error-rate (FER) or, equivalently, the intra-
frame decoding-failure rate. If the intra-frame code-rate R is set to K

N+i·∆ , i ∈ Z+,
that is the frame-length is set to N+i·∆, the FER is equal to Γ =

∑∞
ω=i+1 δ(ω) = δ ·

µi. Unlike the proposed inter-frame coding and the considered IR-HARQ schemes,
the intra-frame code rate R in the two-stage scheme can be set such that the frame-
length is N+i·∆, where i ∈ Q+. It can be reasonably assumed that for the general
case of i ∈ Q+, the FER is also equal to δ ·µi. Therefore, the effective frame-length
of the two-stage scheme when (R,RE) = ( K

N+i.·∆ , 1− δ ·µ
i) is denoted here by L(i)

and is equal to:

L(i) =
N + i ·∆

RE

=
N + i ·∆
1− δ · µi

.

The effective-frame length of the two-stage scheme is then the minimum, over
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i ∈ Q+, of L(i). Two notes are made in this regard. First, i is restricted to positive
values to rule out the unrealistic case of having R = K

N+i·∆ > 1 given that the

exact value K
N

is not set here. Second, the effective frame-length of the two-stage
scheme is independent of the number of receivers. This is not unexpected given
the fact that the two-stage scheme is a forward-error-control scheme that is based
on coding. The enhancement ratio is then equal to:

min
i∈Q+

L(i)

(N + δ
1−µ ·∆)

= min
i∈Q+

1 + i · ∆
N

(1− δ · µi) · (1 + δ
1−µ ·

∆
N

)
.

The following result on the enhancement ratio can be derived:

Lemma 5. For the two-stage-scheme, the enhancement ratio is upper bounded by
1

1−e−1 = 1.582

Proof.

min
i∈Q+

1 + i · ∆
N

(1− δ · µi) · (1 + δ
1−µ ·

∆
N

)

≤

(
1 + i · ∆

N

(1− δ · µi) · (1 + δ
1−µ ·

∆
N

)

)
i= δ

1−µ

= (1− δ · µ
δ

1−µ )−1.

Consider the function f(x) = x · µ
x

1−µ over the range [0, 1]. By simple calculus, it

can be checked that for x∗ = − 1−µ
ln(u)

, ∂f
∂x

= 0 and ∂2f
∂x2 < 0. Therefore, f(x∗) is the

maximum of f(x) for x ∈ [0, 1].

f(x∗) = −1− µ
ln(µ)

µ−
1

ln(u)

= −1− µ
ln(µ)

· e−1 < e−1.

The last inequality obtained from − log(µ) > 1 − µ for µ < 1. Therefore,(1 − δ ·
µ

δ
1−µ )−1 < (1− e−1)−1.

The curves plotted in Fig. 4.9 show
L(i)

(N+ δ
1−µ ·∆)

versus i. The curves correspond

to all possible combinations of δ ∈ {0, 3, 0.5, 0.8} and µ ∈ {0.5, 0.7, 0.85}, for
∆
N

= 0.1. Two observations can be made accordingly. First, for all the considered

(δ, µ) pairs, except one, we have: the minimum of
L(i)

(N+ δ
1−µ ·∆)

occurs for strictly

positive values of i. This implies that restricting i to positive values has no impact
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on the computed enhancement ratios, particularly when these ratios are relatively
high. Second, the enhancement ratio, in general, grows as the channel statistical
parameters “worsens”, that is as δ and µ increase. For example, while the en-
hancement ratio is ∼ 1.2 for (δ, µ) = (0.3, 0.5) and ∼ 1.25 for (δ, µ) = (0.5, 0.5),
it is ∼ 1.35 for (δ, µ) = (0.5, 0.7), ∼ 1.4 for (δ, µ) = (0.5, 0.85), and ∼ 1.5 for
(δ, µ) = (0.8, 0.85).
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Figure 4.9: Effective frame-length ratio versus i, for different values of δ and µ.

The variation of the enhancement-ratio with the value of µ is illustrated in
Fig. 4.10, assuming ∆

N
= 0.1. Three curves are plotted. One curve corresponds

to a fixed value of δ = 0.99; the other two curves assume δ varies with µ such
that δ = µ3 and δ = µ6 respectively. The assumption that the two parameters of
the distribution (δ(ω)), δ and µ, are related is justified as follows: the intra-frame
decoding-failure rate, or equivalently FER, is δ when the frame-length is N , and
δ·µN

∆ = δ·µ10 when the frame-length is 2·N . If the same N -bit frame is transmitted
twice under independent channel-state instances and each frame is independently
intra-frame decoded, the probability of recovering the frame is 1 − δ2 for total
number of sent bits of 2 ·N . This probability is typically less than the probability
of intra-frame decoding-success of a (2 ·N)-bit frame, formed by concatenating 10
subframes to the N -bit frame; therefore, 1 − δ2 < 1 − δ · µ10 implying δ > µ10.
Therefore, the assumed relations of δ = µ3, and δ = µ6, consist merely a simple
way to satisfy the condition δ > µ10 over the full considered range of µ. Three
observations can be made from the figure. First, the derived upper bound of 1

1−e−1
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on the enhancement ratio is relatively tight: the maximum value of the plotted
enhancement ratios is 1.55 and it occurs when (δ, µ) = (0.99, 0.94). Besides, even
when δ varies with µ, such that δ = µ3, the enhancement ratio exceeds 1.5 for
0.89 ≤ µ ≤ 0.95. Second, the variation of the enhancement ratio with µ, for
the three curves, follows the same trend. The enhancement ratio increases as
µ increases to a value near 0.94, at which the maximum is attained, and then
it decreases as µ goes from 0.95 to 1. The rate of the increase in the plotted
enhancement ratio is such that the enhancement ratio becomes relatively high as
µ exceeds 0.75 or 0.8. Third, for the same value of µ, higher enhancement ratios are
obtained for higher δ values. Overall, the observed trend that the enhancement
ratio increases with increasing δ and µ can be qualitatively justified as follows:
for good channel parameters, that is relatively low values of δ and µ, the effective
frame-lengths in each of the compared schemes is relatively close toN . This implies
that the enhancement ratio is relatively close to 1 as well. In comparison, as δ and
µ increase, the effective-frame length increases in both schemes. That is the value
of the effective frame-length minus N increases, relative to N . Consequently, the
reduction in this value achieved by inter-frame coding compared to the two-stage
scheme becomes more significant in the computation of the enhancement ratio.
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Figure 4.10: Enhancement ratio curves versus µ, for different values of δ.
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4.6 Simulation Results

The simulation experiments are intended to highlight aspects of inter-frame coding
that need further investigation, namely the coding performance, memory size re-
quirement, latency time, and intra-frame decoding-attempts count. In accordance
with this goal, the decoding scheduling described in 4.2 is simulated using Matlab,
assuming the channel model developed in 4.3. Thus, in the simulation process,
NF κ-values are sampled using (δω) instead of generating LLR values, and the
intra-frame decoding procedure of a frame f is replaced by checking if the number
of subframe neighbours of f which have f as their only unrecovered neighbour is
greater than of equal to κ(f). To simplify its description, (δω) is assumed to form a
geometric progression described by two numbers δ, µ < 1, such that: δ =

∑∞
ω=1 δω

and δω+1 = µ · δω, ∀ω ≥ 1. It can be reasonably presumed that, due to their
qualitative nature, the conclusions obtained from the simulations are also valid
for a large class of channel-characterizing distributions (δω) that do not follow the
geometric progression model.

The performance of an inter-frame code, under distribution (δω), is measured
in terms of its failure-rate, defined in this section as the probability that inter-
frame decoding fails to recover all the received NF frames. In accordance with
this definition, the cases of very high κ-values are overlooked. That is, for any
distribution described by some (δ, µ) couple, δω is set to 0 for ω > ω0, ω0 = 10 in
this section. In broadcast communication, the failure-rate under a distribution (δω)
is sufficient to describe the performance of the inter-frame code for all receivers with
corresponding distributions equal to (δω), regardless of the number of receivers.
The code performance can be presented using curves showing the failure-rate versus
the mean κ-value

∑
ω ω · δω, where each curve corresponds to distributions with

the same µ but different δ.

The performance of an inter-frame code relative to that of the conventional
two-stage scheme, under some (δω), is obtained by comparing their effective frame-
lengths, defined as the average number of transmitted bits per information block
required to achieve a target failure-rate. For sake of comparison, the target failure-
rate is set to the decoding failure-rate of the considered inter-frame code. The
effective frame-length of the inter-frame code is N + KS

NF
· ∆. In the two-stage

scheme, the effective frame-length is obtained as follows: for a frame length of
N+i·∆, the rate of the erasure code, RE(i, (δω)), is chosen such that the probability
that the number of κ-values between 0 and i is less than NF is below the target
failure-rate. The reason is that if the number of successfully-decoded frames is less
than NF , erasure decoding will fail to recover all the NF information blocks. The
effective frame length is then miniN · 1+i·∆/N

RE(i,(δω))
. The ratio of the effective-frame

length of the two-stage scheme over that of the inter-frame code, denoted the
enhancement ratio, quantifies the improvement brought by inter-frame coding.
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In broadcast communication, if z is the set of distributions (δω) corresponding
to the different receivers, the effective-frame length of the two-stage scheme is
mini max(δω)∈z

N+i·∆
RE(i,(δω))

≥ mini
N+i·∆

RE(i,(δω))
∀(δω) ∈ z.

The other aspects considered here are the LLR-memory size, latency time,
and intra-frame decoding-attempts count. An accurate estimation of these met-
rics requires a detailed description of the decoder architecture and transmission
scheduling. Instead, the following simplifying assumptions are made here on the
inter-frame decoding scheduling in 4.2.2: 1) the throughput of the intra-frame
decoder is infinitely high, 2) and the subframe neighbors of a frame are received
prior to the frame itself. The inter-frame decoding time span can then be viewed as
consisting of NF time slots, where in each slot one frame is received, and as many
intra-frame decoding attempts as needed are made. The average of these attempts
per slot is the intra-frame decoding-attempts count. This metric is strongly related
to the power overhead of inter-frame decoding because, as concluded in 4.2.3, the
intra-decoding process significantly surpasses the other processes involved in inter-
frame decoding in terms of computational complexity. The required LLR-memory
size metric is estimated through the buffered-frame count defined, for any time
slot t, as the number of frames that are already received by the time t but not
yet recovered. The underlying rationale is that for any such frame f , the LLR-
memory stores, at time t, ΛN(f) in addition to the LLR-vectors corresponding to
the received neighbor subframes of f . The fourth metric, the latency time of frame
f ∀f ≤ NF , is defined as the time separating the receipt of f and its successful
decoding. It is measured here in terms of the time slots elapsed between receiving
f and recovering it. Four corresponding values can then be obtained from inter-
frame decoding of a single set of NF frames, which are the average and maximum
values of each of the buffered-frame count and latency-time. The probability dis-
tribution of each of these values, under some (δω), can then be deduced through
simulations.

Three codes with (NF , KS) = (121, 363) are constructed: Code1, Code2, and
Code3. The simplified generator matrix of Code1 is constructed as illustrated in
Fig.4.11: a structured matrix that resembles the parity-check matrix of LDPC con-
volutional codes [88] is constructed, a row splitting is applied on this matrix accord-
ing to some splitting scheme, and then a small number of randomly-constructed
binary rows is concatenated atop of the formed matrix. The construction of Code2
is similar to that of Code1, differing merely in the splitting scheme and in the addi-
tional step of concatenating a NF×NF identity matrix atop of the matrix resulting
from row-splitting. Construction of Code3 is different from those of the two former
codes in that row-splitting is applied on an 11× 11 matrix of 11× 11 permutation
matrices. Two larger codes, Code1’ and Code3’, are constructed using schemes
that are similar to those used in constructing Code1 and Code3 respectively such
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that (NF , KS) = (1210, 3630). That is, KS
NF

is kept fixed for the two values, 121 or
1210, of NF .

0

0

Permutation Matrix

0 0

0 0 0

Row-Split Example

Basic Structure

Figure 4.11: Illustration of the basic steps involved in constructing Code1 and
Code2. Note that the maximum number of permutation matrices per row is limited
in the figure to 5 for clarity; it is 11 in the corresponding code-construction.

The coding performance of these codes under different distributions character-
ized by µ ∈ {0.6, 0.75} is shown in Fig. 4.12. The relative performance of the codes
is sensitive to the value of µ: Code1 outperforms Code2 for µ = 0.75, while Code2
outperforms Code1 for µ = 0.6. This raises the problem of designing inter-frame
codes with good performance over a wide range of µ-values, needed in case the re-
ceivers have channels with close values of

∑
ω δω but different values of µ. Besides,

as seen from Fig. 4.12(b), better coding performance is obtained by increasing the
code-size NF from 121 to 1210.

It is noteworthy that the reported performance results, specifically for Code1
(Code1’ ) and Code2, are highly dependant on the fact that the κ-values are in-
dependent and identically distributed. Different assumptions on the channel be-
haviour can lead to results significantly different than the previously obtained. For
example, the following scenario is considered: for a range [f1, f2] ⊂ [1, NF ], the
value κ(f) corresponding to a frame f1 ≤ f ≤ f2 is sampled from a distribution
characterized by (δ, µ) = (0.8, 0.85), while if f /∈ [f1, f2], κ(f) is sampled from a
distribution characterized by (δ, µ) = (0.4, 0.5). This scenario can happen when
the communication time is long enough, and consequently NF is large enough, for
the channel statistics to change. Due to its specific structure, Code1′ performs
poorly under such scenario: even when the span of [f1, f2], f2 − f1, is chosen such
that the overall mean of the κ-values is 1.45� KS

NF
= 3, inter-frame decoding fails

with a probability ∼ 1. In comparison, the performance of Code3′ is much less
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Figure 4.12: The inter-frame decoding-failure rate curves versus
∑

ω ω · δω for
µ ∈ {0.6, 0.75} and NF ∈ {121, 1210}.

sensitive to such scenarios: for example, when the span of [f1, f2], f2−f1, is chosen
such that the overall mean of the κ-values is 2.33, inter-frame decoding fails with
a probability ∼ 0.5.

The coding performance of each constructed code is compared to that of the
two-stage scheme. For each code, the distribution (δω) under which the comparison
is done, is chosen using Fig.4.12 such that the corresponding inter-frame code
failure-rate is equal to the target value of 10−2. The results can be summarized
as follows, assuming ∆

N
= 0.1: the enhancement ratio is ∼ 1.22 for NF = 121 and

µ = 0.6, and ∼ 1.3− 1.35 for µ = 0.75 and NF ∈ {121, 1210}. It is noteworthy the
the difference in the coding performance of the constructed codes does not result
in large differences in the enhancement ratio. For example, the enhancement ratio
is ∼ 1.32 for Code1 and ∼ 1.35 for Code3. The following broadcast scenario is
then simulated: the distributions corresponding to the different receivers have the
same values of

∑
ω ω · δω = 1.5 but different µ ∈ {0.6, 0.75}. Assuming Code1

is deployed, the resulting enhancement ratio (∼ 1.3), for a target failure rate of
10−2, is close to that observed for the aforementioned case of µ = 0.75. Overall,
the results show that inter-frame coding enhances the data-rates; yet, they also
show such enhancement varies with µ. This verifies the asymptotic analysis done
in Section 4.4.

Two possible tradeoffs involving the memory-size requirement and coding per-
formance can be deduced from Figs. 4.12, 4.13, and 4.14, the two latter figures
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Figure 4.13: Distributions of the maximum and average buffered-frame count and
latency time for Code1 and Code3, µ = 0.75.

showing the distribution of the average and maximum values of the buffered-frame
count and latency time for the constructed codes. This first tradeoff considers
inter-frame codes with the same size, and is exemplified as follows: in terms of cod-
ing performance, Code3 outperforms Code1. However, as shown in Fig. 4.13(a),
the maximum buffered-frame count is likely to be significantly less for Code1 com-
pared to Code3. If Code1 is deployed, the case where the maximum buffered-frame
count is relatively high, for example ≥ 35, is very infrequent. Therefore, significant
savings in memory can be obtained from deploying Code1 instead of Code3. As
seen from the Figs. 4.12(b) and 4.14(a), this tradeoff persists for Code1’ and Code3’
as well. The involved tradeoff can be attributed to the structure of Code1 (Code1’ ):
the initially transmitted frames are neighbors to relatively-low degree subframes;
besides, each subframe has the indices of its frame neighbors bounded within a
small range of [1, NF ]. This leads to a relatively low latency time for recovering
a frame, and thus to a lower number of frames buffered at a time. The second
tradeoff considers codes with different sizes. As can be deduced from Figs. 4.13(a)
and 4.14(a), the improvement in the coding performance brought by increasing
NF , is accompanied by an increase in the buffered-frame count. However, while
NF increases by a factor of 10, the general increase in the buffered-frame count is
by a much less factor for Code1’, and by slightly larger factor for Code3’. As seen
from Figs. 4.13(b) and 4.14(b), similar tradeoffs exist between the latency time
and coding performance.
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Figure 4.14: Distributions of the maximum and average buffered-frame count and
latency time for Code1 and Code3, µ = 0.75.

The intra-frame decoding-attempts count is obtained for
∑

ω ω · δω = 1.4 and
NF = 121. When µ = 0.6, this figure is equal to 1.58 for Code1 and 1.5 for
Code2. When µ = 0.75, it is equal to 1.63 for Code1, 1.57 for Code2, and 1.8 for
Code3. An equivalent metric in the two-stage scheme is the average value of of the
number of frames on which intra-frame decoding is attempted before the number
of successfully-decoded frames reaches NF . It is equal to 1.18 and 1.14 when µ
is equal to 0.6 and 0.75 respectively, and can be decreased further to less than
1.1 for marginal losses in the resulting date rates. The relatively high intra-frame
decoding-attempts count motivates the problem raised in subsection 4.1.2 which
is estimating the success probability of intra-frame decoding of a frame without
performing the decoding itself.
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Chapter 5

Architecture-Aware Raptor
Codes

This chapter includes the second part of the research work presented in this disser-
tation, namely the construction of architecture-aware Raptor codes. It should be
noted that, although the construction procedure(s) proposed in this chapter does
not specify a frame-length range, Raptor codes considered in this dissertation are
assumed to have short to moderate block lengths (∼ few Kbits).

The design of rate-compatible codes is driven by the following requirement: the
codes should have good coding performance in all the scenarios in which they are
applied; besides, they should allow a hardware-efficient decoder implementation.
A set of challenges is faced in the design of such codes. Some of these challenges
gain increased significance in the newly proposed IIF coding scheme, in which rate-
compatible codes are deployed. Others challenges are already faced in the design of
LDPC rate-compatible codes, but their significance is aggravated in Raptor code
construction due to the inherent irregularity features of Raptor codes. The signifi-
cance of the Raptor-specific challenges means that the following question has to be
considered first: What are the possible advantages of deploying Raptor codes, at the
PHY-layer, as the rate-compatible intra-frame codes? Thereafter, the main ques-
tion follows: Can Raptor codes be constructed such that they have, simultaneously,
good coding performance and hardware-efficient decoder architectures?

A partial answer to the previous questions is given in this chapter. The ratio-
nale underlying this answer is described next. First, a brief qualitative analysis
is done to show that Raptor codes have features that may lead to good coding-
performance in the communication scenarios in which the performance of other
codes deteriorate. The rest of the work is focused on answering whether Raptor
codes can be constructed to pertain these hardware-unfriendly features while lead-
ing to hardware-efficient implementations. Answering this question is crucial in
two aspects. First, it proves that deploying Raptor codes does not result in high

94



hardware overhead compared to other LDPC codes, and therefore that coding-
performance is the major factor in comparing LDPC to Raptor codes. Second,
it limits the design space of good-performing Raptor codes to the the subclass
of architecture-aware codes, that is it imposes hardware-related constraints on
the construction of good-performing Raptor codes. A code construction frame-
work is proposed in this dissertation in regard to these two aspects. The frame-
work is hardware-oriented as it maps the decoding of the highly irregular Raptor
code into row processing of a regular matrix. The framework simplifies the de-
sign process by partitioning the design of the code, and thereafter decoder, into
a set of disjoint, albeit related, subproblems. The methods it involves in each of
these subproblems are flexible enough to allow a large number of codes to be re-
alized using the same architecture, under limited hardware reconfigurability. This
means a that a large space of candidate architecture-aware codes are available
for performance-driven code search/design. Frame-error-rate simulations done on
sample constructed codes show the potential of the proposed framework to produce
good-performing codes; yet, no comprehensive analysis of the coding-performance
of the resuling architecture-aware Raptor codes is presented in this dissertation.

The organization of this chapter is described next. First, the deployment of
rate-compatible Raptor codes at the PHY-layer is discussed. Second, a code con-
struction framework is proposed; its architectural implications are clarified by
describing the resulting decoder architecture and scheduling. The proposed frame-
work breaks the design problem into three subproblems: code structuring through
source matrix construction, precode construction through row-merging, and LT-
code construction through subcode generation. Each of these subproblems is then
approached, and the proposed solutions are associated to miscellaneous issues
of hardware-efficiency an/or coding-performance. Third, sample codes are con-
structed according to the proposed construction flow, and their performance under
AWGN channels is simulated. The resulting FER curves are comparable to that of
standardized LDPC codes. This shows the potential of the proposed construction
scheme to generate codes that have good coding performance. Other hardware-
efficiency metrics are the average number of decoding iterations and memory size
required in decoding the constructed Raptor codes. Their values are obtained for
the constructed sample codes, and the impact of the different proposed construc-
tion techniques on the hardware-efficiency of decoding is therefore demonstrated.
As a proof of concept, a serial Raptor decoder is synthesized in 65 nm, 1.2 V CMOS
technology. Hardware simulations show that the decoder, decoding a rate-0.4 code
instance, achieves a throughput of 36 Mb/s at SNR of 1.5 dB, dissipates an average
power of 27 mW and occupies an area of 0.55 mm2.
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5.1 Raptor Codes: Motivation and Challenges

The first step in evaluating Raptor codes is to consider the occurrence of the intra-
frame varying channel condition scenario in the proposed IIF coding scheme. Rap-
tor codes are projected, through a qualitative analysis, to outperform other LDPC
codes in such scenario, and, in addition, to have a minimum distance that is rela-
tively easy to analyze and control over a wide range of code-rates. The features of
Raptor coding leading to these possible advantages are identified throughout the
analysis. Finally, the challenges facing hardware-efficient Raptor decoder imple-
mentation are considered. They include, but are not confined to, the aforemen-
tioned Raptor code features.

5.1.1 Intra-frame Varying Channel Condition in IIF Cod-
ing

First, the out-of-order increment concatenation scenario is considered. In IIF
decoding, the progress of increment concatenation is dependent on the progress
of the IIF decoding process itself: the concatenation of a subframe s to frame f
occurs if, and only if, the set of unrecovered neighbor frames of s is reduced to
a singleton {f}. Besides, the decoding process is random because the κ-values
corresponding to the involved NF frames are themselves random. This means that
out-of-order increment concatenation is possible: for example, increment ∆(f, i)
can get concatenated to f during IIF decoding while ∆(f, i−1) does not, for some
integer i > 1. It should be noted, however, that the probability of the out-of-order
increment-concatenation events is a function of many factors, among which is the
IIF code design. For example, consider a frame f and two integers j > i, and
denote the subframes for which ∆(f, i) and ∆(f, j) are inputs to the XOR forming
them as si and sj respectively. If the degree of sj is much higher than than the
degree of si, then there is a low probability that the set of unrecovered neighbors
of sj is reduced to a singleton {f} before the set of unrecovered neighbors of si.
Consequently, it is much more probable that si is concatenated to f before sj.

The second scenario considered here, namely very bad initial channel-condition,
can happen in unicast communication, but is much more probable in the broadcast
communication, under IIF coding. The reason is that, in IIF coding, transmission
of a frame f and its neighboring subframes can be separated by a time span that
is long enough for the channel to decorrelate. Subsequently, it is possible that a
high SNR disparity exists between the transmission of the initial N -bit frame and
that of its neighbor subframes.
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5.1.2 Raptor Coding Features

The significance of the peculiar Raptor code features in the intra-frame varying
channel condition scenario is understood here by comparing these features to that
of the protograph-based extended LDPC codes explained in 3.4.2.

One feature of LT-encoding is that each generated LT output bit is defined as
a XOR of a subset of the KLT LT input bits. This definition is relevant in Raptor
decoding in the following sense: when an increment is concatenated to the frame,
the resulting change induced in the Raptor graph, on which decoding is applied, is
that the check-node partition is incremented by ∆ check nodes. These latter nodes
correspond to the LT output bits included in the increment, and their degrees are
the degrees of the corresponding respective output bits included. This is unlike the
case of LDPC codes, where out-of-order increment-concatenation can result in the
decoding algorithm applied on a randomly-punctured graph (see 3.4.3). Besides, if
the LT-degree distribution changes slowly with increasing code-size then the effect
of out-of-order increment-concatenation, involving increments of close indices, can
be minimized.

Another feature of LT-encoding is that the encoding of each LT output bit is
performed independently from others. This means that each increment can include
output bits of different degrees. The significance of this property is clarified in
dealing with the extreme case of bad initial channel-condition scenario, in which
the channel is extremely noisy (deep fading, effectively erasure) when the initial
rate-Rh frame is transmitted, and is noiseless otherwise. It should be noted that
this extreme case is discussed here for the mere purpose of clarifying the distinct
features of Raptor coding. In fact, as seen in Chapter 4, the premise of IIF
coding is that the polarized behaviour of the channel (deep fading versus noiseless),
corresponding to such extreme case, is not the main cause of intra-frame decoding
failure. Iterative decoding in this case is equivalent to iterative erasure decoding.
By including in each increment a portion, possibly varying across increments, of low
degree bits (e.g. degrees 1-5), a frame can be recovered by collecting a sufficient,
albeit non-optimal, number of increments. In comparison, in protograph-based
LDPC codes, most of the systematic bits are transmitted in the initial N -bit
frame and thus retransmission of degree-1 output bits involves a repetition, in
case the bad initial channel-condition scenario does not happen. Besides, the
degrees of the output bits change every Q bits, Q being the replication factor.
Therefore degree-1 output bits are sent in very few increments. If none of these
increments are collected/concatenated, the frame cannot be recovered. To avoid
this, the replication factor can be made small so that 1 increment involves adding
more than 1 check-node to the protograph. This, however, restricts both the
code design and the decoder parallelism which is dependant on the minimum
replication factor. The former argument can be equivalently stated as follows: in
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protograph-based codes, iterative erasure decoding is applied on the protograph.
In LT codes, it is applied on a randomly-constructed graph that is larger than the
LDPC protograph by a factor equal to the replication factor. Since small-sized
codes (i.e.< 100) perform worse than bigger-sized code, it can be expected that
less increments will be needed in the LT code to recover the frame.

Minimum Distance Growth: The two-code composition of a Raptor code is
crucial to increase the minimum distance, since the LT code has a very low mini-
mum distance that equals the minimum LT bit-node degree. The code minimum-
distance is important because a high number of low-weight codewords leads to
relatively high error-floors. In the IR-HARQ scheme, if an error-detection code is
applied separately from the LDPC precode, the error-floor problem can be over-
looked. However, other communication schemes may require low error-floors, and
thus avoiding low-weight codewords becomes necessary, though not sufficient, to
satisfy such requirement. The growth of the minimum-distance with rate decrease
can be well approximated in the case of Raptor coding. Consider a KLT -bit pre-
code codeword, of weight dw << KLT , is LT-encoded into a N -bit frame. Define
B1, |B1| = dw, to be the set of indices of the bits of value 1 in the weight-dw
precode codeword and define dv(i) to be the LT-degree of the bit-node of index
1 ≤ i ≤ KLT . The number of edges in the Raptor graph, whose bit-node neighbors
have indices in B1, is

∑
i∈B1

dv(i). If
∑

i∈B1
dv(i) << N , which is typically the case

especially for short block-lengths, the randomness of LT-encoding implies that the
probability that two or more of the considered edges have the same LT check-node
neighbor is small, and, therefore, the weight of the output N -bit codeword can
be fairly approximated as

∑
i∈B1

dv(i). Now, assume the LT code is constructed
such that the LT variable-node degree grows uniformly across all variable nodes,
that is the variable-node degree-distribution is concentrated around 1 value, say
dv, that is itself a function of the LT-rate RLT . Then, the weight of the output
N -bit codeword will be ∼ dv · dw. This simple expression makes it relatively easy
to incorporate the minimum-distance growth-control in the overall code design
process, even for short-length codes. It however, assumes a LT graph with nearly
equal variable-node degrees.

These largely qualitative arguments are not quantitatively studied or analyzed
further in this dissertation. Instead, they motivate the question on whether the,
possibly advantageous, Raptor code features can be pertained along with attaining
hardware-efficient decoder implementation.

5.1.3 Hardware Efficiency Challenges

The Raptor decoder architecture follows the basic organization of the iterative
LDPC decoder architectures discussed in 3.6. While the distinct Raptor encoding
can bring possible advantages, it complicates the design of hardware-oriented good-
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performing codes. The relation between the Raptor features and the hardware-
related complications is summarized next.

1. Decoding scheduling: In most recent protograph-based LDPC decoders,
decoding is mapped to processing 1, or more, edge(s) of the protograph per
clock cycle. This leads to serial operation of the check-function units (CFUs),
where each CFU reads 1 input-message per cycle. This scheduling cannot be
readily adopted in Raptor decoding because, unlike the case of protograph-
based designs, each LT output-bit is encoded independently from the others.
This suggests that parallel CFUs, processing a check node in a single clock
cycle, are more appropriate.

2. Structuring versus Irregularity: As discussed in 3.6, structuring the code
leads to efficient memory-organization and interconnect. However, Raptor
code structuring is made difficult by the two inherent irregularity features
of Raptor coding: 1) the pseudo-random LT-encoding and 2) the two-code
composition of the Raptor code.
LT-encoding generates check-nodes, or equivalently output bits, of different
degrees in a pseudo-random manner. This has two implications: first, the
pseudo-randomness in choosing the number and positions of the bit-node
neighbors of a generated LT-check node leads to complications in the design
of the bit-node memory and interconnect. Second, the check-function units
have to process check nodes of different degrees. This different-degree pro-
cessing can be performed by serial CFUs, but is complicated here by the fact
that serial CFU processing is not straight-forward as in protograph-based
LDPC codes. The latter conclusion is mentioned in the previous point on
Decoding scheduling.
The two-code composition of a Raptor code leads to two main complications.
First, the disparity in the degrees of the processed check-nodes is aggravated
due to the presence of high-degree LDPC check nodes alongside relatively
low-degree LT check nodes. Second, any structure imposed on the Raptor
code must be compatible with the two code components: the LDPC precode
and LT code.

3. Decoding convergence speed: In Raptor encoding, most of the LT-input
bits are not included in the N -bit codeword. This means that even for
zero noise, the LT decoder needs several iterations to recover the codeword.
This problem is especially significant when the code-rate R = K

N
is close

to precode code-rate K
KLT

, that is the LT code rate KLT
N

approaches 1. In
such cases, the number of LT check-nodes, generated pseudo-randomly, in
the decoding graph may be insufficient to recover the bit values within a
reasonable number of iterations, even in the absence of noise. Low decoding
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convergence speed implies a high number of iterations is needed to recover a
frame, and therefore high power consumption and low decoding-throughput.
It is noteworthy that this problem resembles, in terms of the underlying
causes and consequences, the problem of low decoding convergence speed and
high-rate performance degradation in punctured LDPC codes (see 3.4.1).

Beside these complications, the Raptor code, and thereof the decoder architec-
ture, must attain the following properties:

1. Flexibility: The decoder architecture must be flexible to decode Raptor
codes with different LT check-degree distributions and different precode
codes.

2. Multi-length decoding capability: The length K of the block that is
input to the intra-frame encoder varies in time. Therefore, the decoder
architecture should support a family of Raptor codes that are defined over
equally spaced values of K or KLT .

3. Parallelism-awareness: The constructed codes should be amenable to de-
coder implementations with different levels of parallelism. In this context,
parallelism is related to the number of messages processed per one clock
cycle.

100



5.2 Code Construction Framework

In this dissertation, a multi-stage framework is proposed for the construction of
architecture-aware Raptor codes. The framework is described here, and its impli-
cations subsequently discussed. The steps involved in the framework can be stated
as follows:

1. Source Matrix Construction - Code Structuring: A (P · Q) × (M ·
Q) source matrix H0 = [hij] is constructed, by replication, starting from a
P ×M base matrix B = [bij]. The entries of B are elements in the group of
permutations operating on a set of size Q. The replication is done by simply
replacing each entry bij of B by the Q × Q matrix hij in H0, hij being the
permutation matrix corresponding to the group-of-permutations element bij.
The source matrix is regular in the following sense: all the rows have the
same weight M , all the columns have the same weight P , and the entries of
value 1 in H0 are distributed evenly across each row(column).

2. Precode Construction - Row Merging: A Q × (Q · M) matrix H
(P)
0

is constructed as follows: ∀1 ≤ i ≤ Q, row i of H
(P)
0 is formed by bitwise

logic-ORing of the C row vectors indexed by i+ j ·Q, j = 0 · · ·C− 1, of H0,
an operation called here row-merging. C is called the merging factor. The
constructed matrix H

(P)
0 has row-weight C ·M and column weight C. It can

be either chosen as the parity-check matrix of the LDPC precode, here of
rate-(1− 1

M
), or alternatively used to construct the precode parity matrix.

3. LT Construction - Row Encoding: A ((P −C) ·Q)× (M ·Q) submatrix

H
(L)
0 of H0 is formed from the rows of indices i ∈ {Q·C+1, Q·C+2, · · · , Q·P}

in H0, that is from the rows not involved in the aforementioned row-merging
step. The LT code is generated by applying row-encoding on H

(L)
0 as de-

scribed next. For each row of H
(L)
0 , the M LT input-bits corresponding to

the entries of value 1 in the row are encoded using a row-specific subcode;
that is, a number t of LT output-bits are generated according to the M -input
t-output encoder corresponding to the subcode. The subcodes vary across
rows, and can be chosen by sampling from a distribution on the available sub-
codes of input-length M . Thus, the LT encoding method generates subcodes,
rather than individual output bits, pseudo-randomly. It can be thought of
as a form of Generalized LT encoding analogous to the Generalized LDPC
coding proposed early by Tanner [19]. The output bits, generated by the
(P −C) ·Q row-encoding processes, are indexed in a well-designed way. For
a rate-R code, the output bits of indices 1 · · · K

R
are chosen for transmission.
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The framework constraints the Raptor code design in the following ways: 1)
the degree of an LT output bit is upper bounded by M , 2) the degree of an LDPC
check-node is upper bounded by C ·M , 3) the precode rate RP is upper bounded
by 1− 1

M
, and 4) the LT input-bit frame length KLT is equal to M ·Q.

The full implications of the construction framework can only be realized by
satisfying the following hardware-related condition: a reconfigurable check function
unit (CFU) can be designed, such that decoding is applied efficiently on each formed

subcode and on the precode resulting from H
(P)
0 . This condition does not impose

merely a hardware-design problem, but rather a problem of designing code and
architecture jointly; it will be revisited shortly when discussing LT row encoding
(5.4).

5.2.1 Implications on Design

The advantage of the proposed multi-stage framework is that it achieves a com-
bination of 1) design simplification, 2) flexibility, and 3) hardware-efficiency of
decoding. The framework features that lead to such combination are discussed
next.

The first feature is that pseudo-random LT-encoding (step 3 ) and precode
design (step 2 ) are decoupled from code structuring (step 1 ). As a result of such
decoupling, two goals can be achieved in the source matrix construction step: first,
a structure is imposed on the Raptor code which makes it amenable for hardware-
efficient decoder implementation; second, the Raptor bipartite graph is constructed
to be short-cycle free (especially 4-cycle free). While structuring is done in the first
step of the construction framework, its architectural implications withstand the
next two precode and LT construction steps. This is due to the fact that both the
LT-code and precode are generated from H0, which means that the memory-access
patterns are largely determined by the structure of this matrix . For example,
architecture-aware source matrix construction would allow efficient partitioning of
the bit-node memory into M banks, leading to regular memory-access patterns
and simple interconnect. The source matrix construction step must however be
merge-aware in the sense that it should be performed such that no short cycles or
very low-weight precode codewords appear due to the row-merging operation in
(step 2 ).

The second feature is that the row-merging step partially decouples the maxi-
mum check-node degree in the LDPC precode C ·M from the number of columns in
the base matrix B or equivalently from the number of bit-node memory partitions
M . This means that the maximum check-node degree can be changed for different
block lengths, K, or different code designs by merely changing the merging factor
C. It can be reasonably assumed that the decoder architecture can be developed
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to handle efficiently multiple possible values of C. On the other hand, the pa-
rameter M can be determined based on hardware considerations such as bit-node
memory organization, efficiency of LT subcode decoding using the reconfigurable
CFUs, etc · · · .

The third feature is that the irregularity of the LT code is visible only to the
check-node processor and dealt with using reconfigurable check-node processing.
A major implication is related to the hardware efficiency of decoding and can be
summarized as: Raptor decoding is mapped into row processing of the regular source
matrix H0. The LT-encoding design process is recast as the problem of finding the
appropriate subcode distribution, within a hardware-restricted space of possible
subcodes. With this in regard, a large number of different LT code instances can
be decoded using the same hardware, allowing the LT code description to change
at different stages of the code/decoder design process, or even to change with the
involved communication scenarios, i.e. in real time.

5.2.2 Decoding Scheduling

For sake of illustration, the decoding scheduling is set such that 1 row of H0 is
processed per clock cycle. Higher throughput can be achieved through partially-
parallel decoder architectures where a number of rows is processed per cycle. For
a rate-R Raptor code, let H′0 be the submatrix of H0 including the rows involved
in the precode-related row-merging and in the generation of the N LT output bits.
The C rows corresponding to one row of H

(P)
0 are grouped adjacently in H′0. The

resulting decoder architecture processes H′0 serially, with a throughput of 1 row per

cycle; therefore, processing one row of H
(P)
0 requires C cycles. Figure 5.1 illustrates

the proposed architecture of the serial decoder implementing the turbo-decoding
message-passing (TDMP) algorithm. The operation of the decoder proceeds as
follows.
Let Nr be the number of rows of H′0. At sub-iteration δ of iteration τ , for δ =
1, · · ·Nr, the decoder performs the following steps:

1. Forwarding : A M -dimensional message vector E[δ] is read from bit-node
memory. Assuming ei, 1 ≤ i ≤M , is the edge corresponding to ith non-zero
entry of row δ of H′0, then Ei[δ] denotes the posterior extrinsic LLR of the
bit-node connected to ei.

2. Permuting : E[δ] is sent to a pseudo-random permuter π to generate E′(δ) ,
π(E[δ]).

3. BTC operation: The vector CTB[δ, τ − 1] of dimension M is read from
the check-node memory, and M new bit-to-check messages, BTC[δ, τ ], are
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computed as BTC[δ, τ ] = E′[δ]−CTB[δ, τ − 1], and forwarded to the CFU
and a FIFO (First-In First-Out) buffer.

4. CTB operation: M new check-to-bit messages, CTB[δ, τ ], are generated by
performing either LT-decoding of the row-related subcode or LDPC decod-
ing, depending on the row processed.

5. Posterior reliability update and check-memory write-back : The vector CTB[δ, τ ]
is written back to check-node memory, and simultaneously added to the cor-
responding bit-to-check messages read form the FIFO buffer, to update the
posterior reliability vector E′: E′[δ] = BTC[δ, τ ] + CTB[δ, τ ]

6. Inverse permuting: The vector E′[δ] is inverse permuted using the π−1-block
to generate:
E[δ] , π−1(E′[δ]).

7. Accumulation: E[δ] is written back to bit-node memory.

The bit-to-check messages are computed in a serial manner. There may be a
discrepancy in the latency between LDPC- and LT- CFU processing resulting in
the appearance of idle cycles when shifting between LT and LDPC decoding modes
and slightly increasing the number of cycles needed to complete one iteration.
The main components of the serial decoder are described below.

. Bit-Node Block: The block performs the forwarding (1) and accumulation
(7) steps. It is composed of M banks, where each bank holds Q b-bit words
and performs one read and one write operation per cycle. Address generation
depends on the complexity of the permutations involved in the expansion
from B to H0.

. Interconnect Network: It consists mainly of a permuter and inverse per-
muter that perform step 2 and step 6 of the scheduling respectively. It con-
tains as well the adder and subtractor blocks. The subtractor block in the
network forms the bit-to-check messages (Step 3), while the adders update
the posterior extrinsic LLR values (Step 5).

. Check-Node Block: It is composed of four main components.

1. Check-Node Memory : It consists of M banks, each storing up to P.Q
words and performing 1-read and 1-write per cycle. The memory banks
are accessed sequentially.

2. Subcode-Index Generator : It is composed of buffer and logic, used to
generate the index of the subcode related to the processed row.
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Figure 5.1: A serial Raptor decoder architecture.

105



3. Intrinsic Values Memory (IVM): It stores the intrinsic channel LLRs of
the LT check-nodes. Its organization is non-trivial due to the fact that
different subcodes involve different output-bits, and thus the through-
put of the memory varies across rows.

Reconfigurable CFU : It receives M bit-to-check messages, the intrin-
sic value messages, and the subcode index or precode information. It
computes the check-to-bit-messages corresponding to one row in H′0.

The proposed decoding scheduling has three properties. First, it allows the
pseudo-random permutation, π(·), to vary across rows. Second, the M input mes-
sages to a subcode-decoding are available simultaneously to the reconfigurable
CFU which may simplify its implementation. Third, it allows using several per-
mutation subgroups in expanding B to H0, other than the cyclic-shift subgroup,
without affecting memory and interconnect.

The design of the decoder blocks will be elaborated in the rest of the section,
in light of the methods proposed to construct the source matrix, precode, and LT
code.
Partially-parallel decoder architectures: To increase the decoder throughput by
a factor of t, t rows of H0 can be processed simultaneously, i.e. per clock cycle.
The resulting partially-parallel architecture has the same organization of the serial
architecture. The required modifications are stated briefly in the following. The
M banks of the bit-node memory are organized such that t messages are read
from (written to) one bank every clock cycle. The check-node memory and IVM
are partitioned into t blocks, each sized down by a factor 1/t but retaining the
access rate and pattern of its counterpart in the serial architecture. Likewise,
since one CFU and one interconnect-network are required to process one row of
H0, the number of CFUs and interconnect networks has to be replicated by t. One
complication arises in the design of the partially-parallel architectures which can
be stated as follows: it becomes increasingly difficult, as t increases, to satisfy the
TDMP timing condition described in 3.6. The reason is that as more check nodes
are processed per one cycle, the number of clock cycles needed to complete one
decoding iteration decreases; therefore, it becomes more challenging to sufficiently
spread the processing of check nodes that are neighbors to the same bit node, over
time.
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5.3 Code Structuring

In this work, two source matrix construction methods were devised. They will be
described here in detail.

5.3.1 p-based Replication

The p-based replication method applies two subsequent replications, each by a
factor of a prime p. For simplicity of exposition, the method will be described here
by defining these two replications rather than defining the base matrix B. It can
be described as follows:
Input: A prime p.
Output: A (p3 × p3) matrix H0 describing a girth-8 graph.
Procedure:

. Replication 1 : Construct a p× p matrix L = [lij] such that lij = i · j mod p.

Form the p2 × p2 matrix T = [tij] by replacing each entry lij of L by I
lij
p×p,

where Ijp×p is a p × p identity matrix cyclically shifted to the right by j
positions.

. Replication 2 : Form matrix H0 = [h(b)
ij] 1≤i≤p2

1≤j≤p2
= [hij] 1≤i≤p3

1≤j≤p3
by replacing

every scalar entry tij in T by a p× p matrix h(b)
ij such that:

h(b)
ij =

{
I
νi·θj mod p
p×p , νi = i mod p, θj = bj/pc tij 6= 0;

0p×p, tij = 0.

for i, j = 0, 1, · · · , p− 1.

Theorem 2. The bipartite graph described by H0 has girth ≥ 8.

Proof. Let b be a node of the graph described by H0. By abuse of notation, let
b also be the index of the corresponding node in matrix H0. µ(b) is the node in
the graph described by the p2 × p2 matrix T, from which b is formed by graph
replication. Node b can be described by three quantities 0 ≤ xb, yb, zb < p, where
xb = bb/p2c, yb = bb mod p2/pc, and zb = b mod p.

We first show that the graph described by H0 is 4-cycle free. Assume the graph
has a length-4 cycle b1c1b2c2, where bi’s are bit-nodes and ci’s are check-nodes. Two
cases exist. Case 1: If µ(b1) 6= µ(b2) and µ(c1) 6= µ(c2), then a length-4 cycle
µ(b1)µ(c1)µ(b2)µ(c2) exists in the graph described by T, which is impossible by the
construction of T. Case 2: If µ(b1) ≡ µ(b2),1 then edges (b1, c1) and (b2, c1) result
from one edge (µ(b1), µ(c1)) in the graph described by T, which is impossible by
the replication method.
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We next prove that the graph described by H0 is 6-cycle free. Assume the
graph has a length-6 cycle b1c1b2c2b3c3. By construction of T , we have yb2 − yb1 =
(xb2−xb1) ·xc1 mod p, yb3−yb2 = (xb3−xb2) ·xc2 mod p, and yb1−yb3 = (xb1−xb3) ·
xc3 mod p. Therefore, (xb2−xb1) ·xc1 +(xb3−xb2) ·xc2 +(xb1−xb3) ·xc3 = 0 mod p,
or equivalently

xb1 · (xc3 − xc1) + xb2 · (xc1 − xc2) + xb3 · (xc2 − xc3) = 0 mod p. (5.1)

By the replication method, we have zb2 − zb1 = (xb2 − xb1) · yc1 mod p, zb3 −
zb2 = (xb3 − xb2) · yc2 mod p, and zb1 − zb3 = (xb1 − xb3) · yc3 mod p. Therefore,
(xb2 − xb1) · yc1 + (xb3 − xb2) · yc2 + (xb1 − xb3) · yc3 = 0 mod p, or equivalently

xb1 · (yc3 − yc1) + xb2 · (yc1 − yc2) + xb3 · (yc2 − yc3) = 0 mod p. (5.2)

Similarly, by the construction of T , yc1 = yb1−xb1 ·xc1 = yb2−xb2 ·xc1 mod p, yc2 =
yb2−xb2 ·xc2 = yb3−xb3 ·xc2 mod p, and yc3 = yb3−xb3 ·xc3 = yb1−xb1 ·xc3 mod p.
Substituting in (5.2) yields

x2
b1.(xc3 − xc1) + x2

b2.(xc1 − xc2) + x2
b3.(xc2 − xc3) = 0 mod p. (5.3)

Solving (5.1) and (5.3) gives xc3 = xc1 or xc2 = xc1 or xb1 = xb2, which are
impossible by construction of H0.

The p-replication method has many desirable features. The graph described by
H0, and, therefore, the LT graph has girth 8. Besides, the two-stage replication
makes it possible to develop a row-merging procedure in 5.5, corresponding to
the p-replication method, that results in a 4-cycle free Raptor graph. Due to
the simple description of the code construction, the logic needed to generate the
bit-node memory addresses is very simple.

The two-stage replication in the source matrix construction has an additional
advantage: a partially-parallel architecture can be obtained by processing p rows
of H0 or, equivalently, 1 row of T per clock cycle. The banks of the bit-node
memory can be organized efficiently so that p messages are accessed per bank,
every clock cycle. Each memory bank is composed into p × p partition, where
one row of the partition stores the posterior LLRs of the p bit-nodes that result
from the replication of one bit-node in the graph described by T. One row of the
partition is accessed per cycle, and shifted modp accordingly.

The p-replication method has a main drawback: for a certain decoder archi-
tecture, the range of values of the LT input frame-length, KLT , supported by this
architecture is relatively small and not regularly spaced. As a prelude, it should be
first noted that KLT can be set to M ·p2, M ≤ p, for example by omitting the first
p3−M ·p2 columns of the p3×p3 matrix H0. For a serial decoder architecture, M is a
fixed parameter and, therefore, varying the value of KLT is only possible by varying

108



p. However, the set of possible values of KLT/M , {49, 121, 169, 289, 361, 529, · · · },
is relatively small and does not contain regularly spaced values. Besides, the or-
ganization of the bit-node memory in partially parallel architectures has to be
designed for varying p which reduces its efficiency.

5.3.2 Product-group Replication

One of the goals of the architecture-aware code construction is to achieve the
multi-length decoding capability, that is to generate a family of Raptor codes that
are defined over equally spaced values of KLT and are supported by the same
hardware decoder architecture (5.1). As already seen, the p-replication method
does not achieve this goal. The approach of the product-group replication is to
restrict the entries of the base matrix B (see 5.2) to some well-chosen subgroup
(G, ·) of the group of possible permutations operating on a set of size Q. In the
discussion below, (G, ·) will be defined, and it will be clarified how such definition
helps achieve the the multi-length decoding capability. It should be noted that
unlike the p-based replication method, the product-group replication does not
specify the values of the entries of B, but rather the group (G, ·) to which they
should belong. The method can then be described as:
1: Define a non-abelian group (G, ·) as the direct product of the dihedral group
Dn and the order-pq group Cpq as follows:

G , Dn × Cpq={(xi ·yj, zg ·wh) | x, y ∈ Dn, z, w ∈ Cpq},
Dn =

〈
x, y | x2 = 1, yn = 1, x · y = y−1 · x

〉
,

Cpq =
〈
z, w | zp = 1, wq = 1, w · z = z2 · w

〉
.

where n, p, q ∈ N. The group Dn has order |Dn|= 2n, Cpq has order |Cpq|= pq,
and G has order |G|= 2n × pq. For the above relations to generate a group, the
parameters n, p, q should satisfy the following: (i) p prime and q= p−1; or p= 3
and q= 4, and (ii) n > 1. It is noteworthy that the elements of G can index any
set of size 2npq.
2: Construct the P×M base matrix B=[bij], such that bij∈G.
3: (Replication) Form matrix H0 by replacing each entry bij by a 2npq×2npq
permutation submatrix; for each row ρ of index η ∈ G in the submatrix, the entry
η · bij is set to 1.
For the graph described by H0 to be 4-cycle free, the following inequality must be
satisfied by the entries of B:

brj ·b−1
sj 6=brj′ ·b−1

sj′ ,∀j 6=j′, ∀r, s≥1.

In this replication method, KLT , Q ·M , 2npqM . For a single family of
Raptor codes, the triplet (p, q,M) is kept fixed while KLT = 2npqM varies in steps
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of 2pqM , by incrementing/decrementing n. The reason of this is clarified when
discussing the architectural implications of the construction scheme. In general,
the construction of G is motivated by several considerations.

1. G is constructed to be non-abelian, because otherwise if G is abelian and the
precode has parity matrix H

(P)
0 , there will be a large number of weight-2C

precode codewords. These codewords will thus have low weights because,
in the typical case, the row merging factor C is relatively low (∼ 3, 4).
An example weight-2C codeword can be found as follows: randomly pick
1≤j 6= j′≤M,x∈G; consider the 2npq bits corresponding to the replication
of column j of B, and, among them, set exclusively the bits x · b−1

ij′ to 1,
∀1≤ i≤C. Similarly, consider the 2npq bits corresponding to the replication
of the column j′ of B, and, among them, set exclusively the bits x · b−1

ij to 1,
∀1≤ i≤C. It can be checked that the resulting binary vector is a weight-2C
precode codeword. This means that the row merging step producing H

(P)
0

results in a poor precode performance when G is abelian. Row merging is a
crucial step in the construction framework, therefore, G is constructed to be
non-abelian.

2. Choosing the dihedral group as a subgroup of G which order controls |G|
is motivated by the fact that the dihedral groups of {Dn}n>1 have equally
spaced orders, thus leading to equally spaced values of KLT = 2npqM .

3. Architectural Implications: The third consideration is the simplification brought
by the structure of (G, .) to the organization and access of the bit-node mem-
ory in the decoder. This is best, though not solely, manifested in the case
of partially-parallel architectures, where pq rows of H0 are processed in one
clock cycle. The memory is partitioned into M banks, each storing the pos-
terior LLRs of 2npq consecutive bits nodes. For clarity, consider the access
of messages corresponding to the submatrix of H0 formed by replicating en-
try bji = (xb · yb′ , zt.wu). Each cycle, a distinct coset of Cpq in G is chosen,
call it Cpq · x, x ∈ G, and the pq-rows indexed by elements of the coset are
processed. The messages to be read are then the posterior LLRs of the bit
nodes indexed by elements of the coset Cpq · (x · bji). Then memory bank i
can be organized into a 2n× pq partition, where each row of the bank stores
the LLRs of the bit nodes indexed by a coset of Cpq in G. Since Cpq is a
fixed-order subgroup of G, regardless of the order of G, the size of a memory
row of bank i is then fixed for a Raptor family, while its count varies with
n, a major simplification to the design of efficient memory implementation.
Thereafter, memory access can be divided into two steps: address generation
of the memory row and permutation of the pq messages read from the row.
The product nature of G simplifies these two steps as explained next. Any
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Figure 5.2: A pq-permutation induced by zawb = (zt.wu)−1. The input message of
a bit-node indexed by zi · wj, is denoted as zi · wj for simplicity.

coset of Cpq in G can be written as Cpq · (xa · ya
′
, z0 · w0). When the rows

indexed by such coset are processed, the LLRs read are for the bit nodes
indexed by the elements of coset Cpq · (xa · ya

′
, z0 · w0) · (xb · yb′ , zt · wu),

which is a permutation by zt ·wu of the coset Cpq · (xa+b · y(−1)b·a′+b′ , z0 ·w0).
The first step of memory access, the memory row address generation, is then
reduced into two simple dihedral-related computations a + b (mod 2) and
(−1)b ·a′+ b′ (mod n). This can can be done by updating the address values
obtained in the previous clock cycle, thus requiring hardware comparable in
complexity to a simple incrementor mod n. The second step is then done
using a Cpq-dependent permutation network shown in Fig. 5.2. The network
directs the LLRs read whose Cpq-subindex is zt

′ ·wu′ to the processor of the
matrix row whose subindex is zt

′ · wu′ · (zt · wu)−1. Since Cpq is fixed, the
same permutation network can be used for all possible values of KLT , reduc-
ing substantially the overhead of the multi-length decoding capability on the
interconnect network.
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5.4 LT Code Construction

A simple way for constructing the subcode corresponding to a row V of H
(L)
0 , is

to form the generator matrix of the subcode by splitting the row V, as explained
next:
Procedure:

1. Design a LT check degree distribution D, with maximum degree of M .

2. Starting from distribution D, form another distribution D′ over the space of
sets S; The space of sets S is characterized by the following: each set in S
is a set of positive integers that sum to M .

3. For every row V of H
(L)
0 :

. Random sampling from S is done according to D′. Denote the chosen
set by T = {T1, ..., Tt}, T ∈ S and t = |T |. T describes the split-pattern
of row V.

. Row-Splitting: The row vector V is split into t rows, V′i, i = 1, · · · , t,
such that: V = V′1 ⊕ · · · ⊕ V′t, and the Hamming weight of V′i is
equal to Ti. This means that if the ith entry of V is equal to 1, there
exists exactly 1 vector V′i, 1 ≤ i ≤ t, that has its ith entry equal to 1.
Within these constraints, the partitioning of the indices which have 1-
entry in V is made random by randomly permuting these indices prior
to applying splitting. This is illustrated in Fig. 5.3. The generator
matrix of the subcode corresponding to row V is thus the t × (M · Q)
matrix formed from the concatenation of the vectors V′i, i = 1, · · · , t.

Step 1 is crucial in the design of the LT code. It is however, not considered in
the research work presented in this dissertation.

One way to perform Step 2 is to minimize the weighted quadratic distance
between D and the check degree distribution resulting from D′. The minimization
is discussed next. Index each set in the space S, and denote the set of index j as
Sj, j = 1, · · · , |S|. Let A = [aij] be a M × |S| matrix such that aij is the number
of elements of value i in Sj divided by |Sj|. Then, the check degree distribution
resulting from D′ is A ·D′. Finding the |S|-vector D′ , [d′i] can then be formulated
as the following quadratic optimization problem:

minimize
D′

(A · D′ −D)T ·W · (A · D′ −D),

subject to 0 ≤ d′i ≤ 1, i = 1, · · · , |S| and

|S|∑
i=1

d′i = 1.
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where W = [wij] is a diagonal matrix of weights. Steps 1 and 2 can involve an
iterative co-design of D and D′ to reach the best approximation, while having the
quantization of distribution D′ entries in accordance with the number of rows of
H

(L)
0 .

One possible simple way to do the sampling of Step 3 in practice is to read
sequentially a circular array of split-pattern sets, denoted here the Partition Set.
These sets are chosen to approximate the distribution D′, and thus can be easily
reconfigured in hardware for arbitrary D′. This is illustrated in the row-splitting
example in Fig. 5.3.

0 0 1 0 1 1 1 0 1 0 0 0

1 0 0 1 0 0 1 0 1 0 1 0

1 0 0 1 1 0 0 1 0 1 0 0

0 1 0 1 0 0 0 0 0 1 1 1 
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1 0 0 1 0 0 1 0 1 0 0 0

0 0 0 1 0 0 0 0 0 1 0 0

1 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0 0 0 1 1 

Partition_Set={{2,3},{1,4}}1-entry locations

{2,3}:   [3,6]     [7,9,5]

{1,4}:   [11]      [4,7,1,9]

{2,3}:   [4,10]   [1,8,5]

{1,4}:   [10]      [1,2,4,12]

Partition
Map to 

Rows

Step 1 Step 2

Row Splitting

Figure 5.3: Random splitting of a row is done in two steps: 1) Random permuta-
tion of the non-zero entries, and 2) sampling from the partition set to obtain the
resulting row weights. For simplicity, sampling is performed here by reading the
partition set in a circular fashion.

Row-splitting is implemented, in hardware, by randomly permuting the M bit-
to-check messages then applying check-node processing by reconfiguring the CFU,
having a constant throughput of M , according to the split-pattern set T .

The main advantage of row-splitting is that hardware-efficient check-function
units can be designed to process the formed subcodes (step 4 of the decoding sched-
ule 5.2.2). In other words, the designed CFUs can process efficiently any subcode
that is formed by row-splitting, for any set T describing the split-pattern of the
corresponding row. The design of these CFUs will be considered next.
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5.4.1 Reconfigurable CFU Design

The design of the reconfigurable CFUs presented in this section is based on the
architectures of their fixed-degree counterparts. Three basic algorithms for the
CFU operation exist, namely 1) the conventional algorithm implementing equa-
tions (3.1) and (3.2), 2) the BCJR-based algorithm [70, 83], and the Min-Sum
algorithm [79, 81]. The latter two give a reduced complexity approximation of
the check-update equations, and thus, need no LUTs to compute the ψ function.
The Min-Sum algorithm, in particular, reduces the check memory requirements.
However this comes at the expense of varying degradation in performance for the
Min-Sum update, and an increase in the complexity of computational units and
latency in the CFU for the BCJR-based update.

Input: For efficient design, the following is input to the reconfigurable CFU.
As an illustrating example, consider the split-pattern set T is {3, 2, 4, 1}; thus, the
generator matrix is as follows:

1 1 1 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 0 1


1. A M -LLR vector BTC consisting of the bit-to-check messages corresponding

to the processed row of H
(L)
0 : BTCi denotes indicates the message of index

i. The BTC vector is ordered such that the messages corresponding to the
same LT output bit are consecutive in the vector. This ordering is made
possible by the permutation step of the decoding schedule (step 2).

2. A M -bit partition-vector that fully describes the split-pattern set as follows:
the first bit of the vector is 0 and equality of bits i and i + 1 of the vector
indicates the messages i and i + 1 belong to the same LT check-node. For
the example split pattern set {3, 2, 4, 1}, the partition vector is 0001100001
(i.e., 3↔ 000, 2↔ 11, 4↔ 0000, 1↔ 1).
The Subcode-Index Generator (5.2.2) is therefore implemented as a partition
table that stores a number, say r, of partition vectors. In the simplest case,
choosing the split pattern set T can be done by simply accessing the partition
table as a circular buffer. That is the ith row of H

(L)
0 is split according to

the partition vector of index i mod r stored in the partition table.

3. A M -LLR intrinsic-value vector Λ′ that includes the intrinsic channel LLR
values of the LT output-bits formed from splitting the corresponding row.
Λ′ is formed such that: if bits i and i−1 of the partition vector differ, the ith
value of Λ′ must equal the intrinsic LLR of the check-node whose message
index starts with i. Consider the aforementioned example of T = {3, 2, 4, 1},
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and denote by Λ1, Λ2, Λ3 and Λ4 the intrinsic LLR values of the first, second,
third and fourth LT output-bits of the subcode respectively. The resulting
intrinsic-value vector Λ′ is then:[

Λ1 Λ1 Λ1 Λ2 Λ2 Λ3 Λ3 Λ3 Λ3 Λ4

]
The organization of the Intrinsic-Value Memory (IVM) and the IVM network
(see Fig. 5.1) is considered in light of the specification of Λ′. The IVM stores
the intrinsic channel LLRs of the check-nodes. The number of LLRs read
from the IVM varies per cycle depending on the split-pattern of the corre-
sponding row of H

(L)
0 , but is at most M . The IVM block is, therefore, divided

into M banks. The intrinsic LLR of the ith check-node is written at location
b i
M
c in bank i mod M . The IVM network, shown in Fig. 5.4, can be thought

as a “decompressor” network composed of a M -wide cyclic shifter, to apply
shifting modM , followed by a multi-stage multiplexer network composed of
M ·(M−1)

2
[2:1] multiplexers to obtain the correct distribution of the intrinsic

LLR values over M locations. The operation of the IVM network is illus-
trated assuming the aforementioned split-pattern example T = {3, 2, 4, 1}.
For sake of illustration assume that the four generated LT-output bits have
the indices 12, 13, 14, and 15 respectively. Then the intrinsic LLR values Λ1,
Λ2, Λ3, and Λ4 are read from blocks 2, 3, 4 and 5 respectively. The output
of the IVM memory is M -wide and is as such (the x is a don’t care):[

x x Λ1 Λ2 Λ3 Λ4 x x x x
]

This M -word vector is shifted using the cyclic shifter of the IVM network to
become: [

Λ1 Λ2 Λ3 Λ4 x x x x x x
]

This vector is input to the multi-stage multiplexer network; where the control
signal to the multiplexers in stage i of the network is the XOR of bits i and
i− 1 of the partition vector. The operation of the network is illustrated by
showing the output of the successive M − 1 stages of the network.

Λ1 Λ1 Λ2 Λ3 Λ4 x x x x x

Λ1 Λ1 Λ2 Λ3 Λ4 x x x x x

Λ1 Λ1 Λ2 Λ2 Λ3 Λ4 x x x x

Λ1 Λ1 Λ2 Λ2 Λ2 Λ3 Λ4 x x x

Λ1 Λ1 Λ2 Λ2 Λ2 Λ3 Λ4 x x x

Λ1 Λ1 Λ2 Λ2 Λ2 Λ3 Λ3 Λ4 x x

Λ1 Λ1 Λ2 Λ2 Λ2 Λ3 Λ3 Λ3 Λ4 x

Λ1 Λ1 Λ2 Λ2 Λ2 Λ3 Λ3 Λ3 Λ3 Λ4

Λ1 Λ1 Λ2 Λ2 Λ2 Λ3 Λ3 Λ3 Λ3 Λ4


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Output: The output of the reconfigurable CFU is a M -LLR vector CTB con-
sisting of the check-to-bit messages corresponding to the processed row of H

(L)
0 .

The reconfigurable CFUs are also designed to process the LDPC precode check
nodes when the matrix H

(P)
0 describes the precode parity-matrix. The processing

of every degree-(C · M) check node is performed in C consecutive clock cycles.
Then, the CFU outputs the check-to-bit messages corresponding to every row of
H0 involved in the row-merging operation that forms the corresponding check-
node, in C consecutive cycles.

in1 in2 in3 in4 in5

out1

out2

out3

out4
out5

M Cyclic Shifter

0    1 0    1 0    1 0    1

0    1 0    1

0    1 0    1

0    1

0    1 0    1

Figure 5.4: IVM Decompressor Network for M=5.

Accumulator-Based CFU Architecture The ψ function and its inverse in (3.1)
and (3.2) can be implemented using look-up tables (LUTs). The ψ operation is
also applied on the intrinsic LLR values only once and the generated values are
stored in IVM. For simplicity of exposition, the signs of the BTC messages will be
overlooked, and these messages will be treated as positive numbers throughout the
following description. The proposed reconfigurable CFU is based on the design of
a M -degree CFU that implements the following transformed equation:

CTBj = ψ−1

(
M∑
j′=1

ψ(BTCj′)− ψ(BTCj)

)
.

This equation can be implemented using a tree of M−1 adders of depth dlog(M)e
to compute

∑
ψ(BCTj′), followed by M subtractors to extract the individual mes-

sages ψ(BTCj) from the total sum. At level t of the adder tree, the M bit-to-check
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messages are partitioned into q sets, P1,t, · · · , Pq,t, such that 1) set Pi,t, 1 ≤ i ≤ q,
includes messages with consecutive indices, 2) the sum of the ψ transformations
of the messages in set Pi,t is computed in a stage ≤ t (call it output value of the
set), and 3) the output values of these q sets are fed to the adder sub-tree starting
from stage t+1 which, in turn, computes their sum. The left (right) boundary Li,t
(Ri,t) of a set Pi,t is defined as the minimum (maximum) index of the messages in
the set.

In the LT-decoding mode, M intermediate values, σ, are maintained at each
level t of the adder tree. The ith value of σ, σ(i), stores the sum of the ψ trans-
formations of messages that 1) belong to the same partition as message i at level
t, and 2) have their corresponding LT-graph edges connected to the check node
that the ith edge is connected to. The algorithm for updating σ is shown below,
and the corresponding architecture is shown in Fig. 5.5.

Algorithm 2 Accumulator-Based Reconfigurable CFU Algorithm

σ(i)← ψ(BTCi), i = 1, · · · ,M
Pi,0 ← i, i = 1, · · · ,M
for t = 1 to dlog(M)e do

for all a, b s.t. an adder in fixed-rate mode adds output values of Pa,t−1 and
Pb,t−1 at stage t with a < b do

if right boundary ra of Pa,t−1 and left boundary lb of Pb,t−1 correspond
to same check-node then

θ ← σ(ra) + σ(lb)
else

θ ← ψ(Λ′(lb)) + σ(lb)
end if
∀j ∈ Pa,t−1, if j, ra, lb share same check-node, then σ(j)← θ
∀j ∈ Pb,t−1, if j and lb share same check-node, then σ(j)← θ

end for
end for
ψ(CTB)← σ − ψ(BTC) . Vector substraction

In LDPC decoding mode, the C ·M bit-to-check messages corresponding to
one check-node are fed to the CFU in C consecutive cycles. An extra accumulator
is used to add the C output values to output

∑C+ν
δ=1+ν(

∑M
i=1 ψ(BTCi[δ])), where

BTCi[δ] is the ith bit-ti-check message in the BTC vector corresponding to the
the row of index δ in H′0, and ν + 1 is the index of the first row in H′0 corre-
sponding to the current check-node. The last stage of subtraction in the CFU
operation is delayed for an extra C cycles required to obtain the aforementioned
sum. Consequently, The CFU attains a constant throughput of M messages/cycle.
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Figure 5.5: Accumulator-based CFU architecture. The grey-shaded muxes are
needed for LDPC-decoding. Registers used to propagate BTC messages from the
accumulator to the subtractor are omitted.
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The registers for storing the intermediate vector σ during LT-processing are now
re-used to store the vector ψ(BTC) for the C additional cycles. The extra latency
of C cycles is due to the quasi-serial mode of CFU operation in LDPC decoding.
This is unlike the LT-decoding latency caused by pipelining targeted to enhance
the operating frequency.
Forward-Backward BCJR-Based CFU Architecture: In [70, 83], a SISO
message-processing unit (MPU) was proposed to implement check-message pro-
cessing. The check-to-bit messages are computed using a simplified form of the
BCJR algorithm [89]. Let ⊗ denote an operator which performs the operation
x ⊗ y = ln(ex + ey) − ln(1 + ex+y). Then the message from a degree-r check-
node j to bit-node i at iteration τ , where 1 ≤ i ≤ r, is computed as [70]
CTBji[τ ] =

⊗
i′ 6=iBTCi′j[τ ]. Moreover, the following simple yet fairly accurate

approximation of ⊗ was proposed [70]:

x⊗ y ≈ max(x, y)−max(x+ y, 0) + max(5/8− |x− y|/4, 0)−max(5/8− |x+ y|/4, 0).

The unit implementing this approximation is called the Max-Quartet MPU. The
resulting CFU implements the BCJR algorithm on the syndrome trellis of an (r, r−
1)-SPC code, where intermediate forward and backward metrics are propagated
each cycle. At stage 1 ≤ t < r, two metrics αt (forward) and βt (backward) are
computed according to the recursions αt ,

⊗
1≤i≤tBTCi = αt−1 ⊗ BTCt and

βt ,
⊗

0≤i≤t−1BTCr−i = βt−1⊗BTCr+1−t, respectively. Then starting from stage
t > r/2, the check-to-bit messages CTBi are generated as CTBi = αi−1 ⊗ βr−i.

A reconfigurable version of the SISO MPU is proposed in Fig. 5.6. LT-node
processing capability is achieved by multiplexing the inputs to the Max-Quartet
units implementing the α- and β-recursions. The computation of the forward and
backward metrics is done as follows:

αt =

{
αt−1 ⊗BTCt if messages t and t+ 1 correspond to the same check node;

Λ′t+1, otherwise.

βt =

{
βt−1 ⊗BTCM+1−t if messages M + 1− t and M − t correspond to same check node;

−∞ otherwise.

In LDPC-decoding mode, the metric zδ =
⊗M

i=1BTCi[δ] = αM/2 ⊗ βM/2 cor-
responding to the row of index δ in H′0 (one of the rows merged to form the
check-node j) is computed and then forwarded to a degree-C serial CFU. The
CFU output

⊗
0≤δ′<c,δ′ 6=δ zδ′ is then forwarded to M Max-Quartet units to com-

pute CTB[δ].
Min-Sum CFU Architecture A reduced complexity approximation of the

check-to-bit message computation is given in [79] as:

CTBi =

(∏
i′ 6=i

sgn(BTCi′)

)
×min

i′ 6=i
|BTCi′|.
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The Min-Sum approximation results in a degradation in the error correcting perfor-
mance. To reduce the performance gap, a correction step, consisting of subtracting
an offset or multiplying by a normalization factor [81], is applied on the resulting
minimum value.

The reconfigurable CFU implementing the Min-Sum approximation is based
on the constant-degree implementation given in [75]. The architecture has a tree
structure similar to the accumulator-based CFU, where the addition operation
is substituted by a 4-input 2-output partial-sorting function that computes the
minimum and the second minimum of two sorted input pairs. The final output
of the tree are the minimum-value, its index, and the second minimum value of
the input values. During LT-decoding, two intermediate values instead of one are
needed for every edge i per level. These are the minimum and second minimum
values of the messages that 1) belong to the same partition as message i at level t,
and 2) have their corresponding LT-graph edges connected to the check node that
the ith edge is connected to. To reduce the number of intermediate values per edge
to one, the following modifications are made. For a degree-1 LT-node edge i, the
intermediate value is set to the corresponding intrinsic channel reliability value.
For a degree-2 LT-node edge i, the intermediate value holds the corresponding
minimum value if i is odd or the second minimum value if i is even. A maximum
of M + 1 extra intermediate values are needed throughout the CFU operation,
used when the right boundary of a partition does not share its check-node with
any other edge in the partition. The indices of the minimum values, corresponding
to the row check nodes, are tracked across the CFU by keeping a M -bit minimum-
index vector, which is updated per stage upon the results of the partial-sorting
operations. In the final stage, the correction step is applied on the M intermediate
values and the CTB messages are generated using the partition and minimum-
index vectors. In LDPC-decoding mode, the minimum index-vector and two odd-
and even-indexed outputs of the correction step are forwarded to an additional
partial-sorter. The minimum, second minimum, and the minimum index over the
C rows of every corresponding check node are thus computed with an extra latency
of C cycles.

The Min-Sum algorithm changes the check-node memory requirements since up
to three values are sufficient to regenerate the absolute values of the messages cor-
responding to one node. This results in significant savings in the LDPC memory.
Three LT-memory organization schemes are considered: 1) the LT-memory retains
its conventional organization, 2) the LT memory stores two values per node (the
minimum and second minimum values) and a M -bit minimum-index vector per
row, and 3) the LT-memory stores three values per LT-node. In the second scheme
the LT-memory is decomposed into three blocks: two for storing the odd/even-
indexed values output by the correction step, prior to the CTB generation, and
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one for storing the minimum-index vector. The odd/even-indexed memory block
is read/written at most once for every check node of the processed row, and thus
has its access pattern similar to that of the IVM memory. Consequently, it has
a similar organization, but contains M

2
, instead of M , memory banks. A M

2
-wide

“compressor” is needed to store the CFU output in memory, its operation is the
inverse of the previously discussed “decompressor” (see Fig. 5.4). Besides, a M

2
-

wide decompressor is needed to regenerate the corresponding M
2

messages in the
next iteration. Fig. 5.7 shows the CFU interconnect under this scheme. In the
third scheme, additional interconnect and logic are needed to correctly store and
extract the minimum indices. Figure 5.8 compares the reduction in the check-node
memory size in the three respective schemes versus the average LT-node degree.
As the average LT-node degree increases, the memory size reduction brought by
the Min-Sum algorithm becomes more significant.
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Figure 5.7: operation and interconnect of the Min-Sum implementation. Only
LT-decoding mode is shown for clarity.

Table 5.1 compares the hardware complexity of the fixed-degree and reconfig-
urable implementations of the three algorithms. Reconfigurability in results in a
replication of the number of registers. For the BCJR-based update the number of
function units increases by ∼ 4/3, while a large number of [2:1] muxes is needed
for the other two.
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Table 5.1: Hardware resources of fixed-degree and reconfigurable architectures, of the three algorithms. The Min-
Sum correction step and the sign-producing logic are not included.

Accumulator-based BCJR Min-Sum

Component Fixed Reconfigurable Fixed Reconfigurable Fixed Reconfigurable

LUTs 2 ·M 2 ·M - - - -

Adders 2 ·M − 1 2 ·M + 1 - - - -

- - 3 ·M − 6 - -
Max-Quartet 4 ·M − 4

Units +dC/2e

Comparators - - - - 2 ·M − 3 2 · (M + 1)

Registers
M · dlog(M)e M · dlog(M)e 3 ·M2/2 +O(1) 2 · (M + 1)2 O(M) M · dlog(M)e

+O(M) +O(M)±O(C) +O(C) +O(M)
+M ·max(dlog(M)e, C)

[2:1] Muxes
- M · dlog(M)e+O(M) - 3 · (M + 1) O(M) M · dlog(M)e

+O(C) +O(M)
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5.4.2 Structured Subcodes

When the value of the code-rate R = K
N

is close to K
KLT

, the LT code rate KLT
N

approaches 1. Therefore, in pseudo-random LT bit generation, the number of LT
check-nodes in the decoding graph may be insufficient to recover the bit values
within a reasonable number of iterations, even in the absence of noise. As will be
shown in 5.6, simulation results on LT-codes constructed using the row-splitting
technique indicate that the highest-rate code obtained with comparable perfor-
mance to LDPC had a rate 2/3, while the average number of required iterations
was 3× higher than in LDPC.

A possible way to approach this problem is to insert additional structure and/or
constraints on the M -sized subcodes. As discussed next, the steps are targeted
to 1) enhance performance at high code rates, 2) speed up convergence, and 3)
reduce memory requirements.

Constraining/structuring LT encoding is, primarily targeted at constructing
performance-efficient Raptor codes for rates close to the precode rate. Therefore,
the choice of the subcode is now dependant on the index of the increment/frame-
portion in which the encoding bits will be included. One possible subcode choice
guide is that for high code-rates, LT encoding must be done such that: in the
absence of noise, every bit-node can be recovered by applying no more than a small
number k of the LT-row operations described in [35]. One way to do this is to

constraint row-encoding of the first M rows of H
(L)
0 as follows: encode row V, such

that M check-nodes are generated from the corresponding M bits, and exclusive
local decoding of the resulting subcode is sufficient to retrieve the values of these
M bits, in the absence of noise. The subcode generator matrix can vary across
rows. An example M ×M generator matrix of a subcode satisfying this property
is:(M = 6) 

1 0 0 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1


As can be easily checked, processing the subcode once is sufficient to recover the
corresponding M LT output bits in one iteration, in the absence of noise. This will
also make the convergence speed of the decoding process higher. Two notes have
to be made on such structuring. The first is the resemblance between the subcode
structuring requirement and that in the puncturing methods discussed in 3.4.1;
this is expected since both requirements are motivated by the aim to decrease
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the number of decoding iterations required to recover all the bit-nodes in the
absence of noise. The second note is that such structuring has a major problem: it
makes subcode generation strongly dependant on the portion of the frame in which
the output bits of the subcode is included, therefore, the Raptor code may face
the problem of performance degradation in the previously considered scenarios of
intra-frame varying channel condition, similar to the case of conventional LDPC
and Turbo codes. An open question is on performing subcode structuring and
pseudo-random row-splitting such as to achieve the desired tradeoff between the
performance of the code when all the portions of the sent frame experience one
SNR and the performance when different portions of the frame experience different
SNR values. In the rest of this subsection the advantages and possible hardware
overhead of structured subcodes are discussed.

Memory Savings : In message-passing algorithms where exact check-node equa-
tions are applied, the number of stored messages is equal to the graph’s edge-count.
The proposed row-encoding partially decouples the number of stored messages
from the underlying edge count, thus reducing the required memory size as ex-
plained next. Local decoding of a subcode involves the following inputs/outputs:
the inputs are M LLRs of the corresponding M bit-nodes and the intrinsic LLRs
of the corresponding check-nodes; the outputs are M LLR values. The M -word
output is stored in memory to be used in the subsequent iteration. However, since
the column-wight in the generator matrix of a subcode can exceed 1, the number
of edges in the subcode graph is > M .

Convergence Speed : Beside structuring, local subcode decoding increases the
decoding convergence speed. This is illustrated in the following example of a LT
code generator matrix (M = 6):[

1 1 1 0 0 0
0 0 1 1 1 1

]

In decoding, each check constraint produces one extrinsic LLR value for the third
bit (call these values v1 and v2, respectively). In TDMP, v1 is used in the processing
of check 2. On the other hand, v2 will be used in check 1 processing in the next
iteration. Conversely, having these two checks within 1 subcode implies that the
processing of check-nodes 1 and 2 makes use of v2 and v1 respectively, within the
same decoding iteration. This lowers the required number of decoding iterations.
It should be noted here that the column-weight values in the subcode generator
matrix is limited by the acyclic condition which is imposed on the subcode graph.
This condition is merely motivated by the fact that the subcode local decoding
and performance analysis are both complicated by the existence of cycles.

Compared to simple row-splitting, LT subcode structuring clearly increases the
complexity of check-node processing in terms of routing, control, and operation
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count. An accurate overhead estimation needs well-defined constraints on subcode
structuring, and therefore, is outside the scope of the dissertation.
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5.5 Precode Construction

Two points on precode construction are considered in this section. The first point
is on how to apply row-merging such that the resulting Raptor graph is 4-cycle.
The second point is on the generation of relatively low-rate precodes.

5.5.1 Row Merging Transformation

In general, the construction of a 4-cycle free Raptor graph is done by imposing
appropriate constraints on the base matrix B = [bij], the violation of which implies
4-cycles exist in the resulting graph. These constraints can be stated as follows:

1 : brj ·b−1
sj 6=brj′ ·b−1

sj′ , ∀j 6=j′, ∀r, s≥C + 1;

2 : brj ·b−1
sj 6=btj′ ·b−1

uj′ , ∀1≤j, j′≤M, ∀1≤r, s, t, u≤C, (r, s) 6=(t, u);

3 : brj ·b−1
sj 6=btj′ ·b−1

sj′ , ∀1≤j 6=j′≤M, ∀1≤r, t≤C, s>C;

If constraint 1 is satisfied, the LT-graph is 4-cycle free; similarly, if constraint 2 is
satisfied, the precode graph is 4-cycle free. Satisfying constraint 3 means that if
two bit-nodes are neighbors to a check node in the LT-graph, their exists no check-
node that is neighbor to these bit-nodes in the precode-graph. Overall, satisfying
the three constraints imply the Raptor graph is 4-cycle free.

In the particular case where the source matrix is constructed according to the p-
based replication method, row-merging is done by applying a specific row-merging
procedure, illustrated in Fig. 5.9.

Procedure: Row Merging Transformation for p-based replication

Step 1: Form a set of integers Γ with maximum cardinality |Γ| = C such that:

i. ∀t ∈ Γ, 0 ≤ t ≤ p− 1.

ii. ∀t, x, y, z ∈ Γ, if t − x = y − z 6= 0 mod p, then the pair of elements
(t, x) is identical to the pair (y, z).

Step 2: For i = 1, · · · , p− 1:

i. Form the p × p matrix Wi = [wjk] by adding modulo 2 the C shifted

identity matrices I
i·Γj mod p
p , for 1 ≤ j ≤ C, where Γj is the jth element

of Γ.

ii. Replace every 0-entry wjk of Wi with −1, and every 1-entry wjk with
the quantity i · j mod p, for 0 ≤ j < p.
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iii. Form the p2 × p2 matric Fi = [fjk] by replicating Wi by a factor of p.
Each entry wjk is replaced by a I

wjk
p if wjk > −1, and by a p × p zero

matrix otherwise.

Step 3: Form the p2 × (p3 − p2) LDPC base-matrix H
(P)
0 by concatenating the

p− 1 matrices Fi, for 1 ≤ i < p.

Step 4: ∀1 ≤ i ≤ C, omit from H0 the rows whose indices are p2 · Γi ≤ i <
p2 · (Γi + 1) to form a (p2 · (p − C)) × p3 matrix. Then omit the first p2

columns; the resulting matrix is H
(L)
0 .

Step 2 of the procedure is a rigorous way to describe the row merging of C
p2-row submatrices of H0, where the ith submatrix is the formed from the rows of
indices between Γi · p2 and (Γi + 1) · p2 − 1 in H0.

Theorem 3. The Raptor graph described by HR , [H
(L)
0 ; H

(p)
0 ], is 4-cycle-free.

Proof. The terminology used here is similar to that in the proof of Theorem 2.
First, we prove the precode graph is 4-cycle free. Assume the graph described by
matrix H

(p)
0 , has a length-4 cycle b1c1b2c2, where bi’s are bit-nodes and ci’s are

check-nodes. Two cases exist. Case 1: xb1 = xb2 then ∃t, x, y, z ∈ Γ such that
t − x = y − z mod p and (t, x) 6= (y, z), which is impossible by condition (1.ii)
of the row merging transformation. Case 2: xb1 6= xb2, then c1 is connected to
b1, b2 in the 4-cycle which implies that zb1− zb2 = yc1 · (xb1−xb2) mod p. Similarly,
c2 is connected to b1, b2 in the 4-cycle, hence zb1 − zb2 = yc2 · (xb1 − xb2) mod p.
Therefore, yc1 = yc2, which implies that c1 ≡ c2 by construction.

Now, assume the graph described by matrix HR, has a length-4 cycle b1c1b2c2

where bi’s are bit-nodes and ci’s are check-nodes. Three cases exist. Case 1: Both
c1 and c2 are LT-check nodes. By Theorem 2, this case is impossible. Case 2: Both
c1, c2 are LDPC-check nodes, which is impossible by the first part of the proof.
Case 3: c1 is an LT check-node and c2 is an LDPC check-node. c1 is connected
to b1, b2 in the 4-cycle implies that zb1− zb2 = yc1 · (xb1−xb2) mod p and xb1 6= xb2.
Also, c2 is connected to b1, b2 implies that zb1 − zb2 = yc2 · (xb1 − xb2) mod p.
Therefore, yc1 = yc2. Hence in the p3 × p3 matrix H0 constructed by the p-based
replication, bit-node b1, where b1 > p2 (i.e. b1 does not correspond to any of the
first p2 columns), is connected to two check nodes having different x-coordinates
but equal y-coordinates, which is impossible by the p-based replication method.

5.5.2 Irregular Precodes

In the original Raptor code construction [34], the precode rate approaches 1 and
therefore its rate overhead is negligible. The precode check-nodes are then assumed
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Figure 5.9: Row merging for p = 11, C = 3.

to start decoding effectively when the mean of the exchanged messages becomes
relatively high. For short block lengths (e.g. < 3K), a high rate precode (∼ 1)
would lead to a high number of short cycles in the code graph and a relatively high
error-floor [90], thus degrading performance. Relatively low-rate regular precodes,
with rates > 0.9, were considered in [90,91], and the LT check-degree distribution
was optimized using density evolution methods [91]. In lower rate precoding,
with rates even lower than 0.9, regular LDPC precodes may not be optimal and
a joint LT-LDPC degree optimization is needed. Consequently, two additional
points on precode design are considered here. The first is to set a new criterion
aiming at hardware efficiency beside performance, to determine the appropriate
precode rate values. The second is to extend row-merging to generate irregular
lower rate precodes starting from a regular H

(P)
0 , according to some input precode

check-degree distribution. This extension, called splitting-after-merging, enables
the construction of irregular precodes while preserving the underlying structural
properties of H0, crucial for hardware-efficient row processing.

Hardware-Constrained Rate Criterion: The proposed criterion, heuristic in
nature, seeks to maximize the minimum distance of the Raptor code under a
hardware-oriented constraint. The criterion is needed to compare two possible
precode rate values R0 and R′0, and choose one of them. If the number of rate
options considered is greater than 2, the comparison step can be applied itera-
tively, each time ruling out one option. Let d0, d

′
0 be the minimum distances of
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the precodes with rates R0 and R′0 respectively, dv, d
′
v the respective average LT

bit-node degrees, and C the average precode bit-node degree, assumed fixed across
both rates. The approach compares the minimum distances of the two resulting
Raptor codes, which are approximated by d0 · dv and d′0 · d′v respectively. The
two quantities dv and d′v are related using the following simplifying constraint:
the number of edges in the two respective Raptor graphs must be equal, that is
(d′v +C)/R′0 = (dv +C)/R0. This constraint is hardware-oriented since in virtu-
ally all decoding algorithms, the operation count and memory requirements are
a strong function of the edge-count, and thus the constraint approximately fixes
these hardware-related figures when comparing the rate values. Thus, the con-
dition for choosing R′0 over R0 is having d′0 · d′v ≥ d0 · dv which is equivalent to

(r =
R′0
R0

):

d′0 ≥ dv · (dv · r − C · (1− r))−1 · d0.

Since dv
dv ·r−C·(1−r) decreases with increasing dv, it is sufficient to test the inequality

condition for the highest code rate of interest, corresponding to the minimum dv
value.

Row Splitting-after-Merging : Following the choice of the precode rate K/KLT ,
a corresponding precode check-degree distribution is determined, the procedure
of which is out of the scope of the dissertation. Then, a (KLT −K)-row parity

matrix is generated from regular matrix H
(P)
0 through the row splitting-after-

merging step: Split each row V in H
(P)
0 into binary rows V′1, V′2, . . . similar

to the splitting technique described in Section 5.4. Splitting is done according
to a distribution on the space of split-patterns that is derived from the intended
check-degree distribution, in a similar manner to LT row-splitting.

Special Regular-to-Irregular Graph Transformation for p-based Replication: In
the particular case of p-based replication, irregular precodes can be constructed
starting from the regular matrix H

(P)
0 ; the latter matrix formed according to the

previously described row-merging transformation. The row-weights of the subma-
trices Wi, obtained from Step (2.i) of the row merging method, can be changed via
1-entry substitutions across the matrix. This is done by picking an integer 0 ≤ d <
p that satisfies the following property: ∃g ∈ Γ such that ∀x ∈ Γ\{g}, y, z ∈ Γ∪{d}
with (d, x) 6= (y, z), d 6= x and y 6= z: d − x 6= y − z mod p. Then, in submatrix
Wi, 0 < i < p, the 1-entries corresponding to Ii·g mod p can be interchangeably
replaced by those of Ii·d mod p in a column-per-column or row-per-row fashion. The
result is an irregular 4-cycle-free LDPC graph. This procedure is illustrated in
Fig. 5.10. By applying identical row shuffling in Wi and in the p2×p2 submatrices
of matrix H

(L)
0 . that share the same bit-nodes with Wi, a 4-cycle-free Raptor

graph with irregular LDPC graph is obtained. However, the resulting LT graph is
not 6-cycle-free anymore.

From a hardware perspective, this regular-to-irregular transformation is simpler
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Figure 5.10: Regular-to-irregular graph transformation for Γ = {0, 1, 3}, d = 7
and g = 0. The non-zero entries corresponding to I0 in the first three rows are
replaced by non-zero entries corresponding to I7. C here denotes the vector of the
corresponding row-weights. Note that the column weight remains unchanged.

than the splitting-after-merging technique, because the CFU will be processing 1
check node in a variable number of clock cycles. In the row-splitting-after-merging
technique, the CFU will be processing the check nodes resulting from the splitting
of the corresponding row in H

(p)
0 , over C clock cycles. However the row-splitting-

after-merging technique can generate much more irregular precodes, and is thus
better from the point of view of coding-performance.
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5.6 Simulation Results

In this section, simulations are used to explore and/or verify different aspects of
the proposed Raptor code construction. These aspects include: 1) the FER/BER
performance of the constructed codes over AWGN channel, 2) the decoding conver-
gence speed, and the 3) the number of messages exchanged per decoding iteration
between the bit-node memory and the check-node block. The first aspect is re-
lated to the coding performance of the constructed codes; the other two aspects
are related to hardware-efficiency of decoding.

As a proof of concept, a serial decoder applying the TDMP decoding algorithm
was designed. A bit-accurate C++ simulator of the decoder was developed to
analyze the quantization noise effect on the coding performance. The decoder was
modeled in Verilog, and then synthesized using the Design Compiler tool from
Synopsys. The power and area figures corresponding to each component of the
decoder are obtained, and the figures are analyzed.

5.6.1 Code Category 1: p-based Replication and Row-Splitting

Raptor code instances were constructed using the p-replication method to con-
struct the source matrix, and row-splitting to generate the LT subcodes. The
parameter p is set to 11, therefore, KLT = p2 ·(p−1) = 1210. The rates considered
are 0.4, 0.5 and 2

3
. The construction of the LT codes is done separately for each

rate, therefore, the codes obtained are not rate-compatible but fixed-rate. Their
performance evaluation is merely intended to show whether the corresponding code
construction can yield good-performing fixed-rate codes. For each code-rate, the
subcodes are generated by reading a circular partition table in a circular manner
(see 5.4). The partition set stored in this table is chosen by simple search: sev-
eral partition sets are tried and the one yielding the best performance is chosen.
Table 5.2 shows the details of the codes compared.

Both the regular and irregular LDPC precodes are 4-cycle-free and have a
minimum distance of 6. The irregular precode outperforms the regular precode at
rate 0.66, and therefore was used there. The TPMP decoding of the codes was
simulated assuming an AWGN channel and BPSK modulation. Three metrics were
evaluated: the bit-error rate (BER), frame error rate (FER) and average number
of iterations required for successful decoding, with a maximum of 100 iterations.
The results are plotted in Figs. 5.11, 5.12, 5.12, and 5.14.
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Table 5.2: Parameters of the simulated Raptor codes and LDPC codes.

Rate Label Type Parameters (K,KLT , N)

0.4

RAP4 Raptor Precode: Regular rate (p− 2)/(p− 1) = 0.9 LDPC code (1089, 1210, 2723)

LDPC4 LDPC Random (3, 5), 4-cycle-free (1089,−, 2723)

0.5

RAP5 Raptor Precode: Regular rate (p− 2)/(p− 1) = 0.9 LDPC code (1089, 1210, 2178)

LDPC5 LDPC IEEE 802.16 code [10] (1104,−, 2208)

2/3

RAP6 Raptor (1100, 1210, 1650)
Precode: Irregular rate 1− 1/p = 10/11 LDPC code

bit-degree = 3, check-degree distribution = 0.2x2 + 0.3x3 + 0.5x4

LDPC6A LDPC IEEE 802.16 code [10] (1088,−, 1632)

LDPC6B LDPC IEEE 802.16 code [10] (1088,−, 1632)

134



RAP4
LDPC4

FE
R

10−6

10−5

10−4

10−3

0.01

0.1

1

SNR (dB)
0 0.5 1 1.5 2

RAP4 LDPC4
B

ER

10−7

10−6

10−5

10−3

0.01

0.1

SNR (dB)
0 0.5 1 1.5 2 2.5 3

Figure 5.11: FER and BER vs. SNR(Eb/N0) curves for rate-0.4 LDPC and Raptor
codes.

The Raptor code outperforms the rate-0.4 LDPC code, compares favorably to
the rate-0.5 LDPC code and unfavorably to the rate-2/3 LDPC codes. However,
the relatively low minimum distance of the precode implies that an error floor
would appear at low error rates (at FER of ∼ 10−6 or lower, or equivalently BER
of 10−8). To get error floors at lower rates, the precode rate has to be decreased.
No Raptor code of rate 3/4 or 5/6 could be constructed to have comparable per-
formance to that of its LDPC counterpart.

As shown in Fig. 5.14, the decoding convergence speed of the Raptor and LDPC
codes is comparable for rate 0.5. The average number of iterations in Raptor
decoding is significantly higher than in LDPC decoding (∼ 3×) at rate 2/3. This
is due to the nature of the LT code where the transmitted bits are modulo-2 sums
of the LT input bits rather then input bits themselves. For rate 2/3, decoding
of the constructed Raptor code requires 9 iterations to converge even in noiseless
channel conditions. This is clearly related to the fact that 2/3 was the highest rate
for which a Raptor code with performance comparable to that of LDPC could be
attained.

For the TPMP algorithm, the number of messages (bit-to-check or check-to-bit)
is equal to the number of edges in the corresponding LDPC and Raptor graphs.
These numbers, compared in Table 5.3, indicate that the LDPC graphs are sparser
by a factor of 4/3 than their Raptor counterparts.
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Figure 5.12: FER and BER vs. SNR(Eb/N0) curves for rate-0.5 LDPC and Raptor
codes.
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Figure 5.13: FER and BER vs. SNR(Eb/N0) curves for rate-2/3 LDPC and Raptor
codes.
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Figure 5.14: Average number of iterations required until decoding convergence vs.
SNR for all codes in Table 5.2.

Table 5.3: Number of edges in the matching Raptor and LDPC tanner graphs

Rate LDPC Raptor Sparsity Ratio (Raptor/LDPC)

0.4 8169 11056 1.35
0.5 6992 9076 1.3
2/3 5440,5508 7438 1.37
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5.6.2 Code Category 2: Product-group Replication and
Subcode Structuring

A rate-compatible Raptor code instance was constructed using the product-group
replication method to construct the source matrix, and subcode structuring to gen-
erate the LT subcodes. A code instance with source matrix parameters (n, p, q,M)=
(5, 3, 4, 12) is considered. The precode rate is chosen using the hardware-constrained
rate criterion described in 5.5.2. Substituting (dv, C,R0, R

′
0) by (2, 3, 0.9, 5/6), the

condition d′0 ≥ dv · (dv · r − C · (1 − r))−1 · d0, reduces to ∼ d′0 ≥ 4/3d0, and the
precode rate is set to 5/6, therefore (K,KLT ) = (1200, 1440). Codes with rates
down to 1/2 were constructed. Several LT-row subcode structures and precode
row-split patterns were tried and those yielding the best coding performance cho-
sen. The code frame error rate (FER) performance was simulated over an AWGN
channel with BPSK modulation, and compared to that of the LDPC codes defined
in IEEE802.16 [10] for rates {5/6, 3/4, 2/3, 1/2}, under two-phase message passing
(TPMP) decoding. The results are shown in Fig. 5.15.

The code performance follows closely that of the LDPC codes, unfavorably for
high rates, with improving performance as the rate decreases. The LDPC waterfall
curve is slightly steeper. A rate-1/2 code with K0 =3600 was constructed using LT
and precode distributions nearly similar to that of its K0 = 1200 counterpart. Its
FER curve shows the general trend of steeper waterfall and shift towards capacity
as K increases, demonstrating the scheme’s potential for application over a wide
range of block lengths.

Structured LT row-encoding enhances the decoding convergence speed as shown
in Table 5.4. The 3× gap reported in 5.6.1 for rate 2/3 is narrowed to 2× under
TPMP decoding. Furthermore, a 2.5× to 2.7× reduction in the average number
of iterations is achieved for Raptor codes at high rates by switching to TDMP
decoding, as opposed to 2× reduction for LDPC. The gap is therefore narrowed
further to 1.36 at rate 2/3.

Table 5.4: Average number of decoding iterations at FER of ∼ 10−4.

TPMP TDMP

Rate LDPC Raptor Ratio LDPC Raptor Ratio
5/6 4 11.5 2.87 2.4 4.3 1.8
3/4 5.8 14 2.4 3.2 5.6 1.75
2/3 7.6 15.5 2 4.2 5.7 1.35
1/2 11.5 14.6 1.27 6.1 6.7 1.1

The number of messages stored in both LDPC and Raptor codes is compared
in Table 5.5. The ratio of the LT message count to the LT edge count ranges
between 0.67 and 0.75. Such reduction becomes more significant with low rates,
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Figure 5.15: FER performance: Dashed curves correspond to Raptor codes, solid
curves to LDPC. Unless otherwise stated, K0 = 1200.

as the LT edge count percentage of the overall Raptor graph edge count increases.
The Raptor message count, relative to LDPC, is reduced from 1.3× as reported
in 5.6.1 to 1.1×, at rate 1/2. It is noteworthy that since the memory size must be
equal to the highest possible message count, the most significant figure, area-wise,
is that of the low-rate codes with the largest block-size.

Simulation results demonstrate the effectiveness of subcode structuring in ex-
tending the rate-range of Raptor codes and in enhancing the decoding convergence
speed, for AWGN channels with no intra-frame varying channel conditions.

5.6.3 Implementation

A serial decoder architecture for the Code category 1 (5.6.1) is designed. Some
implementation details are described next.

The permuter and inverse permuter of the interconnect network (see Fig.5.1),
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Table 5.5: Message Count Comparison: Ne, edge count per information bit; Nm,
message count per information bit.

LDPC LT Raptor NRapt
m /NLDPC

e

Rate Ne Ne Nm Ne Nm

5/6 4 2.3 1.7 5.9 5.3 1.3
3/4 4.72 2.83 2.1 6.43 5.7 1.2
2/3 5 3.45 2.4 7.05 6 1.2
1/2 6.33 5.12 3.45 8.72 7.05 1.11

used in the current design generates (p−1)2 possible permutations, and maps index
x to index y, 0 ≤ x, y ≤ p−2 as such: y = (qa(x+1) mod p+b) mod (p−1), q being
a primitive element of the group GF (p). Parameters a and b are pseudo-randomly
generated using linear feedback shift registers (LFSRs). Expressing qa=qa0 · q2a1 ·
q4a2 · · · , where a0, a1, · · · ∈ {0, 1}, the multiplication module can be implemented
using (p − 1)dlog(p − 1)e 2:1 b-bit multiplexers, thus the whole permuter needs
2(p− 1)dlog(p− 1)e [2:1] b-bit muxes.

The function ψ(x) = − log(tanh(x/2)), in eqs. (3.1) and (3.2), is typically
implemented using a lookup table (LUT), whose size grows exponentially with
the word size b. This adds to the CFU size and may cause a delay bottleneck.
In this implementation, ψ(·) was approximated by the following linear-piecewise
function: ψ(x) ≈ aix − bi ∀x ∈ Ri, Ri being a subset of the input range. The
factor ai is chosen to be a positive or negative power of two and, therefore, mere
shifting is needed to implement multiplication by ai. The offset values bi are stored
in a LUT. The input range is decomposed into Ri = [2i−1, 2i − 1], i = 1, · · · , b.
This range decomposition simplifies the decoding-circuitry of the LUT storing the
b possible values of the offset. Better approximation can be obtained by cutting
each sub-range size by half, thus doubling the LUT size. The piecewise-linear
approximation is compared to the ψ(·) function and the LUT approximation for
b = 7 in Fig. 5.16.

To satisfy the TDMP timing condition, described in 3.6, the rows of H′0 are
shuffled such that: any p consecutive rows of H′0 have at most 1 nonzero entry per
column.

Table 5.6 summarizes the hardware resources involved in the TDMP and TPMP
serial Raptor decoders. Measured in iterations per second, the throughput of the
two architectures is basically the same. The difference, in the throughput measured
as the number of decoded frames per second, stems from the the fact that a smaller
number of iterations is needed to decode a single frame using TDMP compared to
TPMP. The TDMP and TPMP implementations involve nearly the same hardware
resources. The interconnect network in the TDMP implementation includes a
FIFO to organize forwarding the bit-to-check messages to the adder block where
they are added to the corresponding computed check-to-bit messages.
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Figure 5.16: The ratio of the approximation error induced by the linear piecewise
approximation compared to that of the LUT-based approximation, for input x < 4,
and b = 7 using 2’s complement representation. The function ψ(x), however, is
approximated using 6 bits.

Quantization Analysis: A bit-accurate C++ simulator of the serial decoder
was developed to analyze the quantization noise effect on the coding performance.
The decoding procedure of a rate-0.4 Raptor code instance, was simulated for
message quantization of 6, 7, and 21 (almost-ideal) bits, assuming an AWGN
channel with BPSK modulation. The code parameters (p,K,KLT , N) were set to
(11,1089,1210,2717). As indicated by the simulation results, shown in Fig. 5.17,
the BER has less steep waterfall regions compared to the floating point case. The
message bit-width of b = 7 is the smallest width to yield close performance to the
floating point case up to an SNR of at least 1.5 dB. Using b = 7, the decoder
performance was evaluated when using the linear-piecewise function to compute

Table 5.6: Complexity and throughput of the serial TDMP and TPMP Decoders.
The blocks are b-bit wide.

Component TDMP Serial Decoder TPMP Serial Decoder

Memory (p− 1)((1 + f)p3 + p2) (p− 1)((1 + f)p3 + 2p2)
REGISTERS ∼ p(p− 1) ∼ p(p− 1)

Adders 2(p− 1) 2(p− 1)
[2 : 1] MUXs p2/2 + 5pdlog(p− 1)e p2/2 + 5pdlog(p− 1)e+ 2p

FIFO 1 0
CFUs 1 1
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the ψ(·) function (2 approximations) and also compared to an equivalent two-
phase message-passing (TPMP) decoder. Simulation results show moderate to
slight performance loss resulting from the usage of linear piecewise approximation,
depending on the level of approximation; In the two approximation cases, the loss
is still smaller than the gap separating the decoder performance for b = 6 and
b = 7. The TPMP decoder slightly outperforms TDMP, under quantization, but
this comes at the expense of nearly half convergence speed.
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Figure 5.17: Coding performance of TDMP under various quantization scenarios:
Near floating-point case, b = 7 using lookup-table and linear piecewise approxi-
mations, and b = 6. TPMP performance at b = 7 is shown for comparison.

Synthesis Results: The proposed decoder was modeled in Verilog, and then
synthesized using the Design Compiler tool from Synopsys. The datapath bit-
width, b, was set to 7, and the synthesis was done using a 65 nm, 1.2 V customized
library (tcbn65lptc). The synthesized decoder has a critical delay of 3.21ns, and,
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therefore, operates at a maximum frequency of 300 MHz. It occupies an area of
0.55 mm2 and dissipates an average power of 27 mW. For each decoding iteration,
the decoder needs 741 cycles to process the LT rows and 363 cycles to process
the LDPC rows of the rate-0.4 code instance, in addition to 45 extra cycles to
switch between LDPC and LT decoding and to the next iteration, thus performing
one iteration in 1149 cycles. For an SNR (signal to noise ratio) of 1.5 dB, the
average number of iterations needed for convergence is 7.9 per frame, resulting in
a maximum of 33050 processed frames per second under 300 MHz frequency, or
equivalently a throughput of 36 Mb/s.

The area and power estimates of the different components of the decoder are
detailed in Table 5.7. The power estimation assumes a default switching activity
of 50%. The results show that memory dominates the decoder in both area and
power consumption (89% and 58% respectively). The area dominance of memory
blocks can be attributed to the low throughput of the decoder which processes a
single row of H′0 per cycle. Unlike memory, the number of processing elements
replicates proportionally to the number of processed rows per cycle, being limited
to one in this case. The check-node memory stores up to p3(p − 1) × b bits, and
performs p−1 reads and p−1 writes per cycle (∼ 65% of the decoder memory cells
and 40% ∼ 50% of the memory operations), which explains its large contribution
in terms of area and power. Particularly, the high power cost of the check node
memory, suggests the need to optimize it through partitioning and making use of
the sequential access pattern in the check-node memory.

The area cost of the logic component follows the level of parallelism in the
decoding procedure (i.e. the number of processed rows per cycle), which justifies
the analysis and consequent optimization of the different logic sub components of
the decoder. The CFU contribution to the logic area and power is 37% and 38%
respectively, compared to 45% and 50% in the case of the interconnect network
(composed of the permuters, IVM network, datapath registers and FIFO). The
area occupied by the all pipeline registers in the decoder, intended primarily to
increase throughput by decreasing the critical path delay, accounts for about 25%
of the logic area.

143



Table 5.7: Power and Area estimates of each component of the synthesized decoder.

Area(×103µm2) Area(%) Power(mW ) Power(%)

LOGIC

Memory Address Generation 10.7 1.95 1.3 4.9

Permuter/Deprmuter/IVM Network 7.6 1.38 0.4 1.5

Adders/Subtractors 2.6 0.47 0.3 1.1

Datapath Registers 7.4 1.35 2.9 10.9

FIFO 10.6 1.93 2 7.5

CFU (except ψ generators) 14.4 2.62 4 15

CFU-ψ generators 8.9 1.62 0.3 1.1

Total logic 62.2 11.3 11.2 42.1

MEMORY

Bit-Node Memory 17 3.1 2.4 9

Check-Node Memory 350 63.7 8.4 31.6

Intrinsic Value Memory 120 21.85 4.6 17.3

Total memory 487 88.7 15.4 57.9

TOTAL 549.2 26.6
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Chapter 6

Conclusion and Open Questions

Several conclusions can be made concerning the topics, methods, and results pre-
sented in this dissertation. Besides, the methods proposed here generate, them-
selves, a new set of questions and challenges that are yet to be approached.

In summary, the contribution of this dissertation can be divided into two parts.
In the first part, it is shown that channel-to-rate matching can be applied on the
receiver side, and that such matching is useful in the broadcast communication
scenario to achieve significantly higher data rates for a limited hardware overhead.
The matching is applied via a novel increment-based inter-frame (IIF) coding ap-
proach. The work in this part includes the algorithms, architectures, asymptotic
analysis and optimization, and analysis of the enhancement brought to the achiev-
able data rates.

In the second part, an architecture-aware Raptor code construction framework
is proposed. The flow of the proposed framework is intended to achieve two “oppos-
ing” goals: 1) the constructed codes can pertain much of the irregularity features
of Raptor codes, as well as 2) attain the appropriate underlying structure needed
for hardware-efficiency of decoding. Simulations show the potential of these codes
to produce good-performance as well as hardware-efficient decoder implementa-
tions. The work in this part includes the framework, the methods involved in each
step of the framework, the resulting architecture and block design, and the study
of the architectural implications of the different methods under consideration.

6.1 Conclusions

The first main conclusion(s) is related to the IIF scheme. First, channel-to-rate
matching can be done on the receiver side. This means that while IIF coding is tar-
geted for broadcast communication, it is appropriate whenever the feedback from
the receiver(s) to the transmitter is costly or undesirable. Second, the graph-based
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simplification and subsequent analysis show that the matching can be achieved us-
ing an iterative process that is a generalization of LT erasure decoding; besides, the
process can be made “optimal”, under some assumptions, by the appropriate ran-
domized construction of bi-partite graphs. Third, the optimal distribution of the
decoding tasks over different layers and schemes follows from the organization of
the hardware resources at hand (inter-frame versus intra-frame decoding), beside
the different possible abstractions of the channel (PHY-layer soft-decoding versus
APP-layer erasure decoding, etc .). In this regard, the IIF scheme outperforms
other conventional schemes, such as the state-of-the-art two-stage scheme, while
using hardware resources that are, for most, not dedicated/specific to the scheme.

The second main conclusion is that the design of rate-compatible codes has
to be rethought as they are applied in the IIF scheme. Under this scheme, com-
munication scenarios such as the intra-frame varying channel-conditions, already
possible in IR-HARQ, become more frequent. The design of the code should be
tailored to make its coding performance less sensitive to the order/indices of the
transmitted bits. This is a challenging task because the latter sensitivity follows
from the structure of the code, which in turn is crucial to obtain good coding
performance using the iterative decoding methods.

The third conclusion is that architecture-aware short/moderate-length Raptor
codes can be constructed. The corresponding Raptor construction process involves
a combination of pseudo-random encoding and structuring. This combination
is intended to preserve the features of the Raptor code which are projected to
make this code outperform other conventional codes under some communication
scenarios such as the intra-frame varying channel-conditions. As a result of the
code construction method, the decoder architecture can be efficiently organized
as a row-processor of a regular matrix. It can decode a large number of possible
Raptor codes; besides, it can be further modified to decode any LDPC code which
structure is compatible with that of the constructed Raptor codes. Preliminary
results show the potential of the constructed Raptor codes to perform well under
AWGN channels. Yet, issues related to the decoding convergence speed and the
effective code-rate range have to be carefully considered.

6.2 Open Questions

Several questions, yet to be answered, arise from the methods proposed in this
dissertation. Answering these questions makes it possible to attain a deeper un-
derstanding of the corresponding methods, their implications, and subsequently
their applicability. The questions fall in two categories, one corresponding to the
IIF scheme, the other to the proposed architecture-aware Raptor code construc-
tion.
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Basic questions raised on the IIF scheme include its asymptotic performance,
finite-length performance and optimal implementation. Concerning the asymptotic
performance, two questions have to be considered: the first is on the existence
and description of optimal IIF codes when the channel-characterizing probability
distribution (δω)ω≥0 is not a geometric progression; the second, denoted here the
problem of designing universal inter-frame codes, is on the minimum achievable KS

NF
when the different channels corresponding to different receivers are described by
different (δ, µ) pairs. Concerning finite-length performance, the main question is on
the construction and the achievable performance of finite-length inter-frame codes.
In the subject of implementation of the IIF encoder/decoder, three major questions
arise: 1) how to organize the scheduling of the transmission of the subframes
and frames? 2) how does the IIF code structure affect both the transmission
scheduling and the hardware efficiency of the IIF decoding/encoding? 3) what is
the optimal accuracy-complexity tradeoff involved in developing procedures that
predict the success or failure of intra-frame decoding of a frame without performing
the decoding procedure itself?

One interesting question is on the design of efficient rate-compatible IIF codes,
defined similarly to rate-compatible PHY-layer codes. In such codes, KS

NF
is in-

creased by sending additional subframes, possibly upon request from the receivers.

Some questions arise from the asymptotic analysis process itself. For example,
it can be seen that the optimal edge-degree distribution in the iterative decod-
ing/matching process is a generalization of that in erasure decoding. A resulting
question is then on the possible existence of some structure or generalized form of
optimal degree distributions for a class of iterative processes and/or probability
distributions (δω)ω≥0. This problem can have applications in different fields in
which such iterative matching processes may arise.

The major question yet to be answered on architecture-aware Raptor codes fol-
lows from the logic underlying the work on these codes in this dissertation, which
is summarized here. First, the following observation is made: the peculiar Rap-
tor features can yield codes that have good coding-performance in the different
scenarios that may arise in unicast and broadcast communication. Second, moti-
vated by this observation, it is shown that architecture-aware Raptor codes can
be constructed, using a multi-stage construction flow, to have hardware-efficient
decoder architectures. In addition, several methods and/or guidelines for each of
the construction flow stages are considered so that the generated codes are good-
performing. Simulation results show the potential of the constructed Raptor codes
to yield coding-performance that is comparable to that of LDPC codes, over the
AWGN channel. The question to be answered follows naturally: how can the LT
subcodes and the precode parameters (rate, merging factor and possible split-after
merge) be chosen to yield the best possible coding-performance, for a given sce-
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nario? How does its performance compares to that of conventional Turbo and
LDPC codes? Answering this question is crucial to validate the initial observation
which has motivated the whole work on Raptor codes.
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Appendix A

Abbreviations

APP-layer Application-Layer
AWGN Additive White Gaussian Noise
BER Bit Error Rate
BTC Bit-to-Check (Message)
CFU Check-Function Unit
CSI Channel-State Information
CTB Check-to-Bit (Message)
FER Frame Error Rate
HARQ Hybrid Automatic Repeat Request
IIF Increment-Based Inter-Frame
LDPC Low-Density Parity-Check (Code)
LLR Log-likelihood Ratio
LT Luby-Transform
PHY-layer Physical-Layer
SNR Signal-to-Noise Ratio
TDMP Turbo-Decoding Message-Passing
TPMP Two-Phase Message-Passing
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