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AN ABSTRACT OF THE DISSERTATION OF

Christiane Antoine Zoghbi  for Doctor of Philosophy
Major: Environmental and Water Resources
Engineering

Title: Process-Based Flow and Transport Models for Karst Aquifers

Karst aquifers are characterized by the presence of highly developed subterranean
conduits embedded in a low porosity matrix. The conduits are hydraulically connected
to the matrix and act either as a source or drain depending on the recharge conditions.
Distributive models generally face several difficulties in simulating karst aquifers due to
the high data requirements and often unknown location and geometry of the conduits.
In the present study, simplified process-based flow and transport models are proposed
using a one-dimensional conduit system embedded in a two-dimensional matrix
domain. The flow in the conduit can be under pressurized or free-surface flow
conditions, and it is driven by a diffuse aquifer recharge as well as a concentrated
recharge applied at the conduit entrance. The governing equation is a coupled system of
nonlinear differential equations that is solved numerically using the method of finite
differences. Analytical and Laplace transform solutions are also obtained for given
initial and boundary conditions using linearizing assumptions. The linear solutions
simulate the typical shape of a spring hydrograph using physical parameters rather than
empirical ones. They are computationally advantageous and reproduce the response of
more complex numerical models while requiring less data than two- or three-
dimensional dual-hydraulic models. The proposed models are successfully applied to
real karst aquifer systems thus demonstrating their effectiveness in simulating observed
spring hydrographs. A transport model is also proposed using the same conceptual
framework as the flow models. It takes into account the physical representation of the
matrix and its parameters, and serves to simulate tracer breakthrough curves. The
transport model is applied to actual karst systems and effectively reproduced measured
tracer breakthrough curves using physically meaningful parameters.
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CHAPTER 1

INTRODUCTION

1.1. Karst Aquifers: Definition and Importance

Karst aquifers are characterized as dual-flow systems comprised of a highly
conductive conduit network embedded in a low porosity matrix. The conduits are
hydraulically connected to the matrix and behave either as a drain or source depending
on the recharge conditions. Modeling flow and solute transport in karst aquifers is
difficult to achieve due to the heterogeneity of the medium and the existence of different
flow processes within the same aquifer [Bakalowicz, 2005]. These include laminar or
turbulent flow in the porous matrix, partial or full flow in the subterranean conduit and
conduit-matrix exchange at the interface. The flow in a karst system is driven by a
groundwater recharge referred to as diffuse aquifer recharge herein as well as a
concentrated conduit recharge in form of sinking streams. Both recharge mechanisms
originate in the epikarst which is a highly fissured surface layer that facilitates the slow
(diffuse) or fast (concentrated) water infiltration to the subterranean saturated zone.
These different flow processes are in contrast to the well-developed field of
groundwater flow in porous media where the system recharge is mainly diffuse and the
flow is described by a simple law (Darcy's). Other modeling challenges in karst arise
from the often unknown location and geometry of the underground conduits as well as
the high data requirements necessary to reach robust predictions.

Globally, karst aquifers constitute an important fresh water source and supply
drinking water to nearly 25% of the world population. However, they are particularly

vulnerable to contamination due to the fast conduit flow towards the springs. As a



result, modeling groundwater flow and solute transport in karst aquifers becomes both
an essential and challenging task. Although the topic is considered important due to the
vulnerability of karst aquifers, the construction of models that describe the flow,
transport and interaction of the aquifer’s components has received attention only

recently [White, 2002].

1.2. Developments in Karst Modeling

Karst flow models generally aim to simulate the spring hydrograph that
represents the system’s response to a recharge event. They are classified into two
categories: lumped or physical models. Lumped models rely on an empirical approach
to analyze the spring hydrograph recession [e.g. Maillet, 1905; Mangin, 1975] or on
mathematical relationships between the rainfall and spring discharge [e.g. Juki¢ and
Denic-Jukic¢, 2006; Juki¢ and Denic-Juki¢, 2008]. Conversely, distributive flow models
are built in two- or three-dimensional domains and are used for the spatial simulation of
aquifer flow. They are usually based on Darcy’s equation and are divided into three
categories: equivalent porous media (EPM), double continuity (DC) and combined
discrete-continuum (CDC) models.

The EPM approach is seldom used in the study of karst systems because it
averages the hydraulic heterogeneities into an equivalent porous medium and thus loses
the karst flow duality representation. Yet, it has been applied to large scale systems
where conduit influences become diluted and where matrix water levels are available
for model calibration [Scanlon et al., 2003]. In DC models, both matrix and conduit
network are represented by continuum formulations or Darcy’s equation. The fluid

interface exchange is calculated based on the hydraulic head difference between two



continua using a linear exchange formula. DC models have been tested through several
studies [e.g. Maréchal et al., 2008; Doummar, 2012] and generally show a good
correlation to field conditions. In CDC models, the highly conductive karst conduits are
considered as one-dimensional discrete elements embedded in a three-dimensional low-
permeability matrix. This type of models has an enhanced physical representation of
karst duality as compared to others. A more thorough review of lumped and distributive
models is available in Hartmann et al. [2014].

Existing CDC models assume a pressurized conduit flow that is coupled to a
laminar matrix. The flow in the conduit is either laminar or turbulent while the matrix
flow is laminar and Darcian. The interface exchange is induced by the hydraulic
gradient and is a function of an exchange coefficient. Among these models is CAVE
[Clemens et al., 1996] which is the precursor to MODFLOW-CFP [Shoemaker et al.,
2008; Reimann and Hill, 2009]. Yet, the aforementioned CDC models can only handle
pressurized and time-independent conduit flow and are thus unable to simulate open-
channel flow in karst conduits. As a result, existing studies either used EPA’s SWMM
that is designed for urban stormwater drainage [Chen and Goldscheider, 2014] or built
on the existing MODFLOW-CFP to simulate conduits flowing under various saturated
conditions [e.g. Reimann et al., 2011b; de Rooij et al., 2013]. The latter approach is
conceptually advantageous because the models have a physical representation of the
matrix. Although these models are numerically tested on hypothetical scenarios, they
have not been validated and calibrated on actual karst systems because the level of data
requirements prevents their usage.

The main limitation of lumped models is their empirical parameters. On the

other hand, distributive models are difficult to apply in the absence of information about



the conduits’ location, aquifer physical properties and recharge conditions. In order to
overcome these difficulties, process-based models combine both lumped and
distributive approaches in order to simulate a karst system response to a recharge event.
The latter is achieved by simplifying the domain geometry and offering a system
conceptualization that is physically meaningful. Consequently, a process-based model’s
parameters are a function of the system’s physical properties and are often derived from
the spring hydrograph or its recession limb [e.g. Baedke and Krothe, 2001; Cornaton
and Perrochet, 2002; Kovacs et al., 2005; Birk and Hergarten, 2010].

Simulating transport in a karst environment can achieve a better understanding
of the system hydrodynamics and recharge conditions. However, the encountered
difficulties in simulating the flow have hindered the development of transport modules
especially in CDC-based models. Yet, tracer tests have proven useful in determining
flow paths and underground connections. Their aim is to reduce flow models’
uncertainties and get preliminary estimations of conduit flow velocities and dispersion
coefficients by simulating the tracer breakthrough curve. The selected modeling
approaches depend on the amount of field information available and include (1) time
series analysis of natural or artificial spring tracers through correlation or auto-
correlation methods, (2) physically-based models that rely on the advection-diffusion
equation and (3) process-based simulations that involve a certain conceptualization of
the system hydrodynamics.

The one-dimensional advection-diffusion equation gave acceptable estimates of
the conduit’s physical properties but failed to capture the long tailing of the
breakthrough curves. On the other hand, process-based models were more successful in

this endeavor by following the partitioning approach. For example, Field and Pinsky



[2000] used the two-region (mobile and immobile) non-equilibrium model 2RNE
[Toride et al., 1993] to simulate the long tailing of breakthrough curves. However,
2RNE was originally developed to simulate transport in porous media rather than karst.
The analogy between karst and 2RNE conceptual models is that conduits represent
mobile regions with high flow velocities while the surrounding aquifer, conduit pools
and sediments are considered immobile regions with stagnant flows. However, this
conceptual approach underrepresents the matrix physical domain and thus prevents the
estimation of the aquifer’s physical properties from the breakthrough curves. The
matrix role is already discussed in Katz et al. [1998] and Martin and Dean [2001] who
recorded a change of water chemistry in the surrounding matrix after conduit flood

events implying a transport of solutes across the conduit/aquifer interface.

1.3. Thesis Objectives

In the present study, a simplified process-based approach to analyze the
response of karst aquifers is proposed. The main objective is to develop computationally
inexpensive models that are able to simulate karst spring hydrographs and tracer
breakthrough curves. The proposed models are based on the physical processes that
govern the flow and transport in the main conduit and the surrounding matrix. A second
objective is to compare the developed models to existing ones in terms of their
performance, simplicity, and versatility. A third objective is to apply the models on real

karst systems subject to various recharge and boundary conditions.



1.4. Thesis Scope

Two types of process-based flow models are proposed: pressurized pipe and
open-channel flow models. Their conceptual framework consists of a single conduit
embedded in a two-dimensional matrix and subject to a concentrated recharge at its
entrance and a diffuse aquifer recharge along its length. The flow is described by a
coupled system of partial differential equations. For the pipe flow model, the equations
are the Darcy-Weisbach for turbulent conduit flow and the Boussinesq equation for the
groundwater flow in the matrix. On the other hand, the kinematic wave approximation
of the Saint-Venant equations is used in the open-channel model. The analytical models
simulate the typical shape of a spring hydrograph using physical parameters rather than
empirical ones, and require less data than two- and three-dimensional discrete-
continuum models. The pipe flow model simulates almost instantaneous responses to a
recharge event while the open-channel flow model captures delays in pulse arrival to a
spring. Applications of the models to real karst aquifer systems demonstrate their
effectiveness in simulating the observed spring hydrographs.

Finally, a process-based transport model is proposed and aims to simulate
tracer breakthrough curves and capture their long tailing. The transport in the conduit
and matrix is governed by the advection-diffusion equation while the two elements
exchange solute at their common interface. The model is validated using real

breakthrough curves and effectively estimates conduit and matrix physical properties.



1.5. Thesis Organization

This thesis is organized as follows:

In Chapter 2, the pipe flow model is presented. This chapter deals with the
governing equations, their simplifications as well as the mathematical solutions to the
coupled system of pipe/matrix flow equations.

In Chapter 3, the different approximations and simplifications introduced to
the pipe flow model are discussed and assessed. The model is subsequently applied to a
karst system.

In Chapter 4, process-based flow models for unpressurized conduits are
presented.

In Chapter 5, the process-based channel flow model is discussed along with its
application to the several karst systems subject to various recharge conditions.

In Chapter 6, the mathematical formulation and solutions of the process-based
transport model are presented.

In Chapter 7, the transport model is used to analyze the breakthrough curves
obtained from various tracer tests.

Chapter § summarizes the important conclusions and discusses future work.



CHAPTER 2

PIPE FLOW MODEL - THEORY

In this chapter, process-based flow models describing the flow in a coupled
pipe/matrix karst system are derived. First, the different flow processes occurring in the
system are defined and include the pipe, matrix and exchange flow at the interface.
Second, the combined system of nonlinear differential equations is obtained for a
simplified two-dimensional aquifer domain. A numerical solution is then proposed to
solve the system of nonlinear equations for given initial and boundary conditions.
Consequently, the system of governing equations is linearized and the Laplace
transform method is used to derive computationally advantageous solutions for various
conduit and matrix boundary conditions. Finally, an estimation of the optimal

linearizing parameter relating nonlinear and linear models is proposed.

2.1. Flow Processes

This study considers a karst conduit embedded in a low porosity matrix with
the two elements interacting at their common interface. As shown in Figure 1, the
underground conduit receives a concentrated recharge originating from sinkholes,
sinking streams or rivers while the aquifer is subject to a diffuse recharge. The conduit
flow is turbulent and pressurized. The matrix is assumed a porous medium with

prevailing laminar flow conditions.
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Figure 1. Typical karst aquifer conceptual layout

For the mathematical analysis, the model’s physical domain is made of a single
conduit of length [, [L] located at the center of a matrix of width w,, [L] and semi-width
l,, [L]. The aquifer diffuse recharge r, [L/T] is applied over a distance [, [L] from the
conduit’s centerline and on its each side. The conduit’s upstream boundary is subject to
a concentrated recharge referred to as Q,, [L3/T]. The outflow at the lower boundary is
the spring hydrograph denoted by Q, [L3/T]. The model domain being two-
dimensional, the conduit and aquifer flows are thus assumed to be in the Cartesian x —
and y — directions respectively. A schematic of the model domain is shown in Figure
2. The conduit and aquifer hydraulic heads, h, and h,,,, are measured above the
conduit’s bottom. The system is under saturated conditions with the water table being

higher than the conduit’s bottom.
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Figure 2. Schematic of the model domain: cross-section along x-axis (top left), top
view (bottom left) and pressurized conduit cross section (right)

2.1.1 Pipe flow

The continuity equation for conduit flow Q, is given by

aq.
Ox = ZQex 2-1

where q,, is the lateral input [L? /T] and the coefficient 2 is added to account
for exchange on both sides of the conduit. The relationship between the hydraulic

gradient and conduit velocity u, is defined by the Darcy-Weisbach equation for

turbulent flows
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oh,  f u?

= 2-2
dx 4R, 2g

where R, is the hydraulic radius [L], g the gravitational acceleration [L/T?]

and f the pipe friction factor [-]. The pipe discharge is thus equal to

dh,
dx

where B, = ./8gR,A2/f and A, is the cross-sectional area of flow [L?].

2.1.2 Matrix flow
The flow in the aquifer is one-dimensional, in the lateral y-direction and thus
perpendicular to the conduit or pipe’s centerline. The groundwater flow equation for an

unconfined homogenous aquifer is described by

where K, is the aquifer’s hydraulic conductivity [L/T], S, the specific yield or
drainable porosity [-], h,, the hydraulic head measured from the base of the conduit [L],
y — the Cartesian coordinate in the aquifer flow direction [L] and 7, the recharge to
groundwater referred to as diffuse aquifer recharge [L/T]. The aquifer recharge originates

from the slow infiltration in the epikarst layer and reaches the water table as a pulse 7.
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Equation (2-4) is known as the Boussinesq equation for horizontal aquifers and
is obtained by coupling the continuity equation with Darcy’s discharge equation.
Equation (2-4) is nonlinear due to the presence of h,, in the diffusion term. However,
its linearization facilitates the application of the Laplace transform method and the
subsequent derivation of analytical solutions. One way to linearize it is to assume an
average aquifer depth h,,,. The product K, h,, is herein defined as the aquifer

transmissivity denoted by T, [L?/T]. The linearized form of Equation (2-4) becomes

Ohy  Tm0?hy T

m_m + = 2-5
ot S, day* S,

2.1.3 Exchange flow
The pipe and matrix exchange water at their common interface that is located at
y = 0. The interface flow is proportional to the difference in hydraulic heads and a

linear exchange coefficient as expressed by Darcy’s law

Qex = KmD A 2-6

where D is the height of the interface [L].

2.2. Combined Pipe-Matrix Flow

The coupled conduit-aquifer flow equation is obtained by combining Equations

(2-3) and (2-1) using (2-6). The governing equation becomes
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B2 9%h, _ Ohy,

— = K, 2-7
2Q, 0x? dy =0

where k, = 2K,,,D.
In order to simplify Equation (2-7), a linear relationship between the discharge

and hydraulic head gradient is proposed

dh,
= — _— 2'8
Q* ﬁl* dx

where B, is the conduit conductivity parameter for a linearized flow.

Combining Equations (2-8) and (2-1) through (2-6), one obtains

8 0%h, oh,, 22
—Pix 735 = Ki—7— -
* 9x2 ay 1,

The linear parameter can be expressed in terms of a linearizing coefficient Q,,.

such that ;. = B2/20Q ..

2.3. Auxiliary Conditions
2.3.1 Boundary conditions in the conduit domain

The upstream boundary condition ay x = 0 is the input hydrograph referred to
as the dimensionless discharge Q,,. The downstream boundary is either unbound or

bound at x = [, and x — oo respectively. Therefore, the conduit’s boundaries are
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where h,;(t) represents the temporal variation of the downstream boundary.
The time functions used for the conduit’s upstream flux boundary @Q,, and downstream

head boundaries h;(t) are defined in Appendix A.

2.3.2 Boundary conditions in the aquifer domain
The aquifer is considered either semi-infinite or finite. At the interface or y =

0, the heads in the aquifer are equal to the ones in the conduit. The boundary conditions

become
h,, = h, y=0 2-13
dhpy, _ _
= 0 y=1, 2-14
B = y - o 2-15

2.3.3 Initial conditions
The model assumes zero or uniform initial conditions. It is spatially constant

when the conduit’s downstream end is unbound

he =hy = Qu(o)[lc - x]/ﬁl* + hd(o) t=0 2-16
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2.3.4 Diffuse recharge variation

The aquifer recharge term r(T) is considered as a piecewise recharge

7o, 0<t<t
<
n={m h=st<t 217
T tn St <tnpy
where n is the number of recharge pulses.
2.4. Dimensionless Forms
Define the following dimensionless variables
X"y H - GorpThiusguue=pi0 =gt =g

where d, [L], to [T] and uq [L/T] are the characteristic depth, time and
velocity respectively and Q is the normalizing flow [L3/T]. The dimensionless aquifer

flow Equation (2-5) becomes

o0H,, 0%H,, r
6_T =0 W + 5 2-19

and the dimensionless linear conduit flow Equation (2-9)

02H,  0H,
axz ~ ar |,

—Bi 2-20
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where B = p?/2Qm, B = B./ Qo k& = K./ (Uodo) and Qm = Qu./ Qo

The above dimensionless forms of the equations simplify the analysis of the
system. If t, and d, are chosen as equal to the time to the input pulse’s peak t,, and
conduit length [, (or 0.1 X [, etc...), one can simplify the physical domain as L, = 1

(or L, = 10, etc...) and easily capture the pulse arrival delay by comparing to T, = 1.

2.5. Numerical Solution

The system of nonlinear governing equations (2-5) and (2-7) is solved
numerically using the Crank-Nicolson scheme. The finite difference equations for the
conduit and aquifer equations have a tri-diagonal form that is efficiently solved using
the Thomas algorithm. The finite difference forms of the equations are presented in
Appendix B and the mesh is shown in Figure 3. The discretization in the conduit flow
direction (X —direction) is uniform and equal to AX while the one in the matrix is non-
uniform and equal to AY;,;,. The latter’s values are small near the interface and
increase as one moves away in the Y —direction (i.e. [0, L] in Figure 3). The no-flow
aquifer boundary condition is applied at Y = L,,.

The nonlinear pipe module is validated using a simple analytical solution with
a constant exchange flow q,, while the matrix subroutine is tested against particular
analytical solutions [e.g. Bruggeman, 1999]. However, the main challenge remains in
coupling the time-independent pipe flow equation (2-7) to the unsteady groundwater
flow equation (2-5). As a result, a fictitious time-dependent term is added to Equation
(2-7) in order to enhance the coupling process. Each equation is solved in a separate

subroutine following the discretizations in Appendix B and are coupled according to the
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following algorithm. At each time step, the heads in the pipe are calculated by (1)
updating the upstream boundary condition at the first node, (2) using the exchange flux
from the previous time step and (3) iterating until convergence is achieved. After the
pipe heads converge within a given time step, they are set as a boundary condition in the
matrix subroutine in order to calculate the exchange flux at the current time step. The
latter is replaced into the pipe subroutine to get a new conduit head distribution using
the averaged fluxes from the current and previous time steps. Finally, the calculations
are repeated for all time steps. After the system’s hydraulic heads h, are obtained, the
spring discharge is calculated using Equation (2-3). This coupling algorithm also
applies for the finite difference solution of the linearized model or coupled equations

(2-19) and (2-20).
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Figure 3. Mesh schematic: The conduit upstream boundary is located at point (0, 0).
The flow in the conduit and matrix are in the X- and Y-directions respectively. The
model boundaries are L. and L,,,. The distance between horizontal and vertical lines
represents AX and AY;,; /,.respectively. The interface is located along the line [0, L.] in
the X-direction.
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Existing numerical models that couple pipe and matrix flow such as
MODFLOW-CFP are highly sensitive to the interface discretization as revealed by
hypothetical runs [Reimann et al., 2011a]. Furthermore, the coupling of a time-
independent conduit flow (fast flow) with a time-dependent matrix flow (slow flow) is
numerically challenging. Therefore, numerical solutions for dual-hydraulic models
should be used with careful considerations of time and space discretizations and have to
satisfy the Courant number in conduit and matrix. The number of iterations for the
conduit and matrix heads should be high and the error tolerance low. Furthermore, the
fictitious time-dependent term should be carefully selected as it introduces further
numerical dispersion. However, this technique allows the simulation of the spring
hydrograph particularly for high exchange coefficients.

Given the above model evaluation and numerical difficulties, there is a need for
more computationally advantageous solutions. The latter can be derived for the
linearized system of governing equations using the Laplace transform method as shown
in the upcoming section. Although the resulting models are exact and fast solutions,
they are not able to handle system nonlinearities and heterogeneities as effectively as a
numerical or distributive model. They can, however, provide a good approximation of
the nonlinear models for a set of assumptions such as homogeneous matrices, linear

conduit flow and constant diameter conduit.
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2.6. Karst Pipe Flow Models

The proposed pipe flow model consists of solving the simplified system of
governing equations (2-19) and (2-20) using the Laplace transform method. The
Laplace transform is first applied to the aquifer flow Equation (2-19) and the resulting
differential equation is solved for the given aquifer boundary conditions. An expression
for the interface flux is therefore obtained and replaced into the conduit flow governing
equation. The latter is subsequently solved for the conduit boundary conditions and the
solution is either analytically or numerically inverted.

In the upcoming sections, four Laplace transform solutions are derived for a
combination of boundary conditions. These include: bound conduit/finite aquifer (BB),
bound conduit/semi-finite aquifer (BU), unbound conduit/finite aquifer (UB) and
unbound conduit/semi-finite aquifer (UU). The first model BB is the most general case
while the others (BU, UB and UU) consist of simplifying either the conduit’s or

aquifer’s boundary conditions.

2.6.1 Bound conduit and finite aquifer (BB)
Taking the Laplace transform on T for the linearized aquifer governing

Equation (2-19), one gets

_ d’H, 7(,Y)

H, — =
Plim =9 qy2 = 7,

2-21

where p is a complex parameter and H,, is the Laplace transform of H,,
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A, = f e~?T H, dT 2-22
0

Solving for a finite aquifer and bound conduit subject to the conditions in

(2-10), (2-11), (2-13) and (2-14), one gets

H, = H; + sech(L. @) {(@u —3) sinh[(L, — X) @]

U B @y
+ (Hy; — H;)cosh(X @y,) 2-23
+ L [cosh(L. wp) — cosh(X ab)]}
pSy

where @, = wp* |tanh(L,\/p/0), * = k/B /o and H, is the Laplace

transform of the conduit hydraulic heads H,. Differentiating with respect to X and

setting X = L, one gets

Q, = Q; + (Q, — Q) sech(L @) + @), tanh(L &) [p% —(Hy — Hi)] 2-24
y

where Q, is the Laplace transform of the dimensionless linear pipe discharge
Q,. Q,, H; and 7 are expressed in function of the complex parameter p as shown in
Appendix A. Q; and H; are constant values and can be replaced by Q;/p and H;/p.

Equation (2-24) relates the spring discharge Q, to the model parameters (£, k,
o and S,)), the model domain (L. and L,,) as well as the boundary conditions (Q,, Hy)
and diffuse aquifer recharge (). The equation can also serve as a benchmark for testing

the numerical solution’s coupling algorithm introduced in Section 2.5 for the linear
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system of governing equations. The solution can be evaluated by numerical inversion
using the de Hoog et al. [1982] algorithm and the routine developed by Hollenbeck

[1998].

2.6.2 Bound conduit and semi-infinite aquifer (BU)
Applying the conditions in (2-10), (2-11), (2-13) and (2-15), the downstream

hydraulic heads become

H. = H; + sech(L. ®,) {(Qu _ ) sinh[(L. — X) @]

el B oy
+ (Hy; — Hy)cosh(X w,,) 22
N z% (1= e r%/7) [cosh(L @,) — cosh(X Eu)]}

y

where @, = wpl/* and the discharge is expressed as

él = éi + (Qu - él) SeCh(Lcau) _
=y ) T_ — p~ rm
+ B0, tanh(L ) [pSy (1 e~ Lrip ) 526

(A, - Ha]

2.6.3 Unbound conduit and finite aquifer (UB)
Solving for the boundary conditions in (2-10), (2-12), (2-13) and (2-14), the

downstream hydraulic heads become

g =0+ (Qu— Qe *®r + 7 (1= e L@ cosh(X)) .97
¢ ' B Wp Sy p
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and the discharge is equal to

Q=0Q;+e ! [(Q, — Q) + %ab sinh(L.@p) 2-28
y
2.6.4 Unbound conduit and semi-infinite aquifer (UU)

For an unbound conduit coupled to an unbound or semi-infinite aquifer

(Equations 2-10, 2-12, 2-13 and 2-15), the solution becomes

N — _. —XWy
HC — —l + (Qu Ql)e —
ﬁl w'LL L& 2_29
_ Loy, _
N L(l B e_er) [1 e cosh(Xw,,)
Sy p
And the discharge is equal to
0, =0 “Leu | (0. — O. f_'Bl_ — po—Lep/0 )\ i —
Q= Qb e |Qu= Q)+ 0 (1- e PP )sinhLea)| ) 5

Equations (2-26), (2-28) and (2-30) are simplifications of the fully bound
model BB and serve to study the effect of the downstream boundary condition and
aquifer width on the spring hydrograph. The unbound aquifer solutions (BU and UU)
are a function of the model parameters, conduit length, boundary conditions, diffuse
recharge and recharge length. In the bound aquifer models (BB and UB), the recharge

length is equal to the matrix width L,. = L,, and is incorporated in the coalesced
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parameter w;. The downstream boundary condition H; only shows up in the bound
conduit models BB and BU. All aforementioned Laplace transform solutions are

numerically inverted using the Hollenbeck [1998] routine.

2.7. Optimal Coefficient
The linearizing coefficient Q,, is yet to be determined in order to relate the
nonlinear and linear parameters 8, and $2. This is achieved by minimizing the residual

between the original Equation (2-7) and its linear approximation (2-9)

BZ aZ
= 2-31
ﬁ’ axz ZQ axz
Equation (2-31) can be rewritten in terms of Q as
_(B? dzHc_(Q )dQ_
R_(ZQ B, axz ~\o. 1dX—0 2-32

Minimizing Equation (2-32) over space and time gives

”[——1 ]dXdT—O 2-33

Integrating between 0 and L,
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Equation (2-34) is rewritten as

f 0*(L.,T) — Q*(0,T)
20m
0

Or

o LL@CD - @OD]ar

Q. T) — Q, T)]}dT o

2 Mo, ™ - Q(0,T)ldT

2-34

2-35

2-36

Equation (2-36) provides a useful relationship between the linear and nonlinear

known in inverse problems. The integrals in Equation (2-36) can be evaluated

numerically between time T = 0 and T = T,,, or at a defined time T = T,,.

2.8. Summary of Important Results

models. The computationally advantageous Laplace transform solutions can thus be
related to the nonlinear numerical one using 8; = 2/2Q,,. The value of the linearizing

parameter Q,,, is well-defined because the boundary values at X = 0 and X = L, are

A conceptual coupled pipe/matrix model is proposed to simplify a real karst

aquifer. It consists of a single conduit coupled to the surrounding matrix at their
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common interface. The pipe flow is described by the Darcy-Weisbach equation and the

matrix flow by the Boussinesq equation for unconfined aquifer flow. The interface



exchange flow is governed by Darcy’s law. The coupled system of governing equations
is consequently linearized and solutions are derived using the Laplace transform method
for different boundary conditions. The latter include finite and semi-infinite aquifer
conditions as well as bound and unbound conduit downstream conditions.

The Laplace transform solutions provide a relationship between the spring
discharge, conduit/matrix physical properties as well as the boundary and recharge
conditions. They thus combine all flow processes occurring in a karst aquifer in one
single equation. They can be numerically inverted using efficient algorithms and
provide a computationally inexpensive method to simulating spring hydrographs.

Finally, an optimal relationship between the linear and nonlinear model’s
parameters is obtained. The latter facilitates the approximation of the nonlinear model
using the computationally advantageous linear ones and allows a better interpretation of

the parameters.
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CHAPTER 3

PIPE FLOW MODEL — ANALYSIS AND RESULTS

In this chapter, the outflow of the various models is generated for specific
recharge mechanisms and boundary conditions. First, the key pipe flow model
parameters and their effect on the spring hydrograph are discussed. Consequently, the
linear model is compared to the nonlinear numerical one in order to validate the linear
conduit flow simplification. Then, a comparison between the finite and semi-infinite
aquifer solutions is carried out in order to assess the effect of aquifer width on the spring
hydrograph. Similarly, the free conduit discharge models are compared to the bound
conduit ones. Finally, the models are applied to a real karst system located in Florida,
USA that is subject to a concentrated recharge in form of a sinking river that emerges

further downstream as a perennial spring.

3.1. Salient Results
3.1.1 Key model parameters

The models’ parameters are the exchange coefficient k, aquifer coefficient o,
drainable porosity S, and pipe conductivity f (nonlinear) or f5; (linear). The linear and
nonlinear 8 or f8; are related through the linearizing coefficient Q,,, that is calculated
using Equation (2-36). An additional coalesced parameter w was also introduced and
combines all four parameters. When the aquifer diffuse recharge r and downstream
boundary condition H,; are zero, simpler relationships of the spring discharge are
obtained. Indeed, UU becomes a function of w while UB, BB and BU are in terms of
both w and . Consequently, a smaller number of fitting parameters is required for
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systems undergoing a concentrated recharge (Q,,) as compared to a diffuse aquifer
recharge.

In case of diffuse recharge, the interface depth D should be less or equal to the
average depth in the aquifer h,,. After algebraic manipulations of the parameters, one

finds that the parameter k should be less or equal to the product 205,,.

3.1.2 Hypothetical setup

In order to evaluate the output of the different models, assess their performance
and simplifications, the following study setup is proposed. A single circular conduit of
length [, = 1,000 m is coupled to an aquifer of semi-width [,,, = 1,000 m. The
aquifer’s properties are K,, = 0.006 m/s and T,,, = 0.03 m?/s. The average
conduit/matrix interface length is assumed equal to D = 5 m. The conduit’s cross-
sectional area is assumed as A, = 50m? and the conductivity factor as 8,/A, =
