

AMERICAN UNIVERSITY OF BEIRUT

ON PARALLEL, DISTRIBUTED, AND HYBRID EVOLUTIONARY

ALGORITHMS FOR BLOCK MOTION ESTIMATION

by

MANAL KHALIL JALLOUL

A dissertation

submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture

at the American University of Beirut

Beirut, Lebanon

April 2016

AMERICAN UNIVERSITY OF BEIRUT

 DISSERTATION RELEASE FORM

 Jalloul Manal Khalil

Student Name: ___

 Last First Middle

 Master’s Thesis Master’s Project Doctoral Dissertation

 I authorize the American University of Beirut to: (a) reproduce hard or electronic copies of

my thesis, dissertation, or project; (b) include such copies in the archives and digital repositories of

the University; and (c) make freely available such copies to third parties for research or

educational purposes.

 I authorize the American University of Beirut, three years after the date of submitting

my dissertation, to: (a) reproduce hard or electronic copies of it; (b) include such copies in the

archives and digital repositories of the University; and (c) make freely available such copies to

third parties for research or educational purposes.

__

Signature Date

vi

ACKNOWLEDGMENTS

First and foremost, I would like thank Al-Mighty God, whose showers of blessings have

made me who I am today.

The deepest gratitude goes towards my parents and family for their love and support

throughout my life. Thank you for encouraging me in all my pursuits and inspiring me to follow

my dreams.

My greatest appreciation goes to Prof. Mohamad Adnan Al-Alaoui. He has been an

advisor, a mentor and a friend. His care and guidance made achieving this work possible. His zeal

towards the thesis progress considerably improved the quality of this work.

I would like to extend my thanks to my committee members for their constructive

feedback that helped enhancing the quality of this work. I would like to acknowledge Prof. Walid

Saad. He showed me support and guidance and provided constructive feedback in the game theory

part of the thesis. He was ready to answer any consultation or inquiry at any point in time.

I am also greatly thankful to the American University of Beirut Research Board (URB

fund) for the financial support that made this work possible.

I also like to acknowledge NVIDIA for their support in starting the GPU academic center

in AUB. This was the main motivation for me to delve into the area of parallel and GPU

programming.

I’m also greatly thankful to Dr. Mohammed Baydoun. His technical advice in GPUs and

CUDA programming has been very beneficial.

I would like to extend my thanks to all my friends and colleagues at AUB for their

constant support. Their encouraging words have kept me going when coffee had lost its

stimulating effect. My deepest gratitude goes to Dr. Ahmad El Hajj, Dr. Lina Al-Kanj, Dr. Dima

El-Khalil, Dr. Lise Safately, Dr. Rawad Assi, Dr. Jihad Fahs, and Dr. Hilal El Misilmani. Thank

you for your friendship and lovely memories.

Finally, I would to wholeheartedly thank my second half, my husband Dany, for his

overwhelming love, encouragement, and constant support. Last but not least, words fail to express

how fortunate and grateful I am to have two lovely daughters, Noor and Sama. You are the essence

of my life, the drive that makes me want to accomplish more. I dedicate this thesis to you.

vii

AN ABSTRACT OF THE THESIS OF

Manal Khalil Jalloul for Doctor of Philosophy

 Major: Electrical and Computer Engineering

Title: On Parallel, Distributed, and Hybrid Evolutionary Algorithms for Block Motion Estimation

Motion estimation (ME) is a common tool used in all video coding standards. Fast and

accurate algorithms are needed to target the real-time processing requirements of emerging

applications. On the other hand, in the hardware industry, there is great emphasis on High

Performance Computing (HPC) which is characterized by a shift to multi and many core systems.

The programming community has to embrace the new parallelism in order to take advantage of the

performance gains offered by the new technology. The block motion estimation (BME) problem is

classified as non-convex since the objective function is multimodal. Existing fast block matching

methods suffer from poor accuracy and are susceptible to being trapped into local optima on the

error surface. The collective intelligence enabled by the particle swarm optimization (PSO)

technique, however, was found effective in alleviating the local optima problem. Belonging to the

category of evolutionary algorithms, PSO is capable of handling non-differentiable, discontinuous

and multimodal objective functions. To this end, in this dissertation, several efficient and parallel

ME algorithms based on PSO are proposed. Several levels of parallelisms are introduced into the

ME process. First, parallelism between the macroblocks (MBs) of the frame is achieved through a

novel cooperative ME scheme based on a multi-swarm PSO model that performs ME in a

cooperative manner concurrently for all the MBs in the frame. Several strategies are incorporated

into the dynamics of the PSO algorithm to improve its motion estimation accuracy and enhance its

convergence speed including a novel initialization scheme, a fitness function history preservation

algorithm, and a dynamically varied maximum velocity. The multi-core and GPU

implementations of the proposed framework showed that the speedup provided is scalable with the

video resolution. Second, parallelism is introduced within the MB through two different

approaches based on distributed multi-agents systems. The problem of BME is first cast in a

non-cooperative game-theoretic setting and formulated as a potential game. To solve the game,

distributed sequential and simultaneous algorithms based on game-theoretic Best Response

Dynamics (BRD) and PSO are presented. Parallelism within the MB is also tackled using concepts

from diffusion adaptation. The distributed optimization of BME is formulated based on diffusion

protocols and a modified dynamic diffusion-based PSO algorithm is proposed to solve it.

Performance evaluations and multi-core implementations of these algorithms demonstrate the

merits of the presented schemes. Moreover, this dissertation also targets ME in high resolution

video where a hybrid PSO-genetic algorithm is proposed and evaluated.

viii

CONTENTS

 Page

ACKNOWLEDGEMENTS…………………………………………………………

vi

ABSTRACT……………………………………………………………………………....

 vii

LIST OF ILLUSTRATIONS…………………………………………………….….

 xiv

LIST OF TABLES……………………………………………………………………...

 xviii

Chapter

1. INTRODUCTION…………………………………………………… 1

 1.1 Video Coding…………………………………………………………………………. 1

 1.2 Motion Estimation…………………………………………………………………….. 4

 1.3 Principle of the Block Matching Algorithm………………………………………….. 6

1.3.1 The Exhaustive Search Algorithm………………………………………….. 7

1.3.2 Fast Block Matching Algorithms…………………………………………… 8

1.3.3 Evolutionary Algorithms for Block Motion Estimation……………………11

 1.4 Motivation…………………………………………………………………………… 13

1.4.1 Fast and Accurate BM algorithm………………………………………….. 13

1.4.2 Need for Distributed and Parallel BM Algorithms………………………... 14

1.4.3 Motion Estimation in High Resolution Video…………………………….. 15

 1.5 Problem Definition……………………………………………………………………16

 1.6 Thesis Contributions and Organization……………………………………………… 17

ix

2. A NOVEL COOPERATIVE MOTION ESTIMATION ALGORITHM

BASED ON PARTICLE SWARM OPTIMIZATION……………….. 21

 2.1 The General PSO Algorithm………………………………………………………… 22

 2.2 Proposed Cooperative Motion Estimation Algorithm Using PSO………………….. 24

2.2.1 Particle Initialization………………………………………………………. 25

2.2.2 First Stage of a Modified PSO Process……………………………………. 27

 2.2.2.1 Adaptively Varied Maximum Velocity…………………………..27

 2.2.2.2 Fitness Function History Preservation……………………………27

 2.2.2.3 Termination Conditions…………………………………………..29

2.2.3 Cooperation between Neighboring Swarms……………………………….. 30

2.2.4 Second Stage of a Modified PSO Process…………………………………. 31

 2.3 Parallel Implementation of the Proposed Algorithm………………………………… 31

2.3.1 Frame Partitioning Using Co-Distributed Arrays…………………………. 34

2.3.2 Parallel MB Processing Using Looping Over a Distributed Range

(for-drange)………………………………………………………………………. 35

2.3.3 SPMD Block………………………………………………………………. 35

2.3.4 Communication and Cooperation between the Labs Using labSendReceive

 36

 2.4 Simulation Results………………………………………………………………….. 37

2.4.1 Simulation Setup………………………………………………………….. 37

2.4.2 PSO Parameters…………………………………………………………… 39

2.4.3 Motion Estimation Quality………………………………………………… 41

2.4.4 Computational Complexity………………………………………………... 48

2.4.5 Parallel Performance………………………………………………………. 49

 2.4.5.1 Speedup…………………………………………………………..50

 2.4.5.2 Parallel Efficiency………………………………………………..52

 2.4.5.3 Granularity……………………………………………………….53

 2.4.5.4 Theoretical Analysis of Parallel Performance……………………54

 2.4.5.5 Comparison with Existing Parallel ME Algorithms……………...55

x

 2.5 Summary……………………………………………………………………………. 56

3. AGENT-BASED GAME THEORETIC MODEL FOR BLOCK

MOTION ESTIMATION AND ITS MULTICORE

IMPLEMENTATION…………………………………………. 58

 3.1 Game Theory………………………………………………………………………… 60

 3.2 The Proposed Game Theoretic Framework………………………………………….. 61

3.2.1 The Definition of the Game……………………………………………….. 61

 3.2.1.1 Global Objective Function……………………………………….62

 3.2.1.2 Agents……………………………………………………………63

 3.2.1.3 Utility Function…………………………………………………..64

 3.2.1.4 Action Set………………………………………………………...65

3.2.2 Modeling the Problem as an Exact Potential Game……………………….. 64

3.2.3 Learning Algorithm………………………………………………………... 66

 3.2.3.1 Best Response Dynamics………………………………………….

 3.3 Proposed Distributed Block Motion Estimation Scheme……………………………. 69

3.3.1 Description of the Proposed Distributed Algorithms……………………… 69

 3.3.1.1 Sequential Algorithm…………………………………………….70

 3.3.1.2 Simultaneous Algorithm…………………………………………74

3.3.1.3 Comparison between the Proposed Sequential and

Simultaneous Algorithms………………………………………………..77

3.3.1.4 Computational Complexity Analysis……………………………78

 3.4 Parallel implementation……………………………………………………………… 79

3.4.1 Parallel Agents Processing using Looping over a Distributed Range

(for-drange)………………………………………………………………………. 80

3.4.2 SPMD block……………………………………………………………….. 80

3.4.3 Inter-agent Communication Using labSendReceive………………………. 80

 3.5 Simulation Results…………………………………………………………………… 81

3.5.1 Experimental Setup………………………………………………………... 81

xi

3.5.2 Simulation Parameters…………………………………………………….. 82

3.5.3 Numerical Analysis Of Convergence……………………………………… 84

3.5.4 Motion Estimation Quality………………………………………………… 84

3.5.5 Computational Complexity………………………………………………... 91

3.5.6 Parallel Performance of the Proposed Simultaneous Algorithm………….. 93

 3.5.6.1 Speedup…………………………………………………………..94

 3.5.6.2 Parallel Efficiency………………………………………………..96

 3.5.6.3 Granularity……………………………………………………….96

 3.6 Summary…………………………………………………………………………….. 97

4. A DISTRIBUTED PARTICLE SWARM OPTIMIZATION

ALGORITHM USING THE STRATEGIES OF DIFFUSION

ADAPTATION………………………………………………………. 99

 4.1 Background…………………………………………………………………………. 100

4.1.1 Multi-Agent Systems……………………………………………………...100

4.1.2 Diffusion Adaptation……………………………………………………... 102

4.2 The Proposed Distributed Block Motion Estimation Algorithm Using PSO and

Diffusion Adaptation…………………………………………………………………… 104

4.2.1 Problem Formulation…………………………………………………….. 104

4.2.2 Proposed Diffusion PSO Block Motion Estimation Algorithm………….. 106

 4.2.2.1 Diffusion Step…………………………………………………..107

 4.2.2.2 Adaptation Step………………………………………………....108

4.2.3 Computational Complexity Analysis…………………………………… 110

 4.3 Parallel Implementation…………………………………………………………….. 111

 4.4 Simulation results……………………………………………………………………112

4.4.1 Experimental Setup…………………………………………………….. 112

4.4.2 Motion Estimation Quality……………………………………………... 113

xii

4.4.3 Computational Complexity…………………………………………….. 116

4.4.4 Parallel Performance……………………………………………………... 117

4.4.5 Comparison with the Proposed Simultaneous Game-Theoretic Algorithm 119

 4.5 Summary……………………………………………………………………………. 120

5. A NOVEL HYBRID DYNAMIC PARTICLE SWARM

OPTIMIZATION ALGORITHM FOR MOTION ESTIMATION IN

HIGH RESOLUTION VIDEO………………………………………. 122

 5.1 Basic Concepts of the GA…………………………………………………………... 123

 5.2 Motion Estimation in HD Video: Stagnation of PSO Particles……………………. 124

 5.3 Proposed Hybrid Motion Estimation Algorithm…………………………………….127

5.3.1 Selection………………………………………………………………….. 128

5.3.2 Crossover…………………………………………………………………. 129

5.3.3 Mutation………………………………………………………………….. 130

 5.4 Simulation Results and Performance Analysis……………………………………... 133

5.4.1 Search Precision………………………………………………………….. 133

5.4.2 Computational Complexity………………………………………………. 135

 5.5 Summary……………………………………………………………………………. 136

6. IMPLEMENTATION ON THE GPU…………………………….. 137

 6.1 The GPU……………………………………………………………………………. 138

 6.2 CUDA Programming Model………………………………………………………... 139

xiii

6.2.1 Grid, Blocks and Threads……………………………………………….. 139

6.2.2 CUDA Memory Model…………………………………………………... 140

 6.3 Proposed Parallel Implementation of the Cooperative PSO Algorithm Using CUDA142

6.3.1 Transferring Frames from the CPU to the GPU…………………………. 142

6.3.2 Setting up Execution Grid Parameters…………………………………… 144

6.3.3 Proposed Kernel for the Cooperative PSO ME Algorithm……………… 145

 6.4 Simulation Results………………………………………………………………….. 147

 6.5 Summary……………………………………………………………………………. 151

7. CONCLUSION……………………………………………………. 152

 7.1 Contributions……………………………………………………………………….. 152

 7.2 Future Work and Possible Extensions……………………………………………… 154

7.2.1 A Unified Framework for Block Motion Estimation with Inter and Intra Block

Parallelism………………………………………………………………………. 155

7.2.2 Macroblock Overlapping………………………………………………….155

7.2.3 Realistic Motion Model…………………………………………………... 156

7.2.4 Adaptively Weighted SAD Measure……………………………………... 157

7.2.5 Incorporating Color Information…………………………………………. 158

7.2.6 Deep Learning……………………………………………………………. 158

BIBLIOGRAPHY……………………….……………………………161

xiv

ILLUSTRATIONS

Figure Page

1.1 Applications of Video Coding .. 2

1.2 Chronology of Video Coding Standards [7] ... 3

1.3 Generic Video Encoder’s Block Diagram .. 4

1.4 Block motion estimation ... 7

2.1 Initialization of the positions of the particles of the current MB in frame t using the motion

vectors of collocated MB and its eight neighboring MBs in frame (t-1). 26

2.2 Cooperation with neighboring Swarms. In step 1, particles are sorted according to their fitness

values. In step 2, the first 8 worst particles are replaced with new ones with positions initialized

with the Pg values of neighboring MBs. ... 31

2.3 Flow Chart of the proposed parallel implementation. .. 33

2.4 Frame partitioning among the processing cores. .. 35

2.5 Test video sequences... 38

2.6 Motion estimation accuracy measured in PSNR for “Soccer, QCIF” sequence. 42

2.7 Motion estimation accuracy interms of PSNR for “Bus, CIF” sequence. 43

2.8 Motion estimation accuracy in terms of PSNR for “Tennis, CIF” sequence.......................... 43

2.9 Motion estimation accuracy interms of PSNR for “Stefan, CIF” sequence. 44

2.10 Motion estimation accuracy interms of PSNR for “Foreman, CIF” sequence. 44

2.11 Motion estimation accuracy interms of PSNR for “Container, CIF” sequence. 45

2.12 Motion estimation accuracy interms of PSNR for “RaceHorses” sequence......................... 45

2.13 Motion estimation accuracy interms of PSNR for “Parkrun” sequence. 46

2.14 The reconstructed images of the fifth frame of RaceHorses by using different algorithms. 47

2.15 Speedup achieved by the proposed parallel implementation on different number of cores. 52

3.1 Macroblock decomposition into sub-blocks. .. 62

xv

3.2 Neighborhood graph of agents. ... 63

3.3 Communication step in the sequential algorithm where agent k receives updated information

about the actions of the causal agents in its neighboring set. ... 71

3.4 Initialization of particles positions of a given MB.. 72

3.5 Communication step in the simultaneous algorithm where each agent broadcasts information

about its current action to the agents in its neighboring set. ... 75

3.6 Motion estimation quality measured in PSNR for “Soccer, QCIF” sequence. 87

3.7 Motion estimation quality measured in PSNR for “Bus,CIF” sequence. 87

3.8 Motion estimation quality measured in PSNR for “Tennis, CIF” sequence. 88

3.9 Motion estimation quality measured in PSNR for “Stefan, CIF” sequence 88

3.10 Motion estimation quality measured in PSNR for “Forman, CIF” sequence 89

3.11 Motion estimation quality measured in PSNR for “Container, CIF” sequence 89

3.12 Motion estimation quality measured in PSNR for “Racehorses, 480p” sequence 90

3.13 Motion estimation quality measured in PSNR for “Parkrun, 720p” sequence 90

3.14 Speedup achieved by the parallel implementation of the proposed simultaneous algorithm for

different values of K ... 96

4.1 Proposed PSO Diffusion Adaptation Model ... 107

4.2 Motion estimation accuracy measured in PSNR for “Soccer QCIF” sequence. 114

4.3 Motion estimation accuracy measured in PSNR for “Bus CIF” sequence. 115

4.4 Motion estimation accuracy measured in PSNR for “RaceHorses 480p” sequence. 115

4.5 Motion estimation accuracy measured in PSNR for “Parkrun” sequence. 116

4.6 Speedup achieved by the parallel implementation of the proposed diffusion-PSO algorithm

... 119

5.1 Average PSNR values for the four sequences using ES and PSO [52] using different

resolutions. .. 126

5.2 3D plot of the MSE over the entire search area of a block from the Parkrun sequence. 127

xvi

5.3 Flow of the Proposed Hybrid PSO-GA algorithm .. 132

5.4 Average PSNR values for the first 100 frames of the Parkrun sequence in the 720p resolution.

... 134

5.5 Average PSNR values for the first 100 frames of the Mobcal sequence in the 720p resolution.

... 135

6.1 Example of an Execution Grid .. 140

6.2 CUDA memory model .. 141

6.3 Parallel model of the proposed cooperative PSO algorithm on the GPU 147

6.4 Comparison of the speedup achieved by the GPU implementations of the proposed cooperative

PSO algorithm and ES……….………………………………………………………………….152

xvii

TABLES

Table Page

1.1 List of thesis publications ... 20

2.1 Pseudo code of the first stage of the proposed PSO process .. 29

2.2 Test Sequences Used in the Simulations .. 39

2.3 Motion estimation quality in terms of PSNR of the proposed approach as compared to existing

techniques ... 42

2.4 Comparison of the average number of fitness function evaluations per block for various

algorithms based on the first 100 frames of the video sequences ... 49

2.5 Parallel performance of the proposed algorithm using Matlab PCT 50

2.6 Average number of fitness function evaluations per lab for a given frame based on the first 100

frames of each sequence ... 56

3.1 BRD Algorithm ... 68

3.2 Pseudocode of the proposed sequential ME algorithm ... 74

3.3 Pseudo code of the proposed simultaneous ME algorithm ... 77

3.4 Pseudo code of the parallel implementation of the proposed simultaneous me algorithm using

Matlab ... 81

3.5 Empirical Convergence Analysis of the sequential BRD algorithm in terms of the average

number of BR rounds needed ... 84

3.6 Motion estimation quality in terms of PSNR of the proposed sequential and simultaneous

algorithms for different values of K ... 86

3.7 Motion estimation quality in terms of PSNR of the proposed Algorithms as compared to

existing techniques .. 86

3.8 Comparison of the average number of fitness function evaluations per MB for the proposed

sequential and simultaneous algorithms for different values of K ... 92

3.9 Comparison of the average number of fitness function evaluations per MB for various

algorithms based on the first 100 frames of the video sequences ... 92

xviii

3.10 Parallel performance of the proposed Simultaneous algorithm using Matlab PCT for K = 4
... 93

3.11 Parallel performance of the proposed Simultaneous algorithm using Matlab PCT for K = 16
... 94

4.1 Pseudo code of the proposed diffusion-PSO algorithm .. 110

4.2 Pseudo code of the parallel implementation of the proposed Diffusion-PSO algorithm using

MATLAB .. 112

4.3 Motion estimation quality in terms of PSNR of the proposed Diffusion-PSO algorithm as

compared to existing techniques ... 114

4.4 Comparison of the average number of fitness function evaluations per block of the proposed

Diffusion-PSO algorithm based on the first 100 frames of the video sequences 117

4.5 Parallel performance of the proposed diffusion-PSO algorithm using MATLAB PCT 118

5.1 Improvements in motion estimation quality interms of PSNR over the FS algorithm of the

proposed hybrid PSO-GA algorithm as compared to existing techniques. 134

5.2 Average number of fitness function evaluations per MB for the proposed hybrid algorithm

based on the first 100 frames of each sequence. ... 136

6.1 CUDA code for transferring frames from CPU to the GPU ... 144

6.2 CUDA code for defining parameters of the proposed GPU implementation 148

6.3 Features of Tesla C2050 ... 150

6.4 Parallel degree of the proposed cooperative-PSO algorithm for the different video formats 151

6.5 Performance of the proposed parallel implementation on Tesla C2050…………………… 150

6.6 Achieved frame rate in fps for the GPU implementations of the proposed approach and ES..152

file:///F:/H264/PHD%20Thesis/Final%20Thesis%20Document/Thesis/thesis7.docx%23_Toc446675300

1

CHAPTER 1

INTRODUCTION

In the 21st century, the modern society has made itself into the global information age in

which images and videos can be found everywhere in people’s daily life. Nearly over 2.6 million

hours of video are uploaded to YouTube each month [1]. Also, the resolution of video has grown

dramatically from 100x100 in the 1960s to around 8192x4320 for video nowadays. As a result, the

size of raw digital source data can be so tremendous that enormous resources are required for

storage and transmission. For example, the size of a 150-minute color movie with 30 frames per

second and 720x480 resolution is as large as 280 GB without compression, not to mention the

situation when the movie needs to be transmitted through the Internet whose bandwidth can be

lower than 10 Mbit/s. In light of this, digital video compression technology is a necessity even

though computer power, storage, and the network bandwidth have increased significantly.

1.1 Video Coding

Today, video coding has become the central technology in a wide range of applications,

as shown in Fig. 1.1. Some of these include digital TV, DVD, Internet streaming video, video

conferencing, distance learning, surveillance, and security.

2

Figure 1.1 Applications of Video Coding

Video coding standards have evolved primarily through the development of the

well-known ITU-T and ISO/IEC standards. The ITU-T produced H.261 [3] and H.263 [4],

ISO/IEC produced MPEG-1 (ISO/IEC JTCl/SC29/WG11, December 1991) and MPEG-4 Visual,

and the two organizations jointly produced the H.262/MPEG-2 [2] Video and H.264/MPEG-4 [5]

AVC standards. These two organizations have been working together in a partnership known as

the Joint Collaborative Team on Video Coding (JCT-VC) to produce the HEVC, the High

Efficiency Video Coding standard, which is the most recent video coding standard. The first

edition of the HEVC standard was finalized in January 2013[6]. Fig. 1.2 shows the chronology of

video coding standards [7].

3

Figure 1.2 Chronology of Video Coding Standards [7]

Inter-prediction motion estimation is a common tool used in all video coding standards.

The H.264/MPEG-4 AVC video coding standard and the recent HEVC standard employ the same

hybrid approach to achieve high compression performance.

Fig. 1.3 shows a block diagram of a generic video encoder [7]. Motion-estimation is used

to find motion of macro-blocks using motion vectors to reduce temporal redundancies among

input frames. Later, transform (mostly Discrete Cosine Transform: DCT) is performed on the

motion-compensated prediction difference frames for de-correlation of prediction error. The

prediction error is later quantized as per input bit-rate requirements. The quantized DCT

coefficients, motion vectors, and side information are entropy coded using variable length codes

(VLC’s). The reconstruction path in encoder consists of inverse transform, quantization, loop filter

and motion compensation to mimic operation on decoder side.

4

Figure 1.3 Generic Video Encoder’s Block Diagram

Inter-prediction motion estimation is considered the most computationally intensive

feature of the coding process. It represents about 80% of the total computational complexity of

current video coders [8].

1.2 Motion Estimation

Motion Estimation (ME) is an important part of any video coding system since it can

achieve significant compression by exploiting the temporal redundancy that commonly exists in a

video sequence. There exist two basic approaches to motion estimation which are pixel-based

motion estimation, that include parametric based models [9], optical flow [10], and pel-recursive

techniques [11], and block-based motion estimation. The pixel-based motion estimation approach

5

seeks to determine motion vectors for every pixel in the image. This works on the fundamental

assumption of brightness constancy, that is, the intensity of a pixel remains constant when it is

displaced. However, no unique match for a pixel in the reference frame is found in the direction

normal to the intensity gradient. It is for this reason that an additional constraint is also introduced

in terms of the smoothness of velocity (or displacement) vectors in the neighborhood. The

smoothness constraint makes the algorithm interactive and requires excessively large computation

time, making it unsuitable for practical and real-time implementation [12].An alternative and

faster approach is the block-based motion estimation (BM). In this method, the candidate frame is

divided into non-overlapping blocks. It is assumed that all the pixels within a block have the same

motion activity and one motion vector is estimated for each block.BM seems to be the most

popular technique due to its effectiveness and simplicity for both software and hardware

implementations [13]. In order to reduce the computational complexity in ME, many BM

algorithms have been proposed and employed at implementations for several video compression

standards.

The effectiveness of compression techniques that use block-based motion compensation

depends on the extent to which the following assumptions hold:

• The illumination is uniform along motion trajectories.

• The problems due to uncovered areas are neglected.

For the first assumption it neglects the problem of illumination change over time, which

includes optical flow but does not correspond to any motion. The second assumption refers to the

uncovered background problem. Basically, for the area of an uncovered background in the

reference frame, no optical flow can be found in the reference frame. Although these assumptions

do not always hold for all real-world video sequences, they continue to be used as the basis of

6

many motion estimation techniques.

1.3 Principle of the Block Matching Algorithm

Figure 1.4 illustrates the process of the block-matching algorithm. In a typical BM

algorithm, the current frame of an image sequence 𝐼𝑡 is divided into non-overlapping

macroblocks (MB) of N × N pixels, each of which consists of luminance and chrominance blocks.

Usually, for coding efficiency, motion estimation is performed only on the luminance block. For

each template luminance block in the current frame, the best matched block within a search

window (S) of size (2W + 1) × (2W + 1) in the previous frame 𝐼𝑡−1is determined, where

Wis the maximum allowed displacement. The position difference between a template block in the

current frame and the best matched block in the previous frame is called the motion vector (MV).

In a typical inter-frame coder, the input frame is subtracted from the prediction of the reference

frame. Consequently, the motion vector and the resulting error can be transmitted instead of the

original luminance block; thus inter-frame redundancy is removed and data compression is

achieved. At receiver end, the decoder builds the frame difference signal from the received data

and adds it to the reconstructed reference frames. The summation gives an exact replica of the

current frame. The better the prediction the smaller the error signal and hence the transmission bit

rate.

7

Figure 1.4 Block motion estimation

The most well-known criterion for BM algorithms is the sum of absolute differences

(SAD). It is defined in Eq. (1.1) considering a template MB at position (x, y) in the current frame

and the candidate MB at position (𝑥 + 𝑢̂, 𝑦 + 𝑣) in the previous frame𝐼𝑡−1:

𝑆𝐴𝐷(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|,𝑁−1
𝑖=0

𝑁−1
𝑗=0 (1.1)

where 𝑔𝑡(.) is the gray value of a pixel in the current frame 𝐼𝑡 and 𝑔𝑡−1(.) is the gray level of a

pixel in the previous frame𝐼𝑡−1. Therefore, the MV 𝑤 = (u,  v)is defined as follows:

𝑤 = (𝑢, 𝑣) = 𝑎𝑟𝑔(𝑢,𝑣)∈𝑆 min 𝑆𝐴𝐷(𝑢̂, 𝑣), (1.2)

where

𝑆 = {(𝑢̂, 𝑣)| − 𝑊 ≤ 𝑢̂, 𝑣 ≤ 𝑊 𝑎𝑛𝑑 (𝑥 + 𝑢̂, 𝑦 + 𝑣)𝑖𝑠 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑝𝑖𝑥𝑒𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝐼𝑡−1}.

1.3.1 The Exhaustive Search Algorithm

In the context of BM algorithms, the Exhaustive Search (ES) algorithm is the most robust

8

and accurate method to find the MV. It tests all possible candidate blocks from 𝐼𝑡−1within the

search area to find the block with the minimum SAD. For the maximum displacement of W, the

FSA requires (2𝑊 + 1)2search points. For instance, if the maximum displacement W is ± 7, the

total search-points are 225. Each SAD calculation requires 2N2additions and the total number of

additions for the ES to match a 16 × 16 block is 130,560. Such computational requirement makes

the application of ES difficult for real time tasks.

1.3.2 Fast Block Matching Algorithms

Many fast search algorithms have been proposed to reduce the computational complexity

of ES while retaining similar prediction quality. All of them make use of the quadrant monotonic

model [14]. The quadrant monotonic model assumes that the value of the distortion function

increases as the distance from the point of minimum distortion increases. Therefore, not only the

candidate blocks close to the optimal block better match than those far from it, but also the value of

the distortion function is a function of the distance from the optimal position. Thus, the quadrant

monotonic assumption is a special case of the principle of locality. The quadrant monotonic

assumption allows for the development of suboptimal algorithms that examine only some of the

candidate blocks in the search area. In addition, they use the values of the distortion function to

guide the search toward a good match. As the entire candidate blocks are not examined, the match

found might not be the best available.

Existing fast BM algorithms were designed using the following three techniques: (1)

using a fixed pattern: the search operation is conducted over a fixed subset of the total search

window. The Three Step Search (TSS) [15], the New Three Step Search (NTSS) [16], the Simple

and Efficient TSS (SES) [17], the Four Step Search (4SS) [18], the Diamond Search (DS) [19],the

9

cross-diamond search (CDS) method [20], and the Hexagon-based search [21] all represent some

of its well-known examples. Although such approaches have been algorithmically considered as

the fastest, they are not able to eventually match the dynamic motion content, sometimes

delivering false motion vectors (image distortions). These algorithms reduce the computational

complexity with negligible loss of image quality only when the motions matched the pattern well;

otherwise, the image quality will decrease.(2) Reducing the search points: the algorithm chooses

as search points only those locations that iteratively minimize the error-function (SAD values).

This category includes the Adaptive Rood Pattern Search (ARPS) [22], the Fast Block Matching

Using Prediction (FBMAUPR) [23], the Block-based Gradient Descent Search (BBGD) [24] and

the Neighborhood Elimination algorithm (NE) [25]. Such approaches assume that the

error-function behaves monotonically, holding well for slow-moving sequences but failing for

other kind of movements in video sequences [26], making the algorithm prone to get trapped into

local minima. (3) Decreasing the computational overhead for every search point: the matching cost

(SAD operation) is replaced by a partial or a simplified version that features less complexity. The

New pixel-Decimation (ND) [27] and the Successive Elimination Algorithm [28] assume that all

pixels within each block, move by the same finite distance and a good estimate of the motion can

be obtained through only a fraction of the pixel pool. However, since only a fraction of pixels

enters into the matching computation, the use of such regular sub-sampling techniques can

seriously affect the accuracy of the detection of motion vectors due to noise or illumination

changes. Another popular group of BM algorithms employ spatio-temporal correlation by using

neighboring blocks in the spatial and temporal domain in order to predict MVs. The main

advantage of such algorithms is that they alleviate the local minimum problem to some extent as

the new initial or predicted search center is usually closer to the global minimum and therefore the

10

chance of getting trapped in a local minimum decreases. This idea has been incorporated by many

fast-block motion estimation algorithms such as the Unsymmetrical Multi-Hexagon-grid search

(UMHexagonS) [29]. However, the information delivered by the neighboring blocks occasionally

conduces to false initial search points producing distorted motion vectors. Such problem is

typically caused by the movement of very small objects contained in the image sequences [30].The

UMHexagonS [29] algorithm attempt to use many search patterns, has achieved both fast speed

and good rate-distortion performance. As a result, it was adopted in H.264/AVC reference

software JM. Although uneven search patterns are used to meet the assumption that motion is more

horizontal than vertical, it cannot adaptively choose the intensive search area for irregular motions.

To tackle this drawback, Predictive Intensive Direction Searching (PIDS) algorithm [31] was

developed. In PIDS, the correlation of predicted MV and optimal MV are studied. On the basis of

MV prediction information, the area with high correlation is intensively searched, while other

areas are coarsely searched. PIDS successfully speeds up the process compared to UMHexagonS.

However, this algorithm still searches each direction exhaustively, which may cause searching

resource waste. In [32], a novel Predictive Priority Region Search (PPRS) algorithm that performs

adaptively search indirection and locality regions was proposed. In this proposed algorithm, the

search window is divided by 8 direction and several octagon grids. These regions are then

selectively searched by exploiting the MV correlation characteristics of the previous encoded

frame. Other FME algorithms proposed in the literature include Motion adaptive search (MAS)

[33] which utilize the motion activity information to adjust the search strategy, Variable Step

Search (VSS) algorithm [34] which employs correlation between neighboring motion vectors to

determine motion search range, and the Multi-Path Search (MPS) algorithm [35] in which all the

eight neighbors around the origin of the search window are used to find candidate points. In

11

addition to the above, several high efficiency algorithms were presented in the literature for ME.

These algorithms significantly reduce the number of checking points examined while retaining the

video quality. These techniques accomplish this by initially considering several highly likely

predictors, introducing very reliable early-stopping criteria to terminate the search at any checking

point, and using very efficient checking patterns for optimizing and improving the search even

further. These algorithms include the Motion Vector Field Adaptive Search Technique

(MVFAST) [36], the Predictive Motion Vector Field Adaptive Search Technique (PMVFAST)

[38], the Advanced Predictive Diamond Zonal Search (APDZS) [38], and the Enhanced Predictive

Zonal Search (EPZS) [39].

1.3.3 Evolutionary Algorithms for Block Motion Estimation

Block matching motion estimation can be formulated into an optimization problem where

one searches for the optimal matching block within a search region which minimizes a certain

block distortion measure (BDM), which is usually taken as the sum of absolute difference. Such a

problem is classified as non-convex since the objective function is multimodal and has many local

minima. The above fast block matching methods suffer from poor accuracy since they dictate that

only a very small fraction of the entire set of candidate blocks be examined, thereby making the

search susceptible to being trapped into local optima on the error surface. The underlying theory of

these search engines comes from the idea that the block distortion measure reduces monotonously

when search points move from the farthest point toward the optimal point. In practice, applications

do not always completely obey the monotonous rule. Therefore, these fast search engines are

easily trapped into the local optimal solutions and miss the global optimal solution. In order to

escape from the problem of local minima, several approaches were recently presented in the

12

literature to use modern global optimization algorithms to solve the problem of motion estimation.

In [40, 41], the Genetic Algorithm (GA) has been considered for motion estimation. The proposed

algorithms, however, tend to be complex and suffer from a high computational burden. In [42], the

Simulated Annealing (SA) concept is employed to control the searching process and to adaptively

choose the intensive search region. In addition, artificial bee colony optimization (ABC) [43] and

differential evolution (DE) [44] were also proposed for motion estimation.

Recently, there have been some attempts in the literature to apply Particle Swarm

Optimization (PSO) to solve the problem of ME [45-52]. The PSO-based motion estimation

methods introduced in [45-49] either have higher computational complexity [45] or have lower

estimation accuracy [46-48, 51] than several existing fast search methods, such as the three-step

search (TSS) and diamond search(DS) method. For example, in [47], a method called zero-motion

pre-judgment was applied to PSO based motion estimation to reduce the computational

complexity. However, this fast method caused a significant degradation in motion estimation

accuracy. In [45], a parallel PSO method was applied to block-based motion estimation to reduce

the computational cost, albeit at the cost of substantially lowered estimation accuracy. Moreover,

the simulation results reported in [48] were too limited to demonstrate the suitability and

effectiveness of the PSO method for block-based motion estimation. In [51], a pattern-based PSO

approach was proposed for block motion estimation. To speed up the conventional PSO, the

algorithm presented in [51] selects the initial position of the particles in a fixed pattern rather than

randomly as in the conventional PSO scheme. PSO particles are initialized in a square or a

diamond pattern around the center. In [52], the standard PSO algorithm was modified to meet the

stringent constraint of low computational complexity while maintaining high motion estimation

accuracy. This is done by employing several strategies to speed up the motion estimation process

13

and gave high motion estimation accuracy as compared to 4SS, DS, and CDS. This algorithm tries

to improve the speed of convergence of the PSO iterations by choosing, as initial positions of the

particles, the MVs of adjacent causal blocks in the frame as well as the (0,0) MV.

1.4 Motivation

Motion estimation is a common tool used in all video coding standards. Fast and accurate

algorithms are needed to target the real-time processing requirements of emerging applications. As

was shown in section, existing techniques have several drawbacks. The main focus of this PhD

thesis work is to develop efficient motion estimation algorithms that overcome the drawbacks of

existing approaches. The motivation for this work can be summarized by the following points:

1.4.1 Fast and Accurate BM algorithm

Designing block matching algorithms that are both fast and accurate presents a challenge.

We have seen that existing fast BM algorithms are susceptible to being trapped into local optima

on the error surface. The collective intelligence enabled by the particle swarm optimization (PSO)

technique, however, was found effective in alleviating local optima problem suffered typically by

existing very fast block matching methods [45-52]. The PSO technique was introduced in [53, 54]

as a robust stochastic optimization technique based on a social-psychological model of social

influence and social learning [55, 56]. Belonging to the category of swarm intelligence methods,

PSO is a population-based technique inspired by the social behavior and movement dynamics of

flocks of birds, schools of fish, and herds of animals adapting to their environment. In PSO, a

population of candidate solutions to the optimization problem, with their initial locations being

randomly chosen in a search space, discovers optimal regions of the space through a process of

14

individuals’ emulation of the successes of their neighbors. The available PSO-based motion

estimation schemes found in the literature [45-52] suffer from several drawbacks. In video

sequences, there is a high temporal correlation between the blocks of adjacent frames as well as a

high spatial correlation between adjacent blocks of the same frame. Only spatial correlation is

exploited in available PSO-based ME schemes [52] which use the found motion vectors of

adjacent causal blocks for initializing the PSO particles of the current block. The PSO iterations,

however, can achieve faster convergence if we exploit the temporal correlation with the collocated

blocks in the adjacent frame as well. Moreover, within a video frame, motion is smooth and

continuous which means that the estimated motion vectors between adjacent blocks are required to

be correlated. In existing schemes, except for initialization, the PSO motion search is done

separately for each block and no cooperation between adjacent blocks is allowed. Cooperation and

communication between the blocks during the PSO process can ensure that the resulting estimated

motion vectors of neighboring blocks are correlated. It can also speedup the convergence of PSO

since the swarm of a given block can enhance its particles based on the knowledge received from

adjacent blocks. In conclusion, there are plenty of strategies that can be incorporated into the

dynamics of the PSO algorithm to improve its motion estimation accuracy and enhance its

convergence speed.

1.4.2 Need for Distributed and Parallel BM Algorithms

Due to heavy computation demands of video coding, parallel implementation of the basic

operations of this computation is necessary for satisfying the real time constraints usually imposed

in multimedia applications. Moreover, the High Performance Computing (HPC) industry is

marked by a relentless pursuit of ever greater levels of performance, driven by the never-ending

15

race toward scientific advancement. The march forward is often steady, as successive generations

of technologies deliver incremental performance benefits over each previous version. HPC is now

in the early stages of such a revolution. Single-core processors have given way to

multi-core/many-core machine architectures, graphics processing units (GPU), and

supercomputers. End users are still searching for the most effective ways to use them efficiently.

This requires a change in the programming approach to develop ME algorithms with high

parallelism in order to take advantage of the high speedup provided by the available hardware. In

existing motion estimation algorithms, the use of previous macroblocks in the same frame for

encoding the current macroblock makes ME an inherently sequential procedure, at the MB level,

limiting the degree of parallelism that can be achieved. Effective techniques are needed to break

the dependencies between the MBs in the frame without compromising the estimation quality. On

the other hand, existing PSO-based BM algorithms [46-52] use centralized sequential processing

within the MB. A central processor is needed to coordinate the particles of the swarm whose

actions are updated in a sequential manner. Such a centralized approach hinders parallelism within

the MB. Distributed PSO algorithms need to be explored for motion estimation that can achieve

parallelism within the MB. In summary, novel BM algorithms are needed to achieve multi-level

parallelism: parallelism within the MB as well as parallelism between the MBs in a frame.

1.4.3 Motion Estimation in High Resolution Video

Video resolution has witnessed a tremendous evolution. The majority of published

evolutionary ME search algorithms only considers low resolution videos, as QCIF and CIF, in its

experiments. However, the quality results of the ME algorithms can significantly change with the

increasing of the video resolution. For low resolution videos, the quality results for ES and other

16

algorithms are very close. The great amount of pixels in high definition videos and the increase in

the search area lead to an increase in the density of local minima on the error surface. This may

lead BM algorithms to choose, more frequently, local minima as the best matching. Thus, the

quality losses (in comparison with ES) are significant in this scenario. Techniques to avoid local

minima falls in high resolution video must be explored to enhance the video quality without a

significant increase in the ME computational complexity.

This thesis work follows a multidisciplinary approach by exploiting results from

evolutionary optimization, game theory, diffusion adaptation in multi-agent networks, and parallel

computing. The BM estimation problem is formulated as a non-convex optimization problem. Due

to the non-convexity of the problem, evolutionary algorithms based on PSO are proposed to solve

it. Game theory and diffusion adaptation are used to cast the problem in a distributed multi-agent

framework and propose effective parallel algorithms to solve it. Concepts from the field of

parallel computing provided parallelization strategies that are employed for developing the

proposed parallel algorithms and their implementations.

1.5 Problem Definition

The main target of this thesis is to propose efficient ME algorithms with high accuracy

and low computational complexity. PSO is an evolutionary algorithm that has shown promising

results in the problem of block motion estimation. Efficient strategies are needed to enhance its

performance. Moreover, the designed PSO-based ME algorithms should be inherently parallel.

Several levels of parallelism need to be explored. Finally, novel algorithms with enhanced

strategies need to be investigated to target HR video.

17

1.6 Thesis Contributions and Organization

In this section, we present the different thesis contributions and the associated chapters in

the dissertation.

In Chapter 2, a cooperative motion estimation (ME) scheme using a modified Particle

Swarm Optimization (PSO) algorithm is presented. The proposed algorithm is based on a

multi-swarm PSO model where a swarm of PSO particles is defined for each macroblock (MB) in

the frame. Motion Estimation is then performed in a cooperative manner concurrently for all the

MBs in the frame. Cooperation between neighboring MBs during the motion estimation process is

allowed through a communication step to exchange information about the motion vectors found so

far in the estimation process. This synergic relationship between the swarms of adjacent MBs

allows refining the motion search and leads to both a faster convergence of the PSO process and an

improvement in the resulting motion vectors. Several techniques are also proposed to improve the

search capacity and computational complexity of the PSO iterations. A novel PSO initialization

scheme that exploits the existing temporal correlation is proposed to remove dependency between

adjacent MBs. A fitness function history preservation mechanism is also presented to prevent

redundant repeated calculations of the fitness function of a given search point by the PSO particles

which dramatically decreases the computational complexity. The proposed scheme exhibits a high

level of data parallelism since it is capable of performing motion estimation for all the MBs of the

frame in parallel rather than serially. As a result, the presented algorithm is amenable to parallel

processing techniques. In this chapter, a multicore implementation of the proposed algorithm is

performed using the MATLAB® Parallel Computing Toolbox™ (PCT). Extensive simulations are

performed to analyze the performance of the presented algorithm and its multicore

implementation.

Chapter 3 introduces a novel parallel framework to speed up the BME process. This is

18

done by introducing a novel level of parallelism within the MB. The problem of BME is cast in a

non-cooperative game-theoretic setting and a distributed multi-agent system is employed to solve

the problem. First, a given MB is divided into subblocks and an agent is defined for each subblock.

Then, the problem is formulated as a Consensus game and our approximation of the global utility

function for the MB is defined. Building on this, agents’ utilities are derived so that the resulting

game is a potential game. To solve the game, distributed sequential and simultaneous algorithms

based on game-theoretic Best Response Dynamics (BRD) and PSO are presented. Each agent uses

PSO as its local search engine to autonomously maximize the utility of its subblock and BRD drive

the agents with minimum local communication towards the maximum of the global utility function

of the whole MB. Experimental results show that these algorithms provide good estimation quality

with low computational cost as compared to other techniques. Moreover, in addition to its

decentralized and distributed nature, the simultaneous algorithm is also inherently parallel at the

agents’ level within the MB. A thorough discussion and analysis of the proposed algorithms is

included with a performance evaluation through extensive simulations. A parallel implementation

of this algorithm using the MATLAB Parallel Computing Toolbox™ (PCT) on a multicore system

is also provided to study the efficiency and speedup of the proposed parallel algorithm.

In Chapter 4, parallelism within the MB, which was solved in chapter 3 from a

game-theoretic viewpoint, is tackled again but using concepts from diffusion adaptation in

distributed multi-agent systems. We formulate and study the distributed optimization of block

motion estimation using a network of cooperative nodes based on diffusion protocols. A modified

diffusion-based PSO algorithm is proposed. Diffusion strategies are employed to allow the agents

to cooperate and diffuse information in real-time in order to reach the common minimizer of the

global cost function. A parallel implementation of this algorithm using the MATLAB PCT on a

19

multicore system is provided to study merits of the proposed scheme.

Chapter 5 targets the problem of BM estimation in HD video. It is first demonstrated that

available PSO algorithms, when applied on High definition (HD) video, yield a quality worse than

that obtained for low definition (LD) video. The reason behind this is that the problem of local

minima becomes more significant as the resolution of the video increases and the existing ME

schemes employ a basic version of PSO which is found to be not effective enough to combat the

problem of local minima of HD video. In this chapter, we present a new ME scheme that employs

a novel dynamic hybrid PSO algorithm. The PSO algorithm presented is hybrid in a sense that it

employs improved strategies of the genetic algorithm (GA) like selection, mutation, and crossover

to avoid being trapped in local minima. The algorithm is also dynamic since the maximum allowed

velocity of the particles is dynamically varied in each iteration of the PSO process to effectively

cover the search space. The presented algorithm is evaluated in terms of video quality and

computational complexity and compared to existing fast searching ME techniques as well as

existing PSO-based ME schemes.

In Chapter 6, we present the parallel implementation of the cooperative PSO algorithm,

which was proposed in Chapter 2, on the NVIDIA GPU architecture using the CUDA platform.

The NVIDIA programmable GPU has evolved into a highly parallel, multithreaded, many-core

processor. Implementing the proposed cooperative PSO algorithm on the GPU is expected to yield

a tremendous speedup.

Finally in Chapter 7, we summarize the contributions of this thesis work and outline some

topics for future investigation.

20

This thesis includes 7 original papers that have been previously published/ submitted for

publication in peer reviewed journals and conferences, as follows:

Table 1.1 List of thesis publications

Chapter 2

M. Jalloul and M. A. Al-Alaoui, “A Novel Cooperative Motion Estimation Algorithm Based on

Particle Swarm Optimization and its Multicore Implementation ", Elsevier Journal of Signal

Processing: Image Communication, vol. 39, part A, November 2015, pp.121-140.

M. Jalloul, “A Parallel Computing Approach for Motion Estimation Based on Particle Swarm

Optimization ", International Conference on Engineering of Reconfigurable Systems and

Algorithms, ERSA-NVIDIA Award for Best Young Entrepreneur, ERSA 2013, Las Vegas, USA,

July 22-15, 2013.

M. Jalloul and M. A. Al-Alaoui, “A Novel Parallel Motion Estimation Algorithm Based on Particle

Swarm Optimization", International Symposium on Signals and systems, ISSCS 2013, Romania,

July 11-12, 2013.

Chapter 3

M. Jalloul and M. A. Al-Alaoui, “Agent-Based Game Theoretic Model for Block Motion

Estimation and its Multicore Implementation,” submitted to Elsevier Journal of Signal Processing:

Image Communication, March, 2016.

M. Jalloul and M. A. Al-Alaoui, “Block Motion Estimation and Potential Games ", International

Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2015, part of

WORLDCOM 2015, Las Vegas, USA, July 27-30, 2015.

Chapter 4
M. Jalloul and M. A. Al-Alaoui, “A Distributed Particle Swarm Optimization Algorithm for Block

Motion Estimation Using the Strategies of Diffusion Adaptation", International Symposium on

Signals and systems, ISSCS 2015, Romania, July 11-12, 2015

Chapter 5
M. Jalloul and M. A. Al-Alaoui, “A Novel Hybrid Dynamic Particle Swarm Optimization

Algorithm for Motion Estimation in High Resolution Video ", International Conference on

Engineering and Applied Sciences Optimization, OPT-i 2014, Kos, Greece, June 4-6, 2014.

21

CHAPTER 2

A NOVEL COOPERATIVE MOTION ESTIMATION ALGORITHM

BASED ON PARTICLE SWARM OPTIMIZATION

In this chapter, a novel cooperative PSO algorithm is proposed for block motion

estimation. The proposed scheme exploits spatial correlation by allowing the swarms of adjacent

blocks to communicate during the PSO process and to exchange information about the motion

vectors found so far. This collaboration allows for faster convergence and ensures that the

resulting motion is smooth and continuous. Moreover, a novel initialization scheme is proposed

that exploits temporal correlation by using motion vectors of collocated blocks in the previous

frame. This method of initialization removes dependency between blocks of the same frame and

makes the presented algorithm amenable to parallel processing methods. In addition, the adopted

PSO iterations are designed to be dynamic by adaptively changing the maximum velocity, that

limits the flying speed of the particles, which provides a balance between search exploration and

exploitation. A fitness function history preservation technique is also proposed to prevent the

redundant repeated calculations of the fitness function of a given search point by the PSO particles

which provides a considerable reduction of the computational complexity.

The proposed algorithm, exhibits a high level of data parallelism and it is able to perform

motion estimation for all the blocks of the frame in parallel. As a result, the proposed algorithm

provides tremendous speedup if implemented on modern high performance computing (HPC)

platforms ranging from multicore/many-core machine architectures to graphics processing units to

supercomputers. In the literature, there have been several attempts to parallelize motion estimation

[57-62]. Several works have proposed applying GPUs for motion estimation. Implementation of

the ES motion estimation algorithm with OpenCL has been proposed in [57] and [58]. In [59],

22

implementations of the ES algorithm, the diamond search (DS) algorithm, and the four-step search

(4SS) algorithms in CUDA have been proposed. A parallel implementation of the ES algorithm on

the GPU using CUDA is also proposed in [60, 61] along with a parallel solution for multi-core

processors using the Open Message Passing (OpenMP) library and a distributed solution for

cluster/grid machines using the Message Passing Interface (MPI) library [61]. GPU-based

hierarchical motion estimation in CUDA has been proposed in [62]. In this paper, we propose a

parallel implementation of the proposed motion estimation scheme using the multicore capability

of modern CPUs. A multicore implementation of the proposed scheme is implemented based on

the Parallel Computing Toolbox of Matlab [63].The proposed parallel implementation is shown to

be highly scalable and with more and more cores adopted in CPU, the algorithm speedup is

expected to be higher. Moreover, the parallel performance of the proposed algorithm has been

compared with that of the multicore implementation of the ES, 4SS, and DS algorithms which

have also been implemented using Matlab PCT following the framework proposed in [61].

The rest of this chapter is organized as follows. Section 2.1 provides a brief review of the

PSO algorithm. Section 2.2 presents the details of the proposed cooperative block motion

estimation algorithm and section 2.3 provides the parallel implementation of the proposed

algorithm using the Matlab environment. Section 2.4 shows the simulation results and presents an

extensive evaluation of the performance of the presented algorithm. Finally, section 2.5

summarizes this chapter.

2.1 The General PSO Algorithm

The PSO technique was introduced in [53, 54] as a robust stochastic optimization

technique based on a social-psychological model of social influence and social learning.

23

Belonging to the category of swarm intelligence methods, PSO is a population-based technique

inspired by the social behavior and movement dynamics of flocks of birds, schools of fish, and

herds of animals adapting to their environment. In the conventional PSO approach [53], the

so-called swarm is composed of a set of particles that are placed in a search space where each

particle represents a candidate solution to a certain problem or function. Initially, each particle is

assigned a randomized velocity. The particles then ‘‘fly’’ through a multidimensional search

space, where the position of each particle is adjusted according to its own experience and that of its

neighbors. Each particle keeps track of its personal best location (pbest) in the problem space, which

represents the best solution (fitness) it has achieved so far. The location of the overall global best

value, obtained so far by any particle in the population, is called gbest. The PSO algorithm updates

the position of a particle by moving the particle based on its past personal best (pbest) and the global

best position (gbest) that has been found by all the particles in the swarm.

In an n-dimensional search space 𝑆 ⊂ ℝ𝑛, and a swarm consisting of M particles, the ith

particle is in effect an n-dimensional vector

𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … 𝑥𝑖𝑛}𝑇 ⊂ 𝑆. (2.1)

The velocity of this particle is also an n-dimensional vector:

𝑉𝑖 = {𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … 𝑣𝑖𝑛}𝑇 ⊂ 𝑆. (2.2)

The best personal position (pbest) encountered by the ith particle is a point in S, denoted as

𝑃𝑖 = {𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, … 𝑝𝑖𝑛}𝑇 ⊂ 𝑆. (2.3)

In Particle Swarm Optimization with Inertia Weight Approach (PSO-IWA) [64], the

velocity and position of a particle can be updated according to the following equations:

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1[𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)] + 𝑐2𝑟2[𝑃𝑔(𝑡) − 𝑋𝑖(𝑡)], (2.4)

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1), (2.5)

24

where i is the index of the particle, i = 1, 2. . . M; w is the inertia weight which balances the local

and global search during the optimization process. It is linearly decreasing with iterative

generations as in:

w = wmax − (wmax − wmin) ×
t

N
, (2.6)

where t is the current iteration and N is a predefined maximum number of iterations. The maximal

and minimal weights wmax and wmin are usually set to 0.9 and 0.4; c1, c2 the positive acceleration

constants; r1, r2 the random numbers, uniformly distributed within the interval [0, 1]; g the index of

the best positioned particle among the entire swarm; Pi the position of pbest for the particle i; and Pg

is the position of gbest for the entire swarm. A maximal flying speed vmax is used to restrict the flying

of the particles.

2.2 Proposed Cooperative Motion Estimation Algorithm Using PSO

In this research work, we propose a new block matching algorithm based on a novel

cooperative PSO approach. A multi-swarm model is presented where a swarm of PSO particles is

allocated for each MB in the frame. A modified PSO algorithm is applied to all MBs concurrently

for a certain number of iterations. After that, cooperation between swarms of adjacent MBs is

allowed through a synchronization step which is performed among neighboring MBs to exchange

information about the motion vectors (MVs) found so far in the PSO process. Some of the PSO

particles are re-initialized according to the received information. Based on the assumption that the

motion field is smooth and varies slowly, there are strong correlations between motion vectors of

the neighboring blocks. As a result, this synchronization step allows making use of the spatial

correlation characteristic between neighboring MBs to refine the MVs found so far in the PSO

process. A second stage of PSO iterations is then performed concurrently for all the MBs. The

25

whole process ends whenever termination conditions are reached. The steps of the proposed

scheme are explained below.

2.2.1 Particle Initialization

A swarm consisting of M particles is generated for each MB. Each particle of a given MB

represents a matching MB within the search window in the reference frame. Using the PSO

iterations, the positions of the particles is continuously updated until the global minimum of the

mean square error (MSE) cost function is reached. In the standard PSO algorithm, the initial

population is randomly selected, which brings high computational complexity to the motion search

since the iterations are starting from random points which might be far from the global minimum.

However, if the initial points are chosen to be close to the optimum, then faster convergence can be

achieved. Li [65] and Xiao [66] demonstrated that the use of solutions generated through some

domain knowledge to set the initial population (i.e. non-random solutions) can significantly

improve its performance. In [52], authors proposed an initialization scheme that exploits the

existing spatial correlation between neighboring MBs where the particles of a given MB are

initialized using the estimated motion vectors of its adjacent neighboring MBs. This mode of

initialization imposes a dependency constraint between the MBs of the same frame and thus

hinders parallelism. In this paper, a novel initialization scheme is proposed to remove any

dependency between the MBs. Since motion vectors have a high temporal correlation feature, we

initialize 9 particles of each MB to the MVs of the collocated MB in the previous frame as well as

its 8 adjacent neighbors. We also initialize one of the particles to the (0, 0) MV to account for static

blocks. The rest of the M particles are randomly generated. Therefore, for an MB at location (i,j) in

frame t, we initialize the positions of its M particles as follows:

26

{𝑥1, 𝑥2, 𝑥3, … , 𝑥10} =

{𝑀𝑣𝑖−1,𝑗−1
𝑡−1 , 𝑀𝑣𝑖−1,𝑗

𝑡−1 , 𝑀𝑣𝑖−1,𝑗+1
𝑡−1 , 𝑀𝑣𝑖,𝑗−1

𝑡−1 , 𝑀𝑣𝑖,𝑗
𝑡−1, 𝑀𝑣𝑖,𝑗+1

𝑡−1 , 𝑀𝑣𝑖+1,𝑗−1
𝑡−1 , 𝑀𝑣𝑖+1,𝑗

𝑡−1 , 𝑀𝑣𝑖+1,𝑗+1
𝑡−1 , (0,0)}

 (2.7)

{𝑥11, … , 𝑥𝑀}= random position within the search area. (2.8)

Notice that at this point, we cannot use the MVs of the adjacent blocks in the same frame

since these MVs are not calculated yet and the only apriori information we have is the motion of

the MBs of the previous frame.

It should also be noted that since this information is still not available for the second

frame in the video sequence, then our implementation applies the proposed algorithm starting from

the third frame. Motion estimation for the second frame is performed using ES to obtain accurate

motion vectors to be used for the initialization step of frame number three in the proposed

algorithm. This initialization step is shown in Fig. 2.1.

Figure 2.1 Initialization of the positions of the particles of the current MB in frame t using the motion vectors of
collocated MB and its eight neighboring MBs in frame (t-1).

27

2.2.2 First Stage of a Modified PSO Process

After initialization, the swarms of particles of all MBs go through a modified PSO

process where they are allowed to run for a predefined Nt number of iterations in parallel. During

each iteration, each MB with index j adjusts the positions and velocities of its particles according

to (2.4) and (2.5), independently from other MBs, evaluates the fitness function at the new

positions, then it updates the values of Pij and Pgj which are the positions of the best fitness

attained so far for particle i and the global best position for MBj respectively.

2.2.2.1 Adaptively-Varied Maximum Velocity

The maximum velocity which limits the flying speed of the particles is adaptively

changed in this modified version of PSO. A dynamic control of the maximum velocity vmax,

described in Section 2.1, can provide a balance between search exploitation and exploration. In the

PSO process, a large vmax allows to better explore the complete solution space; on the contrary, a

small vmax directs the method to perform a local search. Therefore, in this modified PSO algorithm,

a higher vmax value is adopted in the early stage of the search process and a lower value later to

perform a local search. A linearly decreasing function is adopted to gradually reduce the vmax value

in the current iteration in proportion to the iteration number, this is given by:

𝑣𝑚𝑎𝑥(𝑡) =
𝑉𝑚𝑎𝑥

𝑡
, (2.9)

where 𝑉𝑚𝑎𝑥is an empirically determined value and 𝑡 is the iteration number.

2.2.2.2 Fitness Function History Preservation

In our algorithm, fitness function history preservation is proposed to avoid unnecessary

redundant fitness function calculations of search points that have been visited before by any

28

particle during the PSO process. This is done as follows. A two-dimensional array of

dimensions(2 × p + 1)2 × 2 is defined, where p is the search parameter which defines the search

area. The rows of the array represent all the possible search points in the defined search area of a

given MB. Values in the first column are binary, either zero or one, to show if the corresponding

search point has been visited before. Values in the second column of the array are the values of the

fitness function calculated for the corresponding search points incase these points were visited

before. During the PSO process, before the fitness function of a certain position is evaluated, the

array is checked to see if that position was visited before. In that case, re-evaluation of the fitness

function is skipped and the fitness value saved in the array is used. Otherwise, the value of the

fitness function of that position is evaluated and the corresponding entries of the array are updated.

In this way, the fitness function of a certain position within the search area is evaluated only once.

Usually the trajectory of a particle during the PSO process can cross a search position more than

once. Moreover, other particles can reach that position as well. By following the proposed scheme,

the number of fitness function evaluations during the PSO process is dramatically decreased which

plays a key role in reducing the computational complexity of the whole algorithm. In [52], a

similar process, called particle history preservation, was used. In that process, for each particle in

the PSO process, a binary array of the same size as the search area is used to keep track of the

positions that have been visited before by that particle. During the iterative process, for each

particle, its corresponding array is checked to see if the position reached was visited before. In that

case, re-evaluation of the fitness function is avoided and that search position is skipped. In [52],

the fitness values are not recorded. In our proposed algorithm however, only one array is used for

all the particles, and the fitness values of each search point visited by any particle is recorded and

subsequently used whenever that search point is reached. In this way, fitness function evaluation

29

of a given point is skipped because of repeated crossing of that position by, not necessarily the

same, but any particle during the PSO process.

2.2.2.3 Termination Conditions

The first stage of the proposed PSO process terminates whenever the maximum number

of iterations Nt is reached. Early termination of search is allowed whenever the fitness value of the

global best position is less than a predefined threshold value Tth and when the fitness value

associated with the Pgj position remains the same for Kmax iterations, even if the maximum

iteration number Nt is not yet reached.

The procedure for implementing the first stage of the proposed PSO process can be

summarized in pseudo code as shown in table 2.1.

Table 2.1 Pseudo code of the first stage of the proposed PSO process

For each frame do

For each block do

Initialize the fitness history array entries to zeros

Initialize particle velocities to zeros

Initialize particle positions as shown in Fig. 1 and (2.7)-(2.8)

Repeat

For each particle i=1,…,M do

Check its flag in the history array

If the flag is 0 then

Calculate fitness function

Update Pi and Pg

Save the value of the fitness value in the history array

Set flag to 1

Else

Retrieve the value of the fitness function from the history array

Update Pi

End if

Adaptively change vmax using (2.9)

Update the velocity using (2.4)

Update the position using (2.5)

End for

Until stopping conditions are met

End for

End for

30

2.2.3 Cooperation between Neighboring Swarms

After the first stage of PSO iterations is completed by all MBs of the frame, a cooperation

step is performed to coordinate the estimation process of neighboring swarms. This is done by

exploiting the high spatial correlation existing between MVs of neighboring blocks. To do that,

each MB’s swarm sorts its M particles in a decreasing order according to their fitness values. Then

the last 8 particles which have the highest (worst) fitness values are eliminated and replaced by 8

new particles which are initialized to the global best positions, Pg, values of its 8 neighboring

swarms. In this synchronization step, each swarm is allowed to refine its motion search process

using information from neighboring swarms. Weak particles having the worst fitness values are

replaced with strong particles which are located closer to the global optimum. This cooperation is

expected to speed up the convergence of the PSO algorithm since the learning process is now

supervised and guided by the information received from the neighboring blocks. Communication

between neighboring MBs is required in this step where each MB will broadcast to its 8 neighbors

the value of its global best location, Pg, found so far in the motion search process. This process is

shown in Fig. 2.2.

31

Figure 2.2 Cooperation with neighboring Swarms. In step 1, particles are sorted according to their fitness values.
In step 2, the first 8 worst particles are replaced with new ones with positions initialized with the Pg values of

neighboring MBs.

2.2.4 Second Stage of a Modified PSO Process

After synchronization, the updated swarm of particles of each MB is allowed to go

through another stage of the modified PSO process. This stage combines the information received

from the neighboring MBs during synchronization with the information gained from the first PSO

stage to find a better optimal solution. The same termination conditions as those used in the first

stage of PSO are applied here.

2.3 Parallel Implementation of the Proposed Algorithm

The proposed cooperative framework for block motion estimation is iterative and

self-organized where each PSO swarm for each MB is autonomous. Dependency between MBs is

limited to the cooperation phase where synchronization between neighboring swarms is performed

through a communication step. This makes the proposed scheme amenable to parallel processing

32

methods. In this section, a multicore implementation of our proposed algorithm is proposed using

the MATLAB® Parallel Computing Toolbox™ (PCT). MATLAB PCT [63] can solve

computationally and data-intensive problems using multicore processors, GPUs and computer

clusters. It provides high level constructs such as parallel for-loops, special array types and

parallelized numerical algorithms to parallelize MATLAB applications without CUDA or MPI

programming. The flowchart of the proposed parallel implementation is shown in Fig. 2.3.

33

Figure 2.3 Flow Chart of the proposed parallel implementation.

34

2.3.1 Frame Partitioning Using Co-Distributed Arrays

One of the first steps in designing a parallel algorithm is to break the problem into discrete

"chunks" of work that can be distributed to multiple tasks. This is known as decomposition or

partitioning. There are two basic ways to partition computational work among parallel tasks:

domain decomposition and functional decomposition. In our proposed parallel algorithm, domain

decomposition is chosen. In this type of partitioning, the data associated with a problem is

decomposed. Each parallel task then works on a portion of the data simultaneously. In our

implementation, a given frame is divided into 16x16 macroblocks (MB). These MBs are evenly

partitioned among the available computing resources or CPU cores to ensure load balancing.

There exist different possible domain-partitioning schemes. The chosen scheme has to account for

two fundamental issues: load balance, and communication balance [67]. In our algorithm, a block

partitioning along the rows of the frame is chosen where the rows of the frame are evenly

partitioned among the available cores. The reason why this partitioning scheme is chosen is to

minimize the communication overhead required between the cores. In our algorithm, as explained

before, each MB needs to communicate with its direct neighbors for synchronization. If these

neighbors were assigned to the same core as the central MB, then the communication overhead is

reduced. Block partitioning along the columns would also yield the same benefits. In MATLAB,

frame partitioning is performed using co-distributed arrays. A co-distributed array is an array

partitioned into segments, with each segment residing in the workspace of a different lab. An even

partitioning of the MBs of the frame among the MATLAB labs ensures load balancing which

decreases possible idle times. Partitioning along the rows of a given frame among the cores is

shown in Fig. 2.4.

35

Figure 2.4 Frame partitioning among the processing cores.

2.3.2 Parallel MB Processing Using Looping Over a Distributed Range (for-drange)

When a for-loop over a distributed range is executed in a parallel job, each lab performs

its portion of the loop, so that the labs are all working simultaneously. Because of this, no

communication is allowed between the workers while executing a for-drange loop. In particular, a

lab has access only to its partition of a codistributed array [63]. In our implementation, the frame is

partitioned equally along the rows of MBs among the different labs. Therefore, we have used the

for-drange construct to allow the simultaneous processing of each lab of its assigned rows of MBs

in the frame.

2.3.3 SPMD Block

The Matlab toolbox provides the single program multiple data (spmd) construct and

several message-passing routines based on an MPI standard library (MPICH2). The spmd

construct allows designating sections of the code to run concurrently across workers participating

36

in a parallel computation. During program execution, spmd automatically transfers data and code

used within its body to the workers and, once the execution is complete, brings results back to the

MATLAB client session [63]. This allows us to implement data-parallelism where each Matlab

lab executes the same lines of code but on different sections of the video frame. If the number of

available cores is high enough, then each Matlab lab would operate on a different MB of the frame

and we would be able to perform motion estimation for all the MBs in parallel. Within the spmd

block, communication or synchronization is allowed between labs.

2.3.4 Communication and Cooperation between the Labs Using labSendReceive

During the cooperation step of our algorithm, each MB is required to broadcast to its 8

neighboring MBs the global best position, Pg, found so far in the optimization process. As a result,

each MB will also receive from each of its 8 neighbors the value of the global best position

acquired by that neighbor. This interlab communication within the parallel job is implemented

using labSendReceive. The environment query functions labindex and numlabs here are equivalent

toMPI_Comm_rank and MPI_Comm_size. Since in our algorithm each lab operates on a certain

number of rows of MBs, then each lab needs to communicate only with the previous lab to send to

it the values corresponding to its upper row of MBs and receive from it the values corresponding to

the lower row of MBs in that lab. Similarly, it should communicate with the next lab to send to it

the values corresponding to its lower row of MBs and receive from it the values corresponding to

the next lab’s upper row of MBs. Because the migration topology used in our method is a stepping

stone model, the adjacent labs need only to send and receive data from each other in a cyclic

pattern. The function labSendReceive proposes a perfect solution for this pattern, which is

designed to enable the cyclic type communication, or any paired exchange, to be written more

37

simply. Moreover, the deadlocking behavior is also prevented effectively [63].

2.4 Simulation Results

2.4.1 Simulation Setup

Several test video sequences of various formats and various motion intensity, (QCIF:

176x144), LD (CIF: 352x288), SD (480p: 832x480), and HD (720p: 1280x720) downloaded from

[68, 69], have been used to test the performance of our proposed algorithm and compare it to

existing techniques. Results are presented with two distinct criteria: execution time and objective

motion estimation quality. Quality is more important in high end solutions such as video

broadcasting whereas for low cost solutions, execution time (or algorithm complexity) must be

kept low. Snapshots of the used test video sequences are shown in Fig. 2.5 and their properties are

given in Table 2.2.

38

Figure 2.5 Test video sequences.

39

Table 2.2 Test Sequences Used in the Simulations

Test Video Sequence Format Frame Size Frame Rate Motion type

Soccer QCIF 144x176 15 Fast

Bus QCIF 144x176 15 Very Fast

Soccer CIF 144x176 30 Fast

Bus CIF 288x352 30 Very Fast

Tennis CIF 288x352 30 Very Fast

Stefan CIF 288x352 30 Very Fast

Foreman CIF 288x352 30 Medium

Container CIF 288x352 30 Slow

RaceHorses SD 480p 832x480 30 Very Fast

Parkrun HD 720p 1280x720 50 Medium

The proposed algorithm is simulated on a server with two Intel® Xeon® E5520 2.66GHz

CPUs (total of 8 cores) and 32GB RAM. The execution platform is Matlab R2012a.

In our simulations, every frame is divided into MBs of size 16 * 16 pixels. The search

step-size is one integer pixel and we used one reference frame which is the previous frame. The

search parameter p which defines the search area is chosen to be 15 for all the tested sequences

except for the HD (Parkrun) video sequence where p was chosen to be 31. The reason behind this

choice is that picking a small value of p for the HD video sequence would yield very poor results

for motion estimation since the search area is very small as compared to the resolution and it might

not contain the global optimum. The algorithm can be easily extended to use arbitrarily sized

blocks, smaller step-sizes and multiple reference frames.

2.4.2 PSO Parameters

For the PSO algorithm, the size of the particle population was chosen to be M=10

initialized according to the scheme described in Section 2.2.1.

For Nt and Kmax, as discussed in Section 2.2.2.3, using a very small Nt (and Kmax) can lead

40

to very fast convergence of the PSO-based algorithm, albeit at the expense of low block matching

accuracy. On the other hand, using a large Nt (and Kmax) could improve the accuracy at the cost of

increased computational cost. Moreover, varying Nt and Kmax also affects the speedup of the

proposed algorithm since using a small Nt (and Kmax) means that a lower amount of computation

work is being done as compared to the amount of communication work which is independent of

the values of Nt (and Kmax). This would reduce the overall speedup obtained from a multicore

system and would diminish the scalability of the algorithm. By balancing these conflicting

requirements, the PSO-based method could provide a good overall performance over a wide range

of video sequences, when the maximum iteration number was chosen to be Nt = 3, and Kmax = 2.

The pre-set minimum MSE error, Tth (mentioned in Section 2.2.2.3), is another

empirically determined threshold that can regulate the accuracy/complexity tradeoffs. If the

threshold is too large, the algorithm tends to run fast at the cost of a lower accuracy. In our

simulations, the threshold for MSE, Tth, was chosen to be 7.

The maximum allowed velocity for the PSO particles, vmax, is dynamically varied in every

iteration of the proposed modified PSO process, as mentioned in Section 2.2.2.1. It is initially set

to 𝑉𝑚𝑎𝑥and then linearly decreased according to the iteration number. If 𝑉𝑚𝑎𝑥 is too high,

particles might fly past good solutions; if it is too small, particles may not explore sufficiently

beyond local solutions. In the literature, vmax was fixed to about 10–20% of the dynamic range of

the variable on each dimension [65]. In our simulations, for a search range of ±15, we chose Vmax =

15 as a starting value for the maximum allowed velocity which adaptively decreases in each

iteration. The average value of the maximum velocity allowed during the entire process (2 ×

𝑁𝑡iterations) is 6.125 which is around 19.76% of the dynamic range. For a search range of ±31, we

chose Vmax = 31 as a starting value which gives an average value of 12.65 during the entire process

41

(2 × 𝑁𝑡iterations) which is around 20% of the dynamic range.

2.4.3 Motion Estimation Quality

Objective motion estimation quality is measured interms of Peak Signal to Noise Ratio

(PSNR) values averaged over the first 100 frames of each test video sequence. Such value

indicates the reconstruction quality when motion vectors, which are computed through a BM

approach, are used. In PSNR, the signal comes from original data frames whereas the noise is the

error introduced by the calculated motion vectors. The PSNR is thus defined as:

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
), (2.10)

where MSE is the mean squared error between the original frames and those compensated by the

motion vectors.

Table 2.3 gives the average PSNR results for the ES algorithm and several traditional fast

searching techniques, like TSS [16], 4SS [18], DS [19], and ARPS [22]. PSNR results are also

given for the recently proposed PSO-based ME algorithms given in [51, 52]. The simulation

results presented are based on the averages of the data (PSNR and search point) obtained from 50

repeated runs of the PSO-based algorithm to strengthen the statistical significance. Increasing the

number of runs also yield only very negligible changes to the averages which do not differ

significantly. Simulation results show that the proposed algorithm provides an improvement in

motion estimation quality as compared to the other techniques. Fig. 2.6, Fig.2.7, Fig. 2.8, Fig.2.9,

Fig. 2.10, Fig. 2.11, Fig. 2.12, and Fig. 2.13 show that the proposed algorithm can closely follow

the PSNR values of the ES method on the frame-by-frame basis.

42

Table 2.3 Motion estimation quality in terms of PSNR of the proposed approach as compared to existing
techniques

Sequence ES TSS 4SS DS ARPS PSO [52] PBPSO[51] Proposed

Soccer, QCIF, 15fps, p=15 25.014 24.02 22.106 23.267 23.761 24.33 20.12 24.55

Bus, QCIF, 15 fps, p=15 23.3505 21.8863 19.7652 20.4179 21.0361 22.8094 17.579 23.079

Soccer, CIF, 30fps, p=15 30.1983 28.2174 27.0174 27.6907 28.6623 29. 3297 21.847 29. 574

Bus, CIF, 30 fps, p=15 25.608 22.373 19.789 20.337 21.793 24.925 18.448 25.403

Tennis, CIF,30 fps, p=15 29.198 26.859 27.764 28.128 28.070 28.224 24.304 28.6003

Stefan, CIF, 30fps, p=15 26.9370 24.6205 23.702 23.981 26.0389 26.482 20.238 26.518

Foreman, CIF, 30fps, p=15 34.6824 33.4948 33.809 34.243 34.185 34.174 31.257 34.329

Container, CIF, 30fps, p=15 32.8433 26.8720 23.5904 23.547 29.113 32.386 18.573 32.701

RaceHorses, 480p, 30 fps, p=15 29.338 26.809 24.891 26.018 27.445 28.86 21.425 29.018

Parkrun, 720p, 30 fps, p=31 25.613 20.436 23.661 23.314 25.33 24.4 19.094 25.487

Figure 2.6 Motion estimation accuracy measured in PSNR for “Soccer, QCIF” sequence.

43

Figure 2.7 Motion estimation accuracy interms of PSNR for “Bus, CIF” sequence.

Figure 2.8 Motion estimation accuracy in terms of PSNR for “Tennis, CIF” sequence.

44

Figure 2.9 Motion estimation accuracy interms of PSNR for “Stefan, CIF” sequence.

Figure 2.10 Motion estimation accuracy interms of PSNR for “Foreman, CIF” sequence.

45

Figure 2.11 Motion estimation accuracy interms of PSNR for “Container, CIF” sequence.

Figure 2.12 Motion estimation accuracy interms of PSNR for “RaceHorses” sequence.

46

Figure 2.13 Motion estimation accuracy interms of PSNR for “Parkrun” sequence.

In order to show the good performance of the proposed algorithm more intuitively, the

reconstructed images of the fifth frame of Racehorses sequence are shown in Fig. 2.14. It can be

seen from Fig. 2.14, that the fifth frame images of Racehorses restructured by TSS, 4SS, DS,

ARPS, as well as PBPSO [51] and PSO[52], all miss some details, and the images restructured by

the proposed algorithm have retained the details of the original image which was translated into the

highest PSNR value. Note that the frame reconstructed by PBPSO [51] is almost the same as the

previous frame (reference frame). The reason behind this is that PBPSO [51] initializes the PSO

particles within the small zone around the center block assuming that most blocks are stationary or

semi-stationary. Consequently, the early termination strategies adopted in PBPSO lead to an early

convergence to positions around the center. For sequences with fast motion, like RaceHorses,

PBPSO would produce low estimation quality. The performance accuracy of PBPSO is also

47

expected to deteriorate with the increase in video resolution where the assumption that motion

vectors are within a small zone around the center is no longer valid.

Figure 2.14 The reconstructed images of the fifth frame of RaceHorses by using different algorithms.

48

2.4.4 Computational Complexity

In block matching motion estimation, the average number of candidate blocks checked

for each MB is used as the evaluation criterion of computation complexity. In this paper, the

average number of fitness function evaluations for each MB is used as a metric of the

computational complexity. The simulation results of a single core implementation of our algorithm

are compared with the results of existing algorithms and the results are listed in Table 2.4.

It can be seen in Table 2.4 that the ES method searches every candidate block within the

search window, so it needs to search 961 points for each MB if p=15 and 3969 points if p=31. TSS,

4SS, and DS are based on fixed template so the number of search points is relatively less. On

average, they need to search 20–40 points. The PSO-based ME algorithm proposed in [52] gives

less number of search points than the fast search methods and PBPSO given in [51] provides

further reduction in the computational complexity. In our proposed algorithm, the exploitation of

time-space correlation of video sequences through effective particle initialization and

synchronization, fitness calculation history preservation, and the efficient termination strategies

used have decreased the number of search points needed dramatically. As shown in Table 2.4, it

ranges between 7 and 11 for the different video sequences. Theoretically, for 2 × 𝑁𝑡 = 6, and

M=10, the maximum number of fitness function evaluations is 60, but as shown in Table 2.4, the

needed points are much less because of the effective strategies adopted in the proposed algorithm.

49

Table 2.4 Comparison of the average number of fitness function evaluations per block for various algorithms
based on the first 100 frames of the video sequences

Sequence ES TSS 4SS DS ARPS PSO [52] PBPSO[51] Proposed

Soccer, QCIF,15fps, p=15 961 29.33 18.33 17.66 13.25 16.2 11.024 9.47

Bus, QCIF,15fps, p=15 961 29.46 19.85 22.51 12.44 19.22 12.482 11.17

Soccer, CIF,30fps, p=15 961 31.13 20.01 19.89 10.61 13.54 12.24 6.998

Bus, CIF, 30fps, p=15 961 31.23 24.24 21.39 12.35 17.83 11.92 7.64

Tennis, CIF,30 fps, p=15 961 30.973 18.893 17.195 9.448 15.839 12.243 9.156

Stefan, CIF, 30fps, p=15 961 30.753 18.803 18.023 8.819 14.098 11.289 7.457

Foreman, CIF, 30fps, p=15 961 30.7602 18.456 16.661 8.978 12.925 12.114 9.368

Container, CIF, 30fps, p=15 961 31.165 21.247 23.0984 9.7977 12.337 12.751 6.333

RaceHorses, 480p, p=15 961 32.17 30.06 23.35 14.97 16.6 13.31 9.88

Parkrun, 720p, p=31 3969 40.11 22.97 21.18 9.77 15.924 12.182 6.86

2.4.5 Parallel Performance

The average execution times of the proposed algorithm per frame using Matlab PCT are

shown in Table 2.5. The algorithm is simulated using different Matlab workers, or labs, and

simulation times are recorded. T0 is the overhead time needed to setup the parallel environment

and to create codistributed arrays. T1 is the time needed to perform the first stage of PSO iterations.

T2 is the time needed for synchronization or communication. Finally, T3 is the time needed to

perform the second stage of PSO iterations. The parallel performance of our algorithm is evaluated

interms of the speedup factor, parallel efficiency, percentage of time savings, and granularity.

50

Table 2.5 Parallel performance of the proposed algorithm using Matlab PCT

Sequence
Number of

Labs
T0 (s) T1 (s) T2 (s) T3 (s)

Total

Time (s)
Speedup

Efficiency

%
Granularity

Soccer QCIF, 15 fps, p=15

1 0.0153 0.0875 0.004 0.0783 0.1698 1 100 -

3 0.2905 0.0354 0.0127 0.0337 0.0818 2.075 69.193 5.440

9 0.369 0.0264 0.02 0.0278 0.0742 2.288 28.605 2.71

Bus, CIF, 30 fps, p=15

1 0.0155 0.3083 0.0039 0.2716 0.5838 1 100 -

2 0.2342 0.1667 0.0129 0.1517 0.3313 1.762 88.107 24.682

3 0.288 0.1129 0.0135 0.0998 0.2262 2.580 86.030 15.755

6 0.3176 0.0667 0.0164 0.0624 0.1455 4.012 66.872 7.871

9 0.3761 0.0541 0.025 0.0412 0.1203 4.852 60.660 3.812

RaceHorses, 480p, 30 fps, p=15

1 0.0157 1.2485 0.0037 1.0851 2.3373 1 100 -

2 0.288 0.6688 0.015 0.5897 1.2735 1.835 91.766 83.9

3 0.293 0.4495 0.0181 0.3973 0.8649 2.702 90.079 46.784

6 0.3418 0.2732 0.0198 0.2314 0.5244 4.457 74.285 25.484

10 0.387 0.2288 0.0209 0.1804 0.4301 5.434 67.929 19.578

Parkrun, 720p, 50 fps, p=31

1 0.0163 2.4847 0.004 3.321 5.8097 1 100 -

3 0.2905 0.9012 0.014 1.1621 2.0773 2.796 93.225 147.378

5 0.336 0.584 0.0212 0.7984 1.4036 4.139 82.782 65.207

 9 0.368 0.462 0.027 0.5144 1.0034 5.790 72.375 36.162

2.4.5.1 Speedup

To measure the parallel performance of our proposed algorithm, we used the speedup

factor, S(n),which is defined as:

𝑆 (𝑛) =
𝑇𝑠

𝑇𝑛
, (2.11)

where 𝑇𝑠 is the total execution time on a single processor, while 𝑇𝑛 is the total execution time on

a multicore system of n processors. In Table 2.5, 𝑇𝑠 is taken as the total time when executing the

code on one lab and 𝑇𝑛 is the total time when executing the code on n labs. Fig. 2.15 shows a plot

of the speedup as function of the number of cores for the four sequences. An interesting

51

observation in the plot is that the rate of increase of the speedup grows with the increase of video

resolution. Moreover, for the same number of cores, a higher speedup is achieved for higher

resolutions. The reason behind this is that, for the same number of cores, increasing the resolution

would increase the amount of computational work done by each core since more MBs would be

assigned to the cores, while the communication overhead remains approximately the same. This

means that the parallelizable portion of the algorithm increases with the increase of the video

resolution. According to Gustafson’s law [70], limitations imposed by the sequential part of a

program may be countered by increasing the total amount of computation. It states that if α, the

sequential fraction of the parallel execution time, is small, the speedup is approximately equal to

the number of processing cores, as desired. It may even be the case that α diminishes as the number

of cores, n, (together with the problem size) increases; if that holds true, then S approaches n

monotonously with the growth of n. In our proposed algorithm, as the video resolution, or problem

size, increases, the computational fraction of the algorithm increases with the increase in the video

resolution and thus α decreases. Therefore, the proposed algorithm allows an increase in the

maximum theoretical speedup achieved as the video resolution increases.

52

Figure 2.15 Speedup achieved by the proposed parallel implementation on different number of cores.

2.4.5.2 Parallel Efficiency

The parallel efficiency, E(n), describes the fraction of the time that is being used by the

processors for a given computation. It is defined as:

𝐸(𝑛) =
𝑆(𝑛)

𝑛
∗ 100. (2.12)

It should be noted that when calculating the efficiency for 9 and 10 labs, n is taken as 8

since only 8 physical cores are available. It is observed that the parallel efficiency decreases with

the increase of the number of cores. This is due to the fact that as the number of cores increases, the

probability that each of the 8 neighboring MBs of a given block would be allocated to a different

core increases. As a result, this leads to an increase in the needed inter-processor communication

during the cooperation stage of the algorithm. On the other hand, it is found that the parallel

efficiency increases with the increase of video resolution since more MBs would be allocated to

53

each core.

2.4.5.3 Granularity

In parallel computing, granularity, G, is a qualitative measure of the ratio of computation

to communication, which is given by:

𝐺 =
𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 . (2.13)

Granularity is said to be coarse if relatively large amounts of computational work are

done between communication events, and it is said to be fine if relatively small amounts of

computational work are done between communication events. To measure the granularity of our

algorithm, the computation and communication times are taken as:

𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑇1 + 𝑇3, (2.14)

𝑇𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇2. (2.15)

As shown in Table 2.5, the granularity increases with the increase of the resolution of the

video frame since more data will be assigned to the cores which results in an increase in the

computation time. On the other hand, it decreases with the increase of number of cores since less

number of MBs would be assigned to each core which results in a decrease in the computation

time. Moreover, as the number of cores increases, the amount of communication needed also

increases which results in an increase in the communication time. The communication time

however has an upper limit since each core is required to communicate to a maximum of 8 other

cores during the synchronization phase. It is worth mentioning here that the communication cost of

the coordination step is considered low since it is limited to the exchange of the Pg values of

between an MB and its 8 direct neighbors only. Overall, in the presented implementation

granularity is considered coarse which implies more opportunity for performance increase.

54

2.4.5.4 Theoretical Analysis of Parallel Performance

The parallel performance of the proposed implementation depends on the computation

complexity of the PSO estimation process and the communication overhead of the cooperation

stage. The computational complexity of this ME approach depends on the number of fitness

function evaluations performed. This is directly related to the population size,𝑀, and the

maximum number of total iteration,𝑁𝑡, allowed. Theoretically, we have a maximum of 2 ∗ 𝑀 ∗

 𝑁𝑡cost function evaluations required for each MB. Nevertheless, because this approach exploits

the spatial and temporal correlations of motion vectors, refines the motion search process through

inter-swarm cooperation, and allows an early termination condition for the MBs, it is estimated

that the PSO algorithm will converge before 𝑁𝑡 is reached. We assume that the time taken for a

swarm of a given MB to converge is 𝑇which is proportional to 2 ∗ 𝑀 ∗ 𝑁𝑡. On the other hand, the

communication cost of the inter-swarm cooperation stage is due to the exchange of the values of

𝑃𝑔between an MB and its 8 direct neighbors only. The amount of communication overhead

incurred in this method is K ∗ D where D is the network time to communicate a value of 𝑃𝑔

between two cores and K is the number of neighboring MBs that are allocated to a different core.

In general, the value ofKdepends on the number of MBs allocated per core in the frame. For a

frame with 𝑊 ∗ 𝐻 number of MBs and assuming that all MBs need 2 ∗ 𝑀 ∗ 𝑁𝑡 iterations to

converge, then the speedup of this algorithm for 𝑛 cores can be estimated to be:

𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 =
𝑇∗𝑊∗𝐻

𝑇∗(
𝑊∗𝐻

𝑛
)+(𝐾∗𝐷)

. (2.16)

If the number of available cores is large, i.e. 𝑛 ≥ 𝑊 ∗ 𝐻, as in the case of many-core

systems like GPUs, then we will have one MB allocated per core,
𝑊∗𝐻

𝑛
= 1, and the value of K is

8 in this case. The theoretical speedup will be:

55

𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,𝑚𝑎𝑛𝑦−𝑐𝑜𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑇∗𝑊∗𝐻

𝑇+(8∗𝐷)
 (2.17)

It is noticed that the speedup in this case is proportional to the resolution of the video.

This leads to a very important conclusion. As the resolution of the video increases, the use of

many-core machines allows for a linear increase in the speedup. For example, for the Ultra High

Definition TV (UHDTV) or 4k resolution (3840*2160), the value of 𝑊 ∗ 𝐻 is 32400 MBs of size

16*16. The parallel implementation of our proposed algorithm on the massively parallel

architecture of modern GPUs, which consists of thousands of efficient cores, is expected to yield a

tremendous improvement in performance for today’s UHDTV resolution.

2.4.5.5 Comparison with Existing Parallel ME Algorithms

The computational complexity of the proposed algorithm is also compared with existing

parallel ME algorithms. Multicore versions of the ES, 4SS, and DS algorithms have been

implemented using Matlab PCT following the framework proposed in [61]. MB level parallelism

is exploited where the MBs in the frame are evenly partitioned among the available processing

cores. Note that the parallel ES algorithms proposed in [57-61], and implemented using OpenCL

[57,58] and CUDA[59-61], are also based on MB level parallelism along with search point parallel

processing to compute the cost of each search point. Simulation results are given in terms of the

average number of fitness function evaluations per lab for a given frame based on the first 100

frames of every sequence. These results are shown in Table 2.6. It is shown that the proposed

algorithm achieves a dramatic reduction in the computational costs per lab for the different video

sequences under different parallel simulation scenarios.

56

Table 2.6 Average number of fitness function evaluations per lab for a given frame based on the first 100 frames
of each sequence

Sequence Number of Labs Parallel ES Parallel 4SS Parallel DS Proposed

Soccer, QCIF, p=15

 1 77439 1673 1575 920

 3 25813 557 525 309

 9 8605 186 175 106

Bus, CIF, p=15

 1 344256 9914 8692 3448

 3 114752 3322 2903 1142

 9 38251 1107 968 378

RaceHorses, 480p, p=15

 1 1423800 46829 36380 16280

 3 474600 15610 12127 5467

 10 142380 4683 3638 1629

Parkrun, 720p, p=31

 1 13572364 78394 66059 51917

 3 4524121 26131 22020 17323

 9 13572000 9.35E+03 10770 7193

2.5 Summary

In this chapter, a novel cooperative block motion estimation algorithm based on PSO is

presented. The proposed scheme exploits spatial correlation by allowing the swarms of adjacent

blocks to communicate during the PSO process and to exchange information about the motion

vectors found so far. This collaboration allows for faster convergence and ensures that the

resulting motion is smooth and continuous across neighboring blocks which translates into a better

estimation quality. Moreover, a novel initialization scheme is proposed that exploits temporal

correlation by using motion vectors of collocated blocks in the previous frame. This method of

initialization removes dependency between blocks of the same frame which makes the presented

algorithm amenable to parallel processing methods. In addition, the adopted PSO iterations are

designed to be dynamic by adaptively changing the maximum velocity, that limits the flying speed

of the particles, which provides a balance between search exploration and exploitation. A fitness

57

function history preservation technique is also proposed to prevent the redundant repeated

calculations of the fitness function of a given search point by the PSO particles which provides a

considerable reduction of the computational complexity. The performance of the proposed

algorithm is found to be superior, in terms of both accuracy and computational complexity, as

compared to existing fast searching algorithms and state of the art PSO-based motion estimation

schemes. Moreover, we presented an efficient and highly scalable implementation of the proposed

cooperative motion estimation algorithm using the Matlab PCT environment on a local

shared-memory multicore system. Results of simulations showed that a speedup of 6.33 can be

achieved for HD sequences using 8 cores. The proposed algorithm is shown to be highly scalable.

It also allows an increase in the maximum theoretical speedup achieved as the video resolution

increases. The multicore performance of the proposed scheme is also compared with existing

parallel algorithms in the literature and is shown to give superior results.

58

CHAPTER 3

AGENT-BASED GAME THEORETIC MODEL FOR BLOCK

MOTION ESTIMATION AND ITS MULTICORE

IMPLEMENTATION

This chapter introduces a novel parallel framework to speed up the BME process. This is

done by introducing a novel level of parallelism within the MB. A given MB is divided into

subblocks and an agent is defined for each subblock. The main target of this chapter is to show

how a system of autonomous agents can, in a distributed fashion and relying only on local

interactions, optimize the global objective function of the whole MB.

The last years have witnessed an intense research activity in the development of novel

distributed algorithms for multi-agent systems with performance guarantees. A particular effort

has been devoted to the study of game-theoretic approaches that can model and regulate selfish

agent interactions [71]. By means of these, the multi-agent coordination objective is formulated in

terms of Nash Equilibria (NE), which corresponds to the natural emergent behavior arising from

the interaction of selfish players. Due to their modularity, game dynamics can easily be

implemented by agents relying on local information, leading to a robust performance. In

particular, we tackle this problem by first defining a global utility function for the whole MB. Each

agent has its own private utility function of its subblock which it aims to maximize. However,

these are defined such that, for any unilateral switch in strategy, an agent’s change in payoff is

equal to the change in the global utility. Consequently, the global maximum is a Nash equilibrium

(i.e. it is a stable solution to the game). In this way, selfish agents can be used to solve an inherently

cooperative problem, because their self–interest drives them towards solutions with higher global

utility. Furthermore, we derive the agents’ utilities from the approximate global utility function

59

such that the agents play a potential game [72] at each time-step. The potential game concept

provides a valuable theoretical framework for distributed multi-agent cooperation problems. First,

a game that admits the potential property is guaranteed to possess a Nash equilibrium. Second,

from the definition of a potential game, the Nash equilibrium for every local cost function is

consistent with the global objective. The potential game framework, therefore, provides

distributed optimization problems with theoretical support for problem simplification [73]. A

best-response approach is a common method in potential games to achieve a Nash Equilibrium

Point (NEP) [74]–[75]. The idea of best-response dynamics (BRD) is that every player produces

its best response in terms of the current state of the other players [76]. The proposed best-response

dynamics enable players to make autonomous decisions to optimize their local utility functions by

monitoring the actions of their neighbors. In order to carry out this optimization step, agents should

be equipped with local optimization capabilities. Due to the non-convexity of the agent’s utility

function, we resort to modern optimization techniques. PSO is chosen as the global optimization

algorithm used by the agents due to its profound intelligence and simple algorithmic structure.

Each agent is equipped with a PSO engine that finds its best response at each time step given the

actions of the other players by optimizing its local utility function. Two distributed algorithms are

proposed in this chapter based on two versions of BRD: the sequential and simultaneous BRD. The

main distinction between these two algorithms lies in the mode and frequency of the inter-agent

communication needed during the process to update neighborhood information which also

determines the level of dependency between the agents. The proposed sequential algorithm

possesses convergence guarantees to the NE of the underlying potential game, whereas the

proposed simultaneous algorithm contains a high level of data parallelism at the agent level which

makes it highly amenable to parallel implementations. A multicore parallel implementation of the

60

proposed simultaneous motion estimation scheme is presented using MATLAB® Parallel

Computing Toolbox™ (PCT) [63].

The chapter is organized as follows. In Section 3.1, we provide a general background on

game theory. Section 3.2 then presents the proposed game–theoretic framework. In this section,

we formulate the problem as a Consensus game, and describe our approximation of the global

utility function. Building on this, we show how to derive agents’ utilities so that the resulting game

is a potential game, and describe the learning algorithms that can be used to solve it. In section 3.3,

two distributed algorithms based on simultaneous and sequential BRD are proposed to solve the

game-theoretic formulation of BME, and their convergence properties are analyzed. Then, in

Section 3.4, a multicore implementation of the proposed simultaneous algorithm is presented

using the MATLAB® PCT. Section 3.5 shows the simulation results and presents an extensive

evaluation of the performance of the presented algorithms. Finally, Section 3.6 summarizes this

chapter.

3.1 Game Theory

Game theory is a branch of mathematics aimed at the modeling and understanding of the

interactions between several decision-makers (called players) who can have conflicting or

common objectives. A game is a situation in which the benefit or cost achieved by each player

from an interactive situation depends, not only on its own decisions, but also on those taken by the

other players [77]. Essentially, the theory splits into two branches: non-cooperative and

cooperative game theory. The distinction between the two is whether or not the players in the game

can make joint decisions regarding the choice of strategy. Non-cooperative game theory is closely

connected to minimax optimization and typically results in the study of various equilibria, most

61

notably the Nash equilibrium. Cooperative game theory examines how strictly rational (selfish)

actors can benefit from voluntary cooperation by reaching bargaining agreements. Another

distinction is between static and dynamic game theory, where the latter can be viewed as a

combination of game theory and optimal control. In general, the theory provides a structured

approach to many important problems arising in signal processing and communications, notably

resource allocation and robust transceiver optimization. Recent applications also occur in other

emerging fields, such as cognitive radio, spectrum sharing, and in multihop-sensor and adhoc

networks [78-79].

3.2 The Proposed Game Theoretic Framework

The problem addressed in this chapter is how to solve the optimization problem of BME

in a distributed way through a network of autonomous players in a game theoretic framework.

3.2.1 The Definition of the Game

3.2.1.1 Global Objective Function:

𝐽𝑔𝑙𝑜𝑏(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|𝑁−1
𝑖=0

𝑁−1
𝑗=0 , (3.1)

where 𝑔𝑡(.) is the gray value of a pixel in the current frame 𝐼𝑡 and𝑔𝑡−1(.) is the gray level of a

pixel in the previous frame 𝐼𝑡−1.That is our global objective is to find one motion vector for the

whole block (of dimension NxN). To do that using game theory, we propose to decompose the

block into K subblocks and then associate each subblock to a player. Each player would be trying

to find the motion vector for its subblock. We want the players at the end of the game to reach

consensus that is they should all agree on a common motion vector which is the minimizer of the

global objective function. The game should allow the players to communicate during the search

62

process.

3.2.1.2 Agents

Consider a networked multi-agent system where agents are labeled by 𝑘 ∈ 𝑃 =

(1,2, … . . , 𝐾). Each agent is associated to a subblock. The cost function of agent 𝑘 is the Sum of

Absolute Difference of the subblock of dimension 𝐿𝑥𝐿 at position (𝑥𝑘, 𝑦𝑘)as shown in Fig. 3.1:

𝐽𝑘(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥𝑘 + 𝑖, 𝑦𝑘 + 𝑗) − 𝑔𝑡−1(𝑥𝑘 + 𝑢̂ + 𝑖, 𝑦𝑘 + 𝑣 + 𝑗)|𝐿−1
𝑖=0

𝐿−1
𝑗=0 (3.2)

Figure 3.1 Macroblock decomposition into sub-blocks.

The topology of the multi-agent system is represented by a non-directed neighborhood

graph as shown in Fig. 3.2. 𝑁𝑘 represents the set of neighbors of agent𝑘. This topology graph also

63

represents the network communication graph where each agent communicates only with its

neighbors.

Figure 3.2 Neighborhood graph of agents.

3.2.1.3 Utility Function

𝐽𝑘(𝑢̂, 𝑣) cannot be used as a utility function for agent 𝑘 because it doesn’t depend on the

action profile of the other agents. In order to introduce such dependency, the utility function of

agent 𝑘 can be chosen as:

𝑈𝑘(𝑢,̂ 𝑣) = 𝐽𝑘(𝑢̂, 𝑣) + 𝛼 ∗ ∑ ((𝑢̂ − 𝑢𝑖)
2 + (𝑣 − 𝑣𝑖)2)

1

2𝑖∈𝑁𝑘
. (3.3)

The utility function includes a regularization term which is the Euclidean distance to the

64

motion vectors of the neighboring subblocks. In other words, the objective of a player is not only

to minimize the SAD of its subblock but also to find a motion vector that is in high correlation with

the motion vectors of the neighboring subblocks.

3.2.1.4 Action Set

The action set of agent𝑘 is the set of motion vectors (𝑢̂, 𝑣) within a specified search

window.

3.2.2 Modeling the Problem as an Exact Potential Game

Definition of Potential Games [80]:

Player action sets {𝛢𝑖}𝑖=1
𝑛 together with player objective functions {𝑈𝑖: 𝐴 → ℝ}𝑖=1

𝑛

constitute a potential functions, constitute a potential game if, for some potential function

𝜑: 𝑈𝑖(𝑎𝑖
1, 𝑎−𝑖) − 𝑈𝑖(𝑎𝑖

2, 𝑎−𝑖) = 𝜑(𝑎𝑖
1, 𝑎−𝑖) − 𝜑(𝑎𝑖

2, 𝑎−𝑖),

for every player 𝑃𝑖 ∈ 𝑃 , for every 𝑎𝑖
1, 𝑎𝑖

2 ∈ 𝐴𝑖, and for every 𝑎−𝑖 ∈ 𝐴𝑗≠𝑖.

A potential game, as previously defined, requires perfect alignment between the global

objective and the players’ local objective functions in the following sense: If a player unilaterally

changed its action, the change in its objective function would be equal to the change in the

potential function.

The proposed multi-agent block motion estimation problem can be modeled as a potential

game by appropriately defining the players’ utilities. First, we establish a global objective function

that captures the notion of consensus. Next, we show that local objective functions can be assigned

to each player, so that the resulting game is, in fact, a potential game.

65

Consider a consensus problem with n-player set 𝑃, where each player 𝑃𝑖 ∈ 𝑃has a finite

action set 𝐴𝑖. A player’s action set could represent the finite set of locations that a player could

select. We will consider the following potential function for the consensus problem:

𝜑(𝑎) = ∑ 𝐽𝑖(𝑎𝑖)
𝑛
𝑖=1 + ∑ ∑

‖𝑎𝑖−𝑎𝑗‖

2𝑃𝑗∈𝑁𝑖𝑃𝑖∈𝑃 , (3.4)

where

 𝐽𝑖(𝑎𝑖) is the local cost function (SAD) of subblocki which is assigned to player i. This cost

function depends only on the action 𝑎𝑖 (motion vector) of player i.

𝑁𝑖 is the neighbor set of player i.

Now, the goal is to assign each player an objective function that is perfectly aligned with

the global objective:

𝑈𝑖(𝑎𝑖, 𝑎−𝑖) = 𝐽𝑖(𝑎𝑖) + ∑ ‖𝑎𝑖 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖
. (3.5)

The utility function includes a term which is the distance to the motion vectors of the

neighboring subblocks. In other words, the objective of a player is not only to minimize the SAD

of its subblock but also to find a motion vector that is in high correlation with the motion vectors of

the neighboring subblocks. Now, each player’s objective function is only dependent on the actions

of its neighbors.

Claim: Player objective functions (3.5) constitute a potential game with potential function

(3.4), provided that the time invariant interaction graph induced by neighbor sets

{𝑁𝑖}𝑖=1
𝑛 isundirected, i.e.,

𝑃𝑖 ∈ 𝑁𝑗 ⇔ 𝑃𝑗 ∈ 𝑁𝑖

Proof: Since the interaction graph is time invariant and undirected, the potential function

can be expressed as

66

𝜑(𝑎) = 𝐽𝑖(𝑎𝑖) + ∑ 𝐽𝑘(𝑎𝑘)𝑛
𝑘=1,𝑘≠𝑖 + ∑ ‖𝑎𝑖 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖

+ ∑ ∑
‖𝑎𝑘−𝑎𝑗‖

2𝑃𝑗∈𝑁𝑘\𝑃𝑖𝑃𝑘≠𝑃𝑖
 (3.6)

The change in the objective function of player 𝑃𝑖by switching from action 𝑎𝑖
1 to action

𝑎𝑖
2 , provided that all other players collectively play𝑎−𝑖 , is

𝑈𝑖(𝑎𝑖
1, 𝑎−𝑖) − 𝑈𝑖(𝑎𝑖

2, 𝑎−𝑖) = 𝐽𝑖(𝑎𝑖
1) − 𝐽𝑖(𝑎𝑖

2) + ∑ ‖𝑎𝑖
1 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖

− ∑ ‖𝑎𝑖
2 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖

=

𝜑(𝑎𝑖
1, 𝑎−𝑖) − 𝜑(𝑎𝑖

2, 𝑎−𝑖) (3.7)

This is an exact potential game.

3.2.3 Learning Algorithm

A fundamental solution concept for strategic form games is the Nash equilibrium:

Definition of Nash Equilibrium [81]: A strategy profile 𝑎∗ = (𝑎𝑖
∗, 𝑎−𝑖

∗) ∈ 𝒜 is a

pure-strategy Nash equilibrium (or simply a Nash equilibrium) of a game (𝐼, (𝒜𝑖), (𝑢𝑖)) if

𝑢𝑖(𝑎𝑖
∗, 𝑎−𝑖

∗) ≥ 𝑢𝑖(𝑎𝑖, 𝑎−𝑖
∗), for every 𝑖 ∈ 𝐼 and 𝑎𝑖 ∈ 𝒜𝑖; equivalently, 𝑎𝑖

∗ ∈ 𝐵𝑅𝑖(𝑎−𝑖
∗) for every

𝑖 ∈ 𝐼. That is, 𝑎𝑖
∗ is a solution to the optimization problem 𝑚𝑎𝑥𝑎𝑖∈𝒜𝑖

𝑢𝑖(𝑎𝑖, 𝑎−𝑖
∗).

At the Nash equilibrium, no player can improve his/her payoff by adopting a different

strategy unilaterally; thus, no player has an incentive to unilaterally deviate from the equilibrium.

The Nash equilibrium is a proper solution concept; however, the existence of a pure-strategy Nash

equilibrium is not necessarily guaranteed. [81]

The most important property of potential games is acyclicity, which is also referred to as

the finite improvement property (FIP).

Definition of Finite improvement property [72]:

A path in (𝔗, (𝒜𝑖), (𝓊𝑖)) is a sequence(𝑎[0], 𝑎[1], …) such that for every integer 𝑘 ≥ 1

67

, there exists a unique player 𝑖such that𝑎𝑖[𝑘] ≠ 𝑎𝑖[𝑘 − 1] ∈ 𝒜𝑖 while𝑎−𝑖[𝑘] = 𝑎−𝑖[𝑘 − 1].

(𝑎[0], 𝑎[1], …) is an improvement path if, for every𝑘 ≥ 1,𝑢𝑖(𝑎[𝑘]) > 𝑢𝑖(𝑎[𝑘 − 1]) where𝑖 is

the unique deviator at step𝑘,(𝔗, (𝒜𝑖), (𝓊𝑖)) has the finite improvement property (FIP) if every

improvement path is finite.

Theorem 1 ([72]): Every OPG with finite strategy sets has the FIP [72, Lemma 2.3]; that

is, unilateral improvement dynamics are guaranteed to converge to a Nash equilibrium in a finite

number of steps.

This potential game formulation provides a valuable theoretical framework for the

proposed distributed multi-agent BME problem. First, the existence of a Nash equilibrium in

potential games is guaranteed in many practical situations [72], but is not guaranteed for general

strategic form games. Second, from the definition of a potential game, the Nash equilibrium for

every local cost function is consistent with the global objective. Unilateral improvement dynamics

in potential games with finite strategy sets are guaranteed to converge to the Nash equilibrium in a

finite number of steps, i.e., they do not cycle [72]. Moreover, in finite player potential games, all

equilibria are local maximizers of potential; since better reply adjustment processes increase

potential, all equilibria are locally stable. As a result, learning algorithms can be systematically

designed. The potential game framework, therefore, provides distributed optimization problems

with theoretical support for problem simplification.

A variety of learning algorithms are available to facilitate the convergence of potential

games to Nash equilibrium, e.g., best response, fictitious play, reinforcement learning, and spatial

adaptive play. Best Response dynamics is a perfect fit for potential games.

68

3.2.3.1 Best Response Dynamics

The BRD can be formulated for a game with an arbitrary number of players. In its most

used form, BRD operates in a sequential manner (sequential BRD) such that players update their

actions in a round-robin manner. Within round t+1 (with 𝑡 ≥ 1), the action chosen by player 𝑘 ∈

𝜅 is computed as:

𝑎𝑘(𝑡 + 1) ∈ 𝐵𝑅𝑘[𝑎1(𝑡 + 1), … , 𝑎𝑘−1(𝑡 + 1), 𝑎𝑘+1(𝑡), … , 𝑎𝐾(𝑡)]. (3.8)

An alternative version of the BRD operates in a simultaneous way meaning that all

players update their actions simultaneously [77]:

𝑎𝑘(𝑡 + 1) ∈ 𝐵𝑅𝑘[𝑎−𝑘(𝑡)]. (3.9)

Table 3.1 BRD Algorithm

Set t=0

Initialize 𝑎𝑘(0) ∈ 𝑆𝑘 for all players 𝑘𝜖𝜅 (e.g. using random initialization)

Repeat

For 𝑘 = 1 𝑡𝑜 𝐾do

Update 𝑎𝑘(𝑡 + 1) using (3.8) or (3.9)

End for

Update 𝑡 = 𝑡 + 1

Until |𝑎𝑘(𝑡) − 𝑎𝑘(𝑡 − 1)| ≤ 𝜀 for all 𝑘𝜖𝜅

Theorem 2 ([76]): In potential and supermodular games, the sequential BRD converges

to a pure NE with probability one.

The pseudo code of BRD for both instances is given in table 3.1. Convergence means that

the distance between two successive action profiles remains below a certain threshold 𝜀 > 0.

69

When it converges, convergence points are typically pure NE [76]. There are no convergence

results for general games using BRD. However, when exact potential games are considered, then

there exist sufficient conditions under which the convergence of the sequential BRD to a pure NE

is always guaranteed [76]. On the other hand, unlike the sequential BRD, there does not seem to

exist general results that guarantee the convergence of the simultaneous BRD. [77]

3.3 Proposed Distributed Block Motion Estimation Scheme

So far, the BME problem is formulated in a game-theoretic multi-agent setting and is then

modeled as an exact potential game. The solution methodology proposed to find the NE of the

game is based on BRD where, in each round, each agent autonomously tries to optimize its local

utility function in (3.3) given the actions of the other agents. In order to carry out this optimization

step, agents should be equipped with local optimization capabilities. Due to the non-convexity of

the agent’s utility function (3.3), we resort to modern optimization techniques. Particle Swarm

Optimization (PSO) is chosen as the global optimization algorithm used by the agents due to its

profound intelligence and simple algorithmic structure. Each agent is equipped with a PSO engine

that finds its best response at each time step given the actions of the other players by optimizing its

local utility function.

3.3.1 Description of the proposed distributed algorithms

The proposed algorithm solves the problem of BME through game-theoretic interactions

among a network of self-interested, distributed computational agents. The macroblock is divided

into subblocks and an agent is defined for each subblock. Then, a swarm of PSO particles is

defined for each agent to serve as its local processing engine. According to the presented game

70

theoretic framework, agents perform BRD that drives the agents towards consensus on the

common MV of the whole MB which is also the NE of the underlying potential game. Two

versions of this approach are presented: a sequential version that uses sequential BRD, and a

simultaneous version that uses simultaneous BRD. The main distinction between these two

algorithms lies in the mode and frequency of the inter-agent communication needed during the

process to update neighborhood information which also determines the level of dependency

between the agents.

3.3.1.1 Sequential algorithm

In this algorithm, agents use sequential BRD. In each round, agents update their actions in

a synchronous round robin fashion, from agent 1 until agent 𝐾 in each round, according to (3.8).

At round t+1, agent 𝑘 needs to find its BR or utility maximizing action given by:

𝑎𝑘(𝑡 + 1) = arg 𝑚𝑎𝑥𝑎𝑘
𝑢𝑘(𝑎𝑘, 𝑎1(𝑡 + 1), … , 𝑎𝑘−1(𝑡 + 1), 𝑎𝑘+1(𝑡), … , 𝑎𝐾(𝑡)). (3.10)

According to our definition of the agent’s utility function in (3.3), the utility function of

an agent depends only on the actions of its neighboring agents defined in 𝑁𝑘. Therefore, an agent

needs updated information about the actions of its causal neighbors before calculating its best

response. Therefore, in each round of the sequential algorithm, we iterate over the agents and each

agent performs a communication step followed by an optimization step to find its BR at this round.

3.3.1.1.1 Communication step:

This step allows each agent to receive up-to-date information about the actions of its

causal neighbors through inter-agent communication. This is shown in Fig. 3.3.

71

Figure 3.3 Communication step in the sequential algorithm where agent k receives updated information about the
actions of the causal agents in its neighboring set.

3.3.1.1.2 Local Optimization Step

In this step, an agent runs a set of Nt PSO iterations to find its best response (BR) or its

best action at time t given the updated actions of its neighbors. This is done by optimizing the

utility function of the agent as given in (3.5) and using it as the fitness function in the PSO process.

A swarm of M particles is first defined for each agent. This is done by first initializing a

set of particles for the given MB and then randomly selecting from this set M particles for each

agent. This is done as follows. Based on the assumption that the motion field is smooth and varies

slowly, there are strong spatial correlations between motion vectors of neighboring blocks within

the same frame as well as strong temporal correlations with motion vectors of blocks in the

72

previous frame. Typically, a macroblock (MB) has 8 immediate neighbors. For a raster-search

order, the available apriori information for the current block are the motion vectors of only the four

causal neighboring blocks within the same frame that have already been found before block

matching for the current MB is conducted. To exploit the existing spatial correlation, motion

vectors of these four neighbors are used to initialize the positions of four swarm particles in the

search area. Additionally, the current block has apriori information of the motion vectors of the

collocated MB and its neighbors from the previous frame. In order to exploit the existing temporal

correlation, we initialize five swarm particles to the motion vectors of the collocated MB in the

previous frame and four of its direct neighbors as shown in Fig. 3.4. We also initialize one of the

particles to the (0, 0) motion vector (MV) to account for static blocks. Therefore, for an MB at

location (i,j) in frame t, we initialize a pool of 10 particles as follows:

{𝑥1, 𝑥2, 𝑥3, … , 𝑥10} =

{𝑀𝑣𝑖−1,𝑗−1
𝑡 , 𝑀𝑣𝑖−1,𝑗

𝑡 , 𝑀𝑣𝑖−1,𝑗+1
𝑡 , 𝑀𝑣𝑖,𝑗−1

𝑡 , 𝑀𝑣𝑖,𝑗
𝑡−1, 𝑀𝑣𝑖,𝑗+1

𝑡−1 , 𝑀𝑣𝑖+1,𝑗−1
𝑡−1 , 𝑀𝑣𝑖+1,𝑗

𝑡−1 , 𝑀𝑣𝑖+1,𝑗+1
𝑡−1 , (0,0)}.(3.11)

Figure 3.4 Initialization of particles positions of a given MB

73

Then, for each agent within each MB, a set of M particles are randomly chosen from the

initialized pool of particles of the corresponding MB.

In order to decrease the computational complexity of this stage, fitness function history

preservation proposed in Chapter 2 is adopted to avoid unnecessary redundant fitness function

calculations of search points that have been visited before by any particle during the PSO process.

In addition, the maximum velocity which limits the flying speed of the particles is adaptively

changed in this PSO process as was proposed in Chapter 2. Therefore, in this modified PSO

algorithm, a higher 𝑣𝑚𝑎𝑥 value is adopted in the early stage of the search process and a lower

value later to perform a local search. A linearly decreasing function is adopted to gradually reduce

the 𝑣𝑚𝑎𝑥 value in the current iteration in proportion to the iteration number, this is given by:

𝑣𝑚𝑎𝑥(𝑗) =
𝑉𝑚𝑎𝑥

𝑗
, (3.12)

where 𝑉𝑚𝑎𝑥is an empirically determined value and 𝑗 is the iteration number.

This PSO process terminates whenever the maximum number of iterations Nt is reached.

Early termination of the search is allowed whenever the fitness value of the global best position is

less than a predefined threshold value Tth and when the fitness value associated with the global best

position remains the same for Kmax iterations, even if the maximum iteration number Nt is not yet

reached. The pseudo code of the sequential algorithm is shown in Table 3.2.

74

Table 3.2 Pseudocode of the proposed sequential ME algorithm

For each MB in the frame do

Initialize a set of 10 particles according to (3.11) and as shown in Fig. 3.4

For each agent or subblock k=1,…,K do

Define a swarm of M PSO particles

Initialize the fitness history array entries to zeros

Initialize particle velocities to zeros

Initialize particle positions by randomly selecting M particles from the MB particle set

End for
BR Rounds:

Repeat

For each agent or subblock k=1,…,K do

Communication Step:

Update the matrix of neighbors’s actions or global best positions as shown in Fig. 3.3

BR Optimization Step Using PSO:

Repeat

For each particle i=1,…,M do

Check its flag in agent k history array

If the flag is 0 then

Calculate utility function of the agent

Update the particle’s best position Pi and the global best position Pi of the agent

Save the value of the fitness value in the history array

Set flag to 1

Else

Retrieve the value of the fitness function from the history array

Update Pi

End if

Adaptively change vmax using (3.12)

Update the velocity

Update the position

End for

Until stopping conditions of the PSO process are met

End for

Until all the players’ strategies become stationary or the prescribed maximum number of BR rounds T is

reached.

End for

3.3.1.2 Simultaneous Algorithm

The proposed simultaneous algorithm uses simultaneous BRD which operates in a

simultaneous way meaning that, in each round, all agents update their actions simultaneously

according to:

𝑎𝑘(𝑡 + 1) = arg 𝑚𝑎𝑥𝑎𝑘
𝑢𝑘(𝑎−𝑘(𝑡)). (3.13)

That is, to find the BR of agent 𝑘 at round 𝑡 + 1, we need information about the actions

of its neighbors in the previous round t. this offers the important advantage of breaking the

75

dependency between the agents within each round. The steps of the proposed algorithm are as

follows. The MB is divided into subblocks as shown in Fig. 3.1 and an agent is defined for each

subblock. A Swarm of 𝑀 PSO particles is defined and initialized for each agent. Several rounds of

simultaneous BRD are carried out for the subblocks. For each round, an inter-agent

communication step is first performed. Then, we iterate over the agents to calculate their BR

through a local optimization process using PSO.

3.3.1.2.1 Communication Step

At the beginning of each round, all agents need updated information about the actions of

their neighbors in the previous round in order to find their BR at the current round. A broadcast

step is performed where each all agents broadcast to their neighbors their actions attained from the

previous round. This is shown in Fig. 3.5.

Figure 3.5 Communication step in the simultaneous algorithm where each agent broadcasts information about its
current action to the agents in its neighboring set.

76

3.3.1.2.2 Local Optimization Step

After updating the actions of their neighbors, agents use the modified PSO optimization

process to find their best response (BR) according to (3.13).

3.3.1.2.3 Final MV Search Step

Unlike the sequential BRD, there does not seem to exist general theoretical results that

guarantee the convergence of the simultaneous BRD [27]. Therefore, in the proposed

simultaneous ME algorithm, the maximum number of simultaneous BR rounds 𝑇 might be

reached before convergence of the MVs of all the agents to a common MV which is the minimizer

of the potential function. In that case, a final MV search step is needed to choose, from the agents’

estimated MVs, the MV that minimizes the SAD of the whole MB. This is done efficiently by

approximating the SAD of the whole MB as the sum of SAD values of its subblocks. The SAD

values for the subblocks are then calculated for each of the estimated MVs of the players. The

fitness function history preservation property of the subblocks is utilized here to reduce the

computational complexity of this step. The pseudo code of the sequential algorithm is shown in

Table 3.3.

77

Table 3.3 Pseudo code of the proposed simultaneous ME algorithm

For each MB in the frame do

Initialize a set of 10 particles according to (3.11) and as shown in Fig. 3.4

For each agent or subblock k=1,…,K do

Define a swarm of M PSO particles

Initialize the fitness history array entries to zeros

Initialize particle velocities to zeros

Initialize particle positions by randomly selecting M particles from the MB particle set

End for

BRD Rounds:

Repeat

Communication Step:

All Agents broadcast their actions to their neighbors.

All agents receive information from their neighbors about their actions

For each agent or subblock k=1,…,K do

BR Optimization Step Using PSO:

Repeat

For each particle i=1,…,M do

Check its flag in agent k history array

If the flag is 0 then

Calculate utility function of the agent

Update the particle’s best position Pi and the global best position Pi of the agent

Save the value of the fitness value in the history array

Set flag to 1

Else

Retrieve the value of the fitness function from the history array

Update Pi

End if

Adaptively change vmax using (3.12)

Update the velocity

Update the position

End for

Until stopping conditions of the PSO process are met

End for

Until all the players’ strategies become stationary or the prescribed maximum number of BR

rounds T is reached.

If convergence is not reached then

Final MV search step:

End If

End for

3.3.1.3 Comparison between the Proposed Sequential and Simultaneous Algorithms

The two proposed algorithms describe how the problem of block ME can be solved in a

decentralized manner by a system of autonomous agents which can, in a distributed fashion,

optimize a global objective function. By means of non-cooperative games and local

communication, each (selfish) agent tries to optimize its own utility leading eventually to an

78

emergent global welfare. The two proposed schemes, however, are different in several aspects.

First, the sequential algorithm uses sequential BRD which offers a positive theoretical guarantee

of convergence to the NE of the potential game. On the other hand, the presented simultaneous

scheme is based on simultaneous BRD, which doesn’t possess any theoretical guarantee of

convergence. When several players move simultaneously, the potential may not be increasing and

then the convergence of BRA to a NE of the game is not guaranteed [82].Nevertheless, unlike the

sequential algorithm which requires continuous inter-agent communication, the presented

simultaneous scheme eliminates data dependencies between the agents within each round and

limits inter-agent communication to a single step at the beginning of each round. Therefore, agents

are allowed to update their actions simultaneously. This offers the important advantage of

parallelism at the agents’ level and thus makes the simultaneous algorithm amenable to parallel

implementations.

3.3.1.4 Computational Complexity Analysis

In block matching motion estimation, the average number of fitness function evaluations

for each MB is used as a metric of the computational complexity. In the literature, the fitness

function usually used for block motion estimation is the SAD defined in (3.1). For each MB of size

of 16X16, there are 256 subtractions and 255 additions that are to be carried out in calculating the

Sum of Absolute Difference (SAD). Hence, the computing complexity is O(N2), where N is the

number rows or columns in NxN square MB. In the proposed simultaneous and sequential

algorithms, each MB is divided into K subblocks as shown in Fig. 3.1. The cost function of agent

k is the SAD of the subblock of dimension LxL as given in (3.2). Therefore, each SAD

computation performed by an agent is O(L2). Since, as illustrated in Fig.2, N2

L2⁄ = K, then we

79

can say that each cost function computed by an agent corresponds to 1
K⁄ MB fitness function

evaluation.In the proposed algorithms, we have K agents within a given MB. Agents will go

through a maximum of𝑇 BR rounds. In each round, the M particles of each agent will perform a

maximum of 𝑁𝑡 PSO iterations. Therefore, the maximum total computational complexity of the

proposed decentralized algorithms, in terms of fitness function evaluations per MB, is given by:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐾 ∗
𝑇∗𝑁𝑡∗𝑀

𝐾
= 𝑇 ∗ 𝑁𝑡 ∗ 𝑀. (3.14)

Notice that the computational complexity per MB of a centralized PSO-based block ME

algorithm [10] where a single PSO swarm of 𝑀′particles is defined for an MB with a total number

of iterations 𝑁𝑡
′ is given by:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑁𝑡
′ ∗ 𝑀′. (3.15)

From (3.14) and (3.15), we notice that if the parameters𝑇, 𝑁𝑡, and 𝑀 are chosen

properly, the computational complexity of the proposed distributed algorithms can be made

equivalent to that of a centralized PSO-based ME algorithm.

3.4 Parallel implementation

In this section, a multicore implementation of the proposed simultaneous algorithm is

proposed using the MATLAB® Parallel Computing Toolbox™ (PCT).

From the pseudo code of the simultaneous algorithm given in Table 3.3, we notice that the

proposed ME algorithm for each MB in the frame is made up of the following steps: Initialization

step to initialize the PSO swarms for the agents followed by the simultaneous BR rounds. The

initialization step for each agent is completely independent from that of the other agents.

Therefore, it can be parallelized. Moreover, within each round of the simultaneous BR process,

agents update their actions using PSO simultaneously and independently. Therefore, this local

80

PSO optimization step is also parallelizable across the agents.

The details of the proposed parallel implementation are shown in table and explained as

follows:

3.4.1 Parallel agents processing using Looping over a Distributed Range (for-drange)

In our implementation, the MB is partitioned equally along the subblocks or agents

among the different labs. Therefore, we have used the for-drange construct to allow the

simultaneous processing of each lab of its assigned agents in the MB.

3.4.2 SPMD block

This allows us to implement data-parallelism where each Matlab lab executes the same

lines of code but on different subblocks of a given MB. Within the spmd block, communication or

synchronization is allowed between labs. In the proposed parallel implementation, an spmd block

is started for each MB in the frame as shown in Table 3.4.

3.4.3 Inter-agent communication using labSendReceive

During the communication step the proposed simultaneous algorithm, each agent, or

subblock, is required to broadcast to its neighboring agents the global best position, Pg, found so

far in the optimization process. Each agent will also receive from each of its neighbors the value of

the global best position acquired by that neighbor. This interlab communication within the parallel

job is implemented using labSendReceive.

81

Table 3.4 Pseudo code of the parallel implementation of the proposed simultaneous me algorithm using Matlab

3.5 Simulation Results

3.5.1 Experimental setup

Several test video sequences of various formats and various motion intensity, (QCIF:

176x144), LD (CIF: 352x288), SD (480p: 832x480), and HD (720p: 1280x720) downloaded from

For each MB in the frame do

Initialize a set of 10 particles according to (3.11) and as shown in Fig. 3.4

Spmd
For k=drange (1,…,K) do

Define a swarm of M PSO particles

Initialize the fitness history array entries to zeros

Initialize particle velocities to zeros

Initialize particle positions by randomly selecting M particles from the MB particle set

End for drange
BRD Rounds:

Repeat

Communication Step:

All Agents exchange information with their neighbors using labSendReceive

For k=drange (1,…,K) do

BR Optimization Step Using PSO:

Repeat

For each particle i=1,…,M do

Check its flag in agent k history array

If the flag is 0 then

Calculate utility function of the agent

Update the particle’s best position Pi and the global best position Pi of the agent

Save the value of the fitness value in the history array

Set flag to 1

Else

Retrieve the value of the fitness function from the history array

Update Pi

End if

Adaptively change vmax using (3.12)

Update the velocity

Update the position

End for

Until stopping conditions of the PSO process are met

End for drange

Until all the players’ strategies become stationary or the prescribed maximum number of BR rounds

T is reached.

End spmd

If convergence is not reached then

Final MV search step:

End If

End for

82

[68, 69], have been used to test the performance of our proposed algorithm and compare it to

existing techniques. Results are presented with two distinct criteria: computational complexity and

objective motion estimation quality.

The proposed algorithm is simulated on a server with two Intel® Xeon® E5520 2.66GHz

CPUs (total of 8 physical CPU cores equivalent to 16 logical cores due to the hyper-threading

property of Intel CPUs) and 32GB RAM. The execution platform is Matlab R2012a.

In our simulations, every frame is divided into MBs of size 16 * 16 pixels. The search

step-size is one integer pixel and we used one reference frame which is the previous frame. The

search parameter p which defines the search area is chosen to be 15 for all the tested sequences

except for the HD (Parkrun) video sequence where p was chosen to be 31.

3.5.2 Simulation parameters

For the PSO algorithm, a pool of 10 particles is initialized for each MB according to

(3.11). Form this pool, a set of M particles are randomly selected for each player within the MB.

As discussed in section 3.1.4, the computational complexity of the algorithm depends on the

parameters 𝑇, 𝑀, and Nt. These parameters should be chosen properly so that the computational

complexity of the proposed distributed algorithms can be made equivalent to that of a centralized

PSO-based ME algorithm [52]. In [52], a swarm of 9 particles (𝑀′ = 9) are used for a total of 5

iterations (𝑁′
𝑡 = 5, 𝐾𝑚𝑎𝑥

′ = 2) which requires a maximum of 45 fitness function evaluations per

MB. In the proposed algorithms, the number of particles per subblock is chosen to be 𝑀 = 3.

Different values of Nt and Kmax are chosen for the proposed sequential and simultaneous

algorithms as follows. The proposed sequential algorithm is guaranteed to converge in 𝑇𝑐𝑜𝑛𝑣

number of BR rounds. According to our simulations, a good overall performance over a wide

83

range of video sequences is provided for a choice of Nt = 3(and Kmax = 2) which is found to

converge in an average number of BR rounds 𝑇𝑐𝑜𝑛𝑣 ≅ 5 if the number of players is𝐾 = 16, and a

choice of Nt = 5(and Kmax = 3) which is found to converge in an average number of BR rounds

𝑇𝑐𝑜𝑛𝑣 ≅ 3 if the number of players is𝐾 = 4. This requires a computational complexity of 𝑇𝑐𝑜𝑛𝑣 ∗

𝑀 ∗ 𝑁𝑡 = 45fitness function evaluations, which is equivalent to that of the centralized PSO-based

ME algorithm in [52]. On the other hand, as mentioned previously, the proposed simultaneous

algorithm doesn’t possess any guarantees for its convergence. According to our simulations, a

good overall performance over a wide range of video sequences is obtained for a choice of Nt =

5(and Kmax = 3) and a fixed number of BR rounds 𝑇 = 2.The choice of the BR rounds 𝑇 = 2

provides the important advantage of minimizing the communication overhead required in the

proposed simultaneous algorithm since the number of communication steps needed between the

players is only one in this case. The resulting maximum computational complexity in this case is

𝑇 ∗ 𝑀 ∗ 𝑁𝑡 = 2 ∗ 3 ∗ 5 = 30 fitness function evaluations for the BR process in addition to the

computations needed during the final MV search step. Overall, the computational complexity of

the proposed simultaneous algorithm is almost equivalent to the centralized ME approach in [52].

The pre-set minimum MSE error, Tth, is another empirically determined threshold that

can regulate the accuracy/complexity tradeoffs. If the threshold is too large, the algorithm tends to

run fast at the cost of a lower accuracy. In our simulations, the threshold for MSE, Tth, was chosen

to be 7. The maximum allowed velocity for the PSO particles, vmax, is dynamically varied in every

iteration of the PSO process. It is initially set to 𝑉𝑚𝑎𝑥and then linearly decreased according to the

iteration number. In our simulations, we chose Vmax = 15, for a search range of ±15, and Vmax = 31,

for a search range of±31, as a starting value for the maximum allowed velocity which adaptively

decreases in each iteration giving an average value of around 20% of the dynamic range in each

84

case.

3.5.3 Numerical analysis of convergence

In Section 3.2.3, we have provided the theoretical proofs of convergence for the proposed

sequential ME algorithm. In this section, simulation results of convergence are provided. Table 3.5

provides an empirical convergence analysis of the sequential BRD algorithm interms of the

average number of BR rounds needed for convergence, 𝑇𝑐𝑜𝑛𝑣, for the different video sequences.

We also analyze the effect of the number of players 𝐾 on the convergence speed of the algorithm.

Two values of 𝐾 are considered. Setting 𝐾 = 4 means that the MB is divided into 2x2 subblocks

each of size 8x8 pixels, whereas setting 𝐾 = 16 means that the MB is divided into 4x4 subblocks

each of size 4x4 pixels. Table 3.5 shows that only a few iterations are needed to obtain

convergence, which is a quite typical behavior for sequential BRD-type iterative procedures [76].

It is noticed that the convergence speed decreases with the increase in the number of players.

Table 3.5 Empirical Convergence Analysis of the sequential BRD algorithm in terms of the average number of
BR rounds needed

Sequence Number of BR Rounds 𝑇𝑐𝑜𝑛𝑣for 𝑲 = 𝟏𝟔
Number of BR Rounds 𝑇𝑐𝑜𝑛𝑣for

𝑲 = 𝟒

Soccer, QCIF, 15fps, p=15 5.9 3.54

Bus, QCIF, 15 fps, p=15 5.6 3.29

Soccer, CIF, 30fps, p=15 3.87 2.93

Bus, CIF, 30 fps, p=15 5.18 2.91

Tennis, CIF,30 fps, p=15 4.9 3.23

Stefan, CIF, 30fps, p=15 4.4 3.03

Foreman, CIF, 30fps, p=15 5.2 3.22

Container, CIF, 30fps, p=15 3 2.21

RaceHorses, 480p, 30 fps, p=15 4.8 3.88

Parkrun, 720p, 30 fps, p=31 3.7 2.6

3.5.4 Motion estimation quality

85

Objective motion estimation quality is measured interms of Peak Signal to Noise Ratio

(PSNR) values averaged over the first 100 frames of each test video sequence.

First, we compare the performance of the proposed sequential and simultaneous ME

algorithms, interms of motion estimation quality, for different values of the number of players 𝐾.

As shown in Table 3.6, increasing the number of players 𝐾 in the game results in an improvement

in the motion estimation quality of both of the proposed algorithms. This can be explained as

follows. As shown in Table 3.5, increasing the number of players leads to an increase in the needed

BR rounds for convergence in the proposed sequential algorithm. Consequently, this leads to an

increase in the number of search points explored and a more exhaustive search space exploration

which prevents the algorithms from falling into local minima. Moreover, increasing the number of

players 𝐾 in the game means incorporating a larger number of computing agents to solve the ME

problem which leads to a better estimation quality. Another important observation from the results

shown in Table 3.6 is that, for the same value of 𝐾, the motion estimation quality of the proposed

sequential algorithm exceeds that of the proposed simultaneous approach. The reason behind this

lies in the fact that, unlike the proposed sequential algorithm, the simultaneous BRD used in the

proposed simultaneous algorithm doesn’t necessarily converge to the NE and the proposed final

MV search step used provides only a suboptimal solution of the game.

Table 3.7 gives the average PSNR results for the ES algorithm and several traditional fast

searching techniques, like TSS [16], 4SS [18], DS [19], and ARPS [22]. PSNR results are also

given for the recently proposed Pattern Based PSO ME (PBPSO) algorithm given in [51] and the

PSO ME algorithm proposed in [52]. The simulation results presented are based on the averages of

the data (PSNR and search point) obtained from 50 repeated runs of the proposed algorithms to

strengthen the statistical significance. Increasing the number of runs also yield only very

86

negligible changes to the averages which do not differ significantly. Simulation results show that

both of the proposed algorithms provide an improvement in motion estimation quality as

compared to the other techniques. Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9, Fig. 3.10, Fig. 3.11, Fig.

3.12, and Fig. 3.13 show that the proposed algorithms can closely follow the PSNR values of the

ES method on the frame-by-frame basis.

Table 3.6 Motion estimation quality in terms of PSNR of the proposed sequential and simultaneous algorithms for
different values of 𝐾

Sequential Algorithm Simultaneous Algorithm

Sequence 𝑲 = 𝟒 𝑲 = 𝟏𝟔 𝑲 = 𝟒 𝑲 = 𝟏𝟔

Soccer, QCIF, 15fps, p=15 23.78 24.48 23.567 24.39

Bus, QCIF, 15 fps, p=15 22.74 22.99 22.594 22.941

Soccer, CIF, 30fps, p=15 29.311 29.57 28.9 29.49

Bus, CIF, 30 fps, p=15 25.126 25.36 24.92 25.28

Tennis, CIF,30 fps, p=15 28.185 28.58 27.89 28.495

Stefan, CIF, 30fps, p=15 25.86 26.7 25.645 26.54

Foreman, CIF, 30fps, p=15 33.629 34.228 33.46 34.18

Container, CIF, 30fps, p=15 32.1295 32.65 31.97 32.403

RaceHorses, 480p, 30 fps, p=15 28.251 28.94 28.034 28.87

Parkrun, 720p, 30 fps, p=31 25.4836 25.523 25.4188 25.508

Table 3.7 Motion estimation quality in terms of PSNR of the proposed Algorithms as compared to existing
techniques

Sequence ES TSS 4SS DS ARPS
PSO

[52]

PBPSO

[51]

Simultaneous

Algorithm

𝑲 = 𝟏𝟔

Sequential

Algorithm

𝑲 = 𝟏𝟔

Soccer, QCIF, 15fps, p=15 25.01 24.02 22.10 23.26 23.761 24.33 20.12 24.39 24.48

Bus, QCIF, 15 fps, p=15 23.35 21.88 19.76 20.41 21.036 22.809 17.579 22.941 22.99

Soccer, CIF, 30fps, p=15 30.19 28.21 27.01 27.69 28.662 29. 329 21.847 29.49 29.57

Bus, CIF, 30 fps, p=15 25.60 22.37 19.78 20.33 21.793 24.925 18.448 25.28 25.36

Tennis, CIF,30 fps, p=15 29.19 26.85 27.76 28.12 28.070 28.224 24.304 28.495 28.58

Stefan, CIF, 30fps, p=15 26.93 24.62 23.70 23.98 26.038 26.482 20.238 26.54 26.7

Foreman, CIF, 30fps, p=15 34.68 33.49 33.80 34.24 34.185 34.174 31.257 34.18 34.228

Container, CIF, 30fps, p=15 32.84 26.87 23.59 23.54 29.11 32.386 18.573 32.403 32.65

RaceHorses, 480p, 30 fps,
p=15

29.33 26.80 24.89 26.01 27.44 28.86 21.425 28.87 28.94

Parkrun, 720p, 30 fps, p=31 25.61 20.43 23.66 23.31 25.33 24.4 19.094 25.508 25.523

87

Figure 3.6 Motion estimation quality measured in PSNR for “Soccer, QCIF” sequence.

Figure 3.7 Motion estimation quality measured in PSNR for “Bus,CIF” sequence.

88

Figure 3.8 Motion estimation quality measured in PSNR for “Tennis, CIF” sequence.

Figure 3.9 Motion estimation quality measured in PSNR for “Stefan, CIF” sequence

89

Figure 3.10 Motion estimation quality measured in PSNR for “Forman, CIF” sequence

Figure 3.11 Motion estimation quality measured in PSNR for “Container, CIF” sequence

90

Figure 3.12 Motion estimation quality measured in PSNR for “Racehorses, 480p” sequence

Figure 3.13 Motion estimation quality measured in PSNR for “Parkrun, 720p” sequence

91

3.5.5 Computational complexity

In block matching motion estimation, the average number of candidate blocks checked

for each MB is used as the evaluation criterion of computation complexity. In this paper, the

average number of fitness function evaluations for each MB is used as a metric of the

computational complexity. This section gives the simulation results of a single core

implementation of our proposed algorithms. Table 3.8 provides a comparison of the computational

complexity between the proposed sequential and simultaneous algorithms for different number of

players. It can be seen from Table 3.8 that the simultaneous algorithm provides a reduction in the

computational complexity as compared to the proposed sequential algorithm for the same number

of players. The reason behind this is that the sequential algorithm has to go through 𝑇𝑐𝑜𝑛𝑣 BR

rounds, as shown in Table 3.5, before convergence, whereas the proposed simultaneous algorithm

goes through only 2 BR rounds followed by an efficient final MV search. This increases the

number of search points of the proposed sequential algorithm as compared to the simultaneous

approach. On the other hand, as shown in Table 3.8, increasing the number of players leads to an

increase in the computational complexity which is due to the increase in the number of BR rounds

needed for convergence for the sequential algorithm and the increase in the computational

requirements of the final MV search step in the proposed simultaneous approach.

In Table 3.9, the computational complexity of the proposed algorithms, when 16 players

are used, is compared with that of existing techniques. Although the simulation parameters, as

shown in section 6.2, are chosen so that the proposed algorithms have a computational complexity

equivalent to that of the centralized PSO approach in [52]; nevertheless, it is noticed from the

results in Table 3.9 that the proposed distributed approaches provide a reduction in the

computational complexity than the PSO algorithm in [52]. The exploitation of time-space

92

correlation of video sequences through effective particle initialization, agent’s fitness calculation

history preservation, and the efficient termination strategies used have decreased the number of

search points needed. The proposed simultaneous algorithm provides a further reduction in the

computational complexity that goes below the PBPSO algorithm in [51] for most of the sequences.

Table 3.8 Comparison of the average number of fitness function evaluations per MB for the proposed sequential
and simultaneous algorithms for different values of K

Sequential Algorithm Simultaneous Algorithm

Sequence 𝑲 = 𝟒 𝑲 = 𝟏𝟔 𝑲 = 𝟒 𝑲 = 𝟏𝟔

Soccer, QCIF, 15fps, p=15 10.99 14.366 9.59 13.67

Bus, QCIF, 15 fps, p=15 10.9 16.055 8.94 12.54

Soccer, CIF, 30fps, p=15 8.89 11.73 7.34 9.57

Bus, CIF, 30 fps, p=15 9.59 14.075 7.9 10.95

Tennis, CIF,30 fps, p=15 8.2 12.95 6.389 9.107

Stefan, CIF, 30fps, p=15 7.89 11.08 7.625 8.687

Foreman, CIF, 30fps, p=15 9.12 11.38 8.82 9.528

Container, CIF, 30fps, p=15 6.29 10.809 7.67 7.268

RaceHorses, 480p, 30 fps, p=15 14.017 16.401 13.29 15.32

Parkrun, 720p, 30 fps, p=31 8.2 13.91 8.202 8.38

Table 3.9 Comparison of the average number of fitness function evaluations per MB for various algorithms based
on the first 100 frames of the video sequences

Sequence ES TSS 4SS DS ARPS PSO [52] PBPSO[51]

Simultaneous

Algorithm

𝑲 = 𝟏𝟔

Sequential

Algorithm

𝑲 = 𝟏𝟔

Soccer, QCIF,15fps, p=15 961 29.33 18.33 17.66 13.25 16.2 11.024 13.67 14.366

Bus, QCIF,15fps, p=15 961 29.46 19.85 22.51 12.44 19.22 12.482 12.54 16.055

Soccer, CIF,30fps, p=15 961 31.13 20.01 19.89 10.61 13.54 12.24 9.57 11.73

Bus, CIF, 30fps, p=15 961 31.23 24.24 21.39 12.35 17.83 11.92 10.95 14.075

Tennis, CIF,30 fps, p=15 961 30.973 18.893 17.195 9.448 15.839 12.243 9.107 12.95

Stefan, CIF, 30fps, p=15 961 30.753 18.803 18.023 8.819 14.098 11.289 8.687 11.08

Foreman, CIF, 30fps, p=15 961 30.7602 18.456 16.661 8.978 12.925 12.114 9.528 11.38

Container, CIF, 30fps, p=15 961 31.165 21.247 23.0984 9.7977 12.337 12.751 7.268 10.809

RaceHorses, 480p, p=15 961 32.17 30.06 23.35 14.97 16.6 13.31 15.32 16.401

Parkrun, 720p, p=31 3969 40.11 22.97 21.18 9.77 15.924 12.182 8.38 13.91

93

3.5.6 Parallel performance of the proposed simultaneous algorithm

The parallel version of the proposed simultaneous algorithm is implemented using

Matlab PCT. The algorithm is simulated using different Matlab workers, or labs, and the average

execution times per frame are recorded in Tables 3.10 and 3.11 for 𝐾 = 4 and 𝐾 = 16

respectively. T1 is the time needed to initialize the swarms of PSO particles for the subblocks, T2

is the total time needed for inter-agent communication, and T3 is the time needed to perform the

simultaneous BR rounds and the final MV search step. The parallel performance of our algorithm

is evaluated in terms of the speedup factor, parallel efficiency, and granularity.

Table 3.10 Parallel performance of the proposed Simultaneous algorithm using Matlab PCT for 𝐾 = 4

Sequence Number of Labs T1 (s) T2 (s) T3 (s)
Total Time

(s)
Speedup

Efficiency

%
Granularity

Soccer QCIF, 15 fps, p=15

1 0.0351 0 0.1075 0.1426 1 100 -

2 0.0236 0.009 0.0671 0.0997 1.4303 71.5145 10.0778

4 0.015 0.008 0.0367 0.0597 2.3886 59.7152 6.4625

Bus, CIF, 30 fps, p=15

1 0.1482 0 0.4034 0.5516 1 100

2 0.097 0.0294 0.2398 0.3662 1.5063 75.3140 11.4558

4 0.0621 0.033 0.1352 0.2303 2.3951 59.8784 5.9788

RaceHorses, 480p, 30 fps, p=15

1 0.6465 0 2.4153 3.0618 1 100

2 0.3419 0.1089 1.3309 1.7817 1.7185 85.9236 15.3609

4 0.201 0.1254 0.7907 1.1171 2.7408 68.5212 7.9083

Parkrun, 720p, 50 fps, p=31

1 1.3481 0 4.9274 6.2755 1 100

2 0.8691 0.3378 2.9044 4.1113 1.5264 76.3201 11.1708

 4 0.5816 0.3948 1.5955 2.5719 2.4400 61.0006 5.5144

94

Table 3.11 Parallel performance of the proposed Simultaneous algorithm using Matlab PCT for 𝐾 = 16

Sequence Number of Labs T1 (s) T2 (s) T3 (s)
Total Time

(s)
Speedup

Efficiency

%
Granularity

Soccer QCIF, 15 fps, p=15

1 0.0355 0 0.1053 0.1407 1 100

2 0.0204 0.0089 0.0619 0.0912 1.5427 77.1328 9.2509

4 0.0120 0.0104 0.0322 0.0545 2.5804 64.5111 4.2444

8 0.0065 0.0127 0.0167 0.0359 3.9204 49.0048 1.8268

16 0.0035 0.0148 0.0095 0.0278 5.0626 31.6416 0.8784

Bus, CIF, 30 fps, p=15

1 0.1648 0 0.5088 0.6736 1 100

2 0.1002 0.041 0.2968 0.4380 1.5381 76.9028 9.6817

4 0.0576 0.0461 0.1656 0.2692 2.5020 62.5511 4.8398

8 0.0314 0.0511 0.0819 0.1644 4.0973 51.2159 2.2172

16 0.0210 0.059 0.0512 0.1312 5.1341 32.0880 1.2237

RaceHorses, 480p, 30 fps, p=15

1 0.6932 0 2.972 3.6655 1 100

2 0.3678 0.142 1.563 2.0727 1.7685 88.4254 13.5963

4 0.2151 0.168 0.884 1.2667 2.8938 72.3443 6.5399

8 0.1507 0.213 0.512 0.8757 4.1858 52.3230 3.1113

16 0.0652 0.251 0.288 0.6042 6.0668 37.9173 1.4072

Parkrun, 720p, 50 fps, p=31

1 1.455 0 6.01575 7.47075 1 100

2 0.8573 0.337 3.624 4.8183 1.5505 77.5242 13.2977

4 0.4713 0.4167 1.9695 2.8575 2.6144 65.3601 5.8575

8 0.313 0.491 1.015 1.8190 4.1071 51.3383 2.7047

 16 0.184 0.526 0.621 1.3310 5.6129 35.0805 1.5304

3.5.6.1 Speedup

To measure the parallel performance of our proposed algorithm, we used the speedup

factor, S(n),which is defined as:

𝑆 (𝑛) =
𝑇𝑠

𝑇𝑛
, (3.16)

where 𝑇𝑠 is the total execution time on a single processor, while 𝑇𝑛 is the total execution time on

a multicore system of n processors. In Tables 3.10 and 3.11, 𝑇𝑠 is taken as the total time when

executing the code on one lab and 𝑇𝑛 is the total time when executing the code on n labs. Fig. 3.14

shows a plot of the speedup as function of the number of cores for the four sequences for the two

95

values of 𝐾. In the presented algorithm, for a small number of cores, the amount of

communication needed is low since most of the neighbors of a given player will be allocated to the

same cores. As shown in the Tables 3.10 and 3.11, the average speedup is 1.6 for two cores.

Nevertheless, as the number of cores increases, the speedup also increases but its rate of increase

slightly diminishes due to the increase in the communication time resulting from the fact that the

neighbors of a given player might reside on different cores.

Note that in the proposed parallel simultaneous ME algorithm, the MBs within the frame

are processed sequentially, but the ME process of each MB is parallelized across multiple cores.

The motion estimation process of each MB is formulated as a game between 𝐾 players that are

equally distributed across the available processing cores for load balancing. Theoretically, the

algorithm is parallelizable across a maximum number of cores equal to the number of players in

the game, where each player is assigned to a core or Matlab worker. Therefore, in the proposed

algorithm, parallelism is limited to n = 𝐾 and using a larger number of cores will be useless.

Comparing the results in Tables 3.10 and 3.11, it is noticed that decreasing the number of

players in the game leads to a slight decrease in both the computation and communication times.

The reason behind this lies in two folds. First, decreasing the number of players in the game

reduces the number of allocated players per core as well as the number of direct neighbors for each

player which leads to a decrease in the needed inter-processor communication. Second, using a

smaller number of players slightly decreases the needed computations in the final MV search step.

The needed computational complexity during the BR rounds is basically the same since its

independent of the number of players 𝐾 as was shown in section E.5. The main limitation in using

a smaller value of 𝐾 is that parallelism is limited to n = 𝐾and reducing the number of players

would limit the scalability of the algorithm.

96

Figure 3.14 Speedup achieved by the parallel implementation of the proposed simultaneous algorithm for different
values of K

3.5.6.2 Parallel Efficiency

It is observed that the parallel efficiency decreases with the increase of the number of

cores. This is due to the fact that as the number of cores increases, the probability that the

neighbors of each player would be allocated to a different core increases. As a result, this leads to

an increase in the needed inter-processor communication during the synchronization stage of the

algorithm.

3.5.6.3 Granularity

To measure the granularity of our algorithm, the computation and communication times

97

are taken as:

𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑇1 + 𝑇3, (3.17)

𝑇𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇2. (3.18)

As shown in Tables 3.10 and 3.11, the granularity decreases with the increase of number

of cores since less number of players would be assigned to each core which results in a decrease in

the computation time. Moreover, as the number of cores increases, the amount of communication

needed also increases which results in an increase in the communication time. Comparing the

values in Tables 3.10 and 3.11, we notice that higher granularity values are recorded for 𝐾=4 as

compared to the values for 𝐾=16 when the same number of cores (for 𝑛 ≤ 4) are used. This is due

to the decrease in the needed communication needed with the decrease in the number of players, as

mentioned before. Overall, in the presented implementation granularity is considered coarse which

implies more opportunity for performance increase.

3.6 Summary

This work presents a novel distributed approach to block motion estimation. The

optimization problem of BME of a given MB is cast in a game-theoretic setting using a network of

autonomous agents. It is shown that by using local communication and applying simple robust

state-changing rules such as following natural game-theoretic dynamics, agents can, in a

distributed fashion, optimize the global objective function of the whole MB. First, a global

objective function that captures the notion of consensus is established. Next, it is shown that local

utility functions can be assigned to the players, so that the resulting game is proven to be a

potential game. Sequential and simultaneous algorithms based on BRD are proposed to solve the

game in a distributed fashion. Theoretical and empirical analysis is provided to prove the

convergence of the proposed sequential algorithm. On the other hand, a sub-optimal final MV

98

search method is proposed in the presented simultaneous scheme to overcome the absence of

guaranteed convergence. Despite its lack of guaranteed convergence, the proposed simultaneous

algorithm provides a high level of data parallelism between the subblocks. The multi-core

implementation of this scheme shows that speedup is indeed obtained. Simulation results show

that the proposed algorithms provide an improvement in estimation quality and a decrease in

computational complexity as compared to existing techniques.

99

CHAPTER 4

A DISTRIBUTED PARTICLE SWARM OPTIMIZATION

ALGORITHM USING THE STRATEGIES OF DIFFUSION

ADAPTATION

Many variants of particle swarm optimization (PSO) [45-52] were used for the problem

of ME. Even though these algorithms have very powerful global optimization capabilities, they

are, however, highly centralized at the block level and require a central processor to continuously

communicate with all the particles in the swarm during the iterative search process. This makes

these algorithms very hard to parallelize and thus cannot be accelerated using the available parallel

processing technologies. In chapter 3, distributed PSO algorithms were proposed using

non-cooperative game theory. The proposed distributed parallel algorithm could achieve

parallelism within the MB. In this chapter, we tackle the same problem but from a different

perspective. A distributed PSO algorithm is developed to achieve parallelism within the MB using

the diffusion adaptation theory in a multi-agent setting.

In multi-agent cooperation problems, different network topologies will influence

different manners of cooperation between agents. A centralized system will directly control the

operation of each agent with information flow from a single center, while in a distributed system,

agents operate separately under certain communication protocols. For distributed multi-agent

systems, there are two main challenges need to be addressed to achieve cooperation among a

potentially large number of involving agents. First, there is limited information for agents to utilize

to achieve the global objective. Moreover, the information of the distributed network topology is

unknown to agents.

100

Diffusion adaptation is an emerging adaptation mechanism that is applied to networks of

nodes to solve several types of optimization problems. This mechanism is distributed where nodes

are allowed to communicate only with their neighbors. Thus, no centralized processing is needed.

In this paper, we study the distributed optimization of block motion estimation using a network of

cooperative nodes based on diffusion protocols. The ME problem is formulated as the

optimization of a global cost function that is the sum of individual sub-problems. Nodes are

equipped with local estimation capabilities based on PSO. They iteratively produce local estimates

using PSO to minimize their local cost functions. Diffusion strategies are employed to allow the

agents to cooperate and diffuse information in real-time in order to reach the common minimizer

of the global cost function. This approach would be highly parallel since it is distributed

(non-centralized) and thus suitable for a parallel implementation.

The rest of the chapter is organized as follows. In section 4.1, a brief review of the

concepts of multi-agent networks and diffusion adaptation. In section 4.2, the details of the

proposed approach are given. Section 4.3 presents the parallel implementation of the proposed

diffusion-PSO algorithm using MATLAB PCT. Simulation results are provided and analyzed in

section 4.4. Section 4.5 provides a summary of this chapter.

4.1 Background

4.1.1 Multi-agent systems

In many disciplines such as computer science or robotics, the concept of an agent is

ubiquitous. The birth of the term “agent” has its roots in computer science, whereby an agent is,

roughly, defined as an autonomous computer program. The notion of an agent is quite difficult to

define. Although numerous papers on the subject of agents and multi-agent systems have been

101

written, a tremendous number of definitions exist. In essence, an agent is an entity that has the

capabilities of an intelligent person or human being. Due to this characteristic, being able to find a

unified definition of an agent is quite tough. Although the definition can vary from one discipline

to the other, in general, the main characteristics of an agent are its proactive and intelligent ability

to sense its environment, interact with it, and take autonomous decisions. In some sense, the role of

an agent is to mimic human behavior in a given technical problem whether it be, for example, in

computer science, robotics or control systems. Thus, a multi-agent system is a system composed of

multiple interacting intelligent agents that can interact, collaborate, and act together in order to

solve different problems. For example, multi-agent systems can be used to solve problems in

online trading, software engineering, disaster response, military applications, and modeling social

structures [83].

The main challenge in designing multi-agent systems is to be able to allow the agents to

somehow simulate the way humans act in their environment, interact with one another,

cooperatively solve problems or act on behalf of others, solve more and more complex problems

by distributing tasks or enhance their problem solving performances by competition. Clearly, the

use of agents and multi-agent systems will be one of the landmark technology in many disciplines

in years to come, as it will bring extra conceptual power, new methods and techniques, and

advanced design approaches. Consequently, this will essentially broaden the spectrum of

applications and expand it beyond the computer world into disciplines such as wireless networks

or communications theory.

Independent from its application, a general problem that is of strong interest in

multi-agent systems, is the distribution of tasks among the different agents. For instance, it is of

importance to study how, a number of agents, can autonomously and intelligently allocate

102

different tasks among each others using cooperative as well as non-cooperative approaches [83].

In a software system, the tasks can represent, for example, threads or programs that need to be

executed. In a control system, the tasks can be points in time or space that the agents are required to

attend to. For example, in [84, 85], the problem of enabling a number of vehicle-agents to move to

randomly generated tasks is studied in a non-cooperative approach, while in [86, 87], the problem

of task allocation in a software system is studied using a heuristic coalition formation approach.

Additional approaches for agents task allocation in robotics and artificial intelligence are found in

[83–92].

4.1.2 Diffusion Adaptation

In recent years, diffusion adaptation strategies have been proposed for the solution of

estimation [93, 94] and optimization problems [95] over networks in an adaptive and distributed

manner. In [93], authors formulate and study distributed estimation algorithms based on diffusion

protocols to implement cooperation among individual adaptive nodes. The individual nodes are

equipped with local learning abilities. They derive local estimates for the parameter of interest and

share information with their neighbors only, giving rise to peer-to-peer protocols. The resulting

algorithm is distributed, cooperative and able to respond in real time to changes in the

environment. It improves performance in terms of transient and steady-state mean-square error, as

compared with traditional non-cooperative schemes. Closed-form expressions that describe the

network performance in terms of mean-square error quantities are derived, presenting a very good

match with simulations.

Each node in the network could function as an individual adaptive filter whose aim is to

estimate the parameter of interest through local observations. These individual estimates across the

103

nodes could then be locally fused with their neighboring estimates in the network in order to obtain

an estimate that is influenced by the data at the nearby nodes; for instance, by resorting to

consensus implementations.

In [96], an iterative diffusion mechanism is developed to optimize a global cost function

in a distributed manner over a network of nodes. The cost function is assumed to consist of a

collection of individual components, and diffusion strategy allows the nodes to cooperate and

diffuse information in real-time. Compared to incremental methods, diffusion methods do not

require the use of a cyclic path over the nodes and are more robust to node and link failure.

Adaptive networks are well-suited to perform decentralized information processing and

optimization tasks and to model various types of self-organized and complex behavior

encountered in nature [97]. Adaptive networks consist of a collection of agents with processing

and learning abilities. The agents are linked together through a connection topology, and they

cooperate with each other through local interactions to solve distributed optimization, estimation,

and inference problems in real-time. The continuous diffusion of information across the network

enables agents to adapt their performance in relation to streaming data and network conditions; it

also results in improved adaptation and learning performance relative to non-cooperative agents.

Diffusion adaptation has been used to model the swarming behavior of flocks of birds [98], honey

bees [99], and schools of fish [100] adapting to their environment. The diffusion adaptation

algorithm is summarized as follows. Nodes or agents behave as adaptive filter with learning (or

estimating capabilities). They exchange estimates with their neighborhood, then combine this

information with their intermediate estimates before updating at each time step.

104

4.2 The Proposed Distributed Block Motion Estimation Algorithm Using PSO and

Diffusion Adaptation

The problem addressed in this chapter is how to solve the optimization problem of ME in

a distributed way through cooperative processing over a multi-agent network.

4.2.1 Problem Formulation

For motion estimation through a block matching (BM) algorithm, the current frame of an

image sequence 𝐼𝑡 is divided into non-overlapping blocks of N × N pixels. For each template

block in the current frame, the best matched block within a search window (S) of size (2𝑊 +

 1) × (2𝑊 + 1) in the previous frame 𝐼𝑡−1is determined, where 𝑊 is the maximum allowed

displacement. Under such perspective, BM can be approached as an optimization problem aiming

for finding the best MV within a search space.

The most well-known criterion for BM algorithms is the sum of absolute differences

(SAD). Considering a template MB at position (x, y) in the current frame and the candidate MB at

position (𝑥 + 𝑢̂, 𝑦 + 𝑣) in the previous frame 𝐼𝑡−1:

𝑆𝐴𝐷(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|,𝑁−1
𝑖=0

𝑁−1
𝑗=0 (4.1)

where 𝑔𝑡(.)is the gray value of a pixel in the current frame 𝐼𝑡 and 𝑔𝑡−1(.) is the gray level of a

pixel in the previous frame 𝐼𝑡−1.

The SAD fitness function used in the BMA can be viewed as a global cost function:

𝐽𝑔𝑙𝑜𝑏(𝑢̂, 𝑣) = 𝑆𝐴𝐷(𝑢̂, 𝑣). (4.2)

Consider a collection of K agents interested in estimating the same parameter

vector, 𝑤.The vector is the minimizer of the global cost function, 𝐽𝑔𝑙𝑜𝑏(𝑤), which the agents seek

to optimize.We want to study the distributed optimization of this global cost function. To do

that,𝐽𝑔𝑙𝑜𝑏(𝑤)is assumed to consist of the sum of individual components. We start our development

105

by associating with each agent 𝑘 an individual cost (or utility) function, 𝐽𝑘(𝑤), such that:

𝐽𝑔𝑙𝑜𝑏(𝑢, 𝑣) = ∑ 𝐽𝑘(𝑢, 𝑣).𝐾
𝑘=1 (4.3)

In this way, the global cost function is divided into a number of local cost functions each

associated to an agent. In order to find such decomposition, we will uniformly divide the MB, of

dimension 𝑁𝑥𝑁, into 𝐾 equal subblocks of dimensions 𝐿𝑥𝐿. Then, a network of 𝐾 agents is

employed such that agent 𝑘 would minimize the local cost function given by:

𝐽𝑘(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥𝑘 + 𝑖, 𝑦𝑘 + 𝑗) − 𝑔𝑡−1(𝑥𝑘 + 𝑢̂ + 𝑖, 𝑦𝑘 + 𝑣 + 𝑗)|𝐿−1
𝑖=0

𝐿−1
𝑗=0 , (4.4)

where(𝑥𝑘, 𝑦𝑘)is the position of the subblock.

The MB decomposition which was used in Chapter 3, and shown Fig.3.1, is again used

here. The MB, of dimension 16x16 (that is 𝑁 = 16) is divided along the rows and columns into

4x4 equal subblocks. In this case 𝐾 = 16, and each subblock is of dimension 4x4, that is 𝐿 is 4.

By finding the minimizer of the local cost function, each agent is searching for the

optimal MV of each subblock. Therefore, the minimizers of the local cost functions may not

coincide and each subblock would converge to a different MV. Our target however, is to find the

optimal MV for the entire MB. Therefore, all agents must converge to a common minimum which

is the minimizer of the global cost function.

To do this, cooperation between the agents is essential. Diffusion adaptation strategies are

employed to allow the agents to share information locally with their neighborhood. By cooperating

with their neighbors, and by having these neighbors cooperate with their neighbors, procedures

can be devised that would enable all agents in the network to converge towards the global optimum

through local interactions.

In diffusion adaptation, neighboring nodes can share information with each other as

permitted by the network topology. In this algorithm, we use the network topology which was

106

proposed in Section 3.2.1 and shown in Fig.3.2. Fig. 3.2 shows a given MB decomposed into 16

sub-blocks with one agent, or node, used for each sub-block. The node of each sub-block is

connected with the nodes of its 8 neighboring sub-blocks. Such a topology graph is chosen because

in motion estimation there is a high level of spatial correlation. Therefore, we expect that allowing

each node to share information with its 8 neighbors would improve the global performance level.

To motivate the distributed diffusion-based approach, we start by introducing a set of

nonnegative coefficients {ckl} that satisfy two conditions:

for 𝑘 = 1,2, … , 𝐾:

𝑐𝑘𝑙 ≥ 0, ∑ 𝑐𝑘𝑙 = 1, 𝑎𝑛𝑑 𝑐𝑘𝑙 = 0 𝑖𝑓 𝑙𝐾
𝑙=1 ∉ 𝒩𝑘, (4.5)

where 𝒩k denotes the neighborhood of node k.

Nodes or agents then use these coefficients {𝑐𝑘𝑙} to fuse estimates from their neighbors

at each iteration.

Agents are equipped with local estimation capabilities. They should be able to iteratively

estimate the minimizers of their local cost functions. Since the local, as well as, the global cost

function, have a lot of local minima, they are classified to be non-convex. Therefore, agents should

use a global optimization technique. PSO is chosen as the global optimization algorithm used by

the agents due to its profound intelligence and simple algorithm structure.

4.2.2 Proposed Diffusion PSO Block Motion Estimation Algorithm

The proposed diffusion block motion estimation algorithm is implemented using PSO as

follows:

An MB is divided into 𝐾subblocks as shown in Fig. 3.1. Then, a swarm of M particles is

defined for each subblock. PSO iterations are performed in each subblock in order to find the

107

minimizer of the local cost function of the subblock as defined in (4.4). After the completion of an

adaptation step through a modified PSO iteration by all subblocks, a diffusion step is performed.

The proposed approach follows the Combine-then-Adapt (CTA) diffusion algorithm, first

proposed and extended in [93, 94, 101-105] for the solution of distributed mean-square-error,

least-squares, and state-space estimation problems over networks. The algorithm consists of two

steps: a diffusion (combination) step followed by an adaptation (processing) step. The proposed

diffusion PSO model is shown in Fig. 4.1. The details of the proposed algorithm are as follows:

Figure 4.1 Proposed PSO Diffusion Adaptation Model

4.2.2.1 Diffusion Step

In this diffusion step, each agent will receive updated information from its neighboring

agents about their current estimates. Using the connectivity graph shown in Fig. 3.2, each subblock

𝑘 will take a weighted average of the Pg positions found so far by its neighbors denoted by

𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘 which is given by:

𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘 = ∑ 𝑐𝑘𝑙 ∗ 𝑃𝑔𝑙
𝐾
𝑙=1 , (4.6)

where the coefficients cklsatisfy (4.5).

108

4.2.2.2 Adaptation Step

The adaptation step used in the proposed algorithm consists of one PSO iteration

performed by all the agents in the MB. The basic PSO iteration, however, is modified to take into

consideration the information received from the neighboring agents. This is done by introducing

the following modifications into the PSO process:

4.2.2.2.1 Modified PSO Velocity Update Equation

The velocity update equation of PSO in (2.4) is modified to include the contribution of the

neighboring subblocks. In addition to the best position found so far by the particle and the best

position found so far by all the swarm of the subblock, a third attracting element is introduced

which is PGlobal,kwhich denotes the information received from the neighboring subblocks.

PGlobal,k is embedded in the velocity update equation of particle i of subblock k as follows:

𝑉𝑖𝑘(𝑡 + 1) = 𝑤𝑉𝑖𝑘(𝑡) + 𝑐1𝑟1[𝑃𝑖𝑘(𝑡) − 𝑋𝑖𝑘(𝑡)] + 𝑐2𝑟2[𝑃𝑔𝑘(𝑡) − 𝑋𝑖𝑘(𝑡)] + 𝑐3𝑟3[𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘(𝑡) − 𝑋𝑖𝑘(𝑡)](4.7)

In this way, a particle in subblock 𝑘 will not only be attracted towards the minimizer of

the local cost function of its subblock but also towards the minimizers of the cost functions of its

surrounding subblocks. Following this approach, we aim to drive PSO to find the motion vector

that would minimize the local SAD of the subblock while being very close to the motion vectors of

the surrounding MBs.

4.2.2.2.2 Modified Fitness Function

The fitness function used in the PSO iterations to evaluate any found motion vector (û, v̂)

is also modified to include not only the SAD of the subblock but also a regularization term that

measures the deviation of the motion vector from the motion vectors found so far by the

neighboring subblocks. This is done as follows:

109

𝐹(𝑢̂, 𝑣)𝑘 = 𝐽𝑘(𝑢̂, 𝑣) + 𝛼(𝑡) ∗ |(𝑢̂, 𝑣) − 𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘|, (4.8)

where 𝐹(𝑢̂, 𝑣)𝑘 is the fitness of the motion vector (𝑢̂, 𝑣) for subblock 𝑘, and 𝛼(𝑡) is the

regularization factor.

The regularization factor 𝛼(𝑡) is a used to adaptively varied in each PSO iteration 𝑡 as

follows:

𝛼(𝑡) =
𝑡

𝑁𝑡
, (4.9)

𝛼(𝑡) is linearly increasing with the number of iterations. When t is small, i.e. in the beginning of

the PSO iterative process, the fitness value of a given search point is the real cost function of the

subblock. As we go through the PSO process, i.e. t increases, then the effect of the regularization

term increases and more weight will be given to the deviation from the neighboring subblocks.

Thus, we ensure that the motion vector estimated by a given agent is aligned with the average

estimates of its neighbors. The objective of using this approach is to drive all the PSO swarms of

the subblocks eventually to reach consensus on a common motion vector for all the subblocks

which is the optimum motion vector of the whole MB.

The pseudo code of the proposed algorithm is shown in Table 4.1.

110

Table 4.1 Pseudo code of the proposed diffusion-PSO algorithm

For each MB in the frame do

Initialize a set of M particles

For each agent or subblock k=1,…,K do

Initialize the fitness history array entries to zeros

Initialize particle velocities to zeros

End for

PSO iterations:

Repeat

Update the regularization factor 𝛼(𝑡) using (4.9)

Diffusion Step:

All Agents broadcast their actions to their neighbors.

All agents receive information from their neighbors about their actions

Adaptation step:

For each agent or subblock k=1,…,K do

For each particle i=1,…,M do

Check its flag in agent k history array

If the flag is 0 then

Calculate utility function of the agent

Update the particle’s best position Pi and the global best position Pg of the agent

Save the value of the fitness value in the history array

Set flag to 1

Else

Retrieve the value of the fitness function from the history array

Update Pi

End if

Adaptively change vmax

Update the velocity using (4.7)

Update the position

End for

End for

Until stopping conditions of the PSO process are met

If convergence is not reached then

Final MV search step

End If

End for

4.2.3 Computational complexity analysis

As was shown in section 3.3.1.9 in chapter 3, the computing complexity of calculating the SAD is

O(N2), where N is the number rows or columns in NxN square MB. In the proposed

diffusion-based PSO algorithm, each MB is divided into K subblocks as shown in Fig. 4.2. The

cost function of agent k is the SAD of the subblock of dimension LxL as given in (4.4).

Therefore, each SAD computation performed by an agent is O(L2). Since, as illustrated in Fig. 4.2,

111

N2

L2⁄ = K, then we can say that each cost function computed by an agent corresponds to 1
K⁄ MB

fitness function evaluation.In the proposed algorithms, we have K agents within a given MB. In

the proposed process, the M particles of each agent will perform a maximum of 𝑁𝑡 PSO

iterations. Therefore, the maximum total computational complexity of the proposed algorithm, in

terms of fitness function evaluations per MB, is given by:

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐾 ∗
𝑁𝑡∗𝑀

𝐾
= 𝑁𝑡 ∗ 𝑀. (4.10)

4.3 Parallel Implementation

In this section, a multicore implementation of the proposed diffusion-PSO algorithm is

proposed using the MATLAB® Parallel Computing Toolbox™ (PCT). From the pseudo code of

the proposed diffusion PSO algorithm given in Table 4.1, we notice that the proposed ME

algorithm for each MB in the frame is made up of the following steps: Initialization step to

initialize the PSO swarms for the agents followed by the diffusion PSO iterations. The

initialization step for each agent is completely independent from that of the other agents.

Therefore, it can be parallelized. Moreover, each iteration of the proposed diffusion PSO process is

made up of two steps: a diffusion step followed by an adaptation step. Both of these steps are

inherently parallel between the agents. Therefore, a simultaneous execution of the diffusion step

can be performed by all the agents followed by a simultaneous execution of the adaptation step.

The details of the proposed parallel implementation are shown in Table 4.2.

112

Table 4.2 Pseudo code of the parallel implementation of the proposed Diffusion-PSO algorithm using MATLAB

4.4 Simulation results

4.4.1 Experimental setup

Several test video sequences of various formats and various motion intensity, (QCIF:

176x144), LD (CIF: 352x288), SD (480p: 832x480), and HD (720p: 1280x720), have been used to

test the performance of our proposed algorithm and compare it to existing techniques. In our

simulations, every frame is divided into MBs of size 16 * 16 pixels. The search parameter 𝑊

which defines the search area is chosen to be 15 except for the HD (Parkrun) video sequence where

For each MB in the frame do

Initialize a set of M particles

spmd

For k=drange (1,…,K) do

Initialize the fitness history array entries to zeros

Initialize particle velocities to zeros

End for drange

PSO iterations:

Repeat

Update the regularization factor 𝛼(𝑡) using (4.9)

Diffusion Step:

All agents exchange information from their neighbors about their actions using labSendReceive

For k=drange (1,…,K) do

Adaptation step:

For each particle i=1,…,M do

Check its flag in agent k history array

If the flag is 0 then

Calculate utility function of the agent

Update the particle’s best position Pi and the global best position Pi of the agent

Save the value of the fitness value in the history array

Set flag to 1

Else

Retrieve the value of the fitness function from the history array

Update Pi

End if

Adaptively change vmax

Update the velocity using (4.7)

Update the position

End for

End for drange

Until stopping conditions of the PSO process are met

If convergence is not reached then

Final MV search step

End If

End for

113

𝑊was chosen to be 31.

For the PSO algorithm, the size of the particle population was chosen to be M=10 and the

maximum number of iterations is Nt = 3. The stopping conditions used in [52] are adopted in the

simulations. The maximum allowed velocity Vmax = 15 for a search range 𝑊 of ±15 and Vmax = 31

for a search range 𝑊 of ±31.

Results are presented with two distinct criteria: objective motion estimation quality and

computational complexity.

4.4.2 Motion estimation quality

 Objective motion estimation quality is measured interms of Peak Signal to Noise Ratio

(PSNR) values averaged over the first 100 frames of each test video sequence.

Table 4.3 gives the average PSNR results for the ES algorithm and several traditional fast

searching techniques, like three step search (TSS) [16], four step search (4SS) [18], diamond

search (DS) [19], and adaptive root pattern search (ARPS)[22]. PSNR results are also given for the

recently proposed PSO-based ME algorithms given in [51, 52]. Simulation results show that the

proposed algorithm provides an improvement in motion estimation quality as compared to the

other techniques as shown in Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5.

114

Table 4.3 Motion estimation quality in terms of PSNR of the proposed Diffusion-PSO algorithm as compared to
existing techniques

Algorithm

Sequence

Soccer QCIF,

W=15

Bus CIF,

W=15

RaceHorses 480p,

W=15

Parkrun 720p,

W=31

ES
25.01 25.61 29.34 25.61

TSS
24.02 22.37 26.81 20.44

4SS
22.11 19.79 24.891 23.66

DS
23.27 20.34 26.02 23.31

ARPS
23.77 21.79 27.45 25.33

PSO[8]
24.33 24.9 28.07 24.4

PBPSO[9]
19.12 17.45 20.43 19.1

 Diffusion-PSO
24.38 25.39 28.95 25.54

Figure 4.2 Motion estimation accuracy measured in PSNR for “Soccer QCIF” sequence.

115

Figure 4.3 Motion estimation accuracy measured in PSNR for “Bus CIF” sequence.

Figure 4.4 Motion estimation accuracy measured in PSNR for “RaceHorses 480p” sequence.

116

Figure 4.5 Motion estimation accuracy measured in PSNR for “Parkrun” sequence.

4.4.3 Computational complexity

The average number of fitness function evaluations for each MB is used as a metric of the

computational complexity. As shown in Table 4.4, the proposed approach provides a significant

decrease in the computational complexity as compared to existing techniques.

117

Table 4.4 Comparison of the average number of fitness function evaluations per block of the proposed
Diffusion-PSO algorithm based on the first 100 frames of the video sequences

Algorithm

Sequence

Soccer QCIF,

 W=15

Bus CIF,

W=15

RaceHorses 480p,

W=15

Parkrun 720p,

W=31

ES
961 961 961 3969

TSS
29.33 31.23 32.17 40.11

4SS
18.33 24.24 30.06 22.97

DS
17.66 21.39 23.35 21.18

ARPS
13.25 12.35 14.97 9.77

PSO[52]
14.53 15.83 16.01 15.024

PBPSO[51]
11.024 11.92 13.31 12.182

Diffusion-PSO
12.94 10.03 11.61 7.98

4.4.4 Parallel Performance

The parallel version of the proposed diffusion-PSO algorithm is implemented using Matlab

PCT. The algorithm is simulated using different Matlab workers, or labs, and the average

execution times per frame are recorded in Table 4.5. T1 is the time needed to initialize the swarms

of PSO particles for the subblocks, T2 is the total time needed for inter-agent communication, and

T3 is the time needed to perform the modified PSO iterations and the final MV search step. The

parallel performance of our algorithm is evaluated interms of the speedup factor, parallel

efficiency, and granularity.

118

Table 4.5 Parallel performance of the proposed diffusion-PSO algorithm using MATLAB PCT

Sequence Number of Labs T1 (s) T2 (s) T3 (s)
Total

Time (s)
Speedup

Efficiency

%
Granularity

Soccer QCIF, 15 fps, p=15

1 0.0573 0 0.0951 0.1524 1 100

2 0.0289 0.0198 0.0489 0.0976 1.5606 78.0293 3.9308

4 0.0174 0.02486 0.0283 0.0706 2.1593 53.9824 1.8383

8 0.0093 0.03146 0.0154 0.0562 2.7130 33.9120 0.7851

16 0.0062 0.0374 0.0089 0.0525 2.9010 18.1312 0.4043

Bus, CIF, 30 fps, p=15

1 0.2274 0 0.4505 0.6779 1 100

2 0.1226 0.08118 0.2595 0.4633 1.4634 73.1700 4.7065

4 0.0701 0.09878 0.1471 0.3160 2.1452 53.6312 2.1991

8 0.0413 0.11462 0.0819 0.2378 2.8512 35.6395 1.0744

16 0.0287 0.1342 0.0517 0.2146 3.1597 19.7483 0.5987

RaceHorses, 480p, 30 fps, p=15

1 0.9970 0 2.101 3.0979 1 100

2 0.5278 0.3124 1.204 2.0441 1.5156 75.7776 5.5432

4 0.3296 0.36652 0.805 1.5010 2.0639 51.5973 3.0953

8 0.1950 0.52096 0.471 1.1874 2.6090 32.6129 1.2792

16 0.1289 0.5742 0.266 0.9689 3.1974 19.9840 0.6874

Parkrun, 720p, 50 fps, p=31

1 2.021 0 5.414 7.4352 1 100

2 1.140 0.79104 3.329 5.2604 1.4134 70.6718 5.6500

4 0.625 0.91608 1.798 3.3393 2.2266 55.6649 2.6452

8 0.363 1.2168 0.981 2.5602 2.9042 36.3023 1.1040

 16 0.2422 1.3944 0.6127 2.2493 3.3056 20.6602 0.6131

Fig. 4.6 shows a plot of the speedup as function of the number of cores for the four

sequences. As shown in the Table 4.5, the average speedup is 1.47 for two cores. Nevertheless, as

the number of cores increases, the rate of increase in speedup becomes very low. In fact, the

average maximum speedup reached is 3.14 for 16 labs. The reason behind this is the amount of

inter-lab communication needed by this algorithm. In the proposed scheme, agents should diffuse

information about their estimates before each iteration of PSO. Since the number of PSO iterations

used in our simulations is three (Nt = 3), this means that three inter-agent communication stages are

119

needed. This results in diminishing speedup gains with increased number of cores.

Figure 4.6 Speedup achieved by the parallel implementation of the proposed diffusion-PSO algorithm

4.4.5 Comparison with the proposed simultaneous game-theoretic algorithm

The proposed diffusion-PSO algorithm proposed in this chapter is highly correlated with

the proposed simultaneous-BR game-theoretic ME algorithm which was proposed in Chapter 3. In

this section, we will highlight their algorithmic difference and provide a comparison in their

estimation and parallel performance.

In terms of algorithmic setup, as was mentioned in section 3.5.2, the simultaneous

algorithm performs 2 BR rounds (𝑇 = 2), where in each round, all players or agents

simultaneously perform a set of PSO iterations (Nt = 5). One communication stage is needed

between the BR rounds for players’ synchronization. The PSO swarm of each subblock is made up

120

of three particles (M=3). The resulting maximum computational complexity, as was mentioned in

section 3.5.2, was found to be 30 (𝑇 ∗ 𝑀 ∗ 𝑁𝑡 = 30) fitness function evaluations per MB. On the

other hand, in the proposed diffusion-PSO algorithm, agents perform simultaneously a total of

three PSO iterations with inter-agent communication performed before each iteration. Each agent

is equipped with 10 PSO particles which results in a maximum total computational complexity of

30 fitness function evaluations per MB, as was shown in section 4.2.3. Therefore, we notice that

both algorithms have equivalent computational requirements but the amount of inter-lab

communication needed for the diffusion-PSO algorithm is higher.

The differences in the algorithmic setup of both schemes are translated in their simulation

results. In terms of estimation accuracy, comparing the results shown in Tables 3.7 and 4.3, we

notice that the diffusion-PSO algorithm provides a slight improvement in the estimation accuracy

as compared to the simultaneous game-theoretic scheme. In terms of computational complexity,

comparing the results shown in Tables 3.6 and 4.4, we notice the presented diffusion-PSO scheme

provides a reduction in the needed fitness function evaluations as compared to the simultaneous

algorithm. On the other hand, comparing the parallel performance of the two algorithms shown in

Tables 3.11 and 4.5, we notice that the speedup achieved by the simultaneous algorithm is higher

than that provided by the proposed diffusion-PSO scheme.

Therefore, we deduce that the two proposed parallel algorithms provide a tradeoff

between estimation and parallel performances.

4.5 Summary

A novel approach for BM estimation that achieves parallelism within the MB is presented. The

problem is formulated in a distributed multi-agent system where only local communication is

121

allowed. A diffusion-based PSO process is proposed to drive the agents, in a distributed manner,

towards consensus. A novel velocity update equation for PSO is proposed to serve as an adaptation

step. A novel PSO fitness function that includes a regularization term is also proposed. Simulation

results show that the proposed scheme provides high estimation accuracy with low computational

requirements. The multi-core implementation of the proposed algorithm using Matlab PCT shows

a speedup of 1.47 on two labs and 3.14 on 16 labs. The limited speedup is due to the multiple

inter-agent communication stages needed by the proposed diffusion scheme.

122

CHAPTER 5

A NOVEL HYBRID DYNAMIC PARTICLE SWARM

OPTIMIZATION ALGORITHM FOR MOTION ESTIMATION IN

HIGH RESOLUTION VIDEO

Various ME algorithms based on PSO have been proposed in [45-52]. These algorithms

provide performance enhancement to the ES algorithm as well as some existing fast searching

techniques. The results presented in [45-52], however, are given only for low-definition (LD)

video. The available PSO algorithms, when applied on high definition (HD) video, are found to

yield a quality worse than that obtained for low definition (LD) video. The reason behind this is

that PSO has a major drawback which is that the swarm may prematurely converge. The fast rate

of information flow between PSO particles leads to the creation of similar particles. This results in

a loss of diversity that increases the possibility of being trapped in local minima where all particles

converge to the same point. This problem is not apparent in LD video, but becomes more

fundamental in HD video. This is because, as the resolution of the video increases, the number of

local minima falls increases because there is a lot of similar information among neighboring pixels

(and blocks).The increase in the number of local minima enhances the problem of premature

stagnation in the basic PSO algorithm.

In this chapter, a dynamic hybrid evolutionary motion estimation algorithm is proposed.

It combines two heuristic optimization techniques: PSO and the Genetic Algorithm (GA).

Algorithms based on the genetic algorithm (GA) have been proposed in [106-40, 41]. GA is a

stochastic search procedure based on the mechanics of natural selection, genetics and evolution

[107]. Since this type of algorithm simultaneously evaluates many points in the search space, it is

more likely to find the global solution of the ME problem. Nevertheless,PSO has many advantages

123

compared to GA. First, it has memory, so knowledge of good solutions is retained by all the

particles; whereas in GA, previous knowledge of the problem is discarded once the population

changes. Moreover, it allows constructive cooperation between particles where particles in the

swarm share information among themselves. In the proposed algorithm, the merits of the GA

algorithm are integrated into PSO in order to alleviate its premature convergence and stagnation in

HD video. GA operators like selection, breeding, and mutation are applied on PSO particles in an

innovative manner in order to increase the diversity of the population. A novel population

initialization scheme is proposed that exploits space-time correlation in video sequences in order

to improve the convergence rate of the algorithm. The presented algorithm is also dynamic since

the maximum allowed velocity of the particles is adaptively varied during the PSO iterative

process.

The rest of the chapter is organized as follows. Section 5.1 provides a review of the GA

algorithm. Section 5.2 highlights the behavior of existing ME algorithms using PSO when applied

to HD video. Section 5.3 presents the proposed hybrid motion estimation scheme. Simulation

results are given and analyzed in section 5.4. Finally, section 5.5 summarizes this chapter.

5.1 Basic Concepts of the GA

In GA, a candidate solution for a specific problem is called an individual or a chromosome

and consists of a linear list of genes. Each individual represents a point in the search space, and

hence a possible solution to the problem. A population consists of a finite number of individuals.

Each individual is decided by an evaluating mechanism to obtain its fitness value. Based on this

fitness value and undergoing genetic operators, a new population is generated iteratively with each

successive population referred to as a generation. The GAs use three basic operators (reproduction,

124

crossover, and mutation) to manipulate the genetic composition of a population. Reproduction is a

process by which the most highly rated individuals in the current generation are reproduced in the

new generation. The crossover operator produces two offsprings (new candidate solutions) by

recombining the information from two parents. There are two processing steps in this operation. In

the first step, a given number of crossing sites are selected uniformly, along with the parent

individual at random. In the second step, two new individuals are formed by exchanging alternate

pairs of selection between the selected sites. Mutation is a random alteration of some gene values

in an individual. The allele of each gene is a candidate for mutation, and its function is determined

by the mutation probability. Many efforts on the enhancement of traditional Gas have been

proposed [108]. Among them, one category focuses on modifying the structure of the population

or the role an individual plays in it [109]–[112], such as distributed GA [110], cellular GA [111],

and symbiotic GA [112]. Another category aims to modify the basic operations, such as crossover

or mutation, of traditional GAs [113]–[115].

5.2 Motion Estimation in HD Video: Stagnation of PSO particles

It is found that increasing the video resolution can directly affect the accuracy of ME. High

resolution videos tend to present very similar neighboring pixels (much more than low resolution

ones) and this fact contributes to increase the occurrence of local minima falls [116]. ME

algorithms can be affected by this characteristic, generating different results, for the same video, in

different resolutions.

The ES motion estimation algorithm as well as the PSO-based ME algorithm proposed in

[52] have been applied to four HD 720p video sequences which are: Shields, Parkrun, Stockholm,

and Mobcal downloaded from [68]. These sequences have been resized to two lower resolutions:

125

EDTV 480p (854x480) and LDTV 240p (427x240). The block size used is 16 and the search area

p is decreased proportionally with the resolution, where a value of p=42 is taken for the 720p

resolution, p=24 is taken for the 480p resolution, and p=12 for the 240p resolution. Fig. 5.1

shows the average peak signal to noise ratio (PSNR) for the four sequences, based on the first 100

frames of each sequence, in the three different resolutions. As can be seen from Fig. 5.1, the

performance of the PSO ME algorithm in [52] is very close to that of the ES algorithm at low

resolution. The performance gap, however, starts to increase with the increase in the video

resolution. The reason behind this is that, as the video resolution increases, the number of local

minima falls increases because there is a lot of similar information among neighboring pixels (and

blocks).The increase in the number of local minima enhances the problem of premature stagnation

in the basic PSO algorithm. Depending on the problem, when searching through the space of

solutions, optimizers can stagnate — they cannot find a better solution within a specified amount

of time. Some of the reasons stagnation occurs are because the algorithm has no means to escape a

local minimum it is currently trapped in – thus leading to premature convergence, or because it

moves along a large plateau, or maybe it jumps on an equally sized densely spiked region [117].

Indeed, as the video resolution increases, the search region becomes more densely spiked due to

the increase in the number of local minima falls. This is shown in Fig. 5.2 which gives 3D maps of

the fitness function, taken as the mean squared error (MSE) between an original block and a

candidate block, over the entire search area. Fig. 5.2 shows the 3D maps of the fitness function for

three different resolutions of the Parkrun sequence. Each map represents the same region of the

frame, with a different number of pixels. Figures 5.2(a)–2(c) represents the MSE maps for the

resolutions 240p, 480p, and 720p respectively. The images represent the MSE value for 16×16

blocks, where valleys represent lower MSE values, and peaks represent higher MSE values.

126

Figure 5.1 Average PSNR values for the four sequences using ES and PSO [52] using different resolutions.

127

Figure 5.2 3D plot of the MSE over the entire search area of a block from the Parkrun sequence.

5.3 Proposed Hybrid Motion Estimation Algorithm

In this section, the steps of the proposed hybrid PSO motion estimation algorithm are

128

presented. For each candidate block in the current frame, a swarm of PSO particles is first

initialized using the initialization scheme given in (3.11). In each iteration, particles update their

positions and velocities using (2.4) and (2.5). The maximum allowed velocity of the PSO particles

is adaptively-varied in each iteration of the process according to (2.9). Fitness values for the new

positions are evaluated following the guidelines of the FFHP scheme proposed in section 2.2.2.2 .

Then, particles are ranked according to the fitness function of their best positions Pbest and certain

particles are removed and others selected as parents using a novel selection scheme. Offsprings are

then generated from the selected parents using a novel crossover operator. Mutation is then

performed on the PSO particles. The whole scheme ends when termination conditions are

satisfied. The details of these steps are explained as follows.

5.3.1 Selection

The selection operator in GA is responsible for ensuring survival of the best fitted

individuals in the population. Selection is integrated in our proposed hybrid scheme to prevent

PSO from wasting resources on weak individuals. In the proposed scheme, in each iteration,

particles are first ranked according to the fitness values of their personal best positions Pbest. The

personal best fitness values of the particles are used here rather than the current fitness values since

a strong particle with a good history might happen to cross a weak position during its search and

would end up being removed from the population. It frequently happens that any continuous path

connecting two very close local optimizers might necessarily cross regions in which the objective

function is very high. As a consequence, points which are very close to good ones might have large

objective function values and are discarded from further consideration. In order to take into

account the “bumpiness” of the objective function, a better strategy would be that of evaluating the

129

quality of a single point on the basis of the objective function’s behavior in a neighborhood of that

point [118]. Therefore, the particle is judged to be strong or weak based not on its instantaneous

fitness value but on its overall search performance. The last two weak particles that have the worst

personal best fitness values are removed. They are replaced by two off springs that are generated

by the crossover of two strong parents selected from the swarm. Selection is an important part of

genetic algorithms since it affects significantly their convergence. The basic strategy follows the

rule: The better fitted an individual, the larger the probability of its survival and mating. The most

straightforward implementation of this rule is the so-called roulette-wheel selection [107]. This

method assumes that the probability of selection is proportional to the best personal fitness of an

individual. This is a stochastic algorithm and involves the following technique: the individuals are

mapped to contiguous segments of a line, such that each individual's segment is equal in size to the

fitness value of its Pbest. A random number is generated and the individual whose segment spans

the random number is selected [107].

5.3.2 Crossover

Crossover is a fundamental mechanism in the GA algorithm. It is used to generate

offsprings from the selected parents. In our proposed hybrid approach, a modified version of the

Velocity Propelled Averaged Crossover (VPAC) proposed in [119]. The goal in [119] was to

create two child particles whose position is between the parent’s positions, but accelerated away

from the parent’s current direction (negative velocity) in order to increase diversity in the

population. Towards the end of a typical PSO run, the population tends to be highly concentrated

in a small portion of the search space, effectively reducing the search space. With the addition of

the VPAC crossover operator, a portion of the population is always pushed away from the group,

130

increasing the diversity of the population and preventing immature convergence. In MVPAC,

instead of using the parents’ positions, the personal best positions attained so far by the parents are

used instead. The positions of the generated offsprings using MVPAC are given by:

𝑥𝑐1
(𝑡) =

𝑃1(𝑡)+𝑃2(𝑡)

2.0
− 𝑘1 ∗ 𝑣1(𝑡), (5.4)

𝑥𝑐2
(𝑡) =

𝑃1(𝑡)+𝑃2(𝑡)

2.0
− 𝑘2 ∗ 𝑣2(𝑡). (5.5)

where 𝑥𝑐1
(𝑡) and 𝑥𝑐2

(𝑡) are the positions of the two generated children 𝑐1and 𝑐2respectively.

𝑃1(𝑡) and 𝑃2(𝑡) are the personal best positions of parents 1 and 2, and 𝑣1(𝑡) and 𝑣2(𝑡) are the

current velocities of parents 1 and 2 respectively. 𝑘1and 𝑘2 are two uniform random variables in

the range [0,1]. The children velocities are assigned to zero to re-initialize the search and their

personal best positions, 𝑃𝑐1
(𝑡) and 𝑃𝑐2

(𝑡), are assigned to their new positions restarting the

children’s memory, as follows:

𝑃𝑐1
(𝑡) = 𝑥𝑐1

(𝑡), (5.6)

𝑃𝑐2
(𝑡) = 𝑥𝑐2

(𝑡). (5.7)

5.3.3 Mutation

The purpose of mutation is to diversify the search direction and prevent convergence to

the local optimum. Mutation is a genetic operator that alters one or more gene values in a

chromosome from its initial state. This can result in entirely new gene values being added to the

gene pool. With these new gene values, the genetic algorithm may be able to arrive at better

solution than was previously possible. Mutation is utilized in the proposed hybrid algorithm to

further increase the diversity of the PSO particles and prevent the population from stagnating at

any local optima. Mutation is applied to the particles positions in each iteration according to a

user-definable mutation probability Pm. A particle chosen for mutation undergoes a random shift

131

of its position within an n-dimensional hypercube of side length equal to 2 ∗ 𝑑 centered on the

current particle’s position according to the following equation:

𝑥′
𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑑 + 2 ∗ 𝑑 ∗ 𝑟𝑎𝑛𝑑(0,1), (5.8)

where 𝑥𝑖(𝑡) is the position of particle 𝑖 at iteration 𝑡. The value of d is taken as 10% of the search

range p. Such a mutation operator can be viewed as a transition from a current solution to its

neighborhood solution in local search algorithms [120].

The proposed PSO process terminates whenever the maximum number of iterations N is

reached. Early termination of search is allowed whenever the fitness value of the global best

position is less than a predefined threshold value Tth.

132

Figure 5.3 Flow of the Proposed Hybrid PSO-GA algorithm

133

5.4 Simulation Results and Performance Analysis

5.4.1 Search Precision

The performance of the proposed motion estimation algorithm was evaluated and

compared in terms of accuracy and speed with the ES algorithm as well as several well-known fast

search methods, including the four step search algorithm (4SS) [18] and the diamond search

algorithm(DS) [19]. The results of the recent PSO-based motion estimation algorithm proposed in

[52] are also included. The Peak Signal-to-Noise Ratio (PSNR) is used to measure the accuracy of

motion estimation.

Simulations were conducted on a PC with Intel Core 2 Duo CPU at 2.26 GHz processor,

4GB RAM, and the MS Windows 7 OS. The source codes were written in Matlab 7.10. In the

simulations, we used the first 100 frames of four HR 720p video sequences which are: Shields,

Parkrun, Stockholm, and Mobcal. These sequences have been resized to two lower resolutions:

480p (854x480) and 240p (427x240). The block size used is 16 and the search area p is decreased

proportionally with the resolution, where p is taken as 42, 24 and 12 for the 720p, 480p, and 240p

resolutions respectively. The other parameters of simulation are as follows. For PSO, the size of

the particle population was chosen to be M=10, N =4, Tth=7, c1 and c2 are equal to 2.05, and the

fitness function is the MSE. The mutation probability Pm is taken as 20%.The average PSNR of

each algorithm and the difference value between these search methods and ES are shown in Table

5.1. Fig.5.4 and Fig.5.5 also show the average PSNR values for the first 100 frames of the Parkrun

and Mobcal sequences in the HD 720p resolution.

134

Table 5.1 Improvements in motion estimation quality interms of PSNR over the FS algorithm of the proposed
hybrid PSO-GA algorithm as compared to existing techniques.

Algorithm ES 4SS DS PSO[52] Proposed

Sequence Resolution PSNR
D-val

ue
PSNR D-value PSNR D-value PSNR D-value PSNR D-value

Parkrun

720p 25.628 0 23.667 1.9612 23.314 2.314 25.465 0.1632 25.565 0.0626

480p 26.518 0 26.236 0.2817 26.298 0.2201 26.392 0.1262 26.467 0.0511

240p 27.872 0 27.507 0.365 27.819 0.0522 27.791 0.0804 27.853 0.0185

Stockholm

720p 31.146 0 30.552 0.5937 30.528 0.6184 30.975 0.1707 31.026 0.1197

480p 31.427 0 31.212 0.2151 31.217 0.2099 31.256 0.171 31.326 0.1008

240p 32.259 0 31.500 0.7591 32.209 0.0508 31.916 0.3438 32.243 0.0167

Shields

720p 31.270 0 22.329 8.9413 23.575 7.695 31.010 0.2607 31.104 0.1667

480p 31.012 0 25.201 5.8109 24.918 6.0942 30.775 0.2372 30.885 0.127

240p 29.616 0 29.192 0.4237 29.175 0.4407 29.488 0.1282 29.560 0.0557

Mobcal

720p 30.323 0 23.217 7.1063 23.355 6.9682 30.068 0.2552 30.217 0.1059

480p 30.411 0 25.430 4.9813 25.709 4.7021 30.183 0.2279 30.327 0.0841

240p 31.299 0 31.170 0.1282 31.162 0.1369 31.168 0.1303 31.256 0.0428

Figure 5.4 Average PSNR values for the first 100 frames of the Parkrun sequence in the 720p resolution.

135

Figure 5.5 Average PSNR values for the first 100 frames of the Mobcal sequence in the 720p resolution.

5.4.2 Computational Complexity

In block matching motion estimation, the average number of candidate blocks checked

for each MB is used as the evaluation criterion of computation complexity. In this chapter, the

average number of fitness function evaluations for each MB is used as a metric of the

computational complexity. Simulation results are listed in Table 5.2.

As shown in Table 5.2, the average number of search points needed is 12.8 for the 720p

resolution, 8.7 for the 480p resolution, and 3.9 for the 240p resolution. Theoretically, for N=4, and

M=10, the maximum number of fitness function evaluations is 40, but as shown in Table 5.2, the

needed points are much less because of the effective strategies adopted in the proposed algorithm.

136

Table 5.2 Average number of fitness function evaluations per MB for the proposed hybrid algorithm based on the

first 100 frames of each sequence.

Sequence Resolution Algorithm

ES 4SS DS PSO[52] Proposed

Parkrun

720p 7225 22.2325 21.1811 16.0724 11.934

480p 2401 19.6512 18.0614 15.1053 9.8434

240p 625 18.0677 15.596 11.224 4.632

Stokholm

720p 6.77E+03 22.0487 20.9813 18.9818 14.9044

480p 3.02E+03 19.5701 17.6164 12.2426 8.6044

240p 758.728 18.5534 16.2674 5.8494 3.5372

Shields

720p 6.77E+03 29.8876 23.5864 15.8127 12.414

480p 3.02E+03 25.2416 23.1129 12.726 9.2087

240p 758.728 21.4554 20.7977 11.8026 5.1214

Mobcal

720p 6.77E+03 24.8717 23.0393 14.8885 11.933

480p 3.02E+03 23.01 22.4502 10.1094 6.9518

240p 758.728 18.8088 17.3101 5.1936 2.6239

5.5 Summary

In this Chapter, a hybrid PSO-GA algorithm is proposed for block motion estimation in

HD video. High resolution videos tend to present very similar neighboring pixels and this fact

contributes to increase the occurrence of local minima falls. The increase in the number of local

minima enhances the problem of premature stagnation in the basic PSO algorithm. In this chapter,

the strategies of the GA are incorporated into the PSO process to combat the problem of stagnation

in HD video. A modified cross over operator is proposed for the breeding of the PSO particles.

Simulation results demonstrate the superiority of the proposed scheme, in terms of computational

complexity and motion estimation accuracy, as compared to existing algorithms.

137

CHAPTER 6

IMPLEMENTATION ON THE GPU

In this dissertation, parallel implementations of the proposed inter-MB and intra-MB

algorithms on a shared memory multi-core CPU system using MATLAB PCT were presented in

Chapters 2, 3, and 4. The NVIDIA programmable graphics processing unit (GPU) has evolved into

a highly parallel, multithreaded, many-core processor with tremendous computational horsepower

and very high memory bandwidth [121]. Modern GPUs can be found in virtually any relatively

new computer. They are massively parallel processors designed to render millions of pixel values

at a fraction of a second. Frameworks such as NVIDIA Compute Unified Device Architecture

(CUDA) and Open Computing Language (OpenCL) allow supported GPUs to be used for general

purpose programming. Combined with a general purpose processor such as an Intel Core i7, a

modern GPU allows us to perform massively parallel computations on commodity hardware.

Therefore, the proposed algorithms are to be implemented on the NVIDIA GPU

architecture using the CUDA platform. For the proposed cooperative parallel PSO algorithm in

Chapter 2, it was shown that speedup of the parallel multi-core implementation is scalable with the

video resolution. As a result, the parallel implementation of our proposed algorithm on the

massively parallel architecture of modern GPUs, which consists of thousands of efficient cores, is

expected to yield a tremendous improvement in performance.

In this Chapter, we present the parallel implementation of the cooperative PSO algorithm

proposed in Chapter 2 on the NVIDIA GPU architecture using the CUDA platform. The rest of the

chapter is organized as follows. In sections 6.1 and 6.2, we present an overview of the GPU and

CUDA programming and memory models. In section 6.3, we present the details of the proposed

138

GPU implementation. Simulation results are given and analyzed in section 6.4. Finally, a summary

is drawn in section 6.5.

6.1 The GPU

A GPU is a specialized hardware unit for rendering graphics on screen. It can typically be

an integrated part of a motherboard chipset such as NVIDIA Ion [122], or as a discrete expansion

card. In addition, modern processors such as AMD Fusion series [123] and Intel Sandy Bridge

[124] Accelerated Processing Units (APUs) combine a CPU with a GPU on a single die, enabling

more efficient communication between CPU and GPU [125].

While originally limited to rendering graphics, modern GPUs are essentially massively

parallel processors. Designed to render 3D scenes onto a frame of 2D pixels, they enable the

concurrent computation of large numbers of values. The first generations of GPUs had a fixed

pipeline with limited programmability, but modern GPUs enable general purpose programming

through C-like languages such as NVIDIA CUDA and OpenCL by the Khronos Group. Thus, the

same thread model applied to pixel processing can be applied for solving problems not limited to

graphics. This is known as general-purpose computing on graphics processing units (GPGPU),

GPUs, due to their special purpose design, have a different architecture than CPUs.

CPUs spend much die space on control logic, such as branch prediction and out-of order

execution and large cache to maximize performance [126]. GPUs have much less control logic,

freeing up more die space for arithmetic logic units (ALUs). This gives a GPU more calculation

capacity, at the cost of programming complexity. To reach peak performance, the programmer

must explicitly design the application for the target GPU.

The computational strength of a GPU lies in performing the same calculations over a

139

large number of values. While originally limited to shaders performing transform and lightning of

3D graphics, the same processing power can be used for general purpose computations.

6.2 CUDA Programming model

Programming of the GPU follows the stream programming paradigm; the GPU code is

implemented as kernels that get executed over the data. A kernel is written similarly as a regular

sequential function, without any special vector instructions. It is then executed in one instance per

thread by the CUDA schedulers. This is referred to as Single instruction, multiple threads (SIMT)

model, as all the threads spawned from a single kernel call will issue the same instructions. The

only differences between the threads are the special variables blockIdx and threadIdx. They

identify the current thread, and get set at kernel invocation time. In addition, gridDim and

blockDim will contain the maximum dimensions for the thread hierarchy.

6.2.1 Grid, blocks and threads

CUDA uses a two-tiered threading model that maps directly to the architecture of the

GPU. Threads are bundled into groups, which are organized in a grid. The programmer is free to

choose how the two tiers are organized, i.e. within the hardware limits and the compute capability

of the GPU. The thread groups and grid may be organized as either a one-dimensional row, a

two-dimensional grid, or a three dimensional cube. This is done with the dim3 integer vector types,

which can contain up to three dimensions.

Prior to a kernel call, the programmer must specify the number and distribution of threads

per block and blocks per grid. Figure 6.1 gives an example with a 2D grid containing 2D thread

groups. The outer grid contains 6 thread groups, which each contains 12 threads.

140

Figure 6.1 Example of an Execution Grid

As shown in Fig. 6.1, each thread within each block gets assigned a unique combination

of dim3 blockIdx and threadIdx2. gridDim will be (3, 3, 1) and blockDim (3, 2, 1) These variables

are then used to index the data set, effectively distributing the data among the threads.

6.2.2 CUDA Memory Model

The GPU has a memory hierarchy where memory usage can have a crucial impact on

performance. Figure 6.2 shows the CUDA memory hierarchy. On the first level, we have the

registers used by the CUDA cores. They have an access time of one clock cycle, but limited in size.

Local memory is private to each thread, but resides in global memory which will be described

below. The second level of memory is the shared memory, also residing on-chip. Shared memory

also has access time of one clock cycle, but accessible to all the running threads of the same block.

Off chip, the GPU has access to significantly larger amounts of memory, albeit with orders of

141

magnitude slower access times. This memory is referred to as global memory. CUDA architecture

provides another kind of memory which we call Texture Memory. Like constant memory, texture

memory is another variety of read-only memory that can improve performance and reduce

memory traffic when reads have certain access patterns. Texture memory is located off-chip but is

cached on chip, so in some situations it will provide higher effective bandwidth by reducing

memory requests to off-chip DRAM. Although texture memory was originally designed for

traditional graphics applications, it can also be used quite effectively in some GPU computing

applications. When all threads in a warp are physically adjacent, using texture memory can reduce

memory traffic and increase performance compared to global memory. The texture cache is

optimized for 2D spatial locality, so threads of the same warp that read texture addresses that are

close together will achieve best performance.

Figure 6.2 CUDA memory model

142

6.3 Proposed Parallel Implementation of the Cooperative PSO Algorithm Using CUDA

The parallel model of the proposed cooperative PSO algorithm for a QCIF video frame is

shown in Figure 6.3. The steps of the parallel implementation are as follows:

6.3.1 Transferring Frames from the CPU to the GPU

The current frame and the previous frames are transferred from the CPU into the global

memory of the GPU. The data transfer between CPU and GPU could be one of the major

bottlenecks for achieving high performance. Taking the 720p video format as an example, for the

PCI-E bus 2.0, the peak bandwidth is 8GB/s; the data transformation time of one frame is 0.12 ms.

Therefore, an efficient implementation of this data transfer is needed. Higher bandwidth is

possible between the host and the device when using page-locked (or “pinned”) memory [127].

Host (CPU) data allocations are pageable by default. The GPU cannot access data directly from

pageable host memory, so when a data transfer from pageable host memory to device memory is

invoked, the CUDA driver must first allocate a temporary page-locked, or “pinned”, host array,

copy the host data to the pinned array, and then transfer the data from the pinned array to device

memory. Pinned memory is used as a staging area for transfers from the device to the host. We can

avoid the cost of the transfer between pageable and pinned host arrays by directly allocating our

host arrays in pinned memory. Allocate pinned host memory in CUDA C/C++ using

cudaMallocHost(), and deallocate it with cudaFreeHost().This is done as shown in Table 6.1.

Space should then be allocated for the frames and the Pg array in the memory of the GPU. Data

transfer is then performed by copying the frames from the pinned memory of the host to the GPU.

Note that frames are stored in row-major order as one dimensional arrays in the memory of the

GPU. The frames copied to the GPU are placed in the texture memory. This is performed in

CUDA by first declaring the texture memory then binding the texture memory to the texture

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g9f93d9600f4504e0d637ceb43c91ebad
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1gedaeb2708ad3f74d5b417ee1874ec84a

143

reference. Reading from the texture memory is done via the texture reference in the kernel.

#define N 16; //Dimensions of the MB

#define WIDTH 176; //Width of a frame in a QCIF video sequence of the MB

#define HEIGHT 144; //Height of a frame in a QCIF video sequence of the MB

#define p 15; //Search area

int widthBlocks16 = WIDTH / N;

int heightBlocks16 = HEIGHT / N;

int numBlocks16x16 = widthBlocks16 * heightBlocks16;

//host memory allocation

PRINTF(("Allocating host memory..............."));

int frameSize = WIDTH * HEIGHT * sizeof(uint8_t);

uint8_t *h_frame1, *h_frame2;

checkCudaErrors (cudaMallocHost(&h_frame1, frameSize));

checkCudaErrors (cudaMallocHost(&h_frame2, frameSize));

memcpy(h_frame1, src1Data,frameSize);

memcpy(h_frame2, src2Data,frameSize);

//device memory allocation

PRINTF(("Allocating device memory............."));

uint8_t *d_frame1, *d_frame2;

checkCudaErrors (cudaMalloc(&d_frame1, frameSize));

checkCudaErrors (cudaMalloc(&d_frame2, frameSize));

MV_t *Pg;

checkCudaErrors (cudaMalloc(&Pg, numBlocks16x16 * sizeof(MV_t)));

//copy current and reference frames to GPU

cudaMemcpy(d_frame1, h_frame1, frameSize, cudaMemcpyHostToDevice));

cudaMemcpy(d_frame2, h_frame2, frameSize, cudaMemcpyHostToDevice));

//create CUDA texture channel descriptor

cudaChannelFormatDesc textureDescU8;

textureDescU8 = cudaCreateChannelDesc<uint8_t> ();

//Bind device buffers to texture references (declared above kernel, must be in global scope) to enable caching

checkCudaErrors(cudaBindTexture2D(NULL, &frameRef, d_frame1, &textureDescU8, WIDTH, HEIGHT,

stride));

checkCudaErrors(cudaBindTexture2D(NULL, &frameCur, d_frame2, &textureDescU8, WIDTH, HEIGHT,

stride));

Table 6.1 CUDA code for transferring frames from CPU to the GPU

144

6.3.2 Setting up Execution Grid Parameters

The grid dimensions and block dimensions are defined depending on the resolution of the

video sequence. For example, for a QCIF video format of 144*176 pixels, we have a total of 9*11

MBs each made up of 16*16 pixels. The number of blocks per grid is equal to the number of MBs

in the video frame. The number of threads per block is equal to the dimension of the MB which is

16*16. Therefore, for a QCIF sequence, this is defined in CUDA as shown in Table 6.2. The

proposed PSO ME kernel is then invoked using the defined parameters.

It is important to note here that designing the execution grid should be dependent on the

targeted GPU architecture. It is important that the parameters of the execution grid are chosen to

keep all CUDA cores busy, i.e. keeping a high occupancy of the GPU is important to harness the

full computational power of the GPU. Increasing the number of threads to a high value may

increase the extent of parallelism, but at the same time it will restrict the number of work groups

that can be simultaneously active for concurrent execution in each multiprocessor. On the other

hand, decreasing the number of threads to a small value increases the extent of serial execution

within each thread. Thus, we need a tradeoff between the number of threads and the amount of

computations by each thread [128]. NVIDIA Tesla C2050, for example, belongs to the Fermi

architecture [129]. It has 14 streaming multiprocessors (SM) and each has a maximum of 1024

dim3 BlockThreads(N,N);

dim3 GridBlocks(WIDTH/N ,HEIGHT/N);

//Apply Motion Estimation Kernel

ME_PSO_GPU<<<GridBlocks,BlockThreads>>>(N, WIDTH, HEIGHT, p, Pg);

Table 6.2 CUDA code for defining grid parameters of the proposed GPU
implementation

145

concurrently running threads, for a total of up to 14336 concurrently running threads across the

entire GPU. The maximum thread blocks that can be launched simultaneously per SM is 8 which

results in a total of 112. Choosing grid parameters of 16x16 threads per block and 9x11 blocks per

grid for the QCIF sequence results in a total of 25344 threads which is more than the maximum

number of threads that can run concurrently in the Tesla C2050, the number of blocks chosen to

99, however, is within the maximum block limit. In this case, CUDA runtime library will schedule

the execution of the threads. Having a large number of threads per block has the advantage that all

these threads have access to the shared memory of the block which has very fast access times.

Another option for configuring the execution grid would be to choose 8x16=128 threads per block,

where each thread will be responsible for two pixels in the MB, and 99 blocks per grid. This will

result in a total of 12672, which is less than the maximum number of threads that can run

concurrently on the GPU, and thus we wouldn’t be using all the available processing capabilities

of the GPU. However, we will ensure that all the issued threads are being executed simultaneously.

For higher resolutions, CIF for example, 8x16 threads per block and 99 blocks per grid can also be

used where in this case each thread block will be handling 4 MBs in the frame (every 32 threads

responsible for one MB).

6.3.3 Proposed Kernel for the Cooperative PSO ME Algorithm

The details of the proposed kernel are as follows. In order to reduce the accessing to

global memory, the pixels of an MB and its search window are first loaded to the shared memory

of the thread-block so that they can be reused by all threads of the same thread-block. To do that,

threads simultaneously fetch the pixels of the MB and the search area into the shared memory of

the block. Memory coalescence, where consecutive threads access consecutive locations in the

146

memory, is used here to speedup global memory access.

Thread(0,0) in each block performs the first stage of PSO iterations sequentially. The

threads within the block are utilized for parallel SAD calculation for each candidate point in the

PSO search process. Parallel SAD calculation by the threads is performed using the reduction

algorithm to speedup the calculations. At the end of the first stage of PSO iterations, thread(0,0)

updates the value of Pg in the shared memory of the block as shown in Fig. 6.3.

Blocks then communicate the value of Pg to their neighbors via the global memory.

Thread(0,0) of each block copies the attained value of Pg of its block to its corresponding location

in the array in the global memory.

Thread(0,0) of each block then updates the particles of its swarm according to the

received information and performs another round of PSO iterations.

147

Figure 6.3 Parallel model of the proposed cooperative PSO algorithm on the GPU for a QCIF sequence

6.4 Simulation Results

The proposed parallel ME algorithm was tested on a host equipped with Intel CPU Intel

148

Xeon E5607 @ 2.27GHz. Tesla C2050 NVIDIA GPU is chosen the coprocessor to accelerate the

proposed parallel scheme. The detailed information of the Tesla C2050 GPU can be seen in Table

6.3 [130]. The CUDA driver version used in our experiment was CUDA-7.2. Profiling the GPU

implementations is performed using NVIDIA Visual Profiler.

 The input videos in our experiment consist of a list of five standard test sequences in five

resolutions: QCIF (Soccer), CIF (Bus), 480p (Racehorses), 720 p (Parkrun), and 1080 p

(Pedestrian Area).

Table 6.3 Features of Tesla C2050

Compute Capability 2.0

Number of cores 448

Number of SM 14

Memory Bandwidth 144 GB/s

Frequency 1.15 GHz

Peak performance 1.03 Tflops

Maximum number of threads per block 1024

Maximum x-, y, or z dimension of a grid of thread blocks 65535

Maximum amount of shared memory per thread block 48 KB

Local memory per thread 512 KB

Constant memory size 64 KB

As was shown in Chapter 2, the parallel degree provided by the proposed cooperative

PSO ME algorithm is equal to the number of MBs in a frame and is scalable with the video

resolution as shown in table 6.4. We expect that the speedup will be proportional to the parallel

degree of the video sequences. In table 6.5, we assess the performance of the proposed CUDA

implementation on Tesla C2050. The average kernel execution times per frame and the average

communication times between the CPU and GPU are given for the different video sequences.

CPU-GPU (Host-to-Device) communication time is the time needed to transfer the video frame

from the CPU (host) to the GPU (device), whereas the GPU-CPU (Device-to-Host) is the time

149

needed to copy the estimated motion vectors from the GPU back to the CPU. The execution time

of the serial CPU implementation of the ES algorithm on Intel CPU Xeon E5607 is also given

along with the execution times of the GPU kernel of the ES algorithm. Table 6.6 shows the

achieved frame rate for the different implementations. As shown in table 6.6, motion estimation

can be achieved at a rate that exceeds real time for the different resolutions. Fig. 6.4 shows the

speedup achieved by the GPU implementations of the proposed cooperative PSO algorithm and

the ES algorithm w.r.t the ES CPU implementation. As shown in Fig. 6.4, the achieved speedup is

indeed scalable with the video resolution.

Table 6.4 Parallel degree of the proposed cooperative-PSO algorithm for the different video formats

Sequence Parallel Degree

Soccer QCIF 99

Bus, CIF 396

RaceHorses, 480p 1560

Parkrun, 720p 3600

Pedestrian Area, 1080p 8040

150

Table 6.5 Performance of the proposed parallel implementation on Tesla C2050

Sequence
CPU-GPU

Time (ms)

GPU-CPU

Time (ms)

Proposed

GPU

Kernel

(ms)

Total Time

Proposed

(ms)

ES

GPU

Kernel

(ms)

ES GPU

Total Time

(ms)

ES

CPU

Time

(ms)

Soccer QCIF, 15

fps, p=15
0.011 0.0018 0.863 0.875 4.3 4.31 36.09

Bus, CIF, 30 fps,

p=15
0.031 0.0039 2.73 2.765 6.72 6.75 160.5

RaceHorses,

480p, 30 fps, p=15
0.082 0.0046 8.02 8.106 26.31 26.39 660.9

Parkrun 720p, 50

fps, p=15
0.176 0.0053 12.03 12.21 60.03 60.21 1559.5

Pedestrian Area

1080p, 50 fps,

p=15

0.401 0.0080 16.901 17.310 131.78 132.19 3961.6

Table 6.6 Achieved frame rate in fps for the GPU implementations of the proposed approach and ES

Sequence Proposed GPU implementation ES GPU Implementation

Soccer QCIF, 15 fps, p=15 1142.47 231.89

Bus, CIF, 30 fps, p=15 361.68 148.04

RaceHorses, 480p, 30 fps, p=15 123.36 37.87

Parkrun, 720p, 50 fps, p=15 81.9 16.6

Pedestrian Area , 1080p, 50 fps, p=15 57.77 7.56

Figure 6.4 Comparison of the speedup achieved by the GPU implementations of the proposed cooperative PSO
algorithm and ES

41.232
58.057

81.533

127.732

228.858

8.36
23.76 25.036 25.9 29.96

0

50

100

150

200

250

Soccer QCIF, 15 fps,

p=15

Bus, CIF, 30 fps,

p=15

RaceHorses, 480p,

30 fps, p=15

Parkrun, 720p, 50

fps, p=15

Pedestrian Area ,

1080p, 50 fps, p=15

Proposed GPU Implementation ES GPU Implementation

151

6.5 Summary

The parallel implementation of the proposed cooperative-PSO ME algorithm on the GPU

architecture using CUDA is presented. The proposed implementation on the Tesla C2050 provides

speedup scalable with the video resolution and satisfies the requirements of real time encoding of

50 fps for the 1080p resolution. Real time motion estimation for higher resolutions can be achieved

with more advanced GPUs. The optimal parameters of the execution grid for the different video

resolutions that would provide the highest speedup is currently being researched

152

CHAPTER 7

 CONCLUSION

In this chapter, we summarize the main contributions of this thesis and indicate future

directions to investigate which include direct extensions to the proposed work.

7.1 Contributions

In this thesis work, we have provided new contributions tackling the problem of block

motion estimation in two areas: algorithm design and parallel implementation. These contributions

are outlined as follows:

1- A cooperative PSO algorithm that achieves parallelism at the MB level is proposed in

Chapter 2. Novel strategies are proposed to improve the accuracy and convergence speed

of the PSO algorithm. It is found that the presented scheme provides improvements in

terms of accuracy and computational complexity as compared to conventional fast motion

estimation techniques and two state-of-the-art PSO-based ME schemes. An analysis of the

parallel performance shows that the presented scheme is highly scalable and that the

parallel efficiency increases with the increase in video resolution. The multicore

implementation of the proposed algorithm using MATLAB PCT could achieve a speedup

of 6.21 on eight CPU cores for HD video sequences. The multicore performance of the

proposed scheme is also compared with existing parallel algorithms in the literature and is

shown to give superior results.

2- A novel distributed game-theoretic approach to block motion estimation targeting

153

parallelism within the MB is proposed in Chapter 3. The optimization problem of BME of

a given MB is cast in a game-theoretic setting using a network of autonomous players. It is

shown that by using local communication and applying simple robust state-changing rules

such as following natural game-theoretic dynamics, players can, in a distributed fashion,

optimize the global objective function of the whole MB. Sequential and simultaneous

algorithms based on BRD are proposed to solve the game in a distributed fashion. The

efficiencies of the algorithms are demonstrated through both theoretical and simulation

results. The analysis study show that our game-theoretic model is valid and presents a

novel approach to BME compared to other classical methods, which is a kind of

technology fusion of signal processing and AI. The multi-core implementation of the

simultaneous scheme using MATLAB PCT shows that speedup is indeed obtained.

3- Parallelism within the MB is tackled again in Chapter 4 but from the view point of

diffusion adaptation strategies in a multi-agent system. We formulate and study the

distributed BME problem based on diffusion protocols to implement cooperation among

individual adaptive agents. The individual agents are equipped with local learning abilities

based on PSO. They derive local estimates for the motion vector and share information

with their neighbors only, giving rise to peer-to-peer protocols. The resulting algorithm is

distributed, cooperative, and inherently parallel. A diffusion-based PSO algorithm is

proposed. The strategies of diffusion adaptation are incorporated into the PSO process by

modifying the PSO velocity update equation and proposing a dynamically modified fitness

function with regularization. The resulting algorithm is inherently parallel at the agents

level within the MB. Simulation results show that the presented scheme satisfies the

requirements of high estimation accuracy and low computational complexity while

154

achieving the targeted parallelism within the MB. The multi-core implementation of the

algorithm using MATLAB PCT shows that speedup is obtained.

4- A novel hybrid PSO-genetic algorithm is proposed in Chapter 5 targeting BME in HR

video. The strategies of crossover, mutation are adopted from the genetic algorithm and

incorporated into the PSO process to combat the stagnation of the PSO particles in HR

video. Simulation results show that the estimation accuracy is indeed improved relative to

the basic PSO algorithm. The efficient strategies of particles initialization and fitness

function history preservation maintain a low computational complexity for the proposed

algorithm.

5- A parallel implementation of the cooperative PSO algorithm proposed in Chapter 2 on the

NVIDIA GPU architecture using the CUDA platform is presented in Chapter 6. The

MATLAB is an experimental computing resource and the MATLAB implementation of

the proposed algorithm presented in Chapter 2 is intended to be used as a prototype to

analyze the performance of the algorithm interms of estimation quality and computational

complexity. The parallel implementation using MATLAB PCT also allows to analyze its

parallel efficiency and scalability. However, the MATLAB implementation is not intended

to be used a real time solution. In Chapter 6, a real time solution is presented by

implementing the proposed algorithm on the NVIDIA Tesla C2050 GPU architecture

using the CUDA platform.

7.2 Future Work and Possible Extensions

In this section, we present future extensions and interesting research directions that are

worth investigating for the problem of BME.

155

7.2.1 A Unified Framework for Block Motion Estimation with Inter and Intra Block

Parallelism

In Chapter 2 of this dissertation, we have presented an efficient cooperative multi-swarm

PSO approach for BME that achieves parallelism between the MBs (inter-MB) of a given frame.

In Chapters 3 and 4, game-theoretic and diffusion multi-agent BME frameworks that achieve

fine-grained parallelism within the MB (intra-MB) were proposed. A natural extension to this

work is to investigate a unified framework for BME with integrated multi –level parallelism. The

investigated framework should achieve parallelism between, as well as, within the MBs of a given

frame. This can be achieved by integrating the proposed intra-MB parallel algorithms into the

proposed inter-MB parallel framework. This would result in a massively-parallel BME algorithm.

The resulting scheme is to be implemented on the GPU and evaluated.

7.2.2 Macroblock Overlapping

The presented algorithms have used the basic model for block motion estimation which

divides the frame into non-overlapping equally-sized blocks. A possible research direction is to

investigate the effect of block overlapping on the quality and complexity of the proposed

algorithms. On one hand, MB overlapping in the frame would increase the level of spatial

correlation between neighboring MBs. As was mentioned in Chapter 2, the spatial correlation

between neighboring MBs is exploited during the cooperation phase of the algorithm to improve

the accuracy and convergence speed of the PSO algorithm. Therefore, increasing spatial

correlation through MB overlapping is expected to lead to an improvement in the performance of

the proposed cooperative PSO algorithm. Moreover, subblock overlapping within the MB can also

have a direct effect on the proposed game-theoretic and diffusion algorithms. In the proposed

156

algorithms in Chapters 3 and 4, consensus between the players in a game (or agents in a

multi-agent system) within the MB is targeted. Increasing the spatial correlation between

neighboring subblocks is expected to speed up the consensus process. On the other hand, block

overlapping would entitle increasing the size of the blocks which leads to an increase in the

computational complexity of calculating the BDM. Intelligent algorithms, however, can be

designed to overcome the potential increase in computational complexity.

7.2.3 Realistic Motion Model

The proposed BME algorithms proposed in this dissertation use the translational motion

model. Specifically, the basic assumption in this technique is that the motion of all the pixels of

each block is the same, more precisely, purely translational; and hence it can be described by only

one vector per block. Clearly, this assumption is not realistic and as a result, simple translational

model may fail to identify the actual movement in a video especially when there is complex object

movement in the scene. There is a need to replace the conventional translational motion model

with more robust and higher order models.

In order to achieve more accurate motion estimation without overly increasing

computational demands, a number of techniques have been proposed, which generalize the

block-based algorithms [131-134]. The movement of each block is rendered more realistically

than in simple block-based algorithms by employing more complex spatial transformations such

as the affine, perspective or bilinear transformation, or by employing elastic motion models which

include the simple translation as a special case.

The proposed game-theoretic and diffusion PSO algorithms in this dissertation perform

parallel motion estimation for the MB by dividing it into subblocks and then, simultaneously,

157

estimating the motion vectors of the subblocks. Such an approach can be used to develop a BME

algorithm with a more realistic motion model. In fact, the estimated motion vectors of the

subblocks can be successively used to estimate the parameters of the motion model.

7.2.4 Adaptively Weighted SAD Measure

The SAD measure is the commonly used BDM for the block motion estimation problem.

In SAD, all pixels in the MB have equal weights. An interesting research direction would be to

investigate the effect of using different weights for the pixels of the MB in the SAD measure

during the search process. For example, some pixels in the MB are part of the background, while

others lie on the edge of an object. Intuitively, a higher weight should be given to edge pixels

during the ME process in order to improve the quality of the predicted video frame. It has been

shown that weighting more the trajectories corresponding to sharp features than the trajectories

with smooth texture leads to better reconstruction [135, 136]. Rather than using fixed weights,

adaptively-changing weights can be used during the ME search process. Several effective filters

have been designed in the literature for image edge detection that can be applied [137-138].

Considering a template MB at position (x, y) in the current frame and the candidate MB at position

(𝑥 + 𝑢̂, 𝑦 + 𝑣) in the previous frame 𝐼𝑡−1, the adaptive SAD (ASAD) measure would be:

𝐴𝑆𝐴𝐷(𝑢̂, 𝑣) = ∑ ∑ 𝛼𝑖𝑗(𝑘) ∗ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|,𝑁−1
𝑖=0

𝑁−1
𝑗=0 (7.1)

where gt(.)is the gray value of a pixel in the current frame It and gt−1(.) is the gray level of a

pixel in the previous frame It−1. 𝛼𝑖𝑗(𝑘) is an adaptive weight for pixel (𝑖, 𝑗) in the MB that

changes its value during each iteration k of the search process. This could greatly enhance the

quality of the predicted frames.

158

7.2.5 Incorporating Color Information

So far, existing approaches for BME use the intensity (gray) information in the video

frames and ignore the available color information during the motion search process. It is worth

investigating if the ME algorithms presented can be extended by picking up suitable color(s) to

track in the original frame and/or intelligently injecting color to the original frame. Some ideas on

how to use color characteristics for motion detection were proposed in [139].

7.2.6 Deep Learning

Deep learning is a branch of artificial intelligence that lets computers solve problems that

are too complex for conventional programming [140]. Training any deep learning system involves

feeding it massive amounts of data. The clue to how deep learning works is in the name: systems

learn from experience, much like people do. Thanks to its affinity with the parallel architecture of

the graphics processing unit, deep learning is massively accelerated by GPUs [141]. Applying

deep learning to the problem of block motion estimation is an interesting research direction worth

investigating.

http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=MachineLearning

159

BIBLIOGRAPHY

[1] YouTube, “One Hour Per Second,” http://www.onehourpersecond.com/.

[2] ISO/IEC JTCl/SC29/WG11, “ISO/IEC CD 13818: Information technology,” MPEG-2

Committee Draft, Dec. 1993.

[3] International Telecommunication Union, “Video codec for audiovisual services at p x 64

kbits,” ITU-T Recommendation H.261, Mar. 1993.

[4] International Telecommunication Union, “Video coding for low bitrate communication,”

ITU-T Draft H.263, July 1995.

[5] International Telecommunication Union, “Advanced Video Coding for Generic

Audiovisual Services,” ITU-T Recommendation H.264, Nov. 2007.

[6] G.J. Sullivan, J.R. Ohm, W.J. Han, T. Wiegand, "Overview of the High Efficiency Video

Coding (HEVC) Standard," Circuits and Systems for Video Technology, IEEE Transactions on ,

vol.22, no.12, pp.1649-1668, Dec. 2012.

[7] Rao, K. R., Do Nyeon Kim, and Jae Jeong Hwang. "Video coding standards." The

Netherlands: Springer (2014).

[8] Y. S. Cheng, Z. Y. Chen, and P. C. Chang, “An H.264 spatio-temporal hierarchical fast

motion estimation algorithm for high-definition video,” in Proceedings of the IEEE International

Symposium on Circuits and Systems (ISCAS '09), pp. 880–883, May 2009.

[9] Dimitrios Tzovaras, Ioannis Kompatsiaris, Michael G. Strintzis. 3D object articulation

and motionestimation in model-based stereoscopic videoconference image sequence analysis and

coding. SignalProcessing: Image Communication, 14(10), 1999, 817-840.

[10] Barron, J.L., Fleet, D.J., Beauchemin, S.S., 1994. Performance of optical flow

techniques. Int. J. Comput.Vision 12 (1), 43–77.

[11] J. Skowronski. Pel recursive motion estimation and compensation in subbands. Signal

Processing: ImageCommunication 14, (1999), 389-396.

[12] S. Metkar and S. Talbar, Motion Estimation Techniques for Digital Video Coding,

SpringerBriefs in Computational Intelligence, chapter 2, 2013.

[13] Huang, T., Chen, C., Tsai, C., Shen, C., Chen, L. Survey on Block Matching Motion

EstimationAlgorithms and Architectures with New Results. Journal of VLSI Signal Processing

42, 297–320, 2006.

http://www.onehourpersecond.com/

160

[14] International Organization for Standardization. ISO/IEC 15938-5:2003: Information

Technology—Multimedia Content Description Interface—Part 5: Multimedia Description

Schemes, 1st edn. Geneva, Switzerland, 2003.

[15] H.-M. Jong, L.-G. Chen, and T.-D. Chiueh, “Accuracy improvement and cost reduction

of 3-step searchblock matching algorithm for video coding,” IEEE Trans. Circuits Syst. Video

Technol., vol. 4, pp. 88–90,Feb. 1994.

[16] R. Li, B. Zeng, M.L. Liou, “A new three step search algorithm for block motion

estimation,” IEEE Trans. Circuits Syst. Video Technol.,vol.4, no.4, pp. 438–442, 1994.

[17] Jianhua Lu, and Ming L. Liou, “A Simple and Efficent Search Algorithm for

Block-Matching MotionEstimation”, IEEE Trans. Circuits And Systems For Video Technology,

vol 7, no. 2, pp. 429-433, April 1997.

[18] L.M. Po, W.C. Ma, “A novel four-step search algorithm for fast blockmotion estimation,”

IEEE Trans. Circuits Syst. Video Technol., vol.6, no.3, pp. 313–317, 1996.

[19] S. Zhu, K. K. Ma, “A new diamond search algorithm for fast block-matching motion

estimation,” IEEE Transactions on Image Processing, vol. 9, pp. 287–290, 2000.

[20] C. H. Cheung, L. M. Po, “A novel cross-diamond search algorithm for fast block motion

estimation,” IEEE Transactions on Circuits and Systems for VideoTechnology 12 (12) (2002)

1168–1177.

[21] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern forfast block motion

estimation,” IEEE Trans. Circuits Syst. VideoTechnol., vol. 12, no. 5, pp. 349–355, May 2002.

[22] Yao Nie, and Kai-Kuang Ma, Adaptive Rood Pattern Search for Fast Block-Matching

Motion Estimation, IEEE Trans. Image Processing, vol 11, no. 12, pp. 1442-1448, December

2002.

[23] Yi-Ching L., Jim L., Zuu-Chang H. Fast block matching using prediction and rejection

criteria. Signal Processing, vol. 89, 2009, pp. 1115–1120.

[24] Liu, L., Feig, E. A block-based gradient descent search algorithm for block motion

estimation in video coding, IEEE Trans. Circuits Syst. Video Technol., vol. 6, no. 4,1996,pp.

419–422.

[25] Saha, A., Mukherjee, J., Sural, S. A neighborhood elimination approach for block

matching in motion estimation, Signal Process Image Commun, (2011), 26, 8–9, 2011, pp. 438–

454.

[26] K.H.K. Chow, M.L. Liou, Generic motion search algorithm for video compression, IEEE

Trans. Circuits Syst. Video Technol. , vol. 3, 1993, pp. 440–445.

[27] A. Saha , J. Mukherjee, S. Sural. New pixel-decimation patterns for block matching in

motion estimation. Signal Processing: Image Communication 2008, vol. 23, pp. 725–738.

161

[28] Y. Song, T. Ikenaga, S. Goto. Lossy Strict Multilevel Successive Elimination Algorithm

for Fast Motion Estimation. IEICE Trans. Fundamentals E90(4), 2007, 764-770.

[29] Z. B. Chen, P. Zhou, and Y. He, “Fast Integer Pel and Fractional Pel Motion Estimation

for JVT,” in Proc. 6th Meeting: JVT–F017, Awaji Island, Japan, 2002.

[30] Humaira Nisar, Aamir Saeed Malik, Tae-Sun Choi. Content adaptive fast motion

estimation based on spatio-temporal homogeneity analysis and motion classification. Pattern

Recognition Letters, vol. 33, 2012, pp. 52–61.

[31] Zhiru Shi, Fernando, W.A.C., De Silva, D.V.S.X.., "A motion estimation algorithm based

on Predictive Intensive Direction Searchfor H.264/AVC," IEEE Int. Conf. Multimedia and Expo

(ICME), pp.667-672, July 2010.

[32] Zhiru Shi, W.A.C. Fernando and A. Kondoz, “An Efficient Fast Motion Estimation in

H.264/AVC by Exploiting MotionCorrelation Character,”IEEE International Conference on

Computer Science and Automation Engineering (CSAE), vol. 3, pp. 298 – 302, 25-27 May 2012.

[33] P. I. Hosur,“Motion Adaptive Search for Fast Motion Estimation,” IEEE Trans.

Consumer Electronics, vol. 49, pp. 1330-1340, 2003.

[34] Ki Beom K, Young J, Min-Cheol H, “Variable Step Search Fast Motion Estimation for

H.264/AVC Video Coder,” IEEE Trans. Consumer Electronics, vol. 54: pp. 1281-1286, 2008.

[35] Goel S and Bayoumi M. A, “Multi-Path Search Algorithm for Block-Based Motion

Estimation,” IEEE Int. Conf Image Processing, pp. 2373-2376, 2006.

[36] P.I. Hosur and K.K. Ma, “Motion Vector Field Adaptive Fast Motion Estimation,”

Second International Conference on Information, Communications and Signal Processing (ICICS

’99), Singapore, 7-10 Dec’99.

[37] A.M. Tourapis, O.C. Au, and M.L. Liou, "Predictive Motion Vector Field Adaptive

Search Technique (PMVFAST) - Enhancing Block Based Motion Estimation,” in proceedings of

Visual Communications and Image Processing 2001(VCIP-2001), pp.883-892, San Jose, CA,

January 2001.

[38] A.M. Tourapis, O.C. Au, and M.L. Liou, "New Results on Zonal Based Motion

Estimation Algorithms – Advanced Predictive Diamond Zonal Search," in proceedings of 2001

IEEE International Symposium on Circuits and Systems(ISCAS-2001), vol.5, pp.183–186,

Sydney, Australia, May 6-9, 2001.

[39] A. M. Tourapis. "Enhanced predictive zonal search for single and multiple frame motion

estimation." Electronic Imaging 2002.International Society for Optics and Photonics, pp.

1069-1079, 2002.

[40] L.T. Ho andJ.M. Kim, “Direction Integrated Genetic Algorithm for Motion Estimation in

H.264/AVC,” Advanced Intelligent Computing Theories and Applications. With Aspects of

Artificial IntelligenceLecture Notes in Computer Science,Vol. 6216, pp. 279-286, 2010.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6261593
http://link.springer.com/search?facet-author=%22Linh+Tran+Ho%22
http://link.springer.com/search?facet-author=%22Jong-Myon+Kim%22
http://link.springer.com/book/10.1007/978-3-642-14932-0
http://link.springer.com/book/10.1007/978-3-642-14932-0
http://link.springer.com/bookseries/558

162

[41] A. El Ouaazizi, M. Zaim, & R. Benslimane, “A Genetic Algorithm for Motion

Estimation,” IJCSNS International Journal of Computer Science and Network Security, VOL.11

No.4, April 2011.

[42] Z. Shi, W.A.C. Fernando, and A. Kondoz,“Simulated Annealing for Fast Motion

Estimation Algorithm in H.264/AVC,” Simulated Annealing - Single and Multiple Objective

Problems, Marcos de Sales Guerra Tsuzuki (Ed.), ISBN: 978-953-51-0767-5, InTech, DOI:

10.5772/50974. Available from:

http://www.intechopen.com/books/simulated-annealing-single-and-multiple-objective-problems/

simulated-annealing-for-fast-motion-estimation-algorithm-in-h-264-avc.

[43] E. Cuevas, D. Zaldívar, M.P. Cisneros, H. Sossa, V. Osuna, “Block Matching Algorithm

for Motion Estimation Based on Artificial Bee Colony (ABC),” Applied Soft Computing, vol.

13, issue 6, June 2013, pp. 3047-3059.

[44] E. Cuevas, D. Zaldívar, M. P. Cisneros, D. Oliva, “Block-Matching Algorithm Based on

Differential Evolution for Motion Estimation,” Engineering Applications of Artificial

Intelligence, vol. 26, issue 1, pp. 488-498, January 2013.

[45] G.Y. Du, T.S. Huang, L.X. Song, and B.J. Zhao, “A Novel Fast Motion Estimation

Method Based on Particle Swarm Optimization,” Fourth International Conference on Machine

Learning and Cybernetics, 2005.

[46] K.M. Bakwad, S.S. Pattnaik, B.S. Sohi, S. Devi, S. Gollapudi, C.V. Sagar, and P.K.

Patra, “Small Population Based Modified Parallel Particle Swarm Optimization for Motion

Estimation,” 16th International Conference on Advanced Computing and Communications

(ADCOM’2008), 2008.

[47] R. Ren, M.M. Manokar, Y. Shi, B. Zheng, “A Fast Block Matching Algorithm for Video

Motion Estimation Based on Particle Swarm Optimization and Motion Prejudgement,” 2006.

[48] X. Yuan and X. Shen, “Block Matching Algorithm Based on Particle Swarm

Optimization for Motion Estimation,” in: International Conference on Embedded Software and

Systems (ICESS’2008), 2008.

[49] Z. Ping, C. Hu, and W. Ping,“Fast Motion Estimation Algorithm for Scalable Motion

Coding,” 2010 International Conference on Electrical and Control Engineering (ICECE), 25-27

June 2010.

[50] K.M. Bakwad, S.S. Pattnaik, B.S. Sohi, S. Devi, S. Gollapudi, V.R.S. Sastry, C.V. Sagar,

and P.K. Patra, "Fast Motion Estimation using Small Population-Based Modified Parallel

Particle Swarm Optimisation," IJPEDS, vol. 26, no. 6, pp. 457-476, 2011.

[51] S. Immanuel Alex Pandian, G. Josemin Bala, and J. Anitha, “A Pattern Based PSO

Approach for Block Matching In Motion Estimation,” Engineering Applications of Artificial

Intelligence, vol. 26, issue 8, pp. 1811–1817, September 2013.

http://www.intechopen.com/books/simulated-annealing-single-and-multiple-objective-problems/simulated-annealing-for-fast-motion-estimation-algorithm-in-h-264-avc
http://www.intechopen.com/books/simulated-annealing-single-and-multiple-objective-problems/simulated-annealing-for-fast-motion-estimation-algorithm-in-h-264-avc
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhang%20Ping.QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5628462
http://www.sciencedirect.com/science/article/pii/S0952197613000602
http://www.sciencedirect.com/science/article/pii/S0952197613000602
http://www.sciencedirect.com/science/article/pii/S0952197613000602
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976
http://www.sciencedirect.com/science/journal/09521976/26/8

163

[52] J. Cai and W. David Pan, “On Fast And Accurate Block-Based Motion Estimation

Algorithms Using Particle Swarm Optimization,” Information Sciences, vol. 197, pp. 53–64, 15

August 2012.

[53] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE

International Conference on Neural Networks, vol. IV, Perth,Australia, 1995.

[54] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings

of the Sixth International Symposium on Micro Machine andHuman Science, 1995.

[55] J. Kennedy, R. Mendes, Neighborhood topologies in fully-informed and

best-of-neighborhood particle swarms, in: Proceedings of the IEEE International Workshop on

Soft Computing in Industry Applications, 2003.

[56] F. van den Bergh, A. Engelbrecht, A study of particle swarm optimization particle

trajectories, Information Sciences 176 (8) (2006) 937–971.

[57] A. Heikkinen andL. Fono, "Parallel Implementations of Motion Estimation Algorithms

Using OPENCL," Digital Signal Processing (DSP), 2013 18th International Conference on, 1-3

July 2013.

[58] J. Zhang,J.F. Nezan, and J.G. Cousin, "Implementation of Motion Estimation Based on

Heterogeneous Parallel Computing System with OpenCL," High Performance Computing and

Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems

(HPCC-ICESS), 2012 IEEE 14th International Conference on , pp.41-45, 25-27 June 2012.

[59] R. Cheng, E. Yang, and T. Liu, "Speeding Up Motion Estimation Algorithms on CUDA

Technology," Microelectronics and Electronics (PrimeAsia), 2010 Asia Pacific Conference on

Postgraduate Research in, pp. 93- 96, 2010.

[60] Z. Jing, J. Liangbao, and C. Xuehong, "Implementation of parallel full search algorithm

for motion estimation on multi-core processors," Next Generation Information Technology

(ICNIT), 2011 The 2nd International Conference on , vol., no., pp. 31-35, 21-23 June 2011.

[61] E. Monteiro, B. Vizzotto, C. Diniz, M. Maule, B. Zatt, andS. Bampi ,“Parallelization of

Full Search Motion Estimation Algorithm for Parallel and Distributed Platforms,” International

Journal of Parallel Programming, April 2014, Volume 42, Issue 2, pp 239-264.

[62] V. Dung, Y. Yang, and B. Laxmi, "An Efficient Dynamic Multiple-Candidate Motion

Vector Approach for GPU-Based Hierarchical Motion Estimation," Performance Computing and

Communications Conference (IPCCC), pp.342-351, 2012.

[63] The Mathworks Inc, Parallel Computing Toolbox User’s Guide.

http://www.mathworks.com/products/parallel-computing.

[64] Y. Shi, R.C. Eberhart, "Empirical Study of Particle Swarm Optimization," Evolutionary

Computation, 1999, CEC 99. Proceedings of the 1999 Congress on, vol.3, 1999.

http://www.sciencedirect.com/science/journal/00200255
http://www.sciencedirect.com/science/journal/00200255/197/supp/C
http://link.springer.com/search?facet-author=%22Eduarda+Monteiro%22
http://link.springer.com/search?facet-author=%22Bruno+Vizzotto%22
http://link.springer.com/search?facet-author=%22Cl%C3%A1udio+Diniz%22
http://link.springer.com/search?facet-author=%22Marilena+Maule%22
http://link.springer.com/search?facet-author=%22Bruno+Zatt%22
http://link.springer.com/search?facet-author=%22Sergio+Bampi%22
http://link.springer.com/journal/10766
http://link.springer.com/journal/10766
http://link.springer.com/journal/10766/42/2/page/1
http://www.mathworks.com/products/parallel-computing

164

[65] X. Li, N. Xiao, C. Claramunt, and H. Lin, “Initialization Strategies to Enhancing the

Performance of Genetic Algorithms for the P-Median Problem”, Journal of Computers and

Industrial Engineering, vol. 61, issue 4, pp. 1024-1034, Nov. 2011.

[66] N. Xiao, “A Unified Conceptual Framework for Geographical Optimization Using

Evolutionary Algorithms,” Annals of the Association of American Geographers, vol. 98, issue 4,

pp. 795–817, 2008.

[67] A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to Parallel computing, 2nd

edition, Addison-Wesley, Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA,

2002.

[68] https://media.xiph.org/video/derf/.

[69] http://videocoders.com/yuv.html.

[70] J.L. Gustafson, “Reevaluating Amdahl's Law,”Communications of the ACM, vol. 31, no.

5, pp. 532-533, May 1988.

[71] Cortez and S. Martínez, “Self-triggered Best-Response Dynamics for Continuous

Games”, IEEE Transactions on Automatic Control, vol. 60, issue 4, July 30 2014, pp. 1115 –

1120.

[72] D. Monderer and L. Shapley, “Potential games,” Games and economic behavior, vol. 14,

pp. 124–143, 1996.

[73] Z. Lin and H.T. Liu, “Consensus Based on Learning Game Theory”, Guidance,

Navigation and Control Conference (CGNCC), 2014 IEEE Chinese , 8-10 Aug. 2014.

[74] D. Fudenberg and J. Tirole, Game theory. MIT press Cambridge, Massachusetts, 1991.

[75] G. Scutari, D. Palomar, and S. Barbarossa, “Asynchronous Iterative water-filling for

gaussian frequency-selective interference channels,” IEEE Transactions on Information Theory,

vol. 54, no. 7, pp. 2868–2878, 2008.

[76] S. Lasaulce and H. Tembine, Game Theory and Learning for Wireless Networks:

Fundamentals and Applications, Elsevier, Ed. New York, NY,USA: Academic Press, 2011.

[77] G. Bacci, W. Saad, S. Lasaulce and L. Sanguinetti, "Game Theory for Networks: A

tutorial on game-theoretic tools for emerging signal processing applications," in IEEE Signal

Processing Magazine, vol. 33, no. 1, pp. 94-119, Jan. 2016.

[78] Y. Wu and K. Liu, “An Information Secrecy Game in Cognitive Radio Networks,”

IEEE Trans. Information Forensics and Security, vol. 6, no. 3, pp. 831–842, Sep. 2011.

[79] B. Wang, K. Liu, and T. Clancy, “Evolutionary Cooperative Spectrum Sensing Game:

How to Collaborate?” IEEE Trans. Commun., vol. 58, no. 3, pp. 890–900, Mar. 2010.

https://media.xiph.org/video/derf/
http://videocoders.com/yuv.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.85.6348
http://en.wikipedia.org/wiki/Communications_of_the_ACM
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sonia%20Mart.AND..HSH.x00ED;nez.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6992906
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6992906

165

[80] Jason R. Marden, GürdalArslan, and Jeff S. Shamma, “Cooperative Control and Potential

Games”, IEEE transactions on Systems, Man, and Cybernetics—part b: Cybernetics, vol. 39, no.

6, December 2009.

[81] K. Yamamoto, “A Comprehensive Survey of Potential Game Approaches to Wireless

Networks,” IEICE Transactions on Communications 2015,vol. 98, no.9,pp. 1804–1823.

[82] P. Coucheney, S. Durand, B. Gaujal, C. Touati, “General Revision Protocols in Best

Response Algorithms for Potential Games,” IEEE Netwok Games, Control and Optimization

(NetGCoop), Trento, Italy, Oct 2014.

[83] M. Wooldridge, An introduction to multiagent systems, 2nd edition. Hoboken, NJ, USA:

Wiley, July 2009.

[84] J. Enright, K. Savla, and E. Frazzoli, “Coverage control for nonholonomic agents,” in

Proc. IEEE Conf. on Decision and Control, Cancun,Mexico, Dec. 2008.

[85] A. Arsie, K. Savla, and E. Frazzoli, “Efficient routing algorithms for multiple vehicles

with no explicit communications,” IEEE Trans. On Automatic Control, vol. 54, no. 10, pp.

2302–2317, Oct. 2009.

[86] O. Shehory and S. Kraus, “Task allocation via coalition formation among autonomous

agents,” in Proc. of the Fourteenth International Joint Conference on Artificial Intelligence, Aug.

1995, pp. 655–661.

[87] O. Shehory and S. Kraus, “Methods for task allocation via agent coalition formation,”

Artifical Intelligence Journal, vol. 101, no. 1, pp. 165–200, May 1998.

[88] B. Gerkey and M. J. Mataric, “A formal framework for the study of task allocation in

multi-robot systems,” International Journal of Robotics Research, vol. 23, no. 9, pp. 939–954,

Sept. 2004.

[89] M. Alighanbari and J. How, “Robust decentralized task assignment for cooperative

UAVs,” in Proc. of AIAA Guidance, Navigation, and Control Conference, Colorado, USA, Aug.

2006.

[90] D. M. Stipanovic, P. F. Hokayem, M. W. Spong, and D. D. Siljak, “Co- operative

avoidance control for multi-agent systems,” ASME Journal of Dynamic Systems, Measurement,

and Control, vol. 129, no. 5, pp. 699–706, Sept. 2007.

[91] J. Yang and Z. Luo, “Coalition formation mechanism in multi-agent systems based on

genetic algorithms,” Applied Soft Computing, vol. 7, no. 2, pp. 561–568, Mar. 2007.

[92] Q. Chen, M. Hsu, U. Dayal, and M. Griss, “Multi-agent cooperation, dynamic workflow

and XML for e-commerce automation,” in Proc. Int. Conf. on Autonomous agents, Catalonia,

Spain, June 2000.

166

[93] C. G. Lopes and A. H. Sayed. Diffusion least-mean squares over adaptive networks:

Formulation and performance analysis. IEEE Transactions on Signal Processing, 56(7):3122–

3136, Jul. 2008.

[94] F. S. Cattivelli and A. H. Sayed. Diffusion LMS strategies for distributed estimation.

IEEE Transactions on Signal Processing, vol. 58, iss. 3, pp. 1035–1048, Mar. 2010.

[95] Chen, Jianshu, and Ali H. Sayed. "Diffusion adaptation strategies for distributed

optimization and learning over networks." Signal Processing, IEEE Transactions on 60.8 (2012):

4289-4305.

[96] Jianshu Chen; Sheng-Yuan Tu; Sayed, A.H., "Distributed optimization via diffusion

adaptation," Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011

4th IEEE International Workshop on , vol., no., pp.281,284, 13-16 Dec. 2011.

[97] Sayed, Ali H. "Diffusion adaptation over networks." arXiv preprint arXiv:1205.4220

(2012).

[98] F. Cattivelli and A. H. Sayed, “Modeling bird flight formations using diffusion

adaptation,” IEEE Transactions on Signal Processing, vol. 59, no. 5, pp. 2038–2051, May 2011.

[99] J. Li and A. H. Sayed, “Modeling bee swarming behavior through diffusion adaptation

with asymmetric information sharing,” EURASIP Journal on Advances in Signal Processing,

2012.

[100] Tu, Sheng-Yuan, and Ali H. Sayed. "Foraging behavior of fish schools via diffusion

adaptation." Cognitive Information Processing (CIP), 2010 2nd International Workshop on.

IEEE, 2010.

[101] C. G. Lopes and A. H. Sayed, “Distributed processing over adaptive networks,” in Proc.

Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory, MA, June 2006, pp. 1–

5.

[102] C. Lopes and A. Sayed, “Diffusion least-mean squares over adaptive networks,” in IEEE

ICASSP, vol. 3, Honolulu, HI, Apr. 2007, pp. 917–920.

[103] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed networks,” IEICE

Trans. Fund. Electron., Commun. Comput. Sci., vol. E90-A, no. 8, pp. 1504–1510, Aug. 2007.

[104] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS algorithms with information exchange,”

in Proc. Asilomar Conf. Signals, Syst. Comput., Pacific Grove, CA, Nov. 2008, pp. 251–255.

[105] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “A diffusion RLS scheme for distributed

estimation over adaptive networks,” in Proc. IEEE Workshop on Signal Process. Advances

Wireless Comm. (SPAWC), Helsinki, Finland, June 2007, pp. 1–5.

[106] S. Li, W. Xu, N. Zheng, et al., “A Novel fast motion estimation method based on genetic

algorithm,” Acta Electronica Sinica, vol. 6, no. 28, pp. 114–117, 2000.

167

[107] D.E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning

Addison-Wesley, Reading, MA (1989).

[108] Z. Michalewicz, Genetic Algorithms+Data Structures=EvolutionPrograms. New York:

Springer-Verlag, 1999.

[109] J. Arabas, Z. Michalewicz, and J. Mulawka, “GAVaPS—A genetic algorithm with

varying population size,” in Proc. IEEE Int. Conf. on Evolutionary Computation, Orlando, 1994,

pp. 73–78.

[110] R. Tanese, “Distributed genetic algorithm,” in Proc. Int. Conf. Genetic Algorithms, 1989,

pp. 434–439.

[111] R. J. Collins and D. R. Jefferson, “Selection in massively parallel geneticalgorithms,” in

Proc. Int. Conf. Genetic Algorithms, 1991, pp. 249–256.

[112] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning through symbiotic

evolution,” Mach. Learn., vol. 22, pp. 11–32, 1996.

[113] D. Whitely, S. Dominic, R. Das, and C. W. Anderson, “Genetic reinforcement learning

for neurocontrol problems,” Mach. Learn., vol. 13, pp. 259–284, 1993.

[114] D. Thierens, “Adaptive mutation rate control schemes in genetic algorithms,”in Proc.

IEEE Int. Conf. Evolutionary Computation, HI, 2002, pp. 980–985.

[115] S. Tsutsui and D. E. Goldberg, “Simplex crossover and linkage identification:

Single-stage evolution vs. multi-stage evolution,” in Proc. IEEE Int. Conf. Evolutionary

Computation, HI, 2002, pp. 974–979.

[116] Gustavo Sanchez, Felipe Sampaio, Marcelo Porto, Sergio Bampi, and Luciano Agostini,

“DMPDS: A Fast Motion Estimation Algorithm Targeting High Resolution Videos and Its

FPGA Implementation,” International Journal of Reconfigurable Computing, Article ID 186057,

12 pages, 2012.

[117] Andrei Lihu, ŞtefanHolban, “Particle Swarm Optimization with Disagreements on

Stagnation,” Semantic Methods for Knowledge Management and Communication, Studies in

Computational Intelligence, vol. 381, 2011, pp. 103-113.

[118] Marco Locatelli, Fabio Schoen, “Global Optimization Based on Local Searches,” 4OR,

December 2013, Volume 11, Issue 4, pp. 301-321.

[119] Matthew Settles and Terence Soule, “Breeding swarms: a GA/PSO Hybrid,” GECCO

’05: Proceedings of the 2005 conference on Genetic and evolutionary computation, 2005.

[120] M.F. Bramlette, “Initialization Mutation and Selection Methods in Genetic Algorithms

for Functions Optimization,” Proceedings of the ICGA 4 (1991), pp.100–107

http://link.springer.com/search?facet-author=%22Marco+Locatelli%22
http://link.springer.com/search?facet-author=%22Fabio+Schoen%22
http://link.springer.com/journal/10288
http://link.springer.com/journal/10288/11/4/page/1

168

[121] “NVIDIA CUDA Compute Unified Device Architecture, Programming Guide version

2.0”, 2008, found on www.nvidia.com.

[122] nVidia Corporation, “nvidia ion specifications.”

http://www.nvidia.com/object/picoatom_specifications.html.

[123] N. Brookwood, “Amd white paper: Amd fusion™ family of apus.”

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf, March 2010.

[124] I. Corporation, “Products (formerly sandy bridge).” http://ark.intel.com/

products/codename/29900.

[125] M. Doerksen, S. Solomon, and P. Thulasiraman, “Designing APU oriented scientific

computing applications in openCL,” in 13th IEEE International Conference on High

Performance Computing & Communication, HPCC 2011, Banff, Alberta, Canada, September

2-4, 2011, pp. 587–592, IEEE, 2011.

[126] B. Kirk andW.meiW.Hwu, Programming Massively Parallel Processors: A Hands-on

Approach (Applications of GPU Computing Series). Morgan Kaufmann, 2010.

[127] Mark Horis, “How to Optimize Data Transfers in CUDA C/C++”, Nvidia, December

2012. https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/.

[128] Utsab Bose, Anup Kumar Bhattacharya, Abhijit Das,”GPU-Based Implementation of

128-Bit Secure Eta Pairing over a Binary Field”, 6th International Conference on Cryptology in

Africa, Cairo, Egypt, June 22-24, 2013.

[129] nVidia. NVIDIA Fermi Compute Architecture Whiltepaper, v1.1 edition.

[130] nVidia, “www.nvidia.com/tesla”.

[131] Konstantopoulos, Charalampos. “A Parallel Algorithm for Motion Estimation in Video

Coding Using the Bilinear Transformation.” SpringerPlus , issue. 4, June 2015, pp. : 288.

[132] Mokraoui A, Munoz-Jimenez V, Astruc J-P, “Motion estimation algorithms using the

deformation of planar hierarchical mesh grid for videoconferencing applications at low bit-rate

transmission,” Journal of Signal Process Syst. 2012, vol. 67, iss. 2, pp.167–185.

[133] Huang H, Woods JW, Zhao Y, Bai H, “Control-point representation and differential

coding affine-motion compensation,” IEEE Trans Circuits Syst Video Technol. 2013, 23(10), pp.

1651–1660.

[134] Muhit AA, Pickering MR, Frater MR, Arnold JF, “Video coding using fast

geometry-adaptive partitioning and an elastic motion model,” Journal of Visual Communication

and Image Representation 2012, vol. 23, iss. 1, pp.31–41.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://ark.intel.com/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
http://www.nvidia.com/tesla

169

[135] Jianbo Shi and C. Tomasi, "Good features to track," Computer Vision and Pattern

Recognition, 1994. Proceedings CVPR '94., 1994 IEEE Computer Society Conference on,

Seattle, WA, 1994, pp. 593-600.

[136] P. M. Q. Aguiar and J. M. F. Moura, "Image motion estimation-convergence and error

analysis," Image Processing, 2001. Proceedings. 2001 International Conference on, Thessaloniki,

2001, pp. 937-940 vol.2.

[137] M. A. Al-Alaoui, “ Direct Approach to Image Edge Detection Using Differentiators ,”

proceedings of the 17th IEEE International Conference on Electronics, Circuits, and Systems,

Athens, Greece, pp.154-157, December 12-15, 2010.

[138] M. A. Al-Alaoui, “Novel FIR Approximations of IIR Differentiators with Applications to

Image Edge Detection,” proceedings of the 18th IEEE International Conference on Electronics,

Circuits, and Systems, Beirut, Lebanon, pp. 554-558, December 11-14, 2011.

[139] M. A. Nehme, W. Khoury, B. Yameen and M. A. Al-Alaoui, "Real time color based

motion detection and tracking," Signal Processing and Information Technology, 2003. ISSPIT

2003. Proceedings of the 3rd IEEE International Symposium on, 2003, pp. 696-700.

[140] B. Longworth “A Masterpiece of Deep Learning: GTC Provides Canvas for a

Revolutionary Style of Artificial Intelligence,” Nvidia,

https://blogs.nvidia.com/blog/2016/04/05/artificial-intelligence/, April 5, 2016.

[141] J.-H. Huang “Accelerating AI with GPUs: A New Computing Model”, Nvidia,

https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/, Jan. 12,

2016.

https://blogs.nvidia.com/blog/author/bealongworth/
https://blogs.nvidia.com/blog/2016/04/05/artificial-intelligence/
https://blogs.nvidia.com/blog/author/jen-hsun-huang/
https://blogs.nvidia.com/blog/2016/01/12/accelerating-ai-artificial-intelligence-gpus/

