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AN ABSTRACT OF THE THESIS OF 

 

 

 

Manal Khalil Jalloul      for   Doctor of Philosophy 

  Major: Electrical and Computer Engineering 

 

 

 

Title: On Parallel, Distributed, and Hybrid Evolutionary Algorithms for Block Motion Estimation 

 

 

 

Motion estimation (ME) is a common tool used in all video coding standards. Fast and 

accurate algorithms are needed to target the real-time processing requirements of emerging 

applications. On the other hand, in the hardware industry, there is great emphasis on High 

Performance Computing (HPC) which is characterized by a shift to multi and many core systems. 

The programming community has to embrace the new parallelism in order to take advantage of the 

performance gains offered by the new technology. The block motion estimation (BME) problem is 

classified as non-convex since the objective function is multimodal. Existing fast block matching 

methods suffer from poor accuracy and are susceptible to being trapped into local optima on the 

error surface. The collective intelligence enabled by the particle swarm optimization (PSO) 

technique, however, was found effective in alleviating the local optima problem. Belonging to the 

category of evolutionary algorithms, PSO is capable of handling non-differentiable, discontinuous 

and multimodal objective functions. To this end, in this dissertation, several efficient and parallel 

ME algorithms based on PSO are proposed. Several levels of parallelisms are introduced into the 

ME process. First, parallelism between the macroblocks (MBs) of the frame is achieved through a 

novel cooperative ME scheme based on a multi-swarm PSO model that performs ME in a 

cooperative manner concurrently for all the MBs in the frame. Several strategies are incorporated 

into the dynamics of the PSO algorithm to improve its motion estimation accuracy and enhance its 

convergence speed including a novel initialization scheme, a fitness function history preservation 

algorithm, and a dynamically varied maximum velocity. The multi-core and GPU 

implementations of the proposed framework showed that the speedup provided is scalable with the 

video resolution. Second, parallelism is introduced within the MB through two different 

approaches based on distributed multi-agents systems. The problem of BME is first cast in a 

non-cooperative game-theoretic setting and formulated as a potential game. To solve the game, 

distributed sequential and simultaneous algorithms based on game-theoretic Best Response 

Dynamics (BRD) and PSO are presented. Parallelism within the MB is also tackled using concepts 

from diffusion adaptation. The distributed optimization of BME is formulated based on diffusion 

protocols and a modified dynamic diffusion-based PSO algorithm is proposed to solve it. 

Performance evaluations and multi-core implementations of these algorithms demonstrate the 

merits of the presented schemes. Moreover, this dissertation also targets ME in high resolution 

video where a hybrid PSO-genetic algorithm is proposed and evaluated.  
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CHAPTER 1 

INTRODUCTION 

 

In the 21st century, the modern society has made itself into the global information age in 

which images and videos can be found everywhere in people’s daily life. Nearly over 2.6 million 

hours of video are uploaded to YouTube each month [1]. Also, the resolution of video has grown 

dramatically from 100x100 in the 1960s to around 8192x4320 for video nowadays. As a result, the 

size of raw digital source data can be so tremendous that enormous resources are required for 

storage and transmission. For example, the size of a 150-minute color movie with 30 frames per 

second and 720x480 resolution is as large as 280 GB without compression, not to mention the 

situation when the movie needs to be transmitted through the Internet whose bandwidth can be 

lower than 10 Mbit/s. In light of this, digital video compression technology is a necessity even 

though computer power, storage, and the network bandwidth have increased significantly. 

 

1.1 Video Coding 

Today, video coding has become the central technology in a wide range of applications, 

as shown in Fig. 1.1. Some of these include digital TV, DVD, Internet streaming video, video 

conferencing, distance learning, surveillance, and security.  
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Figure 1.1 Applications of Video Coding 

    

Video coding standards have evolved primarily through the development of the 

well-known ITU-T and ISO/IEC standards. The ITU-T produced H.261 [3] and H.263 [4], 

ISO/IEC produced MPEG-1 (ISO/IEC JTCl/SC29/WG11, December 1991) and MPEG-4 Visual, 

and the two organizations jointly produced the H.262/MPEG-2 [2] Video and H.264/MPEG-4 [5] 

AVC standards. These two organizations have been working together in a partnership known as 

the Joint Collaborative Team on Video Coding (JCT-VC) to produce the HEVC, the High 

Efficiency Video Coding standard, which is the most recent video coding standard. The first 

edition of the HEVC standard was finalized in January 2013[6]. Fig. 1.2 shows the chronology of 

video coding standards [7]. 
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Figure 1.2 Chronology of Video Coding Standards [7] 

 

Inter-prediction motion estimation is a common tool used in all video coding standards. 

The H.264/MPEG-4 AVC video coding standard and the recent HEVC standard employ the same 

hybrid approach to achieve high compression performance.  

Fig. 1.3 shows a block diagram of a generic video encoder [7]. Motion-estimation is used 

to find motion of macro-blocks using motion vectors to reduce temporal redundancies among 

input frames. Later, transform (mostly Discrete Cosine Transform: DCT) is performed on the 

motion-compensated prediction difference frames for de-correlation of prediction error. The 

prediction error is later quantized as per input bit-rate requirements. The quantized DCT 

coefficients, motion vectors, and side information are entropy coded using variable length codes 

(VLC’s). The reconstruction path in encoder consists of inverse transform, quantization, loop filter 

and motion compensation to mimic operation on decoder side.  
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Figure 1.3 Generic Video Encoder’s Block Diagram 

 

Inter-prediction motion estimation is considered the most computationally intensive 

feature of the coding process. It represents about 80% of the total computational complexity of 

current video coders [8]. 

 

1.2 Motion Estimation 

Motion Estimation (ME) is an important part of any video coding system since it can 

achieve significant compression by exploiting the temporal redundancy that commonly exists in a 

video sequence. There exist two basic approaches to motion estimation which are pixel-based 

motion estimation, that include parametric based models [9], optical flow [10], and pel-recursive 

techniques [11], and block-based motion estimation. The pixel-based motion estimation approach 
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seeks to determine motion vectors for every pixel in the image. This works on the fundamental 

assumption of brightness constancy, that is, the intensity of a pixel remains constant when it is 

displaced. However, no unique match for a pixel in the reference frame is found in the direction 

normal to the intensity gradient. It is for this reason that an additional constraint is also introduced 

in terms of the smoothness of velocity (or displacement) vectors in the neighborhood. The 

smoothness constraint makes the algorithm interactive and requires excessively large computation 

time, making it unsuitable for practical and real-time implementation [12].An alternative and 

faster approach is the block-based motion estimation (BM). In this method, the candidate frame is 

divided into non-overlapping blocks. It is assumed that all the pixels within a block have the same 

motion activity and one motion vector is estimated for each block.BM seems to be the most 

popular technique due to its effectiveness and simplicity for both software and hardware 

implementations [13]. In order to reduce the computational complexity in ME, many BM 

algorithms have been proposed and employed at implementations for several video compression 

standards.  

The effectiveness of compression techniques that use block-based motion compensation 

depends on the extent to which the following assumptions hold: 

• The illumination is uniform along motion trajectories. 

• The problems due to uncovered areas are neglected. 

For the first assumption it neglects the problem of illumination change over time, which 

includes optical flow but does not correspond to any motion. The second assumption refers to the 

uncovered background problem. Basically, for the area of an uncovered background in the 

reference frame, no optical flow can be found in the reference frame. Although these assumptions 

do not always hold for all real-world video sequences, they continue to be used as the basis of 
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many motion estimation techniques. 

 

1.3 Principle of the Block Matching Algorithm 

Figure 1.4 illustrates the process of the block-matching algorithm. In a typical BM 

algorithm, the current frame of an image sequence 𝐼𝑡 is divided into non-overlapping 

macroblocks (MB) of N × N pixels, each of which consists of luminance and chrominance blocks. 

Usually, for coding efficiency, motion estimation is performed only on the luminance block. For 

each template luminance block in the current frame, the best matched block within a search 

window (S) of size (2W +  1)  ×  (2W +  1) in the previous frame 𝐼𝑡−1is determined, where 

Wis the maximum allowed displacement. The position difference between a template block in the 

current frame and the best matched block in the previous frame is called the motion vector (MV). 

In a typical inter-frame coder, the input frame is subtracted from the prediction of the reference 

frame. Consequently, the motion vector and the resulting error can be transmitted instead of the 

original luminance block; thus inter-frame redundancy is removed and data compression is 

achieved. At receiver end, the decoder builds the frame difference signal from the received data 

and adds it to the reconstructed reference frames. The summation gives an exact replica of the 

current frame. The better the prediction the smaller the error signal and hence the transmission bit 

rate. 
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Figure 1.4 Block motion estimation 

 

The most well-known criterion for BM algorithms is the sum of absolute differences 

(SAD). It is defined in Eq. (1.1) considering a template MB at position (x, y) in the current frame 

and the candidate MB at position (𝑥 + 𝑢̂, 𝑦 + 𝑣)  in the previous frame𝐼𝑡−1: 

𝑆𝐴𝐷(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|,𝑁−1
𝑖=0

𝑁−1
𝑗=0   (1.1) 

where 𝑔𝑡(. ) is the gray value of a pixel in the current frame 𝐼𝑡 and 𝑔𝑡−1(. ) is the gray level of a 

pixel in the previous frame𝐼𝑡−1. Therefore, the MV 𝑤 =  (u,  v)is defined as follows: 

𝑤 = (𝑢, 𝑣) = 𝑎𝑟𝑔(𝑢,𝑣)∈𝑆 min 𝑆𝐴𝐷(𝑢̂, 𝑣),      (1.2) 

where 

𝑆 = {(𝑢̂, 𝑣)| − 𝑊 ≤ 𝑢̂, 𝑣 ≤ 𝑊 𝑎𝑛𝑑 (𝑥 + 𝑢̂, 𝑦 + 𝑣)𝑖𝑠 𝑎 𝑣𝑎𝑙𝑖𝑑 𝑝𝑖𝑥𝑒𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝐼𝑡−1}. 

 

1.3.1 The Exhaustive Search Algorithm 

In the context of BM algorithms, the Exhaustive Search (ES) algorithm is the most robust 
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and accurate method to find the MV. It tests all possible candidate blocks from 𝐼𝑡−1within the 

search area to find the block with the minimum SAD. For the maximum displacement of W, the 

FSA requires (2𝑊 + 1)2search points. For instance, if the maximum displacement W is ± 7, the 

total search-points are 225. Each SAD calculation requires 2N2additions and the total number of 

additions for the ES to match a 16 × 16 block is 130,560. Such computational requirement makes 

the application of ES difficult for real time tasks. 

 

1.3.2 Fast Block Matching Algorithms 

Many fast search algorithms have been proposed to reduce the computational complexity 

of ES while retaining similar prediction quality. All of them make use of the quadrant monotonic 

model [14]. The quadrant monotonic model assumes that the value of the distortion function 

increases as the distance from the point of minimum distortion increases. Therefore, not only the 

candidate blocks close to the optimal block better match than those far from it, but also the value of 

the distortion function is a function of the distance from the optimal position. Thus, the quadrant 

monotonic assumption is a special case of the principle of locality. The quadrant monotonic 

assumption allows for the development of suboptimal algorithms that examine only some of the 

candidate blocks in the search area. In addition, they use the values of the distortion function to 

guide the search toward a good match. As the entire candidate blocks are not examined, the match 

found might not be the best available. 

Existing fast BM algorithms were designed using the following three techniques: (1) 

using a fixed pattern: the search operation is conducted over a fixed subset of the total search 

window. The Three Step Search (TSS) [15], the New Three Step Search (NTSS) [16], the Simple 

and Efficient TSS (SES) [17], the Four Step Search (4SS) [18], the Diamond Search (DS) [19],the 
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cross-diamond search (CDS) method [20], and the Hexagon-based search [21] all represent some 

of its well-known examples. Although such approaches have been algorithmically considered as 

the fastest, they are not able to eventually match the dynamic motion content, sometimes 

delivering false motion vectors (image distortions). These algorithms reduce the computational 

complexity with negligible loss of image quality only when the motions matched the pattern well; 

otherwise, the image quality will decrease.(2) Reducing the search points: the algorithm chooses 

as search points only those locations that iteratively minimize the error-function (SAD values). 

This category includes the Adaptive Rood Pattern Search (ARPS) [22], the Fast Block Matching 

Using Prediction (FBMAUPR) [23], the Block-based Gradient Descent Search (BBGD) [24] and 

the Neighborhood Elimination algorithm (NE) [25]. Such approaches assume that the 

error-function behaves monotonically, holding well for slow-moving sequences but failing for 

other kind of movements in video sequences [26], making the algorithm prone to get trapped into 

local minima. (3) Decreasing the computational overhead for every search point: the matching cost 

(SAD operation) is replaced by a partial or a simplified version that features less complexity. The 

New pixel-Decimation (ND) [27] and the Successive Elimination Algorithm [28] assume that all 

pixels within each block, move by the same finite distance and a good estimate of the motion can 

be obtained through only a fraction of the pixel pool. However, since only a fraction of pixels 

enters into the matching computation, the use of such regular sub-sampling techniques can 

seriously affect the accuracy of the detection of motion vectors due to noise or illumination 

changes. Another popular group of BM algorithms employ spatio-temporal correlation by using 

neighboring blocks in the spatial and temporal domain in order to predict MVs. The main 

advantage of such algorithms is that they alleviate the local minimum problem to some extent as 

the new initial or predicted search center is usually closer to the global minimum and therefore the 
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chance of getting trapped in a local minimum decreases. This idea has been incorporated by many 

fast-block motion estimation algorithms such as the Unsymmetrical Multi-Hexagon-grid search 

(UMHexagonS) [29]. However, the information delivered by the neighboring blocks occasionally 

conduces to false initial search points producing distorted motion vectors. Such problem is 

typically caused by the movement of very small objects contained in the image sequences [30].The 

UMHexagonS [29] algorithm attempt to use many search patterns, has achieved both fast speed 

and good rate-distortion performance. As a result, it was adopted in H.264/AVC reference 

software JM. Although uneven search patterns are used to meet the assumption that motion is more 

horizontal than vertical, it cannot adaptively choose the intensive search area for irregular motions. 

To tackle this drawback, Predictive Intensive Direction Searching (PIDS) algorithm [31] was 

developed. In PIDS, the correlation of predicted MV and optimal MV are studied. On the basis of 

MV prediction information, the area with high correlation is intensively searched, while other 

areas are coarsely searched. PIDS successfully speeds up the process compared to UMHexagonS. 

However, this algorithm still searches each direction exhaustively, which may cause searching 

resource waste. In [32], a novel Predictive Priority Region Search (PPRS) algorithm that performs 

adaptively search indirection and locality regions was proposed. In this proposed algorithm, the 

search window is divided by 8 direction and several octagon grids. These regions are then 

selectively searched by exploiting the MV correlation characteristics of the previous encoded 

frame. Other FME algorithms proposed in the literature include Motion adaptive search (MAS) 

[33] which utilize the motion activity information to adjust the search strategy, Variable Step 

Search (VSS) algorithm [34] which employs correlation between neighboring motion vectors to 

determine motion search range, and the Multi-Path Search (MPS) algorithm [35] in which all the 

eight neighbors around the origin of the search window are used to find candidate points. In 
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addition to the above, several high efficiency algorithms were presented in the literature for ME. 

These algorithms significantly reduce the number of checking points examined while retaining the 

video quality. These techniques accomplish this by initially considering several highly likely 

predictors, introducing very reliable early-stopping criteria to terminate the search at any checking 

point, and using very efficient checking patterns for optimizing and improving the search even 

further. These algorithms include the Motion Vector Field Adaptive Search Technique 

(MVFAST) [36], the Predictive Motion Vector Field Adaptive Search Technique (PMVFAST) 

[38], the Advanced Predictive Diamond Zonal Search (APDZS) [38], and the Enhanced Predictive 

Zonal Search (EPZS) [39].  

 

1.3.3 Evolutionary Algorithms for Block Motion Estimation 

Block matching motion estimation can be formulated into an optimization problem where 

one searches for the optimal matching block within a search region which minimizes a certain 

block distortion measure (BDM), which is usually taken as the sum of absolute difference. Such a 

problem is classified as non-convex since the objective function is multimodal and has many local 

minima. The above fast block matching methods suffer from poor accuracy since they dictate that 

only a very small fraction of the entire set of candidate blocks be examined, thereby making the 

search susceptible to being trapped into local optima on the error surface. The underlying theory of 

these search engines comes from the idea that the block distortion measure reduces monotonously 

when search points move from the farthest point toward the optimal point. In practice, applications 

do not always completely obey the monotonous rule. Therefore, these fast search engines are 

easily trapped into the local optimal solutions and miss the global optimal solution. In order to 

escape from the problem of local minima, several approaches were recently presented in the 
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literature to use modern global optimization algorithms to solve the problem of motion estimation. 

In [40, 41], the Genetic Algorithm (GA) has been considered for motion estimation. The proposed 

algorithms, however, tend to be complex and suffer from a high computational burden. In [42], the 

Simulated Annealing (SA) concept is employed to control the searching process and to adaptively 

choose the intensive search region. In addition, artificial bee colony optimization (ABC) [43] and 

differential evolution (DE) [44] were also proposed for motion estimation.   

Recently, there have been some attempts in the literature to apply Particle Swarm 

Optimization (PSO) to solve the problem of ME [45-52].  The PSO-based motion estimation 

methods introduced in [45-49] either have higher computational complexity [45] or have lower 

estimation accuracy [46-48, 51] than several existing fast search methods, such as the three-step 

search (TSS) and diamond search(DS) method. For example, in [47], a method called zero-motion 

pre-judgment was applied to PSO based motion estimation to reduce the computational 

complexity. However, this fast method caused a significant degradation in motion estimation 

accuracy. In [45], a parallel PSO method was applied to block-based motion estimation to reduce 

the computational cost, albeit at the cost of substantially lowered estimation accuracy. Moreover, 

the simulation results reported in [48] were too limited to demonstrate the suitability and 

effectiveness of the PSO method for block-based motion estimation. In [51], a pattern-based PSO 

approach was proposed for block motion estimation. To speed up the conventional PSO, the 

algorithm presented in [51] selects the initial position of the particles in a fixed pattern rather than 

randomly as in the conventional PSO scheme. PSO particles are initialized in a square or a 

diamond pattern around the center.  In [52], the standard PSO algorithm was modified to meet the 

stringent constraint of low computational complexity while maintaining high motion estimation 

accuracy. This is done by employing several strategies to speed up the motion estimation process 
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and gave high motion estimation accuracy as compared to 4SS, DS, and CDS. This algorithm tries 

to improve the speed of convergence of the PSO iterations by choosing, as initial positions of the 

particles, the MVs of adjacent causal blocks in the frame as well as the (0,0) MV.  

 

1.4 Motivation 

Motion estimation is a common tool used in all video coding standards. Fast and accurate 

algorithms are needed to target the real-time processing requirements of emerging applications. As 

was shown in section, existing techniques have several drawbacks. The main focus of this PhD 

thesis work is to develop efficient motion estimation algorithms that overcome the drawbacks of 

existing approaches. The motivation for this work can be summarized by the following points: 

 

1.4.1 Fast and Accurate BM algorithm 

Designing block matching algorithms that are both fast and accurate presents a challenge. 

We have seen that existing fast BM algorithms are susceptible to being trapped into local optima 

on the error surface. The collective intelligence enabled by the particle swarm optimization (PSO) 

technique, however, was found effective in alleviating local optima problem suffered typically by 

existing very fast block matching methods [45-52]. The PSO technique was introduced in [53, 54] 

as a robust stochastic optimization technique based on a social-psychological model of social 

influence and social learning [55, 56]. Belonging to the category of swarm intelligence methods, 

PSO is a population-based technique inspired by the social behavior and movement dynamics of 

flocks of birds, schools of fish, and herds of animals adapting to their environment. In PSO, a 

population of candidate solutions to the optimization problem, with their initial locations being 

randomly chosen in a search space, discovers optimal regions of the space through a process of 
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individuals’ emulation of the successes of their neighbors. The available PSO-based motion 

estimation schemes found in the literature [45-52] suffer from several drawbacks. In video 

sequences, there is a high temporal correlation between the blocks of adjacent frames as well as a 

high spatial correlation between adjacent blocks of the same frame. Only spatial correlation is 

exploited in available PSO-based ME schemes [52] which use the found motion vectors of 

adjacent causal blocks for initializing the PSO particles of the current block. The PSO iterations, 

however, can achieve faster convergence if we exploit the temporal correlation with the collocated 

blocks in the adjacent frame as well. Moreover, within a video frame, motion is smooth and 

continuous which means that the estimated motion vectors between adjacent blocks are required to 

be correlated. In existing schemes, except for initialization, the PSO motion search is done 

separately for each block and no cooperation between adjacent blocks is allowed. Cooperation and 

communication between the blocks during the PSO process can ensure that the resulting estimated 

motion vectors of neighboring blocks are correlated. It can also speedup the convergence of PSO 

since the swarm of a given block can enhance its particles based on the knowledge received from 

adjacent blocks. In conclusion, there are plenty of strategies that can be incorporated into the 

dynamics of the PSO algorithm to improve its motion estimation accuracy and enhance its 

convergence speed. 

 

1.4.2 Need for Distributed and Parallel BM Algorithms 

Due to heavy computation demands of video coding, parallel implementation of the basic 

operations of this computation is necessary for satisfying the real time constraints usually imposed 

in multimedia applications. Moreover, the High Performance Computing (HPC) industry is 

marked by a relentless pursuit of ever greater levels of performance, driven by the never-ending 
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race toward scientific advancement. The march forward is often steady, as successive generations 

of technologies deliver incremental performance benefits over each previous version. HPC is now 

in the early stages of such a revolution. Single-core processors have given way to 

multi-core/many-core machine architectures, graphics processing units (GPU), and 

supercomputers. End users are still searching for the most effective ways to use them efficiently. 

This requires a change in the programming approach to develop ME algorithms with high 

parallelism in order to take advantage of the high speedup provided by the available hardware. In 

existing motion estimation algorithms, the use of previous macroblocks in the same frame for 

encoding the current macroblock makes ME an inherently sequential procedure, at the MB level, 

limiting the degree of parallelism that can be achieved. Effective techniques are needed to break 

the dependencies between the MBs in the frame without compromising the estimation quality. On 

the other hand, existing PSO-based BM algorithms [46-52] use centralized sequential processing 

within the MB. A central processor is needed to coordinate the particles of the swarm whose 

actions are updated in a sequential manner. Such a centralized approach hinders parallelism within 

the MB. Distributed PSO algorithms need to be explored for motion estimation that can achieve 

parallelism within the MB. In summary, novel BM algorithms are needed to achieve multi-level 

parallelism: parallelism within the MB as well as parallelism between the MBs in a frame. 

 

1.4.3 Motion Estimation in High Resolution Video 

Video resolution has witnessed a tremendous evolution. The majority of published 

evolutionary ME search algorithms only considers low resolution videos, as QCIF and CIF, in its 

experiments. However, the quality results of the ME algorithms can significantly change with the 

increasing of the video resolution. For low resolution videos, the quality results for ES and other 
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algorithms are very close. The great amount of pixels in high definition videos and the increase in 

the search area lead to an increase in the density of local minima on the error surface. This may 

lead BM algorithms to choose, more frequently, local minima as the best matching. Thus, the 

quality losses (in comparison with ES) are significant in this scenario. Techniques to avoid local 

minima falls in high resolution video must be explored to enhance the video quality without a 

significant increase in the ME computational complexity. 

This thesis work follows a multidisciplinary approach by exploiting results from 

evolutionary optimization, game theory, diffusion adaptation in multi-agent networks, and parallel 

computing. The BM estimation problem is formulated as a non-convex optimization problem. Due 

to the non-convexity of the problem, evolutionary algorithms based on PSO are proposed to solve 

it. Game theory and diffusion adaptation are used to cast the problem in a distributed multi-agent 

framework and propose effective parallel algorithms to solve it.  Concepts from the field of 

parallel computing provided parallelization strategies that are employed for developing the 

proposed parallel algorithms and their implementations. 

 

1.5 Problem Definition 

The main target of this thesis is to propose efficient ME algorithms with high accuracy 

and low computational complexity. PSO is an evolutionary algorithm that has shown promising 

results in the problem of block motion estimation. Efficient strategies are needed to enhance its 

performance. Moreover, the designed PSO-based ME algorithms should be inherently parallel. 

Several levels of parallelism need to be explored. Finally, novel algorithms with enhanced 

strategies need to be investigated to target HR video. 
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1.6 Thesis Contributions and Organization 

In this section, we present the different thesis contributions and the associated chapters in 

the dissertation. 

In Chapter 2, a cooperative motion estimation (ME) scheme using a modified Particle 

Swarm Optimization (PSO) algorithm is presented. The proposed algorithm is based on a 

multi-swarm PSO model where a swarm of PSO particles is defined for each macroblock (MB) in 

the frame. Motion Estimation is then performed in a cooperative manner concurrently for all the 

MBs in the frame. Cooperation between neighboring MBs during the motion estimation process is 

allowed through a communication step to exchange information about the motion vectors found so 

far in the estimation process. This synergic relationship between the swarms of adjacent MBs 

allows refining the motion search and leads to both a faster convergence of the PSO process and an 

improvement in the resulting motion vectors. Several techniques are also proposed to improve the 

search capacity and computational complexity of the PSO iterations. A novel PSO initialization 

scheme that exploits the existing temporal correlation is proposed to remove dependency between 

adjacent MBs.  A fitness function history preservation mechanism is also presented to prevent 

redundant repeated calculations of the fitness function of a given search point by the PSO particles 

which dramatically decreases the computational complexity. The proposed scheme exhibits a high 

level of data parallelism since it is capable of performing motion estimation for all the MBs of the 

frame in parallel rather than serially. As a result, the presented algorithm is amenable to parallel 

processing techniques. In this chapter, a multicore implementation of the proposed algorithm is 

performed using the MATLAB® Parallel Computing Toolbox™ (PCT). Extensive simulations are 

performed to analyze the performance of the presented algorithm and its multicore 

implementation.  

Chapter 3 introduces a novel parallel framework to speed up the BME process. This is 
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done by introducing a novel level of parallelism within the MB. The problem of BME is cast in a 

non-cooperative game-theoretic setting and a distributed multi-agent system is employed to solve 

the problem. First, a given MB is divided into subblocks and an agent is defined for each subblock. 

Then, the problem is formulated as a Consensus game and our approximation of the global utility 

function for the MB is defined. Building on this, agents’ utilities are derived so that the resulting 

game is a potential game. To solve the game, distributed sequential and simultaneous algorithms 

based on game-theoretic Best Response Dynamics (BRD) and PSO are presented. Each agent uses 

PSO as its local search engine to autonomously maximize the utility of its subblock and BRD drive 

the agents with minimum local communication towards the maximum of the global utility function 

of the whole MB. Experimental results show that these algorithms provide good estimation quality 

with low computational cost as compared to other techniques. Moreover, in addition to its 

decentralized and distributed nature, the simultaneous algorithm is also inherently parallel at the 

agents’ level within the MB. A thorough discussion and analysis of the proposed algorithms is 

included with a performance evaluation through extensive simulations. A parallel implementation 

of this algorithm using the MATLAB Parallel Computing Toolbox™ (PCT) on a multicore system 

is also provided to study the efficiency and speedup of the proposed parallel algorithm. 

In Chapter 4, parallelism within the MB, which was solved in chapter 3 from a 

game-theoretic viewpoint, is tackled again but using concepts from diffusion adaptation in 

distributed multi-agent systems. We formulate and study the distributed optimization of block 

motion estimation using a network of cooperative nodes based on diffusion protocols. A modified 

diffusion-based PSO algorithm is proposed. Diffusion strategies are employed to allow the agents 

to cooperate and diffuse information in real-time in order to reach the common minimizer of the 

global cost function. A parallel implementation of this algorithm using the MATLAB PCT on a 
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multicore system is provided to study merits of the proposed scheme.  

Chapter 5 targets the problem of BM estimation in HD video. It is first demonstrated that 

available PSO algorithms, when applied on High definition (HD) video, yield a quality worse than 

that obtained for low definition (LD) video. The reason behind this is that the problem of local 

minima becomes more significant as the resolution of the video increases and the existing ME 

schemes employ a basic version of PSO which is found to be not effective enough to combat the 

problem of local minima of HD video. In this chapter, we present a new ME scheme that employs 

a novel dynamic hybrid PSO algorithm. The PSO algorithm presented is hybrid in a sense that it 

employs improved strategies of the genetic algorithm (GA) like selection, mutation, and crossover 

to avoid being trapped in local minima. The algorithm is also dynamic since the maximum allowed 

velocity of the particles is dynamically varied in each iteration of the PSO process to effectively 

cover the search space. The presented algorithm is evaluated in terms of video quality and 

computational complexity and compared to existing fast searching ME techniques as well as 

existing PSO-based ME schemes. 

In Chapter 6, we present the parallel implementation of the cooperative PSO algorithm, 

which was proposed in Chapter 2, on the NVIDIA GPU architecture using the CUDA platform. 

The NVIDIA programmable GPU has evolved into a highly parallel, multithreaded, many-core 

processor. Implementing the proposed cooperative PSO algorithm on the GPU is expected to yield 

a tremendous speedup. 

Finally in Chapter 7, we summarize the contributions of this thesis work and outline some 

topics for future investigation. 
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This thesis includes 7 original papers that have been previously published/ submitted for 

publication in peer reviewed journals and conferences, as follows: 

 

Table 1.1 List of thesis publications 

Chapter 2 

M. Jalloul and M. A. Al-Alaoui, “A Novel Cooperative Motion Estimation Algorithm Based on 

Particle Swarm Optimization and its Multicore Implementation ", Elsevier Journal of Signal 

Processing: Image Communication, vol. 39, part A, November 2015, pp.121-140. 

M. Jalloul, “A Parallel Computing Approach for Motion Estimation Based on Particle Swarm 

Optimization ", International Conference on Engineering of Reconfigurable Systems and 

Algorithms, ERSA-NVIDIA Award for Best Young Entrepreneur, ERSA 2013, Las Vegas, USA, 

July 22-15, 2013. 

M. Jalloul and M. A. Al-Alaoui, “A Novel Parallel Motion Estimation Algorithm Based on Particle 

Swarm Optimization", International Symposium on Signals and systems, ISSCS 2013, Romania, 

July 11-12, 2013. 

Chapter 3 

M. Jalloul and M. A. Al-Alaoui, “Agent-Based Game Theoretic Model for Block Motion 

Estimation and its Multicore Implementation,” submitted to Elsevier Journal of Signal Processing: 

Image Communication, March, 2016. 

M. Jalloul and M. A. Al-Alaoui, “Block Motion Estimation and Potential Games ", International 

Conference on Image Processing, Computer Vision, & Pattern Recognition, IPCV 2015, part of  

WORLDCOM 2015, Las Vegas, USA, July 27-30, 2015. 

Chapter 4 
M. Jalloul and M. A. Al-Alaoui, “A Distributed Particle Swarm Optimization Algorithm for Block 

Motion Estimation Using the Strategies of Diffusion Adaptation", International Symposium on 

Signals and systems, ISSCS 2015, Romania, July 11-12, 2015 

Chapter 5 
M. Jalloul and M. A. Al-Alaoui, “A Novel Hybrid Dynamic Particle Swarm Optimization 

Algorithm for Motion Estimation in High Resolution Video ", International Conference on 

Engineering and Applied Sciences Optimization, OPT-i 2014, Kos, Greece, June 4-6, 2014. 
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CHAPTER 2 

A NOVEL COOPERATIVE MOTION ESTIMATION ALGORITHM 

BASED ON PARTICLE SWARM OPTIMIZATION 
 

In this chapter, a novel cooperative PSO algorithm is proposed for block motion 

estimation. The proposed scheme exploits spatial correlation by allowing the swarms of adjacent 

blocks to communicate during the PSO process and to exchange information about the motion 

vectors found so far. This collaboration allows for faster convergence and ensures that the 

resulting motion is smooth and continuous. Moreover, a novel initialization scheme is proposed 

that exploits temporal correlation by using motion vectors of collocated blocks in the previous 

frame. This method of initialization removes dependency between blocks of the same frame and 

makes the presented algorithm amenable to parallel processing methods. In addition, the adopted 

PSO iterations are designed to be dynamic by adaptively changing the maximum velocity, that 

limits the flying speed of the particles, which provides a balance between search exploration and 

exploitation. A fitness function history preservation technique is also proposed to prevent the 

redundant repeated calculations of the fitness function of a given search point by the PSO particles 

which provides a considerable reduction of the computational complexity. 

The proposed algorithm, exhibits a high level of data parallelism and it is able to perform 

motion estimation for all the blocks of the frame in parallel. As a result, the proposed algorithm 

provides tremendous speedup if implemented on modern high performance computing (HPC) 

platforms ranging from multicore/many-core machine architectures to graphics processing units to 

supercomputers. In the literature, there have been several attempts to parallelize motion estimation 

[57-62]. Several works have proposed applying GPUs for motion estimation. Implementation of 

the ES motion estimation algorithm with OpenCL has been proposed in [57] and [58]. In [59], 
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implementations of the ES algorithm, the diamond search (DS) algorithm, and the four-step search 

(4SS) algorithms in CUDA have been proposed. A parallel implementation of the ES algorithm on 

the GPU using CUDA is also proposed in [60, 61] along with a parallel solution for multi-core 

processors using the Open Message Passing (OpenMP) library and  a distributed solution for 

cluster/grid machines using the Message Passing Interface (MPI) library [61]. GPU-based 

hierarchical motion estimation in CUDA has been proposed in [62]. In this paper, we propose a 

parallel implementation of the proposed motion estimation scheme using the multicore capability 

of modern CPUs. A multicore implementation of the proposed scheme is implemented based on 

the Parallel Computing Toolbox of Matlab [63].The proposed parallel implementation is shown to 

be highly scalable and with more and more cores adopted in CPU, the algorithm speedup is 

expected to be higher. Moreover, the parallel performance of the proposed algorithm has been 

compared with that of the multicore implementation of the ES, 4SS, and DS algorithms which 

have also been implemented using Matlab PCT following the framework proposed in [61].  

The rest of this chapter is organized as follows. Section 2.1 provides a brief review of the 

PSO algorithm. Section 2.2 presents the details of the proposed cooperative block motion 

estimation algorithm and section 2.3 provides the parallel implementation of the proposed 

algorithm using the Matlab environment. Section 2.4 shows the simulation results and presents an 

extensive evaluation of the performance of the presented algorithm. Finally, section 2.5 

summarizes this chapter. 

 

2.1 The General PSO Algorithm 

The PSO technique was introduced in [53, 54] as a robust stochastic optimization 

technique based on a social-psychological model of social influence and social learning. 
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Belonging to the category of swarm intelligence methods, PSO is a population-based technique 

inspired by the social behavior and movement dynamics of flocks of birds, schools of fish, and 

herds of animals adapting to their environment. In the conventional PSO approach [53], the 

so-called swarm is composed of a set of particles that are placed in a search space where each 

particle represents a candidate solution to a certain problem or function. Initially, each particle is 

assigned a randomized velocity. The particles then ‘‘fly’’ through a multidimensional search 

space, where the position of each particle is adjusted according to its own experience and that of its 

neighbors. Each particle keeps track of its personal best location (pbest) in the problem space, which 

represents the best solution (fitness) it has achieved so far. The location of the overall global best 

value, obtained so far by any particle in the population, is called gbest. The PSO algorithm updates 

the position of a particle by moving the particle based on its past personal best (pbest) and the global 

best position (gbest) that has been found by all the particles in the swarm. 

In an n-dimensional search space 𝑆 ⊂ ℝ𝑛, and a swarm consisting of M particles, the ith 

particle is in effect an n-dimensional vector 

𝑋𝑖 = {𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … 𝑥𝑖𝑛}𝑇 ⊂ 𝑆.       (2.1) 

The velocity of this particle is also an n-dimensional vector:  

𝑉𝑖 = {𝑣𝑖1, 𝑣𝑖2, 𝑣𝑖3, … 𝑣𝑖𝑛}𝑇 ⊂ 𝑆.       (2.2) 

The best personal position (pbest) encountered by the ith particle is a point in S, denoted as 

𝑃𝑖 = {𝑝𝑖1, 𝑝𝑖2, 𝑝𝑖3, … 𝑝𝑖𝑛}𝑇 ⊂ 𝑆.       (2.3) 

In Particle Swarm Optimization with Inertia Weight Approach (PSO-IWA) [64], the 

velocity and position of a particle can be updated according to the following equations:  

𝑉𝑖(𝑡 + 1) = 𝑤𝑉𝑖(𝑡) + 𝑐1𝑟1[𝑃𝑖(𝑡) − 𝑋𝑖(𝑡)] + 𝑐2𝑟2[𝑃𝑔(𝑡) − 𝑋𝑖(𝑡)],   (2.4) 

𝑋𝑖(𝑡 + 1) = 𝑋𝑖(𝑡) + 𝑉𝑖(𝑡 + 1),       (2.5) 
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where i is the index of the particle, i = 1, 2. . . M; w is the inertia weight which balances the local 

and global search during the optimization process. It is linearly decreasing with iterative 

generations as in: 

w = wmax − (wmax − wmin) ×
t

N
,       (2.6) 

where t is the current iteration and N is a predefined maximum number of iterations. The maximal 

and minimal weights wmax and wmin are usually set to 0.9 and 0.4; c1, c2 the positive acceleration 

constants; r1, r2 the random numbers, uniformly distributed within the interval [0, 1]; g the index of 

the best positioned particle among the entire swarm; Pi the position of pbest for the particle i; and Pg 

is the position of gbest for the entire swarm. A maximal flying speed vmax is used to restrict the flying 

of the particles.  

 

2.2 Proposed Cooperative Motion Estimation Algorithm Using PSO 

In this research work, we propose a new block matching algorithm based on a novel 

cooperative PSO approach. A multi-swarm model is presented where a swarm of PSO particles is 

allocated for each MB in the frame. A modified PSO algorithm is applied to all MBs concurrently 

for a certain number of iterations. After that, cooperation between swarms of adjacent MBs is 

allowed through a synchronization step which is performed among neighboring MBs to exchange 

information about the motion vectors (MVs) found so far in the PSO process. Some of the PSO 

particles are re-initialized according to the received information. Based on the assumption that the 

motion field is smooth and varies slowly, there are strong correlations between motion vectors of 

the neighboring blocks. As a result, this synchronization step allows making use of the spatial 

correlation characteristic between neighboring MBs to refine the MVs found so far in the PSO 

process. A second stage of PSO iterations is then performed concurrently for all the MBs. The 
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whole process ends whenever termination conditions are reached. The steps of the proposed 

scheme are explained below. 

 

2.2.1 Particle Initialization 

A swarm consisting of M particles is generated for each MB. Each particle of a given MB 

represents a matching MB within the search window in the reference frame. Using the PSO 

iterations, the positions of the particles is continuously updated until the global minimum of the 

mean square error (MSE) cost function is reached. In the standard PSO algorithm, the initial 

population is randomly selected, which brings high computational complexity to the motion search 

since the iterations are starting from random points which might be far from the global minimum. 

However, if the initial points are chosen to be close to the optimum, then faster convergence can be 

achieved. Li [65] and Xiao [66] demonstrated that the use of solutions generated through some 

domain knowledge to set the initial population (i.e. non-random solutions) can significantly 

improve its performance. In [52], authors proposed an initialization scheme that exploits the 

existing spatial correlation between neighboring MBs where the particles of a given MB are 

initialized using the estimated motion vectors of its adjacent neighboring MBs. This mode of 

initialization imposes a dependency constraint between the MBs of the same frame and thus 

hinders parallelism. In this paper, a novel initialization scheme is proposed to remove any 

dependency between the MBs. Since motion vectors have a high temporal correlation feature, we 

initialize 9 particles of each MB to the MVs of the collocated MB in the previous frame as well as 

its 8 adjacent neighbors. We also initialize one of the particles to the (0, 0) MV to account for static 

blocks. The rest of the M particles are randomly generated. Therefore, for an MB at location (i,j) in 

frame t, we initialize the positions of its M particles as follows: 
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{𝑥1, 𝑥2, 𝑥3, … , 𝑥10} =

{𝑀𝑣𝑖−1,𝑗−1
𝑡−1 , 𝑀𝑣𝑖−1,𝑗

𝑡−1 , 𝑀𝑣𝑖−1,𝑗+1
𝑡−1 , 𝑀𝑣𝑖,𝑗−1

𝑡−1 , 𝑀𝑣𝑖,𝑗
𝑡−1, 𝑀𝑣𝑖,𝑗+1

𝑡−1 , 𝑀𝑣𝑖+1,𝑗−1
𝑡−1 , 𝑀𝑣𝑖+1,𝑗

𝑡−1 , 𝑀𝑣𝑖+1,𝑗+1
𝑡−1 , (0,0)}  

            (2.7) 

{𝑥11, … , 𝑥𝑀}= random position within the search area.       (2.8) 

Notice that at this point, we cannot use the MVs of the adjacent blocks in the same frame 

since these MVs are not calculated yet and the only apriori information we have is the motion of 

the MBs of the previous frame. 

It should also be noted that since this information is still not available for the second 

frame in the video sequence, then our implementation applies the proposed algorithm starting from 

the third frame. Motion estimation for the second frame is performed using ES to obtain accurate 

motion vectors to be used for the initialization step of frame number three in the proposed 

algorithm. This initialization step is shown in Fig. 2.1. 

 

 

Figure 2.1 Initialization of the positions of the particles of the current MB in frame t using the motion vectors of 
collocated MB and its eight neighboring MBs in frame (t-1). 
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2.2.2 First Stage of a Modified PSO Process 

After initialization, the swarms of particles of all MBs go through a modified PSO 

process where they are allowed to run for a predefined Nt number of iterations in parallel. During 

each iteration, each MB with index j adjusts the positions and velocities of its particles according 

to (2.4) and (2.5), independently from other MBs, evaluates the fitness function at the new 

positions, then it updates the values of Pij and Pgj which are the positions of the best fitness 

attained so far for particle i and the global best position for MBj respectively.  

 

2.2.2.1 Adaptively-Varied Maximum Velocity 

 

The maximum velocity which limits the flying speed of the particles is adaptively 

changed in this modified version of PSO. A dynamic control of the maximum velocity vmax, 

described in Section 2.1, can provide a balance between search exploitation and exploration. In the 

PSO process, a large vmax allows to better explore the complete solution space; on the contrary, a 

small vmax directs the method to perform a local search. Therefore, in this modified PSO algorithm, 

a higher vmax value is adopted in the early stage of the search process and a lower value later to 

perform a local search. A linearly decreasing function is adopted to gradually reduce the vmax value 

in the current iteration in proportion to the iteration number, this is given by: 

𝑣𝑚𝑎𝑥(𝑡) =
𝑉𝑚𝑎𝑥

𝑡
,         (2.9) 

where 𝑉𝑚𝑎𝑥is an empirically determined value and 𝑡 is the iteration number. 

 

2.2.2.2 Fitness Function History Preservation 

 

In our algorithm, fitness function history preservation is proposed to avoid unnecessary 

redundant fitness function calculations of search points that have been visited before by any 
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particle during the PSO process. This is done as follows. A two-dimensional array of 

dimensions(2 × p + 1)2 × 2  is defined, where p is the search parameter which defines the search 

area. The rows of the array represent all the possible search points in the defined search area of a 

given MB. Values in the first column are binary, either zero or one, to show if the corresponding 

search point has been visited before. Values in the second column of the array are the values of the 

fitness function calculated for the corresponding search points incase these points were visited 

before. During the PSO process, before the fitness function of a certain position is evaluated, the 

array is checked to see if that position was visited before. In that case, re-evaluation of the fitness 

function is skipped and the fitness value saved in the array is used. Otherwise, the value of the 

fitness function of that position is evaluated and the corresponding entries of the array are updated.  

In this way, the fitness function of a certain position within the search area is evaluated only once. 

Usually the trajectory of a particle during the PSO process can cross a search position more than 

once. Moreover, other particles can reach that position as well. By following the proposed scheme, 

the number of fitness function evaluations during the PSO process is dramatically decreased which 

plays a key role in reducing the computational complexity of the whole algorithm. In [52], a 

similar process, called particle history preservation, was used. In that process, for each particle in 

the PSO process, a binary array of the same size as the search area is used to keep track of the 

positions that have been visited before by that particle. During the iterative process, for each 

particle, its corresponding array is checked to see if the position reached was visited before. In that 

case, re-evaluation of the fitness function is avoided and that search position is skipped. In [52], 

the fitness values are not recorded. In our proposed algorithm however, only one array is used for 

all the particles, and the fitness values of each search point visited by any particle is recorded and 

subsequently used whenever that search point is reached. In this way, fitness function evaluation 
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of a given point is skipped because of repeated crossing of that position by, not necessarily the 

same, but any particle during the PSO process.  

 

2.2.2.3 Termination Conditions 

 

The first stage of the proposed PSO process terminates whenever the maximum number 

of iterations Nt is reached. Early termination of search is allowed whenever the fitness value of the 

global best position is less than a predefined threshold value Tth and when the fitness value 

associated with the Pgj position remains the same for Kmax iterations, even if the maximum 

iteration number Nt is not yet reached. 

The procedure for implementing the first stage of the proposed PSO process can be 

summarized in pseudo code as shown in table 2.1. 

Table 2.1 Pseudo code of the first stage of the proposed PSO process 

For each frame do 

For each block do 

Initialize the fitness history array entries to zeros 

Initialize particle velocities to zeros 

Initialize particle positions as shown in Fig. 1 and (2.7)-(2.8) 

Repeat 

For each particle i=1,…,M do 

Check its flag in the history array 

If the flag is 0 then 

Calculate fitness function  

Update Pi and Pg 

Save the value of the fitness value in the history array 

Set flag to 1 

Else 

Retrieve the value of the fitness function from the history array 

Update Pi 

End if 

Adaptively change vmax using (2.9) 

Update the velocity using (2.4) 

Update the position using (2.5) 

End for 

Until stopping conditions are met 

End for 

End for 
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2.2.3 Cooperation between Neighboring Swarms 

After the first stage of PSO iterations is completed by all MBs of the frame, a cooperation 

step is performed to coordinate the estimation process of neighboring swarms. This is done by 

exploiting the high spatial correlation existing between MVs of neighboring blocks. To do that, 

each MB’s swarm sorts its M particles in a decreasing order according to their fitness values. Then 

the last 8 particles which have the highest (worst) fitness values are eliminated and replaced by 8 

new particles which are initialized to the global best positions, Pg, values of its 8 neighboring 

swarms. In this synchronization step, each swarm is allowed to refine its motion search process 

using information from neighboring swarms. Weak particles having the worst fitness values are 

replaced with strong particles which are located closer to the global optimum. This cooperation is 

expected to speed up the convergence of the PSO algorithm since the learning process is now 

supervised and guided by the information received from the neighboring blocks. Communication 

between neighboring MBs is required in this step where each MB will broadcast to its 8 neighbors 

the value of its global best location, Pg, found so far in the motion search process. This process is 

shown in Fig. 2.2. 

 



31 

 

 

Figure 2.2 Cooperation with neighboring Swarms. In step 1, particles are sorted according to their fitness values. 
In step 2, the first 8 worst particles are replaced with new ones with positions initialized with the Pg values of 

neighboring MBs.  

 

2.2.4 Second Stage of a Modified PSO Process 

After synchronization, the updated swarm of particles of each MB is allowed to go 

through another stage of the modified PSO process. This stage combines the information received 

from the neighboring MBs during synchronization with the information gained from the first PSO 

stage to find a better optimal solution. The same termination conditions as those used in the first 

stage of PSO are applied here.  

 

2.3 Parallel Implementation of the Proposed Algorithm  

The proposed cooperative framework for block motion estimation is iterative and 

self-organized where each PSO swarm for each MB is autonomous. Dependency between MBs is 

limited to the cooperation phase where synchronization between neighboring swarms is performed 

through a communication step. This makes the proposed scheme amenable to parallel processing 
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methods. In this section, a multicore implementation of our proposed algorithm is proposed using 

the MATLAB® Parallel Computing Toolbox™ (PCT). MATLAB PCT [63] can solve 

computationally and data-intensive problems using multicore processors, GPUs and computer 

clusters. It provides high level constructs such as parallel for-loops, special array types and 

parallelized numerical algorithms to parallelize MATLAB applications without CUDA or MPI 

programming. The flowchart of the proposed parallel implementation is shown in Fig. 2.3.  
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Figure 2.3 Flow Chart of the proposed parallel implementation. 
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2.3.1 Frame Partitioning Using Co-Distributed Arrays 

One of the first steps in designing a parallel algorithm is to break the problem into discrete 

"chunks" of work that can be distributed to multiple tasks. This is known as decomposition or 

partitioning. There are two basic ways to partition computational work among parallel tasks: 

domain decomposition and functional decomposition. In our proposed parallel algorithm, domain 

decomposition is chosen. In this type of partitioning, the data associated with a problem is 

decomposed. Each parallel task then works on a portion of the data simultaneously. In our 

implementation, a given frame is divided into 16x16 macroblocks (MB). These MBs are evenly 

partitioned among the available computing resources or CPU cores to ensure load balancing. 

There exist different possible domain-partitioning schemes. The chosen scheme has to account for 

two fundamental issues: load balance, and communication balance [67]. In our algorithm, a block 

partitioning along the rows of the frame is chosen where the rows of the frame are evenly 

partitioned among the available cores. The reason why this partitioning scheme is chosen is to 

minimize the communication overhead required between the cores. In our algorithm, as explained 

before, each MB needs to communicate with its direct neighbors for synchronization. If these 

neighbors were assigned to the same core as the central MB, then the communication overhead is 

reduced. Block partitioning along the columns would also yield the same benefits. In MATLAB, 

frame partitioning is performed using co-distributed arrays. A co-distributed array is an array 

partitioned into segments, with each segment residing in the workspace of a different lab. An even 

partitioning of the MBs of the frame among the MATLAB labs ensures load balancing which 

decreases possible idle times. Partitioning along the rows of a given frame among the cores is 

shown in Fig. 2.4. 
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Figure 2.4 Frame partitioning among the processing cores. 

 

2.3.2 Parallel MB Processing Using Looping Over a Distributed Range (for-drange) 

When a for-loop over a distributed range is executed in a parallel job, each lab performs 

its portion of the loop, so that the labs are all working simultaneously. Because of this, no 

communication is allowed between the workers while executing a for-drange loop. In particular, a 

lab has access only to its partition of a codistributed array [63]. In our implementation, the frame is 

partitioned equally along the rows of MBs among the different labs. Therefore, we have used the 

for-drange construct to allow the simultaneous processing of each lab of its assigned rows of MBs 

in the frame. 

 

2.3.3 SPMD Block 

The Matlab toolbox provides the single program multiple data (spmd) construct and 

several message-passing routines based on an MPI standard library (MPICH2). The spmd 

construct allows designating sections of the code to run concurrently across workers participating 
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in a parallel computation. During program execution, spmd automatically transfers data and code 

used within its body to the workers and, once the execution is complete, brings results back to the 

MATLAB client session [63]. This allows us to implement data-parallelism where each Matlab 

lab executes the same lines of code but on different sections of the video frame. If the number of 

available cores is high enough, then each Matlab lab would operate on a different MB of the frame 

and we would be able to perform motion estimation for all the MBs in parallel. Within the spmd 

block, communication or synchronization is allowed between labs.  

 

2.3.4 Communication and Cooperation between the Labs Using labSendReceive 

During the cooperation step of our algorithm, each MB is required to broadcast to its 8 

neighboring MBs the global best position, Pg, found so far in the optimization process. As a result, 

each MB will also receive from each of its 8 neighbors the value of the global best position 

acquired by that neighbor. This interlab communication within the parallel job is implemented 

using labSendReceive. The environment query functions labindex and numlabs here are equivalent 

toMPI_Comm_rank and MPI_Comm_size. Since in our algorithm each lab operates on a certain 

number of rows of MBs, then each lab needs to communicate only with the previous lab to send to 

it the values corresponding to its upper row of MBs and receive from it the values corresponding to 

the lower row of MBs in that lab. Similarly, it should communicate with the next lab to send to it 

the values corresponding to its lower row of MBs and receive from it the values corresponding to 

the next lab’s upper row of MBs. Because the migration topology used in our method is a stepping 

stone model, the adjacent labs need only to send and receive data from each other in a cyclic 

pattern. The function labSendReceive proposes a perfect solution for this pattern, which is 

designed to enable the cyclic type communication, or any paired exchange, to be written more 
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simply. Moreover, the deadlocking behavior is also prevented effectively [63]. 

 

2.4 Simulation Results 

2.4.1 Simulation Setup 

Several test video sequences of various formats and various motion intensity, (QCIF: 

176x144), LD (CIF: 352x288), SD (480p: 832x480), and HD (720p: 1280x720) downloaded from 

[68, 69], have been used to test the performance of our proposed algorithm and compare it to 

existing techniques. Results are presented with two distinct criteria: execution time and objective 

motion estimation quality. Quality is more important in high end solutions such as video 

broadcasting whereas for low cost solutions, execution time (or algorithm complexity) must be 

kept low. Snapshots of the used test video sequences are shown in Fig. 2.5 and their properties are 

given in Table 2.2. 
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Figure 2.5 Test video sequences. 
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Table 2.2 Test Sequences Used in the Simulations 

Test Video Sequence Format Frame Size Frame Rate Motion type 

Soccer QCIF 144x176 15 Fast 

Bus QCIF 144x176 15 Very Fast 

Soccer CIF 144x176 30 Fast 

Bus CIF 288x352 30 Very Fast 

Tennis CIF 288x352 30 Very Fast 

Stefan CIF 288x352 30 Very Fast 

Foreman CIF 288x352 30 Medium 

Container CIF 288x352 30 Slow 

RaceHorses SD 480p 832x480 30 Very Fast 

Parkrun HD 720p 1280x720 50 Medium 

 

 

The proposed algorithm is simulated on a server with two Intel® Xeon® E5520 2.66GHz 

CPUs (total of 8 cores) and 32GB RAM. The execution platform is Matlab R2012a.  

In our simulations, every frame is divided into MBs of size 16 * 16 pixels. The search 

step-size is one integer pixel and we used one reference frame which is the previous frame. The 

search parameter p which defines the search area is chosen to be 15 for all the tested sequences 

except for the HD (Parkrun) video sequence where p was chosen to be 31. The reason behind this 

choice is that picking a small value of p for the HD video sequence would yield very poor results 

for motion estimation since the search area is very small as compared to the resolution and it might 

not contain the global optimum. The algorithm can be easily extended to use arbitrarily sized 

blocks, smaller step-sizes and multiple reference frames. 

 

2.4.2 PSO Parameters 

For the PSO algorithm, the size of the particle population was chosen to be M=10 

initialized according to the scheme described in Section 2.2.1. 

For Nt and Kmax, as discussed in Section 2.2.2.3, using a very small Nt (and Kmax) can lead 
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to very fast convergence of the PSO-based algorithm, albeit at the expense of low block matching 

accuracy. On the other hand, using a large Nt (and Kmax) could improve the accuracy at the cost of 

increased computational cost. Moreover, varying Nt and Kmax also affects the speedup of the 

proposed algorithm since using a small Nt (and Kmax) means that a lower amount of computation 

work is being done as compared to the amount of communication work which is independent of 

the values of Nt (and Kmax). This would reduce the overall speedup obtained from a multicore 

system and would diminish the scalability of the algorithm. By balancing these conflicting 

requirements, the PSO-based method could provide a good overall performance over a wide range 

of video sequences, when the maximum iteration number was chosen to be Nt = 3, and Kmax = 2.  

The pre-set minimum MSE error, Tth (mentioned in Section 2.2.2.3), is another 

empirically determined threshold that can regulate the accuracy/complexity tradeoffs. If the 

threshold is too large, the algorithm tends to run fast at the cost of a lower accuracy. In our 

simulations, the threshold for MSE, Tth, was chosen to be 7. 

The maximum allowed velocity for the PSO particles, vmax, is dynamically varied in every 

iteration of the proposed modified PSO process, as mentioned in Section 2.2.2.1. It is initially set 

to 𝑉𝑚𝑎𝑥and then linearly decreased according to the iteration number. If 𝑉𝑚𝑎𝑥 is too high, 

particles might fly past good solutions; if it is too small, particles may not explore sufficiently 

beyond local solutions. In the literature, vmax was fixed to about 10–20% of the dynamic range of 

the variable on each dimension [65]. In our simulations, for a search range of ±15, we chose Vmax = 

15 as a starting value for the maximum allowed velocity which adaptively decreases in each 

iteration. The average value of the maximum velocity allowed during the entire process (2 ×

𝑁𝑡iterations) is 6.125 which is around 19.76% of the dynamic range. For a search range of ±31, we 

chose Vmax = 31 as a starting value which gives an average value of 12.65 during the entire process 
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(2 × 𝑁𝑡iterations) which is around 20% of the dynamic range. 

 

2.4.3 Motion Estimation Quality 

Objective motion estimation quality is measured interms of Peak Signal to Noise Ratio 

(PSNR) values averaged over the first 100 frames of each test video sequence. Such value 

indicates the reconstruction quality when motion vectors, which are computed through a BM 

approach, are used. In PSNR, the signal comes from original data frames whereas the noise is the 

error introduced by the calculated motion vectors. The PSNR is thus defined as: 

𝑃𝑆𝑁𝑅 = 10 × 𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
),        (2.10) 

where MSE is the mean squared error between the original frames and those compensated by the 

motion vectors. 

Table 2.3 gives the average PSNR results for the ES algorithm and several traditional fast 

searching techniques, like TSS [16], 4SS [18], DS [19], and ARPS [22]. PSNR results are also 

given for the recently proposed PSO-based ME algorithms given in [51, 52]. The simulation 

results presented are based on the averages of the data (PSNR and search point) obtained from 50 

repeated runs of the PSO-based algorithm to strengthen the statistical significance. Increasing the 

number of runs also yield only very negligible changes to the averages which do not differ 

significantly. Simulation results show that the proposed algorithm provides an improvement in 

motion estimation quality as compared to the other techniques. Fig. 2.6, Fig.2.7, Fig. 2.8, Fig.2.9, 

Fig. 2.10, Fig. 2.11, Fig. 2.12, and Fig. 2.13 show that the proposed algorithm can closely follow 

the PSNR values of the ES method on the frame-by-frame basis.  
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Table 2.3 Motion estimation quality in terms of PSNR of the proposed approach as compared to existing 
techniques 

Sequence ES TSS 4SS DS ARPS PSO [52] PBPSO[51] Proposed 

Soccer, QCIF, 15fps, p=15 25.014 24.02 22.106 23.267 23.761 24.33 20.12 24.55 

Bus, QCIF, 15 fps, p=15 23.3505 21.8863 19.7652 20.4179 21.0361 22.8094 17.579 23.079 

Soccer, CIF, 30fps, p=15 30.1983 28.2174 27.0174 27.6907 28.6623 29. 3297 21.847 29. 574 

Bus, CIF, 30 fps, p=15 25.608 22.373 19.789 20.337 21.793 24.925 18.448 25.403 

Tennis, CIF,30 fps, p=15 29.198 26.859 27.764 28.128 28.070 28.224 24.304 28.6003 

Stefan, CIF, 30fps, p=15 26.9370 24.6205 23.702 23.981 26.0389 26.482 20.238 26.518 

Foreman, CIF, 30fps, p=15 34.6824 33.4948 33.809 34.243 34.185 34.174 31.257 34.329 

Container, CIF, 30fps, p=15 32.8433 26.8720 23.5904 23.547 29.113 32.386 18.573 32.701 

RaceHorses, 480p, 30 fps, p=15 29.338 26.809 24.891 26.018 27.445 28.86 21.425 29.018 

Parkrun, 720p, 30 fps, p=31 25.613 20.436 23.661 23.314 25.33 24.4 19.094 25.487 

 

    

 

Figure 2.6 Motion estimation accuracy measured in PSNR for “Soccer, QCIF” sequence. 
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Figure 2.7 Motion estimation accuracy interms of PSNR for “Bus, CIF” sequence. 

 

Figure 2.8 Motion estimation accuracy in terms of PSNR for “Tennis, CIF” sequence. 
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Figure 2.9 Motion estimation accuracy interms of PSNR for “Stefan, CIF” sequence. 

 

 

Figure 2.10 Motion estimation accuracy interms of PSNR for “Foreman, CIF” sequence. 
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Figure 2.11 Motion estimation accuracy interms of PSNR for “Container, CIF” sequence. 

 

 

Figure 2.12 Motion estimation accuracy interms of PSNR for “RaceHorses” sequence. 
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Figure 2.13 Motion estimation accuracy interms of PSNR for “Parkrun” sequence. 

 

In order to show the good performance of the proposed algorithm more intuitively, the 

reconstructed images of the fifth frame of Racehorses sequence are shown in Fig. 2.14. It can be 

seen from Fig. 2.14, that the fifth frame images of Racehorses restructured by TSS, 4SS, DS, 

ARPS, as well as PBPSO [51] and PSO[52], all miss some details, and the images restructured by 

the proposed algorithm have retained the details of the original image which was translated into the 

highest PSNR value. Note that the frame reconstructed by PBPSO [51] is almost the same as the 

previous frame (reference frame). The reason behind this is that PBPSO [51] initializes the PSO 

particles within the small zone around the center block assuming that most blocks are stationary or 

semi-stationary. Consequently, the early termination strategies adopted in PBPSO lead to an early 

convergence to positions around the center. For sequences with fast motion, like RaceHorses, 

PBPSO would produce low estimation quality. The performance accuracy of PBPSO is also 
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expected to deteriorate with the increase in video resolution where the assumption that motion 

vectors are within a small zone around the center is no longer valid. 

 

Figure 2.14 The reconstructed images of the fifth frame of RaceHorses by using different algorithms. 
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2.4.4 Computational Complexity 

In block matching motion estimation, the average number of candidate blocks checked 

for each MB is used as the evaluation criterion of computation complexity. In this paper, the 

average number of fitness function evaluations for each MB is used as a metric of the 

computational complexity. The simulation results of a single core implementation of our algorithm 

are compared with the results of existing algorithms and the results are listed in Table 2.4. 

It can be seen in Table 2.4 that the ES method searches every candidate block within the 

search window, so it needs to search 961 points for each MB if p=15 and 3969 points if p=31. TSS, 

4SS, and DS are based on fixed template so the number of search points is relatively less. On 

average, they need to search 20–40 points. The PSO-based ME algorithm proposed in [52] gives 

less number of search points than the fast search methods and PBPSO given in [51] provides 

further reduction in the computational complexity. In our proposed algorithm, the exploitation of 

time-space correlation of video sequences through effective particle initialization and 

synchronization, fitness calculation history preservation, and the efficient termination strategies 

used have decreased the number of search points needed dramatically. As shown in Table 2.4, it 

ranges between 7 and 11 for the different video sequences. Theoretically, for 2 × 𝑁𝑡 = 6, and 

M=10, the maximum number of fitness function evaluations is 60, but as shown in Table 2.4, the 

needed points are much less because of the effective strategies adopted in the proposed algorithm. 
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Table 2.4 Comparison of the average number of fitness function evaluations per block for various algorithms 
based on the first 100 frames of the video sequences 

Sequence ES TSS 4SS DS ARPS PSO [52] PBPSO[51] Proposed 

Soccer, QCIF,15fps, p=15 961 29.33 18.33 17.66 13.25 16.2 11.024 9.47 

Bus, QCIF,15fps,  p=15 961 29.46 19.85 22.51 12.44 19.22 12.482 11.17 

Soccer, CIF,30fps, p=15 961 31.13 20.01 19.89 10.61 13.54 12.24 6.998 

Bus, CIF, 30fps,  p=15 961 31.23 24.24 21.39 12.35 17.83 11.92 7.64 

Tennis, CIF,30 fps, p=15 961 30.973 18.893 17.195 9.448 15.839 12.243 9.156 

Stefan, CIF, 30fps, p=15 961 30.753 18.803 18.023 8.819 14.098 11.289 7.457 

Foreman, CIF, 30fps, p=15 961 30.7602 18.456 16.661 8.978 12.925 12.114 9.368 

Container, CIF, 30fps, p=15 961 31.165 21.247 23.0984 9.7977 12.337 12.751 6.333 

RaceHorses, 480p, p=15 961 32.17 30.06 23.35 14.97 16.6 13.31 9.88 

Parkrun, 720p, p=31 3969 40.11 22.97 21.18 9.77 15.924 12.182 6.86 

 

 

2.4.5 Parallel Performance 

The average execution times of the proposed algorithm per frame using Matlab PCT are 

shown in Table 2.5. The algorithm is simulated using different Matlab workers, or labs, and 

simulation times are recorded. T0 is the overhead time needed to setup the parallel environment 

and to create codistributed arrays. T1 is the time needed to perform the first stage of PSO iterations. 

T2 is the time needed for synchronization or communication. Finally, T3 is the time needed to 

perform the second stage of PSO iterations. The parallel performance of our algorithm is evaluated 

interms of the speedup factor, parallel efficiency, percentage of time savings, and granularity. 
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Table 2.5 Parallel performance of the proposed algorithm using Matlab PCT 

Sequence 
Number of 

Labs 
T0 (s) T1 (s) T2 (s) T3 (s) 

Total 

Time (s) 
Speedup 

Efficiency 

% 
Granularity 

Soccer QCIF, 15 fps, p=15 

 
1 0.0153 0.0875 0.004 0.0783 0.1698 1 100 - 

 
3 0.2905 0.0354 0.0127 0.0337 0.0818 2.075 69.193 5.440 

 
9 0.369 0.0264 0.02 0.0278 0.0742 2.288 28.605 2.71 

Bus, CIF, 30 fps, p=15 

 
1 0.0155 0.3083 0.0039 0.2716 0.5838 1 100 - 

 
2 0.2342 0.1667 0.0129 0.1517 0.3313 1.762 88.107 24.682 

 
3 0.288 0.1129 0.0135 0.0998 0.2262 2.580 86.030 15.755 

 
6 0.3176 0.0667 0.0164 0.0624 0.1455 4.012 66.872 7.871 

 
9 0.3761 0.0541 0.025 0.0412 0.1203 4.852 60.660 3.812 

RaceHorses, 480p, 30 fps, p=15 

 
1 0.0157 1.2485 0.0037 1.0851 2.3373 1 100 - 

 
2 0.288 0.6688 0.015 0.5897 1.2735 1.835 91.766 83.9 

 
3 0.293 0.4495 0.0181 0.3973 0.8649 2.702 90.079 46.784 

 
6 0.3418 0.2732 0.0198 0.2314 0.5244 4.457 74.285 25.484 

 
10 0.387 0.2288 0.0209 0.1804 0.4301 5.434 67.929 19.578 

Parkrun, 720p, 50 fps, p=31 

 
1 0.0163 2.4847 0.004 3.321 5.8097 1 100 - 

 
3 0.2905 0.9012 0.014 1.1621 2.0773 2.796 93.225 147.378 

 
5 0.336 0.584 0.0212 0.7984 1.4036 4.139 82.782 65.207 

  9 0.368 0.462 0.027 0.5144 1.0034 5.790 72.375 36.162 

 

 

2.4.5.1 Speedup 

 

To measure the parallel performance of our proposed algorithm, we used the speedup 

factor, S(n),which is defined as:  

𝑆 (𝑛) =
𝑇𝑠

𝑇𝑛
,           (2.11) 

where 𝑇𝑠 is the total execution time on a single processor, while 𝑇𝑛 is the total execution time on 

a multicore system of n processors. In Table 2.5, 𝑇𝑠 is taken as the total time when executing the 

code on one lab and 𝑇𝑛 is the total time when executing the code on n labs. Fig. 2.15 shows a plot 

of the speedup as function of the number of cores for the four sequences. An interesting 
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observation in the plot is that the rate of increase of the speedup grows with the increase of video 

resolution. Moreover, for the same number of cores, a higher speedup is achieved for higher 

resolutions. The reason behind this is that, for the same number of cores, increasing the resolution 

would increase the amount of computational work done by each core since more MBs would be 

assigned to the cores, while the communication overhead remains approximately the same. This 

means that the parallelizable portion of the algorithm increases with the increase of the video 

resolution. According to Gustafson’s law [70], limitations imposed by the sequential part of a 

program may be countered by increasing the total amount of computation. It states that if α, the 

sequential fraction of the parallel execution time, is small, the speedup is approximately equal to 

the number of processing cores, as desired. It may even be the case that α diminishes as the number 

of cores, n, (together with the problem size) increases; if that holds true, then S approaches n 

monotonously with the growth of n. In our proposed algorithm, as the video resolution, or problem 

size, increases, the computational fraction of the algorithm increases with the increase in the video 

resolution and thus α decreases. Therefore, the proposed algorithm allows an increase in the 

maximum theoretical speedup achieved as the video resolution increases.  
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Figure 2.15 Speedup achieved by the proposed parallel implementation on different number of cores. 

 

2.4.5.2 Parallel Efficiency 

 

The parallel efficiency, E(n), describes the fraction of the time that is being used by the 

processors for a given computation. It is defined as:  

𝐸(𝑛) =
𝑆(𝑛)

𝑛
∗ 100.         (2.12) 

It should be noted that when calculating the efficiency for 9 and 10 labs, n is taken as 8 

since only 8 physical cores are available. It is observed that the parallel efficiency decreases with 

the increase of the number of cores. This is due to the fact that as the number of cores increases, the 

probability that each of the 8 neighboring MBs of a given block would be allocated to a different 

core increases. As a result, this leads to an increase in the needed inter-processor communication 

during the cooperation stage of the algorithm.  On the other hand, it is found that the parallel 

efficiency increases with the increase of video resolution since more MBs would be allocated to 
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each core. 

 

2.4.5.3 Granularity 

 

In parallel computing, granularity, G, is a qualitative measure of the ratio of computation 

to communication, which is given by: 

𝐺 =
𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛
 .         (2.13) 

Granularity is said to be coarse if relatively large amounts of computational work are 

done between communication events, and it is said to be fine if relatively small amounts of 

computational work are done between communication events. To measure the granularity of our 

algorithm, the computation and communication times are taken as: 

𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑇1 + 𝑇3,        (2.14) 

𝑇𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇2.         (2.15) 

As shown in Table 2.5, the granularity increases with the increase of the resolution of the 

video frame since more data will be assigned to the cores which results in an increase in  the 

computation time. On the other hand, it decreases with the increase of number of cores since less 

number of MBs would be assigned to each core which results in a decrease in the computation 

time. Moreover, as the number of cores increases, the amount of communication needed also 

increases which results in an increase in the communication time. The communication time 

however has an upper limit since each core is required to communicate to a maximum of 8 other 

cores during the synchronization phase. It is worth mentioning here that the communication cost of 

the coordination step is considered low since it is limited to the exchange of the Pg values of 

between an MB and its 8 direct neighbors only. Overall, in the presented implementation 

granularity is considered coarse which implies more opportunity for performance increase. 
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2.4.5.4 Theoretical Analysis of Parallel Performance 

 

The parallel performance of the proposed implementation depends on the computation 

complexity of the PSO estimation process and the communication overhead of the cooperation 

stage. The computational complexity of this ME approach depends on the number of fitness 

function evaluations performed. This is directly related to the population size,𝑀, and the 

maximum number of total iteration,𝑁𝑡, allowed. Theoretically, we have a maximum of 2 ∗ 𝑀 ∗

 𝑁𝑡cost function evaluations required for each MB. Nevertheless, because this approach exploits 

the spatial and temporal correlations of motion vectors, refines the motion search process through 

inter-swarm cooperation, and allows an early termination condition for the MBs, it is estimated 

that the PSO algorithm will converge before 𝑁𝑡 is reached. We assume that the time taken for a 

swarm of a given MB to converge is 𝑇which is proportional to 2 ∗ 𝑀 ∗ 𝑁𝑡. On the other hand, the 

communication cost of the inter-swarm cooperation stage is due to the exchange of the values of 

𝑃𝑔between an MB and its 8 direct neighbors only. The amount of communication overhead 

incurred in this method is K ∗ D where D is the network time to communicate a value of 𝑃𝑔 

between two cores and K is the number of neighboring MBs that are allocated to a different core. 

In general, the value ofKdepends on the number of MBs allocated per core in the frame. For a 

frame with 𝑊 ∗ 𝐻 number of MBs and assuming that all MBs need 2 ∗ 𝑀 ∗  𝑁𝑡 iterations to 

converge, then the speedup of this algorithm for 𝑛 cores can be estimated to be: 

𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 =
𝑇∗𝑊∗𝐻

𝑇∗(
𝑊∗𝐻

𝑛
)+(𝐾∗𝐷)

.       (2.16) 

If the number of available cores is large, i.e. 𝑛 ≥ 𝑊 ∗ 𝐻, as in the case of many-core 

systems like GPUs, then we will have one MB allocated per core, 
𝑊∗𝐻

𝑛
= 1, and the value of K is 

8 in this case. The theoretical speedup will be: 
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𝑆𝑝𝑟𝑜𝑝𝑜𝑠𝑒𝑑 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚,𝑚𝑎𝑛𝑦−𝑐𝑜𝑟𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 =
𝑇∗𝑊∗𝐻

𝑇+(8∗𝐷)
     (2.17) 

It is noticed that the speedup in this case is proportional to the resolution of the video. 

This leads to a very important conclusion. As the resolution of the video increases, the use of 

many-core machines allows for a linear increase in the speedup. For example, for the Ultra High 

Definition TV (UHDTV) or 4k resolution (3840*2160), the value of 𝑊 ∗ 𝐻 is 32400 MBs of size 

16*16. The parallel implementation of our proposed algorithm on the massively parallel 

architecture of modern GPUs, which consists of thousands of efficient cores, is expected to yield a 

tremendous improvement in performance for today’s UHDTV resolution. 

  

2.4.5.5 Comparison with Existing Parallel ME Algorithms 

 

The computational complexity of the proposed algorithm is also compared with existing 

parallel ME algorithms. Multicore versions of the ES, 4SS, and DS algorithms have been 

implemented using Matlab PCT following the framework proposed in [61]. MB level parallelism 

is exploited where the MBs in the frame are evenly partitioned among the available processing 

cores. Note that the parallel ES algorithms proposed in [57-61], and implemented using OpenCL 

[57,58] and CUDA[59-61], are also based on MB level parallelism along with search point parallel 

processing to compute the cost of each search point. Simulation results are given in terms of the 

average number of fitness function evaluations per lab for a given frame based on the first 100 

frames of every sequence. These results are shown in Table 2.6. It is shown that the proposed 

algorithm achieves a dramatic reduction in the computational costs per lab for the different video 

sequences under different parallel simulation scenarios. 
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Table 2.6 Average number of fitness function evaluations per lab for a given frame based on the first 100 frames 
of each sequence 

Sequence Number of Labs Parallel ES Parallel 4SS Parallel DS Proposed 

Soccer, QCIF, p=15 

 1 77439 1673 1575 920 

 3 25813 557 525 309 

 9 8605 186 175 106 

Bus, CIF, p=15 

 1 344256 9914 8692 3448 

 3 114752 3322 2903 1142 

 9 38251 1107 968 378 

RaceHorses, 480p, p=15 

 1 1423800 46829 36380 16280 

 3 474600 15610 12127 5467 

 10 142380 4683 3638 1629 

Parkrun, 720p, p=31 

 1 13572364 78394 66059 51917 

 3 4524121 26131 22020 17323 

 9 13572000 9.35E+03 10770 7193 

 

2.5 Summary 

In this chapter, a novel cooperative block motion estimation algorithm based on PSO is 

presented. The proposed scheme exploits spatial correlation by allowing the swarms of adjacent 

blocks to communicate during the PSO process and to exchange information about the motion 

vectors found so far. This collaboration allows for faster convergence and ensures that the 

resulting motion is smooth and continuous across neighboring blocks which translates into a better 

estimation quality. Moreover, a novel initialization scheme is proposed that exploits temporal 

correlation by using motion vectors of collocated blocks in the previous frame. This method of 

initialization removes dependency between blocks of the same frame which makes the presented 

algorithm amenable to parallel processing methods. In addition, the adopted PSO iterations are 

designed to be dynamic by adaptively changing the maximum velocity, that limits the flying speed 

of the particles, which provides a balance between search exploration and exploitation. A fitness 
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function history preservation technique is also proposed to prevent the redundant repeated 

calculations of the fitness function of a given search point by the PSO particles which provides a 

considerable reduction of the computational complexity. The performance of the proposed 

algorithm is found to be superior, in terms of both accuracy and computational complexity, as 

compared to existing fast searching algorithms and state of the art PSO-based motion estimation 

schemes. Moreover, we presented an efficient and highly scalable implementation of the proposed 

cooperative motion estimation algorithm using the Matlab PCT environment on a local 

shared-memory multicore system. Results of simulations showed that a speedup of 6.33 can be 

achieved for HD sequences using 8 cores. The proposed algorithm is shown to be highly scalable. 

It also allows an increase in the maximum theoretical speedup achieved as the video resolution 

increases. The multicore performance of the proposed scheme is also compared with existing 

parallel algorithms in the literature and is shown to give superior results.  
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CHAPTER 3 

AGENT-BASED GAME THEORETIC MODEL FOR BLOCK 

MOTION ESTIMATION AND ITS MULTICORE 

IMPLEMENTATION 
 

This chapter introduces a novel parallel framework to speed up the BME process. This is 

done by introducing a novel level of parallelism within the MB. A given MB is divided into 

subblocks and an agent is defined for each subblock. The main target of this chapter is to show 

how a system of autonomous agents can, in a distributed fashion and relying only on local 

interactions, optimize the global objective function of the whole MB. 

The last years have witnessed an intense research activity in the development of novel 

distributed algorithms for multi-agent systems with performance guarantees. A particular effort 

has been devoted to the study of game-theoretic approaches that can model and regulate selfish 

agent interactions [71]. By means of these, the multi-agent coordination objective is formulated in 

terms of Nash Equilibria (NE), which corresponds to the natural emergent behavior arising from 

the interaction of selfish players. Due to their modularity, game dynamics can easily be 

implemented by agents relying on local information, leading to a robust performance. In 

particular, we tackle this problem by first defining a global utility function for the whole MB. Each 

agent has its own private utility function of its subblock which it aims to maximize. However, 

these are defined such that, for any unilateral switch in strategy, an agent’s change in payoff is 

equal to the change in the global utility. Consequently, the global maximum is a Nash equilibrium 

(i.e. it is a stable solution to the game). In this way, selfish agents can be used to solve an inherently 

cooperative problem, because their self–interest drives them towards solutions with higher global 

utility. Furthermore, we derive the agents’ utilities from the approximate global utility function 
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such that the agents play a potential game [72] at each time-step. The potential game concept 

provides a valuable theoretical framework for distributed multi-agent cooperation problems. First, 

a game that admits the potential property is guaranteed to possess a Nash equilibrium. Second, 

from the definition of a potential game, the Nash equilibrium for every local cost function is 

consistent with the global objective. The potential game framework, therefore, provides 

distributed optimization problems with theoretical support for problem simplification [73]. A 

best-response approach is a common method in potential games to achieve a Nash Equilibrium 

Point (NEP) [74]–[75]. The idea of best-response dynamics (BRD) is that every player produces 

its best response in terms of the current state of the other players [76]. The proposed best-response 

dynamics enable players to make autonomous decisions to optimize their local utility functions by 

monitoring the actions of their neighbors. In order to carry out this optimization step, agents should 

be equipped with local optimization capabilities. Due to the non-convexity of the agent’s utility 

function, we resort to modern optimization techniques. PSO is chosen as the global optimization 

algorithm used by the agents due to its profound intelligence and simple algorithmic structure. 

Each agent is equipped with a PSO engine that finds its best response at each time step given the 

actions of the other players by optimizing its local utility function. Two distributed algorithms are 

proposed in this chapter based on two versions of BRD: the sequential and simultaneous BRD. The 

main distinction between these two algorithms lies in the mode and frequency of the inter-agent 

communication needed during the process to update neighborhood information which also 

determines the level of dependency between the agents.  The proposed sequential algorithm 

possesses convergence guarantees to the NE of the underlying potential game, whereas the 

proposed simultaneous algorithm contains a high level of data parallelism at the agent level which 

makes it highly amenable to parallel implementations. A multicore parallel implementation of the 
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proposed simultaneous motion estimation scheme is presented using MATLAB® Parallel 

Computing Toolbox™ (PCT) [63]. 

The chapter is organized as follows. In Section 3.1, we provide a general background on 

game theory. Section 3.2 then presents the proposed game–theoretic framework. In this section, 

we formulate the problem as a Consensus game, and describe our approximation of the global 

utility function. Building on this, we show how to derive agents’ utilities so that the resulting game 

is a potential game, and describe the learning algorithms that can be used to solve it. In section 3.3, 

two distributed algorithms based on simultaneous and sequential BRD are proposed to solve the 

game-theoretic formulation of BME, and their convergence properties are analyzed. Then, in 

Section 3.4, a multicore implementation of the proposed simultaneous algorithm is presented 

using the MATLAB® PCT. Section 3.5 shows the simulation results and presents an extensive 

evaluation of the performance of the presented algorithms. Finally, Section 3.6 summarizes this 

chapter. 

 

3.1 Game Theory 

Game theory is a branch of mathematics aimed at the modeling and understanding of the 

interactions between several decision-makers (called players) who can have conflicting or 

common objectives. A game is a situation in which the benefit or cost achieved by each player 

from an interactive situation depends, not only on its own decisions, but also on those taken by the 

other players [77]. Essentially, the theory splits into two branches: non-cooperative and 

cooperative game theory. The distinction between the two is whether or not the players in the game 

can make joint decisions regarding the choice of strategy. Non-cooperative game theory is closely 

connected to minimax optimization and typically results in the study of various equilibria, most 
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notably the Nash equilibrium. Cooperative game theory examines how strictly rational (selfish) 

actors can benefit from voluntary cooperation by reaching bargaining agreements. Another 

distinction is between static and dynamic game theory, where the latter can be viewed as a 

combination of game theory and optimal control. In general, the theory provides a structured 

approach to many important problems arising in signal processing and communications, notably 

resource allocation and robust transceiver optimization. Recent applications also occur in other 

emerging fields, such as cognitive radio, spectrum sharing, and in multihop-sensor and adhoc 

networks [78-79]. 

 

3.2 The Proposed Game Theoretic Framework 

The problem addressed in this chapter is how to solve the optimization problem of BME 

in a distributed way through a network of autonomous players in a game theoretic framework. 

 

3.2.1 The Definition of the Game 

3.2.1.1 Global Objective Function: 

 

𝐽𝑔𝑙𝑜𝑏(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|𝑁−1
𝑖=0

𝑁−1
𝑗=0 ,    (3.1) 

where 𝑔𝑡(. ) is the gray value of a pixel in the current frame 𝐼𝑡 and𝑔𝑡−1(. ) is the gray level of a 

pixel in the previous frame 𝐼𝑡−1.That is our global objective is to find one motion vector for the 

whole block (of dimension NxN). To do that using game theory, we propose to decompose the 

block into K subblocks and then associate each subblock to a player. Each player would be trying 

to find the motion vector for its subblock. We want the players at the end of the game to reach 

consensus that is they should all agree on a common motion vector which is the minimizer of the 

global objective function. The game should allow the players to communicate during the search 
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process. 

3.2.1.2 Agents 

 

Consider a networked multi-agent system where agents are labeled by 𝑘 ∈ 𝑃 =

(1,2, … . . , 𝐾). Each agent is associated to a subblock. The cost function of agent 𝑘 is the Sum of 

Absolute Difference of the subblock of dimension 𝐿𝑥𝐿 at position (𝑥𝑘, 𝑦𝑘)as shown in Fig. 3.1: 

𝐽𝑘(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥𝑘 + 𝑖, 𝑦𝑘 + 𝑗) − 𝑔𝑡−1(𝑥𝑘 + 𝑢̂ + 𝑖, 𝑦𝑘 + 𝑣 + 𝑗)|𝐿−1
𝑖=0

𝐿−1
𝑗=0   (3.2) 

 

 

Figure 3.1 Macroblock decomposition into sub-blocks. 

 

The topology of the multi-agent system is represented by a non-directed neighborhood 

graph as shown in Fig. 3.2. 𝑁𝑘 represents the set of neighbors of agent𝑘. This topology graph also 
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represents the network communication graph where each agent communicates only with its 

neighbors. 

 

 

Figure 3.2 Neighborhood graph of agents. 

 

3.2.1.3 Utility Function 

 

𝐽𝑘(𝑢̂, 𝑣) cannot be used as a utility function for agent 𝑘 because it doesn’t depend on the 

action profile of the other agents. In order to introduce such dependency, the utility function of 

agent 𝑘 can be chosen as: 

𝑈𝑘(𝑢,̂ 𝑣) = 𝐽𝑘(𝑢̂, 𝑣) + 𝛼 ∗ ∑ ((𝑢̂ − 𝑢𝑖)
2 + (𝑣 − 𝑣𝑖)2)

1

2𝑖∈𝑁𝑘
.           (3.3) 

The utility function includes a regularization term which is the Euclidean distance to the 
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motion vectors of the neighboring subblocks. In other words, the objective of a player is not only 

to minimize the SAD of its subblock but also to find a motion vector that is in high correlation with 

the motion vectors of the neighboring subblocks. 

 

3.2.1.4 Action Set 

 

The action set of agent𝑘 is the set of motion vectors (𝑢̂, 𝑣) within a specified search 

window. 

 

3.2.2 Modeling the Problem as an Exact Potential Game 

Definition of Potential Games [80]: 

Player action sets {𝛢𝑖}𝑖=1
𝑛  together with player objective functions {𝑈𝑖: 𝐴 → ℝ}𝑖=1

𝑛  

constitute a potential functions, constitute a potential game if, for some potential function 

𝜑: 𝑈𝑖(𝑎𝑖
1, 𝑎−𝑖) − 𝑈𝑖(𝑎𝑖

2, 𝑎−𝑖) = 𝜑(𝑎𝑖
1, 𝑎−𝑖) − 𝜑(𝑎𝑖

2, 𝑎−𝑖), 

for every player 𝑃𝑖 ∈  𝑃 , for every 𝑎𝑖
1, 𝑎𝑖

2 ∈ 𝐴𝑖, and for every 𝑎−𝑖 ∈ 𝐴𝑗≠𝑖. 

A potential game, as previously defined, requires perfect alignment between the global 

objective and the players’ local objective functions in the following sense: If a player unilaterally 

changed its action, the change in its objective function would be equal to the change in the 

potential function. 

The proposed multi-agent block motion estimation problem can be modeled as a potential 

game by appropriately defining the players’ utilities. First, we establish a global objective function 

that captures the notion of consensus. Next, we show that local objective functions can be assigned 

to each player, so that the resulting game is, in fact, a potential game. 
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Consider a consensus problem with n-player set 𝑃, where each player 𝑃𝑖 ∈  𝑃has a finite 

action set 𝐴𝑖. A player’s action set could represent the finite set of locations that a player could 

select. We will consider the following potential function for the consensus problem: 

𝜑(𝑎) = ∑ 𝐽𝑖(𝑎𝑖)
𝑛
𝑖=1 + ∑ ∑

‖𝑎𝑖−𝑎𝑗‖

2𝑃𝑗∈𝑁𝑖𝑃𝑖∈𝑃 ,      (3.4) 

where 

 𝐽𝑖(𝑎𝑖) is the local cost function (SAD) of subblocki which is assigned to player i. This cost 

function depends only on the action 𝑎𝑖 (motion vector) of player i. 

𝑁𝑖 is the neighbor set of player i. 

Now, the goal is to assign each player an objective function that is perfectly aligned with 

the global objective: 

𝑈𝑖(𝑎𝑖, 𝑎−𝑖) = 𝐽𝑖(𝑎𝑖) + ∑ ‖𝑎𝑖 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖
.      (3.5) 

The utility function includes a term which is the distance to the motion vectors of the 

neighboring subblocks. In other words, the objective of a player is not only to minimize the SAD 

of its subblock but also to find a motion vector that is in high correlation with the motion vectors of 

the neighboring subblocks. Now, each player’s objective function is only dependent on the actions 

of its neighbors. 

Claim: Player objective functions (3.5) constitute a potential game with potential function 

(3.4), provided that the time invariant interaction graph induced by neighbor sets 

{𝑁𝑖}𝑖=1
𝑛 isundirected, i.e., 

𝑃𝑖 ∈ 𝑁𝑗 ⇔ 𝑃𝑗 ∈ 𝑁𝑖 

Proof: Since the interaction graph is time invariant and undirected, the potential function 

can be expressed as 



66 

 

𝜑(𝑎) = 𝐽𝑖(𝑎𝑖) + ∑ 𝐽𝑘(𝑎𝑘)𝑛
𝑘=1,𝑘≠𝑖 +  ∑ ‖𝑎𝑖 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖

+ ∑ ∑
‖𝑎𝑘−𝑎𝑗‖

2𝑃𝑗∈𝑁𝑘\𝑃𝑖𝑃𝑘≠𝑃𝑖
 (3.6) 

The change in the objective function of player 𝑃𝑖by switching from action 𝑎𝑖
1 to action 

𝑎𝑖
2 , provided that all other players collectively play𝑎−𝑖 , is 

𝑈𝑖(𝑎𝑖
1, 𝑎−𝑖) − 𝑈𝑖(𝑎𝑖

2, 𝑎−𝑖) = 𝐽𝑖(𝑎𝑖
1) − 𝐽𝑖(𝑎𝑖

2) + ∑ ‖𝑎𝑖
1 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖

− ∑ ‖𝑎𝑖
2 − 𝑎𝑗‖𝑃𝑗∈𝑁𝑖

=

𝜑(𝑎𝑖
1, 𝑎−𝑖) − 𝜑(𝑎𝑖

2, 𝑎−𝑖)        (3.7) 

This is an exact potential game. 

 

3.2.3 Learning Algorithm 

A fundamental solution concept for strategic form games is the Nash equilibrium: 

Definition of Nash Equilibrium [81]: A strategy profile 𝑎∗ = (𝑎𝑖
∗, 𝑎−𝑖

∗ ) ∈ 𝒜 is a 

pure-strategy Nash equilibrium (or simply a Nash equilibrium) of a game (𝐼, (𝒜𝑖), (𝑢𝑖)) if 

𝑢𝑖(𝑎𝑖
∗, 𝑎−𝑖

∗ ) ≥ 𝑢𝑖(𝑎𝑖, 𝑎−𝑖
∗ ), for every 𝑖 ∈ 𝐼 and 𝑎𝑖 ∈ 𝒜𝑖; equivalently, 𝑎𝑖

∗ ∈ 𝐵𝑅𝑖(𝑎−𝑖
∗ ) for every 

𝑖 ∈ 𝐼. That is, 𝑎𝑖
∗ is a solution to the optimization problem 𝑚𝑎𝑥𝑎𝑖∈𝒜𝑖

𝑢𝑖(𝑎𝑖, 𝑎−𝑖
∗ ). 

 

At the Nash equilibrium, no player can improve his/her payoff by adopting a different 

strategy unilaterally; thus, no player has an incentive to unilaterally deviate from the equilibrium. 

The Nash equilibrium is a proper solution concept; however, the existence of a pure-strategy Nash 

equilibrium is not necessarily guaranteed. [81] 

The most important property of potential games is acyclicity, which is also referred to as 

the finite improvement property (FIP). 

 

Definition of Finite improvement property [72]: 

A path in (𝔗, (𝒜𝑖), (𝓊𝑖)) is a sequence(𝑎[0], 𝑎[1], … ) such that for every integer 𝑘 ≥ 1 
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, there exists a unique player 𝑖such that𝑎𝑖[𝑘] ≠ 𝑎𝑖[𝑘 − 1] ∈ 𝒜𝑖 while𝑎−𝑖[𝑘] = 𝑎−𝑖[𝑘 − 1]. 

(𝑎[0], 𝑎[1], … ) is an improvement path if, for every𝑘 ≥ 1,𝑢𝑖(𝑎[𝑘]) > 𝑢𝑖(𝑎[𝑘 − 1]) where𝑖 is 

the unique deviator at step𝑘,(𝔗, (𝒜𝑖), (𝓊𝑖)) has the finite improvement property (FIP) if every 

improvement path is finite. 

Theorem 1 ([72]): Every OPG with finite strategy sets has the FIP [72, Lemma 2.3]; that 

is, unilateral improvement dynamics are guaranteed to converge to a Nash equilibrium in a finite 

number of steps. 

This potential game formulation provides a valuable theoretical framework for the 

proposed distributed multi-agent BME problem. First, the existence of a Nash equilibrium in 

potential games is guaranteed in many practical situations [72], but is not guaranteed for general 

strategic form games. Second, from the definition of a potential game, the Nash equilibrium for 

every local cost function is consistent with the global objective. Unilateral improvement dynamics 

in potential games with finite strategy sets are guaranteed to converge to the Nash equilibrium in a 

finite number of steps, i.e., they do not cycle [72]. Moreover, in finite player potential games, all 

equilibria are local maximizers of potential; since better reply adjustment processes increase 

potential, all equilibria are locally stable. As a result, learning algorithms can be systematically 

designed. The potential game framework, therefore, provides distributed optimization problems 

with theoretical support for problem simplification. 

A variety of learning algorithms are available to facilitate the convergence of potential 

games to Nash equilibrium, e.g., best response, fictitious play, reinforcement learning, and spatial 

adaptive play. Best Response dynamics is a perfect fit for potential games. 
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3.2.3.1 Best Response Dynamics 

 

The BRD can be formulated for a game with an arbitrary number of players. In its most 

used form, BRD operates in a sequential manner (sequential BRD) such that players update their 

actions in a round-robin manner. Within round t+1 (with 𝑡 ≥ 1), the action chosen by player 𝑘 ∈

𝜅 is computed as: 

𝑎𝑘(𝑡 + 1) ∈ 𝐵𝑅𝑘[𝑎1(𝑡 + 1), … , 𝑎𝑘−1(𝑡 + 1), 𝑎𝑘+1(𝑡), … , 𝑎𝐾(𝑡)].   (3.8) 

An alternative version of the BRD operates in a simultaneous way meaning that all 

players update their actions simultaneously [77]: 

𝑎𝑘(𝑡 + 1) ∈ 𝐵𝑅𝑘[𝑎−𝑘(𝑡)].        (3.9) 

 

Table 3.1 BRD Algorithm 

Set t=0 

Initialize 𝑎𝑘(0) ∈ 𝑆𝑘 for all players 𝑘𝜖𝜅 (e.g. using random initialization) 

Repeat 

For 𝑘 = 1 𝑡𝑜 𝐾do 

Update 𝑎𝑘(𝑡 + 1) using (3.8) or (3.9) 

End for 

Update 𝑡 = 𝑡 + 1 

Until |𝑎𝑘(𝑡) − 𝑎𝑘(𝑡 − 1)| ≤ 𝜀 for all 𝑘𝜖𝜅 

 

 

Theorem 2 ([76]): In potential and supermodular games, the sequential BRD converges 

to a pure NE with probability one. 

 

The pseudo code of BRD for both instances is given in table 3.1. Convergence means that 

the distance between two successive action profiles remains below a certain threshold 𝜀 > 0. 
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When it converges, convergence points are typically pure NE [76]. There are no convergence 

results for general games using BRD. However, when exact potential games are considered, then 

there exist sufficient conditions under which the convergence of the sequential BRD to a pure NE 

is always guaranteed [76]. On the other hand, unlike the sequential BRD, there does not seem to 

exist general results that guarantee the convergence of the simultaneous BRD. [77] 

 

3.3 Proposed Distributed Block Motion Estimation Scheme 

So far, the BME problem is formulated in a game-theoretic multi-agent setting and is then 

modeled as an exact potential game. The solution methodology proposed to find the NE of the 

game is based on BRD where, in each round, each agent autonomously tries to optimize its local 

utility function in (3.3) given the actions of the other agents. In order to carry out this optimization 

step, agents should be equipped with local optimization capabilities. Due to the non-convexity of 

the agent’s utility function (3.3), we resort to modern optimization techniques. Particle Swarm 

Optimization (PSO) is chosen as the global optimization algorithm used by the agents due to its 

profound intelligence and simple algorithmic structure. Each agent is equipped with a PSO engine 

that finds its best response at each time step given the actions of the other players by optimizing its 

local utility function. 

 

3.3.1 Description of the proposed distributed algorithms 

The proposed algorithm solves the problem of BME through game-theoretic interactions 

among a network of self-interested, distributed computational agents. The macroblock is divided 

into subblocks and an agent is defined for each subblock. Then, a swarm of PSO particles is 

defined for each agent to serve as its local processing engine. According to the presented game 
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theoretic framework, agents perform BRD that drives the agents towards consensus on the 

common MV of the whole MB which is also the NE of the underlying potential game. Two 

versions of this approach are presented: a sequential version that uses sequential BRD, and a 

simultaneous version that uses simultaneous BRD. The main distinction between these two 

algorithms lies in the mode and frequency of the inter-agent communication needed during the 

process to update neighborhood information which also determines the level of dependency 

between the agents.  

 

3.3.1.1 Sequential algorithm 

 
In this algorithm, agents use sequential BRD. In each round, agents update their actions in 

a synchronous round robin fashion, from agent 1 until agent 𝐾 in each round, according to (3.8). 

At round t+1, agent 𝑘 needs to find its BR or utility maximizing action given by: 

𝑎𝑘(𝑡 + 1) = arg 𝑚𝑎𝑥𝑎𝑘
𝑢𝑘(𝑎𝑘, 𝑎1(𝑡 + 1), … , 𝑎𝑘−1(𝑡 + 1), 𝑎𝑘+1(𝑡), … , 𝑎𝐾(𝑡)). (3.10) 

According to our definition of the agent’s utility function in (3.3), the utility function of 

an agent depends only on the actions of its neighboring agents defined in 𝑁𝑘. Therefore, an agent 

needs updated information about the actions of its causal neighbors before calculating its best 

response. Therefore, in each round of the sequential algorithm, we iterate over the agents and each 

agent performs a communication step followed by an optimization step to find its BR at this round. 

3.3.1.1.1 Communication step: 

 

This step allows each agent to receive up-to-date information about the actions of its 

causal neighbors through inter-agent communication. This is shown in Fig. 3.3. 
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Figure 3.3 Communication step in the sequential algorithm where agent k receives updated information about the 
actions of the causal agents in its neighboring set. 

 

3.3.1.1.2 Local Optimization Step 

 

In this step, an agent runs a set of Nt  PSO iterations to find its best response (BR) or its 

best action at time t given the updated actions of its neighbors. This is done by optimizing the 

utility function of the agent as given in (3.5) and using it as the fitness function in the PSO process. 

A swarm of M particles is first defined for each agent. This is done by first initializing a 

set of particles for the given MB and then randomly selecting from this set M particles for each 

agent. This is done as follows. Based on the assumption that the motion field is smooth and varies 

slowly, there are strong spatial correlations between motion vectors of neighboring blocks within 

the same frame as well as strong temporal correlations with motion vectors of blocks in the 
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previous frame. Typically, a macroblock (MB) has 8 immediate neighbors. For a raster-search 

order, the available apriori information for the current block are the motion vectors of only the four 

causal neighboring blocks within the same frame that have already been found before block 

matching for the current MB is conducted. To exploit the existing spatial correlation, motion 

vectors of these four neighbors are used to initialize the positions of four swarm particles in the 

search area. Additionally, the current block has apriori information of the motion vectors of the 

collocated MB and its neighbors from the previous frame. In order to exploit the existing temporal 

correlation, we initialize five swarm particles to the motion vectors of the collocated MB in the 

previous frame and four of its direct neighbors as shown in Fig. 3.4. We also initialize one of the 

particles to the (0, 0) motion vector (MV) to account for static blocks. Therefore, for an MB at 

location (i,j) in frame t, we initialize a pool of 10 particles as follows: 

{𝑥1, 𝑥2, 𝑥3, … , 𝑥10} =

{𝑀𝑣𝑖−1,𝑗−1
𝑡 , 𝑀𝑣𝑖−1,𝑗

𝑡 , 𝑀𝑣𝑖−1,𝑗+1
𝑡 , 𝑀𝑣𝑖,𝑗−1

𝑡 , 𝑀𝑣𝑖,𝑗
𝑡−1, 𝑀𝑣𝑖,𝑗+1

𝑡−1 , 𝑀𝑣𝑖+1,𝑗−1
𝑡−1 , 𝑀𝑣𝑖+1,𝑗

𝑡−1 , 𝑀𝑣𝑖+1,𝑗+1
𝑡−1 , (0,0)}.(3.11) 

 

 

Figure 3.4 Initialization of particles positions of a given MB 
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Then, for each agent within each MB, a set of M particles are randomly chosen from the 

initialized pool of particles of the corresponding MB. 

In order to decrease the computational complexity of this stage, fitness function history 

preservation proposed in Chapter 2 is adopted to avoid unnecessary redundant fitness function 

calculations of search points that have been visited before by any particle during the PSO process. 

In addition, the maximum velocity which limits the flying speed of the particles is adaptively 

changed in this PSO process as was proposed in Chapter 2. Therefore, in this modified PSO 

algorithm, a higher 𝑣𝑚𝑎𝑥 value is adopted in the early stage of the search process and a lower 

value later to perform a local search. A linearly decreasing function is adopted to gradually reduce 

the 𝑣𝑚𝑎𝑥 value in the current iteration in proportion to the iteration number, this is given by: 

𝑣𝑚𝑎𝑥(𝑗) =
𝑉𝑚𝑎𝑥

𝑗
,         (3.12) 

where 𝑉𝑚𝑎𝑥is an empirically determined value and 𝑗 is the iteration number. 

This PSO process terminates whenever the maximum number of iterations Nt is reached. 

Early termination of the search is allowed whenever the fitness value of the global best position is 

less than a predefined threshold value Tth and when the fitness value associated with the global best 

position remains the same for Kmax iterations, even if the maximum iteration number Nt is not yet 

reached. The pseudo code of the sequential algorithm is shown in Table 3.2. 
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Table 3.2 Pseudocode of the proposed sequential ME algorithm 

For each MB in the frame do 

Initialize a set of 10 particles according to (3.11) and as shown in Fig. 3.4 

For each agent or subblock k=1,…,K do 

Define a swarm of M  PSO particles 

Initialize the fitness history array entries to zeros 

Initialize particle velocities to zeros 

Initialize particle positions by randomly selecting M particles from the MB particle set 

End for 
BR Rounds: 

Repeat 

For each agent or subblock k=1,…,K do 

Communication Step: 

Update the matrix of neighbors’s actions or global best positions as shown in Fig. 3.3 

BR Optimization Step Using PSO: 

Repeat 

For each particle i=1,…,M do 

Check its flag in agent k history array 

If the flag is 0 then 

Calculate utility function of the agent 

Update the particle’s best position Pi and the global best position Pi of the agent 

Save the value of the fitness value in the history array 

Set flag to 1 

Else 

Retrieve the value of the fitness function from the history array 

Update Pi 

End if 

Adaptively change vmax using (3.12) 

Update the velocity  

Update the position  

End for 

Until stopping conditions of the PSO process are met 

End for 

Until all the players’ strategies become stationary or the prescribed maximum number of BR rounds T is 

reached. 

End for 

 

3.3.1.2 Simultaneous Algorithm 

 

The proposed simultaneous algorithm uses simultaneous BRD which operates in a 

simultaneous way meaning that, in each round, all agents update their actions simultaneously 

according to: 

𝑎𝑘(𝑡 + 1) = arg 𝑚𝑎𝑥𝑎𝑘
𝑢𝑘(𝑎−𝑘(𝑡)).       (3.13) 

That is, to find the BR of agent 𝑘 at round 𝑡 + 1, we need information about the actions 

of its neighbors in the previous round t. this offers the important advantage of breaking the 
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dependency between the agents within each round. The steps of the proposed algorithm are as 

follows. The MB is divided into subblocks as shown in Fig. 3.1 and an agent is defined for each 

subblock. A Swarm of 𝑀 PSO particles is defined and initialized for each agent. Several rounds of 

simultaneous BRD are carried out for the subblocks. For each round, an inter-agent 

communication step is first performed. Then, we iterate over the agents to calculate their BR 

through a local optimization process using PSO.  

3.3.1.2.1 Communication Step 

 

At the beginning of each round, all agents need updated information about the actions of 

their neighbors in the previous round in order to find their BR at the current round. A broadcast 

step is performed where each all agents broadcast to their neighbors their actions attained from the 

previous round. This is shown in Fig. 3.5. 

 

 

Figure 3.5 Communication step in the simultaneous algorithm where each agent broadcasts information about its 
current action to the agents in its neighboring set. 
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3.3.1.2.2 Local Optimization Step 

 

After updating the actions of their neighbors, agents use the modified PSO optimization 

process to find their best response (BR) according to (3.13). 

3.3.1.2.3 Final MV Search Step 

 

Unlike the sequential BRD, there does not seem to exist general theoretical results that 

guarantee the convergence of the simultaneous BRD [27]. Therefore, in the proposed 

simultaneous ME algorithm, the maximum number of simultaneous BR rounds 𝑇 might be 

reached before convergence of the MVs of all the agents to a common MV which is the minimizer 

of the potential function. In that case, a final MV search step is needed to choose, from the agents’ 

estimated MVs, the MV that minimizes the SAD of the whole MB. This is done efficiently by 

approximating the SAD of the whole MB as the sum of SAD values of its subblocks. The SAD 

values for the subblocks are then calculated for each of the estimated MVs of the players. The 

fitness function history preservation property of the subblocks is utilized here to reduce the 

computational complexity of this step. The pseudo code of the sequential algorithm is shown in 

Table 3.3. 
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Table 3.3 Pseudo code of the proposed simultaneous ME algorithm 

For each MB in the frame do 

Initialize a set of 10 particles according to (3.11) and as shown in Fig. 3.4 

For each agent or subblock k=1,…,K do 

Define a swarm of M  PSO particles 

Initialize the fitness history array entries to zeros 

Initialize particle velocities to zeros 

Initialize particle positions by randomly selecting M particles from the MB particle set 

End for 

BRD Rounds: 

Repeat 

Communication Step: 

All Agents broadcast their actions to their neighbors.  

All agents receive information from their neighbors about their actions 

For each agent or subblock k=1,…,K do 

BR Optimization Step Using PSO: 

Repeat 

For each particle i=1,…,M do 

Check its flag in agent k history array 

If the flag is 0 then 

Calculate utility function of the agent 

Update the particle’s best position Pi and the global best position Pi of the agent 

Save the value of the fitness value in the history array 

Set flag to 1 

Else 

Retrieve the value of the fitness function from the history array 

Update Pi 

End if 

Adaptively change vmax using (3.12) 

Update the velocity  

Update the position  

End for 

Until stopping conditions of the PSO process are met 

End for 

Until all the players’ strategies become stationary or the prescribed maximum number of BR 

rounds T is reached. 

If convergence is not reached then 

Final MV search step: 

End If 

End for 

 

 

 

3.3.1.3 Comparison between the Proposed Sequential and Simultaneous Algorithms 

 

The two proposed algorithms describe how the problem of block ME can be solved in a 

decentralized manner by a system of autonomous agents which can, in a distributed fashion, 

optimize a global objective function. By means of non-cooperative games and local 

communication, each (selfish) agent tries to optimize its own utility leading eventually to an 
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emergent global welfare. The two proposed schemes, however, are different in several aspects. 

First, the sequential algorithm uses sequential BRD which offers a positive theoretical guarantee 

of convergence to the NE of the potential game. On the other hand, the presented simultaneous 

scheme is based on simultaneous BRD, which doesn’t possess any theoretical guarantee of 

convergence. When several players move simultaneously, the potential may not be increasing and 

then the convergence of BRA to a NE of the game is not guaranteed [82].Nevertheless, unlike the 

sequential algorithm which requires continuous inter-agent communication, the presented 

simultaneous scheme eliminates data dependencies between the agents within each round and 

limits inter-agent communication to a single step at the beginning of each round. Therefore, agents 

are allowed to update their actions simultaneously. This offers the important advantage of 

parallelism at the agents’ level and thus makes the simultaneous algorithm amenable to parallel 

implementations. 

 

3.3.1.4 Computational Complexity Analysis 

 

In block matching motion estimation, the average number of fitness function evaluations 

for each MB is used as a metric of the computational complexity. In the literature, the fitness 

function usually used for block motion estimation is the SAD defined in (3.1). For each MB of size 

of 16X16, there are 256 subtractions and 255 additions that are to be carried out in calculating the 

Sum of Absolute Difference (SAD). Hence, the computing complexity is O(N2), where N is the 

number rows or columns in NxN square MB. In the proposed simultaneous and sequential 

algorithms, each MB is divided into K subblocks as shown in Fig. 3.1. The cost function of agent 

k is the SAD of the subblock of dimension LxL as given in (3.2). Therefore, each SAD 

computation performed by an agent is O(L2). Since, as illustrated in Fig.2, N2

L2⁄ = K, then we 
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can say that each cost function computed by an agent corresponds to 1
K⁄  MB fitness function 

evaluation.In the proposed algorithms, we have K agents within a given MB. Agents will go 

through a maximum of𝑇 BR rounds. In each round, the M particles of each agent will perform a 

maximum of 𝑁𝑡 PSO iterations. Therefore, the maximum total computational complexity of the 

proposed decentralized algorithms, in terms of fitness function evaluations per MB, is given by: 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐷𝑒𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐾 ∗
𝑇∗𝑁𝑡∗𝑀

𝐾
= 𝑇 ∗ 𝑁𝑡 ∗ 𝑀.  (3.14) 

Notice that the computational complexity per MB of a centralized PSO-based block ME 

algorithm [10] where a single PSO swarm of 𝑀′particles is defined for an MB with a total number 

of iterations 𝑁𝑡
′ is given by: 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 = 𝑁𝑡
′ ∗ 𝑀′.     (3.15) 

From (3.14) and (3.15), we notice that if the parameters𝑇, 𝑁𝑡, and 𝑀 are chosen 

properly, the computational complexity of the proposed distributed algorithms can be made 

equivalent to that of a centralized PSO-based ME algorithm. 

 

3.4 Parallel implementation 

In this section, a multicore implementation of the proposed simultaneous algorithm is 

proposed using the MATLAB® Parallel Computing Toolbox™ (PCT).  

From the pseudo code of the simultaneous algorithm given in Table 3.3, we notice that the 

proposed ME algorithm for each MB in the frame is made up of the following steps: Initialization 

step to initialize the PSO swarms for the agents followed by the simultaneous BR rounds. The 

initialization step for each agent is completely independent from that of the other agents. 

Therefore, it can be parallelized. Moreover, within each round of the simultaneous BR process, 

agents update their actions using PSO simultaneously and independently. Therefore, this local 



80 

 

PSO optimization step is also parallelizable across the agents. 

The details of the proposed parallel implementation are shown in table and explained as 

follows: 

 

3.4.1 Parallel agents processing using Looping over a Distributed Range (for-drange) 

In our implementation, the MB is partitioned equally along the subblocks or agents 

among the different labs. Therefore, we have used the for-drange construct to allow the 

simultaneous processing of each lab of its assigned agents in the MB. 

 

3.4.2 SPMD block 

This allows us to implement data-parallelism where each Matlab lab executes the same 

lines of code but on different subblocks of a given MB. Within the spmd block, communication or 

synchronization is allowed between labs. In the proposed parallel implementation, an spmd block 

is started for each MB in the frame as shown in Table 3.4.  

 

3.4.3 Inter-agent communication using labSendReceive 

During the communication step the proposed simultaneous algorithm, each agent, or 

subblock,  is required to broadcast to its neighboring agents the global best position, Pg, found so 

far in the optimization process. Each agent will also receive from each of its neighbors the value of 

the global best position acquired by that neighbor. This interlab communication within the parallel 

job is implemented using labSendReceive.  
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Table 3.4 Pseudo code of the parallel implementation of the proposed simultaneous me algorithm using Matlab 

 

 

 

 

3.5 Simulation Results 

3.5.1 Experimental setup 

Several test video sequences of various formats and various motion intensity, (QCIF: 

176x144), LD (CIF: 352x288), SD (480p: 832x480), and HD (720p: 1280x720) downloaded from 

For each MB in the frame do 

Initialize a set of 10 particles according to (3.11) and as shown in Fig. 3.4 

Spmd 
For  k=drange (1,…,K) do 

Define a swarm of M  PSO particles 

Initialize the fitness history array entries to zeros 

Initialize particle velocities to zeros 

Initialize particle positions  by randomly selecting M particles from the MB particle set  

End for drange 
BRD Rounds: 

Repeat 

Communication Step: 

All Agents exchange information with their neighbors using labSendReceive 

For  k=drange (1,…,K) do 

BR Optimization Step Using PSO: 

Repeat 

For each particle i=1,…,M do 

Check its flag in agent k history array 

If the flag is 0 then 

Calculate utility function of the agent 

Update the particle’s best position Pi and the global best position Pi of the agent 

Save the value of the fitness value in the history array 

Set flag to 1 

Else 

Retrieve the value of the fitness function from the history array 

Update Pi 

End if 

Adaptively change vmax using (3.12) 

Update the velocity  

Update the position  

End for 

Until stopping conditions of the PSO process are met 

End for drange 

Until all the players’ strategies become stationary or the prescribed maximum number of BR rounds 

T is reached. 

End spmd 

If convergence is not reached then 

Final MV search step: 

End If 

End for 
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[68, 69], have been used to test the performance of our proposed algorithm and compare it to 

existing techniques. Results are presented with two distinct criteria: computational complexity and 

objective motion estimation quality. 

The proposed algorithm is simulated on a server with two Intel® Xeon® E5520 2.66GHz 

CPUs (total of 8 physical CPU cores equivalent to 16 logical cores due to the hyper-threading 

property of Intel CPUs) and 32GB RAM. The execution platform is Matlab R2012a.  

In our simulations, every frame is divided into MBs of size 16 * 16 pixels. The search 

step-size is one integer pixel and we used one reference frame which is the previous frame. The 

search parameter p which defines the search area is chosen to be 15 for all the tested sequences 

except for the HD (Parkrun) video sequence where p was chosen to be 31. 

 

3.5.2 Simulation parameters 

For the PSO algorithm, a pool of 10 particles is initialized for each MB according to 

(3.11). Form this pool, a set of M particles are randomly selected for each player within the MB. 

As discussed in section 3.1.4, the computational complexity of the algorithm depends on the 

parameters 𝑇, 𝑀, and Nt. These parameters should be chosen properly so that the computational 

complexity of the proposed distributed algorithms can be made equivalent to that of a centralized 

PSO-based ME algorithm [52]. In [52], a swarm of 9 particles (𝑀′ = 9) are used for a total of 5 

iterations (𝑁′
𝑡 = 5, 𝐾𝑚𝑎𝑥

′ = 2) which requires a maximum of 45 fitness function evaluations per 

MB. In the proposed algorithms, the number of particles per subblock is chosen to be 𝑀 = 3.  

Different values of Nt and Kmax are chosen for the proposed sequential and simultaneous 

algorithms as follows. The proposed sequential algorithm is guaranteed to converge in 𝑇𝑐𝑜𝑛𝑣 

number of BR rounds. According to our simulations, a good overall performance over a wide 
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range of video sequences is provided for a choice of Nt = 3(and Kmax = 2) which is found to 

converge in an average number of BR rounds 𝑇𝑐𝑜𝑛𝑣 ≅ 5 if the number of players is𝐾 = 16, and a 

choice of Nt = 5(and Kmax = 3) which is found to converge in an average number of BR rounds 

𝑇𝑐𝑜𝑛𝑣 ≅ 3 if the number of players is𝐾 = 4. This requires a computational complexity of 𝑇𝑐𝑜𝑛𝑣 ∗

𝑀 ∗ 𝑁𝑡 = 45fitness function evaluations, which is equivalent to that of the centralized PSO-based 

ME algorithm in [52]. On the other hand, as mentioned previously, the proposed simultaneous 

algorithm doesn’t possess any guarantees for its convergence. According to our simulations, a 

good overall performance over a wide range of video sequences is obtained for a choice of Nt = 

5(and Kmax = 3) and a fixed number of BR rounds 𝑇 = 2.The choice of the BR rounds  𝑇 = 2 

provides the important advantage of minimizing the communication overhead required in the 

proposed simultaneous algorithm since the number of communication steps needed between the 

players is only one in this case. The resulting maximum computational complexity in this case is 

𝑇 ∗ 𝑀 ∗ 𝑁𝑡 = 2 ∗ 3 ∗ 5 = 30 fitness function evaluations for the BR process in addition to the 

computations needed during the final MV search step. Overall, the computational complexity of 

the proposed simultaneous algorithm is almost equivalent to the centralized ME approach in [52]. 

The pre-set minimum MSE error, Tth, is another empirically determined threshold that 

can regulate the accuracy/complexity tradeoffs. If the threshold is too large, the algorithm tends to 

run fast at the cost of a lower accuracy. In our simulations, the threshold for MSE, Tth, was chosen 

to be 7. The maximum allowed velocity for the PSO particles, vmax, is dynamically varied in every 

iteration of the PSO process. It is initially set to 𝑉𝑚𝑎𝑥and then linearly decreased according to the 

iteration number. In our simulations, we chose Vmax = 15, for a search range of ±15, and Vmax = 31,  

for a search range of±31, as a starting value for the maximum allowed velocity which adaptively 

decreases in each iteration giving an average value of around 20% of the dynamic range in each 
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case.  

 

3.5.3 Numerical analysis of convergence 

In Section 3.2.3, we have provided the theoretical proofs of convergence for the proposed 

sequential ME algorithm. In this section, simulation results of convergence are provided. Table 3.5 

provides an empirical convergence analysis of the sequential BRD algorithm interms of the 

average number of BR rounds needed for convergence, 𝑇𝑐𝑜𝑛𝑣, for the different video sequences. 

We also analyze the effect of the number of players 𝐾 on the convergence speed of the algorithm. 

Two values of 𝐾 are considered. Setting 𝐾 = 4 means that the MB is divided into 2x2 subblocks 

each of size 8x8 pixels, whereas setting 𝐾 = 16 means that the MB is divided into 4x4 subblocks 

each of size 4x4 pixels. Table 3.5 shows that only a few iterations are needed to obtain 

convergence, which is a quite typical behavior for sequential BRD-type iterative procedures [76]. 

It is noticed that the convergence speed decreases with the increase in the number of players.  

 

Table 3.5 Empirical Convergence Analysis of the sequential BRD algorithm in terms of the average number of 
BR rounds needed 

Sequence Number of BR Rounds 𝑇𝑐𝑜𝑛𝑣for 𝑲 = 𝟏𝟔 
Number of BR Rounds 𝑇𝑐𝑜𝑛𝑣for 

𝑲 = 𝟒 

Soccer, QCIF, 15fps, p=15 5.9 3.54 

Bus, QCIF, 15 fps, p=15 5.6 3.29 

Soccer, CIF, 30fps, p=15 3.87 2.93 

Bus, CIF, 30 fps, p=15 5.18 2.91 

Tennis, CIF,30 fps, p=15 4.9 3.23 

Stefan, CIF, 30fps, p=15 4.4 3.03 

Foreman, CIF, 30fps, p=15 5.2 3.22 

Container, CIF, 30fps, p=15 3 2.21 

RaceHorses, 480p, 30 fps, p=15 4.8 3.88 

Parkrun, 720p, 30 fps, p=31 3.7 2.6 

 

3.5.4 Motion estimation quality 
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Objective motion estimation quality is measured interms of Peak Signal to Noise Ratio 

(PSNR) values averaged over the first 100 frames of each test video sequence.  

First, we compare the performance of the proposed sequential and simultaneous ME 

algorithms, interms of motion estimation quality, for different values of the number of players 𝐾. 

As shown in Table 3.6, increasing the number of players 𝐾 in the game results in an improvement 

in the motion estimation quality of both of the proposed algorithms. This can be explained as 

follows. As shown in Table 3.5, increasing the number of players leads to an increase in the needed 

BR rounds for convergence in the proposed sequential algorithm. Consequently, this leads to an 

increase in the number of search points explored and a more exhaustive search space exploration 

which prevents the algorithms from falling into local minima. Moreover, increasing the number of 

players 𝐾 in the game means incorporating a larger number of computing agents to solve the ME 

problem which leads to a better estimation quality. Another important observation from the results 

shown in Table 3.6 is that, for the same value of 𝐾, the motion estimation quality of the proposed 

sequential algorithm exceeds that of the proposed simultaneous approach. The reason behind this 

lies in the fact that, unlike the proposed sequential algorithm, the simultaneous BRD used in the 

proposed simultaneous algorithm doesn’t necessarily converge to the NE and the proposed final 

MV search step used provides only a suboptimal solution of the game.  

Table 3.7 gives the average PSNR results for the ES algorithm and several traditional fast 

searching techniques, like TSS [16], 4SS [18], DS [19], and ARPS [22]. PSNR results are also 

given for the recently proposed Pattern Based PSO ME (PBPSO) algorithm given in [51] and the 

PSO ME algorithm proposed in [52]. The simulation results presented are based on the averages of 

the data (PSNR and search point) obtained from 50 repeated runs of the proposed algorithms to 

strengthen the statistical significance. Increasing the number of runs also yield only very 
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negligible changes to the averages which do not differ significantly. Simulation results show that 

both of the proposed algorithms provide an improvement in motion estimation quality as 

compared to the other techniques. Fig. 3.6, Fig. 3.7, Fig. 3.8, Fig. 3.9, Fig. 3.10, Fig. 3.11, Fig. 

3.12, and Fig. 3.13 show that the proposed algorithms can closely follow the PSNR values of the 

ES method on the frame-by-frame basis.  

Table 3.6 Motion estimation quality in terms of PSNR of the proposed sequential and simultaneous algorithms for 
different values of 𝐾 

 
Sequential Algorithm Simultaneous Algorithm 

Sequence 𝑲 = 𝟒 𝑲 = 𝟏𝟔 𝑲 = 𝟒 𝑲 = 𝟏𝟔 

Soccer, QCIF, 15fps, p=15 23.78 24.48 23.567 24.39 

Bus, QCIF, 15 fps, p=15 22.74 22.99 22.594 22.941 

Soccer, CIF, 30fps, p=15 29.311 29.57 28.9 29.49 

Bus, CIF, 30 fps, p=15 25.126 25.36 24.92 25.28 

Tennis, CIF,30 fps, p=15 28.185 28.58 27.89 28.495 

Stefan, CIF, 30fps, p=15 25.86 26.7 25.645 26.54 

Foreman, CIF, 30fps, p=15 33.629 34.228 33.46 34.18 

Container, CIF, 30fps, p=15 32.1295 32.65 31.97 32.403 

RaceHorses, 480p, 30 fps, p=15 28.251 28.94 28.034 28.87 

Parkrun, 720p, 30 fps, p=31 25.4836 25.523 25.4188 25.508 

 

Table 3.7 Motion estimation quality in terms of PSNR of the proposed Algorithms as compared to existing 
techniques 

Sequence ES TSS 4SS DS ARPS 
PSO 

[52] 

PBPSO 

[51] 

Simultaneous 

Algorithm 

𝑲 = 𝟏𝟔 

Sequential 

Algorithm 

𝑲 = 𝟏𝟔 

Soccer, QCIF, 15fps, p=15 25.01 24.02 22.10 23.26 23.761 24.33 20.12 24.39 24.48 

Bus, QCIF, 15 fps, p=15 23.35 21.88 19.76 20.41 21.036 22.809 17.579 22.941 22.99 

Soccer, CIF, 30fps, p=15 30.19 28.21 27.01 27.69 28.662 29. 329 21.847 29.49 29.57 

Bus, CIF, 30 fps, p=15 25.60 22.37 19.78 20.33 21.793 24.925 18.448 25.28 25.36 

Tennis, CIF,30 fps, p=15 29.19 26.85 27.76 28.12 28.070 28.224 24.304 28.495 28.58 

Stefan, CIF, 30fps, p=15 26.93 24.62 23.70 23.98 26.038 26.482 20.238 26.54 26.7 

Foreman, CIF, 30fps, p=15 34.68 33.49 33.80 34.24 34.185 34.174 31.257 34.18 34.228 

Container, CIF, 30fps, p=15 32.84 26.87 23.59 23.54 29.11 32.386 18.573 32.403 32.65 

RaceHorses, 480p, 30 fps, 
p=15 

29.33 26.80 24.89 26.01 27.44 28.86 21.425 28.87 28.94 

Parkrun, 720p, 30 fps, p=31 25.61 20.43 23.66 23.31 25.33 24.4 19.094 25.508 25.523 
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Figure 3.6 Motion estimation quality measured in PSNR for “Soccer, QCIF” sequence. 

 

 

Figure 3.7 Motion estimation quality measured in PSNR for “Bus,CIF” sequence. 
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Figure 3.8 Motion estimation quality measured in PSNR for “Tennis, CIF” sequence. 

 

 

Figure 3.9 Motion estimation quality measured in PSNR for “Stefan, CIF” sequence 
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Figure 3.10 Motion estimation quality measured in PSNR for “Forman, CIF” sequence 

 

Figure 3.11 Motion estimation quality measured in PSNR for “Container, CIF” sequence 
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Figure 3.12 Motion estimation quality measured in PSNR for “Racehorses, 480p” sequence 

 

Figure 3.13 Motion estimation quality measured in PSNR for “Parkrun, 720p” sequence 
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3.5.5 Computational complexity 

In block matching motion estimation, the average number of candidate blocks checked 

for each MB is used as the evaluation criterion of computation complexity. In this paper, the 

average number of fitness function evaluations for each MB is used as a metric of the 

computational complexity. This section gives the simulation results of a single core 

implementation of our proposed algorithms. Table 3.8 provides a comparison of the computational 

complexity between the proposed sequential and simultaneous algorithms for different number of 

players. It can be seen from Table 3.8 that the simultaneous algorithm provides a reduction in the 

computational complexity as compared to the proposed sequential algorithm for the same number 

of players. The reason behind this is that the sequential algorithm has to go through 𝑇𝑐𝑜𝑛𝑣 BR 

rounds, as shown in Table 3.5, before convergence, whereas the proposed simultaneous algorithm 

goes through only 2 BR rounds followed by an efficient final MV search. This increases the 

number of search points of the proposed sequential algorithm as compared to the simultaneous 

approach. On the other hand, as shown in Table 3.8, increasing the number of players leads to an 

increase in the computational complexity which is due to the increase in the number of BR rounds 

needed for convergence for the sequential algorithm and the increase in the computational 

requirements of the final MV search step in the proposed simultaneous approach. 

In Table 3.9, the computational complexity of the proposed algorithms, when 16 players 

are used, is compared with that of existing techniques. Although the simulation parameters, as 

shown in section 6.2, are chosen so that the proposed algorithms have a computational complexity 

equivalent to that of the centralized PSO approach in [52]; nevertheless, it is noticed from the  

results in Table 3.9 that the proposed distributed approaches provide a reduction in the 

computational complexity than the PSO algorithm in [52]. The exploitation of time-space 
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correlation of video sequences through effective particle initialization, agent’s fitness calculation 

history preservation, and the efficient termination strategies used have decreased the number of 

search points needed. The proposed simultaneous algorithm provides a further reduction in the 

computational complexity that goes below the PBPSO algorithm in [51] for most of the sequences. 

 

Table 3.8 Comparison of the average number of fitness function evaluations per MB for the proposed sequential 
and simultaneous algorithms for different values of K 

 
Sequential Algorithm Simultaneous Algorithm 

Sequence 𝑲 = 𝟒 𝑲 = 𝟏𝟔 𝑲 = 𝟒 𝑲 = 𝟏𝟔 

Soccer, QCIF, 15fps, p=15 10.99 14.366 9.59 13.67 

Bus, QCIF, 15 fps, p=15 10.9 16.055 8.94 12.54 

Soccer, CIF, 30fps, p=15 8.89 11.73 7.34 9.57 

Bus, CIF, 30 fps, p=15 9.59 14.075 7.9 10.95 

Tennis, CIF,30 fps, p=15 8.2 12.95 6.389 9.107 

Stefan, CIF, 30fps, p=15 7.89 11.08 7.625 8.687 

Foreman, CIF, 30fps, p=15 9.12 11.38 8.82 9.528 

Container, CIF, 30fps, p=15 6.29 10.809 7.67 7.268 

RaceHorses, 480p, 30 fps, p=15 14.017 16.401 13.29 15.32 

Parkrun, 720p, 30 fps, p=31 8.2 13.91 8.202 8.38 

 

Table 3.9 Comparison of the average number of fitness function evaluations per MB for various algorithms based 
on the first 100 frames of the video sequences 

Sequence ES TSS 4SS DS ARPS PSO [52] PBPSO[51] 

Simultaneous  

Algorithm 

𝑲 = 𝟏𝟔 

Sequential 

Algorithm 

𝑲 = 𝟏𝟔 

Soccer, QCIF,15fps, p=15 961 29.33 18.33 17.66 13.25 16.2 11.024 13.67 14.366 

Bus, QCIF,15fps,  p=15 961 29.46 19.85 22.51 12.44 19.22 12.482 12.54 16.055 

Soccer, CIF,30fps, p=15 961 31.13 20.01 19.89 10.61 13.54 12.24 9.57 11.73 

Bus, CIF, 30fps,  p=15 961 31.23 24.24 21.39 12.35 17.83 11.92 10.95 14.075 

Tennis, CIF,30 fps, p=15 961 30.973 18.893 17.195 9.448 15.839 12.243 9.107 12.95 

Stefan, CIF, 30fps, p=15 961 30.753 18.803 18.023 8.819 14.098 11.289 8.687 11.08 

Foreman, CIF, 30fps, p=15 961 30.7602 18.456 16.661 8.978 12.925 12.114 9.528 11.38 

Container, CIF, 30fps, p=15 961 31.165 21.247 23.0984 9.7977 12.337 12.751 7.268 10.809 

RaceHorses, 480p, p=15 961 32.17 30.06 23.35 14.97 16.6 13.31 15.32 16.401 

Parkrun, 720p, p=31 3969 40.11 22.97 21.18 9.77 15.924 12.182 8.38 13.91 
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3.5.6 Parallel performance of the proposed simultaneous algorithm 

The parallel version of the proposed simultaneous algorithm is implemented using 

Matlab PCT. The algorithm is simulated using different Matlab workers, or labs, and the average 

execution times per frame are recorded in Tables 3.10 and 3.11 for 𝐾 = 4 and 𝐾 = 16 

respectively. T1 is the time needed to initialize the swarms of PSO particles for the subblocks, T2 

is the total time needed for inter-agent communication, and T3 is the time needed to perform the 

simultaneous BR rounds and the final MV search step. The parallel performance of our algorithm 

is evaluated in terms of the speedup factor, parallel efficiency, and granularity. 

 

Table 3.10 Parallel performance of the proposed Simultaneous algorithm using Matlab PCT for 𝐾 = 4 

Sequence Number of Labs T1 (s) T2 (s) T3 (s) 
Total Time 

(s) 
Speedup 

Efficiency 

% 
Granularity 

Soccer QCIF, 15 fps, p=15 

 
1 0.0351 0 0.1075 0.1426 1 100 - 

 
2 0.0236 0.009 0.0671 0.0997 1.4303 71.5145 10.0778 

 
4 0.015 0.008 0.0367 0.0597 2.3886 59.7152 6.4625 

Bus, CIF, 30 fps, p=15 

 
1 0.1482 0 0.4034 0.5516 1 100 

 

 
2 0.097 0.0294 0.2398 0.3662 1.5063 75.3140 11.4558 

 
4 0.0621 0.033 0.1352 0.2303 2.3951 59.8784 5.9788 

RaceHorses, 480p, 30 fps, p=15 

 
1 0.6465 0 2.4153 3.0618 1 100 

 

 
2 0.3419 0.1089 1.3309 1.7817 1.7185 85.9236 15.3609 

 
4 0.201 0.1254 0.7907 1.1171 2.7408 68.5212 7.9083 

Parkrun, 720p, 50 fps, p=31 

 
1 1.3481 0 4.9274 6.2755 1 100 

 

 
2 0.8691 0.3378 2.9044 4.1113 1.5264 76.3201 11.1708 

  4 0.5816 0.3948 1.5955 2.5719 2.4400 61.0006 5.5144 
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Table 3.11 Parallel performance of the proposed Simultaneous algorithm using Matlab PCT for 𝐾 = 16 

Sequence Number of Labs T1 (s) T2 (s) T3 (s) 
Total Time 

(s) 
Speedup 

Efficiency 

% 
Granularity 

Soccer QCIF, 15 fps, p=15 

 
1 0.0355 0 0.1053 0.1407 1 100 

 

 
2 0.0204 0.0089 0.0619 0.0912 1.5427 77.1328 9.2509 

 
4 0.0120 0.0104 0.0322 0.0545 2.5804 64.5111 4.2444 

 
8 0.0065 0.0127 0.0167 0.0359 3.9204 49.0048 1.8268 

 
16 0.0035 0.0148 0.0095 0.0278 5.0626 31.6416 0.8784 

Bus, CIF, 30 fps, p=15 

 
1 0.1648 0 0.5088 0.6736 1 100 

 

 
2 0.1002 0.041 0.2968 0.4380 1.5381 76.9028 9.6817 

 
4 0.0576 0.0461 0.1656 0.2692 2.5020 62.5511 4.8398 

 
8 0.0314 0.0511 0.0819 0.1644 4.0973 51.2159 2.2172 

 
16 0.0210 0.059 0.0512 0.1312 5.1341 32.0880 1.2237 

RaceHorses, 480p, 30 fps, p=15 

 
1 0.6932 0 2.972 3.6655 1 100 

 

 
2 0.3678 0.142 1.563 2.0727 1.7685 88.4254 13.5963 

 
4 0.2151 0.168 0.884 1.2667 2.8938 72.3443 6.5399 

 
8 0.1507 0.213 0.512 0.8757 4.1858 52.3230 3.1113 

 
16 0.0652 0.251 0.288 0.6042 6.0668 37.9173 1.4072 

Parkrun, 720p, 50 fps, p=31 

 
1 1.455 0 6.01575 7.47075 1 100 

 

 
2 0.8573 0.337 3.624 4.8183 1.5505 77.5242 13.2977 

 
4 0.4713 0.4167 1.9695 2.8575 2.6144 65.3601 5.8575 

 
8 0.313 0.491 1.015 1.8190 4.1071 51.3383 2.7047 

  16 0.184 0.526 0.621 1.3310 5.6129 35.0805 1.5304 

 

3.5.6.1 Speedup 

 

To measure the parallel performance of our proposed algorithm, we used the speedup 

factor, S(n),which is defined as:  

𝑆 (𝑛) =
𝑇𝑠

𝑇𝑛
,           (3.16) 

where 𝑇𝑠 is the total execution time on a single processor, while 𝑇𝑛 is the total execution time on 

a multicore system of n processors. In Tables 3.10 and 3.11, 𝑇𝑠 is taken as the total time when 

executing the code on one lab and 𝑇𝑛 is the total time when executing the code on n labs. Fig. 3.14 

shows a plot of the speedup as function of the number of cores for the four sequences for the two 
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values of 𝐾. In the presented algorithm, for a small number of cores, the amount of 

communication needed is low since most of the neighbors of a given player will be allocated to the 

same cores. As shown in the Tables 3.10 and 3.11, the average speedup is 1.6 for two cores. 

Nevertheless, as the number of cores increases, the speedup also increases but its rate of increase 

slightly diminishes due to the increase in the communication time resulting from the fact that the 

neighbors of a given player might reside on different cores.  

Note that in the proposed parallel simultaneous ME algorithm, the MBs within the frame 

are processed sequentially, but the ME process of each MB is parallelized across multiple cores. 

The motion estimation process of each MB is formulated as a game between 𝐾 players that are 

equally distributed across the available processing cores for load balancing. Theoretically, the 

algorithm is parallelizable across a maximum number of cores equal to the number of players in 

the game, where each player is assigned to a core or Matlab worker. Therefore, in the proposed 

algorithm, parallelism is limited to n = 𝐾 and using a larger number of cores will be useless. 

Comparing the results in Tables 3.10 and 3.11, it is noticed that decreasing the number of 

players in the game leads to a slight decrease in both the computation and communication times. 

The reason behind this lies in two folds. First, decreasing the number of players in the game 

reduces the number of allocated players per core as well as the number of direct neighbors for each 

player which leads to a decrease in the needed inter-processor communication. Second, using a 

smaller number of players slightly decreases the needed computations in the final MV search step. 

The needed computational complexity during the BR rounds is basically the same since its 

independent of the number of players 𝐾 as was shown in section E.5. The main limitation in using 

a smaller value of 𝐾 is that parallelism is limited to n = 𝐾and reducing the number of players 

would limit the scalability of the algorithm. 
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Figure 3.14 Speedup achieved by the parallel implementation of the proposed simultaneous algorithm for different 
values of K 

 

3.5.6.2 Parallel Efficiency 

 

It is observed that the parallel efficiency decreases with the increase of the number of 

cores. This is due to the fact that as the number of cores increases, the probability that the 

neighbors of each player would be allocated to a different core increases. As a result, this leads to 

an increase in the needed inter-processor communication during the synchronization stage of the 

algorithm. 

 

3.5.6.3 Granularity 

 

To measure the granularity of our algorithm, the computation and communication times 
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are taken as: 

𝑇𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑇1 + 𝑇3,        (3.17) 

𝑇𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑇2.         (3.18) 

As shown in Tables 3.10 and 3.11, the granularity decreases with the increase of number 

of cores since less number of players would be assigned to each core which results in a decrease in 

the computation time. Moreover, as the number of cores increases, the amount of communication 

needed also increases which results in an increase in the communication time. Comparing the 

values in Tables 3.10 and 3.11, we notice that higher granularity values are recorded for 𝐾=4 as 

compared to the values for 𝐾=16 when the same number of cores (for 𝑛 ≤ 4) are used. This is due 

to the decrease in the needed communication needed with the decrease in the number of players, as 

mentioned before. Overall, in the presented implementation granularity is considered coarse which 

implies more opportunity for performance increase. 

3.6 Summary 

This work presents a novel distributed approach to block motion estimation. The 

optimization problem of BME of a given MB is cast in a game-theoretic setting using a network of 

autonomous agents. It is shown that by using local communication and applying simple robust 

state-changing rules such as following natural game-theoretic dynamics, agents can, in a 

distributed fashion, optimize the global objective function of the whole MB. First, a global 

objective function that captures the notion of consensus is established. Next, it is shown that local 

utility functions can be assigned to the players, so that the resulting game is proven to be a 

potential game. Sequential and simultaneous algorithms based on BRD are proposed to solve the 

game in a distributed fashion.  Theoretical and empirical analysis is provided to prove the 

convergence of the proposed sequential algorithm. On the other hand, a sub-optimal final MV 
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search method is proposed in the presented simultaneous scheme to overcome the absence of 

guaranteed convergence. Despite its lack of guaranteed convergence, the proposed simultaneous 

algorithm provides a high level of data parallelism between the subblocks. The multi-core 

implementation of this scheme shows that speedup is indeed obtained. Simulation results show 

that the proposed algorithms provide an improvement in estimation quality and a decrease in 

computational complexity as compared to existing techniques.   
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CHAPTER 4 
 

A DISTRIBUTED PARTICLE SWARM OPTIMIZATION 

ALGORITHM USING THE STRATEGIES OF DIFFUSION 

ADAPTATION 
 

Many variants of particle swarm optimization (PSO) [45-52] were used for the problem 

of ME. Even though these algorithms have very powerful global optimization capabilities, they 

are, however, highly centralized at the block level and require a central processor to continuously 

communicate with all the particles in the swarm during the iterative search process. This makes 

these algorithms very hard to parallelize and thus cannot be accelerated using the available parallel 

processing technologies. In chapter 3, distributed PSO algorithms were proposed using 

non-cooperative game theory. The proposed distributed parallel algorithm could achieve 

parallelism within the MB. In this chapter, we tackle the same problem but from a different 

perspective. A distributed PSO algorithm is developed to achieve parallelism within the MB using 

the diffusion adaptation theory in a multi-agent setting.  

In multi-agent cooperation problems, different network topologies will influence 

different manners of cooperation between agents. A centralized system will directly control the 

operation of each agent with information flow from a single center, while in a distributed system, 

agents operate separately under certain communication protocols. For distributed multi-agent 

systems, there are two main challenges need to be addressed to achieve cooperation among a 

potentially large number of involving agents. First, there is limited information for agents to utilize 

to achieve the global objective. Moreover, the information of the distributed network topology is 

unknown to agents. 
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Diffusion adaptation is an emerging adaptation mechanism that is applied to networks of 

nodes to solve several types of optimization problems. This mechanism is distributed where nodes 

are allowed to communicate only with their neighbors. Thus, no centralized processing is needed. 

In this paper, we study the distributed optimization of block motion estimation using a network of 

cooperative nodes based on diffusion protocols. The ME problem is formulated as the 

optimization of a global cost function that is the sum of individual sub-problems.  Nodes are 

equipped with local estimation capabilities based on PSO. They iteratively produce local estimates 

using PSO to minimize their local cost functions. Diffusion strategies are employed to allow the 

agents to cooperate and diffuse information in real-time in order to reach the common minimizer 

of the global cost function. This approach would be highly parallel since it is distributed 

(non-centralized) and thus suitable for a parallel implementation.  

The rest of the chapter is organized as follows. In section 4.1, a brief review of the 

concepts of multi-agent networks and diffusion adaptation. In section 4.2, the details of the 

proposed approach are given. Section 4.3 presents the parallel implementation of the proposed 

diffusion-PSO algorithm using MATLAB PCT. Simulation results are provided and analyzed in 

section 4.4. Section 4.5 provides a summary of this chapter. 

 

4.1 Background 

4.1.1 Multi-agent systems 

In many disciplines such as computer science or robotics, the concept of an agent is 

ubiquitous. The birth of the term “agent” has its roots in computer science, whereby an agent is, 

roughly, defined as an autonomous computer program. The notion of an agent is quite difficult to 

define. Although numerous papers on the subject of agents and multi-agent systems have been 
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written, a tremendous number of definitions exist. In essence, an agent is an entity that has the 

capabilities of an intelligent person or human being. Due to this characteristic, being able to find a 

unified definition of an agent is quite tough. Although the definition can vary from one discipline 

to the other, in general, the main characteristics of an agent are its proactive and intelligent ability 

to sense its environment, interact with it, and take autonomous decisions. In some sense, the role of 

an agent is to mimic human behavior in a given technical problem whether it be, for example, in 

computer science, robotics or control systems. Thus, a multi-agent system is a system composed of 

multiple interacting intelligent agents that can interact, collaborate, and act together in order to 

solve different problems. For example, multi-agent systems can be used to solve problems in 

online trading, software engineering, disaster response, military applications, and modeling social 

structures [83]. 

The main challenge in designing multi-agent systems is to be able to allow the agents to 

somehow simulate the way humans act in their environment, interact with one another, 

cooperatively solve problems or act on behalf of others, solve more and more complex problems 

by distributing tasks or enhance their problem solving performances by competition. Clearly, the 

use of agents and multi-agent systems will be one of the landmark technology in many disciplines 

in years to come, as it will bring extra conceptual power, new methods and techniques, and 

advanced design approaches. Consequently, this will essentially broaden the spectrum of 

applications and expand it beyond the computer world into disciplines such as wireless networks 

or communications theory. 

Independent from its application, a general problem that is of strong interest in 

multi-agent systems, is the distribution of tasks among the different agents. For instance, it is of 

importance to study how, a number of agents, can autonomously and intelligently allocate 
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different tasks among each others using cooperative as well as non-cooperative approaches [83]. 

In a software system, the tasks can represent, for example, threads or programs that need to be 

executed. In a control system, the tasks can be points in time or space that the agents are required to 

attend to. For example, in [84, 85], the problem of enabling a number of vehicle-agents to move to 

randomly generated tasks is studied in a non-cooperative approach, while in [86, 87], the problem 

of task allocation in a software system is studied using a heuristic coalition formation approach. 

Additional approaches for agents task allocation in robotics and artificial intelligence are found in 

[83–92]. 

 

4.1.2 Diffusion Adaptation 

In recent years, diffusion adaptation strategies have been proposed for the solution of 

estimation [93, 94] and optimization problems [95] over networks in an adaptive and distributed 

manner. In [93], authors formulate and study distributed estimation algorithms based on diffusion 

protocols to implement cooperation among individual adaptive nodes. The individual nodes are 

equipped with local learning abilities. They derive local estimates for the parameter of interest and 

share information with their neighbors only, giving rise to peer-to-peer protocols. The resulting 

algorithm is distributed, cooperative and able to respond in real time to changes in the 

environment. It improves performance in terms of transient and steady-state mean-square error, as 

compared with traditional non-cooperative schemes. Closed-form expressions that describe the 

network performance in terms of mean-square error quantities are derived, presenting a very good 

match with simulations. 

Each node in the network could function as an individual adaptive filter whose aim is to 

estimate the parameter of interest through local observations. These individual estimates across the 
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nodes could then be locally fused with their neighboring estimates in the network in order to obtain 

an estimate that is influenced by the data at the nearby nodes; for instance, by resorting to 

consensus implementations. 

In [96], an iterative diffusion mechanism is developed to optimize a global cost function 

in a distributed manner over a network of nodes. The cost function is assumed to consist of a 

collection of individual components, and diffusion strategy allows the nodes to cooperate and 

diffuse information in real-time. Compared to incremental methods, diffusion methods do not 

require the use of a cyclic path over the nodes and are more robust to node and link failure. 

Adaptive networks are well-suited to perform decentralized information processing and 

optimization tasks and to model various types of self-organized and complex behavior 

encountered in nature [97]. Adaptive networks consist of a collection of agents with processing 

and learning abilities. The agents are linked together through a connection topology, and they 

cooperate with each other through local interactions to solve distributed optimization, estimation, 

and inference problems in real-time. The continuous diffusion of information across the network 

enables agents to adapt their performance in relation to streaming data and network conditions; it 

also results in improved adaptation and learning performance relative to non-cooperative agents.  

Diffusion adaptation has been used to model the swarming behavior of flocks of birds [98], honey 

bees [99], and schools of fish [100] adapting to their environment. The diffusion adaptation 

algorithm is summarized as follows. Nodes or agents behave as adaptive filter with learning (or 

estimating capabilities). They exchange estimates with their neighborhood, then combine this 

information with their intermediate estimates before updating at each time step. 
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4.2 The Proposed Distributed Block Motion Estimation Algorithm Using PSO and 

Diffusion Adaptation 

The problem addressed in this chapter is how to solve the optimization problem of ME in 

a distributed way through cooperative processing over a multi-agent network. 

 

4.2.1 Problem Formulation 

For motion estimation through a block matching (BM) algorithm, the current frame of an 

image sequence 𝐼𝑡 is divided into non-overlapping blocks of N × N pixels. For each template 

block in the current frame, the best matched block within a search window (S) of size (2𝑊 +

 1)  ×  (2𝑊 +  1) in the previous frame 𝐼𝑡−1is determined, where 𝑊 is the maximum allowed 

displacement. Under such perspective, BM can be approached as an optimization problem aiming 

for finding the best MV within a search space. 

The most well-known criterion for BM algorithms is the sum of absolute differences 

(SAD). Considering a template MB at position (x, y) in the current frame and the candidate MB at 

position  (𝑥 + 𝑢̂, 𝑦 + 𝑣)  in the previous frame 𝐼𝑡−1: 

𝑆𝐴𝐷(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|,𝑁−1
𝑖=0

𝑁−1
𝑗=0   (4.1) 

where 𝑔𝑡(. )is the gray value of a pixel in the current frame 𝐼𝑡 and 𝑔𝑡−1(. ) is the gray level of a 

pixel in the previous frame 𝐼𝑡−1.  

The SAD fitness function used in the BMA can be viewed as a global cost function: 

𝐽𝑔𝑙𝑜𝑏(𝑢̂, 𝑣) = 𝑆𝐴𝐷(𝑢̂, 𝑣).        (4.2) 

Consider a collection of K agents interested in estimating the same parameter 

vector, 𝑤.The vector is the minimizer of the global cost function, 𝐽𝑔𝑙𝑜𝑏(𝑤), which the agents seek 

to optimize.We want to study the distributed optimization of this global cost function. To do 

that,𝐽𝑔𝑙𝑜𝑏(𝑤)is assumed to consist of the sum of individual components. We start our development 
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by associating with each agent 𝑘 an individual cost (or utility) function, 𝐽𝑘(𝑤), such that: 

𝐽𝑔𝑙𝑜𝑏(𝑢, 𝑣) = ∑ 𝐽𝑘(𝑢, 𝑣).𝐾
𝑘=1         (4.3) 

In this way, the global cost function is divided into a number of local cost functions each 

associated to an agent. In order to find such decomposition, we will uniformly divide the MB, of 

dimension 𝑁𝑥𝑁, into 𝐾 equal subblocks of dimensions 𝐿𝑥𝐿. Then, a network of 𝐾 agents is 

employed such that agent 𝑘 would minimize the local cost function given by: 

𝐽𝑘(𝑢̂, 𝑣) = ∑ ∑ |𝑔𝑡(𝑥𝑘 + 𝑖, 𝑦𝑘 + 𝑗) − 𝑔𝑡−1(𝑥𝑘 + 𝑢̂ + 𝑖, 𝑦𝑘 + 𝑣 + 𝑗)|𝐿−1
𝑖=0

𝐿−1
𝑗=0 ,   (4.4) 

where(𝑥𝑘, 𝑦𝑘)is the position of the subblock. 

The MB decomposition which was used in Chapter 3, and shown Fig.3.1, is again used 

here. The MB, of dimension 16x16 (that is 𝑁 = 16) is divided along the rows and columns into 

4x4 equal subblocks. In this case 𝐾 = 16, and each subblock is of dimension 4x4, that is 𝐿 is 4. 

By finding the minimizer of the local cost function, each agent is searching for the 

optimal MV of each subblock. Therefore, the minimizers of the local cost functions may not 

coincide and each subblock would converge to a different MV. Our target however, is to find the 

optimal MV for the entire MB. Therefore, all agents must converge to a common minimum which 

is the minimizer of the global cost function. 

To do this, cooperation between the agents is essential. Diffusion adaptation strategies are 

employed to allow the agents to share information locally with their neighborhood. By cooperating 

with their neighbors, and by having these neighbors cooperate with their neighbors, procedures 

can be devised that would enable all agents in the network to converge towards the global optimum 

through local interactions.  

In diffusion adaptation, neighboring nodes can share information with each other as 

permitted by the network topology. In this algorithm, we use the network topology which was 
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proposed in Section 3.2.1 and shown in Fig.3.2. Fig. 3.2 shows a given MB decomposed into 16 

sub-blocks with one agent, or node, used for each sub-block. The node of each sub-block is 

connected with the nodes of its 8 neighboring sub-blocks. Such a topology graph is chosen because 

in motion estimation there is a high level of spatial correlation. Therefore, we expect that allowing 

each node to share information with its 8 neighbors would improve the global performance level. 

To motivate the distributed diffusion-based approach, we start by introducing a set of 

nonnegative coefficients {ckl} that satisfy two conditions: 

for 𝑘 = 1,2, … , 𝐾: 

𝑐𝑘𝑙 ≥ 0, ∑ 𝑐𝑘𝑙 = 1, 𝑎𝑛𝑑 𝑐𝑘𝑙 = 0 𝑖𝑓 𝑙𝐾
𝑙=1  ∉ 𝒩𝑘,     (4.5)  

where 𝒩k denotes the neighborhood of node k.  

Nodes or agents then use these coefficients {𝑐𝑘𝑙} to fuse estimates from their neighbors 

at each iteration. 

Agents are equipped with local estimation capabilities. They should be able to iteratively 

estimate the minimizers of their local cost functions. Since the local, as well as, the global cost 

function, have a lot of local minima, they are classified to be non-convex. Therefore, agents should 

use a global optimization technique. PSO is chosen as the global optimization algorithm used by 

the agents due to its profound intelligence and simple algorithm structure. 

 

4.2.2 Proposed Diffusion PSO Block Motion Estimation Algorithm 

The proposed diffusion block motion estimation algorithm is implemented using PSO as 

follows: 

An MB is divided into 𝐾subblocks as shown in Fig. 3.1. Then, a swarm of M particles is 

defined for each subblock. PSO iterations are performed in each subblock in order to find the 
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minimizer of the local cost function of the subblock as defined in (4.4). After the completion of an 

adaptation step through a modified PSO iteration by all subblocks, a diffusion step is performed. 

The proposed approach follows the Combine-then-Adapt (CTA) diffusion algorithm, first 

proposed and extended in [93, 94, 101-105] for the solution of distributed mean-square-error, 

least-squares, and state-space estimation problems over networks. The algorithm consists of two 

steps: a diffusion (combination) step followed by an adaptation (processing) step. The proposed 

diffusion PSO model is shown in Fig. 4.1. The details of the proposed algorithm are as follows:  

 

 

Figure 4.1 Proposed PSO Diffusion Adaptation Model 

 

 

4.2.2.1 Diffusion Step 

 

In this diffusion step, each agent will receive updated information from its neighboring 

agents about their current estimates. Using the connectivity graph shown in Fig. 3.2, each subblock 

𝑘 will take a weighted average of the Pg positions found so far by its neighbors denoted by 

𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘 which is given by: 

𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘 = ∑ 𝑐𝑘𝑙 ∗ 𝑃𝑔𝑙
𝐾
𝑙=1 ,        (4.6) 

where the coefficients cklsatisfy (4.5). 
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4.2.2.2 Adaptation Step 

 

The adaptation step used in the proposed algorithm consists of one PSO iteration 

performed by all the agents in the MB. The basic PSO iteration, however, is modified to take into 

consideration the information received from the neighboring agents. This is done by introducing 

the following modifications into the PSO process: 

4.2.2.2.1 Modified PSO Velocity Update Equation 

 

The velocity update equation of PSO in (2.4) is modified to include the contribution of the 

neighboring subblocks. In addition to the best position found so far by the particle and the best 

position found so far by all the swarm of the subblock, a third attracting element is introduced 

which is PGlobal,kwhich denotes the information received from the neighboring subblocks. 

PGlobal,k is embedded in the velocity update equation of  particle i of subblock k as follows: 

𝑉𝑖𝑘(𝑡 + 1) = 𝑤𝑉𝑖𝑘(𝑡) + 𝑐1𝑟1[𝑃𝑖𝑘(𝑡) − 𝑋𝑖𝑘(𝑡)] + 𝑐2𝑟2[𝑃𝑔𝑘(𝑡) − 𝑋𝑖𝑘(𝑡)] + 𝑐3𝑟3[𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘(𝑡) − 𝑋𝑖𝑘(𝑡)](4.7) 

In this way, a particle in subblock 𝑘 will not only be attracted towards the minimizer of 

the local cost function of its subblock but also towards the minimizers of the cost functions of its 

surrounding subblocks. Following this approach, we aim to drive PSO to find the motion vector 

that would minimize the local SAD of the subblock while being very close to the motion vectors of 

the surrounding MBs.  

4.2.2.2.2 Modified Fitness Function 

 

The fitness function used in the PSO iterations to evaluate any found motion vector (û, v̂) 

is also modified to include not only the SAD of the subblock but also a regularization term that 

measures the deviation of the motion vector from the motion vectors found so far by the 

neighboring subblocks. This is done as follows: 
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𝐹(𝑢̂, 𝑣)𝑘 = 𝐽𝑘(𝑢̂, 𝑣) + 𝛼(𝑡) ∗ |(𝑢̂, 𝑣) − 𝑃𝐺𝑙𝑜𝑏𝑎𝑙,𝑘|,      (4.8) 

where 𝐹(𝑢̂, 𝑣)𝑘 is the fitness of the motion vector (𝑢̂, 𝑣) for subblock 𝑘, and 𝛼(𝑡) is the 

regularization factor. 

The regularization factor 𝛼(𝑡) is a used to adaptively varied in each PSO iteration 𝑡 as 

follows: 

𝛼(𝑡) =
𝑡

𝑁𝑡
,           (4.9) 

𝛼(𝑡) is linearly increasing with the number of iterations. When t is small, i.e. in the beginning of 

the PSO iterative process, the fitness value of a given search point is the real cost function of the 

subblock. As we go through the PSO process, i.e. t increases, then the effect of the regularization 

term increases and more weight will be given to the deviation from the neighboring subblocks. 

Thus, we ensure that the motion vector estimated by a given agent is aligned with the average 

estimates of its neighbors. The objective of using this approach is to drive all the PSO swarms of 

the subblocks eventually to reach consensus on a common motion vector for all the subblocks 

which is the optimum motion vector of the whole MB. 

The pseudo code of the proposed algorithm is shown in Table 4.1. 
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Table 4.1 Pseudo code of the proposed diffusion-PSO algorithm 

For each MB in the frame do 

Initialize a set of M particles  

For each agent or subblock k=1,…,K do 

Initialize the fitness history array entries to zeros 

Initialize particle velocities to zeros 

End for 

PSO iterations: 

Repeat 

Update the regularization factor 𝛼(𝑡) using (4.9) 

Diffusion Step: 

All Agents broadcast their actions to their neighbors.  

All agents receive information from their neighbors about their actions 

Adaptation step: 

For each agent or subblock k=1,…,K do 

For each particle i=1,…,M do 

Check its flag in agent k history array 

If the flag is 0 then 

Calculate utility function of the agent 

Update the particle’s best position Pi and the global best position Pg of the agent 

Save the value of the fitness value in the history array 

Set flag to 1 

Else 

Retrieve the value of the fitness function from the history array 

Update Pi 

End if 

Adaptively change vmax  

Update the velocity using (4.7) 

Update the position  

End for 

End for 

Until stopping conditions of the PSO process are met 

If convergence is not reached then 

Final MV search step 

End If 

End for 

 

 

 

4.2.3 Computational complexity analysis 

As was shown in section 3.3.1.9 in chapter 3, the computing complexity of calculating the SAD is 

O(N2), where N is the number rows or columns in NxN square MB. In the proposed 

diffusion-based PSO algorithm, each MB is divided into K subblocks as shown in Fig. 4.2. The 

cost function of agent k is the SAD of the subblock of dimension LxL as given in (4.4). 

Therefore, each SAD computation performed by an agent is O(L2). Since, as illustrated in Fig. 4.2, 
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N2

L2⁄ = K, then we can say that each cost function computed by an agent corresponds to 1
K⁄  MB 

fitness function evaluation.In the proposed algorithms, we have K agents within a given MB. In 

the proposed process, the M particles of each agent will perform a maximum of 𝑁𝑡 PSO 

iterations. Therefore, the maximum total computational complexity of the proposed algorithm, in 

terms of fitness function evaluations per MB, is given by: 

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝐾 ∗
𝑁𝑡∗𝑀

𝐾
= 𝑁𝑡 ∗ 𝑀.    (4.10) 

 

4.3 Parallel Implementation 

In this section, a multicore implementation of the proposed diffusion-PSO algorithm is 

proposed using the MATLAB® Parallel Computing Toolbox™ (PCT). From the pseudo code of 

the proposed diffusion PSO algorithm given in Table 4.1, we notice that the proposed ME 

algorithm for each MB in the frame is made up of the following steps: Initialization step to 

initialize the PSO swarms for the agents followed by the diffusion PSO iterations. The 

initialization step for each agent is completely independent from that of the other agents. 

Therefore, it can be parallelized. Moreover, each iteration of the proposed diffusion PSO process is 

made up of two steps: a diffusion step followed by an adaptation step. Both of these steps are 

inherently parallel between the agents. Therefore, a simultaneous execution of the diffusion step 

can be performed by all the agents followed by a simultaneous execution of the adaptation step. 

The details of the proposed parallel implementation are shown in Table 4.2. 
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Table 4.2 Pseudo code of the parallel implementation of the proposed Diffusion-PSO algorithm using MATLAB 

 

 

 

 

4.4 Simulation results 

4.4.1 Experimental setup 

Several test video sequences of various formats and various motion intensity, (QCIF: 

176x144), LD (CIF: 352x288), SD (480p: 832x480), and HD (720p: 1280x720), have been used to 

test the performance of our proposed algorithm and compare it to existing techniques. In our 

simulations, every frame is divided into MBs of size 16 * 16 pixels. The search parameter 𝑊 

which defines the search area is chosen to be 15 except for the HD (Parkrun) video sequence where 

For each MB in the frame do 

Initialize a set of M particles  

spmd 

For  k=drange (1,…,K) do 

Initialize the fitness history array entries to zeros 

Initialize particle velocities to zeros 

End  for drange 

PSO iterations: 

Repeat 

Update the regularization factor 𝛼(𝑡) using (4.9) 

Diffusion Step: 

All agents exchange information from their neighbors about their actions using labSendReceive 

For  k=drange (1,…,K) do 

Adaptation step: 

For each particle i=1,…,M do 

Check its flag in agent k history array 

If the flag is 0 then 

Calculate utility function of the agent 

Update the particle’s best position Pi and the global best position Pi of the agent 

Save the value of the fitness value in the history array 

Set flag to 1 

Else 

Retrieve the value of the fitness function from the history array 

Update Pi 

End if 

Adaptively change vmax  

Update the velocity using (4.7) 

Update the position  

End for 

End  for drange 

Until stopping conditions of the PSO process are met 

If convergence is not reached then 

Final MV search step 

End If 

End for 
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𝑊was chosen to be 31. 

For the PSO algorithm, the size of the particle population was chosen to be M=10 and the 

maximum number of iterations is Nt = 3. The stopping conditions used in [52] are adopted in the 

simulations. The maximum allowed velocity Vmax = 15 for a search range 𝑊 of ±15 and Vmax = 31 

for a search range 𝑊  of ±31. 

Results are presented with two distinct criteria: objective motion estimation quality and 

computational complexity. 

 

4.4.2 Motion estimation quality 

 Objective motion estimation quality is measured interms of Peak Signal to Noise Ratio 

(PSNR) values averaged over the first 100 frames of each test video sequence.  

Table 4.3 gives the average PSNR results for the ES algorithm and several traditional fast 

searching techniques, like three step search (TSS) [16], four step search (4SS) [18], diamond 

search (DS) [19], and adaptive root pattern search (ARPS)[22]. PSNR results are also given for the 

recently proposed PSO-based ME algorithms given in [51, 52]. Simulation results show that the 

proposed algorithm provides an improvement in motion estimation quality as compared to the 

other techniques as shown in Fig. 4.2, Fig. 4.3, Fig. 4.4, and Fig. 4.5. 
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Table 4.3 Motion estimation quality in terms of PSNR of the proposed Diffusion-PSO algorithm as compared to 
existing techniques 

Algorithm 

Sequence  

Soccer QCIF, 

W=15 

Bus CIF, 

W=15 

RaceHorses 480p, 

W=15 

Parkrun 720p, 

W=31 

ES 
25.01 25.61 29.34 25.61 

TSS 
24.02 22.37 26.81 20.44 

4SS 
22.11 19.79 24.891 23.66 

DS 
23.27 20.34 26.02 23.31 

ARPS 
23.77 21.79 27.45 25.33 

PSO[8] 
24.33 24.9 28.07 24.4 

PBPSO[9] 
19.12 17.45 20.43 19.1 

 Diffusion-PSO 
24.38 25.39 28.95 25.54 

 

 

Figure 4.2 Motion estimation accuracy measured in PSNR for “Soccer QCIF” sequence.  
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Figure 4.3 Motion estimation accuracy measured in PSNR for “Bus CIF” sequence. 

 

Figure 4.4 Motion estimation accuracy measured in PSNR for “RaceHorses 480p” sequence.
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Figure 4.5 Motion estimation accuracy measured in PSNR for “Parkrun” sequence. 

 

4.4.3 Computational complexity 

The average number of fitness function evaluations for each MB is used as a metric of the 

computational complexity. As shown in Table 4.4, the proposed approach provides a significant 

decrease in the computational complexity as compared to existing techniques. 
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Table 4.4 Comparison of the average number of fitness function evaluations per block of the proposed 
Diffusion-PSO algorithm based on the first 100 frames of the video sequences 

Algorithm 

Sequence  

Soccer QCIF, 

 W=15 

Bus CIF, 

W=15 

RaceHorses 480p, 

W=15 

Parkrun 720p, 

W=31 

ES 
961 961 961 3969 

TSS 
29.33 31.23 32.17 40.11 

4SS 
18.33 24.24 30.06 22.97 

DS 
17.66 21.39 23.35 21.18 

ARPS 
13.25 12.35 14.97 9.77 

PSO[52] 
14.53 15.83 16.01 15.024 

PBPSO[51] 
11.024 11.92 13.31 12.182 

Diffusion-PSO 
12.94 10.03 11.61 7.98 

 

 

4.4.4 Parallel Performance 

The parallel version of the proposed diffusion-PSO algorithm is implemented using Matlab 

PCT. The algorithm is simulated using different Matlab workers, or labs, and the average 

execution times per frame are recorded in Table 4.5. T1 is the time needed to initialize the swarms 

of PSO particles for the subblocks, T2 is the total time needed for inter-agent communication, and 

T3 is the time needed to perform the modified PSO iterations and the final MV search step. The 

parallel performance of our algorithm is evaluated interms of the speedup factor, parallel 

efficiency, and granularity. 
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Table 4.5 Parallel performance of the proposed diffusion-PSO algorithm using MATLAB PCT 

Sequence Number of Labs T1 (s) T2 (s) T3 (s) 
Total 

Time (s) 
Speedup 

Efficiency 

% 
Granularity 

Soccer QCIF, 15 fps, p=15 

 
1 0.0573 0 0.0951 0.1524 1 100 

 

 
2 0.0289 0.0198 0.0489 0.0976 1.5606 78.0293 3.9308 

 
4 0.0174 0.02486 0.0283 0.0706 2.1593 53.9824 1.8383 

 
8 0.0093 0.03146 0.0154 0.0562 2.7130 33.9120 0.7851 

 
16 0.0062 0.0374 0.0089 0.0525 2.9010 18.1312 0.4043 

Bus, CIF, 30 fps, p=15 

 
1 0.2274 0 0.4505 0.6779 1 100 

 

 
2 0.1226 0.08118 0.2595 0.4633 1.4634 73.1700 4.7065 

 
4 0.0701 0.09878 0.1471 0.3160 2.1452 53.6312 2.1991 

 
8 0.0413 0.11462 0.0819 0.2378 2.8512 35.6395 1.0744 

 
16 0.0287 0.1342 0.0517 0.2146 3.1597 19.7483 0.5987 

RaceHorses, 480p, 30 fps, p=15 

 
1 0.9970 0 2.101 3.0979 1 100 

 

 
2 0.5278 0.3124 1.204 2.0441 1.5156 75.7776 5.5432 

 
4 0.3296 0.36652 0.805 1.5010 2.0639 51.5973 3.0953 

 
8 0.1950 0.52096 0.471 1.1874 2.6090 32.6129 1.2792 

 
16 0.1289 0.5742 0.266 0.9689 3.1974 19.9840 0.6874 

Parkrun, 720p, 50 fps, p=31 

 
1 2.021 0 5.414 7.4352 1 100 

 

 
2 1.140 0.79104 3.329 5.2604 1.4134 70.6718 5.6500 

 
4 0.625 0.91608 1.798 3.3393 2.2266 55.6649 2.6452 

 
8 0.363 1.2168 0.981 2.5602 2.9042 36.3023 1.1040 

  16 0.2422 1.3944 0.6127 2.2493 3.3056 20.6602 0.6131 

 

 

Fig. 4.6 shows a plot of the speedup as function of the number of cores for the four 

sequences. As shown in the Table 4.5, the average speedup is 1.47 for two cores. Nevertheless, as 

the number of cores increases, the rate of increase in speedup becomes very low. In fact, the 

average maximum speedup reached is 3.14 for 16 labs. The reason behind this is the amount of 

inter-lab communication needed by this algorithm. In the proposed scheme, agents should diffuse 

information about their estimates before each iteration of PSO. Since the number of PSO iterations 

used in our simulations is three (Nt = 3), this means that three inter-agent communication stages are 
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needed. This results in diminishing speedup gains with increased number of cores.    

 

Figure 4.6 Speedup achieved by the parallel implementation of the proposed diffusion-PSO algorithm 

 

4.4.5 Comparison with the proposed simultaneous game-theoretic algorithm  

The proposed diffusion-PSO algorithm proposed in this chapter is highly correlated with 

the proposed simultaneous-BR game-theoretic ME algorithm which was proposed in Chapter 3. In 

this section, we will highlight their algorithmic difference and provide a comparison in their 

estimation and parallel performance.  

In terms of algorithmic setup, as was mentioned in section 3.5.2, the simultaneous 

algorithm performs 2 BR rounds (𝑇 = 2), where in each round, all players or agents 

simultaneously perform a set of PSO iterations (Nt = 5). One communication stage is needed 

between the BR rounds for players’ synchronization. The PSO swarm of each subblock is made up 
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of three particles (M=3). The resulting maximum computational complexity, as was mentioned in 

section 3.5.2, was found to be 30 (𝑇 ∗ 𝑀 ∗ 𝑁𝑡 = 30) fitness function evaluations per MB. On the 

other hand, in the proposed diffusion-PSO algorithm, agents perform simultaneously a total of 

three PSO iterations with inter-agent communication performed before each iteration. Each agent 

is equipped with 10 PSO particles which results in a maximum total computational complexity of 

30 fitness function evaluations per MB, as was shown in section 4.2.3. Therefore, we notice that 

both algorithms have equivalent computational requirements but the amount of inter-lab 

communication needed for the diffusion-PSO algorithm is higher.  

The differences in the algorithmic setup of both schemes are translated in their simulation 

results. In terms of estimation accuracy, comparing the results shown in Tables 3.7 and 4.3, we 

notice that the diffusion-PSO algorithm provides a slight improvement in the estimation accuracy 

as compared to the simultaneous game-theoretic scheme. In terms of computational complexity, 

comparing the results shown in Tables 3.6 and 4.4, we notice the presented diffusion-PSO scheme 

provides a reduction in the needed fitness function evaluations as compared to the simultaneous 

algorithm. On the other hand, comparing the parallel performance of the two algorithms shown in 

Tables 3.11 and 4.5, we notice that the speedup achieved by the simultaneous algorithm is higher 

than that provided by the proposed diffusion-PSO scheme. 

Therefore, we deduce that the two proposed parallel algorithms provide a tradeoff 

between estimation and parallel performances.    

 

4.5 Summary 

A novel approach for BM estimation that achieves parallelism within the MB is presented. The 

problem is formulated in a distributed multi-agent system where only local communication is 
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allowed. A diffusion-based PSO process is proposed to drive the agents, in a distributed manner, 

towards consensus. A novel velocity update equation for PSO is proposed to serve as an adaptation 

step. A novel PSO fitness function that includes a regularization term is also proposed. Simulation 

results show that the proposed scheme provides high estimation accuracy with low computational 

requirements. The multi-core implementation of the proposed algorithm using Matlab PCT shows 

a speedup of 1.47 on two labs and 3.14 on 16 labs. The limited speedup is due to the multiple 

inter-agent communication stages needed by the proposed diffusion scheme. 
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CHAPTER 5 

A NOVEL HYBRID DYNAMIC PARTICLE SWARM 

OPTIMIZATION ALGORITHM FOR MOTION ESTIMATION IN 

HIGH RESOLUTION VIDEO 
 

Various ME algorithms based on PSO have been proposed in [45-52]. These algorithms 

provide performance enhancement to the ES algorithm as well as some existing fast searching 

techniques. The results presented in [45-52], however, are given only for low-definition (LD) 

video. The available PSO algorithms, when applied on high definition (HD) video, are found to 

yield a quality worse than that obtained for low definition (LD) video. The reason behind this is 

that PSO has a major drawback which is that the swarm may prematurely converge. The fast rate 

of information flow between PSO particles leads to the creation of similar particles. This results in 

a loss of diversity that increases the possibility of being trapped in local minima where all particles 

converge to the same point. This problem is not apparent in LD video, but becomes more 

fundamental in HD video. This is because, as the resolution of the video increases, the number of 

local minima falls increases because there is a lot of similar information among neighboring pixels 

(and blocks).The increase in the number of local minima enhances the problem of premature 

stagnation in the basic PSO algorithm.  

In this chapter, a dynamic hybrid evolutionary motion estimation algorithm is proposed. 

It combines two heuristic optimization techniques: PSO and the Genetic Algorithm (GA). 

Algorithms based on the genetic algorithm (GA) have been proposed in [106-40, 41]. GA is a 

stochastic search procedure based on the mechanics of natural selection, genetics and evolution 

[107]. Since this type of algorithm simultaneously evaluates many points in the search space, it is 

more likely to find the global solution of the ME problem. Nevertheless,PSO has many advantages 
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compared to GA. First, it has memory, so knowledge of good solutions is retained by all the 

particles; whereas in GA, previous knowledge of the problem is discarded once the population 

changes. Moreover, it allows constructive cooperation between particles where particles in the 

swarm share information among themselves. In the proposed algorithm, the merits of the GA 

algorithm are integrated into PSO in order to alleviate its premature convergence and stagnation in 

HD video. GA operators like selection, breeding, and mutation are applied on PSO particles in an 

innovative manner in order to increase the diversity of the population. A novel population 

initialization scheme is proposed that exploits space-time correlation in video sequences in order 

to improve the convergence rate of the algorithm. The presented algorithm is also dynamic since 

the maximum allowed velocity of the particles is adaptively varied during the PSO iterative 

process. 

The rest of the chapter is organized as follows. Section 5.1 provides a review of the GA 

algorithm. Section 5.2 highlights the behavior of existing ME algorithms using PSO when applied 

to HD video. Section 5.3 presents the proposed hybrid motion estimation scheme. Simulation 

results are given and analyzed in section 5.4. Finally, section 5.5 summarizes this chapter. 

 

5.1 Basic Concepts of the GA 

In GA, a candidate solution for a specific problem is called an individual or a chromosome 

and consists of a linear list of genes. Each individual represents a point in the search space, and 

hence a possible solution to the problem. A population consists of a finite number of individuals. 

Each individual is decided by an evaluating mechanism to obtain its fitness value. Based on this 

fitness value and undergoing genetic operators, a new population is generated iteratively with each 

successive population referred to as a generation. The GAs use three basic operators (reproduction, 
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crossover, and mutation) to manipulate the genetic composition of a population. Reproduction is a 

process by which the most highly rated individuals in the current generation are reproduced in the 

new generation. The crossover operator produces two offsprings (new candidate solutions) by 

recombining the information from two parents. There are two processing steps in this operation. In 

the first step, a given number of crossing sites are selected uniformly, along with the parent 

individual at random. In the second step, two new individuals are formed by exchanging alternate 

pairs of selection between the selected sites. Mutation is a random alteration of some gene values 

in an individual. The allele of each gene is a candidate for mutation, and its function is determined 

by the mutation probability. Many efforts on the enhancement of traditional Gas have been 

proposed [108]. Among them, one category focuses on modifying the structure of the population 

or the role an individual plays in it [109]–[112], such as distributed GA [110], cellular GA [111], 

and symbiotic GA [112]. Another category aims to modify the basic operations, such as crossover 

or mutation, of traditional GAs [113]–[115]. 

 

5.2 Motion Estimation in HD Video: Stagnation of PSO particles 

It is found that increasing the video resolution can directly affect the accuracy of ME. High 

resolution videos tend to present very similar neighboring pixels (much more than low resolution 

ones) and this fact contributes to increase the occurrence of local minima falls [116]. ME 

algorithms can be affected by this characteristic, generating different results, for the same video, in 

different resolutions. 

The ES motion estimation algorithm as well as the PSO-based ME algorithm proposed in 

[52] have been applied to four HD 720p video sequences which are: Shields, Parkrun, Stockholm, 

and Mobcal downloaded from [68]. These sequences have been resized to two lower resolutions: 
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EDTV 480p (854x480) and LDTV 240p (427x240). The block size used is 16 and the search area 

p is decreased proportionally with the resolution, where a value of p=42 is taken for the 720p 

resolution, p=24 is taken for the 480p resolution, and p=12 for the 240p resolution.  Fig. 5.1 

shows the average peak signal to noise ratio (PSNR) for the four sequences, based on the first 100 

frames of each sequence, in the three different resolutions. As can be seen from Fig. 5.1, the 

performance of the PSO ME algorithm in [52] is very close to that of the ES algorithm at low 

resolution. The performance gap, however, starts to increase with the increase in the video 

resolution. The reason behind this is that, as the video resolution increases, the number of local 

minima falls increases because there is a lot of similar information among neighboring pixels (and 

blocks).The increase in the number of local minima enhances the problem of premature stagnation 

in the basic PSO algorithm. Depending on the problem, when searching through the space of 

solutions, optimizers can stagnate — they cannot find a better solution within a specified amount 

of time. Some of the reasons stagnation occurs are because the algorithm has no means to escape a 

local minimum it is currently trapped in – thus leading to premature convergence, or because it 

moves along a large plateau, or maybe it jumps on an equally sized densely spiked region [117]. 

Indeed, as the video resolution increases, the search region becomes more densely spiked due to 

the increase in the number of local minima falls. This is shown in Fig. 5.2 which gives 3D maps of 

the fitness function, taken as the mean squared error (MSE) between an original block and a 

candidate block, over the entire search area. Fig. 5.2 shows the 3D maps of the fitness function for 

three different resolutions of the Parkrun sequence. Each map represents the same region of the 

frame, with a different number of pixels. Figures 5.2(a)–2(c) represents the MSE maps for the 

resolutions 240p, 480p, and 720p respectively. The images represent the MSE value for 16×16 

blocks, where valleys represent lower MSE values, and peaks represent higher MSE values. 



126 

 

 

Figure 5.1 Average PSNR values for the four sequences using ES and PSO [52] using different resolutions. 
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Figure 5.2 3D plot of the MSE over the entire search area of a block from the Parkrun sequence. 

 

5.3 Proposed Hybrid Motion Estimation Algorithm 

In this section, the steps of the proposed hybrid PSO motion estimation algorithm are 
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presented. For each candidate block in the current frame, a swarm of PSO particles is first 

initialized using the initialization scheme given in (3.11). In each iteration, particles update their 

positions and velocities using (2.4) and (2.5). The maximum allowed velocity of the PSO particles 

is adaptively-varied in each iteration of the process according to (2.9). Fitness values for the new 

positions are evaluated following the guidelines of the FFHP scheme proposed in section 2.2.2.2 . 

Then, particles are ranked according to the fitness function of their best positions Pbest and certain 

particles are removed and others selected as parents using a novel selection scheme. Offsprings are 

then generated from the selected parents using a novel crossover operator. Mutation is then 

performed on the PSO particles. The whole scheme ends when termination conditions are 

satisfied. The details of these steps are explained as follows. 

 

5.3.1 Selection 

The selection operator in GA is responsible for ensuring survival of the best fitted 

individuals in the population. Selection is integrated in our proposed hybrid scheme to prevent 

PSO from wasting resources on weak individuals. In the proposed scheme, in each iteration, 

particles are first ranked according to the fitness values of their personal best positions Pbest. The 

personal best fitness values of the particles are used here rather than the current fitness values since 

a strong particle with a good history might happen to cross a weak position during its search and 

would end up being removed from the population. It frequently happens that any continuous path 

connecting two very close local optimizers might necessarily cross regions in which the objective 

function is very high. As a consequence, points which are very close to good ones might have large 

objective function values and are discarded from further consideration. In order to take into 

account the “bumpiness” of the objective function, a better strategy would be that of evaluating the 
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quality of a single point on the basis of the objective function’s behavior in a neighborhood of that 

point [118]. Therefore, the particle is judged to be strong or weak based not on its instantaneous 

fitness value but on its overall search performance. The last two weak particles that have the worst 

personal best fitness values are removed. They are replaced by two off springs that are generated 

by the crossover of two strong parents selected from the swarm. Selection is an important part of 

genetic algorithms since it affects significantly their convergence. The basic strategy follows the 

rule: The better fitted an individual, the larger the probability of its survival and mating. The most 

straightforward implementation of this rule is the so-called roulette-wheel selection [107]. This 

method assumes that the probability of selection is proportional to the best personal fitness of an 

individual. This is a stochastic algorithm and involves the following technique: the individuals are 

mapped to contiguous segments of a line, such that each individual's segment is equal in size to the 

fitness value of its Pbest. A random number is generated and the individual whose segment spans 

the random number is selected [107]. 

 

5.3.2 Crossover 

Crossover is a fundamental mechanism in the GA algorithm. It is used to generate 

offsprings from the selected parents. In our proposed hybrid approach, a modified version of the 

Velocity Propelled Averaged Crossover (VPAC) proposed in [119]. The goal in [119] was to 

create two child particles whose position is between the parent’s positions, but accelerated away 

from the parent’s current direction (negative velocity) in order to increase diversity in the 

population. Towards the end of a typical PSO run, the population tends to be highly concentrated 

in a small portion of the search space, effectively reducing the search space. With the addition of 

the VPAC crossover operator, a portion of the population is always pushed away from the group, 
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increasing the diversity of the population and preventing immature convergence.  In MVPAC, 

instead of using the parents’ positions, the personal best positions attained so far by the parents are 

used instead. The positions of the generated offsprings using MVPAC are given by: 

𝑥𝑐1
(𝑡) =

𝑃1(𝑡)+𝑃2(𝑡)

2.0
− 𝑘1 ∗ 𝑣1(𝑡),       (5.4) 

𝑥𝑐2
(𝑡) =

𝑃1(𝑡)+𝑃2(𝑡)

2.0
− 𝑘2 ∗ 𝑣2(𝑡).       (5.5) 

where 𝑥𝑐1
(𝑡) and 𝑥𝑐2

(𝑡) are the positions of the two generated children 𝑐1and 𝑐2respectively.  

𝑃1(𝑡)  and 𝑃2(𝑡) are the personal best positions of parents 1 and 2, and 𝑣1(𝑡) and 𝑣2(𝑡) are the 

current velocities of parents 1 and 2 respectively. 𝑘1and 𝑘2 are two uniform random variables in 

the range [0,1]. The children velocities are assigned to zero to re-initialize the search and their 

personal best positions, 𝑃𝑐1
(𝑡) and 𝑃𝑐2

(𝑡),  are assigned to their new positions restarting the 

children’s memory, as follows: 

𝑃𝑐1
(𝑡) = 𝑥𝑐1

(𝑡),         (5.6) 

𝑃𝑐2
(𝑡) = 𝑥𝑐2

(𝑡).         (5.7) 

 

5.3.3 Mutation 

The purpose of mutation is to diversify the search direction and prevent convergence to 

the local optimum. Mutation is a genetic operator that alters one or more gene values in a 

chromosome from its initial state. This can result in entirely new gene values being added to the 

gene pool. With these new gene values, the genetic algorithm may be able to arrive at better 

solution than was previously possible. Mutation is utilized in the proposed hybrid algorithm to 

further increase the diversity of the PSO particles and prevent the population from stagnating at 

any local optima. Mutation is applied to the particles positions in each iteration according to a 

user-definable mutation probability Pm. A particle chosen for mutation undergoes a random shift 
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of its position within an n-dimensional hypercube of side length equal to 2 ∗ 𝑑 centered on the 

current particle’s position according to the following equation: 

𝑥′
𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑑 + 2 ∗ 𝑑 ∗ 𝑟𝑎𝑛𝑑(0,1),      (5.8) 

where 𝑥𝑖(𝑡) is the position of particle 𝑖 at iteration 𝑡. The value of d is taken as 10% of the search 

range p. Such a mutation operator can be viewed as a transition from a current solution to its 

neighborhood solution in local search algorithms [120]. 

The proposed PSO process terminates whenever the maximum number of iterations N is 

reached. Early termination of search is allowed whenever the fitness value of the global best 

position is less than a predefined threshold value Tth. 
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Figure 5.3 Flow of the Proposed Hybrid PSO-GA algorithm 
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5.4 Simulation Results and Performance Analysis 

5.4.1 Search Precision 

The performance of the proposed motion estimation algorithm was evaluated and 

compared in terms of accuracy and speed with the ES algorithm as well as several well-known fast 

search methods, including the four step search algorithm (4SS) [18] and the diamond search 

algorithm(DS) [19]. The results of the recent PSO-based motion estimation algorithm proposed in 

[52] are also included. The Peak Signal-to-Noise Ratio (PSNR) is used to measure the accuracy of 

motion estimation.  

Simulations were conducted on a PC with Intel Core 2 Duo CPU at 2.26 GHz processor, 

4GB RAM, and the MS Windows 7 OS. The source codes were written in Matlab 7.10. In the 

simulations, we used the first 100 frames of four HR 720p video sequences which are: Shields, 

Parkrun, Stockholm, and Mobcal. These sequences have been resized to two lower resolutions: 

480p (854x480) and 240p (427x240). The block size used is 16 and the search area p is decreased 

proportionally with the resolution, where p is taken as 42, 24 and 12 for the 720p, 480p, and 240p 

resolutions respectively. The other parameters of simulation are as follows. For PSO, the size of 

the particle population was chosen to be M=10, N =4, Tth=7, c1 and c2 are equal to 2.05, and the 

fitness function is the MSE. The mutation probability Pm is taken as 20%.The average PSNR of 

each algorithm and the difference value between these search methods and ES are shown in Table 

5.1. Fig.5.4 and Fig.5.5 also show the average PSNR values for the first 100 frames of the Parkrun 

and Mobcal sequences in the HD 720p resolution. 
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Table 5.1 Improvements in motion estimation quality interms of PSNR over the FS algorithm of the proposed 
hybrid PSO-GA algorithm as compared to existing techniques. 

Algorithm ES 4SS DS PSO[52] Proposed 

Sequence Resolution PSNR 
D-val

ue 
PSNR D-value PSNR D-value PSNR D-value PSNR D-value 

Parkrun 
           

 
720p 25.628 0 23.667 1.9612 23.314 2.314 25.465 0.1632 25.565 0.0626 

 
480p 26.518 0 26.236 0.2817 26.298 0.2201 26.392 0.1262 26.467 0.0511 

 
240p 27.872 0 27.507 0.365 27.819 0.0522 27.791 0.0804 27.853 0.0185 

Stockholm 
           

 
720p 31.146 0 30.552 0.5937 30.528 0.6184 30.975 0.1707 31.026 0.1197 

 
480p 31.427 0 31.212 0.2151 31.217 0.2099 31.256 0.171 31.326 0.1008 

 
240p 32.259 0 31.500 0.7591 32.209 0.0508 31.916 0.3438 32.243 0.0167 

Shields 
           

 
720p 31.270 0 22.329 8.9413 23.575 7.695 31.010 0.2607 31.104 0.1667 

 
480p 31.012 0 25.201 5.8109 24.918 6.0942 30.775 0.2372 30.885 0.127 

 
240p 29.616 0 29.192 0.4237 29.175 0.4407 29.488 0.1282 29.560 0.0557 

Mobcal 
           

 
720p 30.323 0 23.217 7.1063 23.355 6.9682 30.068 0.2552 30.217 0.1059 

 
480p 30.411 0 25.430 4.9813 25.709 4.7021 30.183 0.2279 30.327 0.0841 

 
240p 31.299 0 31.170 0.1282 31.162 0.1369 31.168 0.1303 31.256 0.0428 

 

 

 

Figure 5.4 Average PSNR values for the first 100 frames of the Parkrun sequence in the 720p resolution. 
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Figure 5.5 Average PSNR values for the first 100 frames of the Mobcal sequence in the 720p resolution. 

 

5.4.2 Computational Complexity 

In block matching motion estimation, the average number of candidate blocks checked 

for each MB is used as the evaluation criterion of computation complexity. In this chapter, the 

average number of fitness function evaluations for each MB is used as a metric of the 

computational complexity. Simulation results are listed in Table 5.2. 

As shown in Table 5.2, the average number of search points needed is 12.8 for the 720p 

resolution, 8.7 for the 480p resolution, and 3.9 for the 240p resolution. Theoretically, for N=4, and 

M=10, the maximum number of fitness function evaluations is 40, but as shown in Table 5.2, the 

needed points are much less because of the effective strategies adopted in the proposed algorithm. 
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Table 5.2 Average number of fitness function evaluations per MB for the proposed hybrid algorithm based on the 

first 100 frames of each sequence. 

Sequence Resolution Algorithm 

  
ES 4SS DS PSO[52] Proposed 

Parkrun 
      

 
720p 7225 22.2325 21.1811 16.0724 11.934 

 
480p 2401 19.6512 18.0614 15.1053 9.8434 

 
240p 625 18.0677 15.596 11.224 4.632 

Stokholm 
      

 
720p 6.77E+03 22.0487 20.9813 18.9818 14.9044 

 
480p 3.02E+03 19.5701 17.6164 12.2426 8.6044 

 
240p 758.728 18.5534 16.2674 5.8494 3.5372 

Shields 
      

 
720p 6.77E+03 29.8876 23.5864 15.8127 12.414 

 
480p 3.02E+03 25.2416 23.1129 12.726 9.2087 

 
240p 758.728 21.4554 20.7977 11.8026 5.1214 

Mobcal 
      

 
720p 6.77E+03 24.8717 23.0393 14.8885 11.933 

 
480p 3.02E+03 23.01 22.4502 10.1094 6.9518 

 
240p 758.728 18.8088 17.3101 5.1936 2.6239 

 

5.5 Summary 

In this Chapter, a hybrid PSO-GA algorithm is proposed for block motion estimation in 

HD video. High resolution videos tend to present very similar neighboring pixels and this fact 

contributes to increase the occurrence of local minima falls. The increase in the number of local 

minima enhances the problem of premature stagnation in the basic PSO algorithm. In this chapter, 

the strategies of the GA are incorporated into the PSO process to combat the problem of stagnation 

in HD video. A modified cross over operator is proposed for the breeding of the PSO particles. 

Simulation results demonstrate the superiority of the proposed scheme, in terms of computational 

complexity and motion estimation accuracy, as compared to existing algorithms. 
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CHAPTER 6 

IMPLEMENTATION ON THE GPU 

 

In this dissertation, parallel implementations of the proposed inter-MB and intra-MB 

algorithms on a shared memory multi-core CPU system using MATLAB PCT were presented in 

Chapters 2, 3, and 4. The NVIDIA programmable graphics processing unit (GPU) has evolved into 

a highly parallel, multithreaded, many-core processor with tremendous computational horsepower 

and very high memory bandwidth [121].  Modern GPUs can be found in virtually any relatively 

new computer. They are massively parallel processors designed to render millions of pixel values 

at a fraction of a second. Frameworks such as NVIDIA Compute Unified Device Architecture 

(CUDA) and Open Computing Language (OpenCL) allow supported GPUs to be used for general 

purpose programming. Combined with a general purpose processor such as an Intel Core i7, a 

modern GPU allows us to perform massively parallel computations on commodity hardware. 

Therefore, the proposed algorithms are to be implemented on the NVIDIA GPU 

architecture using the CUDA platform. For the proposed cooperative parallel PSO algorithm in 

Chapter 2, it was shown that speedup of the parallel multi-core implementation is scalable with the 

video resolution. As a result, the parallel implementation of our proposed algorithm on the 

massively parallel architecture of modern GPUs, which consists of thousands of efficient cores, is 

expected to yield a tremendous improvement in performance. 

In this Chapter, we present the parallel implementation of the cooperative PSO algorithm 

proposed in Chapter 2 on the NVIDIA GPU architecture using the CUDA platform. The rest of the 

chapter is organized as follows. In sections 6.1 and 6.2, we present an overview of the GPU and 

CUDA programming and memory models. In section 6.3, we present the details of the proposed 
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GPU implementation. Simulation results are given and analyzed in section 6.4. Finally, a summary 

is drawn in section 6.5.  

 

6.1 The GPU 

A GPU is a specialized hardware unit for rendering graphics on screen. It can typically be 

an integrated part of a motherboard chipset such as NVIDIA Ion [122], or as a discrete expansion 

card. In addition, modern processors such as AMD Fusion series [123] and Intel Sandy Bridge 

[124] Accelerated Processing Units (APUs) combine a CPU with a GPU on a single die, enabling 

more efficient communication between CPU and GPU [125]. 

While originally limited to rendering graphics, modern GPUs are essentially massively 

parallel processors. Designed to render 3D scenes onto a frame of 2D pixels, they enable the 

concurrent computation of large numbers of values. The first generations of GPUs had a fixed 

pipeline with limited programmability, but modern GPUs enable general purpose programming 

through C-like languages such as NVIDIA CUDA and OpenCL by the Khronos Group. Thus, the 

same thread model applied to pixel processing can be applied for solving problems not limited to 

graphics. This is known as general-purpose computing on graphics processing units (GPGPU), 

GPUs, due to their special purpose design, have a different architecture than CPUs. 

CPUs spend much die space on control logic, such as branch prediction and out-of order 

execution and large cache to maximize performance [126]. GPUs have much less control logic, 

freeing up more die space for arithmetic logic units (ALUs). This gives a GPU more calculation 

capacity, at the cost of programming complexity. To reach peak performance, the programmer 

must explicitly design the application for the target GPU. 

The computational strength of a GPU lies in performing the same calculations over a 
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large number of values. While originally limited to shaders performing transform and lightning of 

3D graphics, the same processing power can be used for general purpose computations.  

 

6.2 CUDA Programming model 

Programming of the GPU follows the stream programming paradigm; the GPU code is 

implemented as kernels that get executed over the data. A kernel is written similarly as a regular 

sequential function, without any special vector instructions. It is then executed in one instance per 

thread by the CUDA schedulers. This is referred to as Single instruction, multiple threads (SIMT) 

model, as all the threads spawned from a single kernel call will issue the same instructions. The 

only differences between the threads are the special variables blockIdx and threadIdx. They 

identify the current thread, and get set at kernel invocation time. In addition, gridDim and 

blockDim will contain the maximum dimensions for the thread hierarchy. 

 

6.2.1 Grid, blocks and threads 

CUDA uses a two-tiered threading model that maps directly to the architecture of the 

GPU. Threads are bundled into groups, which are organized in a grid. The programmer is free to 

choose how the two tiers are organized, i.e. within the hardware limits and the compute capability 

of the GPU. The thread groups and grid may be organized as either a one-dimensional row, a 

two-dimensional grid, or a three dimensional cube. This is done with the dim3 integer vector types, 

which can contain up to three dimensions. 

Prior to a kernel call, the programmer must specify the number and distribution of threads 

per block and blocks per grid. Figure 6.1 gives an example with a 2D grid containing 2D thread 

groups. The outer grid contains 6 thread groups, which each contains 12 threads.  
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Figure 6.1 Example of an Execution Grid 

 

As shown in Fig. 6.1, each thread within each block gets assigned a unique combination 

of dim3 blockIdx and threadIdx2. gridDim will be (3, 3, 1) and blockDim (3, 2, 1) These variables 

are then used to index the data set, effectively distributing the data among the threads.  

 

6.2.2 CUDA Memory Model 

The GPU has a memory hierarchy where memory usage can have a crucial impact on 

performance. Figure 6.2 shows the CUDA memory hierarchy. On the first level, we have the 

registers used by the CUDA cores. They have an access time of one clock cycle, but limited in size. 

Local memory is private to each thread, but resides in global memory which will be described 

below. The second level of memory is the shared memory, also residing on-chip. Shared memory 

also has access time of one clock cycle, but accessible to all the running threads of the same block. 

Off chip, the GPU has access to significantly larger amounts of memory, albeit with orders of 
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magnitude slower access times. This memory is referred to as global memory. CUDA architecture 

provides another kind of memory which we call Texture Memory. Like constant memory, texture 

memory is another variety of read-only memory that can improve performance and reduce 

memory traffic when reads have certain access patterns. Texture memory is located off-chip but is 

cached on chip, so in some situations it will provide higher effective bandwidth by reducing 

memory requests to off-chip DRAM. Although texture memory was originally designed for 

traditional graphics applications, it can also be used quite effectively in some GPU computing 

applications. When all threads in a warp are physically adjacent, using texture memory can reduce 

memory traffic and increase performance compared to global memory. The texture cache is 

optimized for 2D spatial locality, so threads of the same warp that read texture addresses that are 

close together will achieve best performance. 

 

 

Figure 6.2 CUDA memory model 
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6.3 Proposed Parallel Implementation of the Cooperative PSO Algorithm Using CUDA  

The parallel model of the proposed cooperative PSO algorithm for a QCIF video frame is 

shown in Figure 6.3. The steps of the parallel implementation are as follows: 

 

6.3.1 Transferring Frames from the CPU to the GPU 

The current frame and the previous frames are transferred from the CPU into the global 

memory of the GPU. The data transfer between CPU and GPU could be one of the major 

bottlenecks for achieving high performance. Taking the 720p video format as an example, for the 

PCI-E bus 2.0, the peak bandwidth is 8GB/s; the data transformation time of one frame is 0.12 ms. 

Therefore, an efficient implementation of this data transfer is needed. Higher bandwidth is 

possible between the host and the device when using page-locked (or “pinned”) memory [127]. 

Host (CPU) data allocations are pageable by default. The GPU cannot access data directly from 

pageable host memory, so when a data transfer from pageable host memory to device memory is 

invoked, the CUDA driver must first allocate a temporary page-locked, or “pinned”, host array, 

copy the host data to the pinned array, and then transfer the data from the pinned array to device 

memory. Pinned memory is used as a staging area for transfers from the device to the host. We can 

avoid the cost of the transfer between pageable and pinned host arrays by directly allocating our 

host arrays in pinned memory. Allocate pinned host memory in CUDA C/C++ using 

cudaMallocHost(), and deallocate it with cudaFreeHost().This is done as shown in Table 6.1. 

Space should then be allocated for the frames and the Pg array in the memory of the GPU. Data 

transfer is then performed by copying the frames from the pinned memory of the host to the GPU. 

Note that frames are stored in row-major order as one dimensional arrays in the memory of the 

GPU. The frames copied to the GPU are placed in the texture memory. This is performed in 

CUDA by first declaring the texture memory then binding the texture memory to the texture 

http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1g9f93d9600f4504e0d637ceb43c91ebad
http://docs.nvidia.com/cuda/cuda-runtime-api/index.html#group__CUDART__MEMORY_1gedaeb2708ad3f74d5b417ee1874ec84a
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reference. Reading from the texture memory is done via the texture reference in the kernel. 

 

 

 

 

#define N 16; //Dimensions of the MB 

#define WIDTH 176; //Width of a frame in a QCIF video sequence of the MB 

#define HEIGHT 144; //Height of a frame in a QCIF video sequence of the MB 

#define p 15; //Search area 

 

int widthBlocks16 = WIDTH / N; 

int heightBlocks16 = HEIGHT / N; 

int numBlocks16x16 = widthBlocks16 * heightBlocks16; 

 

//host memory allocation 

PRINTF(("Allocating host memory...............")); 

int frameSize = WIDTH * HEIGHT * sizeof(uint8_t); 

uint8_t *h_frame1, *h_frame2; 

checkCudaErrors (cudaMallocHost(&h_frame1, frameSize)); 

checkCudaErrors (cudaMallocHost(&h_frame2, frameSize)); 

memcpy(h_frame1, src1Data,frameSize); 

memcpy(h_frame2, src2Data,frameSize); 

 

//device memory allocation 

PRINTF(("Allocating device memory.............")); 

uint8_t *d_frame1, *d_frame2; 

checkCudaErrors (cudaMalloc(&d_frame1, frameSize)); 

checkCudaErrors (cudaMalloc(&d_frame2, frameSize)); 

MV_t *Pg; 

checkCudaErrors (cudaMalloc(&Pg, numBlocks16x16 * sizeof(MV_t))); 

 

//copy current and reference frames to GPU 

cudaMemcpy(d_frame1, h_frame1, frameSize, cudaMemcpyHostToDevice)); 

cudaMemcpy(d_frame2, h_frame2, frameSize, cudaMemcpyHostToDevice)); 

 

//create CUDA texture channel descriptor 

cudaChannelFormatDesc textureDescU8; 

textureDescU8 = cudaCreateChannelDesc<uint8_t> (); 

 

//Bind device buffers to texture references (declared above kernel, must be in global scope) to enable caching 

checkCudaErrors(cudaBindTexture2D(NULL, &frameRef, d_frame1, &textureDescU8, WIDTH, HEIGHT, 

stride)); 

checkCudaErrors(cudaBindTexture2D(NULL, &frameCur, d_frame2, &textureDescU8, WIDTH, HEIGHT, 

stride)); 

Table 6.1 CUDA code for transferring frames from CPU to the GPU 
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6.3.2 Setting up Execution Grid Parameters 

The grid dimensions and block dimensions are defined depending on the resolution of the 

video sequence. For example, for a QCIF video format of 144*176 pixels, we have a total of 9*11 

MBs each made up of 16*16 pixels. The number of blocks per grid is equal to the number of MBs 

in the video frame. The number of threads per block is equal to the dimension of the MB which is 

16*16. Therefore, for a QCIF sequence, this is defined in CUDA as shown in Table 6.2. The 

proposed PSO ME kernel is then invoked using the defined parameters. 

 

 

 

 

 

 

It is important to note here that designing the execution grid should be dependent on the 

targeted GPU architecture. It is important that the parameters of the execution grid are chosen to 

keep all CUDA cores busy, i.e. keeping a high occupancy of the GPU is important to harness the 

full computational power of the GPU. Increasing the number of threads to a high value may 

increase the extent of parallelism, but at the same time it will restrict the number of work groups 

that can be simultaneously active for concurrent execution in each multiprocessor. On the other 

hand, decreasing the number of threads to a small value increases the extent of serial execution 

within each thread. Thus, we need a tradeoff between the number of threads and the amount of 

computations by each thread [128]. NVIDIA Tesla C2050, for example, belongs to the Fermi 

architecture [129]. It has 14 streaming multiprocessors (SM) and each has a maximum of 1024 

dim3 BlockThreads(N,N); 

dim3 GridBlocks(WIDTH/N ,HEIGHT/N); 

//Apply Motion Estimation Kernel 

ME_PSO_GPU<<<GridBlocks,BlockThreads>>>(N, WIDTH, HEIGHT, p, Pg); 

 

Table 6.2 CUDA code for defining grid parameters of the proposed GPU 
implementation 
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concurrently running threads, for a total of up to 14336 concurrently running threads across the 

entire GPU. The maximum thread blocks that can be launched simultaneously per SM is 8 which 

results in a total of 112. Choosing grid parameters of 16x16 threads per block and 9x11 blocks per 

grid for the QCIF sequence results in a total of 25344 threads which is more than the maximum 

number of threads that can run concurrently in the Tesla C2050, the number of blocks chosen to 

99, however, is within the maximum block limit. In this case, CUDA runtime library will schedule 

the execution of the threads. Having a large number of threads per block has the advantage that all 

these threads have access to the shared memory of the block which has very fast access times. 

Another option for configuring the execution grid would be to choose 8x16=128 threads per block, 

where each thread will be responsible for two pixels in the MB, and 99 blocks per grid. This will 

result in a total of 12672, which is less than the maximum number of threads that can run 

concurrently on the GPU, and thus we wouldn’t be using all the available processing capabilities 

of the GPU. However, we will ensure that all the issued threads are being executed simultaneously. 

For higher resolutions, CIF for example, 8x16 threads per block and 99 blocks per grid can also be 

used where in this case each thread block will be handling 4 MBs in the frame (every 32 threads 

responsible for one MB). 

 

6.3.3 Proposed Kernel for the Cooperative PSO ME Algorithm  

The details of the proposed kernel are as follows. In order to reduce the accessing to 

global memory, the pixels of an MB and its search window are first loaded to the shared memory 

of the thread-block so that they can be reused by all threads of the same thread-block. To do that, 

threads simultaneously fetch the pixels of the MB and the search area into the shared memory of 

the block. Memory coalescence, where consecutive threads access consecutive locations in the 
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memory, is used here to speedup global memory access. 

Thread(0,0) in each block performs the first stage of PSO iterations sequentially. The 

threads within the block are utilized for parallel SAD calculation for each candidate point in the 

PSO search process. Parallel SAD calculation by the threads is performed using the reduction 

algorithm to speedup the calculations.  At the end of the first stage of PSO iterations, thread(0,0) 

updates the value of Pg in the shared memory of the block as shown in Fig. 6.3. 

Blocks then communicate the value of Pg to their neighbors via the global memory. 

Thread(0,0) of each block copies the attained value of Pg of its block to its corresponding location 

in the array in the global memory. 

Thread(0,0) of each block then updates the particles of its swarm according to the 

received information and performs another round of PSO iterations.  
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Figure 6.3 Parallel model of the proposed cooperative PSO algorithm on the GPU for a QCIF sequence 

 

6.4 Simulation Results 

The proposed parallel ME algorithm was tested on a host equipped with Intel CPU Intel 
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Xeon E5607 @ 2.27GHz. Tesla C2050 NVIDIA GPU is chosen the coprocessor to accelerate the 

proposed parallel scheme. The detailed information of the Tesla C2050 GPU can be seen in Table 

6.3 [130]. The CUDA driver version used in our experiment was CUDA-7.2. Profiling the GPU 

implementations is performed using NVIDIA Visual Profiler. 

 The input videos in our experiment consist of a list of five standard test sequences in five 

resolutions: QCIF (Soccer), CIF (Bus), 480p (Racehorses), 720 p (Parkrun), and 1080 p 

(Pedestrian Area). 

 

Table 6.3 Features of Tesla C2050 

Compute Capability 2.0 

Number of cores 448 

Number of SM  14 

Memory Bandwidth 144 GB/s 

Frequency 1.15 GHz 

Peak performance 1.03 Tflops 

Maximum number of threads per block 1024 

Maximum x-, y, or z dimension of a grid of thread blocks 65535 

Maximum amount of shared memory per thread block 48 KB 

Local memory per thread 512 KB 

Constant memory size 64 KB 

 

 

As was shown in Chapter 2, the parallel degree provided by the proposed cooperative 

PSO ME algorithm is equal to the number of MBs in a frame and is scalable with the video 

resolution as shown in table 6.4. We expect that the speedup will be proportional to the parallel 

degree of the video sequences. In table 6.5, we assess the performance of the proposed CUDA 

implementation on Tesla C2050. The average kernel execution times per frame and the average 

communication times between the CPU and GPU are given for the different video sequences. 

CPU-GPU (Host-to-Device) communication time is the time needed to transfer the video frame 

from the CPU (host) to the GPU (device), whereas the GPU-CPU (Device-to-Host) is the time 
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needed to copy the estimated motion vectors from the GPU back to the CPU. The execution time 

of the serial CPU implementation of the ES algorithm on Intel CPU Xeon E5607 is also given 

along with the execution times of the GPU kernel of the ES algorithm. Table 6.6 shows the 

achieved frame rate for the different implementations. As shown in table 6.6, motion estimation 

can be achieved at a rate that exceeds real time for the different resolutions. Fig. 6.4 shows the 

speedup achieved by the GPU implementations of the proposed cooperative PSO algorithm and 

the ES algorithm w.r.t the ES CPU implementation. As shown in Fig. 6.4, the achieved speedup is 

indeed scalable with the video resolution. 

 

Table 6.4 Parallel degree of the proposed cooperative-PSO algorithm for the different video formats 

Sequence Parallel Degree 

Soccer QCIF 99 

Bus, CIF 396 

RaceHorses, 480p 1560 

Parkrun, 720p 3600 

Pedestrian Area, 1080p 8040 
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Table 6.5 Performance of the proposed parallel implementation on Tesla C2050  

Sequence 
CPU-GPU 

Time (ms) 

GPU-CPU 

Time (ms)  

Proposed 

GPU 

Kernel 

(ms) 

Total Time 

Proposed 

(ms) 

ES 

GPU 

Kernel 

(ms) 

ES GPU 

Total Time 

(ms) 

ES 

CPU 

Time 

(ms) 

Soccer QCIF, 15 

fps, p=15 
0.011 0.0018 0.863 0.875 4.3 4.31 36.09 

Bus, CIF, 30 fps, 

p=15 
0.031 0.0039 2.73 2.765 6.72 6.75 160.5 

RaceHorses, 

480p, 30 fps, p=15 
0.082 0.0046 8.02 8.106 26.31 26.39 660.9 

Parkrun 720p, 50 

fps, p=15 
0.176 0.0053 12.03 12.21 60.03 60.21 1559.5 

Pedestrian Area 

1080p, 50 fps, 

p=15 

0.401 0.0080 16.901 17.310 131.78 132.19 3961.6 

  

Table 6.6 Achieved frame rate in fps for the GPU implementations of the proposed approach and ES 

Sequence Proposed GPU implementation ES GPU Implementation 

Soccer QCIF, 15 fps, p=15 1142.47 231.89 

Bus, CIF, 30 fps, p=15 361.68 148.04 

RaceHorses, 480p, 30 fps, p=15 123.36 37.87 

Parkrun, 720p, 50 fps, p=15 81.9 16.6 

Pedestrian Area , 1080p, 50 fps, p=15 57.77 7.56 

 

 

 

Figure 6.4 Comparison of the speedup achieved by the GPU implementations of the proposed cooperative PSO 
algorithm and ES 
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6.5 Summary 

The parallel implementation of the proposed cooperative-PSO ME algorithm on the GPU 

architecture using CUDA is presented. The proposed implementation on the Tesla C2050 provides 

speedup scalable with the video resolution and satisfies the requirements of real time encoding of 

50 fps for the 1080p resolution. Real time motion estimation for higher resolutions can be achieved 

with more advanced GPUs.  The optimal parameters of the execution grid for the different video 

resolutions that would provide the highest speedup is currently being researched 
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CHAPTER 7 

   CONCLUSION 

 

In this chapter, we summarize the main contributions of this thesis and indicate future 

directions to investigate which include direct extensions to the proposed work. 

 

7.1 Contributions 

In this thesis work, we have provided new contributions tackling the problem of block 

motion estimation in two areas: algorithm design and parallel implementation. These contributions 

are outlined as follows: 

1- A cooperative PSO algorithm that achieves parallelism at the MB level is proposed in 

Chapter 2. Novel strategies are proposed to improve the accuracy and convergence speed 

of the PSO algorithm. It is found that the presented scheme provides improvements in 

terms of accuracy and computational complexity as compared to conventional fast motion 

estimation techniques and two state-of-the-art PSO-based ME schemes. An analysis of the 

parallel performance shows that the presented scheme is highly scalable and that the 

parallel efficiency increases with the increase in video resolution. The multicore 

implementation of the proposed algorithm using MATLAB PCT could achieve a speedup 

of 6.21 on eight CPU cores for HD video sequences. The multicore performance of the 

proposed scheme is also compared with existing parallel algorithms in the literature and is 

shown to give superior results. 

2- A novel distributed game-theoretic approach to block motion estimation targeting 
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parallelism within the MB is proposed in Chapter 3. The optimization problem of BME of 

a given MB is cast in a game-theoretic setting using a network of autonomous players. It is 

shown that by using local communication and applying simple robust state-changing rules 

such as following natural game-theoretic dynamics, players can, in a distributed fashion, 

optimize the global objective function of the whole MB. Sequential and simultaneous 

algorithms based on BRD are proposed to solve the game in a distributed fashion.  The 

efficiencies of the algorithms are demonstrated through both theoretical and simulation 

results. The analysis study show that our game-theoretic model is valid and presents a 

novel approach to BME compared to other classical methods, which is a kind of 

technology fusion of signal processing and AI. The multi-core implementation of the 

simultaneous scheme using MATLAB PCT shows that speedup is indeed obtained.  

3-  Parallelism within the MB is tackled again in Chapter 4 but from the view point of 

diffusion adaptation strategies in a multi-agent system. We formulate and study the 

distributed BME problem based on diffusion protocols to implement cooperation among 

individual adaptive agents. The individual agents are equipped with local learning abilities 

based on PSO. They derive local estimates for the motion vector and share information 

with their neighbors only, giving rise to peer-to-peer protocols. The resulting algorithm is 

distributed, cooperative, and inherently parallel. A diffusion-based PSO algorithm is 

proposed. The strategies of diffusion adaptation are incorporated into the PSO process by 

modifying the PSO velocity update equation and proposing a dynamically modified fitness 

function with regularization. The resulting algorithm is inherently parallel at the agents 

level within the MB. Simulation results show that the presented scheme satisfies the 

requirements of high estimation accuracy and low computational complexity while 
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achieving the targeted parallelism within the MB. The multi-core implementation of the 

algorithm using MATLAB PCT shows that speedup is obtained.  

4- A novel hybrid PSO-genetic algorithm is proposed in Chapter 5 targeting BME in HR 

video. The strategies of crossover, mutation are adopted from the genetic algorithm and 

incorporated into the PSO process to combat the stagnation of the PSO particles in HR 

video.  Simulation results show that the estimation accuracy is indeed improved relative to 

the basic PSO algorithm. The efficient strategies of particles initialization and fitness 

function history preservation maintain a low computational complexity for the proposed 

algorithm. 

5- A parallel implementation of the cooperative PSO algorithm proposed in Chapter 2 on the 

NVIDIA GPU architecture using the CUDA platform is presented in Chapter 6. The 

MATLAB is an experimental computing resource and the MATLAB implementation of 

the proposed algorithm presented in Chapter 2 is intended to be used as a prototype to 

analyze the performance of the algorithm interms of estimation quality and computational 

complexity. The parallel implementation using MATLAB PCT also allows to analyze its 

parallel efficiency and scalability. However, the MATLAB implementation is not intended 

to be used a real time solution. In Chapter 6, a real time solution is presented by 

implementing the proposed algorithm on the NVIDIA Tesla C2050 GPU architecture 

using the CUDA platform. 

 

7.2 Future Work and Possible Extensions 

In this section, we present future extensions and interesting research directions that are 

worth investigating for the problem of BME. 
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7.2.1 A Unified Framework for Block Motion Estimation with Inter and Intra Block 

Parallelism 

In Chapter 2 of this dissertation, we have presented an efficient cooperative multi-swarm 

PSO approach for BME that achieves parallelism between the MBs (inter-MB) of a given frame. 

In Chapters 3 and 4, game-theoretic and diffusion multi-agent BME frameworks that achieve 

fine-grained parallelism within the MB (intra-MB) were proposed. A natural extension to this 

work is to investigate a unified framework for BME with integrated multi –level parallelism. The 

investigated framework should achieve parallelism between, as well as, within the MBs of a given 

frame. This can be achieved by integrating the proposed intra-MB parallel algorithms into the 

proposed inter-MB parallel framework. This would result in a massively-parallel BME algorithm. 

The resulting scheme is to be implemented on the GPU and evaluated. 

 

7.2.2 Macroblock Overlapping 

The presented algorithms have used the basic model for block motion estimation which 

divides the frame into non-overlapping equally-sized blocks. A possible research direction is to 

investigate the effect of block overlapping on the quality and complexity of the proposed 

algorithms. On one hand, MB overlapping in the frame would increase the level of spatial 

correlation between neighboring MBs. As was mentioned in Chapter 2, the spatial correlation 

between neighboring MBs is exploited during the cooperation phase of the algorithm to improve 

the accuracy and convergence speed of the PSO algorithm. Therefore, increasing spatial 

correlation through MB overlapping is expected to lead to an improvement in the performance of 

the proposed cooperative PSO algorithm. Moreover, subblock overlapping within the MB can also 

have a direct effect on the proposed game-theoretic and diffusion algorithms. In the proposed 
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algorithms in Chapters 3 and 4, consensus between the players in a game (or agents in a 

multi-agent system) within the MB is targeted. Increasing the spatial correlation between 

neighboring subblocks is expected to speed up the consensus process. On the other hand, block 

overlapping would entitle increasing the size of the blocks which leads to an increase in the 

computational complexity of calculating the BDM. Intelligent algorithms, however, can be 

designed to overcome the potential increase in computational complexity. 

 

7.2.3 Realistic Motion Model 

The proposed BME algorithms proposed in this dissertation use the translational motion 

model. Specifically, the basic assumption in this technique is that the motion of all the pixels of 

each block is the same, more precisely, purely translational; and hence it can be described by only 

one vector per block. Clearly, this assumption is not realistic and as a result, simple translational 

model may fail to identify the actual movement in a video especially when there is complex object 

movement in the scene. There is a need to replace the conventional translational motion model 

with more robust and higher order models. 

In order to achieve more accurate motion estimation without overly increasing 

computational demands, a number of techniques have been proposed, which generalize the 

block-based algorithms [131-134]. The movement of each block is rendered more realistically 

than in simple block-based algorithms by employing more complex spatial transformations such 

as the affine, perspective or bilinear transformation, or by employing elastic motion models which 

include the simple translation as a special case. 

The proposed game-theoretic and diffusion PSO algorithms in this dissertation perform 

parallel motion estimation for the MB by dividing it into subblocks and then, simultaneously, 
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estimating the motion vectors of the subblocks. Such an approach can be used to develop a BME 

algorithm with a more realistic motion model. In fact, the estimated motion vectors of the 

subblocks can be successively used to estimate the parameters of the motion model.  

 

7.2.4 Adaptively Weighted SAD Measure 

The SAD measure is the commonly used BDM for the block motion estimation problem. 

In SAD, all pixels in the MB have equal weights. An interesting research direction would be to 

investigate the effect of using different weights for the pixels of the MB in the SAD measure 

during the search process. For example, some pixels in the MB are part of the background, while 

others lie on the edge of an object. Intuitively, a higher weight should be given to edge pixels 

during the ME process in order to improve the quality of the predicted video frame. It has been 

shown that weighting more the trajectories corresponding to sharp features than the trajectories 

with smooth texture leads to better reconstruction [135, 136]. Rather than using fixed weights, 

adaptively-changing weights can be used during the ME search process. Several effective filters 

have been designed in the literature for image edge detection that can be applied [137-138]. 

Considering a template MB at position (x, y) in the current frame and the candidate MB at position 

(𝑥 + 𝑢̂, 𝑦 + 𝑣)  in the previous frame 𝐼𝑡−1, the adaptive SAD (ASAD) measure would be: 

𝐴𝑆𝐴𝐷(𝑢̂, 𝑣) = ∑ ∑ 𝛼𝑖𝑗(𝑘) ∗ |𝑔𝑡(𝑥 + 𝑖, 𝑦 + 𝑗) − 𝑔𝑡−1(𝑥 + 𝑢̂ + 𝑖, 𝑦 + 𝑣 + 𝑗)|,𝑁−1
𝑖=0

𝑁−1
𝑗=0 (7.1) 

where gt(. )is the gray value of a pixel in the current frame It and gt−1(. ) is the gray level of a 

pixel in the previous frame It−1. 𝛼𝑖𝑗(𝑘) is an adaptive weight for pixel (𝑖, 𝑗) in the MB that 

changes its value during each iteration k of the search process. This could greatly enhance the 

quality of the predicted frames. 
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7.2.5 Incorporating Color Information 

So far, existing approaches for BME use the intensity (gray) information in the video 

frames and ignore the available color information during the motion search process. It is worth 

investigating if the ME algorithms presented can be extended by picking up suitable color(s) to 

track in the original frame and/or intelligently injecting color to the original frame. Some ideas on 

how to use color characteristics for motion detection were proposed in [139]. 

 

7.2.6 Deep Learning 

Deep learning is a branch of artificial intelligence that lets computers solve problems that 

are too complex for conventional programming [140]. Training any deep learning system involves 

feeding it massive amounts of data. The clue to how deep learning works is in the name: systems 

learn from experience, much like people do. Thanks to its affinity with the parallel architecture of 

the graphics processing unit, deep learning is massively accelerated by GPUs [141]. Applying 

deep learning to the problem of block motion estimation is an interesting research direction worth 

investigating. 
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