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An Abstract of the Dissertation

of

JIHAD FAHS for Doctor of Philosophy

Major: Electrical and Computer Engineering

Title: An Information Theoretic Treatise on Univariate Alpha-Stable Distributions

Many communication channels are reasonably modeled to be impaired by

additive noise. A Central Limit Theorem (CLT) argument is widely adopted

to model the noise as a Gaussian variable. A deeper investigation shows that

the CLT motivation leads to noise models that are in general stable and not

necessarily Gaussian. This is validated by recent studies suggesting that many

channels are affected by additive noise that is impulsive in nature and is best

explained by the heavy tailed non-totally skewed alpha-stable distributions.

Considering impulsive noise environments comes with an added complexity

with respect to the standard Gaussian environment: the alpha-stable probability

density functions do not possess closed-form expressions except in some special

cases. Furthermore, they have an infinite second moment and the “nice” Hilbert

space structure defined by the space of random variables having a finite second

moment –which represents the universe in which the Gaussian theory is applica-
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ble, is lost along with its tools and methodologies.

We study these probability models, their detrimental effect as noise variables

and we investigate various bounds on the performance limits in classical problems

arising from noisy observations of some quantity of interest. Our approach is from

an information theory point of view and some related disciplines:

i) We study the channel capacity of channels affected by non-totally skewed

alpha-stable noise models and other types of impulsive noise channels. We

characterize capacity achieving inputs and argue that a suitable cost func-

tion to be imposed on the channel input is one that grows logarithmically.

ii) We define novel and appropriate notions of power in such contexts. These

notions boil down in the Gaussian context to the second moment which is

the standard notion of power in the space of finite second moment variables.

iii) In estimation theory, classical tools to quantify the estimator performance

are tightly related to the assumption of a finite variance noise. In alpha-

stable environments, expressions such as the mean square error and the

Cramer-Rao bound –which relates the error power to the Fisher information–

are hence non sensible. We develop novel tools that are tailored to the

alpha-stable and heavy tailed noise scenarios and coincide with the stan-

dard tools adopted in the Gaussian setup: a generalized Fisher information,

a generalized Cramer-Rao bound, etc...

iv) We generalize known information inequalities commonly used in the Gaus-

sian context: the de-Bruijn’s identity, the data processing inequality, the

Fisher information inequality and the isoperimetric inequality for entropies.

We develop the theory and the tools in the most possible general frameworks

that often are to various degrees strong enough to infer results on other types of

distributions. Our theoretical findings are paralleled with numerical evaluations

of some related quantities using developed Matlab packages.
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Chapter 1

Introduction and Thesis

Outcomes

In modeling the noise effects in a communication channel, it is common to assume

the presence of an additive term that is often modeled as Gaussian distributed

for two main reasons:

• Among all the probability distributions with a given finite variance, the

Gaussian distribution is the “worst” from an entropy perspective. There-

fore, a communication system design for a Gaussian-modeled noise may

be thought of as a “worst-case” design and any finite-power additive noise

encountered in real implementations would yield potentially better results.

• If the noise is believed to be of finite power and due to multiple independent

sources, by the results of various Central Limit Theorems (CLTs), their

cumulative effect asymptotically approaches a Gaussian distribution. The

CLT justification neglected the effects of the normalizing constants and

those of the underlying assumption of finite variance.

However, many noise models in the literature were found to be better ex-

plained by non-Gaussian statistics [1]. In [2, 3], Middleton proposed his class A,
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B and C models for representing the electromagnetic interference and the nature

versus the man-made noise. Though these models were also found to be suitable

for modeling different types of interference such as the atmospheric noise, and

recently for co-channel interference [4], their usage is limited due to the rather

huge complexity they presented. Gaussian mixtures [5, 6] were also adopted as

a more tractable models for non-Gaussian noise and as a simplification for some

of Middleton’s classes. In addition, generalized Gaussian, were proposed as a

general setup of the well known Laplacian and Gaussian distributions [7]. They

are exponential distributions were the exponent is to the power a > 0 (a = 1 for

Laplacian and 2 for Gaussian). The statistical key intention behind formulating

the above different type of noise models was the urge for finding good models for

the impulsive nature of noise in communication channels [8–10] whereby impul-

sive is meant that extreme values of the noise signal are observed very frequently

(i.e., with notable amount of probability) which cannot be captured by the rather

fast exponential decay of the tail of the normal distribution. However, the above

models namely the mixtures and the generalized Gaussians fail to capture this

impulsiveness for several reasons the most important of which is that they do

not possess the polynomial behavior of heavy tailed noise distributions encoun-

tered in typical communication channels [11]. One family of such distributions

is the generalized Cauchy [7] which has an algebraic or polynomial tail behavior

and is found to be reasonable in modeling the amplitude of atmospheric impulse

noise [12, 13]. However, though these distributions are suitable candidates for

modeling noise in impulsive scenarios, they lack some supporting theoretical rea-

soning such as the CLT which validated the usage of Gaussian noise since the

early days of communication theory.

In this regard, Gaussian noise presents a short and simple story of the large

and wide theory of stable distributions. By stable it is meant that, if certain

constraints are satisfied, they are closed under convolution. These distributions,

which are a subset of the set of infinitely divisible distributions, are the only ones

2



that have the captivating property of being the resultant of a limit of normalized

sums of Independent and Identically Distributed (IID) Random Variables (RV),

a result which is referred to as the Generalized Central Limit Theorem (GCLT),

and a property that constitutes one of the main reasons behind the adoption

of Gaussian statistics for noise models in communication channels. Though the

Gaussian is considered to be one of the stable laws, it represents the exception:

it is unique in the sense that it is the only one that has a finite variance and an

exponential tail, where the former result was given by G. Pólya in what is consid-

ered one of the first and most interesting results concerning stable distributions.

All the others have an infinite variance and a polynomial tail. More elaborate

results and properties concerning these distributions are stated in Section 2.2.1

and a more complete literature on the theory of stable distributions can be found

in [14–18]. It was P. Lévy [19] in 1925 who first characterized this class while

studying the limit of sums of IID RVs., a work carried on later by A.Ya. Khint-

chine [20]. However, the statistical interest in these models did not grow till the

appearance of the work of B. Mandelbrot [21] who showed that the empirical

asset returns have heavier tail than the Gaussian and are more suitably modeled

by alpha-stable1 densities. Since then stable distributions have acquired signifi-

cant attention in physics, astrology and cosmology, economics, biology, genetics,

chemistry, geology, computer science and engineering.

1.1 Alpha- Stable Distributions and Communi-

cations Theory

When it comes to communications, interference has been often found to have

an impulsive nature and therefore found to be best explained by alpha-stable

1Throughout this dissertation, we will use the term alpha-stable to refer to the class of
non-degenerate stable distributions excluding the Gaussian. Otherwise, only the term stable
will be used.

3



statistics. This has been the case for telephone noise [22] and audio noise sig-

nals [23]. Furthermore, in many works that treated the multiuser interference in

radio communication networks, a theoretical derivation, based on the assumption

that the interferers are distributed over the entire plane and behave statistically

as a Point Poisson Process (PPP), yielded an interference with alpha-stable statis-

tics, starting with Sousa [24] who computed the self interference, considering only

the pathloss effect for three spread spectrum schemes, direct sequence with bi-

nary phase shift keying (DS/BPSK), frequency hopping with M-ary frequency

shift keying (FH/MFSK), and frequency hopping with on-off keying (FH/OOK),

where a sinusoidal tone is transmitted as the on symbol. In [25], the authors

introduced a novel approach to stable noise modeling based on the LePage se-

ries representation which permits the extension of the results on multiple access

communications to environments with lognormal shadowing and Rayleigh fading.

Continuous time multiuser interference was also found [26] to be well represented

as an impulsive alpha-stable random process. Recently in [27], alpha-stable distri-

butions were found to model well the aggregate interference in wireless networks:

the authors treated the problem in a general framework that accounts for all the

essential physical parameters that affect network interference with applications

in cognitive radio, wireless packets, covert military schemes and networks where

narrowband and ultrawideband systems coexist. In [4], Gulati et al. showed

that the statistical-physical modeling of co-channel interference in a field of Pois-

son and Poisson-Poisson clustered interferers obeys an alpha-stable or Middleton

class A statistics depending whether the interferers are spread in the entire plane,

in a finite area or in a finite area with a guard zone with the alpha-stable being

suitable for wireless sensor, ad-hoc and femtocells networks when both in-cell

and out-of-cell interference are included. A generalization of the previous results

for radio frequency interference in multiple antennas is found in [28] where joint

statistical-physical interference from uncoordinated interfering sources is derived

without any assumption on spatial independence or spatial isotropic interference.

4



Lastly, the alpha-stable model arises as a suitable noise model in molecular com-

munications [29].

Impulsive noise environments have been treated in communication channels

within the context of robust signal processing, detection and estimation theory.

Robust statistics theory has been long established [30], which along with sev-

eral other works [7,31] showed the enhanced performance of non-linear detectors

over the linear ones in non-Gaussian noise scenarios. For algebraic noise models,

and more specifically for the alpha-stable class, a general theory of stable signal

processing based on Fractional Lower Order Moments (FLOM) was presented

in [11]; The ”stable theory” was in accordance with the fact that second order

methods and linear estimation theory were no longer suitable for infinite variance

noise channels and new criteria based on the dispersion of alpha-stable random

variables (the dispersion is defined explicitly in Section 2.2.1) and FLOM were in-

vestigated. The stable theory was also used in the treatment of various detection

and estimation problems [32, 33], and the performance of optimum receivers de-

signed to operate in environments of impulsive noise modeled as an alpha-stable

random process were investigated in [34]. More recently [35–38], alpha-stable

statistics were used as models of additive noise in multiple access interference

networks and the performance of new receivers, mitigation and diversity tech-

niques were investigated. The performance measure was the evaluation of the

Bit Error Rate (BER) in terms of the ratio between the signal power in the usual

sense and the noise dispersion. This ratio is known as the generalized SNR.

Gonzales et al. [39] presented a new approach for dealing with heavy tailed

noise environments. After presenting the shortcomings of the FLOM approach,

they presented a “general” unit of strength measure based on logarithmic mo-

ments where they motivated its usage within the framework of estimation and

filtering under impulsive noise. The Zero Order Statistics theory (ZOS), which is

a limiting case of the Fractional Lower Order Statistics (FLOS) theory, depends

on three new parameters, namely the geometric power, the zero-order location
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and the zero-order dispersion. These quantities play similar role to those played

by the power, the expected value and the standard deviation, in the theory of

second-order processes. The ZOS model, was used in communications for signal

processing [40], for decoding purposes [41] and for developing a novel mode-type

estimator with important optimality properties under very impulsive noise [42].

Finally, alpha-stable distributions were treated in image and radar processing

problems [43,44]. While the majority of the cited alpha-stable models whether in

communications or other fields are impaired with the fact that they are symmetric

(SαS), non-symmetric distributions can arise in some special cases [45, 46].

1.2 Thesis Objectives

Despite the fact that alpha-stable distributions are good models for additive noise

in communication channels due to theoretical, statistical and empirical justifica-

tions, the fundamental limits governing classical applications in estimation theory

and communications theory are far from being known. In [17], the authors cited

three reasons for which the Gaussian distribution has been adopted as the most

common type of noise models though it represents only one member of the un-

countable family of stable distributions. The first two are in accordance with

what is listed below. The third was the “shortage of knowledge” regarding the

alpha-stable distributions. In fact, these noise models pose multiple challenges

to system designers and we intend to address some of them in this work:

• Despite the fact that the Probability Density Function (PDF) of a stable

R.V. was proven to exist and exhibit rather “nice” properties, its expression

is not known except in three special cases: the Gaussian, the Cauchy and

the Lévy distributions.

• Such noise distributions have infinite variance, which implies that the re-

ceived signal has potentially infinite power (second moment) and any anal-

6



ysis that is based on a Hilbert space approach is not valid anymore.

In what follows we present three main objectives for this dissertation:

1- Channel capacity: The capacity problem was treated extensively in the

literature for AWGN channels and occasionally for non-Gaussian additive noise.

When it comes to alpha-stable noise models, no information theoretic studies are

available. In fact, the channel capacity under an average input cost constraint

of a basic linear channel where the output is simply a noisy version of the input

and where the noise behaves statistically as an alpha-stable RV is not known

and optimal signaling schemes are not known either. Furthermore, finding upper

bounds on the entropy of independent sums where one of the variables is an alpha-

stable one is not yet known. A few attempts were made along these directions

and as far as the authors know, only numerical evaluation of some achievable

rates have been conducted [47, 48]. Numerical computations of channel capacity

without any characterization of the nature of the input distribution will be faced

with many complications:

• Numerically-accurate computational tools, where due to the fact that the

input distribution we are searching for is in an infinite dimensional (see

uncountable) space, discretization is necessary.

• The exactness of the optimal solution and its general properties. Since

discretization of the PDF is necessary, one is indirectly imposing the non-

necessarily existent constraint of peak-power limitation. The resulting op-

timal input may turn out to be very different “in nature” from the actual

one without discretization.

From this perspective, a numerical computation of channel capacity of the

classical AWGN channel using the Blahut-Arimoto algorithm results in a discrete

input while the true optimal input is Gaussian shaped. Therefore, in light of the
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encountered difficulties in the numerical computations, one must attempt to at

least characterize the optimal input in order to tune the numerical computations

to the type of input the optimal one has.

2- Power notion: The evaluation of performance measures in multiple appli-

cations in estimation and communications theory is normally done as a function

the channel state or quality. A key quantity that summarizes the quality of the

channel is the SNR which is a ratio between the power of a signal containing

relevant information to that of noise signal. A standard measure of the signal

power is made through the evaluation of the second moment. When working in

alpha-stable noise environments, some information bearing signals will necessar-

ily have an infinite second moment which eventually leads to having zero SNRs,

a fact that masks the possibility to quantify the channel’s state. Hence, when

encountering impulsive noise models, new power and SNR definitions must be

investigated for information theoretic suitability of these models.

3- Parameter estimation: A standard way of measuring the performance of

an estimator is through the evaluation of the mean square error and comparing

it to its lower bound given by the Cramer-Rao bound. Clearly, such a measure

is not sensible unless the noise has a finite variance. No similar result exists in

the case of infinite variance noise models.

1.3 Thesis Outcomes

In light of what is presented, we study in this dissertation information theoretic

limits of problems where an additive independent alpha-stable noise is affecting

a quantity of interest. Whenever feasible our approach is made as generic as

possible. We present in what follows novel tools, approaches and solutions to

three classical problems:
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1- Channel capacity: whereby we consider generic input-output functions,

generic cost functions and generic noise PDFs each satisfying rather techni-

cal conditions. We derive a simple relation between these three parameters,

one which dictates the type of the capacity achieving input. In Layman

terms we prove that the support of the optimal input is bounded whenever

the cost grows faster than a“cut-off” rate equal to the logarithm of the

noise PDF evaluated at the input-output function. Furthermore, we prove

a converse statement that says whenever the cost grows slower than the

“cut-off” rate, the optimal input has necessarily an unbounded support.

In addition, we show how the discreteness of the optimal input is guar-

anteed whenever the triplet satisfy some analyticity properties. We show

that channels affected with an alpha-stable noise where both tails decays

polynomially fall under the general model for which our results are derived.

The results do also apply to the case where the noise is a mixture of alpha-

stable variables. Specifically, the generic results boil down to saying that

the “cut-off” growth rate of the cost function is logarithmic. A fact which

is used in a second stage when we argue that a suitable cost function to

be imposed on the channel input is one that grows similarly to the “cut-

off” rate. The characterization of the type of the optimal input is made

possible by insuring the existence of a finite and achievable capacity. This

guarantee of finiteness is of high significance as it is typically the first step

one would undertake in order to quantify the capacity of a channel at hand.

In Appendix B, we tackle this problem and provide a sufficient condition

for such a constrained optimization problem (the capacity problem) to be

both well-defined and yielding a finite and achievable solution. A sufficient

condition that is satisfied by the considered channels in this dissertation.

We use the fact that the optimal input is of a discrete nature and tune

a developed Matlab package to compute the alpha-stable channel capacity

when the characteristic exponent of the noise is 1 ≤ α ≤ 2. This is done
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by following the same methodology adopted in [49] for non-linear Gaussian

channels with the additional complexity in computing the alpha-stable den-

sity functions due to the fact they do not possess closed-form expressions.

This is done whether by implementing the fast Fourier transform in a man-

ner akin to [50] or by using the specialized “Stable” package provided by

Prof. J. P. Nolan. Our developed numerical package computes the capacity

through the evaluation of the optimal input probability mass function in

the form of two vectors of optimal positions and their respective optimal

probabilities. Furthermore, we use a variation of the alpha-stable channels

where a Gaussian noise is present in addition to the alpha-stable one. This

model is widely known as the Middleton class B [51, 52] and is common in

MAI channels where a Gaussian model is used for the thermal noise and an

alpha-stable one for the MAI [24, 27, 37]. The optimal input is once more

characterized and numerical results are provided.

2- Next, we proceed and discuss new measures of the signal strength when

alpha-stable distributions and more generally polynomially tailed density

functions are present. Since these distributions possess infinite second mo-

ments, whenever a channel is affected by alpha-stable noise, the received

signal will have an infinite average power (in the classical sense using sec-

ond moments) independently of the input power. An infinite power received

signal does not go down well with neither theoreticians nor engineers, and

we therefore investigate different notions of power as proposed by Shao [11]

and Gonzalez [42]. The applications of these measures are multiple fold:

i- Within the context of finding the channel capacity of additive inde-

pendent alpha-stable noise channels, we relate these new measures to

the type of “realistic” constraints one should impose on the transmit-

ted signal over such channels and we capitalize on the channel capacity

results to advocate that these suitable cost functions should have a log-
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arithmic growth at infinity. This conclusion is further supported by

showing that an alpha-stable input achieves the capacity of an alpha-

stable channel under an average cost constraint where the cost function

has a logarithmic growth. This comes in accordance with the fact that

in the Gaussian setting, a Gaussian input is capacity achieving when

the input is subjected to an average power constraint. Though, the-

oretical interests aside, it may seem unusual in a Gaussian setup to

impose logarithmic constraints or any other type of input constraints

that permits E [X2] to be infinite. However, when the channel model

features noise distributions having an infinite second moment, impos-

ing a second moment constraint masks the characterization of the be-

haviour of the transmission rates function of the quality of the channel

since the channel Signal-to-Noise Ratio (SNR) will constantly evaluate

to zero. The new power measure is then shown to comply with generic

properties that are satisfied by the standard deviation and is numeri-

cally evaluated for different types of probability densities. Separately,

we tackle the problem of characterizing a RV’s strength by working in

the Fourier domain. Specifically, we define a power operator in terms

of the characteristic function and we present the advantages and the

drawbacks of such a definition.

ii- When measuring the “quality” of an estimator; A point that will be

discussed later.

3- To parallel some classical information theoretic results that prove to be

tight and “special” when a Gaussian component is present, we develop sim-

ilar inequalities in the alpha-stable case. It is well-known that the Entropy

Power Inequality (EPI) presents a lower bound on the entropy of indepen-

dent sums, however the existence of generic upper bounds is not always

guaranteed [53, proposition 4]. Even when they exist, the problem is rather
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challenging and case specific. In this dissertation, we find an upper bound

on the entropy of the sum of two independent RVs when one of them is

symmetric stable (including the Gaussian variable). The bound is achieved

through defining a series of information theoretic quantities and inequalities

that generalizes equivalent counter parts known and used in the Gaussian

setting. Namely, we generalize the notion of Fisher information and ac-

cordingly we state a generalized de Bruin’s identity. A Generalized Fisher

Information Inequality (GFII) is shown to hold for the generalized Fisher

information and is made possible through a data processing inequality ar-

gument. The upper bound has several implications even in the Gaussian

setting.

4- The newly defined quantities are relevant in studying information and esti-

mation theoretic problems involving symmetric alpha-stable noise variables.

For example, let us consider the problem of estimating a parameter θ by

looking at a noisy observation θ+N : this estimation problem is well under-

stood whenever the noise has a finite second moment. A Cramer-Rao bound

relates the error variance to the Fisher information through a lower bound

and the estimator’s performance is measured via the tightness of its error

variance to its lower bound . When the noise is alpha-stable for example,

the usage of the Cramer-Rao bound is not sensible. Whenever the variance

of the noise is infinite, a new Cramer-Rao bound is established in the form

of a lower bound which relates the new power measure –studied in 2- of the

error and the generalized Fisher information. This bound presents a novel

analytical tool to measure the performance of estimators in impulsive noise

environments.
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Figure 1-1: Flow chart of the comparison between the Gaussian theory and the new
alpha-stable one. The boxes highlighted in green represent our contributions. The
partially highlighted boxes represent partial contributions.

1.4 Applications

Based on the dissertation outcomes, we briefly present in what follows some of

the applications of our results:

1- Our study gives sufficient conditions for the capacity achieving distribution

of an additive noise channel to be discrete with finite number of mass points.

Whenever these conditions hold true, our numerical package computes the

optimal mass points, their respective probabilities and the capacity value

at a given value of the average input cost. As presented, these sufficient

conditions are mild and satisfied by the majority of the noise models and
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the input cost functions.

2- Novel quantities and identities are defined, stated and proven in this disser-

tation. Though some interesting applications of the generalized Fisher infor-

mation and the new power definition are presented in this work –presented

as separate items below, we believe that these quantities and identities will

have “theoretical applications” of similar magnitude to those found for the

Fisher information, the second moment and the multiple information the-

oretic identities involving these quantities in the fields of estimation and

communications theory. As an example of such applications is the EPI

which is found useful in finding bounds on capacity regions and in proving

strong versions of CLTs.

3- Whenever the goal of a communications system is to maintain a Quality

of Service (QoS) level for some or all of its users, that QoS for a user can

be translated to a threshold rate (output entropy) or an output SNR. In

both cases the QoS will be dependent on the output signal. Our “output”-

based approach is tailored to this type of applications since it focuses on

the output signal and takes into account the type of the encountered noise

in the received signal to define sensible tools to quantify the QoS criteria.

4- Measuring the quality of an estimator is a fundamental tool to classify and

rate the performance of estimators. The mean-square error measure does

not fit well with impulsive noise models. In this context, our new power

definition and the proven generalised Cramer-Rao bound make it possible

to qualify and classify estimators and to search for optimality.

The rest of this dissertation is organized as follows: Chapter 2 is dedicated in

a first part to general information theoretic notions and definitions, to the pre-

viously known channel capacity results and the adopted methodologies to solve

the capacity problem. The last part is concerned with the stable distributions,
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their definition and some of their interesting properties. In Chapter 3, we give

new capacity results for a multitude of input average cost constrained additive

noise communication channels with applications on communications in impulsive

noise environments, namely when the noise has an alpha-stable component. New

signal strength measures are suggested in Chapter 4, where we argue the suitabil-

ity of imposing logarithmically growing cost functions in the alpha-stable noise

setting. We switch in Chapter 5 to deriving new information theoretic quantities

and inequalities related to the alpha-stable model. Finally, Chapter 6 introduces

a new estimation approach in infinite variance noise environments by providing

a Cramer-Rao bound that relates the newly defined average power of the esti-

mation error to the generalized Fisher information and Chapter 7 concludes the

dissertation.
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Chapter 2

Information Theoretic

Background and Stable

Distributions

2.1 Information Theory

2.1.1 Channel Capacity

The problem of determining the capacity of a communication channel is of high

importance for system designers, if not essential. It characterizes the limit be-

havior, sets the bounds and indicates how to operate close to these theoretical

bounds. The capacity problem is a part of the general theory of information

whose foundation is due to Shannon [54, 55]. A key quantity in this theory was

the notion of “entropy” as a measure of the uncertainty/information contained in

a RV. As defined by Shannon, the entropy of a discrete RV X assuming discrete

values {xi}N1 with probability {pi}N1 depends only on the RV’s statistics and is

defined as:

H(X) = −
N∑

i=1

pi log pi,
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and for a continuous RV with PDF, p(·):

h(X) = −
∫

p(x) log p(x) dx

where the integration is over the support of p(·). Shannon also defined a quan-

tity, called the “mutual information” between two RVs X and Y , that captures

the amount of known information about Y when X is known and vice versa. In

other words, it specifies by how much the knowledge of X reduces the uncertainty

about Y . A key result of Shannon’s work was setting the bounds for communi-

cating reliably. This result which is known as the channel coding theorem states

that capacity, i.e. the threshold that cannot be bypassed to communicate over

a channel with arbitrarily low probability of error, is indeed the supremum of

the mutual information between the output and the input of the channel over

all the input probability measures or distribution functions (CDF). A complete

interpretation and extensions of the work of Shannon can be found in [56].

Many communication channels in the literature are reasonably modeled to be

impaired by additive noise N

Y = f(X) +N, (2.1)

where X is the channel input whose alphabet is in X , Y is the output with al-

phabet in Y and f(·) is a transformation of the input that could be deterministic

or random. For all the above channel models, whenever the alphabets are dis-

crete, the capacity problem is solved with either closed from expressions for the

capacity or by using standard optimization tools and numerical packages. As for

continuous channels, many complications are encountered with numerical com-

putations and closed form expressions are sometimes impossible. When f(·) is

deterministic, and whenever the additive noise has a distribution function FN(n)

which is absolutely continuous (which means that the PDF pN(n) =
dFN (n)
dn

of the
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noise exists), the output distribution is absolutely continuous [57] for all input

distributions FX(x) and its derivative is pY (y;F ) =
∫
pN (y − f(x)) dFX(x). For

these channels, the capacity is the supremum:

C = sup
F∈Ω

I(F ) =̂ sup
F∈Ω

∫∫

pN (y − f(x)) log

[
pN (y − f(x))

p(y;F )

]

dy dF (x) (2.2)

of the mutual information I(F ) between the input X and output Y over all

input CDF F that meet the constraint Ω where p(y;F ) is the marginal output

density induced by F . The above definition of the capacity is applicable to all

deterministic, memoryless, additive and absolutely continuous noise channels. As

it will be seen later, the alpha-stable channels treated in this work are all within

the above class and hence the above definition of the channel capacity applies.

2.1.2 Related Work

One of the earliest results in communication theory is the derivation of the capac-

ity of the Additive White Gaussian Noise channel (AWGN) under the average

power constraint. This channel investigated by Shannon [54, 55], follows the

model (2.1) where f(x) = x, N ∼ N (0, σ2
N)

1, and by average power constraint,

we mean that the input RVs are restricted to the set Ω:

Ω =
{

F :

∫

x2 dF (x) ≤ A, A > 0
}

.

For this channel, Shannon proved in his original paper that the capacity is achiev-

able by using Gaussian statistics at the input i.e. X ∼ N (0, A). Also the capacity

has a closed form expression C = 1
2
log(1 + SNR) , which is probably one of the

most used expressions to compute capacities in Gaussian deterministic channels.

In the above expression, the SNR is defined as the ratio between the optimal

input average power (signal power) and that of the noise by means of the cor-

1N
(
0, σ2

N

)
means a Gaussian RV with zero mean and variance σ2

N
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responding second moments. The proof relied on the fact that, under second

moment constraints, the Gaussian is an entropy maximizer. Smith [57] studied

both, the peak power and the peak and average power constrained linear de-

terministic AWGN and proved that the optimal input is discrete. Shamai and

Bar-David [58] extended the work of Smith to complex Gaussian channels and es-

tablished the discreteness of the optimal input in their setup as well. Similarly, for

fading channels, whether the fading is Rayleigh [59], Ricean [60] or whether the

channel is considered to be non-coherent [61] the capacity problem were treated

under the average power constraint and discrete input statistics were found to be

again optimal. More recently, the capacity of Gaussian Channels with duty cycle

and power constraints was found also to be achieved by a discrete input [62]. In

all the above channel models, whether the channel was deterministic or not the

input-output relation f(·) is assumed to be linear and the noise had Gaussian

statistics. Even when the channel is modeled to have memory, the input signal is

assumed to be distorted in a linear fashion and again the noise is assumed Gaus-

sian [63] and [64]. Non-linear Gaussian channels were investigated by [65] where

the authors proposed the usage of the Hermite polynomials as suitable basis for

Hilbert space expansions for some capacity related information theoretic quanti-

ties. They treated the problem under a general setup of input constraints which

included an even-moment, a compact support and a combination of both types

of constraints. Again the optimal signaling schemes were found to be discrete in

the huge majority of the treated cases with the exception of the average power

constrained Gaussian linear channel and “equivalent” channels.

When it comes to non-Gaussian additive noise models, fewer attempts were

made to characterize the channel capacity. It started with Smith [57] who ex-

tended his results from Gaussian noise to noise distributions satisfying some pre-

defined “robustness” conditions. However these distributions were of the “Gaus-

sian like” family. Later, Tchamkerten [66] considered a scalar additive channel

whose input is amplitude constrained and derived sufficient conditions on the
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noise distributions that guarantee the discreteness of the optimal input. In addi-

tion, non-Gaussian additive noise channel capacity was treated under the average

power constrained within a general setup on two occasions [67,68] and for an ex-

ponential noise in [69]. In the first, Das imposed some technical conditions on

the noise distribution and showed that the capacity-achieving distribution has

bounded (respectively unbounded) support when the noise probability density

function (PDF) decays at rate slower (respectively faster) than a Gaussian. In

the second, and again after assuming that the noise statistics satisfies certain

general conditions, yet different than those imposed by Das, the authors showed

that the capacity-achieving distribution is discrete except when the noise is Gaus-

sian. In light of the known results [57, 65, 66, 68], a linear channel, an average

power constrained input and a Gaussian additive noise present an exceptional

combination. Changes whether in terms of input conditions, channel linearity or

in noise distribution will switch the optimal input from a continuous to a discrete

one. Except of Tchamkerten’s work [66], all the considered non-Gaussian noise

models were assumed to have a finite variance, a property that alpha-stable dis-

tributions are not endowed with. When it comes to [66], the noise PDFs were

assumed to abide by four general restrictions, one of which was the property of

analytical extendability which is not satisfied by all stable distributions as it will

be seen later, and even for the cases where the alpha-stable noise PDF is ana-

lytically extendable there is no clear proof that they satisfy another condition

that states, in layman terms, that the amplitude noise PDF must be bounded by

two non-increasing functions over a horizontal strip around the x-axis. Though

alpha-stable distributions are known to have a polynomial tail behavior on the

real axis, such a behavior is not clear when extended to the complex plane. In

fact we prove in Appendix D a novel upper bound on the complex extension of

the alpha-stable noise PDF when alpha is not less than 1. Finally, the input

in [66] was amplitude constrained, i.e. the input RV was restricted to be in the
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set Ω:

Ω =
{

F :

∫ A

−A
dF (x) = 1, A > 0

}

.

This condition is translated to the notion of imposing a peak power on the input

signal, however it does not capture the notion of power for general signals where

a finite support constraint is not existent. Studying the capacity problem when

the input is not amplitude restricted will be seriously different. The character-

ization of the optimal input has been considered on numerous occasions in the

literature [54, 57, 59–66, 68, 69] using the following methodology:

1. First, apply the theory of convex optimization from which necessary and

sufficient conditions for the optimal distribution can be derived. These

conditions are referred to as the Karush-Kuhn-Tucker (KKT) conditions.

2. Next, the optimal input is assumed to have an accumulation point. An ex-

tension to the complex domain is made which enables the usage of complex

analysis tools.

3. Finally, either a solution is found or an elimination process on the type of

the optimal input begins in order to characterize it.

In this dissertation, we follow a similar approach with possibly adopting

slightly different alternatives in some cases to account for the different char-

acteristics and some non-similar properties, such as the analyticity, which is not

shared by all the alpha-stable distributions.

2.2 Stable Distributions

This section is dedicated to the general characteristics of stable distributions.

While complete monographs were written in this regard, we will cite their most

important properties, namely the ones related to or used in this dissertation. The
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theorems and properties presented hereafter will be listed without any proof and

are selected from [11, 14–17, 20, 70–74].

2.2.1 General Properties

Definition 1 (Stability). A distribution function F (x) is said to be stable if to

every b1 > 0, b2 > 0, and real c1, and c2, there corresponds a positive number b

and a real number c such that the relation:

F

(
x− c1
b1

)

∗ F
(
x− c2
b2

)

= F

(
x− c

b

)

holds.

The above definition is the basic property of stable distributions from which

they got their name. It can be expressed differently as such: Let X1 and X2 be

two independent copies of X , X is said to be stable if and only if, for any positive

constants a and b we have

aX1 + bX2 = cX + d,

for some positive c and some d ∈ R and where by equality we mean in distribution.

If d = 0 the distribution is said to be strictly stable.

Definition 2 (Standard Stable Characteristic Function). The characteristic func-

tion 2 of a “standard” stable distribution F (·) is of the form:

φ(ω) = exp [− (1− iβ sgn(ω)Φ) |ω|α]

2The characteristic function φ(ω) of a distribution function F (x) is defined by:

φ(ω) =

∫

R

eiωx dF (x)
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where 0 < α ≤ 2, −1 ≤ β ≤ 1, sgn(ω) is the sign of ω and

Φ =







tan
(πα

2

)

α 6= 1

−2

π
log |ω| α = 1

Definition 3 (Stable Characteristic Function). A stable RV N is defined as:

N =







γX + δ α 6= 1

γX +

(

δ +
2

π
βγ log γ

)

α = 1

where γ > 0, δ ∈ R and X is a “standard” stable RV. Hence, the characteristic

function of a stable distribution is:

φ(ω) = exp [iδω − γα (1− iβ sgn(ω)Φ) |ω|α] (2.3)

All RVs N having a characteristic function as in (2.3) are called stable, de-

noted N ∼ S (α, β, γ, δ), and their corresponding distribution functions FN(n)

are named stable distributions. The parameters are subject to the restrictions:

0 < α ≤ 2 −1 ≤ β ≤ 1 γ > 0 δ ∈ R

In fact multiple parametrizations of stable distributions were used in the litera-

ture to qualify stable distributions, and different parameters names were adopted.

These multiple parametrizations led to some confusion in the treatment of stable

distributions and erroneous expressions of the characteristic function (the sign of

the imaginary term for α 6= 1) were observed in some references (regarding this

remark see [17]). Throughout the dissertation, we adopt the above notation for in-

formation theoretic suitability. In addition, we adapt these erroneous statements

to correct ones and to a format that corresponds to the adopted parametrization.

All stable laws are absolutely continuous and the the PDF of N is denoted
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by pN (·). By means of the inversion formula:

pN (n;α, β, γ, δ) =
1

2π

∫

R

e−inωφ(ω)dω (2.4)

where φ(ω) is given by (2.3). The four parameters figuring in the definition of a

stable distribution play important roles in determining the form of pN(·). Indeed,
the characteristic exponent α affects the tail behavior of the PDF and thus the

impulsiveness of the RV (α = 2 is for Gaussian, and as α decreases towards 0 the

tail becomes heavier). As for the skewness β, it represents the non-symmetry of

the distribution (β = 0 for Symmetric Alpha-Stable (SαS) PDFs, β > 0 the right

tail is heavier than the left and vice versa for β < 0). For these reasons α & β

are called the shape parameters. The dispersion of N is equal to γα. Finally, δ is

a location parameter. It is worth noting that the last two parameters cannot be

always related to the usual notions of variance and mean of a RV (in fact among

all stable distributions, only the Gaussian has a finite variance).
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Figure 2-1: The left tail behaviour of the PDF pN (n) of N ∼ S (α, 0, 1, 0) function of
the characteristic exponent α.
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Figure 2-2: The PDF pN (n) of N ∼ S(0.6, β, 1, 0) for various values of the skewness
parameter β.
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Figure 2-3: The PDF pN (n) of N ∼ S(0.6, 0, γ, 0) for various values of the scale
parameter γ.

Using (2.4) and (2.3) , the following relations can be derived:

pN (n;α, β, γ, δ) = pN (n− δ;α, β, γ, 0) (2.5)

pN (n;α, β, γ, 0) = pN (−n;α,−β, γ, 0) (2.6)
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and

pN (n;α, β, γ, 0) =







1

γ
pN

(
n

γ
;α, β, 1, 0

)

α 6= 1

1

γ
pN

(
n− 2

π
βγ ln γ

γ
;α, β, 1, 0

)

α = 1

(2.7)

Equation (2.6) is known as the reflection property. Using the above set of equa-

tions it is sufficient to only characterize the analytical properties of the stable

PDF for the standard case γ = 1, δ = 0 and map the results accordingly. Also

due to the reflection property, we can restrict the analysis to the range n > 0 or

to the range 0 ≤ β ≤ 1. The standard stable variable is denoted S(α, β) and the

corresponding PDF is pN (n;α, β). As stated earlier, one of the reasons for the

non-popularity of stable distributions is the inability to express them as closed

form expressions. Indeed, equation (2.4) is expressible in only three special cases:

1- Gaussian

pN(n; 2, 0) =
1

2
√
π
e−

n2

4

2- Cauchy

pN(n; 1, 0) =
1

π (1 + n2)

3- Lévy

pN(n; 1/2, 1) =







0 n < 0
1√
2π
n− 3

2 e
−1
2n n > 0

Besides the above cases, no closed-form formulas are available for stable PDFs.

However, except when α = 1, β 6= 0, the series expansions of these PDFs is known:

pN(n;α, β) =







1

πn

+∞∑

k=1

(−1)k−1

k!
Γ(αk + 1)

(
n

p

)−αk
sin

[
kπ

2
(α+ ζ)

]

0 < α < 1

1

πn

+∞∑

k=1

(−1)k−1

k!
Γ

(
k

α
+ 1

)(
n

p

)k

sin

[
kπ

2α
(α+ ζ)

]

1 < α ≤ 2
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where p = (1 + η2)
−1
2α , ζ = 2

π
arctan(η) and η = β tan

(
πα
2

)
. Finally, concern-

ing the representation of the alpha-stable PDFs, some of those were found to be

expressible in terms of special functions such as the modified Bessel, hypergeomet-

ric, Whittaker, and Lommel functions. Also some were found to be expressible

in terms of Fresnel integrals. For a complete reference on the subject, we refer

the reader to [17, 72] and references within.

In what follows, we will state some important properties of the stable laws.

Lemma 1 (Support of Stable Density Functions). The support of pN(n) where

N ∼ S(α, β, γ, δ) is

S(n;α, β, γ, δ) =







[δ,+∞) α < 1, β = 1

(−∞, δ] α < 1, β = −1

(−∞,+∞) o.w.

Property 1 (Moments of Stable Variables). Every stable law with characteristic

exponent 0 < α < 2 has finite absolute moments E [|X|r] of order r, 0 < r < α.

On the other hand, all absolute moments of order greater or equal α are infinite.

Hence, in particular, it follows that among all stable laws only the normal law

has a finite variance (in fact all the moments of the normal law are finite). For

1 < α < 2, the stable laws have mathematical expectations, for 0 < α ≤ 1 they

have neither variance nor mathematical expectation.

Property 2 (Unimodality, Continuity and Differentiability of Stable Density

Functions). All stable laws are unimodal, continuous and have derivatives of all

orders at every point.

Theorem 1 (Tail Behaviour of Stable Distributions). Let N ∼ S(α, β, γ, δ) with
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0 < α < 2, −1 < β ≤ 1. Then as n→ +∞,

1− FN(n) ∼ 4
kN
α
n−α

pN(n) ∼ 4kN n
−(α+1)

where 4 kN = αγα(1 + β) sin
(
πα
2

) Γ(α)
π

.3 Using the reflection property (2.6), the

lower tail properties are similar: for −1 ≤ β < 1 as n→ +∞

FN(−n) ∼ 4
k′N
α
n−α

pN(−n) ∼ 4k′N n
−(α+1)

where 4 k′N = αγα(1− β) sin
(
πα
2

) Γ(α)
π

.

The above result shows that alpha-stable distributions have polynomial tails

in all cases except for the left (resp. right) tail when β = 1 (resp. β = −1).

For these cases |β| = 1 and when α < 1 these tails do not exist (see Lemma 1).

The latter behavior, and that of the non-polynomial tail of the totally skewed

distribution (|β| = 1) when α ≥ 1 can be found in [74] (in fact it is faster than

the polynomial one) where asymptotic expansions of the standard stable PDFs

are expressed for all the different cases.

Theorem 2 (Analyticity, Order and Type of Stable Density Functions). Let λ =

γα
√

1 + β2 tan2
(
πα
2

)
> 0. The PDF of a stable distribution with a characteristic

exponent α > 1 is an entire function of order ρ = α
α−1

and type τ = λ−
ρ
α (α −

1)α− α
α−1 . When α = 1, they are entire functions of infinite order if β 6= 0 but are

rational if β = 0 with poles at the points iγ and −iγ. Finally, for α < 1, they

3Let f(·), g(·) be two real valued functions. We say that f(x) ∼ g(x) as x → a if

limx→a
f(x)
g(x) = 1
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have the form:

pN(n;α, β, γ, δ) =







1

πn
Φ1

(
n−α) n > 0

1

πn
Φ2

(
|n|−α

)
n < 0

where Φ1(z) and Φ2(z) are entire functions of order ρ = 1
1−α and type τ =

λρ(1− α)
α

(1−α) .

2.2.2 Central Limit Theorems and Entropy Maximization

Domains of Attraction of Stable Laws

Perhaps one of the most captivating property and the primary theoretical moti-

vation for this work is the double sided relation between stable laws and CLTs.

Formally, this can be stated in the following theorem [15, Th. p.162]:

Theorem 3 (Generalized Central Limit Theorem (GCLT)). Let

Zn =
X1 +X2 + ... +Xn

Bn
− An (2.8)

be a normalized sum of IID RV X1, X2, ..., Xn. For the distribution function

F (x) to be a limit distribution for sums (2.8) of IID distributed summands, it is

necessary and sufficient that it be stable.

By stable we mean formally satisfying Definition 1, and the normalizing con-

stants An and Bn are chosen to insure convergence. This result which appeared

first in the work of Lévy [19] and Khintchine [20] is indeed the main characteristic

of stable laws. In fact, and based on the theory of infinitely divisible laws, the

general form of the characteristic function (2.3) is a direct consequence of this

theorem. It is interesting to note that in the derivation, the restriction on the

characteristic exponent α was obtained separately for the value 2 and by using

opposite conditions on some intermediate functions than those used for the case

29



0 < α < 2. This would explain, in a way the unique behavior of the Gaussian

distribution in the time domain though it appears to be a limiting case in the

Fourier domain. Statements such that Gaussian is a limiting case for alpha-stable

distributions would be misleading since it is indeed an exception rather than the

norm. Going back to equation (2.8), we define G(x) to be the distribution func-

tion according to which all the Xis behave. Then if the sum converges to F (x) for

some An and Bn, we say that G(x) is within the domain of attraction of F (x). By

the result of Theorem 3, it is clear that only stable distribution have non-empty

domains of attraction. An important problem is to determine these domains of

attraction for stable distributions. This is established in the literature ( [15, 75]

and references within) and we would like make a few comments in this regard:

• There are two different forms of the domains of attraction for stable distri-

butions, one is for the Gaussian and the other is for alpha-stable. This fact

comes in consistency with the exceptional nature of the Gaussian distribu-

tion among all stable laws.

• Necessary and sufficient conditions are provided in order for G(x) to be in

domain of attraction of stable laws [15]. Interestingly, it is shown that in

the Gaussian case, G(x) is not restricted to have a finite variance. However,

for the alpha-stable case the domain of attraction is a subset of the infinite

variance space.

• A narrower domain of attraction is defined when some restrictions are made

on the normalizing constants. A special choice of Bn would be of the form

an
1
α where a is some constant and 0 < α ≤ 2. Under this choice of Bn,

G(x) is said to be in the domain of normal attraction of stable distri-

bution. The Gaussian domain of normal attraction is the space of finite

variance distributions. In this case, we have Bn = a
√
n. As for the alpha-

stable ones, it consists of all laws that have a polynomial tail of order α i.e

limx→∞ |x|αPr(|X| > |x|) = cte 6= 0 where Bn = an
1
α and 0 < α < 2.
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For completeness, we list in this section some formal statements about the do-

mains of attraction of alpha-stable variables.

Theorem 4 (Domains of Attraction of Stable Laws). [75, p.76 Sec.6 Th.2.6.1]

In order that a distribution F (x) belong to the domain of attraction of a stable law

V (x) with characterisitc exponent α (0 < α < 2), it is necessary and sufficient

that, as |x| → +∞,

F (x) =







(c1 + o(1))
1

(−x)αh(−x) x < 0

1− (c2 + o(1))
1

xα
h(x) x > 0

(2.9)

where the function h(x) is slowly varying in the sense of Karamata [75, Appendix

1] and c1 and c2 are constants with c1, c2 ≥ 0, c1 + c2 > 0. The parameters β

and γ of the stable law V (x) are determined as follows:

β =
c2 − c1
c2 + c1

and

γ =







−αL(α)(c1 + c2) cos
(π

2
α
)

0 < α < 1

−αM(α)(c1 + c2) cos
(π

2
α
)

1 < α < 2

(c1 + c2)
π

2
α = 1

where

L(α) =

∫ +∞

0

(e−y − 1)
dy

y1+α
= −Γ(1− α)

α
< 0

M(α) =

∫ +∞

0

(e−y − 1 + y)
dy

y1+α
=

Γ(2− α)

α(α− 1)
> 0

Furthermore, it is proven [75, page 46] that for a RV X to be in the domain

of attraction of a stable law with characteristic exponent α it is necessary that
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Bn = α
√
nh(n), where h(n) is a slowly varying function at 0. The special case

when Bn = a α
√
n, a > 0, defines a sub-domain called the domain of normal

attraction Dα,β. The set Dα,β, 0 < α < 2 can be characterized as follows:

Theorem 5 (Domains of Normal Attraction of Stable Laws). [15, p.181 Sec.35

Th.5] In order that the law F (x) belong to the domain of normal attraction of the

stable law V (x) with characterisitc exponent α (0 < α < 2) and given constants

c1 and c2, with Bn = a α
√
n, it is necessary and sufficient that

F (x) =







(c1a
α + α1(x))

1

|x|α x < 0

1− (c2a
α + α2(x))

1

xα
x > 0

(2.10)

where a is a positive constant and the functions α1(x) and α2(x) satisfy the con-

ditions

lim
x→−∞

α1(x) = lim
x→+∞

α2(x) = 0

Though Theorems 4 and 5 relate the alpha-stable laws to the tail behaviour

of their attracted laws via their characteristic exponents, one would be interested

to capture if there are any relations when it comes to the Fourier domain, more

specifically between characteristic functions. A task that was also fulfilled in [15,

75].

Theorem 6 (Domains of Attraction of Stable Laws: Characteristic Functions).

[75, Ch 2 p.85 Th. 2.6.5] In order that the distribution with characteristic

function φ(ω) belong to the domain of attraction of the stable law S(α, β, γ, 0), it

necessary and sufficient that, in the neighbourhood of the origin,

logφ(ω) = iωδ − γα|ω|αh̃(|ω|) [1− iβ sgn(ω)Φ] (2.11)

where

Φ =







tan
(πα

2

)

α 6= 1

−2

π
log |ω| α = 1
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and δ is a constant. h̃(ω) : R+ → R+ is a slowly varying function [75, Appendix

1] at 0.

When it comes to Dα,β for which h(n) = 1 and Bn = α
√
n, an immediate task

would be to determine, under this condition, the expansion of φ(ω) around 0. To

this end, we state the following theorem

Theorem 7 (Domains of Normal Attraction of Stable Laws: Characteristic Func-

tions). In order that the distribution with characteristic function φ(ω) belong to

the domain of normal attraction Dα,β of the stable type S(α, β, γ, 0), it is neces-

sary and sufficient that, in the neighbourhood of the origin,

log φ(ω) = iωδ − γα|ω|α [1− iβ sgn(ω)Φ] [1 + o(1)] (2.12)

Proof. The proof is done exactly as in [75] to prove theorem 6. The only difference

is that the tail behavior of the distribution function F (x) that belongs to the

domain of normal attraction Dα,β is given by equation (2.10) instead of (2.9).

Stable Distributions as Entropy Maximizers: A Central Limit Theorem

Approach

In the rest of this section, we will restrict our treatment of CLTs in the context of

domain of normal attraction exclusively. Accordingly, we consider the following

basic CLT:

Zn =
1√
n

n∑

i=1

Xi, (2.13)

where the Xis are independent copies of a random variable X with zero mean

and unit variance. By the CLT results, Zn approaches the standard Gaussian

as n tends to infinity, in a variety of probabilistic senses (one of them is in

distribution). This would mean in layman terms, that a Gaussian distribution

is the cumulative effect of infinite RVs (up to a certain normalizing constant)

each with a finite variance. This would have some intuitive properties from an
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information theoretic perspective: Since entropy is considered as a measure of

randomness, adding RVs would increase entropy. This fact, in addition to the

CLT would come in accordance with the known fact that Gaussian distribution

is an entropy maximizer among all RV having a given variance. The formal

link between the CLT and entropy maximization started with the Entropy Power

Inequality (EPI) stated by Shannon and proved rigorously by Stam [76] and later

by Blachman [77]:

N(X + Y ) ≥ N(X) +N(Y ), (2.14)

where X and Y are two independent RVs each of finite entropy. N(Z) is the

entropy power of Z and is defined as such:

N(Z) =
1

2πe
e2 h(Z), (2.15)

where h(Z) is the entropy of Z. Equality in (2.14) is achieved when both X

and Y are Gaussian distributed. The EPI would imply that for the sequences

of power of 2, h (Z2k) ≥ h (Z2k−1), k ≥ 1. A stronger result [78] showed that

h(Zn), n ≥ 1 is an increasing sequence and hence proving the assertion stated

by Lieb [79]. It shows that in the CLT the entropy increases at every step until

it reaches its maximum, which is that of the Gaussian. This CLT approach in

showing that Gaussian PDFs are entropy maximizers among the RV which are in

their domain of normal attraction leads to the following question concerning the

GCLT: Are alpha-stable distributions entropy maximizers among their domain

of normal attraction i.e. RVs having a polynomial tail? More formally, if we

consider this version of the GCLT [71, Th. 3.54]:

Suppose X is a random variable with tail probabilities that satisfy xαPr(X >

x) → η and xαPr(X < −x) → η as x → +∞, with η > 0 and 1 < α < 2. Then
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µ = E[X ] must be finite and

1

an
1
α

n∑

i=1

Xi −An → Z ∼ S(α, 1) (2.16)

where the convergence is in distribution. The Xis are IID according to X , a =
(

Γ(α) sin(πα
2 )

πη

)− 1
α

, and An = µ
a
n1− 1

α .

This theorem is considered to be the analog of that considered in equa-

tion (2.13), but whether the entropy of the sum (2.16) increases or not is not

clear and needs more consideration. An immediate investigation shows that the

EPI would not yield the desired result due to the presence of 1
α
instead of 1

2
as

power of n in the normalizing constants. The author believe that it would not be

the case since the domain of normal attraction of stable variable does not involve

any average constraint on its elements while the domain of normal attraction of

the Gaussian type imposes a constraint of finiteness on the second moment.
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Chapter 3

Generic Capacity Results:

Applications to the Alpha-Stable

Channel

3.1 Background

In communication systems design, a key engineering objective is to build systems

that operate close to channel capacity. Needless to say that this quantity, as

defined by Shannon [54, 55] in his pioneering work, is the cutoff value which

delimits the achievable region for “reliable” communications. Clearly, the channel

capacity and how it can be achieved are intimately related to the channel model.

Despite the well-known capacity results for discrete memoryless channels, closed-

form capacity expressions are rarely found in the literature for continuous ones.

The most well-understood –and perhaps important– continuous channel is the

linear Additive White Gaussian Channel (AWGN) subjected to an average power

constraint. In the literature, multiple channel models were investigated by making

variations to the Shannon setup in the following aspects:

• The input-output relationship: While Shannon considered a deterministic
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linear input-output relationship, many studies assumed a non-deterministic

relationship [59–61] or generally a non-linear deterministic one [49].

• The input constraint or cost function: One of the main reasons of the pop-

ularity of the second moment constraint E [X2] –which corresponds to a cost

function C(x) = x2, is that it represents the average power of the discrete

time transmitted signal which is equal to the average power of the corre-

sponding white continuous process assuming that the transmitted signals

are square integrable. Nevertheless, other input constraints were studied

starting with Smith [57] who considered peak power constraints and a com-

bination of peak and average power constraints. More recently, the capacity

of Gaussian Channels with duty cycle and average power constraints was

studied in [62] .

• The noise distribution: Though Gaussian statistics of the noise can be mo-

tivated by the Central Limit Theorem (CLT), it also has an appealing prop-

erty of being the worst case noise from an entropy perspective among finite

second moment Random Variables (RVs). Nevertheless, Non-Gaussian av-

erage power constrained communication channels have some applications

and their channel capacities were investigated under a general setup in the

work of Das [67] where the noise is assumed to have a finite second moment,

a condition that was not imposed on the non-Gaussian noise distributions

in [68].

• Combinations of more than one aspect were also considered in the litera-

ture. Smith [57] extended his capacity results for the peak power con-

strained Gaussian channel to non-Gaussian ones where the noise statistics

are Gaussian like. Later, Tchamkerten [66] considered a scalar additive

channel whose input is amplitude constrained and for which the additive

noise is assumed to satisfy some general properties however not necessar-
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ily having a finite second moment. Lately, Fahs and Abou-Faycal [49, 80]

investigated non-linear Gaussian channels under a general setup of input

constraints such as even moments, compact support constraints and a com-

bination of both types.

Nearly, for all the cited models above, and whenever the noise PDF is assumed

to have an analytical extendability property, the optimal input is proven to be

of a discrete nature and in most cases with a finite number of mass points.

Additionally, channel capacity could not be written in closed-form. In this sense,

the linear AWGN channel and some “equivalent” channels [49] seem to be an

exception, along with a few channel models such as the additive exponential

noise channel under a mean constraint with non-negative inputs [81]. For these

channel models, the optimal input distribution is found to be of the same nature

of the noise and capacity is described in closed-form.

One is tempted to study whether there is a general relation between the input-

output function f(·), the input cost function C(·), and the noise PDF pN (·) that
governs the type of the capacity-achieving input. In this work, we conduct this

study and consider general, real, deterministic and memoryless discrete-time ad-

ditive noise channels. By “general”, we mean that the input-output relationship

f(·) may not be linear but required nevertheless to satisfy some rather mild con-

ditions. Additionally, instead of formulating the problem in terms of the average

power constraint or the FOM constraints, we use generic input cost functions

C(·) that are also required to satisfy some technical conditions. We emphasize

that our results cover all cost functions which are “super-logarithmic”1 which is

a rather very large set. When it comes to the noise statistics, the noise is as-

1A “super-logarithmic moment” is an expectation of the form E [f(|X |)] for some function
f(|x|) = ω(ln(|x|)).
We say that f(x) = ω (g(x)) if and only if ∀κ > 0, ∃ c > 0 such that |f(x)| ≥ κ|g(x)|, ∀|x| ≥ c.
Equivalently, we say that g(x) = o (f(x)). We say that f(x) = Ω (g(x)) if and only if ∃κ >

0, c > 0 such that |f(x)| ≥ κ|g(x)|, ∀|x| ≥ c. Equivalently, we say that g(x) = O (f(x)). We say
that f(x) = Θ (g(x)) if and only if f(x) = O (g(x)) and f(x) = Ω (g(x)).
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sumed to be absolutely continuous with positive and continuous PDFs that are

with or without monotonic tails and have a finite logarithmic-type of moments.

Two conditions are however imposed on the noise PDF and are subsequently pre-

sented. The first guarantees the finiteness of the noise differential entropy. The

second concerns the tail behavior of a lower envelope to the noise PDF. These

two conditions are “easily satisfied” such as whenever the PDF has a dominant

exponential or a dominant polynomial component. Despite the apparent long

list of requirements, we emphasize that the considered functions f(·), input costs
C(·) and noise PDFs cover the vast majority of the known models found in the

literature.

Though our main interest in this dissertation is to study communications in

impulsive noise environments specifically channels affected by alpha-stable ad-

ditive noise, we conduct this generic study simply because the methodology re-

mains unchanged with no additional complexity nor constraints. We showcase

our generic results by applying them to channels impaired by a non totally skewed

alpha-stable additive noise or a mixture of alpha-stable noise variables . Further-

more, we consider a different setup where the noise is a composite one. Namely,

the noise is modeled as an independent sum of a Gaussian variable and a non-

totally skewed alpha-stable. We note that the totally skewed alpha-stable noise

models (|β| = 1) which are one sided (α < 1) or posses a single polynomially

decaying tail (α ≥ 1) are left out from this study since they are not frequent

nor natural noise models and do not fit under the general two sided polynomially

tailed distributions.

The results give new insights for communicating over alpha-stable noise chan-

nels by characterizing the type of optimal signaling schemes in order to maximize

the input transmission rates when dealing with these impulsive noise scenarios.

Our main results - stated in Theorems 8 and 9, imply in the alpha-stable setup
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that whenever C(x) = ω (ln |f(x)|), the support2 of the capacity-achieving input

is necessarily bounded. In addition, we state and prove a converse statement

that says that whenever C(x) = o (ln |f(x)|), the optimal input is necessarily

unbounded.

Using a developed Matlab numerical package, we compute the alpha-stable

channel capacity. The numerical package searches for the optimal mass function:

optimal location of the mass points and their corresponding optimal probabilities.

For validation, the resulting function is checked whether it satisfies the necessary

and sufficient KKT conditions of optimality (equation (3.4)). Furthermore, the

package is used to evaluate the capacity of the composite noise channel and some

related quantities. We mention that the numerical package returns a discrete

optimal input and hence surely finds such one whenever the channel capacity is

achieved with discrete statistics. This is the case for the alpha-stable channel

whenever α ≥ 1 and for the composite noise for all the ranges of 0 < α < 2.

We note that the alpha-stable densities are computed using the “Stable” package

provided by professor John P. Nolan.

3.2 A Generic Channel Model

We consider a generic memoryless real discrete-time noisy communication channel

where the noise is additive and where the input and output are possibly non-

linearly related as follows:

Yi = f(Xi) +Ni, (3.1)

where i is the time index. We denote by Yi ∈ R the channel output at time i.

The input at time i is denoted Xi and is assumed to have an alphabet X ⊆ R.

The channel’s input is distorted according to the deterministic and possibly non-

2We define the support of a RV as being the set of its points of increase i.e. {x ∈ R :
Pr(x− η < X < x+ η) > 0 for all η > 0}.

40



linear function f(x). Additionally, the communication channel is subjected to an

additive noise process that is independent of the input. The variables {Ni}i are
also assumed to be Independent and Identically Distributed (IID) RVs.

Finally, we subject the input to an average cost constraint of the form:

E [C (|Xi|)] ≤ A, for some A ∈ R+∗ where C(·) is some cost function:

C : R+ −→ R.

Accordingly, we define for A > 0

PA =
{

Probability distributions F of X :

∫

C (|x|) dF (x) ≤ A
}

, (3.2)

the set of all distribution functions satisfying the average cost constraint.

Given that the channel model is stationary and memoryless, the capacity-

achieving statistics of Xi are also memoryless (IID), therefore we suppress the

time index and write

Y = f(X) +N, (3.3)

where the noise is assumed to be absolutely continuous with PDF pN(·). This

implies that the channel transition probability density function is given by

pY |X(y|x) = pN(y − f(x)), y ∈ R, x ∈ X . (3.4)

We characterize the tail behavior of pN(·) by considering the following positive

functions which are non-increasing for x ≥ 0 and non-decreasing for x < 0:

Tl (x) =







inf
0≤n≤x

pN(n) x ≥ 0

inf
x≤n≤0

pN(n) x < 0,
Tu (x) =







sup
n≥x

pN(n) x ≥ 0

sup
n≤x

pN(n) x < 0.

Considering the tail behavior of Tl (x) and Tu (x) instead of pN(x) allows us
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to include in our analysis PDFs which do not possess a monotonic tail. For those

that do, pN(x), Tl (x) and Tu (x) will be identical for large values of |x|.
The main results of this work are based on relating the tail behavior of C(·)

to that of Tl (·) and Tu (·) in order to characterize the capacity-achieving input

distributions of channel (3.3). More explicitly we prove that, whenever C (|x|) =
ω
(

ln
[

1
Tl(f(x))

])

, the optimal input has necessarily a bounded support. Further-

more, we prove a converse statement: whenever C (|x|) = o

(

ln

[
1

Tu (f(x))

])

,

the capacity-achieving input is not bounded.

When the noise PDF has a monotonic tail, our results infer that cost functions

which are Θ
(

ln
[

1
pN (f(x))

])

form somehow a “transition” between bounded and

unbounded optimal inputs. For example, whenever the noise is Gaussian, the

“transitional” cost is of the form Θ (f 2(x)). The discreteness –and hence the

finiteness of the number of mass points of the optimal input in the bounded case–

is a direct consequence of the analyticity properties of pN(·) and C(·) whenever
these properties exist.

3.2.1 Assumptions

In this chapter, we make the following rather-mild assumptions:

• The function f(·):

C1- The function is continuous.

C2- The absolute value of the function |f(·)| is a non-decreasing function

of |x| and |f(x)| → +∞ as |x| → +∞.

• The cost function C(·):

C3- The cost function is lower semi-continuous and non-decreasing. With-

out Loss of Generality (WLOG) we assume that C(0) = 0: if it were

not, define C0(|x|) = C(|x|) − C(0) and adjust the input space under

the cost C0(|x|) to PA−C(0). Note that necessarily A− C(0) ≥ 0.
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C4- C (|x|) = ω (ln |f(x)|).

• The noise PDF pN(·):

C5- The PDF is positive and continuous onR. Note that this automatically

implies that pN(·) is upper bounded.

C6- There exits a non-decreasing function

CN : R+ −→ R

such that CN (|n|) = ω (ln |n|), and

EN [CN (|N |)] = LN <∞.

This necessarily implies that EN [ln (1 + |N |)] < ∞. Note that, for

example, the above condition holds true for any noise PDF whose tail

is faster than 1
x(lnx)3

.

Since from an information theoretic perspective, the general channel model (3.1)

is invariant with respect to output scaling, we consider WLOG that the

noise PDF is less than “1” for technical reasons. Furthermore, the bound-

edness of pN (·) along with the fact that it has a finite logarithmic moment

insure that its differential entropy exists and is finite h(N) < ∞ (see [82,

Proposition 1]).

Restrictions C1 to C6 are “technical” in the sense that they represent suf-

ficient conditions for the existence of a solution to the capacity problem

as defined in [57] and enables the formulation of the Karush Kuhn Tucker

(KKT) conditions as being necessary and sufficient for optimality of the

input probability distribution.

• The lower and upper bounds Tl (·) and Tu (·):
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Note that by definition, 0 < Tl (x) ≤ pN(x) ≤ Tu (x) ≤ 1 for all x ∈ R. We

assume that Tl (·) and Tu (·) satisfy the following properties:

C7- The function L(x) = ln
[

1
Tl(x)

]

which is positive, non-decreasing for

x ≥ 0 and non-increasing in x < 0, satisfies the following inequality:

L(x+ y) ≤ κl (L(x) + L(y)) , (3.5)

for some positive constant κl, whenever |x|, |y| are sufficiently large.

We note that functions that satisfy condition C7 define a convex set. In

fact, let f(x), g(x) be two positive, non-decreasing functions on R+ non-

increasing on R−∗. Let α ∈ [0, 1] and define h = αf+(1−α)g. The function
h(x) is positive, having the same monotonic properties. Then, whenever

there exists κf and κg > 0 for which f and g satisfy condition C7, we have

h(x+ y) = αf(x+ y) + (1− α)g(x+ y) ≤ κh(h(x) + h(y)),

where κh = max{κf; κg} > 0.

We clarify that condition C7 is for example satisfied by all noise distribution

functions where Tl (x) is any linear combinations of:

Tl (x) = Θ
(
s(x)er(x)

)
Tl (x) = Θ

(
s(x)

r(x)

)

,

where

r(x) = |x|a log . . . log(|x|)
︸ ︷︷ ︸

β times

, s(x) = |x|a′ log ... log(|x|)
︸ ︷︷ ︸

β′ times

,

and where the parameters a, a′ ∈ R+, and β, β
′ ∈ N, chosen so that

Tl (x) is positive, its total integral is no greater than one, and conserves
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its monotonic behavior3. The fact that these two general types satisfy

condition C7 is based on the following basic identities [83]:

• For all x, y and r ∈ R,

|x+ y|r ≤ max{1; 2r−1} (|x|r + |y|r) .

• For any x0 > 0, there exist y0 > 0 such that

|x|+ |y| ≤ |xy|p, for some p > 1 whenever |x| > x0, |y| > y0.

Finally, we also assume that

C8- The integral −
∫ +∞

−∞
Tu (x) lnTl (x) dx exists and is finite.

Note that whenever the tail of pN(·) is monotone, condition C8 is not neces-

sary and boils down to saying that noise differential entropy is finite which

is a byproduct of properties C5 and C6 of the noise PDF.

When it comes to conditions C5 through C8 –and specifically C7 and C8–,

they are satisfied by a rather large class of noise probability functions that

includes most of the known probability models such as Gaussian, gener-

alized Gaussian, generalized t, alpha-stable distributions and all of their

possible mixtures.

3.3 Preliminaries

In this section we establish some preliminary results that are needed in subsequent

sections: we derive lower and upper bounds on the output probability and a

quantity of interest presented hereafter.

3The values β = 0 and β
′

= 0 imply that respectively r(x) and s(x) have no logarithmic
component.
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We start by noting that for channel (3.3), the existence of a positive, continu-

ous transition PDF such as in (3.4), implies the existence, for any input distribu-

tion F , of an induced output probability density function pY (y) = p(y;F ) which

is also continuous (hence upper-bounded) [49] and is given by:

pY (y;F ) = p(y;F ) =

∫

pN(y − f(x)) dFX(x) ≤ 1. (3.6)

Furthermore, equation (3.6) along with the fact that f(·) is continuous insures
that the property that pN (·) is bounded away from zero on compact subsets of R

is conserved as well for pY (y;F ). This in turns implies that pY (·) is also positive

on R.

3.3.1 Bounds on p(y;F )

In what follows, we derive upper and lower bounds on the output probability

distribution induced by an input distribution F .

Lemma 2 (Lower Bound on the Output PDF). Let y0 > 0 be sufficiently large.

For an input distribution F , the PDF p(y;F ) of the output of channel (3.3) is

lower bounded by

p(y;F ) ≥







Tl (y − y0)

2
y ≤ −y0

Tl (y + y0)

2
y ≥ y0,

Proof. Given an input probability distribution F , we define the following:

- We denote by dF a positive constant such that Pr(|X| ≤ dF ) ≥ 1
2
.

- We denote by fmax = sup|x|≤dF |f(x)|, the existence of which is guaranteed

by the assumption that f(·) is continuous on R.

Let y0 > fmax. In what follows, we only present in detail the case y ≥ y0 as
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the proof in the other range follows similar steps.

pY (y;F ) ≥
∫

x:|x|≤dF
pN
(
y − f(x)

)
dF (x)

≥
∫

x:|x|≤dF
Tl (y − f(x)) dF (x) (3.7)

≥ 1

2
Tl (y + fmax) ≥

1

2
Tl (y + y0) , (3.8)

where equation (3.7) is due to the fact that Tl (·) is a lower bound on pN(·) by

definition and inequalities (3.8) are justified since Tl (·) is non-increasing on the

considered interval.

We also derive an upper bound on the output law whenever the input is

bounded within [−B,B] for some B > 0:

Lemma 3 (Upper Bound on the Output PDF). For an input distribution F that

has a bounded support within [−B,B] for some B > 0, the PDF p(y;F ) of the

output of channel (3.3) is upper bounded by

p(y;F ) ≤







Tu
(
y + yB0

)
y ≤ −yB0

Tu
(
y − yB0

)
y ≥ yB0 ,

for any large-enough yB0 .

Proof. Let fBmax = sup[−B;B] |f(x)|, the existence of which is guaranteed by the

fact that f(·) is continuous on R. Also let yB0 ≥ fBmax. For y ≥ yB0 , since Tu (·) is
an upper bound on pN(·), we have,

p(y;F ) =

∫

pN(y − f(x)) dF (x)

=

∫ B

−B
pN(y − f(x)) dF (x) (3.9)

≤
∫ B

−B
Tu (y − f(x)) dF (x)

≤ Tu
(
y − fBmax

)
≤ Tu

(
y − yB0

)
(3.10)
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where equations (3.10) are due to the fact that Tu (x) is non-increasing on the

positive semi-axis. A similar derivation yields the result for y ≤ −yB0 .

We emphasize that this lower bound on p(y;F ) is only possible under the

assumption that the support of F is bounded (as seen in equation (3.9)).

3.3.2 Bounds on i(x;F )

In this section we analyze the function of interest

i(x;F ) = −
∫ +∞

−∞
pN(y − x) ln pY (y;F ) dy (3.11)

= −
∫ +∞

−∞
pN(y) ln pY (y + x;F ) dy.

Lemma 4 (Upper Bound on i(x;F )). For any probability distribution F ,

i(x;F ) = O

(

ln

[
1

Tl (x)

])

.

Proof. Consider a large-enough y0 so that Lemma 2 holds, and let x be such that

x > y0. For a probability distribution F on the input we compute,

i(x;F ) = −
∫ +∞

−∞
pN(y) ln pY (y + x;F ) dy = I1 + I2 + I3,

where the interval of integration is divided into three sub-intervals: (−∞,−x −
y0), [−x− y0, y0], (y0,+∞).

We study the growth rate in x of the integral terms I1, I2 and I3 function of

the rate of decay of Tl (·).

48



Using Lemma 2,

I1 =−
∫ −x−y0

−∞
pN(y) ln pY (y + x;F ) dy

≤−
∫ −x−y0

−∞
pN(y) ln

[
Tl (y + x− y0)

2

]

dy =

∫ −x−y0

−∞
pN (y) ln

[
2

Tl (y + x− y0)

]

dy

≤ ln 2 + κ

∫ −x−y0

−∞
pN(y)

(

ln

[
1

Tl (y)

]

+ ln

[
1

Tl (x)

]

+ ln

[
1

Tl (−y0)

])

dy

(3.12)

≤ ln 2 + κ ln

[
1

Tl (−y0)

]

+ κ ln

[
1

Tl (x)

]

+ κ

∫ +∞

−∞
pN(y) ln

[
1

Tl (y)

]

dy

(3.13)

≤ 2κ ln

[
1

Tl (x)

]

,

for some positive κ and for x > y0 large-enough. Equation (3.12) is due to

property C7 since both x and y0 are large enough and so is |y|. The integral term
in (3.13) is finite by property C8 and the last equation is valid since ln

[
1

Tl(x)

]

,

which is positive, is increasing to +∞.

Similarly,

I3 =−
∫ ∞

y0

pN(y) ln pY (y + x;F ) dy

≤−
∫ ∞

y0

pN(y) ln

[
Tl (y + x+ y0)

2

]

dy =

∫ ∞

y0

pN (y) ln

[
2

Tl (y + x+ y0)

]

dy

≤ ln 2 + κ

∫ ∞

y0

pN(y)

(

ln

[
1

Tl (y)

]

+ ln

[
1

Tl (x)

]

+ ln

[
1

Tl (y0)

])

dy

≤ 2κ ln

[
1

Tl (x)

]

,
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As for I2,

I2 = −
∫ y0

−x−y0
pN(y) ln pY (y + x;F ) dy

= −
∫ −x+y0

−x−y0
pN (y) ln pY (y + x;F ) dy −

∫ y0

−x+y0
pN(y) ln pY (y + x;F ) dy

≤ sup
|y|≤y0

ln

[
1

pY (y;F )

]

+

∫ y0

−x+y0
pN(y) ln

[
2

Tl (y + x+ y0)

]

dy

≤ sup
|y|≤y0

ln

[
1

pY (y;F )

]

+ ln 2 + ln

[
1

Tl (x+ 2y0)

]

(3.14)

≤ sup
|y|≤y0

ln

[
1

pY (y;F )

]

+ ln 2 + κ ln

[
1

Tl (x)

]

+ κ ln

[
1

Tl (2y0)

]

(3.15)

≤ 2 κ ln

[
1

Tl (x)

]

.

The supremum is finite since it is taken over a compact set where pY (y) (which

is less than one) is positive, continuous and hence positively lower bounded.

Equation (3.14) is due to the fact that ln
[

1
Tl(·)

]

is non-decreasing on the positive

axis, equation (3.15) is given by property C7 since both x and y0 are large enough

and the last equation is justified since ln
[

1
Tl(x)

]

is increasing to +∞ as |x| → +∞.

A similar procedure can be adopted to prove this result when x → −∞ by

adjusting the intervals of integration to the following: (−∞,−y0), [−y0,−x+y0],
(−x + y0,+∞) where x < −y0 such that |x| is large enough. This would imply

that for any probability distribution F , i(x;F ) = I1+I2+I3 = O
(

ln
[

1
Tl(x)

])

.

We also derive a lower bound whenever the input is bounded within [−B,B]

for some B > 0:

Lemma 5 (Lower Bound on i(x;F )). For an input distribution F that has a

bounded support within [−B,B] for some B > 0,

i(x;F ) = Ω

(

ln

[
1

Tu (x)

])

.

Proof. We proceed in a manner akin to the proof of Lemma 4: For an input
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distribution F that has a bounded support within [−B,B] for some B > 0, we

consider a large-enough yB0 so that Lemma 3 holds, and let x be such that x > yB0 .

i(x;F ) = −
∫ ∞

−∞
pN(y) ln p(y + x;F ) dy

≥ −
∫ +∞

yB0

pN(y) ln p(y + x;F ) dy

≥
∫ +∞

yB0

pN(y) ln

[
1

Tu (y + x− yB0 )

]

dy (3.16)

≥
(
1− FN (y

B
0 )
)
ln

[
1

Tu (x)

]

> 0. (3.17)

In order to write equation (3.16) we use the upper bound in Lemma 3. Equa-

tion (3.17) is justified since ln
[

1
Tu(·)

]

is non-decreasing on the non-negative semi-

axis and the end result is positive since the support of N is R. A similar analysis

may be conducted for the case when x < −yB0 < 0.

3.4 The Karush-Kuhn-Tucker (KKT) Theorem

The capacity of channel (3.1) is the supremum of the mutual information I(·)
between the input X and output Y over all input probability distributions F

that meet the constraint PA:

C = sup
F∈PA

I(F ) = sup
F∈PA

∫∫

pN (y − f(x)) ln

[
pN (y − f(x))

p(y;F )

]

dy dF (x). (3.18)

Conditions C1 to C6 guarantee that this optimization problem is well-defined

and that its solution –the capacity– is finite and is achievable (see Theorem 2

in Appendix B). Indeed, the conditions are sufficient for PA to be convex and

compact (Theorem 3, Appendix B) and for I(·) to be concave and continuous (in

the weak sense [84, Sec.III.7]) (Theorems 4,5, Appendix B).

When dealing with constrained optimization problems, the Lagrangian the-

orem [85] is a useful tool as it transforms the problem to an unconstrained one
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when some convexity conditions are satisfied by the objective function and the

constraints. In our problem these conditions are satisfied as the mutual informa-

tion is concave and the cost is linear - and hence convex. The theorem states

that there exists a non-negative parameter νA such that the optimization prob-

lem (3.18) can be written as:

C = sup
F∈PA

I(F ) = sup
F

{
I(F )− νA

(
EF [C (|X|)]−A

)}
(3.19)

= I(F ∗)− νA EF ∗ [C (|X|)] + νAA,

where the last equality is true since the solution is finite and achievable by an

optimal F ∗. Furthermore,

νA (EF ∗ [C (|X|)]− A) = 0.

For every positive A, denote by C(A) the capacity of the channel under the

constraint F ∈ PA, and consider the function C(A) for A > 0. The significance

of the Lagrange parameter νA is addressed in the following Lemma.

Lemma 6 (Non-Binding Constraint). Whenever for some positive A the param-

eter ν(A) = 0, then C(A′) = C(A) for all A′ ≥ A.

Proof. We start by noting that the channel capacity C(A) is a non-decreasing

function of A, due to the fact PA ⊆ PA′ , for 0 < A ≤ A′. Now assume that

ν(A) = 0 for some A > 0. For this value of A, equation (3.19) becomes

C = sup
F∈PA

I(F ) = sup
F

{
I(F )− νA

(
EF [C (|X|)]−A

)}
= sup

F
I(F ),

which is a maximal value over all probability distributions irrespective of the

constraint. This observation along with the fact that C(A) is non-decreasing

establish the result.
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In our setup, a value of ν(A) = 0 can be ruled out. Said differently, the

cost constraint in equation (3.18) is binding. The argument we make is similar

to the one used in [59]: we consider a family of input signals composed of N

discrete levels with equal probabilities at locations {1, L, L2, · · · , L2N−2}. When

L increases, the probability of error of a minimum probability of error receiver

goes to zero, which implies by Fano’s inequality that the mutual information

approaches ln(N). Therefore, as A → ∞, the achievable rates in our setup are

arbitrarily large and C(A) increases to infinity; a fact that is not possible if ν(A)

were equal to zero for some A by Lemma 6. This conclusion is corroborated by the

fact that the capacity for general continuous-input, continuous-output channels is

achieved by a boundary input when the input power is assumed to be the second

moment [86]. Our statement here holds for a general input constraint C(·).
Whenever weak (Gateaux) differentiability is guaranteed, one can further

write necessary and sufficient conditions on the maximum achieving distribu-

tion; conditions that are commonly referred to as the KKT conditions [85]. More

formal statements on the theory of convex optimization are summarized in Ap-

pendix A. The KKT approach was used previously in many studies [54,57,59–66,

68,69] in order to solve the capacity problem and for the purpose of this work, we

follow similar steps. We indeed prove in Appendix C the weak differentiability

of I(·) at any optimal input F ∗ and proceeding as in [59], we write the KKT

conditions as being necessary and sufficient conditions for the optimal input to

satisfy. These conditions state that an input RV X∗ with probability distribution

F ∗ achieves the capacity C of an average cost constrained channel if and only if

there exists ν ≥ 0 such that,

ν(C (|x|)− A) + C +H +

∫

pN (y − f(x)) ln p(y;F ∗) dy

= ν(C (|x|)−A) + C +H − i(f(x);F ∗) ≥ 0, (3.20)
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for all x in R, with equality if x is a point of increase of F ∗, and where H is the

entropy of the noise.

3.5 Main Results

Theorem 8 (Compactly Supported Capacity Achieving Input). Whenever C (|x|) =
ω
(

ln
[

1
Tl(f(x))

])

, the support of the capacity-achieving input of channel (3.3) is

compact.

Proof. We consider the necessary and sufficient conditions of optimality (3.20),

and we study the behavior of the expression function of the variable x as its

magnitude goes to infinity.

These conditions state that for the optimal input X∗, condition (3.20) is

satisfied with equality for any point of increase x0 of the capacity-achieving dis-

tribution F ∗ ∈ PA. For such an x0 we obtain,

ν(C (|x0|)− A) + C +H = i(f(x0);F
∗).

Using Lemma 4, i(f(x);F ) = O
(

ln
[

1
Tl(f(x))

])

since |f(x)| → +∞ as |x| → +∞
and therefore

ν(C (|x0|)−A) + C +H = O

(

ln

[
1

Tl (f(x))

])

.

This implies that whenever C (|x|) = ω
(

ln
[

1
Tl(f(x))

])

the points of increase of

X∗ could not assume arbitrarily large values unless ν = 0, which has been ruled

out in Section 3.4, which implies that the support of X∗ is bounded. Finally, we

note that the support is always closed, as its complement is open. Therefore, X∗

is compactly supported.
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3.5.1 A Converse Theorem

Now we make use of the upper bound on the noise PDF. In this section, we state

and prove a converse formulation of Theorem 8. Indeed we prove that whenever

C (|x|) = o

(

ln

[
1

Tu (f(x))

])

, the capacity-achieving input is not bounded.

Theorem 9 (Unbounded Support Capacity Achieving Input). Whenever C (|x|) =
o

(

ln

[
1

Tu (f(x))

])

, the support of the capacity-achieving input of channel (3.3)

is unbounded.

Proof. Suppose that the optimal input X∗ with distribution function F ∗ has a

bounded support within [−B,B] for some B > 0. The KKT conditions imply

that there exists ν ≥ 0 such that,

ν(C (|x|)− A) + C +H +

∫

pN (y − f(x)) ln p(y;F ∗) dy ≥ 0,

for all x in R, with equality if x is a point of increase of F ∗. Using Lemma 4,

the integral term i(f(x);F ∗) = Ω

(

ln

[
1

Tu (f(x))

])

and hence, equation (3.20)

necessarily implies that,

ν(C (|x|)− A) + C +H = Ω

(

ln

[
1

Tu (f(x))

])

,

which is impossible whenever C (|x|) = o

(

ln

[
1

Tu (f(x))

])

.

3.5.2 Discreteness

In what follows, we further characterize the capacity-achieving input statistics

when the cost function, the noise PDF and the channel distortion function have

an additional analyticity property. This property guarantees the type of the

optimal bounded input to be a discrete one, and hence with a finite number of

mass points by virtue of compactness. This characterization permits to proceed
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to numerical computations in order to compute channel capacity and find the

achieving input.

In this section, let η > 0 denote a positive scalar and let Sη = {z ∈ C :

|ℑ(z)| < η} be a horizontal strip in the complex domain. We adopt in this

section an alternative definition of Tu (x):

Tu (x) =







sup
ζ∈Sη:ℜ(ζ)≥x

|pN(ζ)| x ≥ 0

sup
ζ∈Sη:ℜ(ζ)≤x

|pN(ζ)| x < 0,
(3.21)

and we assume that the following condition holds: The integral

−
∫ +∞

−∞
Tu (x) lnTl (x) dx

exists and is finite. Note that this condition is similar to C8 but it is function of a

redefined Tu (). One may think of the condition as more restrictive. However, this

strengthened condition is needed only to establish discreteness. In the remainder

of this document we will refer to this condition as “the strengthened-C8”. We

present hereafter, a lemma that guarantees the analyticity of i(·;F ) on Sη:

Lemma 7 (Analyticity of i(·;F )). Whenever there exists an η > 0 such that

pN(·) admits an analytic extension on Sη, the function i(·;F ) : Sη → C defined

by:

z → i(z;F ) = −
∫ ∞

−∞
pN(y − z) ln p(y;F ) dy, (3.22)

is analytic.

Proof. To prove this lemma, we will make use of Morera’s theorem:

a) We start first by proving the continuity of i(·;F ). In fact, let ρ > 0, z0
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and z ∈ Sη such that |z − z0| ≤ ρ,

lim
z→z0

i(z;F ) =− lim
z→z0

∫

pN(y − z) ln p(y;F ) dy

=−
∫

lim
z→z0

pN(y − z) ln p(y;F ) dy (3.23)

=−
∫

pN(y − z0) ln p(y;F ) dy = i(z0;F ). (3.24)

Equation (3.24) is justified by pN (y − z) being a continuous function of z on

Sη by virtue of its analyticity and equation (3.23) by Lebesgue’s Dominated Con-

vergence Theorem (DCT). Indeed, in what follows we find an integrable function

r(y) such that,

∣
∣pN(y − z) ln p(y;F )

∣
∣ = −

∣
∣pN(y − z)

∣
∣ ln p(y;F ) ≤ r(y),

for all z ∈ Sη such that |z − z0| ≤ ρ and for all y ∈ R. We upper bound first

|pN(y − z)|: let y0 be large enough so that Lemma 2 holds

• If y ≤ −(y0 + |ℜ(z0)| + ρ), then y ≤ −y0 + ℜ(z0) − ρ (where y0 has been

defined in Lemma 2) and

|pN(y − z)| ≤ Tu (y − ℜ(z)) ≤ max
ζ∈Sη:|ζ−z0|≤ρ

Tu (y −ℜ(ζ))

= Tu (y −ℜ(z0) + ρ) ,

where the last equality is due to the fact that for x ≤ 0, Tu (x) is non-

decreasing, and for ζ ∈ Sη; |ζ − z0| ≤ ρ, (y −ℜ(ζ)) ≤ (y − ℜ(z0) + ρ) < 0.

• Similarly, for y ≥ (y0 + |ℜ(z0)|+ ρ) ≥ (y0 + ℜ(z0) + ρ),

∣
∣pN(y − z)

∣
∣ ≤ Tu (y − ℜ(z0)− ρ) .
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Next, using Lemma 2 we also upper bound − ln p(y;F ) to obtain:

r(y) =







Tu (y − ℜ(z0) + ρ) ln

[
2

Tl (y − y0)

]

y ≤ −(y0 + |ℜ(z0)|+ ρ)

−M lnM
′ |y| < y0 + |ℜ(z0)|+ ρ

Tu (y − ℜ(z0)− ρ) ln

[
2

Tl (y + y0)

]

y ≥ y0 + |ℜ(z0)|+ ρ,

where

M =

max
{|y|≤(y0+|ℜ(z0)|+ρ)}

max
{ζ∈Sη :|ζ−z0|≤ρ}

|pN(y − ζ)| & M
′
= min

{|y|≤(y0+|ℜ(z0)|+ρ)}
pY (y;F ).

Note that M is finite since pN(·) is analytic and the maximization is taken over

a compact set, and 0 < M
′
< 1, since pY (·;F ) is positive, continuous and less

than 1. Properties C7 and strengthened-C8 insure the integrability of r(y) which

concludes the proof of continuity of i(z;F ).

b) To continue the proof of analyticity, we need to integrate i(·;F ) on the

boundary ∂∆ of a compact triangle ∆ ⊂ Sη. We denote by |∆| its perimeter,

η0 = minz∈∂∆ℜ(z), η1 = maxz∈∂∆ℜ(z) and φ = y0 +max{|η0|, |η1|}. By similar

arguments as above, we have

∫

R

∫

∂∆

|pN(y − z)|| ln p(y;F )|dz dy

≤ |∆|M ′′

∫

|y|≤φ

∣
∣ln p(y;F )

∣
∣dy + |∆|

∫

y≤−φ

Tu (y − η0) ln

[
2

Tl (y − y0)

]

dy

+ |∆|
∫

y≥φ

Tu (y − η1) ln

[
2

Tl (y − y0)

]

dy <∞,

where

M
′′
= max

y:|y|≤φ
max
ξ∈∂∆

|pN(y − ξ)| <∞.
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Using Fubini’s theorem to interchange the order of integration,

∫

∂∆

i(z;F )dz = −
∫

∂∆

∫

R

pN(y − z) ln p(y;F ) dy dz

= −
∫

R

∫

∂∆

pN(y − z) ln p(y;F ) dz dy

= −
∫

R

ln p(y;F )

∫

∂∆

pN (y − z) dz dy = 0, (3.25)

where (3.25) is justified by the fact that pN(y − z) is analytic for all z ∈ Sη
and y ∈ R. Equation (3.25) in addition to the continuity of i(·;F ) insure its

analyticity on Sη.

Theorem 10 (Discreteness of the Capacity Achieving Input). Assume there ex-

ists an η > 0 such that pN(x) is analytically extendable on Sη, and let I be an

unbounded closed interval of R4. The capacity-achieving input of channel (3.3) is

compactly supported and discrete with finite number of mass points on I, when-
ever the following conditions hold:

• C (|x|) = ω
(

ln
[

1
Tl(f(x))

])

.

• The restrictions of f(x) and C (|x|) on I admit analytic extensions to I×R,

denoted fI(·) and CI(·) respectively.

• The inverse map f−1
I (·) of fI(·) conserves connectedness.

Before we prove the theorem, we note that a necessary condition for analytical

extendability is to have C (|x|) an explicit function of the variable x on I which

can be possibly realized when I is for example a subset of either R+ or R−.

Proof. We start by setting some notation and making a few remarks:

• Define J to be the image of interval I by fI(·).

4We consider that R is both closed and open.
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Since by analyticity fI(·) is continuous, then J is an interval of R because

fI(·) is identical to f(·) on I, and is real valued.

• Let Jη = {z ∈ Sη : ℜ(z) ∈ J } and define Iη = f−1
I (Jη), the inverse image

of Jη by fI(·).

Note that since J is an interval, Jη is connected and so is Iη by virtue of

the properties of f−1
I (·). Additionally, since fI(I) = J then I ⊂ Iη.

In what follows, we work using the induced topology on Iη. Under this

topology, Iη is both open and closed.

We proceed with the proof and assume that the optimal input X∗ with distri-

bution function F ∗ has at least one point of increase in I for otherwise the result

becomes trivial. Assume that the points of increase of F ∗ in I are accumulating,

and let

s(z) = ν (CI(z)− A) + C +H − i(fI(z);F
∗).

By the result of Lemma 7, i(fI(z);F
∗) is analytic on Iη since it is the com-

position of two analytic functions: fI(·) on Iη and i(·;F ∗) on Jη = fI(Iη) ⊂ Sη.
This implies that the function s(z) is analytic on Iη. Since by assumption the

points of increase of F ∗ have an accumulation point on I then by the KKT con-

ditions, s(z) has accumulating zeros on I ⊂ Iη, which necessarily implies by the

identity Theorem [87, sec. 66] that s(·) is identically null on Iη, since Iη is open

and connected. Therefore,

ν(C (|x|)− A) + C +H = −
∫

pN(y) ln p(y − f(x);F ∗) dy, ∀x ∈ I.

Since I is unbounded, this equality is impossible for large values of x by

the result of Theorem 8 unless ν = 0 which is non sensible. This leads to a

contradiction and rules out the assumption of having an accumulation point on

I. Since R is Lindelof, X∗ is necessarily discrete on I. Knowing that C (|x|) =
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ω
(

ln
[

1
Tl(f(x))

])

then the support of X∗ is compact (Theorem 8). The fact that

I is closed in R implies that X∗ has necessarily a finite number of mass points

on I.

Before moving to applying our general theorems to the alpha-stable channels,

we would like to state that some conditions were only considered for either the

sake of the clarity of the proofs, or for conserving the general aspect of the results.

Many such conditions could be relaxed while conserving some or all of the found

conclusions. For example,

• The notions of ω, Ω, o and O used in this document are defined as |x| →
+∞, i.e., in such a way to capture a symmetric rate of decay for both tails.

However, one can only consider left or right tail behaviors separately. The

results of boundedness and discreteness could be given in terms of each tail

where for example for non-symmetric noise PDFs or non-symmetric cost

functions, the optimal input could only be bounded on one of the semi-

axis.

• For Theorems 8 and 9, the assumption that pN(·) is positive could be relaxed

to one sided noise PDFs. These theorems are still valid on one side of the

axis.

• The proven theorems –stated in terms of Tl (x) and Tu (x)– could be stated

in terms of any two functions having the same properties and providing

lower and upper bounds on pN(x) for large values of |x|.

3.6 The Alpha-Stable Channel Capacity

In this section we apply our results –in the form of Theorems 8, 9, and 10 as

follows:
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1- We verify the results by applying them to the Gaussian channel that has

been previously studied in the literature.

2- We give new capacity results and compute numerically the channel capacity

for two types of channels of interest that present practical models when

communicating in impulsive noise environments:

– The additive noise is a non-totally skewed alpha-stable RV or a mixture

of a finite number of them.

– The additive noise is the sum of two independent RVs: a Gaussian one

and a non-totally skewed alpha-stable one.

We note that in all the examples presented subsequently the considered functions

f(·) and the cost constraints satisfy the general conditions C1 through C4 in

Section 3.2.1. The noise distributions are absolutely continuous with positive,

continuous PDFs with tails that have “at least” a polynomial decay and hence

satisfying the assumptions C5 and C6. Finally, in all the provided examples the

noise PDFs possess a monotonic tail and a finite differential entropy and therefore,

condition C8 is satisfied. It remains to check for each example condition C7 and

possibly the strengthened-C8.

For the purpose of verifying condition C7, we note that one can use pN (x)

instead of Tl (x) since they are identical at large values of |x|. When it comes to

discreteness, whenever |x| is large enough the function Tu (x) defined in (3.21)

becomes

Tu (x) = sup
{z: ℜ(z)=x& |ℑ(z)|<η}

|pN(z)| ,

because |pN (z)| is decreasing with |ℜ(z)| at large values for all the given examples.

For each model we consider in what follows, we will check whether the ap-

propriate conditions are satisfied, state the results –specialized to the channel at

hand, and compare with the known results in the literature, if any.
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3.6.1 The Gaussian Model

For a Gaussian noise distribution with mean zero and variance σ2, the PDF is

pN(x) =
1√
2πσ2

e−
x2

2σ2 and we write N ∼ N (0, σ2).

Checking the conditions: Condition C7 is validated as follows: for large values

of |x| and |y|,

L(x+ y) = ln

[
1

pN(x+ y)

]

= ln
√
2πσ2 +

(x+ y)2

2σ2

≤ 2

(

ln
√
2πσ2 +

x2

2σ2
+ ln

√
2πσ2 +

y2

2σ2

)

− 3 ln
√
2πσ2

= κl (L(x) + L(y)) ,

where κl > 2. When it comes to discreteness, let pN(z) =
1√
2πσ2

e−
z2

2σ2 , be an ana-

lytic extension of pN(x) to the complex plane, where z = x+ jy. The magnitude

of pN(z) is

|pN(z)| =
1√
2πσ2

∣
∣
∣
∣
e−

z2

2σ2

∣
∣
∣
∣
=

1√
2πσ2

e−
x2−y2

2σ2 ,

and is decreasing in x = ℜ(z). Therefore, Tu (x) = 1√
2πσ2

e−
x2−η2

2σ2 = e
η2

2σ2 pN(x).

Checking for the strengthened-C8, the integral −
∫ +∞
−∞ Tu (x) lnTl (x) dx =

e
η2

2σ2 h(N) which is finite because the noise differential entropy h(N) is finite.

The following theorem is a specialization of Theorems 8 and 9 for this specific

Gaussian case:

Theorem 11 (Capacity Results: Gaussian Noise). Whenever C (|x|) = o (f(x)2),

the support of the capacity-achieving input of channel (3.3) when N ∼ N (0, σ2)

is unbounded.

Whenever C (|x|) = ω (f(x)2), the support of the capacity-achieving input of

channel (3.3) when N ∼ N (0, σ2) is compact. Furthermore, the optimal input

is discrete with finite number of mass points whenever C(·) and f(·) satisfy the

analyticity and connectedness conditions of Theorem 10.

Previous work: A possibly non-linear (f(x) = xn, n ∈ N∗) Gaussian channel
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under an even moment constraint (C (|x|) = x2k) was considered in [49] as a

core channel model from which results on multiple non-linear channel models

were derived. The authors applied a standard Hilbert space decomposition using

Hermite polynomials as bases and proved that, for n < 2k, the capacity-achieving

distribution has the following behavior:

• Whenever n = k

– if n is odd, the optimal input F ∗ is absolutely continuous.

– if n is even, F ∗ is discrete with no accumulation points.

• Whenever n < k, F ∗ is discrete with finite number of mass points.

• Whenever k < n < 2k, F ∗ is discrete with no accumulation points.

We point out that while the results stated in Theorem 11 do not cover the

limiting case n = k –which corresponds to the case C (|x|) = θ (f 2(x)), the result

for the case “n < k” is identical. Whenever k < n, Theorem 11 states that the

support of F ∗ is not bounded; a conclusion that could not be reached in [49].

3.6.2 Polynomially-Tailed Distributions

In this section, we refer by “polynomially-tailed” noise distributions to all distri-

butions satisfying

pN (x) = Θ

(
1

|x|1+α
)

, for some α > 0,

which include among others: the Gamma, Pareto (one sided) and alpha-stable

distributions.

Checking the conditions: In order to proceed, we use the “obvious” lower and

upper bounds on pN(x) for large values of |x| instead of pN(x) itself and we state

the corresponding theorems accordingly. These bounds are of the form ζl
|x|1+α and
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ζu
|x|1+α , for some ζl and ζu > 0. We prove now that condition C7 is satisfied; Let

L(x) = ln

[ |x|1+α
ζl

]

= (1 + α) ln |x| − ln ζl,

which implies that for large-enough |x| and |y|,

L(x+ y) = (1 + α) ln |x+ y| − ln ζl

≤ (1 + α) ln [|x|+ |y|]− ln ζl

≤ p(1 + α) [ln |x|+ ln |y|]− ln ζl

= p [(1 + α) ln |x| − ln ζl + (1 + α) ln |y| − ln ζl] + (2p− 1) ln ζl

≤ 2p [(1 + α) ln |x| − ln ζl + (1 + α) ln |y| − ln ζl]

= 2p [L(x) + L(y)] ,

where p > 1. Consequently, the following holds:

Theorem 12 (Capacity Results: Impulsive Noise). Whenever C (|x|) = ω (ln |f(x)|),
the support of the capacity-achieving input of channel (3.3) when N is polynomially-

tailed is compact.

For example, for a linear channel subjected to an additive polynomially-tailed

noise, the optimal input has a bounded support for any cost function that is super

logarithmic (i.e., ω (ln |x|)) such as the average power constraint. When it comes

to discreteness and strengthened-C8, it depends on the analyticity property of

the specific pN(·) under consideration.
The remaining part of this Section is dedicated to two important types of

polynomially decaying distributions, for which we prove that the discreteness

results of Theorem 10 apply.
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Non-Totally Skewed Alpha-Stable and their Mixtures

Checking the conditions: For non-totally skewed laws, both the right and the

left tails are polynomially decaying as Θ
(

1
|x|α+1

)

(see [71, Th.1.12, p.14]), and

Theorem 12 holds. Furthermore, whenever α ≥ 1 the alpha-stable variables are

analytically extendable, to the whole complex plane when α > 1 and to some

horizontal strip when α = 1 [75, theorem 2.3.1 p. 48 and remark 1 p. 49]. We

check in what follows the strengthened-C8. We derive in Appendix D a novel

bound on the rate of decay of the complex extension of the alpha-stable PDF

when α ≥ 1: For small-enough η > 0, there exist κ > 0 and n0 > 0 such that

|pN(z)| ≤
κ

|ℜ(z)|α+1
, ∀ z ∈ Sη : |ℜ(z)| ≥ n0. (3.26)

This bound insures the validity of Theorem 10 whenever the conditions on

C(·) and f(·) are satisfied, and hence the following theorem is valid:

Theorem 13 (Capacity Results: Alpha-Stable Noise). Whenever C (|x|) = ω (ln |f(x)|),
the support of the capacity-achieving input of channel (3.3) when N ∼ S(α, β, γ, δ)
is a non-totally skewed alpha-stable variable is compact.

Whenever α ≥ 1, the optimal input is discrete with finite number of mass

points whenever C(·) and f(·) satisfy the analyticity and connectedness conditions

of Theorem 10.

Note that by virtue of the fact that condition C7 defines a convex set, the

results presented here for one alpha-stable variable are valid for any convex com-

binations of them.

The capacity results of Theorem 13 when applied to the additive linear chan-

nel where the noise is modeled as a non-totally skewed alpha-stable variable says

that, under any “super-logarithmic” average cost constraint, the capacity achiev-

ing input is of bounded support. Furthermore, the optimal input has discrete

statistics whenever the alpha-stable noise has α ≥ 1. This result covers, among
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other “super-logarithmic” input cost functions, the fractional r-th moment con-

straint, E [|X|r] ≤ A, A > 0 and r > 10.

We use a specialized numerical Matlab package to search for the positions of

the optimal points and their respective probabilities whenever the optimal input

is discrete. In Figure 3-1, we plot the capacity of channel (3.3) whenever f(x) = x,

C(|x|) = x2 and N ∼ S(α, 0, 1, 0) for α = 1, 1.2, 1.5 and 1.8. The capacity curves

clearly shows that as α gets bigger the capacity is higher. This is in accordance

with the fact that the lower the value of α, the distribution becomes heavier.
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Figure 3-1: Capacity of the linear channel subject to symmetric “standard” alpha-
stable noise N ∼ S(α, 0, 1, 0) for various values of the characteristic exponent α.

Composite noise: Gaussian + Alpha-Stable (Middleton Class B)

Recently, a compound noise model was adopted to capture potentially different

sources of noise: a Gaussian model for the thermal noise and an alpha-stable

model for the potential Multiple Access Interference (MAI), as is the case for ad-

hoc self configuring networks with applications in CDMA networks [37], and in

the general context of ultra wideband technologies [27]. Further information on

67



the subject can be found in [4,26,28]. We note that this noise model is commonly

referred to as the Middleton class B distribution [51, 52]. We consider hence the

following additive noise N = N1 +N2, where

• N1 ∼ S(α, β, γ, δ), which represents the effect of the MAI, assumed a non

totally-skewed alpha-stable RV.

• N2 ∼ N (µ, σ2) is a Gaussian RV that models the effect of thermal noise.

Checking the conditions: It has been proved in [88, Appendix I] that pN (x)

is polynomially-tailed which implies that Theorem 12 holds for the compound

noise model. In order to apply Theorem 10 for the channels impaired by the

composite noise N , we use the fact that its PDF is analytically extendable on C

(for all values of 0 < α < 2) and therefore on Sη [88, Appendix I], and check the

strengthened-C8:

Tu (x) = sup
|ℑ(z)|<η

|pN(z)| ≤ sup
|ℑ(z)|<η

1√
2πσ2

∫ ∣
∣
∣
∣
e−

(z−t)2

2σ2

∣
∣
∣
∣
pN1(t) dt

≤ 1√
2πσ2

e
η2

2σ2

∫

e−
(x−t)2

2σ2 pN1(t) dt = e
η2

2σ2 pN(x),

which implies

−
∫ +∞

−∞
Tu (x) lnTl (x) dx ≤ −e η2

σ2

∫ +∞

−∞
pN(x) ln pN(x) dx = e

η2

σ2 h(N) <∞.

The following theorem therefore holds:

Theorem 14 (Capacity Results: Composite Noise). Whenever C (|x|) = ω (ln |f(x)|),
the support of the capacity-achieving input of channel (3.3) when N = N1+N2 is

compact. The optimal input is discrete with finite number of mass points whenever

C(·) and f(·) satisfy the analyticity and connectedness conditions of Theorem 10.

Using Matlab, we evaluated the capacity of channel (3.3) under a 2nd-moment

constraint, when f(x) = x and N2 ∼ N (0, 1). We considered two scenarios: one
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where the heavy-tail component is considered “moderate”, N1 ∼ S(1, 0, 1, 0), and
another where it is “mild”: N1 ∼ S(1, 0, 0.1, 0).

In Figure 3-2, we plot the channel capacity in the moderate case as well

as the achievable rates with a Gaussian input. We observe that, the relative

loss in transmission rates is essentially constant (3 to 5%). When the heavy-

tailed noise component becomes more accentuated, we expect this loss to be

more pronounced. Indeed, in the mild case, the results show that a Gaussian

input achieves rates which are very close to capacity. However, we emphasize

that this statement does not imply that the channel can be approximated as a

Gaussian channel. Indeed, the cumulative noise is heavy-tailed (with polynomial

decay) and the capacity values are significantly less than 1
2
log
(

1 + E[X2]
σ2

)

: Even

in the mild case, the capacity is found to be 0.298 nats/channel-use at 0.16 dB

compared to 0.356 nats for the Gaussian channel model. In Figure 3-3 we plot

the capacity of the linear channel where N1 ∼ S(α, 0, 1, 0) for the values of α = 1

and 1.5. The optimal input at 7.27dB was found to have 16 and 18 mass points

respectively.
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Figure 3-2: Capacity vs achievable rates using a Gaussian input for the composite
noise: N1 ∼ S(1, 0, 1, 0) and N2 ∼ N (0, 1).
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Figure 3-3: Capacity of the linear channel under the composite noise: a standard
Gaussian & a standard alpha-stable for α = 1&1.5.

3.7 Related Publications

Finally, we note that the results of this chapter were presented as conference

papers in [88, 89] and are currently being reviewed as a journal paper submitted

to the IEEE Transactions on Information Theory since June 2015.
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Chapter 4

Power Notions

4.1 Background

The second moment is a key parameter in communications theory. Whenever

finite, it allows the definition of a Hilbert space of RVs in which it is considered

as a power measure. Under this condition, the theory of communications is well

established and understood: channel models, power definition, channel capacity,

signaling schemes, optimal receivers, etc ... Specifically, considering the second

moment as a measure of average power for the various signals was translated to

a second moment constraint on the channel input in many information theoretic

problems within the context of determining the channel capacity [54, 55, 57–64,

67, 68]. A generalization of the power notion and input constraints was made

in [49] where even moment constraints were treated.

However, when it comes to infinite variance RVs the theory is far from being

exhaustive. In addition to the theoretical interest, one is faced with practical

scenarios in which signals with an infinite second moment should be dealt with.

This is the case of additive channels that are subjected to impulsive noise, specif-

ically the alpha-stable family. For these types of channels, the second moment is

no longer considered to be a suitable power measure as all related quantities are
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infinite. This comes with added complexity of “loosing” the Hilbert space struc-

ture that a finite second moment guarantees. A survey of the literature shows

that alternative measure of power were proposed:

• In [11], Shao and Nikias proposed the “dispersion” of a RV as a measure

that plays a similar role to the variance. However, since no analytical

expression is defined for the dispersion except for alpha-stable distributions,

they propose the usage of the r-th absolute moment (r < 2) as an alternative

which yields a non-linear signal processing theory.

Additionally, the signal-to-dispersion ratio –defined as the ratio of the sec-

ond moment of the input to the dispersion of the noise– is used as an al-

ternative to the regular signal-to-noise ratio when the noise is alpha-stable.

Using this ratio as a measure of the channel strength, some achievable rates

were numerically evaluated for the alpha-stable channel [47].

Being said, it would seem plausible to adopt a FOM E [|X|r] for some r > 0

in the presence of alpha-stable distributions since they have have finite

FLOM for r < α (See Section 2.2.1 Property 1).

• Based on logarithmic moments of the form E [log |X|], an alternative notion

of power was introduced by Gonzales [39] for the heavy tailed distributions

which he called the Geometric Power (GP):

S0(X) =̂ eE[log |X|] (4.1)

He considered the logarithmic moments as a “universal framework” for

dealing with algebraic tail processes that will overcome the shortcomings

of the FLOM approach which he summarizes as follows:

– Since r is usually restricted to the interval (0;α), constructing a valid

FLOM requires the previous knowledge (or estimation) of α in order
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to choose an appropriate value of r.

– On the other hand, for any given r > 0, there will always be a “remain-

ing” class of very impulsive processes (those with α ≤ r) for which the

associated FLOM is not appropriate.

Also the discontinuity in the FLOM is yet another unpleasant feature. In

fact, for a given 0 < r < 2, two alpha stable distributions with characteristic

exponents α1 = r + ǫ and α2 = r − ǫ (for some ǫ > 0), will respectively

have a finite and infinite r-th absolute moment though they would have

similar statistical behavior. However, all stable distributions have a finite

logarithmic moment [39].

The GP was used in formulating new impulsive signal processing techniques,

nevertheless adopting it as power definition from an information theoretic per-

spective is faced with multiple complications. In fact, constraining the GP for

the input signal is really a constraint on the logarithmic moment E [log |X|] which
can assume negative values and this will be in contradiction with the usual notion

of positive average input cost/power. More importantly, for any discrete input

X that has a mass point at zero, S0(X) will be necessarily null even if other

non-zero mass points are existent. This would yield a zero power for a non-zero

signal. However the logarithmic nature of the constraint proposed by Gonzales

seems to be a characteristic of the “right” form which is applicable to all heavy

tailed distributions.

In this chapter, we further support the proposition that power measures with

logarithmic tail behaviour are suitable in the presence of alpha-stable distribu-

tions however we do not restrict ourselves to definition (4.1) or equivalently to

E [log |X|]. Instead, we work in the restriction that a strength measure PX of a

variable X satisfies the following:

R1- PX ≥ 0, w.e. iff X = 0.
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R2- PaX = |a|PX for a ∈ R

R3- PX is a parameter that captures the width of the distribution (similar to the

variance for finite variance variables or the dispersion for the alpha-stable

variables...)

Though these restrictions do not contain some of the dispensable properties sat-

isfied by the GP such as the multiplicativity and the triangular inequality prop-

erties [39], they are deemed sufficient to define a strength measure. We proceed

next to argue the suitability of measuring the power through the average of

logarithmically-tailed functions and later we propose a couple of newly defined

power measures and we argue the reason why there are deemed suitable.

4.2 Suitable Power Measures: Connections to

the Capacity Results of the Alpha-Stable

Channel

Over continuous-alphabets channels, a common belief is that with “sufficient”

power, one is capable of transmitting at arbitrarily large rates. Stated differently,

if an input of infinite power is allowed, the channel capacity is infinite. This belief

is perhaps inspired from the well-known AWGN and linear Gaussian channels for

example. The results corroborated in Appendix B disproves this belief if one

relates the notion of power to the second moment.

Let us recall the results provided in Chapter 3: they state that –for monotoni-

cally noise PDFs, there exists a threshold growth rate for the cost function which

constitutes the transition between bounded and unbounded optimal inputs. In-

deed, for an optimal input to be unbounded, a “necessary condition” for the cost

function is to be at most Θ
(

ln
[

1
pN (f(x))

])

.

In a general setting, we next argue that this result provides insights on what
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is a suitable measure of signal strength. Though this question is not crucial when

the additive noise has a finite second moment due to the natural power measure

provided by the second moment, it seems of great importance when dealing with

heavy tailed noise distributions having infinite second moments. We use the

results of Chapter 3 and make the following reasoning:

• Let E [C0(|x|)] be a measure of the average signal strength where the strength

function C0(|x|) is positive, lower semi-continuous, non-decreasing in |x| and
let pN(x) be the noise PDF which is assumed to have a monotonic tail.

• Whenever C0(|x|) = ω
(

ln
[

1
pN (f(x))

])

, one can always find a cost function

C(|x|) such that C(|x|) is both ω
(

ln
[

1
pN (f(x))

])

and o (C0(|x|)).

• Now, since C(|x|) = ω
(

ln
[

1
pN (f(x))

])

, the channel capacity under an input

constraint of the form E [C(|x|)] ≤ A, A > 0 is achieved by a bounded input

by virtue of Theorem 8. On the other hand, since C(|x|) = o (C0(|x|)),
then there exists a distribution function satisfying the cost constraint with

”signal strength” E [C0(|x|)] equal to ∞.

• Hence, in the input space of distribution functions, there exist distribu-

tions having possibly infinite strength while the capacity is achieved by a

distribution which has a finite one since its support is bounded.

• This non-intuitive conclusion is only possible under the choice of a strength

measure that is the average of a function of the form ω
(

ln
[

1
pN (f(x))

])

.

Following this line of thought, suitable signal strength functions should be

at most Θ
(

ln
[

1
pN (f(x))

])

. Said differently, depending on the noise, functions

that are of the form Θ
(

ln
[

1
pN (f(x))

])

are more appropriate. This boils down to

Θ(f 2(x)) under the Gaussian noise and to Θ (ln [f(x)]) for polynomially-tailed

additive noise. The latter condition holds for the alpha-stable family being poly-

nomially tailed. As an example, a suitable strength function for the linear additive

alpha-stable channel is one of the form Θ (ln x) .
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4.3 A Power Measure in the Fourier Domain

An important approach for searching for new power measures of signals with

infinite second moments is to observe the Fourier domain. More specifically, the

second moment of a RV X is under some mild conditions the second derivative

of the characteristic function φ(·) evaluated at 0. Hence, observing the behaviour

of characteristic functions around the origin might give indicators on the average

power of RVs. Though, in general, it is hard to always relate a local behaviour of

the characteristic function to some strength function of the variableX , the Fourier

domain approach seems appealing in the case of alpha-stable distributions and

their domains of attractions since these variables have closed-form characteristic

functions which is not the case for their density functions. We only consider in

this section symmetric RVs:

Definition 4 (Power Measure in the Fourier Domain). Let X be a real-valued

RV and having a symmetric distribution function around the origin. Then, define

Pτ (X) = − lim
ω→0

d

dω

[

|ω|2−τ dφ
dω

(ω)

]

(4.2)

for some 0 < τ ≤ 2 assuming that the limit is finite and that dφ
dω
(ω) exists in a

neighbourhood of 0, not necessarily at 0.

We note that φ(ω) is a real-valued, even function and hence dφ
dω
(ω), d

2φ(ω)
dω2 are

respectively odd and even in their domain of definition. For the limit to exist,
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we must have:

Pτ (X) = − lim
ω→0−

d

dω

[

|ω|2−τ dφ
dω

(ω)

]

= − lim
ω→0−

d

dω

[

(−ω)2−τ dφ
dω

(ω)

]

= − lim
ω→0−

[

−(2− τ)(−ω)1−τ dφ
dω

(ω) + (−ω)2−τ d
2φ

dω2
(ω)

]

= − lim
ω→0+

[

(2− τ)ω1−τ dφ

dω
(ω) + ω2−τ d

2φ

dω2
(ω)

]

(4.3)

= − lim
ω→0+

d

dω

[

|ω|2−τ dφ
dω

(ω)

]

. (4.4)

We note that the equality in (4.3) is always satisfied as long as the limit exists

and is finite since φ(ω) is even. For this to be true, the following conditions are

deemed sufficient for the existence of Pτ (X):

a- φ(ω) is C2 in a neighbourhood of 0, not necessarily at 0.

b- There exists a 0 < τ ≤ 2 such that:

lim
ω→0+

ω1−τ dφ

dω
(ω) and lim

ω→0+
ω2−τ d

2φ

dω2
(ω)

are both finite.

In addition, we assume

c- Whenever φ(ω) is convex in a neighbourhood of 0, it should be such that

d2φ
dω2 (ω) ≤ |ω|ǫ−1 for some ǫ > 0.

We note that condition c is rather a mild condition for technical considerations

as it will appear later and is not related to the existence of Pτ .

4.3.1 A Parametrized Power Definition

Let X and Y be two independent RVs satisfying a, b and c. In this section, we list

some of the important properties that are satisfied by Pτ (·) and are considered
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to some extent necessary in order to qualify it as power operator. We consider

only the limit for ω > 0.

Positiveness

We make the following remarks before proceeding into the proof that Pτ (X) ≥ 0:

• φ(ω) is a characteristic function, hence φ(ω) is uniformly continuous and

φ(ω) < φ(0) for all ω. Then there exists an open positive neighbourhood

of 0 in which φ(ω) is decreasing and dφ
dω
(ω) ≤ 0 .

• As for limω→0+
d2φ
dω2 (ω), it could assume both positive or negative values,

and hence there exists an open positive neighbourhood of 0 for which φ(ω)

could be either concave or convex.

The proof is based on the above observations and is done separately for two

different categories of φ(ω):

φ(ω) is concave in some open positive neighbourhood of 0 In this case,

both dφ
dω
(ω) and d2φ

dω2 (ω) are non-positive when ω → 0+. Equation (4.3) implies

that Pτ (X) is non-negative.

φ(ω) is convex in some open positive neighbourhood of 0 This implies

that necessarily limω→0+
dφ
dω
(ω) < 0. Now let ǫ > 0 be such that condition c is

satisfied, and consider the following function defined for ω ≥ 0:

G(ω) = − 1

2− τ
ωǫ

We note that limω→0+
dφ
dω
(ω) < limω→0+ G(ω) = 0. By continuity, there exists

some open positive neighbourhood of 0 in which 0 < dφ
dω
(ω) < G(ω). Using

property c, we get the following set of inequalities:

d2φ

dω2
(ω) ≤ ωǫ−1 ≤ −2 − τ

ω

dφ

dω
(ω)
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for ω in some open positive neighbourhood of 0. Multiplying by ω2−τ yields that

Pτ (X) is non-negative.

Scalability

Let κ be a real, non-zero value. Define U = κX , we have:

Pτ (U)

= − lim
ω→0+

[

(2− τ)ω1−τ dφU
dω

(ω) + ω2−τ d
2φU
dω2

(ω)

]

= − lim
ω→0+

[

κ(2− τ)ω1−τ dφX
dω

(κω) + κ2ω2−τ d
2φX
dω2

(κω)

]

= − lim
|κ|ω→0+

[

sgn(κ)|κ|τ (2− τ) (|κ|ω)1−τ dφX
dω

(κω) + |κ|τ (|κ|ω)2−τ d
2φX
dω2

(κω)

]

= −|κ|τ lim
|κ|ω→0+

[

(2− τ) (|κ|ω)1−τ dφX
dω

(|κ|ω) + (|κ|ω)2−τ d
2φX
dω2

(|κ|ω)
]

(4.5)

= |κ|τPτ (X).

Equation (4.5) is due to the fact that dφX
dω

(ω) and d2φX
dω2 (ω) are respectively odd

and even functions for all ω 6= 0.
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Additive Property

Let Z = Y +X . We have,

Pτ (Z)

= − lim
ω→0+

[

(2− τ)ω1−τ dφZ
dω

(ω) + ω2−τ d
2φZ
dω2

(ω)

]

= − lim
ω→0+

[

(2− τ)ω1−τ d (φX(ω)φY (ω))

dω
+ ω2−τ d

2 (φX(ω)φY (ω))

dω2

]

= − lim
ω→0+

[

(2− τ)ω1−τφX(ω)
dφY
dω

(ω) + (2− τ)ω1−τφY (ω)
dφX
dω

(ω)

+ω2−τφX(ω)
d2φY
dω2

(ω) + ω2−τφY (ω)
d2φX
dω2

(ω) + 2ω2−τ dφX
dω

(ω)
dφY
dω

(ω)

]

= − lim
ω→0+

φX(0)

[

(2− τ)ω1−τ dφY
dω

(ω) + ω2−τ d
2φY
dω2

(ω)

]

− lim
ω→0+

φY (0)

[

(2− τ)ω1−τ dφX
dω

(ω) + ω2−τ d
2φX
dω2

(ω)

]

− lim
ω→0+

2ω2−τ dφX
dω

(ω)
dφY
dω

(ω)

= − lim
ω→0+

[

(2− τ)ω1−τ dφY
dω

(ω) + ω2−τ d
2φY
dω2

(ω)

]

− lim
ω→0+

2ωτω1−τ dφX
dω

(ω)ω1−τ dφY
dω

(ω)− lim
ω→0+

[

(2− τ)ω1−τ dφX
dω

(ω) + ω2−τ d
2φX
dω2

(ω)

]

= Pτ (Y ) + Pτ (X). (4.6)

In order to write the last equation, we used the fact that

lim
ω→0+

2ωτω1−τ dφX
dω

(ω)ω1−τ dφY
dω

(ω) = 0,

by virtue of the fact that limω→0+ ω
1−τ dφX

dω
(ω) and limω→0+ ω

1−τ dφY
dω

(ω) are both

finite and τ > 0.

4.3.2 An Universal Power Definition

Considering equation (4.3), the following behaviour of Pτ (X) can be deduced:

• When there exists a 0 < τ ≤ 2 for which Pτ (X) is finite non-zero:
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- if τ 6= 2, then Pt(X) assumes the value +∞ for τ < t ≤ 2. On the

other hand for 0 < t < τ , Pt(X) = 0.

- if τ = 2, then Pt(X) = 0 for 0 < t ≤ 2.

• If no such τ exists, then there exits 0 < τ̂ ≤ 2 such that Pt(X) = 0 for

t ∈ (0, τ̂ ] and is infinite otherwise.

Due to these observations, we define the power as follows:

P(X) = Pτmax(X), (4.7)

where

τmax = argmax0<τ≤2{Pτ <∞}.

In the remaining of this section, we check the properties of P(·) that are inherited
from Pτ (·). In fact let X , Y denote two independent RVs for which there exists

respectively 0 < τ1 ≤ 2 and 0 < τ2 ≤ 2 such that Pτ1(X) and Pτ2(Y ) are defined:

(i) Existence: Whenever there exists a 0 < τ ≤ 2 for which Pτ (X) is finite such

τmax always exists and hence P(X) exists.

(ii) Positiveness: This a direct consequence of the positiveness of Pτ .

(iii) Scalability: By virtue of the remarks in the beginning of this section, P(X) =

Pτmax(X) and hence P(κX) = κτmaxP(X).

(iv) Triangular Inequality: We assume WLOG that P(X) = Pτ1(X) and P(Y ) =

Pτ2(Y ) and τ1 ≤ τ2. Then, Pτ1(X + Y ) = Pτ1(X) + Pτ1(Y ) exists and is

finite (0 ≤ Pτ1(Y ) ≤ Pτ2(Y ) exists since τ1 ≤ τ2). Furthermore it can be

easily seen that Pτ does not exist if τ > τ1. Hence

P(X+Y ) = Pτ1(X+Y ) = Pτ1(X)+Pτ1(Y ) = P(X)+Pτ1(Y ) ≤ P(X)+P(Y ),
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with equality iff P(Y ) = Pτ2(Y ) = Pτ1(Y ). This is feasible iff P(Y ) = 0

and/or τ1 = τ2.

Shortcomings: One final comment is that though it is guaranteed using (4.7)

that whenever X = 0, P(X) = P2(X) = 0, the contrary is not clear to be true.

Namely, if we consider X such that P(X) = 0, this would not necessarily imply

that X = 0. This point will be addressed at a later stage to guarantee the

preceding proposition. For the remaining of this section, we refer to τmax as the

tuned parameter.

4.3.3 Evaluation of Pτ for the Stable Family and some

Observations

1. When τ = 2,

P2(F ) = −d
2φ

dω2
(ω) =

∫

x2dF (x)

which is the standard power notion adopted for finite second moment RVs.

2. For symmetric stable distributions with exponent 0 < α ≤ 2 with dispersion

γ > 0, evaluating Pτ yields:

Pτ (X) = − lim
ω→0

d

dω

[

|ω|2−τ dφ
dω

(ω)

]

= − lim
ω→0

d

dω

[

|ω|2−τ de
−γα|ω|α

dω

]

. (4.8)
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Taking the limit as ω → 0+, we obtain

lim
ω→0+

d

dω

[

|ω|2−τ de
−γα|ω|α

dω

]

= lim
ω→0+

d

dω

[

ω2−τ de
−γαωα

dω

]

= −γαα lim
ω→0+

d

dω

[
ω1+α−τe−γω

α]

= −γαα lim
ω→0+

ωα−τe−γ
αωα

[(1 + α− τ)− γααωα] .

Considering the above limits, 3 regimes are observed:

- If τ = α, then

lim
ω→0+

d

dω

[

|ω|2−τ de
−γα|ω|α

dω

]

= lim
ω→0−

d

dω

[

|ω|2−τ de
−γα|ω|α

dω

]

= −αγα,

and

Pα (S(α, γ)) = αγα

For α = 2, the power of a zero mean Gaussian with variance σ2 is:

P2

(
N (0, σ2)

)
= 2 γ2 = 2× σ2

2
= σ2

- If τ < α, the two limits are both equal to 0. Hence, in this case:

Pτ (S(α, γ)) = 0.

- If τ > α, both limits diverges to −∞ and therefore Pτ (S(α, γ)) is

+∞.

As an interpretation of the above results, one could make the following obser-

vations:

• The parameter 0 < τ ≤ 2 can be regarded as a “tune” parameter in order
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to capture the power of a RV. Within the class of stable distributions, this

tune parameter is closely related to the characteristic exponent α. In fact,

τmax = α whenever X ∼ S(α, γ) for 0 < α ≤ 2 and γ > 0. As long

as τ < α, Pτ fails to capture the power of S(α, γ) since it evaluates to 0

and τ is undertuned. At τ = α, Pτ is tuned and the power of S(α, γ) is

proportional to the dispersion. Finally when τ > α, the power is infinite

and τ is overtuned.

• For the Gaussian RV, there is no overtuned range for τ and the tuned value

is τmax = 2 which gives the standard notion of power as being the second

moment. For all the remaining values, τ is undertuned. On the other hand

the value τ = 2 is considered to be overtuned for all the alpha-stable RVs.

This is the basic fact that all the alpha-stable RVs have an infinite second

moment.

• What if we want to generalize the mentioned behavior of the tuning pa-

rameter for a bigger class of RVs. Said differently, can one find a set of

distribution functions for which there exists a value of τmax?. Before we

proceed, we make the following comments

– First, when considering the space of symmetric RVs having a finite

second moment, the conditions a, b and c are satisfied for any 0 < τ ≤
2 as long as φ(ω) is C2 in a neighbourhood of 0. This is due to the fact

that dφ
dω
(ω)|ω=0 = 0 and d2φ(ω)

dω2 |ω=0 <∞. By virtue of the fact that Pτ

is increasing in 0 < τ ≤ 2, then τmax = 2.

– Second, when it comes to the infinite second moment space of dis-

tribution functions, since the tuned value of τ is equal to α for an

alpha-stable RV, can it be generalized for a bigger space of RVs con-

taining the alpha-stable ones that is parametrized by α? This suggests

the space of density functions that belong to the domain of attraction
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of the stable law. This is discussed in the following section.

4.3.4 A Power Operator for Elements in Dα,0 = Dα

We only consider in this section distribution functions that are symmetric with

respect to 0, more precisely F (x) such that F (−x) = 1−F (x) +Pr(X = x). Let

F (x) ∈ Dα be a distribution function within the domain of normal attraction (re-

fer to Section 2.2.2 for the definition) of the symmetric alpha-stable type S(α, γ)

of characteristic exponent 0 < α ≤ 2 and γ is any positive constant.

We assume that F (x) satisfies conditions a and c of Section 4.3 and we wish

to check the feasibility of finding a value of 0 < τ ≤ 2 (and eventually τmax) for

which condition b is satisfied and Pτ exists for all F ∈ Dα. The value of τmax is the

tuned value which provides a new power measure that captures the power of these

heavy tailed densities. We propose evaluating Pτ (X), whereX ∼ F (x), for τ = α.

Recall that φX(ω) is C2 in a neighbourhood of 0 and satisfies equation (2.12) with

β = 0 and δ = 0. We have:

Pα(X)

= − lim
ω→0+

d

dω

[

|ω|2−αdφX(ω)
dω

]

= lim
ω→0+

d

dω

[

|ω|2−αde
−γα|ω|α(1+o(1))

dω

]

(4.9)

= − lim
ω→0+

d

dω

[

ω2−αde
−γαωα(1+o(1))

dω

]

= γα lim
ω→0+

d

dω

[(

αω + (o (1)ωα)
′

ω2−α
)

e−γ
αωα(1+o(1))

]

= γα lim
ω→0+

[

α+ (o (1)ωα)
′′

ω2−α + (2− α) (o (1)ωα)
′

ω1−α+

αω + (o (1)ωα)
′

ω2−α
]

e−γ
αωα(1+o(1))

= αγα <∞, (4.10)

where we used Theorem 7 stated in Chapter 2 in order to write equation (4.9).

The fact that φX(ω) is C2 in a neighbourhood of 0 implies the existence of the
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first and the second derivatives of the term o(1) in a neighbourhood of 0. To

write equation (4.10) we used the following properties:

Let f(x) be a C1 function in a neighbourhood of 0, then

• if f(x) = o(xl), l > 0, then f ′(x) = o(xl−1) by virtue of l’Hospital’s rule.

• if f(x) = o(xl) and g(x) = o(xm), l m ∈ R, then f(x)g(x) = o(xl+m)

Since Pα(X) is finite and non-zero, then τmax = α and P(X) = Pα(X) = αγ,

∀ F (x) ∈ Dα.

4.3.5 Discussions and Insights

The result of the previous section implies that the newly defined power operator

P(X) generalizes the well known second moment as being the power operator for

the domain of normal attraction of the Gaussian random variable to the bigger

space of domains of normal attraction of all stable laws. In this regard, we make

the following discussion:

(i) We consider the ensemble of domains of normal attraction D = ∪0<α≤2Dα

of all symmetric stable types (including the Gaussian) Dα, 0 < α ≤ 2. This

space is composed of uncountable disjoint sets that are characterized as

follows:

- Domains of normal attraction of alpha-stable type 0 < α < 2. These

are composed of distributions with a polynomial tail behavior accord-

ing to equation (2.10).

- The domain of normal attraction of the Gaussian type which is the

space of distributions having a finite variance.

(ii) We define the generalized power notion for a RV X ∼ F (x) satisfying

conditions a, b and c according to equation (4.7) as P(X). Whenever

F ∈ D, using this universal definition, we obtain:
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- Whenever F ∈ Dα for some 0 < α < 2, then P(X) = Pα(X) according

to Definition 4.

- When α = 2, P(X) = P2(X) = E [X2].

(iii) Each Dα, 0 < α < 2, contains all the stable laws S(α, γ) for all γ > 0.

According to our defintion of power and by equation (4.10), each Dα is

composed of disjoint groups which are identified by S(α, γ), γ > 0. Within

Dα, the elements in each group have a power value of αγα. From this

perspective, one can define the dispersion of a distribution F (x) ∈ Dα, 0 <

α < 2 as being the power scaled by 1
α
. Therefore each S(α, γ) attracts the

elements in Dα having the same power, hence the same dispersion γα > 0.

For the Gaussian case and D2, this boils down to variables having a given

variance that are attracted to a Gaussian having the same variance.

(iv) Over the set D, the only distribution that has a zero power is the one that

corresponds to X = 0. Hence under this setup, one can guarantee that

P(X) = 0 iff X = 0.

(v) Let X1, X2 be two independent RVs in D with power P1, P2 respectively.

WLOG, there exists 0 < α1 ≤ α2 ≤ 2 such that X1 ∈ Dα1 , X2 ∈ Dα2 .

The dispersion of X1 and X2 are respectively γ
α1
1 = P1

α1
and γα2

2 = P2

α2
. If we

denote φX1(ω), φX2(ω) the respective characteristic functions of X1 and X2,

then according to equation (2.12), we have the following in a neighbourhood

of 0:

log φX1(ω) = −γα1
1 |ω|α1[1 + o(1)]

log φX2(ω) = −γα2
2 |ω|α2[1 + o(1)]

Now let, Z = X1 +X2, then by independence

log φZ(ω) = −γα1
1 |ω|α1[1 + o(1)]− γα2

2 |ω|α2[1 + o(1)].
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We distinguish between two cases:

– if α1 < α2, then:

log φZ(ω) = −γα1
1 |ω|α1[1 + o(1)]. (4.11)

and Z ∈ Dα1 . Then,

P(Z) = Pα1(Z) = Pα1(X1) + Pα1(X2) = Pα1(X1) = P(X1) = P1,

where the second equality is due to the additive property of Pτ (·) and
the third equality since α1 < α2. The same result could be inferred

directly from equation (4.11), where it is clear that Z ∈ Dα1 with

dispersion γ1. Hence, the power of Z is P1.

– Otherwise, when α1 = α2:

log φZ(ω) = −(γα1
1 + γα1

2 )|ω|α1[1 + o(1)]. (4.12)

Then, the power of Z is P1 + P2.

(vi) The fact that P(κX) = |κ|τmaxP(X) makes the power of the scaled vari-

able κX dependent not only on the scale κ but also on τmax which is not

consistent with R2. We normalize P(X) as:

Pnor(X) = [P(X)]
1

τmax

0 < τmax ≤ 2. Under this definition of power, we obtain Pnor(κX) =

|κ|Pnor(X). We note that the triangular inequality is conserved only when

1 ≤ τmax ≤ 2. In fact, let X , Y be two independent RVs satisfying a, b and
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c. Then

Pnor(X + Y ) = [P(X + Y )]
1

τmax ≤ [(P(X) + P(Y ))]
1

τmax

≤ [P(X)]
1

τmax + [P(Y )]
1

τmax

= Pnor(X) + Pnor(Y ),

by virtue of the fact that 1
τmax

≤ 1 for 1 ≤ τmax ≤ 2 and P(X), P(Y ) ≥ 0.

We refer to Pnor as the normalized power. Whenever X ∼ F (X) ∈ Dα, we

have:

Pnor(X) = [P(X)]
1
α .

(vii) It is easy to check that D is closed under convolution. In fact, let 0 < α1 ≤
α2 ≤ 2 and denote by Dα1 ∗Dα2 the set whose elements are the convolution

of the elements in Dα1 with those Dα2 . Then, by equations (4.11) and (4.12),

Dα1 ∗ Dα2 = Dα1 .

(viii) We note that the new power operator cannot be used to evaluate power

for variables that are in the full domain of attraction of stable laws, since

outside the domain of normal attraction one can not guarantee the existence

of P(·). This is in line with the fact that the domain of attraction of the

Gaussian type contains infinite second moment variables, the domain of

normal attraction being the subset composed of variables having a finite

one.

(iX) We could have defined from the start T as the full space where we guarantee

that P(·) is defined i.e. the space of variables satisfying a, b and c. Then,

we write T as the union of the disjoint spaces Tα each corresponding to

a τmax = α, 0 < α ≤ 2. We have that Dα ⊂ Tα for all 0 < α ≤ 2 and

therefore D ⊂ T. The only drawback of the definition of P(·) over T is that

we cannot guarantee that P(X) = 0 =⇒ X = 0. A problem that is solved
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when considering only the set D.

(X) Finally, this new approach of defining a generalized measure of the power of

RVs by considering the local behaviour of characteristic functions around

zero is an explicit definition of the dispersion of RVs. In fact, it evaluates to

a scaled dispersion for the alpha-stable variables and within Dα. However,

from an information theoretic perspective, this definition is faced with a

serious drawback that can be summarized by the fact that a bounded P(·)
does not imply a bounded differential entropy. As an example, consider

X ∼ S(α, γ), 0 < α < 2 and Y ∼ N (0, σ2) then according to to the

discussion in point (v),

P(X + Y ) = P(X) = αγα,

and

h(X + Y ) ≥ h(Y ) =
1

2
ln(2πeσ2),

where we used the EPI to write lower bound. Letting σ2 → +∞ then

h(X + Y ) → +∞ while P(X + Y ) is maintained constant.

4.4 A Relative Power Measure

As a notion of average power, the second moment is the answer to a widely known

result in communications theory; it is the input cost constraint under which a

Gaussian input achieves the capacity of the AWGN channel. In order to come up

with a notion of average power in the presence of alpha-stable distributions, the

Gaussian channel result immediately suggests finding the input cost constraint

for which the capacity of the additive independent alpha-stable noise channel is

achieved by an alpha-stable input? We address this concept by restricting our

quest to the class of SαS distributions as they present a natural extension to
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the Gaussian model and we proceed in two steps: First we solve this problem

for the Cauchy channel (α = 1, β = 0) as the Cauchy density has a closed-

form expression which yields explicit expressions for the cost function and the

power measure. At a second step, we make generic definitions and statements

by following similar steps as in the Cauchy channel. Finally, we use the new

power measure in the context of studying the capacity of stable channels. The

new power is numerically evaluated for different types of probability distributions

that do not necessarily have a finite second moment.

4.4.1 A Base Case: The Cauchy Channel

We consider in this section the Additive Independent Cauchy Noise (AICN) chan-

nel, where the noise is modeled as Cauchy distributed. Then, we propose a loga-

rithmic input constraint under which a Cauchy input is proven to be optimal and

achieves capacity. The input constraint is parametrized by a scalar k which will

be interpreted as a power candidate for a substantially large set of RVs not nec-

essarily having finite second moments. We draw a parallelism between this setup

and that of the Gaussian channel under the second moment constraint treated by

Shannon [54]. In fact, a Cauchy input yields a Cauchy output over this channel

and achieves a capacity value of “log(1 + SNR)”.

We define the AICN channel as:

Y = X +N, (4.13)

where X , Y are the input and output respectively and N is an independent

Cauchy RV1, N ∼ C(no; γ) of location parameter no ∈ R and dispersion γ > 0.

1The PDF of a Cauchy RV, X ∼ C(δ; γ) is given by:

pX(x) =
1

πγ

1

1 +
[
x−δ
γ

]2
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Equivalently, the channel transition PDF is:

pY |X(y|x) =
1

πγ

1

1 +
[
y−x−no

γ

]2 .

Since I(X ; Y ) = I(X ; Y −no) and (N−no) ∼ C(0; γ), we assume WLOG in what

follows that N ∼ C(0; γ).
It is well known that a Cauchy distributionX ∼ C(0; k) maximizes the entropy

among all RVs X that satisfy E

[

ln(1 +
[
X
k

]2
)
]

= ln(4) [90, Sec.3.1.3, p.51] with

an entropy value of ln(4πk). However, the space of RVs for which a Cauchy

input achieves the capacity of the Cauchy channel is still to be determined. In

the remainder of this section, we state and prove a theorem that answers this

question.

Theorem 15 (Capacity of the Cauchy Channel). When the input distribution

functions F (·) are subject to the constraint

E

[

ln

([
A+ γ

A

]2

+

[
X

A

]2
)]

≤ ln 4, (4.14)

for a given A ≥ γ, the capacity of channel (4.13) is

C = log

(
A

γ

)

, (4.15)

and is achieved by X∗ ∼ C(0;A− γ)2.

Before presenting the proof of the theorem, we make the following observa-

tions:

2We define C(0; 0) as the Dirac delta function
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(i) First, we point out that the constraint defined by (4.14) is equivalent to:

∃ k ∈ [γ, A], E

[

ln

([
k + γ

k

]2

+

[
X

k

]2
)]

= ln 4. (4.16)

Indeed, the function

g(k) =̂ E [g(k;X)] =̂ E

[

ln

([
k + γ

k

]2

+

[
X

k

]2
)]

,

is greater or equal to ln 4 at k = γ: g(γ) ≥ ln 4. It is also decreasing and

continuous in k. Monotonicity follows from the fact that the function

g(k; x) =̂ ln

([
k + γ

k

]2

+
[x

k

]2
)

is decreasing in k. Continuity is due to the positiveness, monotonicity

and continuity of g(k; x) in k by the results of the Monotone Convergence

Theorem (MCT).

(ii) Second, note that whenever A < γ, E
[

ln
([

A+γ
A

]2
+
[
X
A

]2
)]

is necessarily

greater than ln 4, the set of feasible inputs is the empty set and the problem

is ill-defined.

(iii) Among all distribution functions F (·) having a finite logarithmic moment

of the form:
∫

|x|≥ǫ
ln |x| dF (x) < +∞, (4.17)

for some ǫ > 0, such a k ≥ 0 always exists.

This can be established using the facts that g(γ) ≥ ln 4 and that when-

ever (4.17) is finite, g(k) = E [g(k;X)] is finite as well for all k ≥ γ and is

decreasing to 0 as k → +∞.

(iv) The parameter k –whenever it exists– defined by the constraint (4.16) sat-
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isfies the following properties:

1- k is greater or equal to γ.

2- k = γ if and only if X = 0.

3- k is increasing with the absolute value of a scale parameter. Indeed

let U = cX be a scaled version of RV X and assume that U satisfies

equation (4.16) with parameter k > γ: E
[

ln
([

k+γ
k

]2
+
[
U
k

]2
)]

= ln 4.

The fact that E
[

ln
([

k+γ
k

]2
+
[
cX
k

]2
)]

is decreasing in k, increasing in

|c| and continuous in both yields the required result.

4- As it will shown later, condition (4.16) will imply:

EY

[

ln

(

1 +

[
Y

k

]2
)]

= ln 4

These properties indicate that one may view k as a measure of “power” of

the output variable Y . When X is zero, this parameter is a measure of the

power of N and is equal to γ. The result of Theorem 15 is that the capacity

of the channel is the logarithm of the maximum received SNR.

Additionally, the quantity PX > 0 such that:

EX

[

ln

(

1 +

[
X

PX

]2
)]

= ln 4 (4.18)

may be viewed as a measure of power of the input variable X . It satis-

fies properties R1, R2 and R3 stated in Section 4.1 and that are common

to various known notions of power such that the variance or the disper-

sion. Additionally, the parameter PX has two main advantages over the

previously cited notions of power:

– PX is defined for a bigger space than the variance. Namely, the space

defined by (4.16) contains infinite variance RVs.
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– As opposed to the dispersion of a RV (as proposed in [11]) which does

not possess a closed form analytical expression, the parameter PX can

be always evaluated when it exists.

(v) One could define the power of the output to be “the square of the parameter

k”, in which case the capacity of the channel would be the usual half log of

the received SNR.

We now proceed to proving Theorem 15.

Proof. Based on the previous observations, the input space is that of RV with

distribution functions F (·) satisfying:

EX

[

ln

([
k + γ

k

]2

+

[
X

k

]2
)]

= ln 4,

for some γ ≤ k ≤ A, A > γ. The case k = γ can be omitted since it corre-

sponds to the Dirac delta distribution that yields a null mutual information. For

channel (4.13) and since X and N are independent, using iterated expectations,

EY

[

ln

(

1 +

[
Y

k

]2
)]

= EX

[

EN

[

ln

(

1 +

[
X +N

k

]2
)∣
∣
∣
∣
∣
X

]]

. (4.19)

The inner expectation evaluates to

EN

[

ln

(

1 +

[
X +N

k

]2
)∣
∣
∣
∣
∣
X = x

]

=
1

πγ

∫ ∞

−∞
ln

(

1 +

[
x+ n

k

]2
)

1

1 +
[
n
γ

]2 dn.

We prove in Appendix E that the function,

f(x; ξ) =̂
ξ

π

∫ ∞

−∞
ln(1 + u2)

1

1 + (ξu− x)2
du, (4.20)

= ln

([
ξ + 1

ξ

]2

+

[
x

ξ

]2
)

.
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Using the change of variable u = x+n
k

equation (4.19) becomes,

EY

[

ln

(

1 +

[
Y

k

]2
)]

= EX

[

f

(
X

γ
;
k

γ

)]

= EX

[

ln

([
k + γ

k

]2

+

[
X

k

]2
)]

= ln 4,

which shows that when (4.16) is satisfied, the output entropy is maximized when-

ever Y ∼ C(0; k) which is possible if and only if X ∼ C(0; k − γ). It remains

to check whether X ∼ C(0; k − γ) satisfies the constraint (4.16). In fact, if

X ∼ C(0; k − γ),

pX(x) =
1

π(k − γ)

1

1 +
[

x
k−γ

]2

and

EX

[

ln

([
k + γ

k

]2

+

[
X

k

]2
)]

= ln

[
k + γ

k

]2

+ EX

[

ln

(

1 +

[
X

k + γ

]2
)]

= ln

[
k + γ

k

]2

+
k + γ

π[k − γ]

∫ ∞

−∞
ln(1 + u2)

1

1 +
[
k+γ
k−γu

]2 du (4.21)

= ln

[
k + γ

k

]2

+ f

(

0;
k + γ

k − γ

)

= ln

[
k + γ

k

]2

+ ln

(
k+γ
k−γ + 1
k+γ
k−γ

)2

= ln 4,

where we used the change of variable u = x
k+γ

to write (4.21). Hence, for a given

fixed k ≥ γ, the mutual information of (4.13) is maximized by X∗ ∼ C(0; k − γ)

under the constraint (4.16) for which the output is Y ∼ C(0; k). The value of the
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mutual information is given by:

I(X ; Y ) = h(Y )− h(Y |X) = h (C(0; k))− h (C(0; γ))

= ln 4πk − ln 4πγ = ln

(
k

γ

)

,

where we used the fact that h (C(0; γ)) = ln 4πγ for γ > 0. Since the expression

is increasing with k, the optimal input X∗ ∼ C(0;A − γ) is capacity-achieving

whenever γ ≤ k ≤ A. The capacity value is therefore

C = ln

(
A

γ

)

= ln

(

1 +
P

γ

)

.

We present in the remaining part of this section some numerical evaluations

for some parameters and quantities defined above. In Figure 4-1, we plot the

parameter P = k –where k is defined in equation (4.16) for γ = 1, versus the scale

parameter c for multiple symmetric stable densities with characteristic exponent

α considered as inputs to channel (4.13). It can be seen that P increases with

the scale as already proven.

Also, we note that P is decreasing with α for a fixed scale. This can be

explained by the fact that the tails of the probability density function (PDF)

for the stable family becomes heavier as α gets smaller, hence the higher power.

Figure 4-2 shows the mutual information between the input and the output of

channel (4.13) when N ∼ C(0; 1) and when the input is symmetric alpha-stable.

The highest rate is achieved by a Cauchy input (α = 1) which is the capacity by

the results of Theorem 15. As α deviates from 1 whether higher or lower, the

transmission rates decrease.

Looking back to equation (4.18), it defines a new measure to compute the

signal strength. This definition is intimately related to the presence of a Cauchy

variable as is the second moment in the presence of a Gaussian variable. We
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Figure 4-1: P versus scale for symmetric alpha-stable densities for different values of
α. The scale parameter ranges from 0.1 to 20.
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Figure 4-2: Mutual information in bits per channel use versus the parameter k for
different alpha-stable inputs.

generalize the two definitions into a generic one which can be used to evaluate

the signal’s power with respect to a standard stable variable.
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4.4.2 Location and Power Parameters in the Presence of

Stable Variables

Let Z̃ ∼ S(α,
(
1
α

) 1
α ) be a standard symmetric stable RV (0 < α ≤ 2). For the

rest of this chapter, we only consider RVs X such that E [ln (1 + |X|)] is finite.

Definition 5 (Location Parameter). The location parameter of a RV X is the

real scalar LX such that:

LX = argminν∈R − E [ln pZ̃(X − ν)] . (4.22)

Gonzales adopted the same methodology to define the zero-order location

based on logarithmic moments [39].

Definition 6 (Power Parameter). Except when X = 0, the power of a RV X is

the non-negative scalar PX such that:

−E

[

ln pZ̃

(
X

PX

)]

= h(Z̃), (4.23)

where h(Z̃) is the differential entropy of Z̃. Furthermore, X = 0 implies that

PX = 0.

A better way to think about PX is to consider it as a “relative power” with

respect to Z̃ which can be considered as a reference variable whose power is equal

to unity. Equations (4.22) and (4.23) can be evaluated in two special cases:

• When α = 2 and Z̃ ∼ N (0; 1) is a standard Gaussian RV with zero mean

and unit variance,

LX = argminν∈RE
[
(X − ν)2

]
= E [X ] , (4.24)

and

PX =
(
E
[
X2
]) 1

2 . (4.25)
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• When α = 1 and N ∼ C(0; 1) is a standard Cauchy RV with shift parameter

0 and unit dispersion,

LX = argminν∈RE
[
ln
(
1 + (X − ν)2

)]
, (4.26)

and PX is such that:

E

[

ln

(

1 +

(
X

PX

)2
)]

= ln 4, (4.27)

where we used the fact that h(z̃) = h (C(0; 1)) = ln(4π).

The quantities LX and PX as defined in (4.22) and (4.23) are endowed respectively

with some location and power properties.

Properties of LX:

(i) The location parameter is linear in the additive term, namely for any real

number b:

LX+b = LX + b.

This directly follows from equation (4.22).

(ii) Whenever the distribution function of X is symmetric 3 with respect to

µX , then LX = µX . In fact, for any ν ≥ 0, taking the derivative of

−E [ln pZ̃(X − ν)] with respect to ν and applying the derivation inside the

expectation operator gives:

E

[

p
′

Z̃
(X − ν)

pZ̃(X − ν)

]

=

∫

R

p
′

Z̃
(x)

pZ̃(x)
dFX(x+ ν) = 0, (4.28)

iff ν = µX by virtue of the fact that pZ̃(·) is even, p
′

Z̃
(·) is odd and pX(x)

3A distribution function F (x) is said to be symmetric with respect to µ ∈ R if and only if
F (µ+ x) = 1− F (µ− x) + Pr(X = µ) for all x ∈ R.
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is symmetric with respect to µX . This implies that:

LX = argminν∈R − E [ln pZ̃(X − ν)] = µX . (4.29)

The interchange between the derivative and the exception operator is justi-

fied by DCT since
p
′

Z̃

p
Z̃

(·) is bounded (see Theorem 29 in Section D.3 for the

tail behaviour of p
(n)

Z̃
(·) the n-th derivative of pZ̃(·)). A direct consequence

is that:

LaX = argminν∈R − E [ln pZ̃(aX − ν)] = aLX ,

for any a ∈ R.

(iii) LetX and Y be two independent RVs with symmetric PDFs having location

parameters (points of symmetry) µX = LX and µY = LY . Then,

LX+Y = LX + LY . (4.30)

This results from the fact that pZ(·) the PDF of Z = X + Y is symmetric

with respect to µZ = µX + µY and the fact that LZ = µZ by property (ii).

Properties of PX :

(iv) We start by showing that PX satisfies property R1, i.e. PX ≥ 0 with

equality if and only if X = 0. According to Definition 6, it only suffices to

show that:

PX = 0 =⇒ X = 0. (4.31)

In order to prove equation (4.31), we assume X 6= 0 and we start by con-

sidering the LHS of equation (4.23) as a function of P:

g (P) =̂ − E

[

ln pZ̃

(
X

P

)]

= −E

[

ln pZ̃

( |X|
P

)]

.
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We prove g (P) to be continuous on R+∗: let P0 > 0, then

− lim
P→P0

E

[

ln pZ̃

(
X

P

)]

= − lim
P→P0

∫

ln pZ̃

(x

P

)

dF (x)

= −
∫

lim
P→P0

ln pZ̃

(x

P

)

dF (x)

= −
∫

ln pZ̃

(
x

P0

)

dF (x),

where F (x) is the distribution function of X and in order to write the last

equation we used the fact that pz̃(·) is continuous on R. The interchange

in the order between the limit and the integral signs is justified by DCT by

virtue of:

– In a neighbourhood of P0, there exists a P̃ such that for all x ∈ R

∣
∣
∣ln pZ̃

(x

P

)∣
∣
∣ ≤

∣
∣
∣
∣
ln pZ̃

(
x

P̃

)∣
∣
∣
∣
. (4.32)

– Equation (4.32) implies that:

E

∣
∣
∣
∣
ln pZ̃

(
X

P

)∣
∣
∣
∣
≤ E

∣
∣
∣
∣
ln pZ̃

(
X

P̃

)∣
∣
∣
∣
,

which is finite whenever X ∈ L if Z̃ is alpha-stable and whenever X

has a finite variance if Z̃ is Gaussian.

We notice that g (P) is non-increasing in P > 0 by virtue of the fact that

pZ̃(·) is symmetric and decreasing on the positive semi-axis. We evaluate

next the limit values of g(P) at 0 and +∞.

– The limit at zero: since X 6= 0 there exits a δ > 0 s.t. Pr (|X| ≥ δ) > 0
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and

g (P) = −
∫

|x|≤δ
ln pZ̃

(x

P

)

dFX(x)−
∫

|x|≥δ
ln pZ̃

(x

P

)

dFX(x)

≥ −Pr (|X| ≤ δ) ln pZ̃(0)− Pr (|X| ≥ δ) ln pZ̃

(
δ

P

)

, (4.33)

where in order to write equation (4.33) we used the fact that pZ̃(·) is
decreasing on R

+. Since pZ̃(x) → 0 as |x| → ∞, then:

lim
P→0

g (P) = +∞. (4.34)

– The limit at infinity:

lim
P→+∞

g(P) = lim
P→+∞

−
∫

R

ln pZ̃

(x

P

)

dFX(x)

= −
∫

R

lim
P→+∞

ln pZ̃

(x

P

)

dFX(x)

= − ln pZ̃(0) ≤ h
(

Z̃
)

,

where the last inequality is true since maxx∈RpZ̃(x) = pZ̃(0). The

interchange between the limit and the integral sign is due to DCT.

Indeed since g (P) is non-increasing, then for P > Pt:

−
∫

R

ln pZ̃

(x

P

)

dFX(x) ≤ −
∫

R

ln pZ̃

(
x

Pt

)

dFX(x),

which is integrable since E [ln (1 + |X|)] is finite and ln pZ̃(|x|) = Θ (ln |x|).

Using the continuity of g(P) (the LHS of equation (4.23)) and the fact that

it is non-increasing from +∞ to − ln pZ̃(0) (≤ h(Z̃)), there exists a non-zero

PX such that equation (4.23) is satisfied which proves equation (4.31).
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(v) We prove now that PX satisfies property R2. In fact, for any a ∈ R,

PaX = |a|PX .

This directly follows from equation (4.23) and the fact that pZ̃ is even.

(vi) Let X and Y be two independent RVs such that their distribution functions

are symmetric with respect to zero and define Z = X + Y . Then LX =

LY = 0, and

PZ ≥ max{PX ; PY }. (4.35)

The proof goes as follows:

−E

[

ln pZ̃

(
Z

PY

)]

= EX

[

−EY

[

ln pZ̃

(
x+ Y

PY

) ∣
∣
∣X

]]

(4.36)

≥ EX

[

−EY

[

ln pZ̃

(
Y

PY
− L Y

PY

)]]

(4.37)

= EX

[

−EY

[

ln pZ̃

(
Y

PY

)]]

(4.38)

= h(Z̃), (4.39)

where equation (4.39) is due to the definition of PY . Equation (4.36) is

due to the fact that X and Y are independent and equation (4.37) is due

to the definition of the location parameter. Equation (4.38) is justified by

the fact that L Y
PY

= LY

PY
= 0. Equation (4.39) implies that PZ ≥ PY since

the function −E
[
ln pZ̃

(
Z
P

)]
is non-increasing in P ≥ 0. Similarly, we prove

that PZ ≥ PY .

(vii) Let X and Y be two independent RVs such that Y has an even PDF that is

non-increasing on R
+, then PcX+Y is increasing with |c|, c ∈ R. In fact, it

has been already proven that −E
[
ln pZ̃

(
cX+Y

P

)]
is non-increasing in P > 0.

Next, we show that −E
[
ln pZ̃

(
cX+Y

P

)]
is non-decreasing in |c|. To this end,

104



we write

−E

[

ln pZ̃

(
cX + Y

P

)]

= EX

[

−EY

[

ln pZ̃

(
cx+ Y

P

) ∣
∣
∣X

]]

, (4.40)

and it is enough to show that −EY
[
ln pZ̃

(
cx+Y

P

)]
is non-decreasing in |c|.

We have

− EY

[

ln pZ̃

(
cx+ Y

P

)]

= −
∫ +∞

−∞
pY (y) ln pZ̃

(
cx+ y

P

)

dy (4.41)

= −
∫ +∞

−∞
pY (u− cx) ln pZ̃

(u

P

)

du

= −
∫ +∞

0

pY (u− cx) ln pZ̃

(u

P

)

du−
∫ +∞

0

pY (u+ cx) ln pZ̃

(u

P

)

du.

(4.42)

Equation (4.42) shows the symmetry of the expectation with respect to

c and x. Therefore, one can restrict the proof to the case when c and x

are non-negative. Hence, for c and x non-negative, taking the derivative

of equation (4.41) with respect to c and interchanging the limit and the

derivative sign as done in (ii) yields

−x

P

∫ +∞

−∞
pY (y)

p
′

Z̃

(
cx+y
P

)

pZ̃
(
cx+y
P

) dy = −x

P
E

[

p
′

Z̃

(
cx+Y

P

)

pZ̃
(
cx+Y

P

)

]

≥ 0,

which is true by virtue of the fact that pY (y) is even non-increasing on R+,
p
′

Z̃

p
Z̃

(·) is an odd function that is non-positive on R+ and both c and x are

non-negative. This implies that −EY
[
ln pZ̃

(
cx+Y

P

)]
and −E

[
ln pZ̃

(
cX+Y

P

)]

are non-decreasing in |c|. The fact that −E
[
ln pZ̃

(
cX+Y

P

)]
is non-increasing

in P and non-decreasing in |c| yields the required result.

(viii) Whenever X ∼ S(α, γX) is a symmetric stable variable, PX = γX
γ
Z̃

=
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(α)
1
αγX . Indeed, X ∼ S(α, γX) has the same distribution as γX

γz̃
Z̃ and

pX(x) =
γZ̃
γX

pZ̃

(
γZ̃
γX

x

)

.

Therefore, for PX = γX
γ
Z̃

,

− E

[

ln pZ̃

(
X

PX

)]

= −γZ̃
γX

∫

pZ̃

(
γZ̃
γX

x

)

ln pZ̃

(
x

PX

)

dx

= h(Z̃).

Though the power definition as stated in equation (4.23) is implicit and depen-

dent on the density function of symmetric stable variables which does not have

closed form expressions except in the special cases of the Cauchy and the Gaus-

sian distributions, the computation of the power PX of a certain RV X is rather

simple using numerical computations. In fact, the stable densities can be com-

puted numerically as inverse Fourier transforms or by using Matlab packages that

compute these densities such as the “Stable” package provided by prof. John P.

Nolan. We use here the latter and we develop a Matlab code that computes the

power according to definition (4.23). We plot in Figure 4-3, the power of several

probability laws (Gaussian, uniform, Laplace, Cauchy and alpha-stable (α = 0.6)

with respect to a multitude of alpha-stable distributions with the characteristic

exponent α ranging from 0.4 to 1.8. For example, consider Z̃ with characteristic

exponent α = 1.2. The power of a Gaussian variable N (0, 2) with respect to Z̃ is

equal to 0.7869. Hence, using the scalability property (v), the power of a Gaus-

sian variable with zero mean and variance σ2 whenever Z̃ ∼ S
(

1.2, (1.2)−
1
1.2

)

is

equal to 0.7869 σ√
2
= 0.5564 σ. Note that as already known, the power the Gaus-

sian variable X ∼ N (0, σ2) with respect to Z̃ ∼ N (0, 1) is equal to σ. Another

example is when X ∼ U [−a,+a] a uniform RV with zero mean and variance equal
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to a2

3
: with respect to Z̃ with α = 0.8, it has a power of 0.3036 a√

3
= 0.1753 a

whereas with respect to the Gaussian law the power is equal to the standard

deviation a√
3
= 0.5774 a.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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Laplace, µ = 0, σ2 = 2

Gaussian, µ = 0, σ2 = 2

Uniform, µ = 0, σ2= 2
Cauchy, γ = 1
Alpha-Stable, α = 0.6, γ = 1

Figure 4-3: Evaluation of the power of some probability laws with respect to Z̃ ∼
S
(

α, (α)−
1
α

)

for different values of α.

4.4.3 Applications

Stable Maximizing Entropy

Having defined a generic power definition when considering stable noise environ-

ments, a first question is to find the solution of the entropy maximization problem

subject to a constraint on the newly defined power. Namely, define:

P =

{

F ∈ F : −
∫

ln pZ̃

(
X

P

)

dF (x) = h(Z̃),P > 0

}

. (4.43)

According to [56, Section 12.1], among all distribution functions F ∈ P, the one

that maximizes differential entropy has the following PDF:

p∗(x) = eλ0+λ1 ln pZ̃(
X
P ),
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where λ0 and λ1 are chosen so that p∗(x) ∈ P. A direct solution to the problem

is:

F ∗ = argmaxF∈Ph(F ), (4.44)

where F ∗ is the distribution function of a symmetric stable variable distributed

according to PZ̃ ∼ S(α, ( 1
α
)

1
αP) whereby property (5-) we verify that F ∗ ∈ P.

The value of the maximum is:

h(F ∗) = h(Z̃) + lnP (4.45)

As a direct generalization, one can define:

PA = {F ∈ P : P ≤ A,A > 0} , (4.46)

for which

F ∗
A = argmaxF∈PA

h(F ),

where F ∗ is the distribution function of a symmetric stable variable distributed

according to AZ̃.

Communicating over Stable Channels

Consider the additive linear channel:

Y = X +N, (4.47)

where Y is the channel output, X is the input and N ∼ S(α, γN) is stable

additive noise which is independent of X . We ask the following question: what

constraint is to be imposed on the input such that a stable input achieves the

capacity of channel (4.47). Under this scenario, and knowing that a stable input of

channel (4.47) generates a stable output, a sufficient condition is that the output

space induced by the channel is the space where a stable variable maximizes
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entropy, specifically a space of the form (4.46). To this end, we consider the

output space P[PN ,A] of probability distributions:

P[PN ,A] = {F ∈ P : PN ≤ P ≤ A,A ≥ PN} , (4.48)

where PN = (α)
1
αγN . Under condition (4.48), a stable output Y ∗ ∼ S(α,

(
1
α

) 1
α A)

maximizes the output entropy and achieves the channel capacity C:

C = h(Y ∗)− h(N) = ln(A) + h(Z̃)− ln(PN )− h(Z̃)

= ln

(
A

PN

)

= ln (SNRoutput) ,

where we use the fact that h(N) = ln(PN)+h(Z̃) since γN = PNγZ̃ . The optimal

input X∗ which yields Y ∗ is also distributed according to a stable variable with

parameter γX∗ :

γαX∗ = γαY ∗ − γαN =
1

α
(Aα − PαN),

which gives by property (5-)

PαX∗ = αγαX∗ = Aα − PαN .

Finally, it remains to determine the input cost constraint that yields the output

space P[PN ,A]. The output condition (4.48) is explicitly stated as the space of all

RVs Y such that there exists a P > 0, PN ≤ P ≤ A for some fixed A > 0 and

−E

[

ln pZ̃

(
Y

P

)]

= h(Z̃)

EX

{

−EN

[

ln pZ̃

(
X +N

P

)
∣
∣
∣
∣
∣
X = x

]}

= h(Z̃), (4.49)

(4.50)
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where we used the iterated expectations to write the second equation by virtue of

the fact that X and N are independent. Equation (4.49) implies that the input

cost function C(·) is:

C(x) = −EN

[

ln pZ̃

(
x+N

P

)]

, (4.51)

and the input cost constraint can be stated as follows: there exists a P > 0,

PN ≤ P ≤ A for some fixed A > 0 such that:

E [C(X)] = h(Z̃), (4.52)

where C(·) is defined in equation (4.51). The cost function and the cost constraint

can be written in a different form. In fact, considering equation (4.51)

C(x)

= −
∫

pPN Z̃
(n) ln pZ̃

(
x+ n

P

)

dn

= −
∫

pPN Z̃
(v − x) ln

(
1

P
pZ̃

( v

P

))

dv − ln P

= −
∫

pPN Z̃
(v − x) ln pPZ̃ (v) dv − ln P

= D
(
pPN Z̃

(v − x)||pPZ̃(v)
)
+ h(PN Z̃)− ln P

= D
(
pPN Z̃

(v − x)||pPZ̃(v)
)
+ h(Z̃) + ln

PN
P
, (4.53)

where D(p||q) is the Kullback-Leibler divergence between two PDFs p and q.

Using equation (4.53), the input cost constraint can be rewritten in a different

form:

E
[
D
(
pPN Z̃

(v −X)||pPZ̃(v)
)]

= ln
P

PN
.

We note that the capacity problem of the stable channel (4.47) under the in-

put cost constraint (4.52) is a generalization to the well known AWGN channel

under the average power constraint introduced by Shannon [54] and the addi-
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tive independent Cauchy channel under a logarithmic constraint presented in

Section 4.4.1.

Finally, The generic cost function C(x) presented in this section is Θ(x2) when

α = 2 and indeed is Θ (ln |x|) otherwise. In fact, if one considers equation (4.51)

when 0 < α < 2, by virtue of the fact that ln pZ̃(x) = Θ(ln |x|) it can be shown

that C(x) = Θ (ln |x|) by using the same methodology as done in Section 3.3.

4.4.4 Extensions and Insights

According to equation (4.23), the power measure PX is related to a choice of Z̃ or

equivalently a choice of 0 < α ≤ 2 and PX as previously mentioned can be looked

at as the relative power of X with respect to that of Z̃. Naturally one would

ask the following: In a specific scenario, what value of alpha is more suitable?

An answer to this question is given when considering, for example, an additive

noise channel Y = X + N . In fact, in most communications’ applications, the

quantity of interest for a system engineer is the received signal or the output Y as

it generally represents the quantity that will undergo further processing in order

to retrieve the useful information. In addition, the noise variable N imposed

by the channel represents another important variable since relevant quantities

and performance measures are computed function of the relative power between

the output signal and the noise, a quantity that is commonly referred to as the

output SNR. Moreover, the output Y is shaped by the noise N , hence it has

“similar” characteristics to those of N (for example, an infinite variance N will

always induce an infinite variance Y ). This is to say, that in the context of an

additive stable noise channel, it would seem natural to measure the power of the

different signals with respect to a reference stable variable whose power evaluates

to unity. Hence the choice of α and then Z̃ becomes straightforward depending

on the stable noise characteristic exponent α.

A natural extension is to generalize the adoption of PX or a specific Z̃, to
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cases where the noise is not necessarily stable however falls in the domain of

normal attraction Dα of the stable variables. Depending on the value of α, the

choice of Z̃ and therefore PX is adopted. This includes any noise variable having

a finite second moment since it belongs to D2 and PX is equal to the second

moment in this case. Also, it includes all impulsive noise variables whose tail

behaviour is Θ
(

1
|x|1+α

)

, 0 < α < 2 where in this case PX is evaluated according

to the corresponding value of α using equation (4.23).

4.5 Related Publications

At last, we acknowledge that the results of Section 4.4.1 were presented as a

conference paper [91].
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Chapter 5

Generalized Information

Theoretic Inequalities

5.1 Background

Information inequalities have been investigated since the foundation of informa-

tion theory. Two such important ones are due to Shannon [54]:

• The first one is an upper bound on the (differential) entropy of RVs having

a finite second moment by virtue of the fact that Gaussian distributions

maximize entropy under a second moment constraint: for any RVs X and

Z having respectively finite variances σ2
X and σ2

Z , we have

h(X + Z) ≤ 1

2
ln 2πe

(
σ2
X + σ2

Z

)
. (5.1)

• The second one is a lower bound on the entropy of independent sums of

RVs and commonly known as the Entropy Power Inequality (EPI). The EPI

states that given two real independent RVs X , Z such that h(X), h(Z) and
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h(X + Z) exist, then (Corollary 3, [53])

N(X + Z) ≥ N(X) +N(Z), (5.2)

where N (X) is the entropy power of X and is equal to

N (X) =
1

2πe
e2h(X).

While Shannon proposed equation (5.2) and proved it locally around the

normal distribution, Stam [76] was the first to prove this result in general followed

by Blachman [77] in what is considered to be a simplified proof. The proof was

done via the usage of two information identities:

1- The Fisher Information Inequality (FII): Let X and Z be two independent

RVs such that the respective Fisher informations J(X) and J(Z) exist.

Then
1

J(X + Z)
≥ 1

J(X)
+

1

J(Z)
. (5.3)

The Fisher information J(Y ) of a RV Y having a PDF p(y) is defined as:

J(Y ) =

∫ +∞

−∞

1

p(y)
p′2(y) dy,

whenever the derivative and the integral exit.

2- The de Bruijn’s identity: For any ǫ > 0,

d

dǫ
h(X +

√
ǫZ) =

σ2

2
J(X +

√
ǫZ), (5.4)

where Z is a Gaussian RV with mean zero and variance σ2 independent

of X . Rioul proved that the de Bruijn’s identity holds at ǫ = 0+ for any

finite-variance RV Z (Proposition 7, p. 39, [82]).
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The remarkable similarity between equations (5.2) and (5.3) was pointed out

in Stam’s paper [76] who in addition, related the entropy power and the Fisher

information by an “uncertainty principle-type” relation:

N(X)J(X) ≥ 1, (5.5)

which is commonly known as the Isoperimetric Inequality for Entropies (IIE) [92,

Theorem 16]. Interestingly, equality holds in equation (5.5) whenever X is Gaus-

sian distributed and in equations (5.1)–(5.3) whenever X and Z are independent

Gaussian. As it can be noticed, the previously cited inequalities revolve around

Gaussian variables and some of them are related to variables with finite variances

(equation (5.1) for example).

In this chapter, we generalize these information theoretic inequalities that are

based on the Gaussian setting to generic ones in the stable setting (0 < α ≤ 2)

and which coincides with the regular identities in the Gaussian setup (α = 2).

Furthermore, we find new identities that were previously unknown even in the

Gaussian case. We use convolutions along small perturbations to upper bound

some relevant information theoretic quantities as done in [93] where some moment

constraints were imposed on X which is not the case here.

We start by considering an alternative formulation of Fisher information that

may be more relevant than J(X) when dealing with RVs corrupted by additive

noise of infinite second moment; In essence, our starting point is one where –in

a similar fashion to the Gaussian case– we enforce a generalized de-Bruijn iden-

tity to hold: motivated by the fact that the derivative of the differential entropy

with respect to small variations in the direction of a Gaussian variable is a scaled

J(·), we propose in this work to define a new notion of Fisher information that

we call “Fisher information of order α” as a derivative of differential entropy

in the direction of infinitesimal perturbations along stable variables. Next, we

derive an integral expression for the new quantity that is a generalization of the
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well-known expression of the Fisher information. Recently, in a non-published

work [94], Toscani proposed a definition of a “fractional Fisher information” in

a relative manner with respect to alpha-stable variables and showed that the

relative fractional information quantity has rather interesting properties and sat-

isfies a Fisher information inequality type of identities. The approach adopted by

Toscani as well the proposed expressions, the proved identities and their signifi-

cance are different than those proposed in this dissertation though similar tools

such as fractional derivatives and Riesz potentials figure in both definitions of

the new Fisher informations. Both works were developed independently.

The new expression of the “Fisher information of order α”, when restricted

to the range 1 < α ≤ 2, is found to satisfy a data processing inequality and a

Generalized FII (GFII). Then, we use the GFII and the generalized de-Bruijn to

provide an upper bound on the differential entropy of the independent sum of

two RVs where one of them is stable distributed providing, among others, new

implications in the Gaussian setting.

5.2 Fisher Information of Order α: A General-

ized Information Measure

Definition 7 (Fisher information of order α). Let X be a finite differential

entropy RV and N an independent standard symmetric stable variable, N ∼
S(α, 1), 0 < α ≤ 2. We define the “Fisher information of order α” Jα(X) as

follows:

Jα(X) = lim
t→0+

h
(
X + α

√
tN
)
− h(X)

t
(5.6)

whenever the limit exists.

For a d-dimensional random vector X = (X1, · · · , Xd), Jα(X) is defined as

in (5.6) where N = (N1, · · · , Nd) is a

• standard sub-Gaussian SαS vector whenever α 6= 2 (refer to Appendix G).
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• Gaussian vector of Independent and Identically Distributed (IID) compo-

nents with mean zero and variance 2 when α = 2.

Few observations may be readily made about Jα(X):

1- By definition, Jα(X) represents the rate of variation of h(X) under a small

disturbance in the direction of a standard sub-Gaussian SαS vector. It

represents the limit of positive quantities and therefore Jα(X) ≥ 0.

2- When the stable noise N is Gaussian, i.e. α = 2 and J2(X) coincides with

the usual notion of Fisher information.

3- Let c ∈ Rd, then Jα(X + c) = Jα(X). This follows directly from the

definition and from the translation invariant property of the differential

entropy.

4- If X ∼ S(α, γ) then Jα(X) = d
α

1
γα

nats. Indeed, let X ∼ S(α, γ) then

X+ α
√
ǫN ∼ S (α, α

√
γα + ǫ) and

Jα(X) = lim
ǫ→0

h (X+ α
√
ǫN)− h(X)

ǫ

= lim
ǫ→0

h ( α
√
γα + ǫN)− h(γN)

ǫ

= lim
ǫ→0

h (N) + d ln

(

α

√

1 + ǫ
γα

)

− h(N)

ǫ

=
d

α

1

γα
nats.

This result comes in accordance with the fact that J2(X) = J(X) = d
σ2

whenever X ∼ N (0; σ2) is Gaussian. This is true since in this case α = 2

and for a Gaussian variable γ2 = σ2

2
.
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5- Let a > 0, then Jα(aX) = 1
aα
Jα(X). In fact,

Jα(aX) = lim
ǫ→0

h (aX+ α
√
ǫN)− h(aX)

ǫ

= lim
ǫ→0

h
(
X+ α

√
ǫ
aα
N
)
+ d ln a− h(X)− d ln a

ǫ

=
1

aα
lim
ǫ→0

h
(
X+ α

√
ǫ
aα
N
)
− h(X)

ǫ
aα

=
1

aα
Jα(X).

6- Let Z be a random vector independent of X. Then

Jα(X+ Z) = lim
t→0

h
(
X+ Z+ α

√
tN
)
− h(X+ Z)

t

= lim
t→0

I(X+ Z+ α
√
tN;N)

t

≤ lim
t→0

I(X+ α
√
tN;N)

t
= Jα(X),

where the inequality is due to the fact that N – X+ α
√
tN – X+Z+ α

√
tN

is a Markov chain.

7- Jα(·) is sub-additive for independent random vectors: LetX = (X1, · · · , Xd)

be a collection of d independent RVs having Fisher informations {Jα(Xi)}di=1,

then Jα(X) = Jα(X1, · · · , Xd) ≤ ∑d
i=1 Jα(Xi), because h(Z1, · · · , Zd) ≤

∑d
i=1 h(Zi) with equality whenever {Zi}di=1 are independent. We already

know that J2(·) is additive and it will be later shown in this chapter that

Jα(·) is in fact additive.

Due to the above, one may consider Jα(X), 0 < α ≤ 2 as a measure of

information. A single random vector X might hence have different information

measures which represent from an estimation theory perspective a reasonable fact

since the statistics of the additive noise N affects the estimation of X based on

the observation of X+N. From this perspective, the original Fisher information
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would seem suitable when the adopted noise model is Gaussian or when we are

restricting the RV to have a finite second moment. We find in what follows an

expression of Jα(X).

5.3 Main Results

We limit our study to random vectors X ∈ V defined as:

V = {Absolutely continuous RVs U : pU(u) > 0,

h(U) is finite &

∫

ln (1 + ‖U‖) pU(u) du is finite

}

.

5.3.1 Concavity of Differential Entropy

Let U be an infinitely divisible random vector with characteristic function φU(ω)

For each real t ≥ 0, denote by Ft(·) the unique probability distribution (Theorem

2.3.9, p. 65, [95]) with characteristic function:

φt(ω) = et lnφU(ω), (5.7)

where ln(·) is the principal branch of the logarithm. For the rest of this section,

we denote by Ut a random vector with characteristic function φt(ω) as defined

in equation (5.7). Note that U0 is deterministically equal to 0 (i.e., distributed

according to the Dirac delta distribution) and U1 is distributed according to U.

The family of probability distributions {Ft(·)}t≥0 forms a continuous convolution

semi-group in the space of probability measures on R
d (see Definition 2.3.8 and

Theorem 2.3.9, [95]) and hence one can write:

Us +Ut = Us+t ∀s, t ≥ 0,

where Us and Ut are independent.
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Lemma 8 (Concavity of Differential Entropy). Let U be an infinitely divisible

random vector and {Ut}t≥0 an associated family of random vectors distributed

according to equation (5.7) and independent of X. The differential entropy h(X+

Ut) is a concave function in t ≥ 0.

In the case of a stable-distributed U, the family {Ut}t≥0 has the same distri-

bution as
{

α
√
tU
}

t
, 0 < α ≤ 2. When α = 2, it is already known that the entropy

(and actually even the entropy power) of (X +
√
tU) is concave in t ((Section

VII, p. 51, [82]) and [96]).

Proof. We start by noting that h(X+Ut) is non-decreasing in t. For 0 ≤ s < t,

h(X+Ut) = h(X+Us +Ut−s) ≥ h(X+Us),

where Ut, Us and Ut−s are three independent instances of random vectors in the

family {Ut}t≥0. Next we show that h(X+Ut) is midpoint concave: Let Ut, Us,

U(t+s)/2 and U(t−s)/2 be independent random vectors in the family {Ut}t≥0. For

0 ≤ s < t,

h(X+Ut)− h(X+U(t+s)/2) = h(X+U(t+s)/2 +U(t−s)/2)− h(X+U(t+s)/2)

= I(X+U(t+s)/2 +U(t−s)/2;U(t−s)/2) (5.8)

≤ I(X+Us +U(t−s)/2;U(t−s)/2) (5.9)

= h(X+U(t+s)/2)− h(X+Us)

where equation (5.8) is the definition of the mutual information and equation (5.9)

is the application of the data processing inequality to the Markov chain U(t−s)/2−
(X+Us +U(t−s)/2)− (X+U(t+s)/2 +U(t−s)/2). Therefore,

h(X+U(t+s)/2) ≥
1

2

[
h(X+Ut) + h(X+Us)

]
,

and the function is midpoint concave for t ≥ 0. Since the function is non-
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decreasing, it is Lebesgue measurable and midpoint concavity guarantees its con-

cavity.

An interesting implication of Lemma 8 is that h(X+Ut) as a function of t is

below any of its tangents. Particularly,

h(X+Ut) ≤ h(X) + t
dh(X+Ut)

dt

∣
∣
t=0
. (5.10)

5.3.2 An expression of Jα(·)

Lemma 9 (An Expression of the Fisher Information of Order α). For 0 < α ≤ 2

and γ ∈ R, let N ∼ S(α, γ) be a SαS vector (as defined in Appendix G). Consider

an independent X ∈ V with characteristic function φX(ω) such that

{

ln pX+ α√tN(x)F−1
[
‖ω‖αφX+ α√tN(−ω)

]
(x)

}

t∈[0,ǫ)

are assumed to be uniformly bounded in t by an integrable function of x. Its

Fisher information of order α is

Jα(X) =

∫

ln pX(x)F−1
[
‖ω‖αφX(−ω)

]
(x) dx.1 (5.11)

Proof. We first note that h(X+ α
√
tN) exists and is finite since α

√
tN ∼ S(α, tγ)

has a bounded PDF andX ∈ V [82, Proposition 1]. Also h(X+ α
√
tN) is concave in

t by the result of Lemma 8. Therefore it is everywhere left and right differentiable

and a.e differentiable. Hence d
dt
h(X+ α

√
tN) exists a.e. in t and d

dt
h(X+ α

√
tN)

∣
∣
∣
t=0+

exists. Now, let t ≥ η ≥ 0 and denote Xt = X+ α
√
tN with characteristic function

φXt(ω) = φX(ω) e−tγ
α‖ω‖α= φXη(ω) e−(t−η)γα‖ω‖α

= φXη(ω)− (t− η)γα‖ω‖αφXη(ω) + o(t− η),

1F−1(·) denotes the inverse distributional Fourier transform.
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By the linearity of the inverse Fourier transform, we obtain

pXt(x) = pXη(x)− (t− η)γαF−1
[
‖ω‖αφXη(−ω)

]
(x) + o(t− η), (5.12)

which is valid since the inverse distributional Fourier transform F−1
[
‖ω‖nαφXη(ω)

]

exists for all m ≥ 1 because ‖ω‖mαφXη(ω) is a tempered function by virtue of

the fact that φXη(ω) is an L1-characteristic function and hence is in L∞(Rd).

Equation (5.12) implies that

d pXτ (x)

dτ

∣
∣
∣
∣
τ=η

= −γαF−1
[
‖ω‖αφXη(−ω)

]
(x),

and by the MVT: for some 0 ≤ b(t) ≤ t,

h(Xt)− h(X)

t
= −

∫

Rd

pXt(x) ln pXt(x)− pX(x) ln pX(x)

t
dx

= −
∫

Rd

[

1 + ln pXb(t)
(x)
] d pXτ (x)

dτ

∣
∣
∣
∣
τ=b(t)

dx

= γα
∫

Rd

[

1 + ln pXb(t)
(x)
]

F−1
[
‖ω‖αφXb(t)

(−ω)
]
(x)

= γα
∫

Rd

ln pXb(t)
(x)F−1

[
‖ω‖αφXb(t)

(−ω)
]
(x) dx,

which is true since

∫

F−1
[
‖ω‖αφXb(t)

(−ω)
]
(x) dx =

∫

δ(ω) ‖ω‖αφXb(t)
(−ω) dω = 0.

The imposed conditions insure that Lebesgue’s DCT holds and the limit may

be passed inside the integral and

Jα(X) =

∫

Rd

ln pX(x)F−1
[
‖ω‖αφX(−ω)

]
(x) dx,

provided that [‖ω‖αφX(−ω)] ∈ L1(Rd).
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We note that, whenever α = 2, equation (5.11) gives the regular expression

of the Fisher information. In fact, in the scalar case

J(X) = J2(X) =

∫

ln pX(x)F−1
[
|ω|2φX(−ω)

]
(x) dx

= −
∫

ln pX(x)
d2

dx2
pX(x) dx,

where the last equality is valid as long as ln pX(x)
d
dx
pX(x)|+∞

−∞ vanishes. In the d-

dimensional case, J2(X) is also consistent with the regular definition of the Fisher

information being the trace of the Fisher information matrix. The sufficient

condition listed in the statement of the lemma, is a technical condition involving

“fractional” derivatives of the PDF pX(x). Whenever α = 2, this condition

boils down to similar type of conditions imposed by Kullback [97, pages 26-27] to

prove the well-known result relating the second derivative of the divergence to the

Fisher information: a result that implies de Bruijn’s identity at zero (see [82]).

Similar to the work done by Barron [98] regarding the existence and finiteness of

J2(·), we prove in Appendix F, in the scalar case, that when X is replaced with

Xη = X + α
√
ηN ′ for some η > 0 where N ′ ∼ S(α, γ), the condition stated in the

lemma holds true for any X ∈ L =
{
RVs U :

∫
ln (1 + ‖U‖) dFU(u) is finite

}

and
d

dt
h(Xη +

α
√
tN)

∣
∣
∣
t=0+

= γαJα(Xη), (5.13)

for N
′
and N IID. Since α

√
η N ′+ α

√
tN is distributed according to α

√
η + tN , then

equation (5.13) is equivalent to a generalized de Bruijn’s identity of the form:

∂

∂η
h(Xη) = γαJα(Xη), (5.14)

for η > 0 and X ∈ L and where Jα(Xη) is given by equation (5.11). Note that

whenever the conditions in the lemma are satisfied the generalized de Bruijn’s

identity holds for the vector case. Finally, the generalized de Bruijn’s identity
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holds at 0+ as well whenever the conditions in the lemma are satisfied.

To compute Jα(·), we implement the fast Fourier transform theorem using

Matlab by following a similar strategy as in [50]. We plot in Figure 5-1 the

evaluation of Jα(·) for a collection of alpha-stable variables X ∼ S
(

r, (r)−
1
r

)

parametrised by the characteristic exponent r. It is observed that as the value of

r increases, Jα(X) increases. Furthermore for fixed r, Jα(X) decreases with α.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
The value of the parameter α in J

α
(X)

10-1

100

101

102

J α
(X

)

 r = 0.4
 r = 0.6
 r = 0.8
 r = 1
 r = 1.2
 r =1.4
 r = 1.6
 r = 1.8

Figure 5-1: Evaluation of Jα(X) for X ∼ S
(

r, (r)−
1
r

)

for different values of α and r

.

5.3.3 A Generalized Fisher Information Inequality

The Fisher Information Inequality (FII) is an important identity that relates the

Fisher information of the sum of independent RVs to those of the individual

variables. It was first proven by Stam [76] and then by Blachman [77]. Both

authors deduced the Entropy Power Inequality (EPI) from the FII via de Bruijn’s

identity. Stam relied on a data processing inequality of the Fisher information in

the proof of the FII, a methodology that was later used by Zamir [99] in a more

elaborate fashion. Finally, Rioul [82] derived a mutual information inequality, an

identity that implies the EPI and by the means of de Bruijn’s identity implies
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the FII.

Data processing inequality for Jα, 1 < α ≤ 2 The data processing inequal-

ity asserts that gains could not be achieved when processing information. In terms

of mutual information, if the RVs X–Y –Z form a Markov chain, this boils down

to saying that [56, p.34 Theorem 2.8.1]:

I(Z;X) ≤ I(Y ;X),

with equality if X–Z–Y is also a Markov chain. In [99], Zamir proved an equiv-

alent inequality for the Fisher information in a variable Y about a parameter

θ. We follow similar steps and extend the data processing inequality to Jα; An

inequality which we will use next to prove the Generalized Fisher Information

Inequality (GFII).

Theorem 16 (Data Processing Inequality for the Fisher Information of Order

α). Let θ be a fixed scalar parameter and let Yθ = Y + θ1 and Zθ = Z + θ1

be two vectors of possibly different dimensions. If θ–Yθ–Zθ, i.e., the conditional

distribution of Zθ given Yθ is independent of θ, then whenever Jα(Yθ; θ|Zθ) ≥ 0

we have

Jα(Zθ; θ) ≤ Jα(Yθ; θ), 1 < α ≤ 2 (5.15)

where

Jα(Yθ; θ) =̂ −E

[

I2−α

(
d2

dθ2
ln pYθ

)

(Yθ)

]

, (5.16)

and where

Jα(Yθ; θ|Zθ) = EZθ
[Jα (Yθ; θ|Zθ)] . (5.17)

The operator I2−α(·) is the Riesz potential of order (2− α). Moreover, whenever
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the {Yj}j are independent,

Jα(Yθ; θ) = Jα(Y). (5.18)

Proof. For a definition of the Riesz potential, the reader is referred to Ap-

pendix G. We also note that the condition Jα(Yθ; θ|Zθ) ≥ 0 is needed since

there are no formal guarantees that Jα(Xθ; θ) as defined in equation (5.16) is

always non-negative as it is the case for Jα(X). The non-negativity of Jα(Xθ; θ)

is guaranteed, for example, whenever θ is a translation parameter and when the

{Xi}’s are independent as it will be shown in the proof of this theorem. Another

case when non-negativity is guaranteed is encountered in the coming proof of the

GFII. We start by proving equation (5.18). Assume that the Yj’s are independent,

Jα(Y) =

∫

ln pY(y)F−1
[
‖ω‖αφY(−ω)

]
(y) dy

= −
∫

ln pY(y) △
(

F−1
[
‖ω‖α−2φY(−ω)

]
(y)

)

dy (5.19)

= −
∫

△ (ln pY(y)) I2−α(pY)(y) dy (5.20)

= −
∫
[
∑

j

d2

dy2j
ln pYj(yj)

]

I2−α(pY)(y) dy (5.21)

= −
∫
[
∑

j

d2

dθ2
ln pYj(yj − θ)

]

I2−α(pY)(y− θ1) dy

= −
∫

I2−α

(
d2

dθ2
ln pYθ

)

(y) pYθ
(y) dy (5.22)

= Jα(Yθ; θ), (5.23)

where △ denotes the Laplacian operator. Equation (5.19) is due to basic prop-

erties of the Fourier transform since I2−α(pY)(y) = F−1 [‖ω‖α−2φY(−ω)] (y)

decays to 0 at “∞”. In order to write equation (5.20), we use Green’s first iden-

tity [100] in the following form: Let ▽ denotes the gradient operator and ×
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denotes the dot product. If Ψ(·) and Φ(·) are real valued functions on Rn, then

∫

Rn

Ψ(y)△ Φ(y) dy = −
∫

Rn

▽Ψ(y)×▽Φ(y) dy

+ lim
R→+∞

∫

‖y‖=R
Ψ(y)▽ Φ(y)× ndS(y),

where n is the outward vector orthogonal to the surface of the sphere ‖y‖ = R

in Rn. As long as:

limR→+∞

∫

‖y‖=R
ln pY(y)▽ I2−α(pY)(y)× ndS(y) = 0

and

limR→+∞

∫

‖y‖=R
I2−α(pY)(y)▽ ln pY(y)× ndS(y) = 0,

applying twice Green’s theorem justifies equation (5.20). Equation (5.21) is true

by virtue of the independence of the Yj’s and equation (5.22) holds true whenever
∣
∣
∣
d2

dθ2
ln pYθ

(y)
∣
∣
∣ I2−α(pYθ

)(y) is integrable (see Appendix G).

Now, consider

Jα(Yθ,Zθ; θ) = −EY,Z

[

I2−α

(
d2

dθ2
(ln pYθ,Zθ

)

)

(Yθ,Zθ)

]

.

We have

ln pYθ,Zθ
(y, z; θ) = ln pZθ

(z; θ) + ln pYθ|Zθ
(y; θ|z),

which yields

Jα(Yθ,Zθ; θ) = Jα(Zθ; θ) + Jα(Yθ; θ|Zθ) (5.24)

≥ Jα(Zθ; θ). (5.25)

Equation (5.24) is due to the linearity property of the derivative, the Riesz poten-

tial [101] and the expectation operator. Equation (5.25) is justified Jα(Yθ; θ|Zθ) ≥
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0 by assumption. Equality holds iff Jα(Yθ; θ|Zθ) = 0 which is true if θ–Zθ–Yθ

forms a Markov chain. On the other hand, one can write

Jα(Yθ,Zθ; θ) = Jα(Yθ; θ), (5.26)

since ln pZθ|Yθ
(·|y) is independent of θ by virtue of the fact that Zθ is conditionally

independent of θ given Yθ. Equations (5.25) and (5.26) give the required result.

Before proceeding with the proof of the GFII, we make a comment on the addi-

tivity of Jα(Y) when Y has independent components. As mentioned in property

7 of Jα(·), the additivity does hold. This follows directly from eqaution (5.21).

In fact,

Jα(Y) = −
∫
[
∑

j

d2

dy2j
ln pYj(yj)

]

I2−α(pY)(y) dy

= −
∫

I2−α

(
∑

j

d2

dy2j
ln pYj

)

(yj) pY(y) dy

= −
∑

j

∫

I2−α

(
d2

dy2j
ln pYj

)

(yj) pY(y) dy

= −
∑

j

∫

I2−α

(
d2

dy2j
ln pYj

)

(yj) pYj(yj) dyj (5.27)

=
∑

j

∫

ln pYj(yj)I2−α

(
d2

dy2j
pYj

)

(yj) dyj

=
∑

j

Jα(Yj),

where equation (5.27) is due to the independence of the Yj’s.

Proof of the GFII

Theorem 17 (Generalized Fisher Information Inequality(GFII)). Let 1 < α ≤ 2
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and let Y1 and Y2 be two independent RVs, then

J
1

1−α
α (Y1 + Y2) ≥ J

1
1−α
α (Y1) + J

1
1−α
α (Y2). (5.28)

We note that whenever α = 2, equation (5.28) boils down to the well-known

“classical” FII.

Proof. For the matter of the proof, we make use of the data processing inequality

established in Theorem 16. In fact, let ω1 and ω2 ∈ R+∗ be two positive numbers

such that ω1 + ω2 = 1. Also let ǫ > 0 and N1, N2 be two independent RVs

distributed according to S(α, 1). Then for any θ ∈ R we have

θ −
(
Y1
ω1

+ θ + α
√
ǫN1,

Y2
ω2

+ θ + α
√
ǫN2

)

− (Y1 + Y2 + θ + α
√
ǫN) (5.29)

form a Markov chain where N = ω1N1 + ω2N2 behaves statistically according

to Sα (α, α
√
ωα1 + ωα2 ). Define Y1θ = Y1

ω1
+ θ + α

√
ǫN1, Y2θ = Y2

ω2
+ θ + α

√
ǫN2 and

Zθ = ω1Y1θ + ω2Y2θ, then by virtue of Theorem 16, we obtain

Jα (Zθ; θ) ≤ Jα ((Y1θ, Y2θ) ; θ) , (5.30)

under the condition that

Jα

(

(Y1θ, Y2θ) ; θ
∣
∣
∣Zθ

)

=̂ EZθ
[Jα ((Y1θ, Y2θ) ; θ|Zθ)] ≥ 0, (5.31)

which we prove next. In fact, similarly to equation (5.24), one can write:

Jα

(

(Y1θ, Y2θ) ; θ
∣
∣
∣Zθ = z

)

= Jα

(

Y1θ; θ
∣
∣
∣Zθ = z

)

+ Jα

(

Y2θ; θ
∣
∣
∣ (Y1θ, Zθ = z)

)

,

where

Jα

(

Y2θ; θ
∣
∣
∣ (Y1θ, Zθ = z)

)

= EY1θ

[

Jα

(

Y2θ; θ
∣
∣
∣ (Y1θ, Zθ = z)

)]

= 0, (5.32)
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since Jα

(

Y2θ; θ
∣
∣
∣ (Y1θ = y1, Zθ = z)

)

= 0 for every y1 by virtue of the fact that

pY2θ|(Y1θ,Zθ)(·) is independent of θ. Considering the first term in the RHS of

equation (5.32), and by similar arguments that were made in the proof of equa-

tion (5.23), one can write:

Jα

(

Y1θ; θ
∣
∣
∣Zθ = z

)

= Jα

(
Y1
ω1

+ α
√
ǫN1

∣
∣
∣Zθ = z

)

(5.33)

which is non-negative by definition (property 1). Then equation (5.31) is satisfied

and equation (5.30) holds true. Since θ is a translation parameter and by the fact

that Y1
ω1

+ α
√
ǫN1 and Y1

ω2
+ α

√
ǫN2 are independent, equation (5.18) implies that

equation (5.30) is equivalent to:

Jα
(
Y1 + Y2 +

α
√
ǫN
)

≤ Jα

(
Y1
ω1

+ α
√
ǫN1,

Y2
ω2

+ α
√
ǫN2

)

= Jα

(
Y1
ω1

+ α
√
ǫN1

)

+ Jα

(
Y2
ω2

+ α
√
ǫN2

)

, (5.34)

where we use property 7 of Jα(·) to write equation (5.34) by virtue of the fact

that
(
Y1
ω1

+ α
√
ǫN1

)

and
(
Y2
ω2

+ α
√
ǫN2

)

are independent. Note that while finding

an expression of Jα(·) a condition of uniform boundedness is imposed on some

quantity of interest (see the statement of lemma 9) which implies the continuity

of Jα(X + α
√
ǫS) in ǫ ≥ 0 whenever S a symmetric alpha-stable RV. Therefore

considering equation (5.34) and taking the limit as ǫ→ 0 yields

Jα (Y1 + Y2) ≤ Jα

(
Y1
ω1

)

+ Jα

(
Y2
ω2

)

≤ ωα1 Jα(Y1) + ωα2 Jα(Y2). (5.35)

where equation (5.35) is due to property 5 of Jα(·). Equation (5.35) holds true for

any ω1 and ω2 satisfying the conditions of the theorem. The tightest inequality
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for (5.35) holds for ω∗
1 and ω∗

2 such that:

ω∗
1 = argmin0≤ω1≤1{ωα1 Jα(Y1) + (1− ω1)

αJα(Y2)}

=
J

1
α−1
α (Y2)

J
1

α−1
α (Y1) + J

1
α−1
α (Y2)

ω∗
2 = 1− ω∗

1 =
J

1
α−1
α (Y1)

J
1

α−1
α (Y1) + J

1
α−1
α (Y2)

,

for which equation (5.35) gives

Jα (Y1 + Y2) ≤
Jα(Y1)Jα(Y2)

[

J
1

α−1
α (Y1) + J

1
α−1
α (Y2)

]α−1 ,

which completes the proof of the theorem.

5.3.4 Upperbounds on the Differential Entropy of Sums

Having a Stable Component

An important category of information inequalities consists of finding upper bounds

on the entropy of independent sums. When it comes to discrete entropy, a bound

on the entropy of the sum exists [56]:

H(X + Z) ≤ H(X) +H(Z). (5.36)

In addition, several identities involving discrete entropy of sums were shown

in [102, 103] using the Plünnecke-Ruzsa sumset theory and its analogy to Shan-

non entropy. Except for equation (5.1), that holds for finite variance RVs, the

differential entropy inequalities provided in some sense a lower bound on the en-

tropy of sums of independent RVs. Equation (5.36) does not always hold for

differential entropies, and unless the variance is finite, if we start with two RVs
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X and Z having respectively finite differential entropies h(X) and h(Z), one

does not have a clear idea on how much the growth of h(X + Z) will be. The

authors in [104] deferred this to the fact that discrete entropy has a functional

submodularity property which is not the case for differential entropy. Neverthe-

less, the authors were able to derive various useful inequalities. Madiman [105]

used basic information theoretic relations to prove the submodularity of the en-

tropy of independent sums and found accordingly upper bounds on the discrete

and differential entropy of sums. Though, in its general form, the problem of

upper bounding the differential entropy of independent sums is not always pos-

sible [53, proposition 4], several results are known in particular settings. Cover

et al. [106] solved the problem of maximizing the differential entropy of the sum

of dependent RVs having the same marginal log-concave densities. In [107], Or-

dentlich found the maximizing probability distribution for the differential entropy

of the independent sum of n finitely supported symmetric RVs. For “sufficiently

convex” probability distributions, an interesting reverse EPI was proven to hold

in (Theorem 1.1, p. 63, [108]). The primary objective of this section is to derive

an upper bound on the differential entropy of the sum X+N of two independent

RVs

• X has a finite differential entropy h(X).

• N is a symmetric stable variable.

The proof is based on the stability property with the application of the GFII

and the generalized de Bruijn’s identity. Besides the novelty of the bound itself,

it has several implications and can be possibly used for variables X with infinite

second moments. Even when the second moment of X is finite, in some cases our

bound can be tighter than equation (5.1).

Theorem 18 (Upper bound on the Entropy of Sums having a Stable Compo-

nent). Let Z ∼ S(α, γ), 1 < α ≤ 2, and let X be independent of Z with finite
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h(X). Then

h(X + Z)− h(X) ≤ γαJα(X) 2F1

(

α− 1, α− 1;α;−(αγαJα(X))
1

α−1

)

,

where 2F1(a, b; c; z) is the analytic continuation of the Gauss hypergeometric func-

tion on the complex plane with a cut along the real axis from 1 to +∞

For more details on hypergeometric functions, the reader may refer to Ap-

pendix G. Theorem 18 provides an upperbound on the entropy of the sum of

two variables when one them is stable. As a special case, when α = 2, it gives

a previously unknown upper bound for Gaussian noise channels. Furthermore,

Theorem 18 gives an analytical bound on the change in the transmission rates of

the linear stable channel function of an input scaling operation. Let a > 0, then

h(aX + Z)

≤ h(aX) + γαJα(aX) 2F1

(

α− 1, α− 1;α;−(αγαJα(aX))
1

α−1

)

,

= h(X) + ln a+
(γ

a

)α

Jα(X) 2F1

(

α− 1, α− 1;α;−(α
(γ

a

)α

Jα(X))
1

α−1

)

,

where we used the fact that h(aX) = h(X) + ln a and J(aX) = 1
aα
J(X). Sub-

tracting h(Z) from both sides of the equation gives

I(aX + Z;X)− I(X + Z;X) (5.37)

≤ ln a +
(γ

a

)α

Jα(X) 2F1

(

α− 1, α− 1;α;−(α
(γ

a

)α

Jα(X))
1

α−1

)

. (5.38)

By virtue of the fact that 2F1 (α− 1, α− 1;α; 0) = 1,

lim
a→+∞

(γ

a

)α

Jα(X) 2F1

(

α− 1, α− 1;α;−(α
(γ

a

)α

Jα(X))
1

α−1

)

= 0,

and it can be seen that the variation in the transmissions rates is bounded by a

logarithmically growing function for large values of a. This is a known behavior
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of the optimal transmission rates that are achieved by Gaussian inputs.

Proof. Using the extended de Bruijn’s identiy (equation (5.14)), we write:

h(X + Z)− h(X) =

∫ 1

0

γαJα(X + α
√
ηZ) dη

≤ γα
∫ 1

0

Jα(X)Jα( α
√
ηZ)

(

J
1

α−1
α (X) + J

1
α−1
α ( α

√
ηZ)

)α−1 dη (5.39)

= γα
∫ 1

0

Jα(X) 1
αγαη

(

J
1

α−1
α (X) + ( 1

αγαη
)

1
α−1

)α−1 dη (5.40)

= (α− 1)γαJα(X)

∫ 1

0

uα−2

(

(αγαJα(X))
1

α−1u+ 1
)α−1du

= γαJα(X) 2F1

(

α− 1, α− 1;α;−(αγαJα(X))
1

α−1

)

. (5.41)

where we use the GFII in order to write equation (5.39) and properties 4 and 5

of Jα(·) to validate equation (5.40).

Equation (5.41) can be looked at as an upperbound on the entropy of the sum

of two variables when one them is stable. We note that by using the identity:

ln(1 + t) = t2F1(1, 1; 2;−t),

equation (5.41) when evaluated for Z ∼ N (0; σ2) and α = 2 boils down to the

following:

Theorem 19 (Upper bound on the Entropy of Sums having a Gaussian Compo-

nent). Let Z ∼ N (0, σ2) and X be an independent RV such that h(X) and J(X)

are finite. The differential entropy of X + Z is upper bounded by:

h(X + Z) ≤ h(X) +
1

2
ln
(
1 + σ2J(X)

)
, (5.42)
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and equality holds if and only if both X and Z are Gaussian distributed.

The rest of this section is dedicated to the direct implications of identity

equation (5.42) which are fourfold:

1- While the usefulness of this upper bound is clear for RVs X having an

infinite second moment for which equation (5.1) fails, it can in some cases,

present a tighter upper bound than the one provided by Shannon for finite

second moment variables X . This is the case, for example, when Z ∼
N (µ1, σ

2) and X is a RV having the following PDF:

pX(x) =







f(x+ a) −1− a ≤ x ≤ 1− a

f(x− a) −1 + a ≤ x ≤ 1 + a,

for some a > 0 and where

f(x) =







3

4
(1 + x)2 −1 ≤ x ≤ 0

3

4
(1− x)2 0 < x ≤ 1

0 otherwise.

The involved quantities related to X are easily computed and they evaluate

to the following: E [X ] = 0, E [X2] = a2 + 1
10
, J(X) = 12 and h(X) =

ln 4
3
+ 2

3
, for which equation (5.42) becomes

h(X+Z) ≤ h(X)+
1

2
ln
(
1 + σ2J(X)

)
= ln

4

3
+

2

3
+
1

2
ln(1+12 σ2), (5.43)

while equation (5.1) becomes

h(X +Z) ≤ 1

2
ln 2πe

(
σ2
X + σ2

)
=

1

2
ln 2πe+

1

2
ln

(

a2 +
1

10
+ σ2

)

. (5.44)

135



Comparing equations (5.43) and (5.44), it can be seen that our upper bound

is independent of a whereas the Shannon bound increases to ∞ and gets

looser as a increases. This is explained by the fact that our bound is location

independent and depends only on the PDF of X whereas the Shannon

bound is location dependent via the variance of X .

2- Theorem 19 gives a logarithmically growing analytical bound on the change

in the transmission rates of the linear Gaussian channel function of an input

scaling operation. This has been already mentioned when talking about the

implications of Theorem 18. In the Gaussian case, the bound boils down

to:

I(aX + Z;X)− I(X + Z;X) ≤ 1

2
ln
(
a2 + σ2J(X)

)
.

3- If the EPI is regarded as being a lower bound on the entropy of sums,

equation (5.42) can be considered as its upper bound counterpart whenever

one of the variables is Gaussian. In fact using both of these inequalities

gives:

N(X) +N(Z) ≤ N(Y ) ≤ N(X) +N(Z) [N(X)J(X)] . (5.45)

It can be seen that the sandwich bound is efficient whenever the IIE in

equation (5.5) evaluated for the variable X is close to its lower bound of 1.

4- Finally, in the context of communicating over a channel, it is well-known

that, under a second moment constraint, the best way to “fight” Gaussian

noise is to use Gaussian inputs. This follows from the fact that Gaussian

variables maximize entropy under a second moment constraint. Conversely,

when using a Gaussian input, the worst noise in terms of minimizing the

transmission rates is also Gaussian. This is a direct result of the EPI and

is also due to the fact that Gaussian distributions have the highest entropy
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and therefore are the worst noise to deal with. If one were to make a simi-

lar statement where instead of the second moment, the Fisher information

is constrained, i.e., if the input X is subject to a Fisher information con-

straint: J(X) ≤ A for some A > 0, then the input minimizing the mutual

information of the additive white Gaussian channel is Gaussian distributed.

This is a result of the EPI in equation (5.2) and the IIE in equation (5.5).

They both reduce in this setting to

arg min
X:J(X)≤A

h(X + Z) ∼ N
(

0;
1

A

)

.

Reciprocally, for a Gaussian input, what is the noise that maximizes the

mutual information subject to a Fisher information constraint? this prob-

lem can be formally stated as follows: If X ∼ N (0; p), find

arg max
Z:J(Z)≤A

h(X + Z).

An intuitive answer would be Gaussian since it has the minimum entropy

for a given Fisher information. Indeed, equation (5.42) provides the answer:

I(Y ;X) ≤ 1

2
ln (1 + pJ(Z)) ,

is maximized whenever Z ∼ N
(
0; 1

A

)
.

5.4 Related Publications

The results concerning the upper bound on the entropy of independent sums

when one of the variables is Gaussian were published in [109].
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Chapter 6

Estimation in Stable Noise

Environments

6.1 Background

In the context of estimation, the use of the Mean Square Error (MSE) is tightly

related to the assumption of finite variance RVs. One can even argue that it

is related to a “potential Gaussian” setup. Well-known identities such as the

Cramer-Rao bound which provides a lower bound on the mean square error of

unbiased estimators in the from of the inverse of J(X) are only valid in the

finite variance setup. If the observed noisy variable is of infinite second moment,

then the use of the Cramer-Rao bound in its classical form is to say the least

problematic. We derive in this chapter a generalized Cramer-Rao bound, that

relates the power (as defined in Section 4.4.2) of the estimation error to the

generalized Fisher information Jα(·). This can be achieved through a Generalized

Isoperimetric Inequality for Entropies (GIIE) which we prove to hold.
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6.2 A Generalized Isoperimetric Inequality for

Entropies

Define Nα(X), 0 < α ≤ 2, the entropy power of order α as

Nα(X) =
1

eαh(Z̃)
eαh(X), (6.1)

where Z̃ ∼ S
(

α, ( 1
α
)

1
α

)

.

Theorem 20 (Generalized Isoperimetric Inequality for Entropies (GIIE)). Let

X be a RV such that both h(X) and Jα(X) exist, 1 < α ≤ 2. Then

Nα(X)Jα(X) ≥ κα, (6.2)

where κα = e(α−1)(ψ(α)+γe)−1, γe is the Euler-Mascheroni constant and ψ(·) is the
digamma function.

The evaluation of equation (6.2) for α = 2 yields the well known IIE [92,

Theorem 16]:

N(X)J(X) ≥ 1. (6.3)

The equality in equation (6.3) holds when X is Gaussian distributed. For general

values of 1 < α ≤ 2, whether the equality in equation (6.2) is achievable or not

is still not answered.

Proof. In what follows, we make use of the results of Theorem 18 and use equa-

tion (5.41) to generalize the known IIE to one in terms of Jα(·). In fact,

α(h(X + Z)− h(X)) = tα−1
2F1 (α− 1, α− 1;α;−t) , (6.4)

where t = (αγαJα(X))
1

α−1 . Since t > 0, using a transformation property of the
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Gauss hypergeometric function presented in Appendix G, equation (6.4) gives:

α(h(X + Z)− h(X)) = tα−1(1 + t)1−α 2F1

(

α− 1, 1;α;
t

1 + t

)

=

(
t

1 + t

)α−1

2F1

(

α− 1, 1;α;
t

1 + t

)

. (6.5)

Using the series representation of the Gauss hypergeometric on the open unit

disk, one can write:

2F1

(

α− 1, 1;α;
t

1 + t

)

=

+∞∑

n=0

(α− 1)n(1)n
(α)n

(
t

1 + t

)n

=
+∞∑

n=0

α− 1

n + α− 1

(
t

1 + t

)n

,

where (A)n = Γ(A+n)
Γ(A)

. The last equation is derived by making use of the following

two properties of the gamma function:

Γ(A) = (A− 1)! A ∈ N
∗

Γ(A + 1) = AΓ(A) A ∈ R
+∗.

Equation (6.5) is hence:

α(h(X + Z)− h(X)) = (α− 1)

(
t

1 + t

)α−1 +∞∑

n=0

1

n + α− 1

(
t

1 + t

)n

. (6.6)

The LHS of equation (6.6) is lower bounded by:

α(h(X + Z)− h(X)) ≥ α(h(Z)− h(X)) = ln
tα−1

Nα(X)Jα(X)
, (6.7)

where we used equation (6.1) and the fact that t = (αγαJα(X))
1

α−1 in order to
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write the equality. Considering now the RHS of (6.6),

(α− 1)

(
t

1 + t

)α−1 +∞∑

n=0

1

n + α− 1

(
t

1 + t

)n

= (α− 1)

(
t

1 + t

)α−1 [
1

α− 1
− ln

(

1− t

1 + t

)

−(α− 1)
+∞∑

n=1

1

n(α + n− 1)

(
t

1 + t

)n
]

=

(
t

1 + t

)α−1

+ (α− 1)

(
t

1 + t

)α−1

ln(1 + t)

− (α− 1)2
+∞∑

n=1

1

n(α + n− 1)

(
t

1 + t

)n+α−1

.

Hence equation (6.6) implies for any t > 0:

lnNα(X)Jα(X)− (α− 1) ln t

≥ −
(

t

1 + t

)α−1

− (α− 1)

(
t

1 + t

)α−1

ln(1 + t)

+ (α− 1)2
+∞∑

n=1

1

n(α + n− 1)

(
t

1 + t

)n+α−1

. (6.8)

Letting the scale γ → +∞, then t→ +∞ and equation (6.8) gives

lnNα(X)Jα(X) ≥ (α− 1)2
+∞∑

n=1

1

n(α + n− 1)
− 1 (6.9)

= (α− 1) (ψ(α) + γe)− 1,

which is the required result. In order to write equation (6.9), we used the fact

that the series
∑+∞

n=1
1

n(α+n−1)

(
t

1+t

)n+α−1
is absolutely convergent in order to in-

terchange the order of the limits. Equation (6.2) is referred to as the generalized

isoperimetric inequality for entropies. Finally, we note that whenever α = 2,

ψ(α) = −γe + 1, and the generalized isoperimetric inequality boils down to the
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standard one.

We plot in Figure 6-1 the evaluation of the LHS of equation (6.2) at the

values of α = [1.2, 1.4, 1.6, 1.8] for alpha-stable RVs S
(

r, (r)−
1
r

)

for the values

of r = [0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8]. The horizontal lines represent the RHS

of equation (6.2) for the considered values of α. Note that stable variables do

not achieve the lower bound of the GIIE (equation (6.2)) except when α = 2

where Gaussian variables achieve the lower bound. In fact, Figure 6-2 shows

the evaluation of the product N1.8(X)J1.8(X) whenever X = X1 + X2 where

X1 ∼ S
(

α, (α)−
1
α

)

for r = 1.8 and X2 ∼ N (0, σ2) for different value of σ. The

minimum is achieved for σ = 4 and not when X is alpha-stable (which is the case

when σ = 0). Note that the computed minimum in Figure 6-2 is by no means a

global minimum.

Whether there exists RVs that achieve the minimum of Nα(X)Jα(X) and

whether the lower bound κα is tight or not are still to be determined.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Characteristic Exponent of Alpha-Stable Variables
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100
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103

N
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)J
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)

α = 1.2
α = 1.4
α = 1.6
α = 1.8
α = 2

Figure 6-1: Evaluation of Nα(X)Jα(X) and comparing it to κα for X ∼ S
(

r, (r)−
1
r

)

for different values of α and r.

Figure 6-3 shows the relative tightness of the lower bound κα when the RHS of

equation (6.2) is evaluated at alpha-stable variables with characteristic exponents
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Figure 6-2: Evaluation of N1.8(X)J1.8(X) and comparing it to κ1.8 = 0.7333 for

X = X1 + X2 where X1 ∼ S
(

r, (r)−
1
r

)

for r = 1.8 and X2 ∼ N (0, σ2) for different

values of σ.

r ranging from 0.4 to 1.8. If we consider for example on the x-axis the value

of r = 0.8 which corresponds to the alpha-stable variable X ∼ S
(

r, (r)−
1
r

)

,

Figure 6-3 says that as α increases the relative tightness of Nα(X)Jα(X) with

respect to κα decreases.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Characteristic Exponent of Stable Variables

10-1

100

101

102

103

R
el

at
iv

e 
T

ig
ht

ne
ss

 o
f 

th
e 

L
ow

er
 b

ou
nd

 
on

 N
α

(X
) 

J α
(X

) 

α =1.2
α = 1.4
α = 1.6
α = 1.8
α = 2

Figure 6-3: Relative tightness of κα for alpha-stable variables.
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A direct implication of equation (6.2) is summarized in the following: let PX

denotes the power of the RV X according to equation (4.23). Then according to

equation (4.44):

Nα(X) ≤ Nα(Z),

where Z ∼ PXZ̃ is an alpha-stable variable of characteristic exponent α and

power equal to PX . Equation (6.2) necessarily implies

Jα(X) ≥ καJα(Z) = κα
1

(PX)α
, (6.10)

where we used the fact that

Nα(Z)Jα(Z) = 1.

Equation (6.10) is a generalization of the well known fact that for any X with

variance σ2, J2(X) ≥ J2(Z) =
1
σ2

where Z ∼ N (µ, σ2).

6.3 Estimation in impulsive noise environments:

A Generalized Cramer-Rao Bound

Suppose we want to estimate a non-random parameter θ ∈ R based on a noisy

observation X where the additive noise N is supposed to be of impulsive nature.

Needless to say that in this case the Minimum Mean Square Error (MMSE)

estimator is not sensible. We proceed by considering unbiased estimators where

the location and power parameters are defined according to Section 4.4.2. More

explicitly, let

X = θ +N, (6.11)

where N is a noise variable having both h(N) and Jα(N) exist and finite. Define

θ̂(X) as an unbiased estimator of θ based on the observation of the RV X where
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by unbiased is meant that:

Definition (Unbiased Estimators). Let θ̂(X) be an estimator of a parameter θ

based on the observation of a RV X . θ̂(X) is said to be unbiased if

Lθ̂(X) = θ,

and

Lθ̂(X)−θ = 0, (6.12)

where LX is the location parameter defined in equation (4.22) and equa-

tion (6.12) is by virtue of property 1- of the location parameter.

A good indicator of the quality of an estimator θ̂(X) is the power of the “error”
(

θ̂(X)− θ
)

. We find next a lower bound on such metric which generalizes the

previously known Cramer-Rao bound.

Theorem 21 (Generalized Cramer-Rao Bound). Let θ̂(X) be an unbiased esti-

mator of the parameter θ based on the observation X according to equation (6.11).

Then

Pθ̂(X)−θ ≥
κ

1
α
α

J
1
α
α (N)

, (6.13)

where Pθ̂(X)−θ is the power of the “error”
(

θ̂(X)− θ
)

according to equation (4.23).

Before starting the proof, we note that whenever α = 2 the result of Theo-

rem boils down to the classical Cramer-Rao bound:

E

[(

θ̂(X)− θ
)2
]

≥ 1

J(N)
. (6.14)

Proof. Let Pe = Pθ̂(X)−θ. By the results of Section 4.4.3, among all RVs that have

a power equal to Pe, the entropy maximizing variable Z is distributed according

to S
(

α,
(
1
α

) 1
α Pe

)

and

h
(

θ̂(X)− θ
)

≤ h(Z̃) + lnPe, (6.15)
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where Z̃ ∼ S
(

α,
(
1
α

) 1
α

)

. Equation (6.15) implies that:

Nα

(

θ̂(X)− θ
)

≤ Pαe . (6.16)

On the other hand

Jα

(

θ̂(X)− θ
)

= Jα

(

θ̂(X)
)

≤ Jα(X) = Jα(N), (6.17)

where the first and the last equalities are due to property 3- of Section 5.2 and the

inequality is due to the data processing inequality for Jα(·) proven in Theorem 16.

Applying the GIIE (6.2) to θ̂(X)− θ, we obtain:

Nα

(

θ̂(X)− θ
)

Jα

(

θ̂(X)− θ
)

≥ κα, (6.18)

which gives along with equations (6.16) and (6.17),

Jα(N) Pαe ≥ κα. (6.19)

Equation (6.19) establishes a generalized novel Cramer-Rao lower bound on the

power Pe of the error of all unbiased estimators ˆθ (X):

Pe ≥
κ

1
α
α

J
1
α
α (N)

,

which gives

Pe ≥ (ακα)
1
α γN ,

when N ∼ S(α, γN), 1 < α ≤ 2 is a stable variable by virtue of the fact that

Jα(N) = 1
αγαN

(see property 4- in Section 5.2).

As an example, in the case where N ∼ S(α, γN), 1 < α ≤ 2, the Maximum
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Likelihood (ML) estimator θ̂ML(X) is given by:

θ̂ML(X) = argmaxθ ln pN(X − θ) = X

since N is symmetric. Hence θ̂ML(X) is unbiased. The power of θ̂ML(X) −
θ = N is Pe = PN = (α)

1
αγN = 1

J
1
α
α (N)

for which equation (6.13) holds true.

Finally, we mention that equation (6.13) establishes a new metric to measure

the average error strength and hence the estimator performance when the noisy

measurements are affected by an additive noise of impulsive nature. The choice

of a specific value of α is straightforward whenever the noise belongs to the

α-parametrized domains of normal attraction of stable variables. The quality

of the estimator θ̂(X) is tied to the closeness of Pe to its lower bound, both of

which are computable numerically as previously shown in Chapters 4 and 5 where

the power and generalized Fisher information are computed for several types of

probability laws. On a final note, we mention that it is not known whether

equation (6.13) is tight is not known in general. The tightness is already know

when α = 2 (equation 6.14) for θ̂(X) = X and N a Gaussian variable. We believe

that answering the tightness question is equivalent to a similar question when it

comes to the GFII (5.28).
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Chapter 7

Conclusions

In any communication or measurement setup, the observed signal is a perturbed/

distorted version of the signal of interest. Whether the source of the noise comes

from the equipments heating or an interferer, the effect of the perturbation is

generally modeled in an additive manner. Generally, the role of a system designer

is to build an efficient system that recovers at the receiver side the information

present in a quantity of interest. In this thesis we studied various theoretical

aspects of such problems when the noise is heavy tailed, a scenario in which

alpha-stable distributions play a central role and find applications in diverse

fields of engineering and some other disciplines. Whenever possible, such as in

a communications setup, one may choose the “best” input signal – equivalently

the “best” input statistics that satisfies the different constraints and carries the

required information. This optimal input achieves the best tradeoff in the sense

that it maximizes the performance while conserving a low average error. The

classical approach to this fundamental problem in communications theory is done

from a channel input perspective. Under this perspective and in the purpose of

emulating real scenarios, input signals are supposed to abide by some power

constraints. The Hilbert space structure of random processes having finite L2-

norm lead, by using orthonormal expansions, to translating the L
2-norm power
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constraint to a second moment constraint in the Hilbert space of RVs having

finite second moments. Assuming that the additive noise would also have a finite

second moment, this approach quantified the different metrics of the channel

with respect to the input power measure irrespective of the noise model. As an

example, the capacity of the linear additive Gaussian channel under an average

power constraint is given by the famous formula “C = ln(1 + SNR)” where the

“SNR” is the signal to noise ratio between the variance of the input to that of

the Gaussian noise, hence relating the input power as defined for the input space

to the noise power since the noise falls within the input space. Naturally, this

approach breaks when the noise is not of the same “nature” as the input space.

This is the case of impulsive noise models having infinite second moments which

do not belong to the input space of finite power (second moment) RVs .

We adopted an alternative way to approach the problem by looking at the

received signal. Naturally, the performance of any adopted strategy at the input

is viewed by its effect at the output end. This is translated also to the involved

mathematical quantities in the transmission/reconstruction problem since the

maximization of the transmission rates involves a maximization of the output

differential entropy. Therefore, in a communications theory setup, it seems rea-

sonable to consider the additive channel while imposing a “quality” constraint

on the output. By restricting the output space to satisfy certain power require-

ments, we are indirectly taking into consideration the nature of the noise in the

formulation of the constraint which constructs an input space of variables of the

same “nature” of the noise. This is in accordance with the fact that the system

designer has no control over the noise model which is dictated by the channel and

can assume the possibility of choosing, form an input space similar in nature to

that of the noise, the input signal that best overcomes the noise effect. Back to

the linear AWGN channel, the output approach gives exactly the same answer as

the input approach: constraining the output average power implies a constraint

on the input average power. Furthermore, in this case, the capacity is better
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viewed in terms of the output metrics “C = ln(SNR)”, where in this case “SNR”

is the output signal to noise ratio.

When dealing with an additive alpha-stable noise channel, the contaminated

signal at the receiver level has already an infinite second moment whatever con-

straints one would impose on the input. From the “output approach” perspective,

the system designer tries to evaluate the performance of the system by setting

a measure that quantifies the strength of the received signal. Since the second

moment is no longer an option, other tools are to be investigated. A standard

way to define a measurement operator is to evaluate the average cost of the RV

for a given cost function. As a first observation, the logarithmic tail behaviour

of the cost function seems to be essential. It simply gives finite measurements

for all heavy tailed distribution functions. This first observation is further sup-

ported by the generic channel capacity results of Chapter 3 via the answer to

these two questions: is it normal for an infinite power signal not to carry more

than a finite number of information bits? and is it reasonable that a finite power

signal achieves better transmission rates than one whose power is infinite? If the

answer is no, then by the results of Chapter 3, whenever impulsive noise channels

are encountered logarithmic cost functions should be used as a way to measure

the signals’ power.

We propose in Section 4.4.2, an expression to evaluate the power of signals in

symmetric alpha-stable noise environments. Though the value of the power is in-

corporated within the cost function, it represents an average of a logarithmically

tailed cost function. Besides the logarithmic tail behaviour of the averaged func-

tion, the main argument for suggesting PX as defined in equation 4.23, is to find a

definition that is generic for the stable space of noise distributions, including the

Gaussian since stable distributions are the most common noise models encoun-

tered by virtue of the GCLT. Equation (4.23) is chosen to become the standard

deviation in the Gaussian case in order to unify the order of the power operator

in such a way if the variable is linearly scaled then the power also scales linearly.
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Definition (4.23) defines a space where the alpha-stable noise is the worst in terms

of entropy/randomness which implies that the alpha-stable channel model is a

worst-case scenario whenever there is an impulsive noise assumption. This fact

mimics the role of the Gaussian variable among the finite variance space of RVs

and generalize it to an equivalent role of stable variables among the space of RVs

that have a finite power PX .

This central role is reflected also in other related problems specially in es-

timation theory. A simple estimation problem of the location parameter of an

alpha-stable variable is not well understood and performance measures of a given

estimator are to be further investigated. Though the work of Gonzales [1] was in

this direction, we believe that it was suitable for the Cauchy case and not generic

to the whole family of symmetric stable distributions. Additionally, that work

was developed with a “signal processing” aspect in mind. The generic quantities

defined in this dissertation such as the generalized Fisher information, the gen-

eralized entropy power, the power PX and other relevant quantities establish an

“extension” of the Gaussian estimation theory to a stable estimation theory in

general and may be viewed as complementary to the works found in the literature

by answering the “fundamental-limits” questions. The generalized Cramer-Rao

bound proven in Chapter 6 sets a novel lower bound on the power of the estima-

tion error for any “unbiased” estimator of a location parameter that can be used

to characterize the performance of estimators in impulsive noise environments. It

naturally opens the door for the related problems of efficiency and ML estimator.
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Appendix A

The Karush-Kuhn-Tucker

Conditions

In this appendix we state the general requirements needed to be satisfied by the

optimization set i.e. the set of the probability distribution functions that satisfy

given constraints and the objective function i.e. the mutual information between

the input and the output of a given channel in order to prove the existence and

uniqueness of the optimal input. We start by the basic optimization problem

and find equivalent necessary and sufficient conditions for the solution to satisfy.

These conditions are known as the KKT conditions. For further explanations on

this subject see [57].

A.1 Existence and Uniqueness

Theorem 22 (Extreme Value Principle). If I is a real-valued, weak continuous

functional on a weak compact set Ω ⊆ F , then I achieves its maximum on Ω.

If furthermore Ω is convex, and I is strictly concave, then the maximum

C = max
F∈Ω

I(F )
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is achieved by a unique Fo in Ω.

Proof. • First statement [85]

• Second statement follows from strict concavity

A.2 Lagrangian Theorem for Constrained Opti-

mization Problems

Theorem (Lagrangian Theorem). [85] Let F be a vector space and Ω a convex

subset of F .

Let I be a real-valued concave functional on Ω and g a convex mapping from

Ω to R. Assume the existence of a point F1 ∈ Ω for which g(F1) < 0.

Let

C = sup
F∈Ω
g(F )≤0

I(F )

and assume C is finite. Then there is an element λo ≥ 0 such that

C = sup
F∈Ω

{I(F )− λog(F )}.

Furthermore, if the supremum is achieved in the original problem at Fo, it is

achieved by Fo in the second and

λog(Fo) = 0.
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A.3 KKT conditions

Theorem (Optimization and Differentiability). Assume a weakly (Gateaux) dif-

ferentiable functional I on a convex set Ω achieves its maximum.

- If I achieves its maximum at Fo then I ′Fo
(F ) ≤ 0 for all F ∈ Ω.

- If I is concave, then I ′Fo
(F ) ≤ 0 for all F ∈ Ω implies that I achieves its

maximum at F0.

Proof. See Smith [57]

Theorem (Karush-Kuhn-Tucker (KKT) Conditions). The capacity C of a con-

strained channel

C = sup∫
h(x) dF (x)≤a

I(F )

is achieved by Fo if and only if there exists a γ ≥ 0 such that

γ(h(x)− a) + C −
∫

p(y|x) ln
[
p(y|x)
p(y;Fo)

]

dy ≥ 0

for all x, with equality if x is a point of increase of Fo.

Proof. See Abou-Faycal, Trott and Shamai [59]
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Appendix B

Sufficient Conditions for

Finiteness of Channel Capacity

In this appendix, we show that assumptions C1 to C6 imposed in Chapter 3 on

channel (3.3) are sufficient conditions that ensure that the mutual information

between the channel’s input and output is finite –and hence well-defined– and we

make use of the extreme value principle [85] to ensure that the capacity problem

yields a finite and achievable solution. This could be achieved by enforcing two

characteristics:

1- The input space PA of feasible distribution functions is compact.

2- The mutual information between the input and the output of the channel

is continuous in the input distribution function.

We emphasize that these two properties are intimately related to the channel

model and the input constraints if any. Under rather mild technical conditions

imposed on the noise PDF (conditions C5 and C6), we show that whenever the

input cost function has a “super-logarithmic growth” (condition C4) the channel

capacity is finite and achievable.

Establishing the continuity of the mutual information under any “super -

logarithmic” input constraint is achieved using a novel result on the convergence
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of differential entropies . While numerous studies have tackled this subject (see

for example [110, 111]), the conditions presented in Section B.1 are among the

weakest that insure this convergence whenever PDFs converge point-wise.

B.1 Convergence of differential entropies

In this section we establish a sufficient condition for the convergence of differential

entropies whenever there is point-wise convergence of the corresponding PDFs.

More precisely, we prove a theorem that guarantees this convergence under some

rather-mild sufficient conditions. In layman terms, this theorem states that when-

ever the PDFs satisfy a super-logarithmic type of moment, point-wise convergence

will imply convergence of differential entropies. We emphasize that the new con-

ditions are weaker than some of those derived by Godavarti et al. [111, Theorem

1]. Alternative conditions found in [111, Theorem 4] are not directly related to

those presented hereafter.

Theorem 23 (Convergence of Differential Entropies). Let the sequence of PDFs

on R, {pm(y)}m≥1 and p(y) satisfy the following conditions:

A1- The PDFs {pm(y)}m and p(y) are uniformly upperbounded:

∃M ∈ (0,∞) s.t. sup
y∈R,m≥1

{

pm(y), p(y)

}

≤ M. (B.1)

A2- There exists a non-negative and non-decreasing function l : [0,∞) → [0,∞),

such that l(y) = ω (ln(y)) (i.e. ∀κ > 0, ∃ c > 0 such that l(y) ≥ κ ln(y), ∀y ≥
c) and

sup
m

{

Epm [l(|Y |)] ,Ep [l(|Y |)]
}

≤ L, (B.2)

for some positive (finite) value L.

Under these conditions, h(pm) → h(p) whenever the PDFs pm(y) → p(y)

point-wise.
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Before we prove the theorem, we highlight the importance of condition A2 by

providing an example where it is not satisfied, and the theorem does not hold.

Example 1. Consider the sequence of PDFs {pm(x)}m≥3 defined on R as follows:

pm(x) =







1− 1

lnm
x ∈ [0; 1]

1

(lnm)2
1

x
x ∈ (1;m].

This sequence of PDFs converges point-wise to p(x), the uniform distribu-

tion on [0, 1], and condition A1 is satisfied with a uniform upperbound M = 1.

Computing the differential entropies,

h(p) = 0

h(pm) = −
(

1− 1

lnm

)

ln

(

1− 1

lnm

)

+
2 ln(lnm)

(lnm)2

∫ m

1

1

x
dx+

1

(lnm)2

∫ m

1

lnx

x
dx

= −
(

1− 1

lnm

)

ln

(

1− 1

lnm

)

+
2 ln(lnm)

lnm
+

1

2

→ 1

2
as m→ ∞,

and hence there is no convergence of differential entropies. This is explained by

the fact that condition A2 is not satisfied. Indeed, consider any function l(x)

that is non-negative, non-decreasing and l(x) = ω (ln x). By definition, for any

κ > 0, there exists a c > 0 such that l(x) ≥ κ ln x for x ≥ c. Therefore, for any

157



m ≥ c,

Epm [l(|X|)] =
(

1− 1

lnm

)∫ 1

0

l(x) dx+
1

(lnm)2

∫ m

1

1

x
l(x) dx

=

(

1− 1

lnm

)∫ 1

0

l(x) dx+
1

(lnm)2

∫ c

1

1

x
l(x) dx

+
1

(lnm)2

∫ m

c

1

x
l(x) dx

≥
(

1− 1

lnm

)∫ 1

0

l(x) dx+
1

(lnm)2

∫ c

1

1

x
l(x) dx

+
κ

(lnm)2

∫ m

c

1

x
ln x dx

=

(

1− 1

lnm

)∫ 1

0

l(x) dx+
1

(lnm)2

∫ c

1

1

x
l(x) dx

+ κ
(lnm)2 − (ln c)2

2(lnm)2

≥ κ
(lnm)2 − (ln c)2

2(lnm)2
,

which is greater than 3
8
κ whenever m > c2. Since the inequality holds for any

κ > 0 and m large enough then supm

{

Epm [l(|X|)]
}

is unbounded which violates

condition A2. We proceed next to the proof of Theorem 23.

Proof. We start by noting that the differential entropies h(p) and {h(pm)}m≥1

exist and are finite by virtue of the fact that the PDFs are upperbounded and

have a finite logarithmic moment [82, Proposition 1].

Assume now that the conditions of the theorem hold and that pm converges to

p point-wise. If the upperbound (B.1) M is larger than one, consider the change

of variables, Z =MY (for which h(Z) = h(Y )+lnM ,) or equivalently the PDFs,

d(y) =̂
1

M
p
( y

M

)

, dm(y) =̂
1

M
pm

( y

M

)

, m ≥ 1.

These densities are upperbounded by one and the sequence {dm(y)} converges

point-wise to d(y). Furthermore, the function l′(y) = l(y/M) is non-negative,
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non-decreasing and l′(y) = ω (ln(y)). Additionally,

Edm [l′(|Y |)] = Epm [l′(|MY |)] = Epm [l(|Y |)] ≤ L.

The conditions of the theorem therefore hold for the laws {dm, d} and in what

follows we assume without loss of generality that M ≤ 1, and the differential

entropies are all non-negative .

Let ỹ be any positive scalar such that l(ỹ) > 0, and denote by q(y) = 1
π

1
1+y2

the Cauchy density. Then, using the convention “0 ln 0 = 0” and the fact that

y ln y ≥ −1
e
for y > 0, we can write

−
∫

|y|≥ỹ

p(y) ln p(y) dy

= −
∫

|y|≥ỹ

p(y) ln q(y) dy +

∫

|y|≥ỹ

q(y)
p(y)

q(y)
ln
q(y)

p(y)
dy

≤ ln π

∫

|y|≥ỹ

p(y) dy +

∫

|y|≥ỹ

ln
[
1 + y2

]
p(y) dy +

1

e

∫

|y|≥ỹ

q(y) dy

≤ ln π

l(ỹ)

∫

|y|≥ỹ

l(|y|) p(y) dy+
∫

|y|≥ỹ

ln
[
1 + y2

]
p(y) dy

+
1

e

1

ln [1 + ỹ2]

∫

|y|≥ỹ

ln
[
1 + y2

]
q(y) dy, (B.3)
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where equation (B.3) is due to the fact that l(·) is non-decreasing. Hence,

−
∫

|y|≥ỹ

p(y) ln p(y) dy

≤ ln π
Ep [l(|Y |)]
l(ỹ)

+ 2

∫

|y|≥ỹ

ln [1 + |y|] p(y) dy + 1

e

Eq [ln [1 + Y 2]]

ln [1 + ỹ2]
(B.4)

≤ L ln π

l(ỹ)
+ 2 sup

|y|≥ỹ

{
ln [1 + |y|]
l(|y|)

} ∫

|y|≥ỹ

l(y) p(y) dy+
1

e

ln 4

ln [1 + ỹ2]
(B.5)

≤ L ln π

l(ỹ)
+ 2L sup

|y|≥ỹ

{
ln [1 + |y|]
l(|y|)

}

+
1

e

ln 4

ln [1 + ỹ2]
, (B.6)

where equation (B.4) is justified since l(ỹ) is positive and l(y) is non-negative.

In order to write equation (B.5) we use the identity Eq [ln (1 + y2)] = ln 4 [90,

Sec.3.1.3, p.51]. The supremum in equations (B.5) and (B.6) is finite –and goes

to 0– for ỹ large-enough because l(y) = ω (ln y).

Since the upperbound (B.6) also holds for any pm(y), then for every δ > 0,

there exists a ỹ > 0 such that for all m ≥ 1:

∣
∣
∣
∣
∣
∣
∣

∫

|y|≥ỹ

pm(y) ln pm(y) dy

∣
∣
∣
∣
∣
∣
∣

< δ &

∣
∣
∣
∣
∣
∣
∣

∫

|y|≥ỹ

p(y) ln p(y) dy

∣
∣
∣
∣
∣
∣
∣

< δ.

It remains to show that

lim
m→+∞

−
∫

|y|<ỹ

pm(y) ln pm(y) dy = −
∫

|y|<ỹ

p(y) ln p(y) dy,

which is guaranteed by the Dominated Convergence Theorem (DCT) since

|pm(y) ln pm(y)| ≤
1

e
,

by virtue of the fact that pm(y) ≤ 1 for all m, which completes the proof.
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B.2 Finiteness of channel capacity

Sufficient conditions

We show in this section that conditions C1 to C6 stated in Chapter 3 repre-

sent sufficient conditions on the triplet f(·), C(·), and pN(·) that guarantee the

finiteness and the achievability of the capacity of channel (3.1):

Theorem 24 (Achievability and Finiteness of Channel Capacity). Under condi-

tions C1 through C6, the capacity of the average-cost constrained channel (3.3)

is finite and achievable.

Furthermore, the maximum is achieved by a unique F ∗ in PA if and only if

the output PDF is injective in F .

We point out that assumptions C1, C2, C5 and C6 are related to the channel

model at hand and are not “conditions” per say. These assumptions are satisfied

by the vast majority of common models found in the literature.

When thinking in terms of conditions on the input –controlled by the user,

C3 and C4 are to be considered. Note that these conditions are also common

to all cost functions found in the literature. While C3 is rather technical, the

relevance of C4 may be seen in the following example.

Example 2. Consider the linear additive channel (3.3), where now the noise N

is a uniformly distributed random variable on the interval [0, 1).

Let X1 and X2 be two discrete random variables taking integer values k ≥ 2,

with respective probability mass functions:

pX1(k) = B1
1

k(ln k)2
, pX2(k) = B2

1

k(ln k)3
, k ≥ 2,

where B1 & B2 are the normalizing finite constants,

B1 =

[ ∞∑

k=2

1

k(ln k)2

]−1

B2 =

[ ∞∑

k=2

1

k(ln k)3

]−1

.
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Let Y1 and Y2 be the outputs of channel (3.3) whenever its inputs are X1 and

X2 respectively. Given the placement of the mass points, X1 may be perfectly

inferred from Y1 and H(X1|Y1) = 0. Similarly H(X2|Y2) = 0 and therefore the

mutual informations

I(X1; Y1) = H(X1)−H(X1|Y1) = H(X1)

I(X2; Y2) = H(X2).

Computing H(X1) and H(X2), we obtain:

H(Xi) = −
∑

k≥2

pXi
(k) ln pXi

(k)

= − lnBi +Bi

∑

k≥2

ln k + (1 + i) ln(ln k)

k(ln k)1+i
i = 1, 2,

which diverges for i = 1 and converges for i = 2. Accordingly, the mutual

information of channel (3.3) is infinite when the input is X1 whereas it is finite for

input X2. Note that E [lnX1] is infinite while E [lnX2] is finite, and this example

showcases the importance of condition C4 when it comes to the finiteness of

mutual information. Whenever C4 is not enforced, the channel capacity might

be infinite as X1 yields an infinite mutual information. The theorem states that

when the condition is enforced, the capacity will be finite.

An interesting observation is that both E [X2
1 ] and E [X2

2 ] are infinite, however

as inputs to the channel they yield respectively an infinite and a finite mutual

information. We proceed next to prove Theorem 24.

Proof. The first statement of the theorem is established using the extreme value

principle (see Theorem 22 in Appendix A).

In order to apply this principle, we show in Section B.3 that the set PA
is compact (Theorem 25) and that the mutual information I(F ) is finite and
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continuous (Theorems 26 and 27). Therefore, the capacity of the average-cost

constrained channel is finite and achievable.

When it comes to uniqueness, since PA is convex (Theorem 25) whenever I(·)
is strictly concave, then the maximum

C = max
F∈PA

I(F ),

is achieved by a unique F ∗ in PA.
Knowing that I(·) is concave (Theorem 27), its strict concavity is equivalent

to the strict concavity of the output differential entropy in pY (·). This is indeed
the case if and only if pY (·) is injective in F .

The next section is dedicated to the proofs of Theorems 25, 26 and 27.

B.3 Proofs of the Theorems

We use techniques that have been first developed in [57] and later adopted in

various works on mutual information maximization as in [49]: denote by F the

space of all probability distribution functions on R. We adopt weak conver-

gence [84, III-1, Def.2, p.311] on F , and use the Levy metric to metrize this weak

convergence [30, Th.3.3, p.25]. The optimization is carried out in this metric

topology.

Optimization set properties

Theorem 25 (Convexity and Compactness of the Optimization Set). Whenever

conditions C2, C3 and C4 are satisfied, the set PA defined in (3.2) is convex and

compact.

Proof. We note first that the theorem was shown to hold for cost functions of

the form C (|x|) = |x|r, for r > 1 in [49]. We adopt the same methodologies to
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generalize the results presented hereafter.

Convexity

Let F1 and F2 be two probability distribution functions in PA, and λ some scalar

between 0 and 1. Define F = λF1 + (1− λ)F2. It is clear that F is a probability

distribution function because it is non-decreasing, right continuous, F (−∞) = 0

and F (+∞) = 1. Additionally,

∫

R

C (|x|) dF =

∫

R

C (|x|) d (λF1 + (1− λ)F2)

= λ

∫

R

C (|x|) dF1 + (1− λ)

∫

R

C (|x|) dF2

≤ λA + (1− λ)A = A.

Therefore, F ∈ PA and PA is convex.

Compactness

Consider a random variable X with probability distribution function F ∈ PA.
Applying Markov’s inequality to random variable C (|X|) yields,

Pr{C (|X|) ≥ α} ≤ E [C (|X|)]
α

, ∀α > 0.

Now let

K = inf
{
x ∈ [0,∞) s.t. C(x) ≥ α

}
+ 1,

which is always greater or equal to 1. For any finite value of α, such a K exists

since C(x) increases to +∞ as x → +∞ by virtue of properties C3 and C4.
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Additionally, since C(·) is non-decreasing,

Pr{C (|X|) ≥ α} ≥Pr {|X| > K − 1} ≥ Pr{|X| ≥ K}

≥F (−K) + [1− F (K)] .

Hence, for all F ∈ PA, we obtain

F (−K) + [1− F (K)] ≤ E [C (|X|)]
α

≤ A

α
.

Therefore, for every ǫ > 0, there exists a Kǫ > 0, namely

Kǫ = min
{
x ∈ [0,∞) s.t. C(x) ≥ (A/ǫ)

}
+ 1,

such that

sup
F∈PA

[F (−Kǫ) + [1− F (Kǫ)]] ≤ ǫ.

This implies that PA is tight [84, III-2, Def.2, p.318]. By Phrokhorov’s The-

orem [84, III-2, Th.1, p.318], PA is therefore relatively sequentially compact and

every sequence {Fn} of distribution functions in PA has a convergent sub-sequence

{Fnj
} where the limit F ∗ does not necessarily belong to PA. If we prove that

F ∗ ∈ PA, the latter will be sequentially compact and hence compact since the

space is metrizable [112, Th.28.2, p.179]. In order to show that the limiting dis-

tribution function F ∗ is in PA, it must satisfy the cost constraint which is the

case. In fact,

∫

C (|u|) dF ∗(u) ≤ lim
nj→∞

inf

∫

C (|u|) dFnj
≤ A,

where the first inequality holds because C(|u|) is lower semi-continuous and is

bounded from below by C (0) for all u ∈ R (property C3) [113, Th. 4.4.4]. In

addition, the second inequality is valid since the sub-sequence {Fnj
} is in PA
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and therefore satisfies the cost constraint ∀nj. Finally, F ∗ ∈ PA and PA is

compact.

Properties of the mutual information, I(·)

We prove in what follows the finiteness, concavity and continuity of I(·) on PA
through Theorems 26 and 27.

Theorem 26 (Finiteness of the Mutual Information). Whenever conditions C4,

C5 and C6 hold, the mutual information I(F ) between the input and output of

channel (3.3) is finite for all input distribution functions F such that E [C (|X|)]
is finite.

Proof. Since Y = f(X) +N ,

ln [1 + |Y |] ≤ ln [1 + |f(X)|] + ln [1 + |N |] ,

and E [ln [1 + |Y |]] is finite because both E [ln [1 + |f(X)|]] and E [ln [1 + |N |]] are
finite (by properties C4 and C6).

Moreover, and since pY (y) is upperbounded (by C5) by one, the differential

entropy of Y , hY (F ) = −
∫
p(y;F ) ln p(y;F ) dy, is well defined [82, Proposition

1] and 0 ≤ hY (y) < +∞.

The differential entropy hN of the noise being finite (due to properties C5

and C6), the mutual information I(F ) in (3.18) can therefore be written as the

difference of two terms:

I(F ) = hY (F ) − hY |X(F ) = hY (F ) − hN , (B.7)

both of which are finite and this completes the proof.

Theorem 27 (Concavity and Continuity of the Mutual Information). Assume
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that conditions C1 through C6 hold. Under a cost constraint

∫

C (|X|) dF (x) ≤ A A > 0,

the mutual information I(F ) between the input and the output of channel (3.3)

is concave and continuous.

Before we proceed with the proof, we note that under the conditions of the

theorem, the mutual information I(F ) between the input and the output of chan-

nel (3.3) is finite by virtue of Theorem 26.

Proof. Concavity

The output differential entropy hY (F ) is a concave function of F on F . In fact,

hY (F ) = −
∫

pY (y;F ) ln pY (y;F ) dy

exists (by Theorem 26) and is a concave function of pY (·) because −x ln x is

concave in x. Since pY (F ) is linear in F , I(F ) = hY (F ) − hN is concave on PA.

Continuity

To prove the continuity of I(F ), it suffices to show that hY (F ) is continuous by

virtue of equation (B.7). To this end, we let F ∈ PA and let {Fm}m≥1 be a

sequence of probability measures in PA that converges weakly to F .

In order to apply Theorem 23 and show the convergence of hY (Fm) to hY (F )

and hence the weak continuity of hY (F ) on PA, we establish that the appropriate

conditions are satisfied:

• By definition of weak convergence, since pN(y − x) is bounded and con-

tinuous (property C5), then p(y;Fm) =
∫
pN(y − f(x)) dFm(x) converges

point-wise to p(y;F ) =
∫
pN (y − f(x)) dF (x).
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• The induced output PDF p(y;Fm) is also bounded by one.

• It remains to find a non-negative and non-decreasing function, l : [0,∞) →
[0,∞) such that l(y) = ω (ln(y)), and a scalar L > 0 such that equa-

tion (B.2) holds for p(y;Fm), m ≥ 1 and p(y;F ), a task which we fulfill in

what follows.

For any y ≥ |f(0)|, let S = f−1 ([|f(0)|, y]) be the inverse image by f(·) of the
closed interval [|f(0)|, y]. Since f(·) is continuous (C1), the set S is closed. It is

also bounded because |f(x)| is non-decreasing in |x| and tends to infinity (A5).

Therefore any element in S is smaller than a positive tu such that |f(tu)| = 2y

and greater than a negative tb such that |f(tb)| = 2y. Such tu and tb exist because

f(·) is continuous.
The set S is compact and has a maximal value that we denote z(y) = max{z :

z ∈ S}. Note that |f(z(y))| = y.

Define the function Cmin(·): [0,∞) −→ R as follows:

Cmin (y) =







min {C (z(y)) ; CN (y)} y ≥ |f(0)|
0 otherwise,

where CN (·) is defined in C6. The function Cmin(y) is non-negative and non-

decreasing on [0,∞) since both C(y) and CN (·) are non-negative and non-decreasing

by properties C3 and C6 and z(y) is non-decreasing for y ≥ |f(0)|. Additionally,
Cmin(y) = ω (ln y) because C(x) = ω (ln |f(x)|) (A3) and CN (x) = ω (ln x) (C6).
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Now, for any X with distribution F ∈ PA,

EY

[

Cmin

[ |Y |
2

]]

= EX,N

[

Cmin

[ |f(X) +N |
2

]]

≤ EX,N

[

Cmin

[ |f(X)|+ |N |
2

]]

(B.8)

= EX,N

[

Cmin

[ |f(X)|+ |N |
2

] ∣
∣
∣
∣
|f(X)|≤|N |

]

Pr (|f(X)|≤|N |)

+ EX,N

[

Cmin

[ |f(X)|+ |N |
2

] ∣
∣
∣
∣
|f(X)|>|N |

]

Pr (|f(X)|>|N |)

≤ EX,N

[

Cmin (|N |)
∣
∣
∣
∣
|f(X)|≤|N |

]

Pr (|f(X)|≤|N |)

+ EX,N

[

Cmin (|f(X)|)
∣
∣
∣
∣
|f(X)|>|N |

]

Pr (|f(X)|>|N |) (B.9)

≤ EN [Cmin (|N |)] + EX [Cmin (|f(X)|)] (B.10)

≤ EN [CN (|N |)] + EX [C (|X|)]

≤ LN + A = L <∞. (B.11)

where 0 ≤ LN = EN [CN (|N |)] < ∞ by property C6. Equations (B.8) and (B.9)

are justified since Cmin (|x|) is non-decreasing in |x| and (B.10) is due to the fact

that Cmin (|x|) is non-negative. Since the value 0 ≤ L <∞ is independent of the

input distribution function F ∈ PA, then (B.11) holds for any output variable

Y , i.e for all p(y;F ) where F ∈ PA. Letting l(y) = Cmin

(
y
2

)
, y ∈ [0,∞), then

equation (B.2) is satisfied for p(y;Fm),m ≥ 1 and p(y;F ). Therefore, Theorem 23

holds and hY (Fm) converges to hY (F ) and hence hY (F ) is continuous which

concludes the proof.
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B.4 Related Publications

The results of this appendix are the subject of an article published in the IEEE

Transactions on Communications [114].
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Appendix C

Weak Differentiability of I(·) at
F ∗

Theorem 28 (Weak Differentiability of the Mutual Information). Let F ∗ be an

optimal input distribution. Under a cost constraint
∫
C (|X|) dF (x) ≤ A, A > 0,

the mutual information I(F ) between the input and the output of channel (3.3)

is weakly differentiable at F ∗.

Before proceeding to the proof, we note that the existence of an optimal F ∗

and the finiteness of the solution are insured by the results of Appendix B.

Proof. Let θ be a number in [0, 1], (F ∗, F ) ∈ PA × PA and define Fθ = (1 −
θ)F ∗ + θF . The weak derivative of I(.) at F ∗ in the direction of F is defined as,

I ′(F ∗, F ) , lim
θ→0+

I(Fθ)− I(F ∗)

θ
,

whenever the limit exists. For simplicity, we denote by

t(x) = i(x;F ∗),
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where i(x;F ) is given by equation (3.11), and we prove

I ′(F ∗, F ) = −
∫

p(y;F ) ln p(y;F ∗) dy − hY (F
∗)

=

∫

t(f(x)) dF (x) − hY (F
∗),

where by Tonelli, the interchange is valid as long as the integral term is finite

which we prove next. Using L’Hôpital’s rule,

I ′(F ∗, F ) = lim
θ→0+

I(Fθ)− I(F ∗)

θ
= lim

θ→0+

hY (Fθ)− hY (F
∗)

θ

= lim
θ→0+

−
[∫

p(y;Fθ) ln p(y;Fθ) dy

]′

, (C.1)

where the derivative is with respect to θ. In order to evaluate
[∫
p(y;Fθ) ln p(y;Fθ) dy

]′

we use the definition of the derivative

[∫

p(y;Fθ) ln p(y;Fθ) dy

]′

= lim
h→0

[∫
p(y;Fθ+h) ln p(y;Fθ+h) dy

h
−
∫
p(y;Fθ) ln p(y;Fθ) dy

h

]

,

where by the limit we mean that both, the limit as h goes to 0+ and the limit

as h goes to 0− exist and are equal. In what follows, we only provide detailed

evaluations as h goes to 0+ since those when h goes to 0− are similar. Using the

mean value theorem, for some 0 ≤ c(h) ≤ h,

lim
h→0+

[∫
p(y;Fθ+h) ln p(y;Fθ+h) dy

h
−
∫
p(y;Fθ) ln p(y;Fθ) dy

h

]

= lim
h→0+

∫

[p(y;Fθ) ln p(y;Fθ)]
′

|θ+c(h)
dy.
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Now, since p(y;Fθ) = p(y;F ∗) + θ [p(y;F )− p(y;F ∗)],

lim
h→0+

∫

[p(y;Fθ) ln p(y;Fθ)]
′

|θ+c(h)
dy

= lim
h→0+

∫

[p(y;F )− p(y;F ∗)] ln p(y;Fθ+c(h)) dy +

∫

[p(y;F )− p(y;F ∗)] dy

=

∫

lim
h→0+

[p(y;F )− p(y;F ∗)] ln p(y;Fθ+c(h)) dy (C.2)

=

∫

[p(y;F )− p(y;F ∗)] ln p(y;Fθ) dy, (C.3)

where (C.3) is due to the fact that c(h) → 0 as h → 0 and that p(y;Fθ) is

continuous in θ by virtue of its linearity, and (C.2) is due to DCT. Indeed,

∣
∣[p(y;F )− p(y;F ∗)] ln p(y;Fθ+c(h))

∣
∣ ≤

(
p(y;F ) + p(y;F ∗)

) ∣
∣ln p(y;Fθ+c(h))

∣
∣ ,

and

p(y;Fθ+c(h)) = [1− θ − c(h)] p(y;F ∗) + [θ + c(h)] p(y;F )

≥ [1− θ − c(h)] p(y;F ∗) ≥ 1

2
p(y;F ∗),

whenever θ + c(h) ≤ 1
2
, which is true since both θ and c(h) are arbitrarily small.

Therefore, since 0 < p(y;F ) < 1 for all F

∣
∣[p(y;F )− p(y;F ∗)] ln p(y;Fθ+c(h))

∣
∣ ≤ −

(
p(y;F ) + p(y;F ∗)

)
ln

[
1

2
p(y;F ∗)

]

.

Since hY (F ) = −
∫
p(y;F ) ln p(y;F )dy is finite for all F in PA [115, Theorem

2], −p(y;F ∗) ln p(y;F ∗) is integrable. It remains to prove that−p(y;F ) ln p(y;F ∗)

is integrable to justify (C.2) and hence (C.3). To this end, we will proceed by
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choosing first a specific F (·), namely

Fs(x) =

(

1− Bs

C(xs)

)

u(x)1 +
Bs

C(xs)
u(x− xs),

for some xs > 0 such that C(xs) > 0 and where (0 <)Bs < min {A; C (xs)}. We

note that Fs ∈ PA since C(0) = 0 and hence
∫
C(|x|)dFs = Bs ≤ A. If Fs were

the input distribution, it would induce the following output

p(y;Fs) =

(

1− Bs

C(xs)

)

pN(y) +
Bs

C(xs)
pN(y − f(xs)). (C.4)

Equation (C.4) along with Lemma 2 and properties C7 and C8 (see Chapter 3)

show that −p(y;Fs) ln p(y;F ∗) is integrable and (C.3) is justified for F ≡ Fs.

Hence,

I ′(F ∗, Fs)

= lim
θ→0+

−
[∫

p(y;F ∗
θ ) ln p(y;F

∗
θ ) dy

]′

= lim
θ→0+

∫

[p(y;Fs)− p(y;F ∗)] ln p(y;F ∗
θ ) dy =

∫

t(f(x))dFs(x) − hY (F
∗).

where the interchange between the limit and integral sign is justified in an iden-

tical fashion as done to validate (C.3).

Now, since F ∗ is optimal, necessarily I ′(F ∗, Fs) ≤ 0 (see Appendix C in [49]),

which implies that
∫

t(f(x)) dFs(x) ≤ hY (F
∗).

1where u(x) denotes the Heaviside unit step function.
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Plugging in the expression of Fs(x) yields,

(

1− Bs

C(xs)

)

t(f(0)) +
Bs

C(xs)
t(f(xs)) ≤ hY (F

∗)

⇔ t(f(xs)) ≤
hY (F

∗)− t(f(0))

Bs
C(xs) + t(f(0)). (C.5)

The above equation is valid for any xs > 0 (such that C(xs) > 0) and therefore

for all |x| ≥ xs since C(|x|) is non-decreasing in |x|. we proceed by writing

∫

t(f(x)) dF =

∫

|x|≤xs
t (f(x)) dF +

∫

|x|>xs
t(f(x)) dF.

As for the first integral term, we have:

∫

|x|≤xs
t (f(x)) dF

= −
∫

|x|≤xs

∫

pN (y − f(x)) ln p(y;F ∗) dy dF

= −
∫

|x|≤xs

∫

|y|≥y0
pN(y − f(x)) ln p(y;F ∗) dy dF

−
∫

|x|≤xs

∫

|y|≤y0
pN(y − f(x)) ln p(y;F ∗) dy dF (C.6)

Using Lemma 2 and property C7 defined in Chapter 3, the first term of equa-

tion (C.6) is finite. As for the second term, it is finite by the fact that p(y;F ∗) is

positive and continuous hence achieves a positive minimum on compact subsets

of R. When it comes to the range |x| > xs, we use the upperbound in (C.5)

which gives:

∫

|x|>xs
t(f(x)) dF ≤

∫

|x|>xs

(
hY (F

∗)− t(f(0))

Bu
C(|x|) + t(f(0))

)

dF

≤ hY (F
∗)− t(f(0))

Bu
A+ t(f(0)),

which is finite.
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In conclusion,

−
∫

p(y;F ) ln p(y;F ∗) dy =

∫

t(f(x)) dF <∞,

and I ′(F ∗, F ) =
∫
t(f(x)) dF − hY (F

∗), ∀F ∈ PA.

Cost

The mapping from F to R:

T (F ) =

∫

C (|x|) dF −A

is weakly differentiable on PA as well. In fact,

T ′(F ∗, F ) = T (F )− T (F ∗),

which is finite, since −A < T (F ) ≤ 0 for all F ∈ PA.
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Appendix D

Rate of Decay of alpha-stable

density functions on the

Horizontal Strip

We study in this appendix the rate of decay of alpha-stable distributions S(α, β, γ, δ)

on the horizontal strip Sη = {z ∈ C : |ℑ(z)| < η} where η is a small-enough pos-

itive number. The study is limited to the case: α ∈ [1, 2), β ∈] − 1, 1[, γ ∈ R+∗

and δ ∈ R. We prove the following:

Theorem (Rate of Decay of Alpha-Stable PDFs on the Horizontal Strip). Let

N ∼ S(α, β, γ, δ), α ∈ [1, 2), β ∈] − 1, 1[ and denote by pN(x) its PDF. Let

pN(z) be the analytical extension of pN(x) to Sη. Then |pN(z)| = O
(

1
|ℜ(z)|α+1

)

,

for z ∈ Sη as |ℜ(z)| → ∞.

Before we proceed, we first prove the following Lemma:

Lemma 10 (Extension to the Horizontal Strip). Whenever N ∼ S(α, β, γ, δ),

where α ∈ [1, 2), β ∈]− 1, 1[, γ ∈ R+∗ and δ ∈ R, pN(·) can be formally extended

on Sη = {z ∈ C : |ℑ(z)| < η} as

pN(z) =
1

2π

∫

R

e−iztφ(t)dt. (D.1)
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Proof. By definition,

pN(x) =
1

2π

∫ ∞

−∞
e−ixtφ(t)dt,

where

φ(t) = exp [iδt− γα [1− iβ sgn(t)Φ(t)] |t|α]

Φ(t) =







tan
(πα

2

)

α 6= 1

−2

π
ln |t| α = 1.

Let pN(z) be the extension of pN(x) on C. It is known that pN (z) is analytic

on Sη (see [16] for example) . Now, define

q(z) =
1

2π

∫ ∞

−∞
e−iztφ(t)dt,

for all z = (x + iy) ∈ C. If we establish that q(z) is analytic on Sη then by the

identity theorem, pN(z) = q(z), for all z ∈ Sη. We start by proving the continuity

of q(z):

lim
z→z0

q(z) = lim
z→z0

1

2π

∫ ∞

−∞
e−iztφ(t)dt

=
1

2π

∫

lim
z→z0

e−iztφ(t)dt (D.2)

=
1

2π

∫

e−iz0tφ(t)dt = q(z0).

where the interchange in (D.2) is justified by DCT since:

∣
∣e−iztφ(t)

∣
∣ ≤ eyt−|γt|α ,

which is integrable on Sη since η is small-enough and chosen so that |y| < η ≤ γα.

Now, let ∆ ⊂ Sη be a compact triangle and denote by ∂∆ its boundary and |∆|
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its perimeter. We obtain

∫

∂∆

q(z)dz =
1

2π

∫

∂∆

∫

R

e−iztφ(t) dt dz

=
1

2π

∫

R

∫

∂∆

e−iztφ(t) dz dt (D.3)

=

∫

R

φ(t)

∫

∂∆

e−iztdz = 0,

where the last equation is due to the fact that e−izt is entire. The interchange

in (D.3) is valid by Fubini since

1

2π

∫

∂∆

∫

R

∣
∣e−iztφ(t)

∣
∣ dt dz ≤ 1

2π

∫

∂∆

∫

R

eyt−|γt|α dt dz <
|∆|
2π

∫

R

eyt−|γt|α | dt < ∞.

By applying Morera’s Theorem [87, sec. 53], q(z) is analytic on Sη and the

result is established.

Note that equation (D.1) shows that pN(z) = pN ′(z−δ) whereN ′ ∼ S(α, β, γ, 0).

Therefore, and without loss of generality, we restrict our analysis in the remainder

of this section to pN(z), for N ∼ S(α, β, γ, 0).

For z = (x+ iy),

pN(z) =
1

2π

∫ ∞

−∞
e−izt−γ

α(1−iβ sgn(t)Φ)|t|αdt =
1

2π

∫ ∞

−∞
e−ixt+yt−γ

α[1−iβ sgn(t)Φ(t)]|t|αdt

=
1

2π

∫ ∞

−∞
e−ixt−γ

α[1−iβ sgn(t)Φ(t)]|t|α
∞∑

n=0

yn

n!
tn dt

=
1

2π

∞∑

n=0

yn

n!

∫ ∞

−∞
tne−ixt−γ

α[1−iβ sgn(t)Φ(t)]|t|α dt. (D.4)

The interchange in (D.4) is justified by DCT. Indeed,

∣
∣
∣
∣
∣

N∑

n=0

yn

n!
tne−ixt−γ

α[1−iβ sgn(t)Φ(t)]|t|α
∣
∣
∣
∣
∣
≤

∞∑

n=0

|y|n
n!

|t|ne−|γt|α = e|y||t|−|γt|α,

which is integrable for |y| < η (≤ γα) and α ≥ 1. Now we proceed to studying
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the rate of decay in two separate cases.

D.1 Rate of Decay for 1 < α < 2:

In this case Φ(t) is a constant and it is equal to Φ(t) = Φ = tan
(
πα
2

)
. Then,

using equation (D.4), we obtain by the change of variable u = γt

pN (z) =
1

2πγ

∞∑

n=0

1

n!

(
y

γ

)n ∫ ∞

−∞
tne−i

x
γ
t−[1−iβ sgn(t)Φ]|t|α dt

=
1

2πγ

∞∑

n=0

1

n!

(
y

γ

)n

Tn

(

−x
γ
; β

)

, (D.5)

where Tn(x; β) is a function defined as Tn(x; β) =̂

∫ ∞

−∞
tneixt−[1−iβ sgn(t)Φ]|t|αdt.1

Define k1 = (1 − iβΦ) and denote by k1 = (1 + iβΦ) its conjugate. In what

follows, we study the behavior of the function Tn(x; β).

1Note that Tn(−x;β) = (−1)nTn(x;−β) and that p
(n)
N (x) = 1

2π
(−i)n

γn+1 Tn(−x
γ
;β) =

1
2π

in

γn+1 Tn(
x
γ
;−β), n ∈ N∗.
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For n ≥ 1 and x > 0, we have

xn+α+1Tn(x; β)

= xn+α
[∫ ∞

0

xtneixt−k1t
α

dt+ (−1)n
∫ ∞

0

xtne−ixt−k1t
α

dt

]

= −i xn+α
[∫ ∞

0

tn
(
eixt−k1t

α)′

dt+ k1 α

∫ ∞

0

tn+α−1eixt−k1t
α

dt

+ (−1)n−1

∫ ∞

0

tn
(

e−ixt−k1t
α
)′

dt+ (−1)n−1k1 α

∫ ∞

0

tn+α−1e−ixt−k1t
α

dt

]

= inxn+α
[∫ ∞

0

tn−1eixt−k1t
α

dt+ (−1)n−1

∫ ∞

0

tn−1e−ixt−k1t
α

dt

]

− iαxn+α
[

k1

∫ ∞

0

tn+α−1eixt−k1t
α

dt+ (−1)n−1k1

∫ ∞

0

tn+α−1e−ixt−k1t
α

dt

]

(D.6)

= i n xn+αTn−1(x; β)− iα

[

k1Sn(x; k1) + (−1)n−1k1Sn(x; k1)

]

, (D.7)

where equation (D.6) is obtained by integration by parts and regrouping, and

where Sn(·; ·) is the complex conjugate of Sn(·; ·) defined as,

Sn(x; k1) = xn+α
∫ ∞

0

tn+α−1eixt−k1t
α

dt = c

∫ ∞

0

eiv
c−k1ζvαc

dv,

where c = 1
n+α

(> 0), ζ = x−α (> 0) and the change of variable is v = (xt)n+α.

As x→ ∞, ζ → 0+ and hence

lim
x→+∞

Sn(x; k1) = c lim
ζ→0+

∫ ∞

0

eiv
c−k1ζvαc

dv = c lim
ζ→0+

∫ ∞

0

lim
θ→0

eiv
ceicθ−k1ζvαceiαcθ+iθ dv

= c lim
ζ→0+

lim
θ→0

∫ ∞

0

eiv
ceicθ−k1ζvαceiαcθ+iθ dv (D.8)

= c lim
θ→0

lim
ζ→0+

∫ ∞

0

eiv
ceicθ−k1ζvαceiαcθ+iθ dv (D.9)

= c lim
θ→0

∫ ∞

0

eiv
ceicθ+iθ dv (D.10)

= c lim
θ→0

lim
R→∞,ρ→0

∫

L1

eiz
c

dz,
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where z = veiθ and L1 = {z ∈ C : z = veiθ, 0 < ρ ≤ v ≤ R}. Equation (D.8) is

justified by DCT since:

∣
∣
∣eiv

ceicθ−k1ζvαceiαcθ+iθ
∣
∣
∣ ≤ e−v

c sin(cθ)−ζvαc[cos(αcθ)+βΦ sin(αcθ)] ≤ e−
ζ
2
vαc

,

for small-enough θ, and the upper-bound is integrable since c and ζ are posi-

tive. The last inequality is justified by virtue of the fact that sin(cθ) > 0 and
[
cos(αcθ) + β tan απ

2
sin(αcθ)

]
> 1

2
for small positive θ. Similarly, (D.10) is jus-

tified because the integrand in (D.9) is O(e−v
c sin cθ) as ζ → 0+ which is also

integrable. The interchange between the two limits in (D.9) is valid by the pre-

ceding argument as long as the result in (D.10) is finite. To evaluate the limit

of
∫

L1
eiz

c

dz as R → ∞, ρ → 0, we use contour integration over C shown in

Figure D-1.

✲

✻

✶

✮

L1

L2
C1

C2

Figure D-1: The contour C.

The arcs C1 and C2 are of radius R, and ρ respectively and are between

angles θ and ϕ
△
= π

2c
mod 2π. Note that since we are interested in the limit as θ

goes to zero, we can always choose it small enough in order to have the contour

counter-clockwise. Finally, L2 is a line connecting the extremities of the arcs.

Now since f(z) = eiz
c

is analytic on and inside C (by choosing an appropriate

branch cut in the plane), by Cauchy’s Theorem [116, p.111 Sec.2.2],

0 =

∮

C
f(z) dz =

∫

L1

f(z) +

∫

C1

f(z) +

∫

L2

f(z) +

∫

C2

f(z).
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On C1, we have:

lim
R→∞

∣
∣
∣
∣

∫

C1

f(z)dz

∣
∣
∣
∣
= lim

R→∞

∣
∣
∣
∣

∫ ϕ

θ

iReiφeiR
ceicφ dφ

∣
∣
∣
∣

≤ lim
R→∞

∫ ϕ

θ

Re−R
c sin(cφ)dφ =

∫ ϕ

θ

lim
R→∞

Re−R
c sin(cφ)dφ = 0,

where the interchange is valid because Re−R
c sin(cφ) is decreasing as 0 < cθ ≤ cφ ≤

π
2
. Similarly, on C2,

lim
ρ→0

∣
∣
∣
∣

∫

C2

f(z)dz

∣
∣
∣
∣
= lim

ρ→0

∣
∣
∣
∣

∫ ϕ

θ

iρeiφeiρ
ceicφ dφ

∣
∣
∣
∣

≤ lim
ρ→0

∫ ϕ

θ

ρe−ρ
c sin(cφ)dφ =

∫ ϕ

θ

lim
ρ→0

ρe−ρ
c sin(cφ)dφ = 0,

where we justify the interchange by virtue of the fact that ρe−ρ
c sin(cφ) is bounded

for small values of ρ. It remains to evaluate the integral on L2 where z = tei
π
2c ,

lim
R→∞,ρ→0

∫

L2

f(z)dz = −
∫ ∞

0

ei
π
2c eit

cei
π
2 dt = −ei π

2c

∫ ∞

0

e−t
c

dt = −ei π
2c
1

c
Γ

(
1

c

)

.

In conclusion,

lim
R→∞,ρ→0

∫

L1

f(z) dz = ei
π
2c
1

c
Γ

(
1

c

)

,

which implies that

lim
x→+∞

Sn(x; k1) = ei
π
2
(n+α)Γ(n+ α),

and by (D.7), we can write for n ≥ 1

lim
x→+∞

[
xn+α+1Tn(x; β)− i nxn+αTn−1(x; β)

]

= Wn(β) =̂ − iαΓ(n + α)

[

k1e
iπ
2
(n+α) + (−1)n−1k1e

−iπ
2
(n+α)

]

,

which implies that Un(β) =̂ lim
x→+∞

xn+α+1Tn(x; β) is a well defined quantity be-
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cause

U0(β) = lim
x→+∞

[
xα+1T0(x; β)

]
= 2πγ lim

x→+∞

[
xα+1pN(−γx)

]
,

exists –and is non zero for β 6= 1 and U0(1) = 0, and

Un(β) = inUn−1(β) +Wn(β) = n!

[

in U0(β) +

n−1∑

k=0

ik

(n− k)!
Wn−k(β)

]

.

Furthermore, for n ≥ 0,

|Un(β)| ≤ n!

[

|U0(β)|+
n−1∑

k=0

|Wn−k(β)|
(n− k)!

]

≤ n!

[

|U0(β)|+ 2α|k1|
n−1∑

k=0

Γ(n+ α− k)

(n− k)!

]

≤ n!

[

|U0(β)|+ 4|k1|
n−1∑

k=0

Γ(n + 2− k)

(n− k)!

]

(D.11)

= n!

[

|U0(β)|+ 4|k1|
n−1∑

k=0

(n+ 1− k)

]

= 2n!

(

|k1|n2 + 3|k1|n+
|U0(β)|

2

)

,

where equation (D.11) is justified using the fact that 0 < α < 2 and Γ(α + l) is

increasing in α > 0 for l ∈ N∗.
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Now using equation (D.5),

lim
x→∞

xα+1 |pN(z)| =
1

2πγ
lim
x→∞

xα+1

∣
∣
∣
∣
∣

∞∑

n=0

1

n!

(
y

γ

)n

Tn

(

−x
γ
; β

)
∣
∣
∣
∣
∣

=
1

2πγ

∣
∣
∣
∣
∣

∞∑

n=0

1

n!

(
y

γ

)n

lim
x→∞

xα+1Tn

(

−x
γ
; β

)∣∣
∣
∣
∣

(D.12)

≤ 1

2πγ

∞∑

n=0

1

n!

∣
∣
∣
∣

y

γ

∣
∣
∣
∣

n

lim
x→∞

xα+1

∣
∣
∣
∣
Tn

(
x

γ
;−β

)∣
∣
∣
∣

≤ 1

2πγ

∞∑

n=0

1

n!

∣
∣
∣
∣

y

γ

∣
∣
∣
∣

n

lim
x→∞

xn+α+1

∣
∣
∣
∣
Tn

(
x

γ
;−β

)∣
∣
∣
∣
=

1

2πγ

∞∑

n=0

1

n!

∣
∣
∣
∣

y

γ

∣
∣
∣
∣

n

γn+α+1 |Un(−β)|

≤ γα

π

∞∑

n=0

|y|n
(

|k1|n2 + 3|k1|n+
|U0(−β)|

2

)

,

which is finite because |y| < η which is small-enough (and assumed to be less than

one), and where we used the fact that f(x) = |x| is continuous. The interchange

in (D.12) is valid because the end result is finite.

In conclusion, lim
x→+∞

xα+1 |pN(z)| <∞ which concludes our proof.

D.2 Rate of Decay for α = 1:

In this case, Φ(t) = − 2
π
log |t| is a function of t. According to equation (D.4) and

for z = x+ iy,

pN (z) =
1

2π

∞∑

n=0

yn

n!

∫ ∞

−∞
tne−ixt−γ

[
1−iβ sgn(t)Φ(t)

]
|t| dt. (D.13)

Once more, we study the behavior of the integral

In(x) =

∫ ∞

−∞
tne−ixt−γ(1−iβ sgn(t)Φ(t))|t| dt (D.14)

as x → ∞ for n ≥ 0. We note that I0(x) = 2πpN(x; 1, β, γ, 0) which is Θ
(

1
x2

)
.
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For n ≥ 1,

In(x)

=

∫ +∞

−∞
tne−ixt−γ(1−iβ sgn(t)Φ(t))|t| dt

=

∫ +∞

0

tne−ixt−γ(1+i
2
π
β log(t))t dt+

∫ 0

−∞
tne−ixt−γ(1−i

2
π
β log(−t))(−t) dt

=

∫ +∞

0

e−ixt tne−γ(1+i
2
π
β log(t))t dt+ (−1)n

∫ +∞

0

eixt tne−γ(1−i
2
π
β log(t))t dt

=

[

− 1

ix
e−ixt tne−γ(1+i

2
π
β log(t))t

]+∞

0

+ (−1)n
[
1

ix
eixt tne−γ(1−i

2
π
β log(t))t

]+∞

0

+
1

ix

∫ +∞

0

e−ixt
[
ntn−1 − γtn − i

2

π
βγtn − i

2

π
βγtn log(t)

]
e−γ(1+i

2
π
β log(t))t dt

+
(−1)n+1

ix

∫ +∞

0

eixt
[
ntn−1 − γtn + i

2

π
βγtn + i

2

π
βγtn log(t)

]
e−γ(1−i

2
π
β log(t))t dt

(D.15)

=
1

ix

∫ +∞

0

e−ixt
[
ntn−1 − γtn − i

2

π
βγtn − i

2

π
βγtn log(t)

]
e−γ(1+i

2
π
β log(t))t dt

+
(−1)n+1

ix

∫ +∞

0

eixt
[
ntn−1 − γtn + i

2

π
βγtn + i

2

π
βγtn log(t)

]
e−γ(1−i

2
π
β log(t))t dt

=

[
1

x2
e−ixt

[

ntn−1 − γtn − i
2

π
βγtn − i

2

π
βγtn log(t)

]

e−γ(1+i
2
π
β log(t))t

]+∞

0

− 1

x2

∫ +∞

0

e−ixtgn(t) dt

+ (−1)n+1

[

− 1

x2
eixt

[

ntn−1 − γtn + i
2

π
βγtn + i

2

π
βγtn log(t)

]

e−γ(1−i
2
π
β log(t))t

]+∞

0

+
(−1)n+1

x2

∫ +∞

0

eixthn(t) dt (D.16)

=
1

x2

(

(−1)n+1

∫ +∞

0

eixt hn(t) dt−
∫ +∞

0

e−ixtgn(t) dt

)

(D.17)

where equations (D.15) and (D.16) are due to integration by parts. The functions

gn(·) and hn(·), n ≥ 1 are defined on R+∗ and are given by:
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gn(t) =

[

n(n− 1)tn−2 − 2nγtn−1 + (γ2 − 4

π2
β2γ2 + i

4

π
βγ2)tn

+(− 8

π2
β2γ2 + i

4

π
βγ2)tn log(t)− i

2

π
(2n+ 1)βγtn−1

−i 4
π
nβγtn−1 log(t)− 4

π2
β2γ2tn log2(t)

]

e−γ(1+i
2
π
β log(t))t. (D.18)

The term n(n−1)tn−2 is equal to zero when n = 1 and hn(t) is deduced from gn(t)

by replacing β by −β. The functions gn(t), hn(t) are L1(R+) functions and hence

by Riemann-Lebesgue [117, p.3 sec.2 th.1] their L1(R+) Fourier transforms are

o(1). Therefore equation (D.17) is o( 1
x2
). Equivalently, In(x) = o( 1

x2
) as x → ∞

for all n ≥ 1. Now using equation (D.13) we obtain:

lim
x→∞

2πx2|pN(z)|

= lim
x→∞

∣
∣
∣
∣
∣

∞∑

n=0

yn

n!
x2In(x)

∣
∣
∣
∣
∣

= lim
x→∞

∣
∣
∣
∣
∣
2πx2pN(x) +

∞∑

n=1

yn

n!

(

(−1)n+1

∫ +∞

0

eixthn(t) dt−
∫ +∞

0

e−ixtgn(t) dt

)
∣
∣
∣
∣
∣

≤ lim
x→∞

2πx2pN(x) + lim
x→∞

∞∑

n=1

|y|n
n!

(∫ +∞

0

|hn(t)| dt+
∫ +∞

0

|gn(t)| dt
)

= lim
x→∞

2πx2pN(x) +

∞∑

n=1

|y|n
n!

∫ +∞

0

(|hn(t)|+ |gn(t)|) dt

= lim
x→∞

2πx2pN(x) +

∫ +∞

0

∞∑

n=1

|y|n
n!

(|hn(t)|+ |gn(t)|) dt (D.19)
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The interchange in (D.19) is valid since:

∞∑

n=1

|y|n
n!

(|hn(t)|+ |gn(t)|)

≤
∞∑

n=1

|y|n
n!

[
A1n(n− 1)tn−2 + A2t

n + A3t
n| log(t)|+ A4(2n+ 1)tn−1

+A5nt
n−1| log(t)|+ A6t

n log2(t)
]
e−γt

≤ e−γt
∞∑

n=1

|y|n
n!

[
A1n(n− 1)tn−2 + (A2 + A3| log(t)|+ A6 log

2(t))tn

+n(3A4 + A5| log(t)|)tn−1
]

(D.20)

≤ e−γt
[
A1y

2e|y|t + (A2 + A3| log(t)|+ A6 log
2(t))(e|y|t − 1) + |y|(3A4 + A5)e

|y|t]

≤ e−(γ−|y|)t [A2 + (3A4 + A5)|y|+ A1y
2 + A3| log(t)|+ A6 log

2(t)
]

which is integrable on [0,+∞[ since |y| < η (< γ). The Ais, 1 ≤ i ≤ 6 are

positive constants function of β, γ and can be derived from the expression of

gn(t) (equation D.18) and from that of hn(t) accordingly after taking the norm

of each term in those expressions. To write equation (D.20), we used the obvious

inequality 2n+ 1 ≤ 3n whenever n ≥ 1. Back to (D.19),

lim
x→∞

2πx2|pN(z)| ≤ lim
x→∞

2πx2pN(x) +

∫ +∞

0

∞∑

n=1

|y|n
n!

(|hn(t)|+ |gn(t)|) dt

≤ lim
x→∞

2πx2pN(x) +

∫ +∞

0

l(t) dt,

where l(t) = e−(γ−|y|)t [A2 + (3A4 + A5)|y|+ A1y
2 + A3| log(t)|+ A6 log

2(t)
]
.

Since limx→∞ 2πx2pN(x) and
∫ +∞
0

l(t) dt are both finite and non zero when |y| <
η (< γ), then 0 ≤ lim

x→∞
2πx2|pN(z)| < ∞ and |pN(z)| = O

(
1

|ℜ(z)|2

)

as ℜ(z) → ∞
whenever z ∈ Sη.
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D.3 Rate of Decay of the Derivative Functions

of Alpha-Stable PDFs

It is already know that alpha-stable PDFs are infinitely differentiable (Property 2

in Chapter 2) and that their tail behaviour is Θ
(

1
|x|α+1

)

whenever β 6= 1 (The-

orem 1 in Chapter 2). In what follows, we state a theorem concerning the tail

behaviour of the derivatives of any order of these density functions.

Theorem 29 (Rate of Decay of the Derivative Functions of Alpha-Stable PDFs).

Let N ∼ S(α, β, γ, δ), |β| 6= 1, be a non-totally skewed alpha-stable RV and let

pN(x) be its corresponding PDF. Denote by p
(n)
N (x) the n-th derivative of pN(x).

Then, for n ≥ 1

p
(n)
N (x) =







O

(
1

|x|n+α+1

)

α 6= 1

o

(
1

x2

)

α = 1, β 6= 0

Θ

(
1

|x|n+2

)

α = 1, β = 0

Proof. We assume WLOG that δ = 0 since this corresponds to a translation

of the PDF which does not affect the tail behaviour. The case α = 1, β = 0

corresponds to the Cauchy density function and the result is straight-forward. In

general, the derivative p
(n)
N (x), n ≥ 1 is given by:

p
(n)
N (x) =

(−i)n
2π

∫ +∞

−∞
tne−ixt−γ

α[1−iβ sgn(t)Φ(t)]|t|α dt. (D.21)

It has been previously seen that equation (D.21) is identical to the function

1
γn+1Tn

(

−x
γ
; β
)

when α 6= 1 (see footnote in Section D.1) and to the function

In(x) when α = 1 (see equation (D.14) in Section D.2). The tail behaviours

of Tn (x; β) and In(x) established respectively in Section D.1 and D.2 yields the
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result of the theorem. We note that though the study in Section D.1 was re-

stricted to the range 1 < α < 2, the adopted methodology to characterize the

tail behaviour of Tn (x; β) holds true for any α 6= 1.
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Appendix E

Evaluation of the function f (x; ξ)

We prove in this Appendix that for all ξ ∈ R+∗, x ∈ R,

f(x; ξ) =
ξ

π

∫ ∞

−∞
ln(1 + u2)

1

1 + (ξu− x)2
du = ln

([
ξ + 1

ξ

]2

+

[
x

ξ

]2
)

.

Proof. First, we consider the special case x = 0, ξ = 1 for which f(0; 1) =

1
π

∫∞
−∞ ln(1 + u2) 1

1+u2
du = ln 4 [90] and the above assertion is true. Whenever

ξ 6= 1, taking the partial derivative of f(x; ξ) with respect to x and integrating

by parts yields,

∂f

∂x
(x; ξ) =

∂

∂x

[
ξ

π

∫ ∞

−∞
ln(1 + u2)

1

1 + (ξu− x)2
du

]

=
ξ

π

∫ ∞

−∞
ln(1 + u2)

∂

∂x

[
1

1 + (ξu− x)2

]

du (E.1)

= −1

π

∫ ∞

−∞
ln(1 + u2)

∂

∂u

[
1

1 + (ξu− x)2

]

du

= −1

π

[

ln(1 + u2)
1

1 + (ξu− x)2

]+∞

−∞
+

1

π

∫ ∞

−∞

2u

1 + u2
1

1 + (ξu− x)2
du

=
1

π

∫ ∞

−∞

2u

1 + u2
1

1 + (ξu− x)2
du (E.2)

=
1

π

∫ ∞

−∞

[
C1u+ C2

1 + u2
+

C3u+ C4

1 + (ξu− x)2

]

du,
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where

C1 =
2(1 + x2 − ξ2)

(x2 + (ξ − 1)2) (x2 + (ξ + 1)2)

C2 =
−4xξ

(x2 + (ξ − 1)2) (x2 + (ξ + 1)2)

C3 = −ξ2C1 C4 = −(x2 + 1)C2.

The interchange in (E.1) is justified by the fact that
∫∞
−∞ ln(1+u2) ∂

∂x

[
1

1+(ξu−x)2
]

du

is absolutely convergent.

We note that whenever for a real integrable function r(·) the integral
∫∞
−∞ r(x) dx

exists, then
∫∞
−∞ r(x) dx = liml→∞

∫ l

−l r(x) dx. In what follows we will implicitly

assume the preceding equality in our evaluations whenever the case. For instance,

it is the case for ∂f
∂x
(x; ξ) since the integral exists for all ξ 6= 1, x ∈ R as seen

in (E.2). Hence,

∂f

∂x
(x; ξ) =

1

π

[
C1

2
ln(1 + u2) +

C3

2ξ2
ln
(
1 + (ξu− x)2

)

+ C2 arctanu+

(
x

ξ2
C3 +

1

ξ
C4

)

arctan(ξu− x)

]+∞

−∞

= C2 − xC1 +
1

ξ
C4 =

2x

x2 + (ξ + 1)2
.

⇔ f(x; ξ) = ln
(
x2 + (ξ + 1)2

)
+ β(ξ). (E.3)
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Now taking the partial derivative with respect to ξ:

∂f

∂ξ
(x; ξ) =

∂

∂ξ

[
ξ

π

∫ ∞

−∞

1

1 + (ξu− x)2
ln(1 + u2) du

]

=
1

ξ
f(x; ξ) +

ξ

π

∫ ∞

−∞
ln(1 + u2)

∂

∂ξ

[
1

1 + (ξu− x)2

]

du

=
1

ξ
f(x; ξ) +

1

π

∫ ∞

−∞
u ln(1 + u2)

∂

∂u

[
1

1 + (ξu− x)2

]

du

=
1

ξ
f(x; ξ) +

1

π

[

u ln(1 + u2)
1

1 + (ξu− x)2

]+∞

−∞

− 1

π

∫ ∞

−∞

[

ln(1 + u2) +
2u2

1 + u2

]
1

1 + (ξu− x)2
du

= −1

π

∫ ∞

−∞

2u2

1 + u2
1

1 + (ξu− x)2
du

= −1

π

∫ ∞

−∞

[
C5u+ C6

1 + u2
+

C7u+ C8

1 + (ξu− x)2

]

du,

where

C5 =
−4xξ

(x2 + (ξ − 1)2) (x2 + (ξ + 1)2)

C6 =
−2(1 + x2 − ξ2)

(x2 + (ξ − 1)2) (x2 + (ξ + 1)2)

C7 = −ξ2C5 C8 = −(x2 + 1)C6,

which yields

∂f

∂ξ
(x; ξ) = −1

π

[
C5

2
ln(1 + u2) + C6 arctan u

+

[
xC7

ξ2
+
C8

ξ

]

arctan(ξu− x) +
C7

2ξ2
ln
[
1 + (ξu− x)2

]
]+∞

−∞

= −
(

C6 − xC5 +
1

ξ
C8

)

=
−2(x2 + 1)2 + 2(x2 + 1)ξ + 2(1− x2)ξ2 − 2ξ3

ξ (x2 + (ξ − 1)2) (x2 + (ξ + 1)2)
. (E.4)
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On the other hand, using (E.3) we obtain

∂f

∂ξ
(x; ξ) =

2(ξ + 1)

x2 + (ξ + 1)2
+ β

′
(ξ),

which yields along with (E.4)

β
′
(ξ) = −2

ξ
=⇒ β(ξ) = −2 ln ξ + C9

=⇒f(x; ξ) = ln

([
ξ + 1

ξ

]2

+

[
x

ξ

]2
)

+ C9, (E.5)

which is valid ∀ x ∈ R, ξ ∈ R+∗ \ {1}. In order to find the constant term C9, we

restate (4.20)

f(x; ξ) = EN

[

ln

(

1 +

[
x+N

ξ

]2
)]

.

Since f(x; ξ) is continuous in ξ = 1 by virtue of MCT, by taking the limit as

ξ → 1, equation (E.5) gives,

f(0; 1) = lim
x→1

ln

([
ξ + 1

ξ

]2

+

[
x

ξ

]2
)

+ C9 = ln 4 + C9.

Finally, since f(0; 1) = EN [ln (1 +N2)] = ln 4, equating the two equations gives

C9 = 0.
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Appendix F

Sufficient Conditions for

Existence of Jα(X + α
√
ηN )

In his technical report [98, sec. 6], Barron states that the de Bruijn’s identity

for Gaussian perturbations (equation (5.4)) holds for any RV having a finite

variance. In this appendix, we follow Barron’s steps as we prove the existence of

Jα
(
X + α

√
ηN
)
, η > 0 for any RV X ∈ L where

L =

{

RVs U :

∫

ln (1 + |U |) dFU(u) is finite
}

,

and where N ∼ S(α; 1) is independent of X , 0 < α < 2. According to the

definition, Jα(X + α
√
ηN) is the derivative of the entropy with respect to the

dispersion η of the added stable variable. Therefore, the problem boils down to

proving differentiability of h(X + α
√
ηN).

First let qη(y) = E [pη(y −X)] be the PDF of Y = X + α
√
ηN where pη(·) is

the density of the alpha-stable variable with dispersion η. Note that since pη(·)
is bounded then so is qη(·) and since X ∈ L then so is Y . Then h(Y ) is finite

and is defined as

h(Y ) = −
∫

qη(y) ln qη(y) dy.
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We list and prove next two technical lemmas.

Lemma 11 (Technical Result).

d

dη
qη(y) = E

[
d

dη
pη(y −X)

]

Lemma 12 (Existence of the Generalized Fisher Information).

d

dη
h(X + α

√
ηN) = −

∫
d

dη
(qη(y)) ln qη(y) dy

exists and is finite. Also,

Jα(X + α
√
ηN) = −

∫
d

dη
(qη(y)) ln qη(y) dy.

Proof. We start by proving lemma 11. The interchange holds whenever | d
dη
pη(t)|

is bounded uniformly by an integrable function in a neighbourhood of η by virtue

of the MVT and the Lebesgue DCT. To prove boundedness, we start by evaluating

the derivative. Since

pη(t) =
1
α
√
η
pN

(
t

α
√
η

)

,

then
d

dη
pη(t) = − 1

α

1

η1+
1
α

pN

(
t

α
√
η

)

− 1

α

t

η1+
2
α

dpN
dη

(
t

α
√
η

)

,

which gives

∣
∣
∣
∣

dpη
dη

(t)

∣
∣
∣
∣
≤ 1

α

1

η1+
1
α

pN

(
t

α
√
η

)

+
1

α

|t|
η1+

2
α

∣
∣
∣
∣

dpN
du

∣
∣
∣
∣
u= t

α√η

. (F.1)

For the purpose of finding the uniform bound on the derivative, we define b as

a positive number chosen such that b < η < 2b. Concerning the first term of

the bound in (F.1), we consider two separate ranges of the variable t to find the
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uniform upperbound . On compact sets, we have

1

α

1

η1+
1
α

pN

(
t

α
√
η

)

≤ 1

α

1

b1+
1
α

max
u∈R

pN(u) (F.2)

where the maximum exists since alpha-stable variables are unimodal [71] and

thus their PDF is upperbounded. As for large values of |t|, we use the fact that

there exists some k > 0 such that pN(t) ≤ k 1
|t|1+α [71] which gives

1

α

1

η1+
1
α

pN

(
t

α
√
η

)

≤ k

α

1

|t|1+α , (F.3)

an integrable upperbound independent of η. Equations (F.2) and (F.3) insures

that the first term of the right-hand side (RHS) of equation (F.1) is uniformly

upperbounded by an integrable function for b < η < 2b. When it comes to the

second term of the RHS of (F.1), we have for n ≥ 0 (see [15, p.183])

dnpN
dun

(u) =
(−i)n
2π

∫

ωnφN(ω)e
−iωu dω, (F.4)

and
∣
∣
∣
∣

dnpN
dun

(u)

∣
∣
∣
∣
≤ 1

πα
Γ

(
n + 1

α

)

(F.5)

where φN(ω) = e−|ω|α is the characteristic function of S(α; 1). Hence, on compact

sets, equation (F.5) gives a uniform integrable upperbound on the second term

of the RHS of the form

1

α

|t|
η1+

2
α

∣
∣
∣
∣

dpN
du

∣
∣
∣
∣
u= t

α√η

≤ 1

πα2

|t|
b1+

2
α

Γ

(
2

α

)

, (F.6)

which is integrable and independent of η. Therefore, we only consider next the

integral term in equation (F.4) at large values of u. To this end, we make use of

the results proven in Appendix D. It was shown in this appendix (Section D.3

Theorem 29) that dnpU
dun

(u) = O
(

1
|u|n+α+1

)

when α 6= 1, |β| 6= 1. When α = 1,
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the symmetric alpha-stabled variable is Cauchy distributed and it is clear that

dnpU
dun

(u) = Θ
(

1
|u|n+2

)

. Since N ∼ S(α, 1), then for 0 < α < 2

∣
∣
∣
∣

dnpN
dun

(u)

∣
∣
∣
∣
=

1

2π
|Tn(−u; 0)| ≤

κn
|u|n+α+1

and
1

α

|t|
η1+

2
α

∣
∣
∣
∣

dpN
du

∣
∣
∣
∣
u= t

α√η

≤ 1

α

κ1
|t|1+α (F.7)

is uniformly bounded at large values of |t| by an integrable function. Equa-

tions (F.6) and (F.7) imply that the second term in the RHS of equation (F.1) is

uniformly upperbounded by an integrable function for b < η < 2b. This proves

Lemma 11.

When it comes to Lemma 12, we have the following:

d

dη
h(Y ) = −

∫
d

dη
(qη(y) ln qη(y)) dy (F.8)

= −
∫
dqη
dη

(y) ln qη(y) dy −
∫

dqη
dη

(y) dy

= −
∫
dqη
dη

(y) ln qη(y) dy −
d

dη

∫

qη(y) dy (F.9)

= −
∫
dqη
dη

(y) ln qη(y) dy. (F.10)

Equation (F.10) is true since qη(y) is a PDF and integrates to 1. Next, we start

by justifying equation (F.9). In fact,

∣
∣
∣
∣

dqη
dη

(y)

∣
∣
∣
∣

=

∣
∣
∣
∣
E

[
dpη
dη

(y −X)

]∣
∣
∣
∣

≤ E

∣
∣
∣
∣

dpη
dη

(y −X)

∣
∣
∣
∣

≤ rb(y),

where the first equation is due to Lemma 11 and the second is justified by the fact

that the absolute value function is convex. When it comes to the last equation,
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it has been shown in the proof of Lemma 11 that
∣
∣
∣
dpη
dη

(t)
∣
∣
∣ is uniformly upper-

bounded in a neighbourhood of η by an integrable function sb(t). Note that the

upperbound can be written as follows by virtue of equations (F.1), (F.2), (F.3),

(F.6) and (F.7):

sb(t) =







A(b) +B(b)|t| |t| ≤ t0

C pN(t) |t| ≥ t0,
(F.11)

where A(b), B(b), C and t0 are some positive values chosen in order to write the

bound. Then

E

∣
∣
∣
∣

dpη
dη

(y −X)

∣
∣
∣
∣
≤ E |sb(y −X)| = rb(y),

which is integrable since sb(t) is integrable and by using Fubini’s theorem. This

completes the justification of equation (F.9). As for equation (F.8), instead of

finding a uniform integrable upperbound to d
dη

(qη(y) ln qη(y)), an equivalent task

is to find such one to dqη(y)

dη
ln qη(y) which we show next. Since pN(t) = Θ

(
1

|t|α+1

)

(see for example [71]), there exist positive T and K such that pN(t) is greater

than K 1
|t|α+1 for some K whenever |t| ≥ T . Now let y > 0 be any scalar is large

enough and define ỹ > 0 such that Pr(|X| ≤ ỹ) ≥ 1
2
. Then

qη(y) =
1
α
√
η

∫

pN

(
y − u

α
√
η

)

dFX(u)

≥ 1
α
√
η

+ỹ∫

−ỹ

pN

(
y − u

α
√
η

)

dFX(u)

≥ 1

2 α
√
η
pN

(
y + ỹ

α
√
η

)

≥ 1

2 α
√
2b
pN

(
y + ỹ

α
√
b

)

≥ bK

2 α
√
2|y + ỹ|α+1

≥ bK̃

|y|α+1
,

where b < η < 2b and K̃ is some positive constant. A similar derivation may
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be carried for the case y ≤ −T large enough. Now, since at large values of |y|,
qη(y) ≤ 1, then | ln qη(y)| ≤ ln

(
|y|α+1

bK̃

)

. Furthermore since qη(y) is continuous

and positive, then it achieves a positive minimum on compact subsets of R. Let

y0 > 0 be large enough, then on |y| ≤ y0, we have

∣
∣
∣
∣

dqη(y)

dη
ln qη(y)

∣
∣
∣
∣
≤ max

y∈R
rb(y)

∣
∣
∣
∣
ln min

|y|≤y0
qη(y)

∣
∣
∣
∣

(F.12)

≤ max
y∈R

sb(y)

∣
∣
∣
∣
ln min

|y|≤y0
pη(y)

∣
∣
∣
∣

(F.13)

≤ max
y∈R

sb(y)

∣
∣
∣
∣
ln

1
α
√
η
pN

(
y1
α
√
η

)∣
∣
∣
∣

≤ max
y∈R

sb(y)

∣
∣
∣
∣
ln

1
α
√
2b
pN

(
y1
α
√
b

)∣
∣
∣
∣
<∞

which is independent of η. We choose y0 large enough in order to guarantee

that min|y|≤y0 qη(y) ≤ 1 and that max|y|≤y0 |ln qη(y)| ≤
∣
∣lnmin|y|≤y0 qη(y)

∣
∣. This

justifies equations (F.12). The same reasoning applies to the justification of

equation (F.13) by virtue of the fact that min|y|≤y0 pη(y) ≤ min|y|≤y0 qη(y) since

qη(y) = E [pη(y −X)]. Now for |y| > y0, we have

∣
∣
∣
∣

dqη(y)

dη
ln qη(y)

∣
∣
∣
∣
≤ rb(y)

(

ln
|y|α+1

bK̃

)
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which is a uniform integrable upperbound. The integrability is justified since:

∫

ln (1 + |y|) rb(y) dy (F.14)

=

∫ ∫

ln (1 + |y|) sb(y − x) dFX(x) dy

=

∫ ∫

ln (1 + |y|) sb(y − x) dy dFX(x) (F.15)

≤
∫ ∫

(ln(1 + |x|) + ln(1 + |y|)) sb(y) dy dFX(x)

= Sb

∫

ln(1 + |x|)dFX(x) + Lb

<∞, (F.16)

where

Sb =

∫

sb(y) dy <∞,

and

Lb =

∫

ln(1 + |y|)sb(y) dy <∞.

Note that Sb and Lb are finite by virtue of (F.11). Equation (F.15) is due to Fubini

and equation (F.16) is justified by the fact that X ∈ L. By this, equation (??)

is true and Lemma 12 is proven.
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Appendix G

Multivariate Alpha-Stable

Distributions, Riesz Potentials

and Hypergeometric Fucntions

G.1 Multivariate Alpha-Stable Distributions

Definition 8 (Sub-Gaussian SαS ). [18, p.78 Definition 2.5.1]

Let 0 < α < 2 and let A ∼ S
(
α
2
, 1,
(
cos
(
πα
4

)) 2
α , 0

)

be a totally skewed

one sided alpha-stable distribution. Define G = (G1, · · · , Gd) be a zero mean

Gaussian vector in Rd. Then the random vector (A
1
2G1, · · · , A

1
2Gd) is called a

sub-Gaussian SαS random vector in Rd with underlying vector G. In particular,

each component A
1
2Gi, 1 ≤ i ≤ d is a symmetric alpha-stable variable with

characteristic exponent α.

Proposition 1. [18, p.79 Proposition 2.5.5]

Let N = (N1, · · · , Nd) be a sub-Gaussian SαS with an underlying Gaussian

vector having IID zero-mean components with variance 2γ2, γ > 0. Then,

φN(ω) = e−γ
α|ω|α. (G.1)
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The RVs Nis, 1 ≤ i ≤ d, are dependent and each distributed according to S(α, γ).

In this dissertation, we uniquely use stable vectors such as in Theorem 1, that

we refer to as sub-Gaussian SαS and will be denoted by S(α, γ). We note that

in the scalar case, S(α, γ) is identically distributed to S(α, γ).

G.2 Riesz Potentials

Definition 9 (Riesz Potentials). [101, p.117 Section 1] Let 0 < ν < 1. The

Riesz potential Iν(f)(x) for a sufficiently smooth f : Rd → R having a sufficient

decay at ∞ is given by:

Iν(f)(x) =
1

κ(ν)

∫

Rd

‖x− y‖−d+νf(y) dy, (G.2)

where κ(ν) = π
d
2 2ν

Γ( ν
2 )

Γ( d
2
− ν

2 )
.

Proposition 2. Among other properties, Iν(f) satisfies the following:

• F (Iν(f)) (ω) = ‖ω‖−νF(f(x))(ω) in the distributional sense.

• I0(f)(x) =̂ limν→0 Iν(f)(x) = f(x).

• Whenever
∫
|f |(x)Iν(|g|)(x) dx is finite, we have:

∫

f(x)Iν(g)(x) dx =

∫

Iν(f)(x)g(x) dx.

G.3 Hypergeometric Functions

We only consider in this appendix the Gauss hypergeometric function 2F1(a, b; c; z).
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Definition 10 (Gauss Hypergeometric Functions). The Gauss hypergeometric

function is defined as the following power series:

2F1(a, b; c; z) =
+∞∑

i=0

(a)i(b)i
(c)ii!

zi,

for |z| < 1 and generic parameters a,b,c. Outside of the unit circle |z| < 1, the

function is defined as the analytic continuation of this sum with respect to z,

with the parameters a, b and c held fixed. The notation (d)i is defined as:

(d)i =







1 i = 0

d(d+ 1) . . . (d+ i− 1) i > 0.

Proposition 3. The Gauss hypergeometric function 2F1(a, b; c; z) satisfies the

following property:

2F1(a, b; c; z) = (1− z)−a2 F1

(

a, c− b; c;
z

z − 1

)

,

for z /∈ (1,+∞).
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[133] D. Guo, S. Shamai, and S. Verdú, “Additive non-Gaussian noise channels:

mutual information and conditional mean estimation,” in IEEE Interna-

tional Symposium on Information Theory, (Adelaide, Australia), pp. 719–

723, 2005.

[134] D. W. Griffith, J. G. Gonzales, and G. R. Arce, “Robust time-frequency

representations for signals in alpha-stable noise,” Signal Processing, IEEE

Transactions on, vol. 44, pp. 2669–2687, Nov. 1996.

[135] A. I. Lapin, On some properties of stable laws. PhD thesis, Rutgers Uni-

versity, 1947.

[136] I. Kontoyiannis and M. Madiman, “Sumset Inequalities for Differential En-

tropy and Mutual Information,” in IEEE International Symposium on In-

formation Theory, (Cambridge, MA, USA), 2012.

[137] M. Madiman and A. Barron, “Generalized entropy power inequalities and

monotonicity properties of information,” Information Theory, IEEE Trans-

actions on, vol. 53, pp. 2317–2328, Jul. 2007.
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