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AN ABSTRACT OF THE DISSERTATION OF 
 
 
 
Christiane Antoine Zoghbi     for Doctor of Philosophy 
  Major: Environmental and Water Resources 
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Title: Process-Based Flow and Transport Models for Karst Aquifers 
 
Karst aquifers are characterized by the presence of highly developed subterranean 
conduits embedded in a low porosity matrix.  The conduits are hydraulically connected 
to the matrix and act either as a source or drain depending on the recharge conditions.  
Distributive models generally face several difficulties in simulating karst aquifers due to 
the high data requirements and often unknown location and geometry of the conduits.  
In the present study, simplified process-based flow and transport models are proposed 
using a one-dimensional conduit system embedded in a two-dimensional matrix 
domain.  The flow in the conduit can be under pressurized or free-surface flow 
conditions, and it is driven by a diffuse aquifer recharge as well as a concentrated 
recharge applied at the conduit entrance.  The governing equation is a coupled system of 
nonlinear differential equations that is solved numerically using the method of finite 
differences.  Analytical and Laplace transform solutions are also obtained for given 
initial and boundary conditions using linearizing assumptions.  The linear solutions 
simulate the typical shape of a spring hydrograph using physical parameters rather than 
empirical ones.  They are computationally advantageous and reproduce the response of 
more complex numerical models while requiring less data than two- or three-
dimensional dual-hydraulic models.  The proposed models are successfully applied to 
real karst aquifer systems thus demonstrating their effectiveness in simulating observed 
spring hydrographs.  A transport model is also proposed using the same conceptual 
framework as the flow models.  It takes into account the physical representation of the 
matrix and its parameters, and serves to simulate tracer breakthrough curves.  The 
transport model is applied to actual karst systems and effectively reproduced measured 
tracer breakthrough curves using physically meaningful parameters.   
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CHAPTER 1 

INTRODUCTION 

 

1.1. Karst Aquifers: Definition and Importance 

Karst aquifers are characterized as dual-flow systems comprised of a highly 

conductive conduit network embedded in a low porosity matrix. The conduits are 

hydraulically connected to the matrix and behave either as a drain or source depending 

on the recharge conditions.  Modeling flow and solute transport in karst aquifers is 

difficult to achieve due to the heterogeneity of the medium and the existence of different 

flow processes within the same aquifer [Bakalowicz, 2005].  These include laminar or 

turbulent flow in the porous matrix, partial or full flow in the subterranean conduit and 

conduit-matrix exchange at the interface.  The flow in a karst system is driven by a 

groundwater recharge referred to as diffuse aquifer recharge herein as well as a 

concentrated conduit recharge in form of sinking streams.  Both recharge mechanisms 

originate in the epikarst which is a highly fissured surface layer that facilitates the slow 

(diffuse) or fast (concentrated) water infiltration to the subterranean saturated zone.  

These different flow processes are in contrast to the well-developed field of 

groundwater flow in porous media where the system recharge is mainly diffuse and the 

flow is described by a simple law (Darcy's).  Other modeling challenges in karst arise 

from the often unknown location and geometry of the underground conduits as well as 

the high data requirements necessary to reach robust predictions.   

Globally, karst aquifers constitute an important fresh water source and supply 

drinking water to nearly 25% of the world population.  However, they are particularly 

vulnerable to contamination due to the fast conduit flow towards the springs.  As a 
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result, modeling groundwater flow and solute transport in karst aquifers becomes both 

an essential and challenging task.  Although the topic is considered important due to the 

vulnerability of karst aquifers, the construction of models that describe the flow, 

transport and interaction of the aquifer’s components has received attention only 

recently [White, 2002].   

 

1.2. Developments in Karst Modeling 

Karst flow models generally aim to simulate the spring hydrograph that 

represents the system’s response to a recharge event.  They are classified into two 

categories: lumped or physical models.  Lumped models rely on an empirical approach 

to analyze the spring hydrograph recession [e.g. Maillet, 1905; Mangin, 1975] or on 

mathematical relationships between the rainfall and spring discharge [e.g. Jukić and 

Denić-Jukić, 2006; Jukić and Denić-Jukić, 2008].  Conversely, distributive flow models 

are built in two- or three-dimensional domains and are used for the spatial simulation of 

aquifer flow.  They are usually based on Darcy’s equation and are divided into three 

categories: equivalent porous media (EPM), double continuity (DC) and combined 

discrete-continuum (CDC) models.   

The EPM approach is seldom used in the study of karst systems because it 

averages the hydraulic heterogeneities into an equivalent porous medium and thus loses 

the karst flow duality representation.  Yet, it has been applied to large scale systems 

where conduit influences become diluted and where matrix water levels are available 

for model calibration [Scanlon et al., 2003].  In DC models, both matrix and conduit 

network are represented by continuum formulations or Darcy’s equation.  The fluid 

interface exchange is calculated based on the hydraulic head difference between two 
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continua using a linear exchange formula.  DC models have been tested through several 

studies [e.g. Maréchal et al., 2008; Doummar, 2012] and generally show a good 

correlation to field conditions.  In CDC models, the highly conductive karst conduits are 

considered as one-dimensional discrete elements embedded in a three-dimensional low-

permeability matrix.  This type of models has an enhanced physical representation of 

karst duality as compared to others.  A more thorough review of lumped and distributive 

models is available in Hartmann et al. [2014].   

Existing CDC models assume a pressurized conduit flow that is coupled to a 

laminar matrix.  The flow in the conduit is either laminar or turbulent while the matrix 

flow is laminar and Darcian.  The interface exchange is induced by the hydraulic 

gradient and is a function of an exchange coefficient.  Among these models is CAVE 

[Clemens et al., 1996] which is the precursor to MODFLOW-CFP [Shoemaker et al., 

2008; Reimann and Hill, 2009].  Yet, the aforementioned CDC models can only handle 

pressurized and time-independent conduit flow and are thus unable to simulate open-

channel flow in karst conduits.  As a result, existing studies either used EPA’s SWMM 

that is designed for urban stormwater drainage [Chen and Goldscheider, 2014] or built 

on the existing MODFLOW-CFP to simulate conduits flowing under various saturated 

conditions [e.g. Reimann et al., 2011b; de Rooij et al., 2013].  The latter approach is 

conceptually advantageous because the models have a physical representation of the 

matrix.  Although these models are numerically tested on hypothetical scenarios, they 

have not been validated and calibrated on actual karst systems because the level of data 

requirements prevents their usage.   

The main limitation of lumped models is their empirical parameters.  On the 

other hand, distributive models are difficult to apply in the absence of information about 
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the conduits’ location, aquifer physical properties and recharge conditions.  In order to 

overcome these difficulties, process-based models combine both lumped and 

distributive approaches in order to simulate a karst system response to a recharge event.  

The latter is achieved by simplifying the domain geometry and offering a system 

conceptualization that is physically meaningful.  Consequently, a process-based model’s 

parameters are a function of the system’s physical properties and are often derived from 

the spring hydrograph or its recession limb [e.g. Baedke and Krothe, 2001; Cornaton 

and Perrochet, 2002; Kovacs et al., 2005; Birk and Hergarten, 2010].   

Simulating transport in a karst environment can achieve a better understanding 

of the system hydrodynamics and recharge conditions.  However, the encountered 

difficulties in simulating the flow have hindered the development of transport modules 

especially in CDC-based models.  Yet, tracer tests have proven useful in determining 

flow paths and underground connections.  Their aim is to reduce flow models’ 

uncertainties and get preliminary estimations of conduit flow velocities and dispersion 

coefficients by simulating the tracer breakthrough curve.  The selected modeling 

approaches depend on the amount of field information available and include (1) time 

series analysis of natural or artificial spring tracers through correlation or auto-

correlation methods, (2) physically-based models that rely on the advection-diffusion 

equation and (3) process-based simulations that involve a certain conceptualization of 

the system hydrodynamics.   

The one-dimensional advection-diffusion equation gave acceptable estimates of 

the conduit’s physical properties but failed to capture the long tailing of the 

breakthrough curves.  On the other hand, process-based models were more successful in 

this endeavor by following the partitioning approach.  For example, Field and Pinsky 
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[2000] used the two-region (mobile and immobile) non-equilibrium model 2RNE 

[Toride et al., 1993] to simulate the long tailing of breakthrough curves.  However, 

2RNE was originally developed to simulate transport in porous media rather than karst.  

The analogy between karst and 2RNE conceptual models is that conduits represent 

mobile regions with high flow velocities while the surrounding aquifer, conduit pools 

and sediments are considered immobile regions with stagnant flows. However, this 

conceptual approach underrepresents the matrix physical domain and thus prevents the 

estimation of the aquifer’s physical properties from the breakthrough curves.  The 

matrix role is already discussed in Katz et al. [1998] and Martin and Dean [2001] who 

recorded a change of water chemistry in the surrounding matrix after conduit flood 

events implying a transport of solutes across the conduit/aquifer interface.   

 

1.3. Thesis Objectives 

In the present study, a simplified process-based approach to analyze the 

response of karst aquifers is proposed. The main objective is to develop computationally 

inexpensive models that are able to simulate karst spring hydrographs and tracer 

breakthrough curves.  The proposed models are based on the physical processes that 

govern the flow and transport in the main conduit and the surrounding matrix.  A second 

objective is to compare the developed models to existing ones in terms of their 

performance, simplicity, and versatility.  A third objective is to apply the models on real 

karst systems subject to various recharge and boundary conditions.   
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1.4. Thesis Scope 

Two types of process-based flow models are proposed: pressurized pipe and 

open-channel flow models.  Their conceptual framework consists of a single conduit 

embedded in a two-dimensional matrix and subject to a concentrated recharge at its 

entrance and a diffuse aquifer recharge along its length.  The flow is described by a 

coupled system of partial differential equations.  For the pipe flow model, the equations 

are the Darcy-Weisbach for turbulent conduit flow and the Boussinesq equation for the 

groundwater flow in the matrix.  On the other hand, the kinematic wave approximation 

of the Saint-Venant equations is used in the open-channel model.  The analytical models 

simulate the typical shape of a spring hydrograph using physical parameters rather than 

empirical ones, and require less data than two- and three-dimensional discrete-

continuum models.  The pipe flow model simulates almost instantaneous responses to a 

recharge event while the open-channel flow model captures delays in pulse arrival to a 

spring.  Applications of the models to real karst aquifer systems demonstrate their 

effectiveness in simulating the observed spring hydrographs.   

Finally, a process-based transport model is proposed and aims to simulate 

tracer breakthrough curves and capture their long tailing.  The transport in the conduit 

and matrix is governed by the advection-diffusion equation while the two elements 

exchange solute at their common interface.  The model is validated using real 

breakthrough curves and effectively estimates conduit and matrix physical properties.   
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1.5. Thesis Organization 

This thesis is organized as follows: 

In Chapter 2, the pipe flow model is presented.  This chapter deals with the 

governing equations, their simplifications as well as the mathematical solutions to the 

coupled system of pipe/matrix flow equations.   

In Chapter 3, the different approximations and simplifications introduced to 

the pipe flow model are discussed and assessed.  The model is subsequently applied to a 

karst system.   

In Chapter 4, process-based flow models for unpressurized conduits are 

presented.   

In Chapter 5, the process-based channel flow model is discussed along with its 

application to the several karst systems subject to various recharge conditions.   

In Chapter 6, the mathematical formulation and solutions of the process-based 

transport model are presented.   

In Chapter 7, the transport model is used to analyze the breakthrough curves 

obtained from various tracer tests.   

Chapter 8 summarizes the important conclusions and discusses future work.   
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CHAPTER 2 

PIPE FLOW MODEL – THEORY 

 

In this chapter, process-based flow models describing the flow in a coupled 

pipe/matrix karst system are derived.  First, the different flow processes occurring in the 

system are defined and include the pipe, matrix and exchange flow at the interface.  

Second, the combined system of nonlinear differential equations is obtained for a 

simplified two-dimensional aquifer domain.  A numerical solution is then proposed to 

solve the system of nonlinear equations for given initial and boundary conditions.  

Consequently, the system of governing equations is linearized and the Laplace 

transform method is used to derive computationally advantageous solutions for various 

conduit and matrix boundary conditions.  Finally, an estimation of the optimal 

linearizing parameter relating nonlinear and linear models is proposed.   

 

2.1. Flow Processes 

This study considers a karst conduit embedded in a low porosity matrix with 

the two elements interacting at their common interface.  As shown in Figure 1, the 

underground conduit receives a concentrated recharge originating from sinkholes, 

sinking streams or rivers while the aquifer is subject to a diffuse recharge.  The conduit 

flow is turbulent and pressurized.  The matrix is assumed a porous medium with 

prevailing laminar flow conditions.   
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Figure 1.  Typical karst aquifer conceptual layout 

 

For the mathematical analysis, the model’s physical domain is made of a single 

conduit of length  [ ] located at the center of a matrix of width  [ ] and semi-width 

 [ ].  The aquifer diffuse recharge  [ ] is applied over a distance  [ ] from the 

conduit’s centerline and on its each side.  The conduit’s upstream boundary is subject to 

a concentrated recharge referred to as  [ ].  The outflow at the lower boundary is 

the spring hydrograph denoted by  [ ].  The model domain being two-

dimensional, the conduit and aquifer flows are thus assumed to be in the Cartesian  

and  directions respectively.  A schematic of the model domain is shown in Figure 

2.  The conduit and aquifer hydraulic heads,  and , are measured above the 

conduit’s bottom.  The system is under saturated conditions with the water table being 

higher than the conduit’s bottom.   
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Figure 2.  Schematic of the model domain: cross-section along x-axis (top left), top 
view (bottom left) and pressurized conduit cross section (right) 

 

2.1.1 Pipe flow 

The continuity equation for conduit flow  is given by 

 

2-1 

 

where  is the lateral input [ ] and the coefficient 2 is added to account 

for exchange on both sides of the conduit.  The relationship between the hydraulic 

gradient and conduit velocity  is defined by the Darcy-Weisbach equation for 

turbulent flows 
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2-2 

 

where  is the hydraulic radius [ ],  the gravitational acceleration [ ] 

and  the pipe friction factor [-].  The pipe discharge is thus equal to 

 

2-3 

 

where  and  is the cross-sectional area of flow [ ].   

 

2.1.2 Matrix flow 

The flow in the aquifer is one-dimensional, in the lateral -direction and thus 

perpendicular to the conduit or pipe’s centerline.  The groundwater flow equation for an 

unconfined homogenous aquifer is described by 

 

2-4 

 

where  is the aquifer’s hydraulic conductivity [ ],  the specific yield or 

drainable porosity [-],  the hydraulic head measured from the base of the conduit [ ], 

 the Cartesian coordinate in the aquifer flow direction [L] and  the recharge to 

groundwater referred to as diffuse aquifer recharge [ ].  The aquifer recharge originates 

from the slow infiltration in the epikarst layer and reaches the water table as a pulse .   
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Equation (2-4) is known as the Boussinesq equation for horizontal aquifers and 

is obtained by coupling the continuity equation with Darcy’s discharge equation.  

Equation (2-4) is nonlinear due to the presence of  in the diffusion term.  However, 

its linearization facilitates the application of the Laplace transform method and the 

subsequent derivation of analytical solutions.  One way to linearize it is to assume an 

average aquifer depth .  The product  is herein defined as the aquifer 

transmissivity denoted by  [ .  The linearized form of Equation (2-4) becomes 

 

2-5 

 

2.1.3 Exchange flow 

The pipe and matrix exchange water at their common interface that is located at 

.  The interface flow is proportional to the difference in hydraulic heads and a 

linear exchange coefficient as expressed by Darcy’s law 

 

2-6 

 

where  is the height of the interface [L]. 

 

2.2. Combined Pipe-Matrix Flow 

The coupled conduit-aquifer flow equation is obtained by combining Equations 

(2-3) and (2-1) using (2-6).  The governing equation becomes 
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2-7 

 

where .   

In order to simplify Equation (2-7), a linear relationship between the discharge 

and hydraulic head gradient is proposed 

 

2-8 

 

where  is the conduit conductivity parameter for a linearized flow.  

Combining Equations (2-8) and (2-1) through (2-6), one obtains 

 

2-9 

 

The linear parameter can be expressed in terms of a linearizing coefficient  

such that . 

 

2.3. Auxiliary Conditions 

2.3.1 Boundary conditions in the conduit domain 

The upstream boundary condition ay  is the input hydrograph referred to 

as the dimensionless discharge .  The downstream boundary is either unbound or 

bound at  and  respectively.  Therefore, the conduit’s boundaries are 
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೎ 2-10 

    2-11 

2-12 

 

where  represents the temporal variation of the downstream boundary.  

The time functions used for the conduit’s upstream flux boundary  and downstream 

head boundaries  are defined in Appendix A. 

 

2.3.2 Boundary conditions in the aquifer domain 

The aquifer is considered either semi-infinite or finite.  At the interface or 

, the heads in the aquifer are equal to the ones in the conduit.  The boundary conditions 

become 

 

2-13 

೘  2-14 

 2-15 

 

2.3.3 Initial conditions 

The model assumes zero or uniform initial conditions.  It is spatially constant 

when the conduit’s downstream end is unbound 

 

2-16 
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2.3.4 Diffuse recharge variation 

The aquifer recharge term  is considered as a piecewise recharge 

 

 2-17 

 

where  is the number of recharge pulses.   

 

2.4. Dimensionless Forms 

Define the following dimensionless variables 

 

2-18 

 

where  [ ],  [ ] and  [ ] are the characteristic depth, time and 

velocity respectively and  is the normalizing flow [ ].  The dimensionless aquifer 

flow Equation (2-5) becomes 

 

2-19 

 

and the dimensionless linear conduit flow Equation (2-9) 

 

2-20 
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where , , and .   

 

The above dimensionless forms of the equations simplify the analysis of the 

system.  If  and  are chosen as equal to the time to the input pulse’s peak and 

conduit length  (or , etc…), one can simplify the physical domain as  

(or 0, etc…) and easily capture the pulse arrival delay by comparing to .   

 

2.5. Numerical Solution 

The system of nonlinear governing equations (2-5) and (2-7) is solved 

numerically using the Crank-Nicolson scheme.  The finite difference equations for the 

conduit and aquifer equations have a tri-diagonal form that is efficiently solved using 

the Thomas algorithm.  The finite difference forms of the equations are presented in 

Appendix B and the mesh is shown in Figure 3.  The discretization in the conduit flow 

direction ( direction) is uniform and equal to  while the one in the matrix is non-

uniform and equal to .  The latter’s values are small near the interface and 

increase as one moves away in the direction (i.e. [0, ] in Figure 3).  The no-flow 

aquifer boundary condition is applied at .   

The nonlinear pipe module is validated using a simple analytical solution with 

a constant exchange flow  while the matrix subroutine is tested against particular 

analytical solutions [e.g. Bruggeman, 1999].  However, the main challenge remains in 

coupling the time-independent pipe flow equation (2-7) to the unsteady groundwater 

flow equation (2-5).  As a result, a fictitious time-dependent term is added to Equation 

(2-7) in order to enhance the coupling process.  Each equation is solved in a separate 

subroutine following the discretizations in Appendix B and are coupled according to the 
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following algorithm.  At each time step, the heads in the pipe are calculated by (1) 

updating the upstream boundary condition at the first node, (2) using the exchange flux 

from the previous time step and (3) iterating until convergence is achieved.  After the 

pipe heads converge within a given time step, they are set as a boundary condition in the 

matrix subroutine in order to calculate the exchange flux at the current time step.  The 

latter is replaced into the pipe subroutine to get a new conduit head distribution using 

the averaged fluxes from the current and previous time steps.  Finally, the calculations 

are repeated for all time steps.  After the system’s hydraulic heads  are obtained, the 

spring discharge is calculated using Equation (2-3).  This coupling algorithm also 

applies for the finite difference solution of the linearized model or coupled equations 

(2-19) and (2-20).   

 

 

Figure 3.  Mesh schematic:  The conduit upstream boundary is located at point (0, 0).  
The flow in the conduit and matrix are in the X- and Y-directions respectively.  The 
model boundaries are  and .  The distance between horizontal and vertical lines 
represents  and .respectively. The interface is located along the line [0, ] in 

the X-direction.   
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Existing numerical models that couple pipe and matrix flow such as 

MODFLOW-CFP are highly sensitive to the interface discretization as revealed by 

hypothetical runs [Reimann et al., 2011a].  Furthermore, the coupling of a time-

independent conduit flow (fast flow) with a time-dependent matrix flow (slow flow) is 

numerically challenging.  Therefore, numerical solutions for dual-hydraulic models 

should be used with careful considerations of time and space discretizations and have to 

satisfy the Courant number in conduit and matrix.  The number of iterations for the 

conduit and matrix heads should be high and the error tolerance low.  Furthermore, the 

fictitious time-dependent term should be carefully selected as it introduces further 

numerical dispersion.  However, this technique allows the simulation of the spring 

hydrograph particularly for high exchange coefficients.   

Given the above model evaluation and numerical difficulties, there is a need for 

more computationally advantageous solutions.  The latter can be derived for the 

linearized system of governing equations using the Laplace transform method as shown 

in the upcoming section.  Although the resulting models are exact and fast solutions, 

they are not able to handle system nonlinearities and heterogeneities as effectively as a 

numerical or distributive model.  They can, however, provide a good approximation of 

the nonlinear models for a set of assumptions such as homogeneous matrices, linear 

conduit flow and constant diameter conduit.   
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2.6. Karst Pipe Flow Models 

The proposed pipe flow model consists of solving the simplified system of 

governing equations (2-19) and (2-20) using the Laplace transform method.  The 

Laplace transform is first applied to the aquifer flow Equation (2-19) and the resulting 

differential equation is solved for the given aquifer boundary conditions.  An expression 

for the interface flux is therefore obtained and replaced into the conduit flow governing 

equation.  The latter is subsequently solved for the conduit boundary conditions and the 

solution is either analytically or numerically inverted.   

In the upcoming sections, four Laplace transform solutions are derived for a 

combination of boundary conditions.  These include: bound conduit/finite aquifer (BB), 

bound conduit/semi-finite aquifer (BU), unbound conduit/finite aquifer (UB) and 

unbound conduit/semi-finite aquifer (UU).  The first model BB is the most general case 

while the others (BU, UB and UU) consist of simplifying either the conduit’s or 

aquifer’s boundary conditions.   

 

2.6.1 Bound conduit and finite aquifer (BB) 

Taking the Laplace transform on  for the linearized aquifer governing 

Equation (2-19), one gets 

 

2-21 

 

where  is a complex parameter and  is the Laplace transform of  
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2-22 

 

Solving for a finite aquifer and bound conduit subject to the conditions in 

(2-10), (2-11), (2-13) and (2-14), one gets 

 

2-23 

 

where ⁄ ,  and  is the Laplace 

transform of the conduit hydraulic heads .  Differentiating with respect to  and 

setting , one gets 

 

2-24 

 

where  is the Laplace transform of the dimensionless linear pipe discharge 

.  ,  and  are expressed in function of the complex parameter  as shown in 

Appendix A.   and  are constant values and can be replaced by  and .   

Equation (2-24) relates the spring discharge  to the model parameters ( , , 

 and ), the model domain (  and ) as well as the boundary conditions ( ) 

and diffuse aquifer recharge ( ).  The equation can also serve as a benchmark for testing 

the numerical solution’s coupling algorithm introduced in Section 2.5 for the linear 
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system of governing equations.  The solution can be evaluated by numerical inversion 

using the de Hoog et al. [1982] algorithm and the routine developed by Hollenbeck 

[1998].   

 

2.6.2 Bound conduit and semi-infinite aquifer (BU) 

Applying the conditions in (2-10), (2-11), (2-13) and (2-15), the downstream 

hydraulic heads become 

 

ೝ

2-25 

 

where ⁄  and the discharge is expressed as 

 

ೝ

2-26 

 

2.6.3 Unbound conduit and finite aquifer (UB) 

Solving for the boundary conditions in (2-10), (2-12), (2-13) and (2-14), the 

downstream hydraulic heads become 

 

್ ೎ ್

2-27 
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and the discharge is equal to 

 

೎ ್ 2-28 

 

2.6.4 Unbound conduit and semi-infinite aquifer (UU) 

For an unbound conduit coupled to an unbound or semi-infinite aquifer 

(Equations 2-10, 2-12, 2-13 and 2-15), the solution becomes 

 

ೠ

ೝ
೎ ೠ 2-29 

 

And the discharge is equal to 

 

೎ ೠ ೝ  
2-30 

 

Equations (2-26), (2-28) and (2-30) are simplifications of the fully bound 

model BB and serve to study the effect of the downstream boundary condition and 

aquifer width on the spring hydrograph.  The unbound aquifer solutions (BU and UU) 

are a function of the model parameters, conduit length, boundary conditions, diffuse 

recharge and recharge length.  In the bound aquifer models (BB and UB), the recharge 

length is equal to the matrix width  and is incorporated in the coalesced 
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parameter .  The downstream boundary condition  only shows up in the bound 

conduit models BB and BU.  All aforementioned Laplace transform solutions are 

numerically inverted using the Hollenbeck [1998] routine.   

 

2.7. Optimal Coefficient 

The linearizing coefficient  is yet to be determined in order to relate the 

nonlinear and linear parameters  and .  This is achieved by minimizing the residual 

between the original Equation (2-7) and its linear approximation (2-9) 

 

2-31 

 

Equation (2-31) can be rewritten in terms of  as 

 

2-32 

 

Minimizing Equation (2-32) over space and time gives 

 

೎

2-33 

 

Integrating between  and  
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೎

2-34 

 

Equation (2-34) is rewritten as 

 

2-35 

 

Or 

 

2-36 

 

Equation (2-36) provides a useful relationship between the linear and nonlinear 

models.  The computationally advantageous Laplace transform solutions can thus be 

related to the nonlinear numerical one using .  The value of the linearizing 

parameter  is well-defined because the boundary values at  and  are 

known in inverse problems.  The integrals in Equation (2-36) can be evaluated 

numerically between time  and  or at a defined time .   

 

2.8. Summary of Important Results 

A conceptual coupled pipe/matrix model is proposed to simplify a real karst 

aquifer.  It consists of a single conduit coupled to the surrounding matrix at their 

common interface.  The pipe flow is described by the Darcy-Weisbach equation and the 

matrix flow by the Boussinesq equation for unconfined aquifer flow.  The interface 
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exchange flow is governed by Darcy’s law.  The coupled system of governing equations 

is consequently linearized and solutions are derived using the Laplace transform method 

for different boundary conditions.  The latter include finite and semi-infinite aquifer 

conditions as well as bound and unbound conduit downstream conditions.   

The Laplace transform solutions provide a relationship between the spring 

discharge, conduit/matrix physical properties as well as the boundary and recharge 

conditions.  They thus combine all flow processes occurring in a karst aquifer in one 

single equation.  They can be numerically inverted using efficient algorithms and 

provide a computationally inexpensive method to simulating spring hydrographs.   

Finally, an optimal relationship between the linear and nonlinear model’s 

parameters is obtained.  The latter facilitates the approximation of the nonlinear model 

using the computationally advantageous linear ones and allows a better interpretation of 

the parameters.   
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CHAPTER 3 

PIPE FLOW MODEL – ANALYSIS AND RESULTS 

 

In this chapter, the outflow of the various models is generated for specific 

recharge mechanisms and boundary conditions.  First, the key pipe flow model 

parameters and their effect on the spring hydrograph are discussed.  Consequently, the 

linear model is compared to the nonlinear numerical one in order to validate the linear 

conduit flow simplification.  Then, a comparison between the finite and semi-infinite 

aquifer solutions is carried out in order to assess the effect of aquifer width on the spring 

hydrograph.  Similarly, the free conduit discharge models are compared to the bound 

conduit ones.  Finally, the models are applied to a real karst system located in Florida, 

USA that is subject to a concentrated recharge in form of a sinking river that emerges 

further downstream as a perennial spring.   

 

3.1. Salient Results 

3.1.1 Key model parameters 

The models’ parameters are the exchange coefficient , aquifer coefficient , 

drainable porosity  and pipe conductivity  (nonlinear) or  (linear).  The linear and 

nonlinear  or  are related through the linearizing coefficient  that is calculated 

using Equation (2-36).  An additional coalesced parameter  was also introduced and 

combines all four parameters.  When the aquifer diffuse recharge  and downstream 

boundary condition  are zero, simpler relationships of the spring discharge are 

obtained.  Indeed, UU becomes a function of  while UB, BB and BU are in terms of 

both  and .  Consequently, a smaller number of fitting parameters is required for 
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systems undergoing a concentrated recharge  as compared to a diffuse aquifer 

recharge.   

In case of diffuse recharge, the interface depth  should be less or equal to the 

average depth in the aquifer .  After algebraic manipulations of the parameters, one 

finds that the parameter  should be less or equal to the product .   

 

3.1.2 Hypothetical setup 

In order to evaluate the output of the different models, assess their performance 

and simplifications, the following study setup is proposed.  A single circular conduit of 

length  is coupled to an aquifer of semi-width .  The 

aquifer’s properties are  and .  The average 

conduit/matrix interface length is assumed equal to .  The conduit’s cross-

sectional area is assumed as  and the conductivity factor as 

.  Given the above values of the system’s properties, the dimensional model 

parameters become equal to: ;  and .  The 

system is subject to a concentrated isosceles triangular pulse with , 

 where  and  are the baseflow and peak flow respectively.  The 

downstream boundary condition is assumed fixed and equal to zero throughout the 

simulation.  Using the dimensionless system  and , the model domain 

and parameters become: ; ; ;  and .  The 

dimensionless pulse characteristics are  and the total simulation duration 

is .  Later, the system is subject to a rectangular diffuse aquifer recharge where 

 and  with  being the pulse duration.  A summary of all dimensional 

and dimensionless parameters is available in Table 1.   
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Table 1.  Parameter values of pipe flow models’ hypothetical run 

Dimensional 
Parameter 

Dimensional  
Value 

Dimensionless 
Parameter 

Dimensionless 
Value 

    
    
    
    
   0.2 
    
    

    
    

    
Dimensionless 
system 

 Recharge Type Concentrated 

    
    
    

    
  Recharge Type Diffuse 
    
    

 

3.1.3 Spring hydrograph 

3.1.3.1 Concentrated recharge 

Figure 4 shows the fully bound linear model (BB) outflow for the selected 

parameters values in Table 1.  The numerical solution of the linearized system of 

equations agrees with the numerically inverted Laplace transform solution thus 

validating the coupling algorithm proposed in Section 2.5.  The discretization values are 

as follows: ;  at the interface and gradually increases 

as one moves away towards the boundary with , 

 and .  The tolerance level is  and the maximum number of conduit 

and matrix hydraulic head iterations is 10.  The mesh is previously shown in Figure 3.   
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The conduit-aquifer exchange reduces the peak of the triangular concentrated 

input pulse and changes its shape into a fast flood followed by a slow baseflow 

recession.  Given that the conduit flow is pressurized, one notices an almost 

instantaneous response at the spring.  When , no conduit/matrix exchange occurs 

such that the input pulse and resulting spring hydrograph are nearly superimposed.  As 

the exchange coefficient  increases, the spring outflow peak is reduced and the 

duration of the baseflow recession becomes longer (Figure 4).  Lower pipe 

conductivities  (smaller pipe diameter or higher friction factors) also induce more 

exchange with the aquifer.  As for the matrix parameter , it is proportional to the 

aquifer transmissivity and inversely proportional to the matrix porosity or specific yield 

.  Therefore, as  is lowered and  is kept constant (  is constant), more exchange 

occurs with the aquifer due to higher specific yield.   
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Figure 4.  Fully bound model (BB) predictions for a concentrated recharge event given 
select values of the model parameters.  The model response is almost instantaneous.  As 
the exchange parameter increases, the peak is reduced and the spring recession becomes 
longer.  Also shown is the finite difference solution (FD) for the linear numerical model.   
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3.1.3.2 Diffuse aquifer recharge 

The spring hydrograph is also simulated using a diffuse recharge for a range of 

model parameters (Figure 5).  The diffuse aquifer recharge represents the As the 

exchange coefficient  is increased, more water crosses the interface and the 

hydrograph achieves a higher peak.  The effect of the matrix parameter  and specific 

yield  are also shown.  As  decreases, the velocity in the aquifer decreases and less 

water is retrieved at the spring.  The maximum dimensionless volume retrieved at the 

spring from a rectangular diffuse pulse is equal to .   

 

 

Figure 5.  Fully bound model (BB) predictions for a diffuse recharge event given 
selected values of the model parameters.  The conduit drains the surrounding conduit 
and is able to transfer a diffuse aquifer recharge towards the spring.   
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3.1.4 Sensitivity Analysis 

In order to study the sensitivity of the model results to the calibration 

parameters ,  and , the latter are varied by  from the standard values 

presented in Table 1.  Consequently, the standard and simulated hydrographs are 

compared by assessing the parameters’ effect on the hydrograph peak and volume 

retrieved at the spring.  The fully unbound model UU is used to generate the results.   

For a concentrated type of recharge, the results are shown in Figure 6 with the 

most sensitive parameter being plotted in blue.  The figure depicts the change in the 

peak hydrograph and output volume versus the change in parameter value.  The results 

reveal that  and  are the most and least sensitive parameters respectively.  This is 

determined by comparing the slopes of peak variation for each parameter.  Furthermore, 

the figure shows the influence of the coalesced parameter  which turned out to be 

more sensitive than the individual parameters ,  and .  As previously mentioned,  

can be considered as the only calibration parameter in the UU model for concentrated 

recharge applications.  Also, the parameters have more effect on the change in 

hydrograph peak rather than the change in output volume because the volume lost 

during the peak reduction period is later recovered during the recession period.   

A similar analysis is carried out for the case of a diffuse aquifer recharge.  

Figure 7 shows that  and  are the most and least sensitive parameters respectively.  

Conversely,  showed a more significant effect in case of a concentrated recharge.  In 

numbers, a 5% increase in the values of ,  and  led to a peak change of 0.6%, 1.7% 

and 1.5 % for a diffuse recharge and 1.3%, 1.35% and 0.7% for a concentrated recharge.   

However, the sensitivity analysis results reveal that a variation of  in 

parameter values did not have a significant effect on the peak outflow and output 
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volume.  Indeed, the change was still minimal (i.e. ) for both concentrated and 

diffuse types of recharge.   

 

 

Figure 6.  Sensitivity of the hydrograph peak to the model parameters given a 
concentrated recharge.  The model is most sensitive to .  The coalesced parameter  
results are also shown.   
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Figure 7.  Sensitivity of the hydrograph peak to the model parameters given a diffuse 
recharge.  The model is most sensitive to the specific yield .   

 

3.1.5 Effect of conduit nonlinearity 

The effect of the conduit flow linearization is assessed by comparing the 

behavior of the fully bound model BB to the nonlinear model or coupled Equations 

(2-5) and (2-7) that are solved numerically.  The linearizing coefficient  is evaluated 

using Equation (2-36) and is a function of the nonlinear model’s boundary conditions.  

For simplicity reasons, it is hereby suggested to evaluate Equation (2-36) at the peak 

outflow with ೛
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Figure 8 shows the simulation results of the study setup introduced in the 

previous section.  The nonlinear numerical solution is evaluated for the following 

0.9 0.95 1 1.05 1.1
0.9

0.95

1

1.05

1.1
P

ea
k 

O
ut

fl
ow

 R
el

at
iv

e 
to

 S
ta

nd
ar

d 
[-

]

 

 
 S

y

 
 
 

l

0.9 0.95 1 1.05 1.1
0.9

0.95

1

1.05

1.1

Parameter Relative to Standard  [-]

O
ut

fl
ow

 V
ol

um
e

 R
el

at
iv

e 
to

 S
ta

nd
ar

d 
[-

]

 

 
 S

y

 
 
 

l



 
 

 
35 

discretization values: ;  at the interface and 

gradually increases as one moves away towards the boundary with 

,  and .  The tolerance level is  and the maximum 

number of conduit and matrix hydraulic head iterations is 50.   

Consequently, the linearizing coefficient is found equal to  and the 

evaluation of  gives .  The error in the peak value is nearly 10% 

while the mass balance error is 3.8%.  One thus concludes that the linear models 

conserve the effect of conduit nonlinearity through the linearizing coefficient  and 

are able to simulate the response of the nonlinear model with an acceptable error range.   

 

 

Figure 8.  Comparison between linear (BB) and nonlinear models for a concentrated 
type of pulse.  The linear model is found an acceptable approximation of the nonlinear 
one.   
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3.1.6 Effect of aquifer boundary conditions 

By comparing BB to BU (or UB and UU) given a concentrated recharge 

(Figure 9), it is noticed that smaller aquifer widths generate a higher hydrograph peaks 

and larger mass recovery at the spring.  As the aquifer width increases, the fluid slug is 

allowed to travel further into the matrix and consequently gets trapped without the 

possibility of being flushed at the spring.  This leads to a potential mass imbalance 

between input pulse and output spring hydrograph and, as a result, a sequestrated water 

volume in the matrix.   

The unbound aquifer models (UU and BU) were found as acceptable 

simplifications to the more complex BB and BU for .  This value is in good 

agreement with the condition proposed by Hunt [1990] who showed that  

(or  for current conditions) should be satisfied for the semi-infinite aquifer 

approximation to be valid.   

 

3.1.7 Effect of conduit boundary conditions 

When unbound downstream boundary conditions prevail (UB and UU), the 

spring hydrograph has a lower peak and a longer recession because the extent of 

conduit/aquifer exchange is no longer controlled by the downstream boundary.  In 

systems where the spring freely discharges into a natural water course, the unbound 

conduit solutions (UB and UU) are generally more applicable than the bound ones (BB 

and BU).  However, the latter are useful in applications where a weir, man-made 

structure or natural obstruction affect the downstream discharge.  They are also 

advantageous when downstream water level measurements are available thus allowing 

improved estimations of the parameters.   
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Similar conclusions about the effects of boundary conditions are reached for a 

diffuse aquifer recharge pulse (Figure 10).  The effect of recharge length and matrix 

width is assessed by applying a diffuse recharge over a length  and 

 .  Figure 10 also shows that the boundary condition either affects the recession 

period ( ) or the whole shape of the hydrograph ( ).  For very large 

aquifer widths, it takes an indefinite time to retrieve the diffuse aquifer recharge at the 

spring ).  Therefore, a simple mass balance approach between a recharge pulse 

and spring outflow is often not satisfied due to the spatial variability of recharge.  An 

enhanced parameter estimation can thus be achieved by a careful assessment of the 

recharge term using either karst infiltration models or field methods that are beyond the 

scope of this work.   
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Figure 9.  Effect of conduit and aquifer boundary conditions on spring hydrograph given 
a concentrated type of recharge (upper subplot).  The unbound conduit models are not 
able to capture the more complex behavior of bound conduit models thus highlighting 
the importance of the downstream boundary condition.  The semi-infinite aquifer 
models (BU and UU) are found as acceptable approximations of the finite ones (BB and 
UB) for  (lower subplot).   
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Figure 10.  Effect of conduit and aquifer boundary conditions on spring hydrograph 
given a diffuse type of recharge.  As the recharge is applied over larger widths (Lr = 2.5 
instead of 1), the volume of water recovered at the spring decreases significantly.   
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hydrograph and not only its recession.  They are a function of physically meaningful 

parameters instead of empirical ones and have the ability to transform a measured 

diffuse or concentrated recharge into a spring hydrograph.  They thus take into account 

the recharge mechanisms and boundary conditions that are largely ignored in lumped 

models.   

On the other hand, existing process-based models express the early recession 

[Birk and Hergarten, 2010] or the whole recession curve [Kovacs et al., 2005; Kovacs 

and Perrochet, 2008; Fu et al., 2016] in terms of the matrix and conduit properties.  

Although their physical meaning improved over lumped models, their mathematical 

form is often similar to Maillet’s exponential function which was not successful in 

simulating real recession curves [Fu et al., 2016].  Furthermore, the karst system 

recharge mechanism is often simplified as a fully saturated matrix being drained by a 

conduit which is not representative of actual field conditions.   

Fewer process-based models have an enhanced representation of interface 

exchange and are able to simulate a spring hydrograph given a concentrated recharge 

[e.g. Cornaton and Perrochet, 2002].  However, these models adopt a DC rather than a 

CDC approach and neglect the diffuse recharge mechanisms.  Conversely, the proposed 

models take into account the effect of conduit turbulence and are capable of 

approximating the nonlinear numerical model’s response with linear ones using 

computationally advantageous solutions.   

 

3.2.2 Distributive models 

The proposed process-based models have an improved physical representation 

of the system as compared to EPM and DC approaches because the conduit is treated as 
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a discrete element rather than a continuum.  On the other hand, they are computationally 

advantageous to existing CDC numerical models.  They also offer more flexibility with 

respect to the conduit’s upstream and downstream boundary conditions.  For example, 

the existing MODFLOW-CFP does not have a limiting flux boundary condition in the 

conduit cells and can feed the system with large amounts of water if used without 

proper care [Reimann and Hill, 2009].   

Though numerically challenging, distributive CDC models are more suited 

than the proposed ones for studying matrix, conduit as well as recharge heterogeneities.  

Nonetheless, a simulation of complex karst systems can be achieved by combining the 

proposed process-based and distributive CDC models.  The simplified equations 

presented herein can be used to get preliminary parameter estimates whose values are 

further refined using distributive models.   

 

3.3. Parameter Estimation 

3.3.1 Parameter ranges 

An initial estimate of the parameters can be obtained from literature reported 

values.  The parameter  was reported to range between 5 and 11  [Jeannin, 

2001] but can be as high as 50  in large, smooth and straight conduits [Lauritzen, 

1985].  Baedke and Krothe [2001] calculated the ratio of the aquifer transmissivity to 

the specific yield or  from hydrograph recession analysis and found that it varies 

between 0.015 and 0.07  with some sites yielding values as high as  to 

.  A typical karst aquifer’s specific yield or drainable porosity ranges 

between  and  [Shevenell, 1996; Baedke and Krothe, 2001].  The 

aquifer transmissivity (i.e. ) was estimated from slug, pumping and hydrograph 
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analysis tests for several karst aquifers by Powers and Shevenell [2000] and was found 

to vary between 1.1 to 226 .  Other studies reported significantly higher values 

of the transmissivity and specific yield for an eogenetic karst aquifer which ranged from 

950 to 160,000  and 0.2 to 0.4 respectively [Martin and Dean, 2001; Martin et 

al., 2006].   

 

3.3.2 Nonlinear least square fitting 

The above ranges can be refined from field-specific information such as slug or 

aquifer tests and used as a starting point in the parameter optimization procedure.  

Knowing the upper and lower ranges of the parameters, one can use the nonlinear least 

square method to minimize the sum of the squared differences between the observed 

and simulated hydrographs and obtain an optimized value of the parameters.  The model 

performance is evaluated using the Nash-Sutcliffe Efficiency or N-S [Nash and 

Sutcliffe, 1970].  Furthermore, a simultaneous fitting of spring hydrographs , 

downstream  and matrix  hydraulic heads can achieve enhanced 

estimates of the parameters.   

 

3.4. Model Application and Results 

3.4.1 Santa Fe River Sink/Rise system 

The Santa Fe River Basin covers an area of  and is located in north-

central Florida, USA.  The Santa Fe River runs approximately  to the west of its 

headwaters at Lake Santa Fe then sinks in a  deep sinkhole known as the River 

Sink [Martin and Dean, 2001].  The river flows underground, reappears intermittently 

and finally reemerges  downstream as a perennial spring called the River Rise.  
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Extreme flow variations are observed at both Sink and Rise locations.  Within the area 

separating the River Sink and Rise, a total of seven sinkholes (  thick) are 

present as well as a major sinkhole lake known as the Sweetwater Lake that represents a 

small section of the Santa Fe River [Martin and Dean, 2001].  Previous tracer tests run 

by Hisert [1994] proved a connection between the River Rise, Sweetwater Lake and the 

various karst windows.   

The average dimensions of the conduits linking River Rise and Sink are  to 

 in width and  to  in height [Screaton et al., 2004].  The conduits are 

typically  below the ground surface level.  Through the Old Bellamy Cave 

Project [2005],  of caves and conduits were mapped by cave divers.  The main 

underground conduit that connects the River Rise and Sink is approximately  long, 

with an intermediate length of  between the River Sink and Sweetwater Lake 

[Moore et al., 2009; Moore et al., 2010].   

During low-flow conditions, the conduit appears to be draining the surrounding 

aquifer as indicated by the higher flow values observed at the River Rise as opposed to 

the River Sink [Martin and Dean, 2001; Screaton et al., 2004; Martin et al., 2006; 

Moore et al., 2009; Ritorto et al., 2009; Langston et al., 2012].  Conversely, the 

conduits lose water to the aquifer during high-flow or flood conditions.  This exchange 

is facilitated by the high aquifer permeability or porosity which is estimated around 

20% [Martin et al., 2006; Bailly-Comte et al., 2011].   

The conduit-aquifer exchange flow at the Santa Fe River system has been 

monitored through several wells and discharge measurements at the Sink and Rise.  The 

August 2008 flood [Bailly-Comte et al., 2011; Langston et al., 2012] is hereby used for 

parameter estimation and model validation.  It is referred to as Flood A herein.  The 
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hydrological years 2008-2009 [Langston et al., 2012] are consequently used for model 

calibration (Flood B).  An additional flood from 2002 is also fitted (Flood C) [Martin, 

2003; Martin et al., 2006].  Flood A is available in water levels that are converted to 

discharge using the corresponding rating curves for River Sink and Rise.  According to 

Bailly-Comte et al. [2011], Langston et al. [2012] and Martin [2003], the River Sink 

(RS) rating curve is developed by the Suwannee River Water Management District 

(SRWMD, Figure 1, rating 3 for station 02321898) and is applicable to all three floods 

A, B and C.  The equation of this rating curve is available in Ritorto [2007].  As for 

River Rise (RR), the rating curve developed by Screaton et al. [2004] is used in 

previous studies featuring the same three floods [Martin, 2003; Martin et al., 2006; 

Bailly-Comte et al., 2011; Langston et al., 2012].  The two rating RS and RR rating 

curves are as follows: 

૜ at RS 3-1 

૜  at RR 3-2 

 

3.4.2 Model assumptions 

The Santa Fe conduits are located well below the water table and are believed 

to be under pressurized conditions.  The linearized pipe flow models are thus suitable to 

simulate the conduit/aquifer interaction observed at the site.  The River Sink inflows 

constitute the upstream boundary condition  of the main karst conduit.  The distance 

between the two stations is set equal to .  The aquifer width and recharge 

length are hereby assumed equal to double the conduit length such that 

.  The aquifer diffuse recharge is herein considered negligible since most of 

River Rise discharge originates from the concentrated recharge at River Sink.   
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3.4.3 Initial parameter estimates and dimensionless system 

The average area of the conduits  is between  and 380  from field 

observations [Screaton et al., 2004; Bailly-Comte et al., 2011].  Previous studies in karst 

caves and conduits estimate the ratio  to vary between 1.5 and 50 m/s [Jeannin, 

2001].  For the Santa Fe system, the range of  becomes 1450 to 19,000 .  The 

calculated transmissivity values from previous aquifer tests were found between 950 

and 160,000  and the specific yield between 0.2 and 0.4 [Martin and Dean, 

2001; Screaton et al., 2004].  The resulting ratio  varies between 0.03 and 9 .  

The hydraulic conductivity was estimated from slug tests and found between 1.5 and 

1600  [Langston et al., 2012].  Therefore, the exchange parameter  is between 

0.001 and 0.8  if the height of the interface  is set equal to 22 meters (i.e. equal 

to the conduit diameter).  An initial estimate of  is obtained by calculating 

 for each flood using Equation (2-36).   

The Santa Fe system is hereby modeled in dimensionless form by setting the 

characteristic time equal to the time of the input pulse’s peak for Flood A 

 and the characteristic length equal to .  These values help 

scaling the parameters for a more effective optimization.  Consequently, the 

dimensionless ranges of the parameters become: , 

 and .  For the linear conduit parameter, the range is 

.  It follows that the coalesced parameter  ranges between 0.003 and 4.5.   

By assuming a zero aquifer recharge, the two optimizing parameters  and  

are needed in order to simultaneously fit the downstream water levels and discharge 

using UU (or Equations 2-29 and 2-30).  As initial estimates, the following values were 
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selected:  and .  Their range is set between 0 and 10 in the optimization 

procedure.   

 

3.4.4 Model results and analysis 

3.4.4.1 Flood A 

Flood A is characterized by a single peak followed by long recession (Figure 

11).  The total loss of water is calculated as  which 

is very close to the value obtained by Langston et al. [2012] ( ).  According 

to previous interpretations, the mass imbalance is attributed to unmapped high-

conductivity pathways.  The latter’s potential presence is explained by higher 

transmissivities over large scale measurements [Martin et al., 2006; Langston et al., 

2012].  Since the existence of bypasses or side conduit networks is not verified in the 

field, it is hereby assumed that the mass imbalance is caused by water being 

sequestrated in the very wide and highly conductive surrounding matrix.  A summary of 

the model’s input data is provided in Table 2 below.   

Given that both downstream discharge and water levels are available, they are 

simultaneously fitted in order to obtain better estimates of the model’s main parameters.  

The parameter values are presented in Table 3 and the results plotted in Figure 11.  The 

simulated River Rise hydrographs show a good correlation to observed ones and the 

goodness of fit is found high for UU (N-S = 0.98).  In addition to UU, the data was 

simulated using the bound conduit model BB given a fixed downstream boundary 

condition .  The results show that UU has a better performance as compared to BB 

and that the downstream boundary condition is most likely free discharge.   
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UU’s ratio  is given in dimensional form as 

.  For a hydraulic conductivity that is equal to the average slug tests value of 

12m/day [Langston et al., 2012] and an interface height of 22m, the matrix parameter  

becomes .  Finally, the linearizing coefficient  is found equal to 

 from Equation (2-36).  Therefore, the dimensionless conduit’s conductivity  is 

equal to  and the dimensional ratio 

బ
మ

 falls within the acceptable range for large and smooth 

conduits as reported by Lauritzen [1985].   

 

Table 2.  Input data for Santa Fe River Sink and Rise karst system 

 Flood A Flood B Flood C 
Model Domain    

    
    

Initial Conditions    
    
	    

Simulation 
duration 

   

 

Table 3.  Estimated dimensionless parameters for Flood A and Flood C 

 Flood A Flood C 
UU   

 3.08 3.876 
 0.228 0.11 

Nash-Sutcliffe coefficient  0.98 0.98 
BB   

 5.07  
 0.527  

Nash-Sutcliffe coefficient  0.89  
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Figure 11.  Observed and simulated discharge of the Santa Fe karst system for Flood A.  
The UU model is able to simulate the observed River Rise with a high goodness of fit 
and shows a better performance than BB.    
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3.4.4.2 Flood B 

The optimized parameters from Flood A are used to simulate Flood B for 

model calibration purposes.  Flood B represents the hydrological years 2008-2009 

(Figure 12) and covers a longer time range than Flood A.  It thus shows the prevailing 

recharge conditions before the occurrence of the August 2008 flood or Flood A.  The 

latter is preceded by nearly 110 days of constant River Rise discharge with zero input at 

River Sink.  The results show that the UU model is able to simulate the behavior of the 

Santa Fe system for a long period of time using the same optimized parameters from 

Flood A and has thus the capacity to predict the hydrological response of the system.   

 

Figure 12.  Observed and simulated discharge of the Santa Fe karst system for Flood B 
using optimized parameters from Flood A.  Note that Flood A is also featured (between 
July 08 and February 09 time ticks).   
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3.4.4.3 Flood C 

The March 2003 event or Flood C is also simulated using UU.  The results are 

presented in Table 3 and Figure 13.  One notices a good agreement between simulated 

and observed hydrographs with UU capturing three consecutive peaks given an 

acceptable range of the parameters.  However, the latter slightly differ than the ones 

obtained for Flood A.  Incorporating the effect of diffuse recharge through hydrological 

models might improve the model calibration in the future.   

 

 

Figure 13.  Observed and simulated discharge of the Santa Fe karst system for Flood C.   
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3.5. Summary of Important Results 

The process-based pipe models are capable of simulating the shape of a typical 

spring hydrograph that is characterized by a rapid response to a recharge event followed 

by a long recession limb.  The different models’ responses are almost instantaneous 

given the pressurized pipe flow conditions while the conduit/aquifer interaction has the 

ability to dampen the peak of an input flood and to release the stored water as the event 

recedes.  The nonlinear numerical model compared well to its linearized simplification.  

Furthermore, the semi-infinite aquifer solution was a good approximation to the more 

complex finite aquifer case for a defined range of aquifer widths.  The conduit’s 

downstream boundary condition had a significant effect on the extent of interface 

exchange and consequently the simplified unbound conduit models (UU) were not able 

to reproduce the more general bound conduit model results (BB).   

Finally, the proposed models were successfully applied to a sink and rise karst 

system that is subject to a concentrated type of pulse while the conduits are located 

below the water table and are flowing under pressurized conditions.  The optimized 

parameters were obtained by simultaneously fitting the system discharge and 

downstream water levels and compared well to reported ones from the literature and 

field observations.  Given that the system discharges freely, the unbound conduit model 

UU was more successful than the bound one (BB) in capturing the observed 

hydrograph, particularly its recession.   
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CHAPTER 4 

CHANNEL FLOW MODEL – THEORY 

 

The main objective of this chapter is to derive process-based flow models that 

account for unpressurized flow conditions in a karst conduit.  Conversely to the pipe 

flow models, the aim herein is to simulate a delay in pulse arrival to the spring.  The 

different flow processes are defined as open-channel, matrix and interface exchange.  

As a result, the kinematic wave approximation is used to simplify the open-channel flow 

equation.  Consequently, a coupled system of differential equations is derived to 

simulate the flow in a simplified two-dimensional karst aquifer domain.  A numerical 

solution is provided for the nonlinear model and is followed by an analytical one for the 

linearized system of equations.  Finally, and optimal linearizing coefficient relating the 

parameters of the linear analytical and nonlinear numerical models is derived by 

minimizing the difference between the two models.   

 

4.1. Flow Processes 

The conceptual framework is similar to the one proposed for the pipe flow 

models in Section 2.1 where a single conduit is located at the center of a matrix with the 

two interacting at their common interface.  However, the main difference herein is that 

the conduit is flowing under open-channel rather than pressurized conditions.   
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Figure 14.  Open-channel conduit cross section.  The conduit either drains the 
surrounding aquifer (right) or acts as a source (left).   

 

The continuity equation for open-channel flow is given by 

 

 4-1 

 

where  is the channel wetted cross-sectional area [L2]  is the exchange 

flow [ ] and the coefficient 2 is added to account for exchange on both sides of the 

conduit.  The channel discharge is given by 

 

 4-2 

 

where  is the channel width [L] and  the conduit head measured from the 

conduit’s bottom [L].  The channel velocity  [L/T] is given by the expression 

 with  being Chezy’s coefficient [L1/2/T] and  the hydraulic radius [L].  

for a flow width larger than the flow height,  and .  The parameter  is 

.  In the current formulation, the friction slope is set equal to the bedslope and this 

simplification is known as the kinematic wave approximation.   
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The flow in the aquifer is one-dimensional and is perpendicular to the conduit’s 

centerline.  The governing equation is expressed by Equation (2-4).  The interface 

exchange term is a function of the interface hydraulic gradient and is given by Equation 

(2-6).   

 

4.2. Combined Channel-Aquifer Flow 

The channel model’s governing equation consists of combining equations (4-2) 

and (2-6) with (4-1).  The resulting nonlinear equation for the coupled channel and 

aquifer model becomes 

 

 4-3 

 

where .  The term on the right-hand side of the equation is the 

coupling or exchange flux at  where the conduit and matrix heads are equal 

.   

The linearized form of the conduit flow equation becomes 

 

 4-4 

 

where  and  is a linearizing term.   
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4.3. Auxiliary Conditions 

4.3.1 Boundary conditions in the conduit domain 

The conduit is subject to an arbitrary input pulse and a free downstream 

discharge.  The upstream boundary condition is 

 

 4-5 

 

where  are the upstream water levels that can be expressed as linear 

interpolation between two datapoints (see Appendix A).   

 

4.3.2 Boundary conditions in the aquifer domain 

The aquifer is considered either semi-infinite or finite.  At the interface or 

, the heads in the aquifer are equal to the ones in the conduit.  The boundary conditions 

become 

 4-6 

 4-7 

 4-8 

 

4.3.3 Initial conditions 

Assuming a uniform and constant initial head distribution  in both conduit 

and aquifer, one gets 

 

 4-9 
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4.4. Dimensionless Forms 

The following dimensionless variables are used 

 

 4-10 

 

where  [ ],  [ ] and  [ ] are the characteristic depth, time and 

velocity respectively and  is the normalizing flow [ ].  The dimensionless aquifer 

flow Equation (2-4) becomes 

 

 4-11 

 

where  and .  The nonlinear conduit flow Equation 

(2-7) is written in dimensionless form as 

 

 4-12 

 

where  and  and the dimensionless linear conduit 

flow equation becomes 

 

 4-13 
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where .  The dimensionless discharge expression in terms of the 

hydraulic heads is thus given by 

 

 4-14 

 

Similarly to the pipe models’ dimensionless system, one can get a simplified 

physical domain with  or a fraction of  and a simplified timeframe with 

 where  is the time to peak of an input pulse.  Therefore, one ends up with 

 and .   

 

4.5. Numerical Solution 

The nonlinear conduit model consisting of the coupled equations (4-11) and (4-

12) is solved numerically.  The MacCormack and Crank-Nicolson schemes are used to 

solve the channel and aquifer governing equations respectively.  The aquifer finite 

difference equation has a tridiagonal form that is efficiently solved using the Thomas 

algorithm.  The discretized forms of the equations are presented in Appendix B.   

The coupling of the two equations (4-11) and (4-12) is performed according to 

the following algorithm.  At each time step, the heads in the conduit are calculated by 

updating the upstream boundary condition and using the computed conduit heads and 

exchange flux from the previous time step.  Therefore, a first iteration of the conduit 

head profile at the current time step is completed and set as the new boundary condition 

in the aquifer at the interface or .  A new exchange flux is then calculated from 

the updated aquifer heads and replaced into the conduit subroutine to obtain a new head 
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distribution.  It is noticed that one to two iterations are enough for the solution to 

converge.  The calculations are repeated for all time steps.   

The numerical solution serves to simulate the nonlinear conduit flow coupled 

to the linearized Boussinesq equation.  Therefore, it shows the effect of the conduit 

nonlinearity on the spring hydrograph.  However, the numerical solution can be 

computationally expensive especially for fast flows or high  values where very small 

time discretizations are required for better results.  Moreover, the correctness of the 

solution is sensitive to the value of the interface discretization.  Alternately, one can 

linearize the conduit flow equation and derive analytical solutions that are both 

computationally advantageous and exact.  However, these solutions’ main limitation is 

the under-representation of the conduit nonlinearity and system heterogeneity.   

 

4.6. Karst Channel Flow Models 

For a constant channel velocity coefficient , analytical solutions are derived 

for the system of equations (4-11) and (4-13) under various initial and boundary 

conditions.   

 

4.6.1 Semi-infinite aquifer solution (KWU) 

Solving the coupled system of equations (4-11) and (4-13) for the boundary 

conditions in (4-5), (4-6) and (4-7), one gets the Laplace transform solution 
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where , and the parameters  and  are defined as  and 

.   and  is the Laplace transform of the upstream boundary condition and aquifer 

recharge respectively.  They are expressed in function of the complex parameter  as 

shown in Appendix A.   Equation (4-15) is also found in Hunt [1990] without the 

recharge term.  It is analytically inverted as 
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Equation (4-16) provides a relationship between the water levels at the spring 

and model parameters ( ,  and ), diffuse recharge ( ), recharge length  as well as 

the upstream boundary conditions .  The spring discharge is obtained by replacing 

(4-16) into (4-14).  The integrals are evaluated numerically using the ‘integral’ function 

in MATLAB.   

 

4.6.2 Finite aquifer solution (KWB) 

For a finite aquifer with , the solution becomes 

 

೘

೘
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The above Laplace transform solution expresses the spring water levels in 

terms of the model parameters ,  and  as well as the aquifer width.  It is numerically 

inverted using the Hollenbeck [1998] routine.   

 

4.7. Optimal Coefficient 

The linear equation (4-13) is a useful approximation of its nonlinear form (4-

12) because it facilitated the derivation of the computationally advantageous analytical 

and Laplace transform solutions KWU and KWB.  However, the linearized velocity 

parameter  should be related to the nonlinear  in order to facilitate the 

interpretation of the results.  The latter is achieved through minimizing the difference 

between the nonlinear equation and its approximation 
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 4-18 

 

Minimizing the above residual by integrating over space and time, one gets 

 

೎

 4-19 

 

Integrating Equation (4-19) over space, one gets 

 

 4-20 

 

The above relationship is well-defined because it is a function of the 

boundary values at  and  which are known in inverse problems.  

Equation (4-20) can be rewritten in terms of the upstream and downstream discharge 

as 

 

 4-21 

 

A simpler relationship can be obtained by solving  in Equation (4-18) as 
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Rewriting Equation (4-22) in terms of , one gets 

 

 4-23 

 

where  is the discharge at point  and time .   

 

4.8. Summary of Important Results 

This chapter presents process-based models that simulate the outflow from a 

karst aquifer where unpressurized conduit conditions prevail.  The conceptual model 

consists of a single conduit flowing under open-channel conditions and interacting with 

the surrounding aquifer at their common interface.  The governing system of equations 

couples the kinematic wave approximation of conduit flow to the linearized Boussinesq 

equation via Darcy’s law.  The result is a two-dimensional coupled system of nonlinear 

differential equations that is solved numerically.  The conduit flow linearization 

facilitated the derivation of analytical and Laplace transform solutions for a semi-

infinite (KWU) and finite (KWB) aquifer boundaries respectively.  Similarly to the pipe 

flow models, the solutions combine the different karst flow processes into one single 

equation.  As a result, KWU and KWB express the spring discharge in terms of the 

model parameters, model domain ( , aquifer diffuse recharge ( ) and 

concentrated upstream recharge ( ).  In contrast to pipe flow models, an additional 

parameter is introduced and consists of the conduit velocity coefficient  (nonlinear) or 

 (linear).  Finally, optimal relationships between the linear and nonlinear conduit 

velocity parameters (  and ) were obtained by minimizing the difference between the 

two models’ governing equations.    
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CHAPTER 5 

CHANNEL FLOW MODEL – ANALYSIS AND RESULTS 

 

In this chapter, the performance of the process-based open channel models is 

evaluated by simulating their outflow for given concentrated and diffuse recharge 

pulses.  The Laplace transform solution obtained for finite aquifers is compared to the 

fully nonlinear numerical model.  Also, the semi-infinite aquifer simplification is 

assessed by comparing the model’s output to the more complex finite aquifer solution.  

Consequently, the proposed models are compared to existing lumped models as well as 

to the pressurized pipe flow models presented in the current study.  The latter serves to 

highlight the effect of the conduit flow conditions (i.e. pressurized versus open channel) 

on the spring hydrograph.  Finally, the models are applied to two aquifer systems 

subject to different recharge conditions.   

 

5.1. Salient Results 

5.1.1 Key model parameters 

The open channel models KWU and KWB’s main parameters are the matrix-

related exchange coefficient , aquifer coefficient  and drainable porosity  as well as 

the linear channel flow velocity  that is a function of  and  (Equations 4-21 and 4-

23).  A coalesced parameter  was also introduced and combines all three matrix–

related parameters ,  and .  The equations were further simplified by introducing 

 and .  For a zero aquifer recharge, the semi-infinite aquifer model 

becomes a function of  and  (or  and ) and the finite aquifer solution becomes in 
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terms of ,  and  (or ,  and ).  The interface depth  should be less or equal to 

the average depth in the aquifer in case of diffuse recharge.  After algebraic 

manipulations of the parameters, one finds that the parameter  should be less or equal 

to .   

 

5.1.2 Hypothetical Scenario 

In order to generate the output of the different models, the following 

hypothetical setup is proposed.  A single conduit of length  and width  

is coupled to a matrix of half width  and is subject to an isosceles triangular 

pulse.  All model parameters are summarized in Table 4.   

 

Table 4.  Parameter values of open channel flow models’ hypothetical run 

Dimensional 
Parameter 

Value Dimensionless 
Parameter 

Dimensionless 
Value 

    
    

    
    
   0.2 

   200 

   10 
   10 

    
    
    
    

Diffuse Pulse 
Characteristics 

 Concentrated Pulse 
Characteristics 

 

Type Rectangular Type Isosceles triangle 
    
 1  1 

 0.01  0.1 
   1 
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5.1.3 Spring hydrograph 

5.1.3.1 Concentrated recharge 

Figure 15 shows the nonlinear numerical model’s outflow for the selected 

parameters in Table 4 as well as a doubled exchange coefficient .  The numerical 

solution of the linearized system of equations is successfully compared to the 

numerically inverted Laplace transform solution thus validating the coupling algorithm 

proposed in Section 4.5.  The discretization values are as follows: ; 

 at the interface and gradually increases as one moves away 

towards the boundary with  and .   

Similarly to the pipe flow models, the interaction between the conduit and 

aquifer modifies the shape of the concentrated input pulse into a fast flood followed by 

a slow baseflow recession.  The two dimensionless parameters  and  control the 

extent of exchange while  (nonlinear) or  (linear) regulate the time of peak’s arrival to 

the spring.  As the exchange coefficient  increases, the spring outflow peak is reduced 

and the duration of the baseflow recession becomes longer.  Additionally, the exchange 

coefficient  has the ability to delay the input pulse arrival and therefore affects the time 

to peak along with  (Figure 15).   
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Figure 15.  KWB (linear) and numerical (nonlinear) model predictions for a 
concentrated recharge event for selected values of the exchange parameter .  As the 
exchange parameter increases, the peak is reduced and the pulse arrival is further 
delayed.  Also shown is the finite difference solution (FD) for the linear model.  KWB 
fails to capture the rising limb and recession period of the nonlinear model.   

 

5.1.3.2 Diffuse aquifer recharge 

For a rectangular diffuse recharge of duration  and intensity , 

the results are shown in Figure 16.  The different values of the matrix parameters ,  

and  have a similar effect on the hydrograph as discussed in the pipe flow model.  The 

conduit nonlinearity is further discussed in Section 5.1.5.   
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Figure 16.  KWB (linear) and numerical (nonlinear) model predictions for a diffuse 
recharge event.  The linear model with a constant conduit velocity can capture either the 
peak or the whole hydrograph using the selected minimizing equations (KWB-1 
corresponds to 4-21, and KWB-2 corresponds to 4-23) 

 

5.1.4 Sensitivity analysis 

The sensitivity of the model to the parameters , , ,  and  is hereby 

assessed in terms of change in peak outflow, peak arrival (i.e. delay) and outflow 

volume.  The model KWU with a constant velocity is used to generate the standard 

scenario presented in Table 4 as well as the simulated ones.  The value of  is expressed 

in terms of  and  according to Equation (4-23) with  being equal to the 

peak outflow of the standard case (0.614 from Figure 15).   

For a concentrated recharge, Figure 17 shows that the hydrograph peak is most 

sensitive to  and least sensitive to .  On the other hand, the peak arrival is most 
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sensitive to the velocity coefficient  followed by  (Figure 18).  The change in volume 

retrieved at the spring is less sensitive to the change in parameters as compared to the 

peak and peak arrival (Figure 19).  For a diffuse recharge, the model is most sensitive to 

the specific yield  in terms of peak outflow and outflow volume (Figure 20 and 

Figure 22).  Yet, when it comes to peak arrival, the model is most sensitive to  and 

completely insensitive to  (Figure 21).   

One concludes that the most sensitive parameters are ,  and  depending on 

the model evaluation criteria.  The conduit-related parameter  mostly governs the time 

of peak arrival while  and  affect the amount of water reaching the spring and the 

peak outflow.  Similarly to the pipe flow models, the effect of  change in the 

parameters values on the model’s output was minimal.   

 

 

Figure 17.  Sensitivity of the model to the parameters in terms of peak outflow for a 
concentrated recharge.  The model is most sensitive to the exchange parameter .  
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Figure 18.  Sensitivity of the model to the parameters in terms of peak arrival for a 
concentrated recharge.  The velocity parameter  has the highest influence on the peak 
delay.   

 

Figure 19.  Sensitivity of the model to the parameters in terms of outflow volume for a 
concentrated recharge.  The exchange parameter  is the most sensitive.  The change in 
volume is not as significant as the one observed for the hydrograph peak and peak delay 
because the volume recovered during the recession compensates the volume lost due to 
peak reduction.   
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Figure 20.  Sensitivity of the model to the parameters in terms of peak outflow for a 
diffuse recharge.  The model is most sensitive to the specific yield. 

 

 

Figure 21.  Sensitivity of the model to the parameters in terms of peak outflow for a 
diffuse recharge.  The model is insensitive to  but most sensitive to .   
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Figure 22.  Sensitivity of the model to the parameters in terms of outflow volume for a 
diffuse recharge.  The specific yield has the most influence on the volume of water 
reaching the spring from the diffuse recharge.   

 

5.1.5 Effect of conduit nonlinearity 

The feasibility of the linear conduit flow simplification is assessed by 

comparing the output of the nonlinear model to its linear approximation KWB.  This is 

achieved by estimating KWB’s parameters using the optimal relationships derived in 

Section 4.7.  The model results where KWB’s linear velocity is calculated using 

Equations (4-21) and (4-23) are referred to as KWB-1 and KWB-2 respectively.   

For a concentrated recharge, a constant velocity KWB fails to capture the long 

recession of the hydrograph as well as its rising limb (Figure 15).  In order to improve 

its performance, a temporally varying but spatially constant  is hereby suggested.  The 

latter is a function of both  and  for KWB-1 and  for KWB-2.  
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Consequently, the parameter  is updated at each time step in KWB-1 and KWB-2 and 

is a function of the nonlinear model’s discharge values.   

As shown in Figure 23, this assumption improved KWB’s ability in capturing 

the nonlinear model’s recession with KWB-1 (errors in peak and volume are 0.2% and 

2.4%) having similar accuracy to KWB-2 (errors in peak and volume are 1% and 2.4%).  

However, the advantage of KWB-2 over KWB-1 is that it is only a function of the 

downstream discharge values.   

For a diffuse recharge, Figure 16 shows that KWB-1 is a better approximation 

of the nonlinear model (errors in peak and volume are 0.22% and 2.0%) as compared to 

KWB-2 (errors in peak and volume are 5.5% and 8.3%).  Furthermore, the KWB model 

results improved when a non-constant velocity was introduced.   

In summary, the linear model KWB is successful in approximating the 

nonlinear model given both diffuse and concentrated types of recharge.  Equation (4-21) 

is more adequate for diffuse pulses while (4-23) is used for concentrated recharge cases.  

A non-constant velocity parameter significantly improves the ability of the linear model 

in capturing the response of the nonlinear one.   

 



 
 

 
73 

 

Figure 23.  Comparison between KWB (linear) and numerical (nonlinear) models for a 
concentrated input pulse.  The linear model with a non-constant conduit velocity can 
capture the whole shape of the hydrograph using the selected minimizing equations 
(KWB-1 corresponds to 4-21, and KWB-2 corresponds to 4-23) 

 

5.1.6 Effect of boundary conditions 

Comparisons between the finite KWB and semi-infinite KWU aquifer models 

are shown in Figure 24 and Figure 25 for concentrated and diffuse recharge types 

respectively.  The effect of the aquifer boundary on the spring hydrograph is similar to 

the one observed for the pipe flow models in Section 3.1.5.   

The semi-infinite assumption is valid for  for the concentrated type of 

recharge.  This value compares well to the condition set by Hunt [1990] where 

 or  (with ).  Depending on the matrix parameter  
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and the time to pulse’s peak , one can thus calculate the aquifer width for which semi-

infinite conditions prevail.   

As for diffuse recharge, its spatial distribution is important in shaping the 

hydrograph as shown in Figure 25.  As the recharge length increases, the less volume is 

recovered at the spring with KWB showing higher recovery rates than KWU.  The 

length over which semi-infinite conditions prevail  is higher than the 

requirement for concentrated recharge  because the matrix is no longer acting as 

a storage but rather as a source of water.   

 

 

Figure 24.  Comparison between the bound (KWB) and unbound (KWU) channel 
models for a concentrated recharge.  The results are simulated for a constant conduit 
velocity .  The aquifer boundary either affects the recession ( , the peak 
and recession ( ) or the whole shape of the hydrograph ( ).  The semi-
infinite aquifer simplification is valid for  where the two models are nearly 
superimposed.   
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Figure 25.  Comparison between the finite (KWB) and semi-infinite (KWU) aquifer 
models for a diffuse aquifer recharge.  The results are simulated for a constant conduit 
velocity .  The finite aquifer model is a good approximation of the unbound one 
for .  As the recharge is applied over larger widths, the volume of water 
recovered at the spring decreases while KWB shows a greater recovery than the semi-
infinite aquifer model KWU.   

 

5.2. Comparison to existing models 

The proposed process-based channel models have the same advantages over 

lumped models as discussed in Section 3.2 for the pipe flow models.  They are able to 

simulate the whole spring hydrograph and are a function of physically meaningful 

parameters instead of empirical ones.   

However, KWU and KWB can only simulate open-channel conditions and do 
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that the conduit is wide enough to approximate the hydraulic radius as  which 

is not a limitation in existing numerical models.  Nonetheless, they offer a 

computationally advantageous approach to simulate delayed karst system responses.  

Their results can be used as preliminary estimates in more sophisticated distributive 

models for further refinement.   

 

5.3. Parameter Estimation 

The range of the matrix parameters is discussed in Chapter 3, Section 3.4.  As 

for Chezy’s coefficient, it is related to the friction factor as .  In karst 

conduits, friction factors range from low values of 0.12 and can be as high as 340 

[Springer, 2004].  Therefore, Chezy’s coefficient varies between 0.5 and 25 m1/2/s.  

Assuming a minimum and maximum bed-slopes of 0.01% and 10%, the parameter  

ranges between 0.0015 and 8 m1/2/s.   

The five model parameters , , ,  and  are optimized using the nonlinear 

least-square fitting and compared to physical ranges found in the literature.  The two 

parameters  and  are required to calculate the water levels in the system using 

Equation (4-5).  An enhanced estimation of these two parameters is possible when both 

water levels and spring discharge are measured in the field.  For diffuse recharge 

applications, the relationship between the nonlinear parameter  and linear velocity  is 

obtained from Equation (4-21).  Otherwise, Equation (4-23) is used for concentrated 

recharge.  The initial parameter estimates are based on available field observations, 

literature ranges or preliminary manual fitting.   
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5.4. Model Applications and Results 

The proposed semi-infinite aquifer model KWU is hereby applied to the 

Bluegrass [Winston and Criss, 2004], and Lurbach [Mayaud et al., 2014] karst systems.  

The first site is subject to a diffuse aquifer recharge.  The second one consists of a 

conduit that is receiving a concentrated recharge from a sinking stream. 

 

5.4.1 Bluegrass Spring, Missouri 

The Bluegrass spring is located in east central Missouri, USA.  The area where 

the spring emerges has extensive karst features including losing streams, caves and 

sinkholes.  The recharge mainly occurs from precipitation that averages 97 cm a year.  

The surficial recharge area is approximated as  and has no runoff features 

[Winston and Criss, 2004].  However, the groundwater recharge area is believed to be 

larger from tracer tests.  The rainfall events occurring in February and March 2001 are 

used to validate the KWU model.  The main objective of this model application is to 

show the capability of the proposed model in simulating a spring hydrograph resulting 

from a diffuse aquifer recharge.  Another objective is to compare the results to an 

existing lumped model by Criss and Winston [2003] as well as the pressurized pipe 

model UU.   

Since the model domain and recharge conditions are unknown, they are hereby 

subject to the following assumptions that are summarized in Table 5:  

(1) The conduit length and contributing recharge semi-length are set to 

 and  respectively. 

(2) The diffuse recharge pulse is approximated from mass balance calculations 

such that .  It is important to note that the diffuse recharge 
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herein refers to the recharge to groundwater since the proposed process-based models 

neglect the surface water to groundwater (or infiltration) process.  As a result, the 

diffuse aquifer recharge is assumed as a delayed fraction of rainfall and its intensity is 

determined from mass balance calculations.  A better estimate of  is achieved by 

incorporating the models into more complex hydrological ones.   

(3) The delays in diffuse pulse arrivals are assumed equal to the ones proposed 

by Criss and Winston [2003]. 

(4) The velocity is a function of the two optimizing parameters  and  and is 

obtained from Equation (4-21).   

 

The optimization gives acceptable values of the parameters as shown in Table 

6.  The maximum simulated head in the conduits was less than the conduit width which 

is in line with the model’s assumption of wide flow.  The transmissivity value is greater 

for the higher intensity flood (i.e. February 2001) because more rainfall was observed 

and as a result, a higher aquifer depth is expected.  The hydraulic conductivity can be 

obtained from  (where  is the calculated depth in the conduit) and is 

equal to 0.028 m/s and 0.02 m/s for February and March 2001 events respectively.  The 

range of the transmissimities and hydraulic conductivity indicate the presence of a 

fractured system that facilitates the flow towards the conduit.   

KWU is then compared to another process-based model developed by Criss 

and Winston [2003] that is a function of a single lumped parameter “ ” [T] representing 

the matrix properties.  The model simulates the peak by shifting the simulated curve to 

match the peak of the measured ones.  Therefore, the physical processes that cause a 

pulse arrival delay are neglected.  Although C&W and KWU have a similar 
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performance in simulating the Bluegrass spring hydrograph (Figure 26 and Figure 27), 

KWU is more advantageous because it is a function of physically significant 

parameters.   

For comparison purposes, the system is also simulated using the pressurized 

pipe flow model UU.  The latter’s optimized parameters are , 

,  and  for the February 2011 event and 

, ,  and  for the March 2011 event.  

As shown in Figure 26 and Figure 27, the pipe model is not able to capture the observed 

recession period and has a lower performance than KWU.   

One concludes that conduit hydraulics play an important role in shaping spring 

hydrographs and the CDC modeling approach proves effective in analyzing karst 

systems.  A better estimate of the parameters can be achieved by incorporating KWU 

into more sophisticated hydrological models that allow an enhanced estimation of the 

recharge term .   
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Table 5.  Input data for Bluegrass karst system 

 February 2001 March 2001 
Model Domain   

   
   

Initial Conditions   
   

   
Initial time Day 72 of Year 2001 Day 54 of Year 2001 
   
Mass Balance   

   
ೞ೔೘

 

  

   
Recharge Pulse(s)   
Lag of pulse or starting time after 
Initial Time 

1.9 days 2.9 days 

Duration of pulse 0.2 days 0.2 days 
Intensity of pulse 0.52 cm/hr 0.26 cm/hr 

 

Table 6.  KWU results for the Bluegrass karst system 

  
[m] 

 
[m1/2/s] 

 
[m/s] 

 
[m2/s] 

 
[-] 

 
[m2/d] 

max   
[m/s] 

Feb 2001         

Initial 
Estimates 

5 0.065 0.012 2 0.04    

Optimized 
Parameters 

4.12 0.031 0.0182 4.28 0.0087 3,242 1.33 0.028 

Mar 2001         

Initial 
Estimates 

5 0.065 0.012 2 0.007    

Optimized 
Parameters 

3.57 0.019 0.014 3.61 0.007 2,219 1.25 0.02 
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Figure 26.  Observed vs. simulated discharge at the Bluegrass spring for the February 
2001 event.  KWU is more effective than UU in simulating the long recession.  It also 
compares well to another process-based model (C&W) that simplifies the conduit 
hydraulics and recharge conditions.   
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Figure 27.  Observed vs. simulated discharge at the Bluegrass spring for the March 2001 
event.   

 

5.4.2 Lurbach Karst System, Austria 

5.4.2.1 Area description 

The Lurbach karst system is located in the Styria region, Austria.  The system 

consists of a stream that drains the upper catchment of the Lurbach (LB) watershed and 

then disappears into a sinkhole located at a cave’s entrance.  The stream resurges further 

downstream as two springs named Hammerbach (HB) and Schmelzbach (SB).  The 

complexity of the Lurbach system is captured by hydrological studies and tracer tests 

[Mayaud et al., 2013; 2014].  During low to medium flow conditions, the LB stream 

only discharges into the HB spring.  As the water levels exceed a certain threshold at 
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HB, an overflow is activated towards SB.  A schematic of the system is presented in 

Figure 28.   

 

Figure 28.  Schematic representation of the Lurbach karst system 

 

A field campaign comprising a tracer test was conducted from November 28th 

until December 30th, 2008 with the tracer being released in the Lurbach cave near the 

sinking stream location.  The three stations LB, HB and SB were monitored for 

discharge and Uranine concentrations.  Within this period, two floods with a total 

duration of 32 days were observed.  The first flood has a single peak, a duration of 13 

days and is hereby used to validate the KWU model.  Note that the data for LB, SB and 

HB is digitized from Mayaud et al. [2014, Figure 3].   

 

5.4.2.2 Model Assumptions 

This system is considered unchartered due to the limited information available 

about the conduits’ sizes as well as the location of the overflow station.  Consequently, 

the main objectives of this application are to apply the model on a system that is subject 

to a concentrated recharge in the form of a sinking stream.  Another objective is to 

simplify the conceptual framework of the Lurbach system based on a set of sound 

assumptions in order to apply the proposed process-based KWU.   
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Consequently, the following assumptions are made and summarized in Table 7: 

(1)  The model aims to simulate the SB spring outflow rather than HB’s 

because there is a strong correlation between their hydrographs (Figure 29).  Indeed, 

SB’s and LB’s hydrographs are characterized by a fast rising limb followed by a long 

recession.  Conversely, HB’s outflow rises abruptly after the flood event and remains 

constant afterwards.   

(2)  The overflow contribution to SB is zero for  while it is equal 

to LB’s minus HB’s spring discharge for .  This value was selected 

because it is equal to the time the tracer released at LB was detected at SB.  Therefore, 

the overflow discharge equation becomes 

 

 5-1 

 

where  and  are the baseflow of LB and HB springs 

respectively.  Note that ,  and  represent the observed discharge at Lurbach, 

Schmelzbach and Hammerbach stations respectively.   

(3)  The overflow location is assumed close to the Lurbach sink as discussed in 

Mayaud et al. [2014].  Therefore, the distance between OS and SB is  and 

the diffuse recharge length is equal to .   

(4)  Once LB, SB and HB baseflows are removed, mass balance should be 

satisfied between the overflow station and SB ( ೞ೔೘

 and ೞ೔೘ ).  Since the SB spring drains an 

additional watershed, the diffuse aquifer recharge is calculated from mass balance as 
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ೄಳ ೀೄ

೎ ೝ ೏
 where .  As mentioned for the Bluegrass 

spring system, the diffuse aquifer recharge refers to the direct recharge to the 

groundwater while the infiltration process is neglected in this work.   

(5)  The non-constant velocity parameter is calculated using Equation (4-23) 

(6)  The channel width is set equal to 10 meters as assumed by Mayaud et al. 

[2014] 

 

5.4.2.3 Model results 

The KWU optimized parameters are found equal to: , 

,  and , and .  The resulting transmissivity 

and hydraulic conductivity are equal to  and , All model 

parameters fall within the acceptable range set for karst aquifers.   

As shown in Figure 29, the proposed KWU model is able to capture the peak 

and time to peak of SB’s hydrograph although the goodness of fit is reduced during the 

recession period.  The reason may be attributed to the discharge calculations at the 

overflow station as detailed in model assumption (2).  The latter states that the HB 

station is receiving water solely from LB whereas it can originate from both 

concentrated LB and diffuse aquifer recharge.  In this case, the discharge at the OS 

could be higher than the one shown in Figure 29 during the recession period.  Improved 

recession fitting can thus be achieved by combining the proposed model with an 

infiltration module that calculates the amount of infiltrated water in HB’s watershed.  

The latter will help in determining the mass balance at the overflow station and 

consequently improve the estimation of the model parameters.   
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Finally, KWU is compared to the pipe flow model UU.  As shown in the 

figures, the proposed model KWU is more successful in simulating the pulse arrival 

delay at the Schmelzbach spring (with ) as compared to the pressurized pipe model UU.   

 

Table 7.  Input data for Lurbach karst system 

 Event 1 
Model Domain  

  
  

Initial Conditions  
  
  
  

  
Recharge Conditions  
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Figure 29.  Simulated and observed discharge values at Schmelzbach spring for Event 1.  
The KWU model is able to simulate the SB’s spring hydrograph and is particularly able 
to capture the delay in pulse arrival from the overflow station (OS).  The pressurized 
pipe model UU simulated an instantaneous response and had a lower performance than 
KWU’s.   
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5.5. Summary of Important Results 

The proposed linear models KWU and KWB are able to simulate a system’s 

delayed response to a recharge event and reproduce the shape of a typical hydrograph 

that is characterized by a fast followed by a slow spring recession.  They also capture 

the more general behavior of the nonlinear model using the linearizing optimal 

coefficient obtained in the previous chapter.  Furthermore, the semi-infinite aquifer 

model KWU is found as an acceptable approximation of the finite aquifer model KWB 

under various recharge conditions.  The models’ limitations include the inability to 

simulate transitions from pressurized to unpressurized flows and the handle spatially 

variable diffuse aquifer recharge.   

The models were successfully applied to two real karst systems subject to 

different recharge conditions.  The analytical solutions were computationally effective 

in the optimization process and the parameters compared reasonably well to literature 

ranges.  Also, the performance of the open channel models was compared to the 

pressurized flow model UU that failed to capture delay in peak arrival to the spring.   
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CHAPTER 6 

TRANSPORT MODEL – THEORY 

 

This chapter presents the theoretical background and governing equations of 

the transport model.  First, the different transport processes in the system are defined.  

The advection-diffusion equation is used to describe the solute transport in the conduit 

and aquifer while the interface exchange is governed by .  The combined two-

dimensional system of equations is consequently solved using the Laplace transform 

method and analytical solutions are obtained for arbitrary and Dirac-type input pulses.   

 

6.1. Transport Processes 

This study considers a single conduit of length  [L] located at the center of an 

aquifer of width  [L].  The conduit is connected to a sinkhole on one end while the 

other is considered a perennial spring representing the system’s output.  A mass of 

artificial tracer  [ ] is released into the sinkhole and later recovered at the spring.  

The temporal distribution of the solute concentration  [ ] at the spring is 

considered the system’s output and is referred to as the tracer breakthrough curve.   

 

6.1.1 Conduit transport 

The one-dimensional advection-dispersion equation with a source term 

describes the transport of a conservative solute in a wide conduit of constant width  

[L] as 
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 6-1 

 

where  is the solute concentration in the conduit [ ],  is the velocity in 

the conduit flow direction [ ],  is the conduit’s dispersion coefficient [ ],  is 

the source term and represents the conduit/matrix interface flux [ ],  is the 

Cartesian coordinate in the conduit flow direction [ ] and  is the time [ ].  The 

coefficient 2 is added to account for solute exchange on both sides of the conduit.   

 

6.1.2 Matrix transport 

The transport in the surrounding aquifer is assumed to be one-dimensional in 

the lateral y-direction that is perpendicular to the conduit centerline.  The transport 

equation in the aquifer is given by 

 

 6-2 

 

where  is the aquifer solute concentration,  is the dispersion coefficient in 

the aquifer flow direction [L2/T] and  is the aquifer velocity [L/T]. 

 

6.1.3 Exchange solute flux 

The solute exchange flux at the interface  is given by the advective-

dispersive mass flux equation [e.g. Houseworth, 2006] 
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 6-3 

 

where  is the aquifer or matrix effective porosity [-] and  is the Darcy flow 

rate and is equal to 

 

 6-4 

 

6.2. Combined Conduit-Aquifer Transport 

By coupling Equations (6-3) and (6-4) with Equation (6-1), one gets the 

combined conduit-aquifer transport governing equation 

 

 6-5 

 

6.3. Boundary Conditions 

The boundary conditions in the conduit are defined as 

 

    6-6 

     6-7 

 

The matrix concentrations at the interface or  are equal to the ones in the 

conduit.  The matrix is either semi-infinite or finite.  Therefore, the matrix boundary 

conditions become 
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     6-8 

     6-9 

    6-10 

 

The initial conditions are 

 

    6-11 

 

In the absence of upstream measured concentrations,  is often assumed as an 

instantaneous upstream pulse (Dirac-type input function) and is written as 

 

 6-12 

 

where  is the Dirac-delta function and  is the time at which the 

tracer is released [-].  Depending on the input data, the pulse intensity  is either a 

function of the flow area  [L2] and conduit velocity or the conduit discharge  [L3/T].   

 

6.4. Dimensionless System 

Define the following dimensionless variables 

 

 6-13 

 

where  is the characteristic length which is generally equal to  and  is the 

normalizing concentration.  The conduit and matrix dimensionless equations become 
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 6-14 

 6-15 

 

where బ

ೣ
 ೤

బ
;  and బ.  For , the parameter 

 becomes equal to the Péclet number which is a measure of the relative importance 

of advection to dispersion inside the karst conduit.   

 

The Dirac pulse is defined in dimensionless form as 

 

 6-16 

 

6.5. Karst Transport Models 

In this section, the Laplace transform and analytical solutions of the system of 

governing equations (6-14) and (6-15) are derived for a semi-infinite as well as a bound 

aquifer.  Although the governing equations have appeared in fractured media related 

research [e.g. Tang et al., 1981; Sudicky and Frind, 1982; van Genuchten et al., 2013], 

the boundary conditions and physical processes are different than the ones considered in 

this work.  For example, the aforementioned references solely consider a diffusive 

interface flux and neglect the advective flux that is of primary importance herein.  

Others, neglect the fracture and matrix dispersion and take into consideration advective-

dispersive exchange [e.g. Houseworth et al., 2013] 
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The solution methodology consists of applying the Laplace transform to the 

aquifer solute transport Equation (6-15) and solving the ensuing ordinary differential 

equation for the given boundary conditions.  The expression is then differentiated to 

obtain the concentration gradient at the interface which in its turn is replaced into (6-

14).  The conduit transport equation is subsequently solved and the ensuing Laplace 

transform solution is inverted either analytically or numerically.   

Applying the Laplace transform to Equation (6-15) gives 

 

 6-17 

 

where  is the Laplace transform of  such that 

 

 6-18 

 

6.5.1 Semi-infinite aquifer (KTM) 

Following the solution methodology outlined above, the conduit concentration 

become 

 

 6-19 
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with  and .  The parameter  represents advective 

exchange being a function of  while  represents diffusive exchange being a function 

of .   

 

Equation (6-19) is analytically inverted as 

 

 

6-20 

 

where ,  and .  For a Dirac-type input condition 

, Equation (6-20) reduces to 

 

2

 

6-21 

 

Equations (6-20) and (6-21) express the breakthrough curve  in terms 

of the model parameters ,  and  as well as the upstream boundary condition while 

the dimensionless time  is a function of the conduit velocity .  The single and double 

integrals are numerically integrated using the MATLAB functions ‘integral’ and 

‘integral2’ respectively.   
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6.5.2 Finite aquifer (KTMB) 

For the aquifer condition in Equation (6-8), the solution becomes 

 

 
6-22 

 

Equation (6-22) simulates the breakthrough curve resulting from a finite 

aquifer of width .  It is used to verify the range of aquifer widths for which (6-20) 

and (6-21) are valid.  The solution is numerically inverted using the routine developed 

by Hollenbeck [1998].   

 

6.6. Summary of Important Results 

A process-based transport model is proposed to simulate tracer breakthrough 

curves.  The conceptual model consists of a single conduit embedded in a porous 

aquifer with the two exchanging solute at their common interface.  The advection 

diffusion equation governs the solute transport in both conduit and matrix while the 

interface solute exchange is described by the advective-dispersive mass flux equation.  

The coupled system of governing equations is consequently solved using the Laplace 

transform method and an analytical solution is obtained for semi-infinite and finite 

aquifers.  The transport model provides a relationship between the breakthrough curve, 

upstream boundary condition (arbitrary or instantaneous), Péclet number and interface 

exchange coefficients  (advective exchange) and  (diffusive exchange).   
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CHAPTER 7 

TRANSPORT MODEL – ANALYSIS AND RESULTS 

 

In this chapter, the process-based transport model is discussed and used to 

simulate real breakthrough curves.  First, the effect of the key parameters and 

simplifications are discussed.  Those include a semi-infinite aquifer approximation and 

a Dirac-type input pulse.  Consequently, the proposed KTM is applied to several karst 

systems with the aim of simulating real breakthrough curves and capture their long 

tailing using physically meaningful parameters.   

 

7.1. Salient Results 

7.1.1 Key model parameters 

The KTM model parameters are the conduit velocity , Péclet number  and 

exchange coefficients  and .  A relationship between the conduit width , exchange 

parameters and aquifer dispersivity ( ) is given as .  This 

relationship is of interest in inverse problems because it facilitates the estimation of both 

conduit and aquifer physical properties.   

The effect of each KTM model parameter is hereby investigated for a conduit 

of length  subject to an instantaneous pulse of intensity .  The model’s 

variables have the following values: ,  and .  The results are 

shown in Figure 30.  The Péclet number  simulates the extent of the spill while the 

parameters  and  control the conduit/aquifer solute exchange.  For smaller values of 

 (i.e. ), a strong skewness in the breakthrough curve is witnessed because the 

conduit transport process is dominated by dispersion rather than advection.   
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When  is zero, there is no advective interface exchange and the conduit 

interacts with the matrix through a diffusive flux only.  As  increases, the solute leaves 

the conduit towards the matrix through the one-directional advective flow (or ) and the 

recovery rate at the spring is reduced.  Conversely, when  increases, the conduit 

recovers solute later on and longer tailing is observed.   

 

 

Figure 30.  Effect of the model parameters on the breakthrough curve.  When the 
advective exchange parameter  increases, the solute mass is lost to the aquifer 
(compare solid line to coarsely dotted line).  Conversely, the diffusive exchange 
parameter  shows a later recovery of solute (compare solid line to finely dotted line). 

 

7.1.2 Effect of non-constant velocities 

As mentioned in the flow-related chapters, exchange flow is generally caused 

by the occurrence of a flood event where the conduit initially loses a certain volume of 
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water to the aquifer and slowly recovers it during the recession period.  Subsequently, 

the advective interface flux becomes bidirectional such that it is positive throughout the 

flood event and negative during the recession period.  Additionally, the conduit velocity 

 becomes affected by the upstream boundary condition as well as the conduit/aquifer 

exchange of flow.  When the conduit is losing water to the matrix, the velocity is 

reduced along its length and the reverse is true when the conduit is draining the 

surrounding matrix.  Hence, the variation of  in both space and time affects the extent 

of exchange and consequently the shape of the resulting breakthrough curve.   

However, the proposed KTM model assumes constant conduit and aquifer 

velocities  and  and does not handle interface hydraulic gradient inversions.  

Therefore, the KTM model applications are limited to systems flowing under baseflow 

conditions where temporal and spatial variations of conduit velocities can be neglected.   

Moreover, tracer tests are generally released as a pool dump into a sinkhole 

which causes an increase in the karst conduit’s hydraulic heads with respect to the 

matrix after the pool release [Luhmann et al., 2012].  As a result, interface exchange is 

induced and water/solute leaves the conduit towards the aquifer at a velocity .  The 

proposed KTM makes the assumption that this flow is one-directional, constant and 

positive towards the matrix (i.e. positive ) when simulating breakthrough curves.   

 

7.1.3 Effect of boundary conditions 

7.1.3.1 Aquifer 

The finite aquifer model KTMB (Equation 6-22) helps analyzing the effect of 

the aquifer width  on breakthrough curves.  As shown in Figure 31 ( , 

,  and ), it has the ability to modify the shape of the curve depending 
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on the available area for the solute to spread into the matrix.  However, one notices that 

the aquifer width required to make major changes is significantly lower than the 

conduit’s length,  (i.e. >0.02).  Therefore, the semi-infinite approximation (KTM) 

is valid in most inverse problems since aquifers are generally much wider than the 

embedded karst conduits.   

 

7.1.3.2 Instantaneous input pulse 

In field applications, tracers are generally released instantaneously into a karst 

conduit and the input pulse is often approximated as a Dirac-type.  In order to assess 

this simplification, the output of equations (6-20) and (6-21) is compared using a short 

rectangular input pulse of duration  and intensity .  As shown in 

Figure 32, the Dirac-type model is able to reproduce the more general case of a 

rectangular input pulse up to a duration that is 100 times smaller than the total 

simulation time.  However, it loses accuracy as the upstream pulse duration increases 

(see ).   
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Figure 31.  Comparison between the unbound and bound aquifer models for .  
The unbound aquifer model is found valid for small aquifer widths that are at least 50 
times shorter than the conduit length.   
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Figure 32.  Comparison between a Dirac-type and short-pulse rectangular input 
functions.  The Dirac-type input approximation is found acceptable for a wide range of 
pulse durations.  

 

7.2. Comparison to other models 

Existing process-based models for simulating breakthrough curves mostly 

adopt a partitioning approach and have been particularly selected to simulate the long 

tailing.  As previously mentioned in the introductory section of this thesis, the two-

region non-equilibrium model 2RNE [Toride et al., 1993] has been widely applied to 

karst systems although its parameters have little physical meaning in a karst context.  In 

fact, 2RNE was originally intended for porous media and its parameters are a function 

of the retardation, dispersion and advection processes in the mobile region as well as the 

first-order exchange between mobile and immobile regions.  The mobile region 

parameters can be compared to KTM’s Péclet number , conduit velocity  and flow 
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area .  On the other hand, 2NRE’s exchange parameters do not represent actual karst 

aquifer properties and physical processes.   

In comparison to partitioning models, KTM adopts the more physical ADE 

approach instead of non-equilibrium solute partitioning and is a function of both conduit 

and aquifer physical parameters.  Yet, the KTM model is not able to handle non-

constant conduit and aquifer velocities and is not as flexible as distributive numerical 

transport models in representing the system’s heterogeneities.   

 

7.3. Parameter Estimation 

The Peclet number  is expected to be higher than 6 in karst conduits [Field 

and Nash, 1997] and indicates predominant advective transport when it is greater than 

100.  The aquifer dispersivity is generally reported as  and varies between 0.02 and 

250 meters depending on the scale of observation and type of aquifer (i.e. porous versus 

fractured) [Gelhar et al., 1992].  Since the drainable porosity  (or ) has a large range 

in karst aquifers [Baedke and Krothe, 2001], it is difficult to compare the calculated 

dispersivity values ( ) using KTM to the ones reported in literature ( ).  Therefore, 

the latter is possible if the drainable porosity  of the matrix or aquifer is known or 

simulated from flow models.   

As for the parameter estimation procedure, the conduit velocity  is a good 

choice of a non-fitted parameter because it can be initially estimated from the time to 

the breakthrough curve’s peak and the distance between the sink and spring resurgence.  

By initially fixing the conduit velocity , the model parameters , ,  and  are 

optimized using the nonlinear least-square fitting.  The process is repeated for different 

values of the conduit velocity until an acceptable goodness of fit is reached.  The flow 
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area  later gives a rough estimate of the conduit dimension by assuming a circular 

conduit of diameter .   

 

7.4. Model Applications 

The analytical transport model KTM is used to simulate the breakthrough 

curves of the following karst systems: the Dyers and Quarry springs [Field and Pinsky, 

2000], the Sagebach spring [Göppert and Goldscheider, 2008], the Olaorta spring 

[Morales et al., 2010] and the Villanueva del Rosario spring [Marín et al., 2015].  These 

experiments represent different field conditions, tracer quantities and conduit velocities.  

They all consist of an almost instantaneous release of tracer at a karst window or 

sinking location.   

 

7.4.1 Dyers and Quarry springs 

The Dyers Spring (Elizabethtown, Kentucky) test consists of releasing  

grams of Rhodamine WT dye into the karst window located  meters away from 

the spring while the Quarry Spring (Tennessee) tracer test involves an injection of 0.7 g 

of Uranine in a monitoring well located  meters away [Field and Pinsky, 2000].  

Four parameters are hereby fitted: , ,  and  with  being manually set.  The 

characteristic lengths for Dyers and Quarry are 1372 and 450 meters respectively.  The 

tracer test simulations are shown in Figure 33 and Figure 34.   

For Dyers, the optimized parameters are , , , 

 and the conduit velocity is .  A rough estimate of the 

conduit dimension is found from the area  as  and the aquifer dispersivity 

 is found equal to 0.066 m.  As for the Quarry Spring tracer test, the KTM 
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optimized parameters are , , ,  and 

.  Consequently, the aquifer dispersivity is equal to 0.16 meters with 

.  The recovery rates indicate that interface exchange is governed by 

advection for Dyers (62.5%) and by diffusion for Quarry (98%).  This also explains the 

long tailing of Quarry’s breakthrough curve as compared to the sharper recession of 

Dyer’s.   

Both springs’ breakthrough curves were previously fitted using a 

mobile/immobile model (MIM) and a combined physical/chemical non-equilibrium 

model (PCNE) [Field and Leij, 2014].  Yet, MIM and PCNE required seven and twelve 

parameters respectively in order to simulate Dyers’ breakthrough curve.  In comparison, 

KTM’s required a significantly less number of parameters to match their accuracy and 

adopted the more physical ADE approach instead of non-equilibrium solute 

partitioning.   
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Figure 33.  Observed vs. simulated Dyers Spring breakthrough curve.   
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Figure 34.  Observed vs. simulated Quarry Spring breakthrough curve.   

 

7.4.2 Sagebach spring 

A tracer test was conducted during low-flow and constant discharge conditions 

at a karst spring in the vicinity of the Hölloch cave, Switzerland [Göppert and 

Goldscheider, 2008].  Two hundred grams ( ) of Uranine were injected into the 

cave’s stream and recovered  downstream at the Sagebach spring.  

The recovery rate was 99.8%.   

Using the same fitting methodology outlined above, Sagebach’s optimized 

parameters are , ,  and .  The conduit 

velocity is .  As shown in Figure 35, the proposed KTM model is 

able to simulate the measured data with a perfect goodness of fit ( ) and 

is particularly capable of capturing the long tail of the breakthrough curve.  The 
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optimized area is within range of .  The  ratio and 

average conduit radius  result in an aquifer dispersivity of .   

Previously, Göppert and Goldscheider [2008] used the one-dimensional ADE 

model and the two-region non-equilibrium model 2RNE to fit Sagebach’s breakthrough 

curve with 2RNE being more successful in simulating the long tailing.  In contrast, the 

proposed KTM model follows the physical ADE approach, is able to link the exchange 

parameters to the matrix properties and has an equal performance to 2RNE’s.   

 

 

Figure 35.  Observed vs. simulated Sagebach spring breakthrough curve. 
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upstream of the spring.  The detailed hydrological and geological information is 

available in [Morales et al., 2007; Morales et al., 2010].  Several tracer tests were 

conducted in the area using lithium which is not present in natural waters and allows the 

generation of well-defined recovery curves.  A tortuosity factor of 1.3 is also assumed 

(i.e. ).   

KTM was able to simulate the resulting breakthrough curves of two 

independent tracer tests Olaorta Test 1 (91% recovery) and Olaorta Test 2  (86% 

recovery) as shown in Figure 36 and Figure 37 with a goodness of fit exceeding 99%.  

The following parameters were obtained for Test 1: , , 

 and  and Test 2: , ,  and 

.   

When two tracer tests are conducted, one can take advantage of the relationship 

 in order to determine which test exhibits a higher advective interface 

velocity.  Indeed,  is constant because it is a function of physical 

conduit/matrix parameters.  As a result, the test with a higher  ratio undergoes more 

advective exchange with the surrounding matrix.  For Tests 1 and 2, the  ratios were 

 and 0.627 respectively.  Therefore, more solute is leaving the conduit during 

Test 2 as compared to Test 1 which explains the lower recovery rate during Test 2 (i.e. 

86% vs. 91%).   
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Figure 36.  Observed vs. simulated Olaorta, Test 1 spring breakthrough curve. 
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Figure 37.  Observed vs. simulated Olaorta, Test 2 spring breakthrough curve. 

 

7.4.4 Villanueva del Rosario spring 

The Villanueva del Rosario spring is located nearly 30 km north of the city of 
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karst aquifers.  A detailed geological description of the site is available in Marín et al. 

[2015].  Several tracer tests were carried out with each tracer being released in a 

different swallow hole.  The purpose was to map underground connections in the 

aquifer and reduce the uncertainty regarding conduits’ lengths, sizes and locations 

(Figure 38).  A summary of input data is available in Table 8.   
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Figure 38.  Schematic representation of the Villanueva del Rosario Spring.  Tracers are 
released in swallow holes (P-arrows) at five locations.  Connections were proven 
between the designated karst windows and spring (i.e. dotted lines).   

 

Table 8.  Input data for Villanueva del Rosario Spring tracer tests 

 T-1 T-2 
Tracer Pyranine (P-1) Sulforhodamine-B (P-4) 
Distance to Spring 

 ( ) 
6,600 2,810 

Tracer Test Day May 2nd, 2011 May 2nd, 2011 
End of Injection 8:35 8:45 
Mass Injected ( ) 2 2 
Average Discharge 
at Spring ( ) 

925 925 

Recovery Rate ( ) 42.4 54.2 
 

KTM was able to simulate the breakthrough curves of two simultaneous tracer 

tests as shown in Figure 39 and Figure 40 with a goodness of fit exceeding 95%.  The 

following parameters were obtained for Sulforhodamine-B (T-1 released in P-1): 

, , , , and  and Pyranine (T-2 

released in P-4): , , ,  and 

.   



 
 

 
113 

Using the relationship , one can express the advective velocity 

in conduit P-1 (Pyranine) in function of the one in conduit P-4 (Sulforhodamine-B) 

while assuming constant matrix properties  and .  Therefore,  with 

.  The two advective velocities are nearly equal thus 

indicating similar hydraulic fluxes at the interface.  They also must be significant due to 

the low recovery rates at the spring (42.4% for P-1 and 54.2% for P-4).   

One observes though that the goodness of fit is herein lowered as compared to 

the other tracer tests especially in the recession period.  This is explained from the effect 

of the conduit velocity  variation during the flood conditions under which the two tests 

were carried out.  A better fit would thus be achieved by deriving a synthesized flow 

and transport model that simulates both discharge and breakthrough curves.   
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Figure 39.  Computed and measured concentrations for the Sulforhodamine-B tracer test 
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Figure 40.  Computed and measured concentrations for the Pyranine tracer test.   

 

7.5. Summary of Important Results 

The proposed KTM model’s key parameters and main simplifications were 

discussed.  The Dirac-type input pulse was found as a good approximation for short 

duration pulses while the semi-infinite aquifer simplification was successfully tested 

against the more complex finite aquifer solution.  The model was also compared to 

existing partitioning models in terms of its usefulness and physical meaning.  The 

model’s limitations were also discussed namely the constant conduit and aquifer 

velocities assumption.  Finally, KTM was successfully applied to simulate several real 

breakthrough curves while capturing their long tailing using physically meaningful 

parameters.  For all tests, the Péclet number was within the expected range for karst 

conduits and referred to a predominant advective transport.    
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CHAPTER 8 

CONCLUSIONS 

 

Simplified process-based flow and transport models capable of simulating the 

outflow of real karst aquifers were developed.  The models’ conceptual framework is 

physically sound and represents the different processes occurring in a karst system.  The 

models’ domain consists of a one-dimensional conduit embedded in a two-dimensional 

matrix with the two elements exchanging fluid and solute at their common interface.  

The important conclusions drawn from the models’ results and recommended future 

work are discussed below. 

 

8.1. Important Conclusions 

With respect to the flow models: 

1) The process-based approach allowed the derivation of computationally 

advantageous solutions that express the spring discharge in terms of 

recharge conditions (diffuse and concentrated), domain boundaries (conduit 

length and aquifer width), boundary conditions and physical properties of 

the system.   

2) All flow models can replicate the typical shape of a spring hydrograph that 

is characterized by a fast rising limb followed by a long recession curve.  

However, the pipe flow models simulate an almost instantaneous response 

to a recharge event while the open-channel models can simulate a pulse 

arrival delay.   
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3) An optimal parameter estimation method was proposed to relate the linear 

and nonlinear model parameters.  Hypothetical runs showed the 

effectiveness of this method in approximating the nonlinear numerical flow 

models with the computationally advantageous linear ones.   

4) The semi-infinite aquifer assumption was found as a good approximation of 

the more complex finite aquifer case.   

5) The flow models were able to simulate the response of the more complex 

three-dimensional dual-hydraulic models and are a function of more 

physically sound parameters than lumped or empirical models.   

6) The fully unbound pipe flow model was successfully applied to a sink and 

rise karst aquifer system subject to a concentrated recharge pulse.  The 

model was able to simulate the outflow of this karst system for long periods 

of time and thus showed its predicting capability. 

7) The open-channel flow model was used to simulate the outflow of a karst 

system subject to a diffuse aquifer recharge and another that consists of a 

sinking stream where delays were observed between upstream and 

downstream boundaries.   

 

With respect to the transport models: 

8) The process-based transport model expresses the tracer breakthrough curve 

in terms of the mass of tracer released and the physical properties of the 

system.  The parameters include the conduit velocity, Péclet number and 

advective/diffusive interface exchange parameters.   
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9) The transport model was effectively able to simulate real tracer 

breakthrough curves using the advection-diffusion equation rather than a 

partitioning approach.  However, a better interpretation of the aquifer 

dispersivity parameter can be achieved by knowing the drainable porosity 

of the aquifer.   

 

8.2. Future Work 

Recommended future work includes:  

8.2.1 Branched systems solutions 

In karst systems, underground conduit networks are often encountered [Perrin 

et al., 2007; Chen and Goldscheider, 2014].  However, the simulation of such systems 

is very challenging in the absence of information about conduits’ location and the 

relative contribution of each tributary.  A process-based approach to simulating 

branched conduit systems might prove useful especially for large systems where 

recharge heterogeneities might be encountered.  The branched solution will consist of 

conduit branches draining sub-catchments and connected to a main spring conduit.  This 

approach has been already proposed in a DC context by Cornaton and Perrochet [2002] 

while neglecting the contribution of diffuse recharge.  For a CDC approach, the flow in 

each branch will be a function of its own recharge and physical conditions including 

diameter, friction factor and matrix properties.  The number of parameters will increase 

as compared to the models presented herein but the solution will still be simpler than 

existing distributive models.  The latter can serve as a further refinement of the 

parameter values.   
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8.2.2 Matrix water levels simulation 

The aim of the proposed process-based flow models was to simulate a spring 

discharge given a concentrated or diffuse aquifer recharge as an input.  A better 

validation and calibration of the model is achieved by simulating the water levels in the 

adjoining matrix.  The expressions of matrix water levels can be easily derived by using 

the Laplace transform method introduced in this work: one only has to replace the 

obtained water levels ( ) into the solution of the aquifer flow equation (or linearized 

Boussinesq).   

 

8.2.3 Hydrological models 

The proposed flow models can be integrated into more complex hydrological 

ones that provide a better estimate of the recharge to groundwater term .  

Consequently, future research should focus on modeling the flow through the epikarst 

layer [e.g. Hartmann et al., 2012] and incorporating the results into the proposed 

models in order to achieve a better estimation of the parameters.   

 

8.2.4 Synthesized flow and transport modeling approach 

A synthesized flow and transport model can analyze spring hydrographs and 

breakthrough curves simultaneously if sufficient data is gathered from the field and 

aims on achieving a better estimation of model parameters.  The transport model will be 

a function of the non-constant velocities obtained from the associated flow model and 

will be able to handle bi-directional fluxes at the interface.   

In order to validate the synthesized model, field work should focus on 

conducting tracer tests during flood conditions.  Consequently, the effect of 
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conduit/aquifer exchange is analyzed by comparing simulated to monitored values at the 

spring (discharge and breakthrough curve) and observation wells (water levels and 

solute concentrations).  An extension of this work is to conduct tracer tests in 

pressurized and unpressurized karst conduits during flood conditions and study the 

effect of conduit flow hydraulics on solute transport.   
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APPENDIX A 
RECHARGE EXPRESSIONS 

 

The arbitrary recharge functions are defined as a linear relationship between 

two data points 

  

where  is the number of data points and ೙ ೙షభ

೙ ೙షభ

 for  and  for .   

The above arbitrary ( ) and piecewise ( ) recharge conditions are written in 

terms of the unit step function as 

 
Arbitrary 

 Piecewise 

 

Taking the Laplace transform on  for the above two equations, one gets 

బ ೙ ೔షభ

Arbitrary 

బ ೔

 Piecewise 

where  and  is a complex number.  

The expressions of  and  are replaced into the Laplace transform equations 

presented in this dissertation for model evaluation.   
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APPENDIX B 
FINITE DIFFERENCE EQUATIONS 

 

- Pipe Flow 

The finite difference solution to the nonlinear pipe flow model is hereby 

presented (i.e. Equations 2-19 and 2-7).  First, a fictitious time-dependent term is 

introduced and the nonlinear pipe flow equation (2-7) is rewritten as 

 

 

 

where  is a fictitious term that is introduced to fasten the convergence process.   

Using the Crank-Nicolson scheme, the finite difference solution to the above 

equation becomes 

 

 

 

where ೔శభ
೙

೔షభ
೙

೔

೔శభ
೙శభ

೔షభ
೙

೔
.  The  and  indices 

represent the flow in the  and  directions respectively.  Therefore,  is the cell 

discretization in the - direction and  in the -direction.   and  are the conduit 

and matrix heads respectively.  For stability, the Courant number must be satisfied such 

that మ .   
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- Matrix Flow 

The aquifer flow equation (2-19) is discretized using the Crank Nicolson 

scheme as 

	

 

- Open Channel Flow 

The channel flow equation is descritized using the MacCormack scheme which 

is an explicit, two-step predictor and corrector scheme.  It is second order accurate in 

space and time.  Forward finite differences are used to calculate the predictor step 

values and backward finite differences are utilized for the corrector step. 

The predictor step is given as follows 

   

 

where  and  are the conduit, matrix and time indices respectively.   

The value at the last node (  is calculated using the bacKWUard finite 

difference method 

 

೙ ೙ ೙ ೙

೙ ೙  
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The corrector step is 

 

 

 

 

The value at the current time step is the average of the corrector and previous 

time step values 
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