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An Abstract of the Dissertation of

Mervat Akram Madi for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Effect of Plasma Density Fluctuations on The lower Hybrid Power Spectrum

Radiofrequency waves at the Lower Hybrid (LH) frequency are widely used in toka-
mak plasmas for driving a large fraction of the toroidal current. Consequently, evolution
of the LH wave inside the plasma has been an important research subject. LH wave trans-
fers energy to electrons by kinetic resonance via Landau damping. Landau damping takes
places most efficiently for electrons at parallel velocities 4vthe > v‖ > 2.5vthe (vthe is the
electron thermal velocity). However, the particles number as a function of v‖ is a Max-
wellian distribution function in which electrons that satisfy Landau damping condition
occupy the tail and hence are very few which creates the spectral gap problem.

On the other hand, it has been heuristically validated that RF power spectrum emit-
ted by LH launchers should couple to a wide range electrons for n‖L1 that exceeds ∼
5.5/

√
Te[keV ] , so that the spectral gap is filled. It has been noticed that if a perturbed

power spectrum with fluctuation rate faster then fast electron slowing time is fed into the
present models of plasma, it would come up with answers that explain all phenomena
inside plasma and reproduce realistically what observations are up to. This study sug-
gests a plausible mechanism for filling the LH spectral gap, that starting with standard
theory, a deeper investigation would allow to redo the calculations with new perspective
regarding density fluctuations and turbulence in the SOL. Using COMSOL Multiphysics,
it is shown that parallel to magnetic field line density fluctuations in front the LH antenna,
with parallel wavelength in the order of the LH wavelength modify the power spectrum
at the separatrix by diffraction, such that experimental observations in wide spectral gap
regimes at Tore Supra are successfully reproduced.

1n‖L is the LH wave refractive index along the magnetic field at which values the electrons damp the
wave by the phenomenon known as Landau damping.
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CHAPTER I

INTRODUCTION

This thesis report aims at exploring a new physical mechanism that interprets the
efficient absorption of an RF wave at the lower hybrid (LH) frequency in existing tokamak
plasmas, in particular in presence of a large spectral gap regime.

First, a LH wave is used in tokamaks to drive a current along the toroidal direc-
tion for sustaining a steady-state operation or for current profile control. In this thesis,
a derivation of the coupling theory calculation is done to show the characteristics of the
LH wave coupling and propagation in the plasma edge i.e in the region bounded by the
tokamak walls and is separated from the plasma core via the last closed magnetic field
line (separatrix). Experimental efforts have shown an efficient absorption of the LH wave
inside the plasma at all temperature plasmas. However, in general there is a difference
between the launched LH parallel refractive index and that at which the wave is absorbed,
which is known as the spectral gap problem. 1 In particular, in low temperature plasmas
usually accompanied by high densities, there is a large difference which is not bridged
in modeling efforts (large spectral gap regime). It was suggested that in this case, the
LH power spectrum should be bridged at the plasma edge. Moreover, this suggestion has
been successfully applied in current drive simulations for Tore Supra French tokamak in
CEA, France. These simulations have successfully reproduced experimental results for a
specific heuristic model of the power spectrum known by the tail model [7].

This study shows a numerical model of the antenna-plasma as a whole system
constructed in a finite element solver COMSOL Multiphysicsr which is an appropriate
solver for Maxwell equations. Possible effect of density fluctuations in the parallel to
magnetic field lines direction is investigated. A thin perturbation layer is modeled in front
the LH antenna with time scale of the slowing down time of fast electrons. Diffraction
effect results in a significant broadening in the power spectrum that propagates through
the perturbed layer. Moreover, the power spectrum is perturbed randomly upon using a
random fluctuation phase. More exlipilcity the pdf of the power spectrum shows that more
than 50 % of the power is transfered to satellite lobes that extend as a tail at higher values
of the refractive index n‖ in consistence with the suggested model mentioned above. Only
parallel fluctuations with a wavelength in the vicinity of the LH wavelength significantly
modify the LH power spectrum as it passes through the fluctuating layer.

Details are given in the thesis chapters as follows: Chapter two is an introduc-
tion to Fusion energy and its main features including plasma drift motion, heating, current
drive importance, and non-inductive current drive methods. Chapter three shows the LH
coupling theory and derivation of all calculations that lead to distinguish the LH wave
branches, the corresponding cut-off densities, n‖ power spectrum calculation, plasma sur-
face admittance, and radiated power of the electromagnetic modes. The LH antenna sys-

1Here parallel direction is along the magnetic field lines.

1
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tem and the relevant codes used in current drive calculations are presented in Chapter four,
while the spectral gap problem and the investigation of density fluctuations in the plasma
edge are discussed in Chapter five. The model constructed in COMSOL Multiphysicsr
is thoroughly explained in Chapter six, in particular the importance of meshing and wave
damping at the boundaries is highlighted. Moreover, a density perturbation layer is intro-
duced in front a fully active multijunction (FAM) like antenna. Detailed parametric study
on the role played by fluctuations in the plasma and the consequences on spectral prop-
erties is shown and discussed in Chapter seven. Finally, the conclusion is summarized in
Chapter eight.



CHAPTER II

FUSION

A. Introduction

The fossil fuels are increasing the CO2 levels in the atmosphere; thus contribut-
ing to the global warming since CO2 absorbs the infrared radiation emitted by the earth
and releases it back [8]. Alternative power resources have not been efficient enough to
replace the fossil fuels. For example, renewables have low power density and need huge
storage capacity due to their dependence on natural factors. In addition, fission was not
accepted by the public in some countries due to nuclear waste, and as fossil fuels, fission
resources are limited and would be available only for another 80 years. Therefore, there
is a need to find another way to provide the increasing demand for power without aug-
menting the environmental risks and before natural resources used today are completely
exhausted.

Fusion is a promising clean source of energy that produces large amounts of
power compared to other sources with safe conditions and for a long term use. Unlike re-
newables, fusion is independent of weather conditions and does not require large surface
areas. Note that the fuel mass used in fusion to generate 1 U of power is 4 times that of
fission and 107 times that of fossil fuels. Moreover, fusion resources are abundant in na-
ture since it mainly uses hydrogen isotopes like deuterium which is available in sea water.
Hence fusion energy is economically competitive and environment friendly. However,
fusion imposes a main challenge as it imitates a sun on earth. Indeed, in order to bring
two light positively charged ions such as deuterium and tritium to fuse and thus release a
large amount of energy (17.6MeV ), they should be heated to very large temperatures.

Since 1930’s when the first fusion experiments took place, fusion has been under
development [9]. In 1946 the fusion apparatus has evolved first as a bottle; however, the
first toroidal device known as tokamak had been set by Russian physicists in 1961 where
the name Tokamak is an acronym of the Russian phrase ’toroïdalnaïa kamera s magnit-
nymi katushkami’ which in English means ’toroidal chamber with magnetic coils’. De-
spite the international endeavor to achieve fusion, it still needs more decades to arrive at
a power plant. Tireless efforts are being exerted internationally in particular on the tech-
nological level which renders fusion as an extremely challenging mission for the human
kind at the present time.

Fusion is not easy to achieve due to Coulomb force of repulsion though it is
minimized by choosing light ions of deuterium and tritium. In fact, an energy of 0.1MeV
is needed to overcome the repulsion force between deuterium and tritium nuclei which is
equivalent to a temperature of 3×109 K. In order to confine the highly energetic particles
for achieving fusion, two main modes are being considered; magnetic confinement (MCF)

3
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for which a magnetic field is tuned in space so that the particles follow the magnetic field
lines, and inertial confinement (ICF) which uses the inertia of the gas to overcome natural
expansion at thermonuclear temperatures.

The most promising machine called tokamak is developed for MCF and has a
donut shape, though other magnetic configurations are also considered for MCF which
are the stellarators and reversed field pinch. The tokamak is an axisymmetric toroidal
device that confines hot and dense plasma (T ' 10KeV, n' 1021 m−3). A large magnetic
field (∼ 5 T ) is applied, so that highly energetic charged particles (electrons and ions)
are accelerated along magnetic field lines around the tokamak by Lorentz force. Besides
confinement of the charged particles, the tokamak geometry enlarges the trajectories fol-
lowed by the ions and thus the fusion cross section area1 is increased which raises the
probability of the fusion reaction. Note that the enclosed charged particles satisfy both
conditions of being quasi neutral in net charge and dense enough to behave in a collective
manner and thus form a plasma. Fig. 1 shows the high temperature and density required
for fusion reaction to take place in comparison between different naturally and artificially
existing plasmas.

The fusion reaction in which one deuterium and one tritium fuse, produces one
alpha particle, one neutron and large amount of energy as given in the following reaction

2
1D+ + 3

1T+→4
2 He+2 (3.5MeV ) + n(14.1MeV ) (1)

where the produced energy is due to a mass difference 4 per thousand which is 3.1×
10−29 kg and is transformed into energy (17.6MeV ) released as kinetic energy, according
to Einstein relation, ∆E = ∆mc2. Neutrons have the advantage of being able to escape
the magnetic field and hit the heating pads in the tokamak walls. Kinetic energy of the
neutrons is thus transferred to water pipes placed next to the pads, and consequently the
water becomes steam that drives turbines of a power plant. The α particles having high
kinetic energy contribute to heat the plasma and thus sustain ignition.

Other fusion reactions that replace tritium with deuterium or helium are also
possible, but are more difficult to achieve. While deuterium extracted from sea water is
accessible, cheap and nonradioactive, tritium doesn’t exist in large amounts on earth and
is a radioactive material with a short half life of 12 years. Hence the need to regenerate
tritium inside the tokamak as energetic neutrons produced from the fusion reaction hit the
wall where lithium (Li) is embedded to give tritium according to the following reactions

1Particles lost as they travel distance ds is dn/ds= σv nD nT where σv (m−4) is the reaction cross section
and nD , nT are the deuterium and tritium densities. Fusion reaction probability is proportional to σv, in
particular, the average fusion rate coefficient is given by <σv(v)v>, where v is the relative velocity of the
reacting particles and averaging is done over the particles velocity distribution. Only small fraction of
highly energetic particles is lost through fusion while about 8000 times more are particles are scattered by
collisions for a 10KeV reactor, that’s why beam target fusion doesn’t release net energy.
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Figure 1: Different temperature and density conditions of plasma that exist naturally,
constituting more than 99% of the universe, and artificially such as plasmas that satisfy

the conditions for fusion reactions to occur in magnetic confinement and inertial
confinement regimes. Copyright 1996 Contemporary Physics Education Project.

6Li+n→4
2 He(2.05MeV )+T (2.73MeV ) (2)

7Li+n→4
2 He+T +n−2.47MeV (3)

where lithium is abundant in nature and easy to extract.

B. ITER

On 2005 it was decided to build a large scale international tokamak called ITER
(a Latin word meaning "the way") in Cadarache, South of France with the contribution of
7 members which are the European Union, U.S., Russia, India, China, Japan and South
Korea, in order to test the first fusion machine as a preparatory step for a fusion reactor.
Cutting edge technologies are being developed for the first time to assemble the ITER
tokamak which is 11m high and 19m wide.

Confining a 150 million degree celsius plasma i.e at temperature larger than that
of the sun2, demands massive magnetic coils to provide strong toroidal magnetic field, a
sophisticated feedback control system, complicated diagnostics and heating and current

2T (sun) = 15×106 oC
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Figure 2: ITER tokamak composed of the central torus that encloses the plasma and the
external vessel composed of the magnetic coils and devices such as diagnostics and

different apparatus used for heating and feed back control. Special ports are designed in
the tokamak wall to allow control of the plasma.

drive methods. Moreover, the materials used in the first wall that faces the plasma has
to show high tolerance to high heat flux coming from the plasma with minimum erosion
probability to avoid diluting the plasma and thus losing energy by radiation. First plasma
is expected to be tested in ITER by 2023, and the first fuel plasma ignition3 is planned to
take place in 2029 [10].

C. Lawson Criterion and β limit

Power density is given by

pOH + pext + pα + prad (4)

where ohmic heating given by pOH = η j2 is provided by the solenoid at the first stage
of operation, while the remaining terms correspond to the external heating methods such
as electromagnetic waves, the α particle heating, and the heat loss by radiation assuming
ideal operation where there is negligible particle loss into the plasma facing components
(PFC). Since pOH is negligible with respect to pα ,

pext = p f us/Q = 5pα/Q (5)

3Ignition of plasma fuel is the process in which the right conditions for fusion reaction are met, such that
the produced energy contribute to the heating of colder plasma and thus the system becomes self sustained
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where Q is the power enhancement factor i.e is the ratio of thermonuclear power produced
to the heating power supplied and is important to measure how close is the tokamak from
being a reactor.

Lawson criterion provides a rough estimate of the quantities needed to have a net
gain in energy produced from a fusion reaction. Besides energy produced from fusion,
energy is released and lost though thermal and radiation processes, thus equilibrating
consumed and produced energy leads to the lawson criterion which defines a lower limit
of the fusion product nT τE ,

nT τE > 3×1021 KeV sm−3

where n is the density of the ions, T is the temperature and τE is the energy confinement
time defined as the time needed for a plasma to cool down in absence of additional heating.
Thus for n = 1021 m−3, and T = 30KeV, τE = 1s; however longer confinement times are
certainly needed so that the number of start up times is reduced and therefore a fusion
reactor can serve longer especially that it needs 25 work years for a reactor to compensate
its cost. The energy confinement time for ITER as extrapolated from JET (Joint European
Tokamak) results is 3s where 1s was achieved in JET in 1988 [11].

Note that density is proportional to the number of ions which raises the fusion
probability; however, a density rise leads to an increase in the kinetic pressure < p > and
thus results in plasma instabilities due to the tendency of the plasma to expand and cool
down where the magnetic field forces the ions to stay confined. Scientists have come up
with the notion of the β limit which sets a limit for the fusion power output and is given
by

β =< p > / < B/2µ0 > (6)

where < p > is the mean kinetic pressure (p = nT ), and B/2µ0 is the magnetic pressure
<B> being the mean magnetic field and µ0 the permeability in vacuum. β = 1 is the ideal
value since it minimizes the magnetic pressure, however achieved β ′s are maximum 0.4
or 40% due to plasma instabilities. β is used as a rough economic estimate of the fusion
efficiency where a minimum of β = 0.05 is needed in a reactor. Moreover, normalized β

given by

βN = β
aB
Ip

(7)

is used as an operational limit where a is the minor radius and Ip is the plasma current.
The higher βN (βN > 3.5), the higher risk of plasma disruption.
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Figure 3: Toroidal magnetic coils (green) create the toroidal magnetic field Bt and the
Solenoid in the center of the tokamak (blue) induce a toroidal current that creates

poloidal magnetic field.

D. Confinement Modes

1. Inertial confinement

Another type of confinement is the inertial confinement (ICF) which is still being
explored [12, 13]. Simply speaking, a frozen pellet of D-T is bombarded directly by laser
or indirectly by X-rays in pulses of 1− 10 µs in order to initiate the burning process
of the mixture so that it continues burning till all the fuel is consumed. This requires
unattainable amount of injected energy. However, compressing the D-T ice at a density
of 0.2g/m3 by 1000 times reduces energy consumption by 106 which renders the input
energy feasible.

2. Magnetic confinement

A strong magnetic field confines the plasma and thus keeps it away from the
tokamak walls according to the relation j×B = ∇p, where j is the current and p is the
pressure knowing that ∇p is in the radial direction. Ions and electrons of the plasma gyrate
around the magnetic field lines that extend in helical orbits around the tokamak. Due to
Lorentz force charged particles undergo radial acceleration along magnetic field lines
with a thermal Larmor radius4 of ∼= 4mm for deuterium ions and ∼= 0.07mm for electrons
assuming a 5T magnetic field and a temperature of 10keV , [14, 15]. In case of having

4Larmor radius is the radius of the orbit that the particle follows around the field line
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a purely toroidal magnetic field, particle drifts caused by variation of magnetic field in
direction and magnitude cause vertical polarization of the plasma leading to particle loss.
Therefore, a poloidal magnetic field component is added resulting in a helical magnetic
geometry, which allows the charged particles to change vertical position as they flow
along the magnetic field line and thus undergo opposite vertical forces that ultimately
cancel each other. Magnetic field lines and coils are illustrated in Fig. 3.

a. Magnetic field

Tokamaks have both toroidal and poloidal magnetic fields which form helical
nested flux surfaces. Toroidal magnetic field is maintained by the toroidal magnetic coils
that are placed around the tokamak, while poloidal magnetic field is supplied by poloidal
coils along with a toroidal plasma current. The plasma current is partly provided by
the bootstrap current generated inside the plasma due to pressure gradient. However,
additional current is driven via external sources such as electron cyclotron (EC) waves
and lower hybrid (LH) waves.

b. Particle drifts

The plasma is in principle confined to the magnetic field lines; however the
plasma movement across the field lines towards the walls is inevitable due to particle
drifts. In particular, the region enclosed between the material walls and the last closed
field lines known as the scrape-off layer (SOL), is subject to several types of particle
drifts. A summary of the particle drifts in the SOL shall be given below where parallel
and perpendicular directions are those parallel and perpendicular to the magnetic field
lines respectively.

1. E×B drift is due to electric field arising perpendicular to the magnetic field lines
where the particle velocity is given by :

vE×B =
E×B

B2 (8)

2. ∇B drift is due to magnetic field gradient where the particle velocity is given by :

v∇B =
v⊥m
2qB3 B×∇B (9)

3. Diamagnetic drift is due to plasma pressure gradient along poloidal and radial di-
rections and the particles where the particles velocity is given by :

v∇P =
B×∇P

enB2 . (10)
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Figure 4: ExB, ∇⊥B and B curvature drifts (from top to bottom).

In addition to the above drifts that exist in the SOL, the polarization drift generated by the
electric field time derivative exists in the plasma but with a negligible effect in the SOL
[16] and is given by :

vpol =
m

qB2
dE⊥
dt

. (11)

E. Plasma heating

Heating the plasma is achieved through several methods. In addition to Ohmic
heating, the basic heating method, RF and micro waves and neutral beam injection are
used as shown in Fig. 6.

1. Ohmic heating

Ohmic heating is the original method used to heat up the plasma. Since the
plasma is a charged medium with a resistivity ρ , it acts as an electrical wire, thus the
flow of a current I with a density j through it dissipates energy 5 into the plasma and

5The volume power density dissipation by Ohm’s law is equivalent to ρ j2.
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Figure 5: Transformer concept in plasma with solenoid being the primary circuit (left)
and the plasma forming the secondary circuit (right).

consequently heats it. This current is induced by the solenoid placed at the tokamak
center, via the transformer effect which was experimentally validated in Tore Supra [17]
and is given by the simple inductance formula

dΦM

dt
= R0L0

dI0

dt
=−Rp

L0

M
(Ip− Ini

ext) (12)

where

R0, I and L0 are the resistance, current and inductance in the primary circuit of
the transformer

M is the mutual inductance

Rp, Ip and Ini
ext are the plasma resistance, plasma current and non-inductive cur-

rent respectively.

Fig. 5 shows the transformer sketch of the plasma with solenoid being the pri-
mary circuit and the plasma forming the secondary circuit. Note that a steady state oper-
ation is given by a zero inductive current for a long time while a more strict constraint is
having a zero loop voltage in the plasma [18].
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Figure 6: Heating Methods in ITER

2. Wave heating

a. ICRF

Magnetosonic waves in the ion cyclotron range of frequencies (ICRF)∼ 10MHz
interact resonantly with ions and heat them thus providing an efficient tool for heating the
plasma [19, 20]. Plasma heating by IC waves has become well developed to be used as a
heating auxiliary method in ITER [21, 22]. With an antenna composed of short-circuited
current straps protected by a Faraday screen (see Fig. 7) designed in accordance with de-
sirable sheath conditions [23], the IC wave understanding has rapidly evolved; however,
research is still in progress to understand the IC wave interaction with the plasma edge
and the walls. IC waves easily propagate to the plasma center with a strong perpendic-
ular electric field well adapted to the transfer of energy from the wave to the ions and
a weak parallel electric field [24]. Direct coupling with electrons takes place at the IC
frequency while coupling to ions takes place at the IC frequency harmonics according to
the resonance condition:

ω + pωcs + k‖v‖s = 0 (13)

where p = 0 for electrons and p≥ 1 for ions, s corresponds to the species, and ωci is the
ion or electron cyclotron frequency for s = i or s = e respectively.
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Figure 7: ICRH antenna

b. ECRH

Electron cyclotron (EC) wave is an electromagnetic wave used for heating and
for current drive in tokamak plasmas. EC wave propagates in vacuum and thus the launch-
ing antenna does not have to be in contact with the plasma which facilitates maintenance.
Moreover the beam diameter can be focused such that all power could be deposed in as
small as 10cm3 volume. For a magnetic field [3−6]T , the EC frequency is in the range
[84− 170]GHz where the wavelength is few mms. 6 The EC wave resonates with elec-
trons at the EC frequency or its harmonics and thus transfer energy and momentum to the
electrons

ω =
p
γ

ωce + k‖v‖e (14)

whereγ is the usual relativistic factor γ = (1−v2/c2)1/2. The main result of EC resonance
is to increase the perpendicular energy of resonant electrons, however an efficient current
drive can take place [25, 26] as discussed in Sec. 2..

3. Particle heating

Particles heating is mainly achieved by neutral beam injection (NBI). Plasma is
injected by very energetic particles that transfer heat to ions and electrons as they collide

6The electrons gyrate around the magnetic field lines at EC frequency given by fce = eB/(2πm) where e
and m are the electron charge and mass respectively.
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with them. In order to escape the magnetic field lines, neutral particles are used so that
they can reach at the plasma core where they lose their energy.

4. Alpha particle heating

Alpha particle heating is a main source of energy for sustaining the plasma and is
one of the main issues to be addressed in ITER. As alpha particles are released from fusion
reaction at very high energies, most of them orbit along the field lines and collide with
other particles thus heating the plasma as they slow down. The main drawback of alpha
particle heating is the formation of helium ash that needs to be exhausted immediately to
avoid radiation and dilution of the deuterium-tritium mixture thus preserving the available
fuel energy for continuous ignition. In the meantime, confining the alpha particles inside
the plasma core so that they do not end by radial transport at the tokamak walls constitutes
an additional challenge for plasmas physicists.

F. Non-inductive current drive

A poloidal magnetic field, Bp, is required to cancel vertical particle drifts in
toroidal configurations. This field is provided by a driving a toroidal current inside the
plasma. Basically, an ohmic toroidal current is generated by induction via the transformer
effect; however, the transformer is inherently pulsed (V = L dI/dt) while a steady state
operation7 is necessary for an economically feasible power plant. In addition, the plasma
resistivity is inversely proportional to temperature (ρ ∼ T−3/2), hence as the plasma tem-
perature increases, current drive efficiency γ = J/P decreases since it is less sustained by
collisions where J and P represent current density and power density input respectively.

According to Fisch’s theory of current drive [25, 27], 4J/4P(v‖� vthe) ∝ v2
‖

where v‖ is the toroidal velocity and vthe is the thermal velocity of electrons, vthe =√
Te/me (Te and me are the electron temperature and mass respectively). Therefore in-

creasing the toroidal velocity of electrons and ions drives current at high plasma tem-
peratures. As the plasma current is directly related to the plasma confinement time
(τE ∝ J/

√
Pext) and is an essential component of magnetic confinement; the development

of non-inductive current drive methods has become imperative in tokamaks [25, 28].

First, it was observed that due to pressure gradients a bootstrap current is self
generated in the plasma [29]. In a high confinement mode (H-mode) plasma, a transport
barrier that confines heat and particles is formed. It is characterized by pressure gradient
at the region between the plasma core and the plasma edge known as the “pedestal” .

7A steady state discharge is the state in which the plasma continues running after switching off the
transformer (characterized by a pulsed operation) for a long time.
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While the current density profile in inductive regime (ohmic regime) is monotone with a
maximum at the center, an enhanced current outside the plasma core sustains the transport
barrier and thus enhances confinement. The current profile at the pedestal could be con-
trolled via injecting fast particles or electromagnetic waves. Electromagnetic waves have
shown efficient coupling to the plasma and include waves in the ion cyclotron, lower hy-
brid and electron cyclotron range of frequencies which are in the order of 10 Mhz, 1GHz,
and 100GHz respectively, where only LH waves are used to drive current off-axis.

1. Bootstrap current

Bootstrap current is internally generated in the plasma parallel to the magnetic
field lines due to density (pressure) gradients [30, 31]. Banana orbits resulting from mag-
netic field inhomogeneity (mirror force) trap electrons along the magnetic field lines as
shown in Fig. 8. The radial density gradient results in a difference between co-current
and counter-current trapped particles, thus a banana current given by

jb = T
ε3/2

Bp
dn/dr (15)

is generated, where ε is the safety factor given by ε = a/R, where (a,R) are the minor
and major radii of the tokamak.

The bootstrap current is created by pitch angle scattering due to collisions be-
tween trapped particles and the much denser passing particles leading to an amplification
of the banana current. The bootstrap current is given by

jBS =
1
ε

jb. (16)

A high fraction of bootstrap current is needed for a high gain in tokamak operation [31],
with Ib/Ip ∝ ε1/2βp where βp is the poloidal component of β given by

βp =< p > / < Bp/2µ0 > (17)

. While bootstrap current can achieve up to 80% (obtained in JT60 [32]) of the total
current needed to confine the plasma, auxiliary methods are needed to supply additional
current, which in addition provide a tool for adjusting the current density profile which
allows to mitigate turbulence and thus improves confinement.

2. Neutral beam injection

Fast atoms are injected into the plasma bulk while they escape the strong mag-
netic field being neutral [25, 33]. The atoms injected at high speeds get ionized inside the
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Figure 8: Bootstrap current

Figure 9: One assembly of the sixteen ion sources in Jet NBI system [1]

plasma which results in a series of ion-ion, ion-electron and electron-electron collisions
and hence transfer momentum and energy to the plasma. Neutral beam injection (NBI) is
used to drive currentdue to the fact that electrons undergo more collisions with ions mov-
ing along a certain direction which creates current in the opposite one. The major draw
back of NBI is that injecting neutral beams at high energies is technically difficult. Neutral
beams are produced by first creating positively charged ions which are accelerated to high
speeds by applying strong electric field and then neutralized before entering the plasma
as shown in Fig. 9. However, not all ions are neutralized thus an electromagnet is used to
deflect them. Moreover, for ITER very high energetic beams are required which increases
dramatically the lost ions and thus decrease the efficiency of the NBI source. Since, it is
more difficult to make an electron attach to a positive ion moving at high speed than it is
to cause an ion to lose an electron, another approach would be to generate negative ions
and then accelarate them to high speeds and then remove the extra electron from them. A
new facility called SNIF (small negative ion facility) is investigating a negative ion source
for NBI [34].



CHAPTER II. FUSION 17

G. Generation of current drive via electromagnetic waves

RF waves could be used to tailor the current density profile in contrary to the
NBI which drives current in a wider radial extent. Lower hybrid (LH), electron cyclotron
(EC) waves were developed for or current drive (CD) as shown in recent review on TS
experiments of additional RF systems[20].

1. Lower hybrid waves

Lower hybrid (LH) waves are launched at ∼ 1GHz radio frequencies into the
tokamak chamber to drive current in the plasma core due to the electrostatic slow branch
of the wave [35]. Wave plasma coupling is mainly affected by the electron density in front
the antennas which should be above a cut-off value ne,c = ω2

peme/4πe2. The LH wave
is launched via antennas composed of phased waveguides arrays as shown in Fig. 23.
The LH fast phase velocities accelerate fast electrons via longitudinal Landau damping
[36] thus pulling a fast electron tail from the Maxwellian distribution. They have been
efficiently used to drive toroidal current which allowed to achieve in 1996 a 1000s non-
inductive discharge in Tore Supra tokamak [37], 1 h non-inductive discharge in TRIAM
1M [38], and to maintain a quasi steady state discharge in JET [39]. Moreover, LH
waves are employed in tailoring the current density profile and thus will help control
the q-profile8 in ITER [40, 41]. Since 1980, theoretical studies and modeling of the LH
wave physics has been addressing the LH spectral gap problem defined as the difference
between the nominal parallel phase velocity v‖0 of the launched wave and the parallel
velocity at which the electrons absorb the wave v‖L . This report is dedicated to the
spectral gap problem of the LH wave, in particular a new mechanism is suggested and
modeled. [7].

2. ECCD

Electron cyclotron current drive (ECCD) is applied in several tokamak plasmas
[25, 26]. It could successfully achieve a full non-inductive discharge at the TCV toka-
mak. ECCD is basically due to the effect of collisionality change with energy and the fact
that electrons with same sign of v‖ absorb the EC waves as explained by Fisch-Boozer
[42]. The EC frequency is dependent on the radial position position of the electrons due
to the magnetic field radial dependence ( fce ∝ B) thus tuning the EC frequency targets
specific areas inside the plasma; Consequently the EC wave is a tool for feedback control
[43, 44]. For example, EC wave shall be employed in ITER to drive current in the mag-

8q-profile is determined from the radial safety factor variation and plays an important role in stabilizing
the plasma.
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Figure 10: Front view of the FAM and PAM antennas facing the plasma in Tore Supra
tokamak

netic island O-point to substitute for the bootstrap current 9 and thus stabilize neoclassical
tearing modes (NTM’s). Other MHD instabilities such as saw-teeth oscillations are also
controlled by the EC waves.

9In a magnetic island the pressure becomes flattened while a bootstrap current is created by the pressure
gradient.
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LH WAVE COUPLING THEORY

A. Introduction

Radio frequency waves at the Lower Hybrid (LH)1 frequency are widely used
in tokamak plasmas for driving a large fraction of the toroidal current. The high current
drive efficiency achieved experimentally make them particularly attractive for controlling
the current density profile in the plasma (MHD stability, energy confinement, etc) with a
limited fraction of recycled fusion power. For this purpose, it is considered in the fusion
tokamak demonstrator ITER [45, 46, 41, 47].

Current drive modeling is carried out by calculating self-consistently the wave
field (Maxwell equation) with the resonant particle dynamics (Fokker-Planck equation)
inside the plasma. The LH wave propagation is described by a ray tracing (WKB approx-
imation), initial conditions being described by the power spectrum at the separatrix (which
is the first magnetic flux surface where the field lines are closed (FCFL)) of the toroidal
MHD magnetic equilibrium. Numerous studies suggest that the launched power spectrum
could be a critical parameter for understanding the wave propagation in the plasma and
its self-consistent absorption by wave-particle interaction. Since recent measurements
have shown that the electron density fluctuations level in front of the LH antenna could
be very high (100%), it is important to assess their possible contribution to a broadening
of the power spectrum used as initial conditions of the ray tracing [48, 49]. So far, as a
preliminary step towards the full description of the LH physics at the plasma edge with
fluctuations, theoretical developments have been performed assuming a quiescent plasma
in the scrape-off layer (SOL) lying between the antenna port to the separatrix. The stan-
dard theory is re-derived in order to highlight possible limitations of the model and to
detail where fluctuations could play a role. The efficiency of HF phased waveguide ar-
rays in coupling to plasma was first proposed in [50], and the standard theory was well
developed in [51, 52]. Since the effect of density at the launcher-plasma interface is a key
factor, it was addressed in [53] and thereafter experimental verification was achieved as
reported in [54].

First, the derivation of the propagating modes in plasma results in two differential
equations in Ey and Ez. Plasma parameters are calculated and consequently, the two
equations in Ey and Ez are decoupled resulting in two independently propagating waves
which are the fast wave and the slow wave respectively. Slow wave is chosen for lower
hybrid current drive due to its efficiency in coupling to electrons in the parallel direction
and for having lower cut-off frequency. Thus the antenna is designed to launch slow
wave only. Subsequently, the antenna dimensions are studied to investigate the excited

1Lower Hybrid frequency is defined by ω2
c,i� ω2� ω2

c,e, where ωc,i and ωc,e are the ion and electron
cyclotron frequencies in the order of 100 MHz and 100 GHz respectively.

19
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propagating and evanescent eigenmodes. Due to the continuity of the fields, the wave
field represented as superposition of eigenmodes is matched to the field inside plasma,
serving as a boundary condition for solving for the electric field at the antenna-plasma
interface. Thereafter the nz spectrum of the excited wave is calculated for the simple
case of considering only the fundamental T EM mode and neglecting reflections. Then
the plasma surface admittance is calculated at the antenna plasma interface to be able to
calculate the power spectrum in nz. Afterwards the multipole theory is developed such
that the incident and reflected modes are presented as vectors to simplify calculations.
Also the magnetic field is expressed in terms of the admittance matrices and the electric
field, which allows expressing all incident and reflected fields in terms of the incident and
reflected electric potential at the various ports of the waveguide. The Fourier transform
of the electric field along the direction parallel to the magnetic field along with Parseval’s
theorem are used to obtain the power spectrum in nz. The obtained formula show the effect
of the waveguides′ number, their dimensions, and the phasing between them in achieving
either plasma heating or CD.

B. Electric Field Solutions Inside Plasma

The question of wave propagation and coupling to plasma in the layer that lies
between the antenna and the first closed field line (FCFL) shall be addressed.

Some assumptions are taken to simplify the calculations.

• Consider a slab geometry in which the toroidal static magnetic field is in the z direc-
tion, the poloidal dimension is the y axis, and the density gradient is assumed to be
along the radial direction x being the direction of inhomogeneity. Thus the plasma
is considered homogenous in both y and z directions. The problem is considered
as 2 dimensional (Fig. 11), thus the wave front is parallel to 0y axis which is the
dimension that doesn’t introduce any inhomogeneity to the problem and hence it is
completely ignored.

• The antenna is taken as infinite in the y direction so there is no variation along 0y
(∂/∂y = 0). Consequently, ky = 0. This is justified since the antenna size in the y
direction is 6−20 times more than that in the z direction (Fig. 12) [55].

• Time dependence has the harmonic form eiωt where ω is the frequency excited by
the RF source (ω = 2π f where f has a fixed value of 3.7 GHz in Tore Supra LH
wave launchers).

• Cold plasma approximation (λ � λD) 2 i.e thermal effects do not have any signif-

2λD is the radius of the Debye sphere. The Debye sphere is formed by the electrons that shield a positive
ion charge under Coulomb force. Hence, the plasma is considered quasi neutral only on radial scales greater
than λD. λD = (ε0T/ne2)1/2 = vth,e/ωpe = 2.35×105×

√
Te/n (Te in keV ) where vth,e = (Te/me)

1/2 is the
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Figure 11: Slab Geometry

icant influence on wave coupling to the plasma where at the plasma edge 3 λLH ∼=
8cm and λD∼= 0.1mm and λD∼= 0.1mm. Note that in cold plasma vth,e� vφ =ω/k,
where vφ is the phase velocity of the wave. Moreover, the plasma temperature in-
creases as its distance from the wall increases and reaches 10 KeV in the bulk, that’s
why the approximations used depend on the plasma position.

• Wentzel-Kramers-Brillouin approximation (WKB) since k� |∇n/n| i.e. the den-
sity changes slowly with respect to the wavelength (k is the wave vector length and
n is the density, where |∇n/n| is considered as scale length). More precisely, if the
density at antenna mouth is less than or equal to the cut-off density or equivalently,
if the wave angular frequency ω is greater than ωpe, the wave undergoes strong re-
flection and is evanescent in which case WKB fails. However, WKB approximation
is valid since the wave is launched in an over dense regime that is away from cut-off
while x is the only direction of inhomogeneity [56]. Thus the wave solution would
be a superposition of harmonic waves having the form A(x)e−i(kx(x)x+kzz). (kx, ky,
and kz are the components of the wave vector and ky was replaced by zero.) .

• The direction of the magnetic field is almost parallel to the z direction since we
assume a high safety factor q ranging between 3 and 10 as done in most tokamak
plasmas 4. Thus nz ' n‖, where n‖ is the component of the refractive index vector
along the static magnetic field.

• The density profile could be approximated as linearly increasing between the an-
tenna and the FCFL, and zero in the region between the wall and the antenna port
[54, 53]. Fig. 13 shows the considered density profile.

thermal velocity of the electrons and ωpe =(ne2/ε0me)
1/2 is the angular frequency of plasma oscillations. In

scrape off layer, Te = 100 eV is taken with ne = (5.1−9)×1017m−3, which gives λD = (0.078−0.14)mm.
ne is taken greater than 3nc where nc = 1.7× 1017 m−3 is the cut-off density since the antenna is placed
beyond the cut-off region.

3λLH is the vacuum wavelength at 3.7 GHz frequency which is the LH wave frequency used in Tore
Supra tokamak which is small compared to the plasma dimension in large tokamaks.

4q = dφ/dθ , measures the winding of the magnetic field lines, where φ is the toroidal angle, and θ is
the poloidal angle. Hence for a magnetic field line to complete one poloidal turn, it needs q toroidal turns.
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Figure 12: Two dimensional model of a waveguide

Figure 13: Density profile
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As the LH wave is launched into the plasma, the electric field E, magnetic field H, and
current density J could be expressed in terms of plasma parameters.

Consider a general form of the E, H, and J fields as: A(ξ )exp+i(ωt−kzz−kxx)
where ξ = k0x 5 is a normalization to the LH wave length, and A(ξ ) is slowly varying
in x with respect to the wavelength. This form conforms with WKB approximation for
a plane wave launched into plasma having density inhomogeneity along x direction only.
Thereby ∂/∂ z can be replaced by −ikz.

After applying Fourier transform in time, Faraday’s and Ampere’s laws of Maxwell’s
equations are:

∇×E =−iωµ0H (18)

∇×H = J+ iωε0E (19)

The characteristics of the cold plasma are identified by the local conductivity tensor σ de-
fined as: J(r) = σ(r)E(r), which is deduced from Lorentz force6. Then Eq. 19 becomes

∇×H = (σ + iωε0I)E = (iωε0)εE (20)

where I is the identity matrix and ε is the dielectric tensor given by,

ε = I− i
ωε0

σ =

 S iD 0
−iD S 0

0 0 P

 (21)

with S, P, and D follow Stix notation

S = 1+
ω2

pe

ω2
ce−ω2 +∑

s

ω2
ps

ω2
c,s−ω2 (22)

P = 1− (
ωpe

ω
)2−∑

s
(
ωps

ω
)2 (23)

D =
ω2

peωce

ω(ω2−ω2
ce)

+∑
s

ω2
psωcs

ω(ω2−ω2
cs)

(24)

5k0 = ω/c = 2× pi/λ0 = 77.453 rad/m where λ0 is the wavelength in vacuum.
6Lorentz force equation: mv = q(E + v×B).
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In the lower hybrid range of frequencies7, S and D in Eqs. 22 and 24 can be
simplified as

S∼= 1+
ω2

pe

ω2
ce
−

ω2
ps

ω2 (25)

D∼=−
ω2

pe

ωω2
ce
. (26)

At this point, the electric field equation(s) would be recovered in view of the
plasma characteristics. Eq. 18 gives

∂

∂x
Ey−

∂

∂y
Ex =−iωµ0Hz (27)

∂

∂x
Ez−

∂

∂ z
Ex =+iωµ0Hy (28)

∂

∂y
Ez−

∂

∂ z
Ey =−iωµ0Hx (29)

Consider Y0 =
√

ε0/µ0 = Z−1
0 , where Y0 is the wave admittance in vacuum and

Z0 is the wave impedance. Using the relation ∂/∂x = k0×∂/∂ξ , Eq. 27 becomes,

∂

∂ξ
Ey =

−iωµ0

k0
Hz =−i

√
µ0

ε0
Hz =−iZ0Hz. (30)

Also rearranging Eq. 28 gives,

∂

∂ξ
Ez =

+iωµ0

k0
Hy− i

kz

k0
Ex = i

√
µ0

ε0
Hy +

kz

k0
Ex = iZ0Hy− inzEx. (31)

Eq. 29 simplifies to

7ω
−1
LH =

√
((ωcsωce)−1 +ω

−2
ps ) .

For a hydrogen plasma :
ωc,s = ZseB/ms ∼= 3.35×108rad/s = 53.3MHz
ωc,e = eB/me ∼= 0.615×1012rad/s = 97.99GHz
where Zs = 1, is the atomic charge.
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∂

∂ z
Ey = iωµ0Hx⇔ Hx =−nzY0Ey. (32)

Note that ω = ck0 = k0/
√

ε0µ0 = k0Z0/µ0 = k0/(Y0µ0) = k0Y0/ε0 and nz = kz/k0.

Let’s investigate the components of Eq. 20 when Eq. 21 is substituted in it,

∂

∂x
Hy−

∂

∂y
Hx = iωε0(PEz)⇔

∂

∂ξ
Hy = iY0PEz (33)

∂

∂x
Hz−

∂

∂ z
Hx =−iωε0(−iDEx +SEy)

⇔ ∂

∂ξ
Hz =−iY0SEy−Y0DEx− inzHx (34)

∂

∂y
Hz−

∂

∂ z
Hy = iωε0(SEx + iDEy)⇔ Ex =

1
S
(−iDEy +nzZ0Hy) (35)

Since the electric and magnetic fields are expressed in terms of Ez and Ey, the
second order differential equations in Ez and Ey can be deduced. Eqs. 30 and 34 give,

∂ 2

∂ξ 2 Ey =−iZ0(−iY0SEy−Y0DEx− inzHx)

and when applying Eq. 32

∂ 2

∂ξ 2 Ey =−iZ0(−iY0SEy−Y0DEx− inz(−nzY0Ey))

∂ 2

∂ξ 2 Ey = (−S+n2
z )Ey + iDEx. (36)

The electromagnetic dispersion relation for slab geometry as shown in Appendix B is
given by

D.E = 0, (37)

where D satisfies the equation

D = k× k× I+
ω2

c2 (I+
i

ωε0
σ).
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Which gives due to applying WKB,

¯̄D =

 S−n2
z iD nznx

−iD S−n2 0
nznx 0 P−n2

x

 .
Eq. 37 implies that

(S−n2
z )Ex + iDEy +nznxEz = 0

i.e
Ex =

1
n2

z −S
(iDEy +nznxEz). (38)

Thus Eq. 36 becomes

∂ 2

∂ξ 2 Ey = (n2
z −S)Ey + iD(

1
n2

z −S
(iDEy +nznxEz)).

Therefore

∂ 2

∂ξ 2 Ey = (n2
z −S− D2

n2
z −S

)Ey +
iDnznx

n2
z −S

Ez. (39)

Similarly for Ez, Eqs. 31 and 33 give

∂ 2

∂ξ 2 Ez =
∂

∂ξ
(iZ0Hy− inzEx)

∂ 2

∂ξ 2 Ez = iZ0(iY0PEz)− inz
∂

∂ξ
Ex.

Now substituting Eq. 35, gives

∂ 2

∂ξ 2 Ez =−PEz−
nzD

S
(

∂

∂ξ
Ey)− i

n2
z

S
Z0(

∂

∂ξ
Hy)

Eqs. 30 and 33 give

∂ 2

∂ξ 2 Ez =−PEz−
nzD

S
(−iZ0Hz)− i

n2
z

S
Z0(iY0PEz)

∂ 2

∂ξ 2 Ez =
P
S
(n2

z −S)Ez−
nzD(−iZ0)

S
Hz.

Hence
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∂ 2

∂ξ 2 Ez =
P
S
(n2

z −S)Ez +
inzD

S
Ey. (40)

Having D ' 08 in the SOL as shown in Appendix B, Eqs. 39 and 40 are decoupled. Eq.
39 gives

∂ 2

∂ξ 2 Ey = (n2
z −S)Ey, (41)

also Eq. 40 gives
∂ 2

∂ξ 2 Ez =
P
S
(n2

z −S)Ez. (42)

Having Ey and Ez as two independent variables, two wave branches are obtained by solv-
ing for A(ξ ),

A(ξ ) = e−ikxx = e−inxξ

using Eqs . 41 and 42 for Ez = 0 and Ey = 0 respectively. For Ez = 0, Eq. 41 gives

nx, f =−(n2
z −1),

where for Ey = 0, Eq. 42 gives

nx,s =−
P
S
(n2

z −S)∼=−P(n2
z −1).

nx, f and nx,s define the perpendicular refractive index for the two LH wave branches, the
fast and slow mode respectively. Since nx, f < nx,s with nx = c/vx, then vx, f > vx,s. The
slow wave is electrostatic since for Ey = 0, Eq. 38 gives Ex/nx =Ez/nz (electrostatic wave
has E ‖ n).

As a conclusion, the differential equations in Ey and Ez are decoupled, i.e the y
and z components of the LH wave are independent, thus depicting two wave branches, the
fast and the slow wave. Hence when one branch is excited it propagates independently of
the other branch. Due to the slow wave efficiency in driving current in the z direction and
since it has a lower cut-off density 9 compared to the fast wave which renders it easier to
launch, the antenna is designed to launch slow waves rather than fast waves. Note that the
wave n‖ refractive index should exceed na corresponding to the highest plasma density to
avoid slow-fast wave mode conversion as shown in Appendix B. This reduces reflection
towards the antenna and validates the assumption that only slow waves are included in
coupling equations [51, 52].

8For ω = 2× π × 3.7× 109rad/s, n = (1017 − 3× 1019)m−3, and B = 3.5T (Tore Supra Tokamak
magnetic field)

For n = 1017, D∼=−ω2
pe/ωωc,e ∼=−0.0223, so for n = A×1017, D =−A×0.0223.

Near the antenna, S∼= 1 and for n = (1017−3×1019) P∼= (−175.9147− 0.4273) where |P| is increasing
for increasing density.

9ncut, f ast ∼= 8.4×1018m−3 ∼= 49.4×ncut,slow
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Let’s write the equations of the electric and magnetic fields corresponding to the
modes that propagate inside a wave guide designed to launch waves that have nonzero Ez
component where Ey ∼= 0.

C. Waveguide Modes

1. Rectangular Waveguides

The Grill depicted in Fig. 14 is made of an array of waveguides juxtaposed in the
z direction with a geometric period ∆, and separated by thin walls. It is placed few cen-
timeters from the chamber wall to work in an over dense regime. The Grill or the antenna
front surface (x = 0) is considered to compute the emitted fields which being continuous
at the antenna-plasma interface serve as boundary conditions for the propagating fields
inside the plasma.

First consider a rectangular waveguide that has dimensions y = a and z = b as
shown in Fig. 12.

The plane waves propagate as T EM waves (transverse electric magnetic) in vac-
uum. T EM waves have both electric and magnetic fields transverse to the direction of
propagation. However, in waveguides the wave could propagate in different forms known
as T E (transverse electric) and T M (transverse magnetic) modes. T E modes known also
as magnetic waves have zero electric field in the direction of propagation. T M modes
known also as electric waves have zero magnetic field in the direction of propagation. In
particular, inside a rectangular waveguide the T EM mode does not propagate as shown in
Appendix B., while T Emn and T Mmn modes exist for some nonnegative integers m, n de-
pending on the dimensions of the wave guide ( Fig. 12) and the wave frequency. Appendix
B. demonstrates how the dimensions of the waveguide determine the cut-off frequency

fcmn = c
√
(

m
2a

)2 +(
n
2b

)2 (43)

of each of these modes where c is the speed of light.

Knowing that a wave propagates in a specific mode if its frequency is above the
cut-off frequency of that mode, the propagating modes for a wave guide having a= 7.2cm
and b = 3.4 cm are to be investigated as an example. Using Eq. 43, the lowest T Emn cut-
off frequency is for (m,n) = (1,0),

fc10 ∼= 2.083 GHz.
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Since the next cut-off frequency obtained for (m,n) = (2,0) is

fc20 = 4.16 GHz,

and since the wave is excited at 3.7 GHz ( Tore Supra LH antennas) it is verified that T E10
is the dominant and only propagating mode among T Emn modes.

Similarly, the lowest T Mmn cut-off frequency is

fc11 = 15.152 GHz

obtained for (m,n) = (1,1). Thus all T Mmn modes are evanescent with T M11 being the
mode of lowest cut-off frequency.

Suppose that the wave is propagating in the x direction as shown in Fig. 12. The
propagating T Emn mode field equations are derived in Appendix B.,

Ey(y,z) =
nπ

b
iωµ0

(mπ

a )2 +(nπ

b )2 Amncos(
mπ

a
y)sin(

nπ

b
z)ei(ωt−βx)V.m−1

Ez(y,z) =−
mπ

a
iωµ0

(mπ

a )2 +(nπ

b )2 Amnsin(
mπ

a
y)cos(

nπ

b
z)ei(ωt−βx)V.m−1

Ex = 0,

and

Hx(y,z) = Amncos(
mπ

a
y)cos(

nπ

b
z)ei(ωt−βx)A.m−1

Hy(y,z) =
mπ

a
iβ

(mπ

a )2 +(nπ

b )2 Amnsin(
mπ

a
y)cos(

nπ

b z
z)ei(ωt−βx)A.m−1

Hz(y,z) =
nπ

b
iβ

(mπ

a )2 +(nπ

b )2 Amncos(
mπ

a
y)sin(

nπ

b
z)ei(ωt−βx)A.m−1,

where Amn has the same unit as the magnetic field intensity (A.m−1), µ0 is the vacuum
permeability10, β =

√
k2− (k2

y + k2
z )(rad.m−1), k = ω/c , ky = mπ/a and kz = nπ/b for

m, n = 0,1,2, . . . but (m,n) 6= (0,0).

10µ0 = 4π×10−7H.m−1(V.s.A−1.m−1)
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The T Mmn mode field equations are given by,

Ey(y,z) =−
mπ

a
α

(mπ

a )2 +(nπ

b )2 e−αxBmncos(
mπ

a
y)sin(

nπ

b
z)eiωtV.m−1 (44)

Ez(y,z) =−
nπ

b
α

(mπ

a )2 +(nπ

b )2 e−αxBmnsin(
mπ

a
y)cos(

nπ

b
z)eiωtV.m−1

Ex(y,z) = e−αxBmnsin(
mπ

a
y)sin(

nπ

b
z)eiωtV.m−1,

and

Hy(y,z) =
nπ

b
iωε0

(mπ

a )2 +(nπ

b )2 e−αxBmnsin(
mπ

a
y)cos(

nπ

b
z)eiωtA.m−1

Hz(y,z) =−
mπ

a
iωε0

(mπ

a )2 +(nπ

b )2 e−αxBmncos(
mπ

a
y)sin(

nπ

b
z)eiωtA.m−1

Hx = 0,

where Bmn has the same unit as the electric field intensity V.m−1 , ε0 is the vacuum per-
mittivity11, β = kx, ky = mπ/a and kz = nπ/b for m, n = 1,2, . . .

The electric and magnetic field functions at the aperture of the first waveguide for
both T E10 and T M11 modes shall be explored. T M11 mode being the first T M evanescent
mode and gives an example of T Mmn modes is considered, though T Mmn modes do not
propagate inside the antenna, but they can be excited at the antenna mouth and thus have
to be included in wave-plasma coupling calculations.

The power spectrum depends on the phase between successive waveguides [50,
57]. Consider N waveguides with a successive phase difference of Φ among adjacent
waveguides juxtaposed periodically in the z direction as shown in Fig. 14 with period ∆.

Assuming a zero phase in the first waveguide taken as reference waveguide (Fig.
14), the Ez component of the magnetic field in the pth waveguide is given by

Ez,p(y,z) = Ez,re f (z− (p−1)∆)eiΦp , (p−1)∆≤ z≤ (p−1)∆+b

11ε0 ≈ 8.854×10−12F.m−1(A.s.V−1.m−1)
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where Ez,re f is the electric field in the reference waveguide starting at z = 0 for 0≤ z≤ b,
and eiΦp = e−i(p−1)Φ. Hence the total electric field becomes

Ez,tot(y,z) =
p=N

∑
p=1

θIp(z)Ez,p, (45)

where Ez,tot is the electric field at z for 0 ≤ z ≤ (N − 1)∆+ b, and θIp is the box car
function12 such that

θIp(z) = H(z− (p−1)∆)×H((p−1)∆+b− z)

where H(z) is the Heaviside function defined by

H(z) =

{
1 i f z≥ 0
0 i f z < 0

The T E10 mode field equations at the first reference waveguide become after
normalizing with respect to the maximum amplitude of the Hx magnetic field : (ky =
π/a, kz = 0)

Ex(y,z) = Ey(y,z) = 0,

Ez(y,z) =−
iωµ0a

π
×1(A.m−1)× sin(

π

a
y)eiωtV.m−1, (46)

and

Hx(y,z) = cos(
π

a
y)eiωtA.m−1,

Hy(y,z) =
iβa
π

sin(
π

a
y)eiωtA.m−1,

Hz(y,z) = 0.

Hence, the Ez component at the Grill given by Eqs. 45 and 46 is,

Ez,T E10(y,z) =
ωµ0a

π
sin(

π

a
y)

p=N

∑
p=1

θIp(z)sin(ωt− (p−1)Φ)V.m−1.

12θIp =

{
1 i f z ∈ Ip, Ip = [(p−1)∆,(p−1)∆+b]

0 otherwise.
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Similarly, the T M11 mode field equations at the aperture of the first wave guide
are given after normalizing with respect to the maximum amplitude of the Ex magnetic
field for the first reference waveguide,

Ex(y,z) = sin(
π

a
y)sin(

π

b
z)eiωtV.m−1,

Ey(y,z) =−
π

a
α

(π

a )
2 +(π

b )
2 cos(

π

a
y)sin(

π

b
z)eiωtV.m−1

Ez(y,z) =
π

b
−α

(π

a )
2 +(π

b )
2 sin(

π

a
y)cos(

π

b
z)eiωtV.m−1 (47)

and

Hx(y,z) = 0,

Hy(y,z) =
π

a
iωε0

(π

a )
2 +(π

b )
2 ×1(V.m−1)× sin(

π

a
y)cos(

π

b
z)eiωtA.m−1

Hz(y,z) =−
π

a
iωε0

(π

a )
2 +(π

b )
2 ×1(V.m−1)× cos(

π

a
y)sin(

π

b
z)eiωtA.m−1.

Hence, the Ez component at the Grill given by Eqs. 45 and 47 is,

Ez,T M11(y,z)=−
π

b
α

(π

a )
2 +(π

b )
2 sin(

π

a
y)

p=N

∑
p=1

θIp(z)cos(
π

b
(z−(p−1)∆))cos(ωt−(p−1)Φ)V.m−1.

The patterns of the electric field component Ez corresponding to T E10 and T M11
modes for different instants of time for Φ = π/2 are given in Figs. 15 and 16 respectively.
Figs. 15 and 16 show standing waves at a fixed y with a pattern that repeats itself each
four waveguides due to taking Φ = π/2 and since the modes are harmonic functions in z.
Note that

|
Ez,T E10,max

Ez,T M11,max
|=((

π

a
)2+(

π

b
)2)

abωµ0×1(A.V−1)

απ2 =
ωµ0[a2 +b2]×1(A.V−1)

abα
= 1.13×103
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Figure 14: The Grill

where

α =

√
[(

π

a
)2 +(

π

b
)2]− k2 = 66.6 rad.m−1.

Hence it is verified that the Ez amplitude of the T E10 mode is much higher than
that of the T M11 mode, thus it matches very well with the plasma fields.

2. Parallel Plate Wave Guide

This study mainly deals with a parallel plate waveguide since it models an an-
tenna infinite in one dimension. 0y axis is taken as the infinite dimension as shown in Fig.
59 due to assuming plasma homogeneous in the y direction. Consequently, ky = 0. As
discussed in Appendix B., the field modes that exist inside this waveguide are the T EM
mode which has a zero cut-off frequency, and the T En and the T Mn modes (n > 0) which
have a cut-off frequency

fcn =
n× c
2b

. (48)

Since for b = 3.4 cm, fcn = n×4.41 GHz, at 3.7 GHz frequency the T Mn and T En modes
are evanescent.

The field equations for the T EM mode in the first waveguide with a zero phase,
are given by Appendix B.

Ey = Ex = Hz = Hx = 0

Ez(x) =−
An

b
ei(ωt−βx)V.m−1 (49)
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Figure 15: Ez of T E10 for a = 7.2 cm , b = 3.4 cm, at y = 3.6cm and for
∆ = b+0.4235 cm with 6 output ports evolving in time

(t = π/8ω (red), π/8ω +π/16ω (blue), π/4ω (green), π/4ω +π/16ω (black) left to
right, top to bottom) (Φ = π/2)
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Figure 16: Ez of T M11 for a = 7.2cm, b = 3.4 cm, at y = 3.6cm and for
∆ = b+0.4235 cm with 6 output ports evolving in time

(t = π/8ω (red), π/8ω +π/16ω (blue), π/4ω (green), π/4ω +π/16ω (black) left to
right, top to bottom)(Φ = π/2)
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Hy(x) = x̂× 1
η0

ẑEz =
An

bcµ0
ei(ωt−βx)A.m−1.

where An in V is the maximum value of the potential difference between the plates, β =
2π/λ0, η0 is the wave impedance in vacuum and c is the speed of light in vacuum.

Hence, the Ez component at the Grill given by Eqs. 45 and 49 after normalizing
with respect to An,

Ez,T EM(z) =−1
b

p=N

∑
p=1

θIp(z)cos(ωt− (p−1)Φ)V.m−1.

Referring to Appendix B., the field equations for an evanescent T Mn mode in the first
waveguide with a zero phase, are given by

Ey = Hx = Hz = 0

Ex(x,z) = Bne−αxsin(
nπz

b
)eiωtV.m−1 (50)

Ez(x,z) =−
αb
nπ

e−αxBncos(
nπz

b
)eiωtV.m−1 (51)

Hy(x,z) =
iωε0b

nπ
e−αxBncos(

nπz
b

)eiωtA.m−1 (52)

where Bn is in V.m−1 and α =
√
(nπ

b )2− k2 rad.s−1.

Hence, the Ez component at the Grill given by Eqs. 45 and 51 after normalizing
with respect to the maximum amplitude of the Ex electric field for the first reference
waveguide,

Ez,T M1(x,z) =
−αb

π

p=N

∑
p=1

θIp(z)cos(
π(z− (p−1)∆)

b
)cos(ωt− (p−1)Φ)V.m−1.

The T Mn modes are considered rather than the T En modes though both are
evanescent, since T En modes have zero Ez (Appendix B..) which corresponds to fast
waves which are strongly damped in edge plasma.

The dominant T EM mode and the evanescent T M1 fields are obtained for the
adjacent waveguides with a phase difference Φ and periodicity ∆. Figs. 17 and 18 show
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the electric field component Ez of the T EM and T M1 modes in front the Grill (x > 0)
respectively. These modes show periodic patterns over each four waveguides since Φ is
chosen to be π/2. Comparing the Ez amplitudes of the T EM and T M1modes, for

α =

√
(
π

b
)2− k2 = 50.32 rad.s−1,

gives

|
Ez,T EM,max

Ez,T M1,max
|= π×1m

αb2 = 54.

Note that the T EM mode Ez is one order higher than that of the T M1 as shown in Figs.
17 and 18.

Since a parallel plate wave guide characterized by ky = 0, models the assumption
that the plasma is homogeneous in the y direction (2-D theory), the T EM mode is con-
sidered for the calculation of the power spectrum being the dominant mode. It is deduced
from the above that the electric field corresponding to the dominant T EM mode has only
Ez component varying as a standing wave independent of y with amplitude that is two
orders higher than that of the first evanescent T M1 (considered since it could be excited
a the antenna mouth). In the following chapter, the power spectrum radiated by an array
of waveguides at x = 0, shall be calculated assuming only T EM Ez electric field. The
electric field obtained constitutes an initial condition for solving Eq. 40.

D. Radiated Power Spectrum By a Conventional Grill

The antenna is designed to launch a slow wave (nz > 1) characterized by Ey = 0.
It is placed into the plasma chamber some centimeters away from the wall so that the EM
waves are not reflected by the slow wave cut-off and the density satisfies the over dense
regime rendering WKB approximation valid .

Assuming that the radiated electric field is the Ez corresponding to the T EM
mode, the effect of having a progressive phase difference between the excited waves in
the adjacent wave guides of the Grill on controlling the power spectrum as a function of
nz will be shown.

Let Φ be the phase difference between the excited fields at the output of each
wave guide as shown in Fig. 14. The position of the wave guide zp, and it’s phase are
measured with respect to the first wave guide.

Let zp = (p−1)∆, and ΦP =−(p−1)Φ for p = 1, . . . ,N, where ∆ is the periodic
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Figure 17: Ez of T EM mode in a parallel wave guide of width b = 3.4cm and
∆ = b+0.4235 cm with 6 output ports evolving in time

(t = π/8ω (red), π/8ω +π/16ω (blue), π/4ω (green), π/4ω +π/16ω (black) left to
right, top to bottom)(Φ = π/2)
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Figure 18: Ez of T M1 mode of a parallel plate waveguide for b = 3.4 cm and
∆ = b+0.4235 cm, Φ = π/2 with 6 output ports evolving in time

(t = π/8ω (red), π/8ω +π/16ω (blue), π/4ω (green), π/4ω +π/16ω (black) left to
right, top to bottom)(Φ = π/2)
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distance between the waveguides in z direction and N is the number of the waveguides.
Having the electric field normalized to maximum amplitude, let’s take it’s Fourier trans-
form along the parallel z dimension of the Grill,

Ez(0,nz) =
N

∑
p=1

zp+bˆ

zp

Ezp(0,z)einzk0z[e−inxk0x +ρeinxk0x]dz,

where Ezp(0,z) = eiΦp due to uniform excitation of the Grill and ρ is the reflection coef-
ficient. Hence at x = 0 and neglecting reflections,

Ez(0,nz) = beinzk0b/2sinc(nzk0b/2)
N

∑
p=1

eiφ , (53)

where φ = nzk0∆−Φ, and

sinc(nzk0b/2) =
sin(nzk0b/2)

nk0b/2
.

Knowing that
N

∑
p=1

ei(p−1)φ = {
sin(Nφ/2)
sin(φ/2) ei(N−1)φ/2

N f or φ = 0,2π,

the module of the radiated power density per unit length becomes,

dP
dnz

=
Y0

λ0
|Ez(0,nz)|2 = (Y0/λ0)b2sinc2(nzk0b/2)(

sin(Nφ/2)
sin(φ/2)

)2W.m−1. (54)

where λ0 is the wavelength in free space (λ0 = 2π/k0). The obtained power density as
a function of nz for a phase difference of π/2 is shown in Fig. 19. Note that the sinc
function describes the envelop where the maxima and minima are given by the sinusoidal
functions in φ .

Since φ is centered at

nz,0 = φ/∆k0 = φλ0/(∆×2π),

(k0 is the module of the wave vector ) the power density attains it’s peak at nz,0, but it is
important to ensure it’s not symmetric in nz, so that the net current is not zero.

The maxima are attained at φ/2 = πl, for l = 0,±1,±2 etc . . . So the first
maxima for positive and negative nz are for l = 0, and l = −1, that is for nz,0 and
nz,0− = nz,0(1− 2π/φ). For achieving CD, the values of φ are chosen to ensure non-
symmetric lobes at nz,0 and nz,0− .

Regarding the width of the main peak taken at the values at which the power
spectrum is half its maximum value. Eq. 54, gives
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∆nz =
λ0

L
, (55)

where L is the width of the Grill along z.

Also, the zeros of the power spectrum situated around the maxima are given by
Nφ/2 = lπ±π = (l±1)π for l = mN for some integer m.

Therefore nz = ((2π/N)+φ)/k0∆ is a minimum corresponding to the first prin-
cipal lobe, and the distance between a maximum and a minimum of a lobe is concluded
to be λ0/N∆. The latter is less than ∆nz, since L < N∆.

Note that Eq. 55 indicates that the width of the nz spectrum is inversely propor-
tional to the width of the Grill and therefore the toroidal number of waveguides in the
Grill. On the other hand, power should be maximized to achieve CD. Consequently, N∆

is increased by adding more wave guides in the toroidal direction. However the power
density cannot be maximized above certain threshold at which deleterious effects appear.
These include RF break down in the waveguides and non-linear effects such as density
modification due to ponderomotive force [57, 55, 51, 52].

Note that the power amplitude and the number and position of the lobes change
with φ , the number of the waveguides and ∆. Fig. 19 shows the power spectrum density
for φ = π/2, b = 34 mm, ∆ = b+4.235 mm and for N = 8 (solid line) and N = 24 (dashed
line). The peak is obtained at nz,0 ∼= 0.5 for both values of N; however to obtain a peak at
nz ∼= 2, ∆ ' 1 is chosen. Fig. 20 shows how the antenna nz,0 and directivity change with
∆ and φ respectively.

Having given an idea about the dependence of the power spectrum on nz and the
effect of choosing the phase difference between the wave ports on controlling the power
spectrum and thus the created current, let’s elaborate on the an important parameter that
is used to find the nz spectrum which is the antenna-plasma surface admittance Ys(nz).

E. Admittance of Plasma Surface In Front The Antenna

Efficiency of coupling of the electromagnetic waves to plasma is measured by
the capacity to transmit the maximum power available at the generators to the plasma
without reflection. Matching of the antenna impedance to the plasma could be artificially
done from outside but it leads to increasing the electric field and the power density which
is not desirable due to causing deleterious effects. Launching slow waves (nz > 1) is
done by introducing a phase difference between the consecutive waveguides, but in this
case N(N + 1) parameters are to be controlled due to strong coupling between the N
waveguides. This imposes difficulty in controlling the matching system by conventional
ways. Hence, it is necessary to derive Ys(nz), the plasma surface admittance, in order to
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Figure 19: Power Spectrum Density: 8 waveguides (solid line) and 24 waveguides
(dashed line)

study antenna-plasma coupling[51, 52]. Ys(nz) is a function of edge plasma characteristics
including density and density gradient. Suppose that the density increases linearly in front
the antenna aperture at x = 0, where it is zero for x < 0, i.e inside the antenna as shown in
Fig. 13. Ys(nz) is by definition

Ys(nz) =−
1
Y0

[Hy/Ez]ξ=ξ0

where ξ0 = k0x|x=0 = 0. Ys(nz) shall be developed explicitly.

First Eq. 63 is used since it relates Ez to Hy, thus

Ex

Ez
=

1
S
(−iDEy/Ez +nzZ0Hy/Ez), (56)

hence when substituting Eq. 31, Eq. 56 becomes

−1
jnz

[
∂

∂ξ
Ez− iZ0Hy]

1
Ez

= (−iD/SEz)Ey +(nzZ0/S)Hy/Ez,

therefore

i
nzEz

∂

∂ξ
Ez− (1/nz)Ys = (−iDEy/SEz)− (nz/S)Ys.

In conclusion

Ys =
1

(n2
z −S)

[−inzD
Ey

Ez
− i

S
Ez

∂

∂ξ
Ez]ξ=ξ0

. (57)
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In front the antenna the density is close to nc, hence Eqs. 23, 22, and 24 simplify
to S≈ 1, D≈ 0, and P = 1−ω2

pe/ω2 as shown in Appendix B. Eq. 57 becomes

Ys =
1

(n2
z −1)

[−i
1
Ez

∂

∂ξ
Ez]ξ=ξ0

. (58)

Having to find the electric field Ez differential equation of the slow wave, Eqs.
31, 63, and 33 are used to obtain

∂

∂ξ
Ez = iZ0Hy− i(n2

z/S)(Z0Hy) = iZ0Hy− i(n2
z )(Z0Hy).

So,

∂ 2

∂ξ 2 Ez = iPY0Ez(iZ0− i(n2
z/S)Z0) = Ez(−P)(

n2
z

S
−1) = Ez(−P)(n2

z −1)

Letting χ(ξ ) = ω2
pe/ω2 = n/nc,

∂ 2

∂ξ 2 Ez = Ez[χ(ξ )−1](n2
z −1). (59)

Using Taylor expansion to the first order (linear expansion),

χ(ξ ) =
∂

∂ξ
χ|ξ=ξ0

(ξ −ξ0)+χ0 = χ0[
(ξ −ξ0)

Λ0
+1]

where
1

Λ0
=

1
χ0

(
dχ

dξ
)ξ=ξ0

=
1
nc

∂

∂ξ
n× nc

n0
=

1
n0

∂

∂ξ
n.

Hence
[χ(ξ )−1](n2

z −1) =
χ0

Λ0
(ξ −ξ0 +Λ0−

Λ0

χ0
)(n2

z −1).

Let β0 = ξ0−Λ0(1−1/χ0) = ξ0−Λ0(1−nc/n0), then

[χ(ξ )−1](n2
z −1) =

χ0

Λ0
(n2

z −1)(ξ −β0).

Applying a change of variable

η = [− χ0

Λ0
(n2

z −1)]1/3(ξ −β0),

dξ/dη = (ξ −β0)/η ,
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thus
∂

∂η
Ez = (

ξ −β0

η
)

∂

∂ξ
Ez,

Therefore Eq. 59 gives

∂ 2

∂η2 Ez = [
∂

∂η
(
ξ −β0

η
)]

∂

∂ξ
Ez +(

ξ −β0

η
)(

∂

∂η
)

∂

∂ξ
Ez

= [
1
η

∂ξ

∂η
+(ξ −β0)

∂

∂η

1
η
]

∂

∂ξ
Ez+(

ξ −β0

η
)2 ∂ 2

∂ξ 2 Ez

= [
ξ −β0

η2 − (ξ −β0)
1

η2 ]
∂

∂ξ
Ez(

ξ −β0

η
)2 ∂ 2

∂ξ 2 Ez

=(
ξ −β0

η
)2 ∂ 2

∂ξ 2 Ez (60)

Therefore Eq. 59 becomes
∂ 2

∂η2 Ez = ηEz,

known as Airy differential equation that has Airy functions Ai(η) and Bi(η) as solu-
tions.13

Now, since η and ξ may not have same sign depending on the value of nz, the
solution shall be derived in both regions: |nz|< 1, and |nz|> 1. For |nz|< 1, the wave is
evanescent. Also note that as ξ → ∞, η → ∞ so Ai(η) is chosen as a solution, that is Eq.
58 becomes

Ys =
i

(1−n2
z )

2/3 (
A
′
i(η0)

Ai(η0)
)[

χ0

Λ0
]1/3,

where

η0 = [− χ0

Λ0
(n2

z −1)]1/3(ξ −β0)|ξ=ξ0
= (

(1−n2
z )n0

nc
)1/3

Λ
2/3
0 (1− nc

n0
).

13When η > 0, Ai(η)> 0 and forms a convex curve that decreases exponentially to zero, while Bi(η)> 0
and forms a convex curve that increases exponentially.

When η < 0, both oscillate around zero with increasing frequency and decreasing amplitude.
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The fact that for |nz| < 1, Ys is purely imaginary, means that no power is transmitted to
the plasma since the wave does not propagate.

However, for |nz| > 1, there are propagating and evanescent waves hence Ez
should be complex. Since for ξ → ∞ (η →−∞) the solution satisfies the condition of
having the phase velocity in the positive x direction knowing that radial group velocity
vgx > 0, we deduce that Ez ∝ Ai(η)− iBi(η).

Ys =
i

(n2
z −1)2/3 (

A
′
i(η0)− iB

′
i(η0)

Ai(η0)− iBi(η0)
)[

χ0

Λ0
]1/3 (61)

where

η0 =−(
(n2

z −1)n0

nc
)1/3

Λ
2/3
0 (1− nc

n0
).

The elementary components for the calculation of the power spectrum in front
the antenna are the electric field launched by the waveguides which is a combination
of propagating and evanescent modes and the antenna-plasma surface admittance Ys(nz).
Now, the Multipole theory of the Grill shall be developed. It constructs the scattering
matrix that relates the incident and reflected modes taking into account the structure of
the Grill. Subsequently, the power spectrum dP/dnz is calculated more rigorously.

F. Multipole Theory of The Grill

The Grill being the plane formed by the antenna front, constitutes along with the
plasma facing it a high frequency (HF) multipole. This multipole is made of N divisions
corresponding to the N waveguides that form the antenna (considered active for now).
Recall that the antenna waveguides are taken infinite in the y direction. Since only slow
waves are considered, existing modes would be the dominant T EM mode and the family
of evanescent T M modes as explained in Appendix B. The scattering matrix describes the
coupling between the different modes in different waveguides at x = 0, and constitutes a
key factor in studying the coupling efficiency of the Grill [51, 58].

1. Scattering Matrix

We denote the incident and reflected voltages by V ′ and V ′′ respectively. The
voltage is a quantity that can be measured thus it is considered. The scattering matrix L
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relating the incident and reflected waves voltage is given by V ′′ = LV ′, with

V ′ =
[

V
′
0

Ṽ
′

]
,

where V
′
0 is the voltage corresponding to the fundamental mode, and Ṽ

′
is that corre-

sponding to the first n T M modes and given by

Ṽ
′
=


V
′
1

V
′
2

...

V
′
n

 .

Similarly,

V ′′ =
[

V
′′
0

Ṽ
′′

]
,

where V
′′
0 is the T EM mode reflected voltage and

Ṽ
′′
=


V
′′
1

V
′′
2

...

V
′′
n


corresponding to the first n reflected T M modes (The total number of modes is n+1).

Note that V
′
0, V

′
n, V

′′
0 and V

′′
n are vectors of dimension N corresponding to the N

output ports of the Grill. In brief, each mode is considered for the incident wave at the N
ports and also in the reflected wave at the N ports.

For the simple case for which the fundamental T EM mode is the only incident
wave considered at the N ports,

[
V
′′
0

Ṽ
′′

]
=

[
S00

R̃n0

]
.V
′
0, (62)

with S00 is the transfer matrix such that S00
pq represents the reflected T EM mode electric

potential at port p induced by the incident T EM mode electric potential of unit amplitude
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at port q, and

R̃n0 =


R10

R20

...
Rn0

 ,
where Rm0 (1≤m≤ n), are N×N square matrices such that the entity Rm0

pq represents the
reflected m mode electric potential at port p, induced by the incident electric potential of
unit amplitude at port q.

The fundamental T EM mode incident and reflected electric fields at a port p are
given in terms of the incident and reflected potential differences across the plates of the
first waveguide by the relation

V (x) =
ˆ b

0
Ez(x,z).dz

where b is the z dimension of a waveguide and the remaining electric field components
Ex and Ey are related to the electric potential since they are related to Ez as shown in
Appendix B.. Therefore for the T EM mode, Ex = Ey = 0, Ez = Φ0V0(x) with

V0(x) =V
′
0e−ik0x +V

′′
0eik0x

where V
′
0e−ik0x represents the incident wave propagating along the (+) 0x axis from the

antenna towards the plasma and V
′′
0eik0x represents the reflected wave propagating along

the (−) 0x axis from the plasma towards the antenna. Also, the T EM magnetic field is
given by Hy =−Φ0I0(x) with

I0(x) = Y0(V
′
0e−ik0x−V

′′
0eik0x)

where Φ0 =
√

1/b and I0 is the current created by V0.

Similarly, the T Mn electric field generated at the waveguide mouth is given by

En
x =

inπ

Y0k0b
Φ
′
n(z)I

n
x (x) (63)

where Φ
′
n(z) =−

√
2
bsin(nπz/b),

En
y = 0

En
z (x,z) = Φn(z)Vn(x), (64)
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where k0 = 2π/λ0 is the wave vector in vacuum, and kn =
√

k2
0−n2π2/b2 is the propa-

gation constant of the T Mn mode.

Vn(x) = Yn(V
′
ne−iknx +V

′′
neiknx)

and

In
x (x) = Yn(V

′
ne−iknx−V

′′
neiknx).

Also,

Φn =

√
2
b

cos(
nπz

b
) (n = 1,2, . . .∞)

are the characteristic functions of field variation in the direction transverse to 0x. Note the
characteristic functions are orthogonal

ˆ +∞

−∞

dy
ˆ b

0
dzΦmΦn =

{
1 i f m = n
0 i f m 6= n.

Yn is defined as the admittance of the T Mn mode given by

Yn =
k0Y0

kn
.

The magnetic fields of the T Mn modes are given by Hn
x = 0, Hn

z = 0 and Hn
y =

−Φn(z)In(x).

Actually these formulas satisfy the relations for T Mn modes derived in Appendix
B..

The total electric field at port p is the sum of all incident and reflected modes at
x = 0. So,

Ezp = Φ0(V
′
0
p +V

′′
0
p )+

∞

∑
n=1

Φn(ξ )(V
′
n
p +V

′′
n
p ) (65)

and

Hyp =−Y0Φ0(V
′
0
p −V

′′
0
p )−

∞

∑
n=1

YnΦn(ξ )(V
′
n
p −V

′′
n
p ) (66)

where 0≤ ξ ≤ b .

So, the power flux of an m mode going out of a square with dimension 1 in the y
direction14 and b in the z direction is given by

14The power flux is calculated for a square of dimension 1 in the y direction since the antenna is infinite
in this direction.
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Pm =Vm(x)I∗m(x).

The general case for Eq. 62 is such that all T Mn modes are considered, so

L =

[
S00 ˜R0n

˜Rn0 ˜̃Rmn

]
, (67)

where S00 ˜,R0n, ˜Rn0, ˜̃Rmn are defined as follows:

1. The scattering matrix among waveguides’ ports corresponding to the fundamental
mode.

S00

(N×N)
=


S00

11 S00
12 . . . S00

1N
S00

21 S00
22 · · · S00

2N
...

S00
N1 S00

N2 . . . S00
NN

 (68)

It is symmetric since S00
pq represents the reflected T EM mode electric potential at port p

induced by the incident T EM mode electric potential of unit amplitude at port q, and S00
qp

represents the reflected T EM mode electric potential at port q induced by the incident
T EM mode electric potential of unit amplitude at port p.

1. ˜R0n
(N×nN)

=
[

R01 R02 . . . R0n
]

is the scattering (transfer) matrix corresponding

to higher modes induced by the fundamental mode excited at the ports, with

R0m

(N×N)
=


R0m

11 R0m
12 . . . R0m

1N
R0m

21 R0m
22 R0m

2N
...

R0m
N1 R0m

N2 . . . R0m
NN



2. ˜Rn0
(nN×N)

=


R10

R20

...
Rn0

 is the scattering (transfer) matrix corresponding to the funda-

mental mode induced by higher modes excited by the ports, with

Rm0

(N×N)
=


Rm0

11 Rm0
12 . . . Rm0

1N
Rm0

21 Rm0
22 Rm0

2N
...

Rm0
N1 Rm0

N2 . . . Rm0
NN


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3. ˜̃R
(nN×nN)

=


R11 R12 . . . R1n

R21 R22 . . . R2n

...
Rn1 Rn2 · · · Rnn

 is the scattering matrix among waveguides’ ports

corresponding to the T Mn modes with

Rms

(N×N)
=


Rms

11 Rms
12 . . . Rms

1N
Rms

21 Rms
22 Rms

2N
...

Rms
N1 Rms

N2 . . . Rms
NN



where the entity Rmn
pq represents the ratio of the induced m mode electric potential at port

p, by the incident n mode electric potential of unit amplitude at port q.

So, for N ports, and n modes other than the fundamental mode, the electromag-
netic fields could be written in vector form,

Ez =



Ez1

Ez2
...

Ezp
...

EzN


, which gives using Eq. 65

Ẽz(ξ ) =

[
Φ0I

Φ̃(ξ )I

]T

.

[
V
′
0 +V

′′
0

Ṽ
′
+Ṽ

′′

]
(69)

where

Φ̃(ξ ) =



Φ1(ξ )I
Φ2(ξ )I

...
Φp(ξ )I

...
Φn(ξ )I


and I is the unit square matrix of dimension N. Also

Hy =



Hy1

Hy2
...

Hyp
...

HyN


((n+1)N×1)

,
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which gives using Eq. 66

H̃y(ξ ) =−Y0

[
Φ0I

Φ̃(ξ )I

]T

((n+1)N×1)
.

[
I 0
0 ˜̃Yb

]
.

[
V
′
0−V

′′
0

Ṽ
′−Ṽ

′′

]
((n+1)N×1)

(70)

where

˜̃Yb =


(Y1/Y0)I 0 0 0

0 (Y2/Y0)I 0 0
. . .

0 0 0 (Yn/Y0)I


(nN×nN)

is a diagonal matrix corresponding to the T Mn modes (n ≥ 1). All terms are pure imag-
inary when these modes are evanescent, more explicitly when b > λ0 all T Mn modes do
not propagate.

Recall Lorentz reciprocity theorem explained in [59]
ˆ

S
(E1×H2−E2×H1).n̂dS = 0, (71)

where S is in this case an infinite plane along y0z, and n is a normal unit vector along x.

So, if E1 is the incident fundamental mode at port p of unit amplitude (V
′
0
p = 1),

E2 is the incident T Mn mode at port q of unit amplitude (V
′
n
q = 1), H1is the reflected

T Mn mode at port q induced by the fundamental mode at port p , and H2 is the reflected
fundamental mode at port p induced by T Mn mode at port q, and knowing that

R0n
pq =

V
′′
0
p (induced byV

′
n
q )

V
′
n
q

,

and

Rn0
qp =

V
′′
n
q (induced byV

′
0
p )

V
′
0
p

,

then by Eq. 71

R0n
pq = Rn0

qp(
Yn

Y0
).

Hence ˜R0n = ˜Rn0T ˜̃Yb.

Using Eq. 67,
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V ′′0 = S00V ′0 + ˜R0nṼ ′,

and
Ṽ ′′ = ˜Rn0 + ˜̃RṼ ′′.

Thus Eq. 69 becomes

Ẽz(ξ ) =

[
Φ0I

Φ̃(ξ )I

]T
[

I ˜Y 0n

˜Y n0 ˜̃I

][
V 0

Ṽ

]
, (72)

also Eq. 70 becomes

H̃y(ξ ) =−Y0

[
Φ0I

Φ̃(ξ )I

]T [ I 0
0 ˜̃Y

][
Y 00 ˜−Y 0n

˜−Y n0 ˜̃Y

][
V 0

Ṽ

]
, (73)

where the reduced admittance matrices are given by

Y 00 = (I−S00)(I +S00)−1 ˜̃Y = ( ˜̃I− ˜̃R)( ˜̃I + ˜̃R)−1 (74)

˜Y n0 = ˜Rn0(I +S00)−1 ˜Y 0n = ˜R0n( ˜̃I + ˜̃R)−1. (75)
˜̃I is nN×nN unit matrix and V 0 and Ṽ are the total electric potentials:

V 0 = (I +S00)V
′
0 Ṽ = ( ˜̃I + ˜̃R)Ṽ

′
(76)

2. Radiated Complex Power

The complex power radiated towards the plasma by the Grill per unit length in y
direction is calculated

dP
dy

= Y0

ˆ 1

0
dy
ˆ a

0
H̃†

y (ξ ).Ẽz(ξ )dξ ,

Eqs. 72 and 73 are substituted where orthogonality of eigenfunctions Φn is used to obtain,

P = Y0

[
V 0

Ṽ

]†
[

Y 00† ˜−Y n0†. ˜̃Y ∗b .
˜Y n0 Y 00†. ˜Y 0n− ˜Y n0†. ˜̃Y ∗b

− ˜Y 0n† +
˜̃

Y †. ˜̃ .Y ∗b
˜Y n0 − ˜Y 0n†. ˜Y 0n +

˜̃
Y †. ˜̃Y ∗b

][
V 0

Ṽ

]
.
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3. Electromagnetic Fields Radiated into The Plasma

Beyond the ports of the antenna (x = 0+), the electromagnetic fields are consid-
ered as a superposition of infinite continuum of plane waves of indices of propagation
nx in the 0x direction and nz in the z directions. So, the electromagnetic fields could be
written as function of nx by integrating over nz as follows, Ey = Hx = Hz = 0,

Ex =−
1
λ0

ˆ +∞

−∞

e−inzk0zV (nz)

nx
[e−inxk0x−ρs(nz)einxk0x]dnz,

Ez =
1
λ0

ˆ +∞

−∞

e−inzk0zV (nz)[e−inxk0x +ρs(nz)einxk0x]dnz,

and

Hy =−
Y0

λ0

ˆ +∞

−∞

e−inzk0zV (nz)

nx
[e−inxk0x +ρs(nz)einxk0x]dnz,

where

ρs(nz) =
1−nxYs(nz)

1+nxYs(nz)
,

where Ys(nz) is defined by Eq. 57.

Using Parseval’s theorem, radiated power at x = 0+is given by

P =
Y0

λ0

ˆ +∞

−∞

Ēz(0,nz).Ē∗z(0,nz)Y ∗s (nz)dnz, (77)

knowing that Ēz(0,nz) is the Fourier transform of the tangential electric field at at x = 0,

Ēz(0,nz) =V (nz)[1+ρs(nz)] =

ˆ +∞

−∞

Ez(0,z)einzk0zdz (78)

4. Continuity of The Electric Field

The fact that the tangential electric is continuous at the interface between the
output ports and the plasma, shall be employed to deduce the elements of Grill transfer
matrix. First, the Ez Fourier transform in z is used, such that Ez(0,z) integrated between z
and zp in Eq. 78 is written as Ezp, i.e Ezp is the tangential electric field at port p.
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Ēz(0,nz) =
N

∑
p=1

einzk0zp

ˆ zp+b

zp

Ezp(z− zp)einzk0(z−zp)dz

Apply change of variable z− zp = ξ with 0≤ ξ ≤ b, and rewrite Eq. 72,

Ēz(0,nz) = (einzk0zp)T

[ ´ b
0 Φ0einzk0ξ dξ´ b

0 Φ̃(ξ )einzk0ξ dξ

]T [
I ˜Y 0n

˜Y n0 ˜̃I

][
V 0

Ṽ

]
,

where einzk0zp =


einzk0z1

einzk0z2

...
einzk0zN

z1,z2, · · · ,zN are the abscissa of the output ports. Let

G0(nz) = Φ0

ˆ b

0
einzk0ξ dξ =

√
1

k2
0b

einzk0b−1
inz

.

Designate G0(nz) = G0(nz)× I(N×N). Also, let

G̃(nz)(nN×N) =

ˆ b

0

˜Φ(ξ )einzk0ξ dξ =


G1(nz).I

...
Gm(nz).I

...
Gn(nz).I

 ,
where

Gm(nz) =

√
2

k2
0b

nz[(−1)meinzk0b−1]

i(n2
z − m2π2

k2
0b2 )

.

Therefore,

Ēz(0,nz) = (einzk0zp)T
[

G0(nz)
G̃(nz)

]T
[

I ˜Y 0n

˜Y n0 ˜̃I

][
V 0

Ṽ

]
. (79)

5. Complex Power Radiated By Plane Waves

Replacing Ēz(0,nz) given by Eq. 79 in the power formula in Eq. 77 yields,

P = Y0

[
V 0

Ṽ

]†
[

I ˜Y n0†

˜Y 0n† ˜̃I

]



CHAPTER III. LH WAVE COUPLING THEORY 54

[
λ
−1
0
´ +∞

−∞
Y ∗s (nz)|G0(nz)|2e(nz)dnz λ

−1
0
´ +∞

−∞
Y ∗s (nz)G

†
0 (nz)e(nz)G̃(nz)

T dnz

λ
−1
0
´ +∞

−∞
Y ∗s (nz)G̃∗(nz)e(nz)G0(nz)dnz λ

−1
0
´ +∞

−∞
Y ∗s (nz)G̃∗(nz)e(nz)G̃(nz)

T dnz

]

[
I ˜Y 0n

˜Y n0 ˜̃I

][
V 0

Ṽ

]
. (80)

where e(nz) is an Nth order hermitian square matrix with

epq(nz) = e−inzk0(zp−zq),

and zp and zq are the respective abscissas of the pth and qth waveguides. Now a reduced
form of the admittance matrices could be defined.

a. Application of Transfer Matrix Notion

The multipole theory of the Grill simplifies deducing the reflection coefficients as
seen by the wave guides for arbitrary amplitude and phase of incident waves. Practically,
the generators are connected at a distance from the Grill-plasma interface through long
wave guides to assure almost total attenuation of evanescent higher modes. Moreover, the
reflection coefficients at the Grill output ports would be seen by the generators as uniquely
dependent on S00, the fundamental element of the transfer matrix.

As reported in [51, 52], experiments show that for large number of wave guides
(N ≥ 10), all except the two guides at the extremities have the same intrinsic reflection
coefficient ρ0 (the diagonal elements of S00). However, the internal coupling coefficient
tn (n = 1,2, · · · ,N/2)15 between any two central guides does not depend on the distance
separating them, nevertheless it decays rapidly such that |tn|� ρ0 for n≥ 4. For almost all
experiments, the guides are fed by equal amplitude, voltages whose phases with arithmetic
phase difference (Φp−Φq = (p−q)Φ0).

In conclusion, all the central guides have the same reflection coefficient ρ,

ρ ∼= ρ0 +2
4

∑
n=1

tncos(nΦ0)

15For two ports separated by n− 1 waveguides, tn determines the reflection coefficient induced by one
port on the other.
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Figure 21: Grill-Plasma reflection coefficients mainly determined experimentally

Φ0 ρ '
π

3 ρ0 + t1− t2−2t3− t4
π

2 ρ0−2t2 +2t4
2π

3 ρ0− t1− t2 +2t3− t4
π ρ0−2t1 +2t2−2t3 +2t
0 ρ0 +2t1 +2t2 +2t3 +2t4 ∼=−1

Table 1: Common Reflection Coefficients in The Central Guides for a Network of Large
Number of Wave Guides (N>10)

as shown in [51].

For Φ0 = π , the power spectrum would be symmetric in nz, and results in ions
and electrons heating; on the other hand, for smaller values of Φ0, it is non-symmetric and
thus generates current drive. Also, note that for Φ0 = 0, the plasma acts like a metallic
barrier that causes total reflection.

6. Power Spectrum in nz

The power spectrum of plane waves with nz index of propagation in the direction
of toroidal magnetic field

−→
B0 (known as the spectrum in nz) and the LH frequency are the

most important parameters in heating and current drive experiments.

On one part, this spectrum should be mostly situated for nz beyond na which
is the accessibility value below which slow-fast wave mode conversion may take place.
Mode conversion happens indefinitely at between slow and fast wave at a specific density
which does not allow the wave to penetrate into the plasma. This certainly plays a major
role in minimizing power reflection. The choice of the usable range of nz is however
dependent on wether it is to heat the plasma or to drive current.
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Knowing that for |n2
z | ≤ 1, the plasma surface admittance ys(nz) is imaginary,

that is no real power is radiated towards the plasma in this range, and that the width of the
wave guides is small enough to ensure the evanescence of T Mn modes (Ṽ = 0), Eq. 80
gives

4P(nz) =
Y0

λ0
ℜ[ys(nz)]V 0†

[
|G0|2e+G∗0.e.G̃

T . ˜Y n0 + ˜Y n0†.G̃∗.e.G0 +
˜Y n0†.G̃∗.e.G̃T . ˜Y n0

]
V 04nz. (81)

Where 4P(nz) is the real power radiated into the plasma within the interval (nz, nz +
4nz).

The multipole theory allows us to separate the input voltages from the Grill part
where the incident voltage values are easily measured by non directive probes put in-
side the wave guides at a distance of λg/2 from the Grill-plasma interface. Actually the
formula in Eq. 81 serves as a picture of experimental work.

The large factor in Eq. 81 consists of four terms, of which the first term is the
main term corresponding to radiation by the fundamental mode, and describes completely
the principle lobe of the power spectrum. The remaining three terms represent the contri-
bution of higher modes which take place in the plane of discontinuity between the Guides
and the plasma. These terms yield the secondary lobes at higher values of nz.

Fortunately a small part of these waves (10% of power) are reflected at the
plasma edge. The fast ions accelerated by these waves near the plasma edge are not
sufficiently confined and thus their energy does not contribute to the core plasma. They
hit the limiter or the wall and hence increase the level of impurities.

The nz spectrum principal lobe is chosen to serve certain targets (ions and elec-
trons heating, CD). Hence the need to determine the characteristics of the antenna includ-
ing the dimensions of waveguides, N the number of waveguides, and the amplitude and
phase of incident electric field.

For simplifying the calculation in Eq. 81, we may neglect the last three terms in
the main factor in Eq. 81 to come up with a simple relation,

∆P(nz) = Y0
b
λ0

ℜ[ys(nz)]

(
sin(πnzb/λ0)

πnzb/λ0

)2

∆nz
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
N

∑
p=1
|vp|2 +

N

∑
p=1

N

∑
q=1
|vp||vq|

p6=q

cos
[
(p−q)2πnz

∆

λ0
+(ψp−ψq)

] (82)

|vp|, |vq|, ψp, ψq are the amplitudes and phases of the pth and qth guides respec-
tively.

b : width of of the waveguides

∆ : periodicity of the wave guides along z direction. ∆ = b+ d where d is the
walls thickness.

The minima and maxima as well as the width of the lobes are determined by the
main factor in Eq. 82.

The waveguides are fed by equal amplitude voltage but with a phase difference
Φ between consecutive guides.

|vp|= |vq|= · · · |vN |= 1 (ψp−ψq) = (q− p)Φ.

Let θ = 2πnz∆/λ0−Φ, then the main factor in Eq. 82 becomes

{· · ·}= N +2
N−1

∑
p=1

(N− p)cos(pθ)

= N(1+
N−1

∑
p=1

cos(pθ))− (1− cos(Nθ))
N−1

∑
p=1

pcos(pθ)+ sin(Nθ)
N−1

∑
p=1

psin(pθ) (83)

with

1+
N−1

∑
p=1

pcos(pθ) =
1
2

(
eiNθ −1
eiθ −1

+
e−iNθ −1
e−iθ −1

)
(84)

so,

|1+
N−1

∑
p=1

pcos(pθ)|= |sin(Nθ/2)
sinθ/2

|

Eqs.83 and 84 prove that the expression within parentheses in Eq. 82 has maxima of N2

at
θ = 2mπ f or m = 0,±1,±2 etc · · ·
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which gives the lobes in the power spectrum. However due to the modulation factor in
Eq. 82, these lobes decrease in amplitude with increasing m or equivalently increasing
nz. Each maximum has two minima on both sides. Minima of zero are attained when
Nθ = 2π(m±1) f or m = 0,±1,±2 etc · · ·

The two main lobes are centered at n+z and n−z given by

1. m = 0,

n+z =
Φ

2π

λ0

∆
=

Φ

k∆
.

2. m =−1,

n−z = (
Φ

2π
−1)

λ0

∆
=

Φ−2π

k∆
.

These lobes show a half power band width of λ0/L, where L is the Grill total length in
the z direction. However these lobes need not be symmetric, and thus to create a CD the
value of Φ should be specified. For Φ = π , main lobes are symmetric, but for Φ < π , a
higher lobe at a specific predetermined value of n+z could be obtained and controlling the
half power bandwidth owing to the simple formulas is also possible.

a. Power Spectrum accounting for Reflections

Given Eq. 172 and Eq. 65, and neglecting evanescent T Mn modes and scattering
from other waveguide ports, 173 gives The Fourier transfrom of Ez at x = 0,

Ez(0,nz) = beinzk0b/2sinc(nzk0b/2)
N

∑
p=1

(1+S00
pp)e

iφ (85)

where S00
pp is the scattering coefficient corresponding to the T EM mode at the pth waveg-

uide port, given by: S00
pp =V

′
0/V

′′
0 , as described in Eq. 68.

Suppose that S00
pp = apeiαpΦ where ap is the reflection coefficient and αpΦp is

the phase, with (ap,αp) are random numbers ]0,1[ and Φ is the waveguide phasing. Eq.
174 becomes

Ez(0,nz) = beinzk0b/2sinc(nzk0b/2)(
N

∑
p=1

ei(p−1)φ +
N

∑
p=1

S00
ppei(p−1)φ ) (86)

where φ = nzk0∆−Φ and N is the number of waveguides, but
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N

∑
p=1

S00
ppei(p−1)φ =

N

∑
p=1

apeiαpΦei(p−1)φ =
N

∑
p=1

apei(αpΦ+(p−1)φ)

Thus Eq. 86 becomes

Ez(0,nz) = beinzk0b/2sinc(nzk0b/2)(
N

∑
p=1

ei(p−1)φ +
N

∑
p=1

apei(αpΦ+(p−1)φ))

where
d p/dnz =

Y0

λ0
|Ez(0,nz)|2 (87)

which gives using Matlab for N = 14, (i.e for two modudels) and assuming two random
vectors for ap and αp assuming a 100% fluctuating in phase and 70% reflection [60], a
perturbed power spectrum. This indicates that a reflection coefficient that varies at the
Grill can perturb the power spectrum.

Moreover the toridal variation of the reflection coefficient indictaes a toroidal
density fluctuation. This calculation supports the idea the parallel density fluctutions can
modify the power spectrum.

Moreover, if only the phase is perturbed randomly at the waveguide phasing,

Ez(0,nz) = beinzk0b/2sinc(nzk0b/2)
N

∑
p=1

ei((p−1)φ+αpΦ),

then the power spectrum in Eq. 87, is perturbed significantly as shown in Fig. 22 for
different random phasing cases.
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Figure 22: Random phase variation effect on the power spectrum



CHAPTER IV

LOWER HYBRID WAVE SYSTEM

A. Lower hybrid wave antenna

The lower hybrid (LH) wave was initialy assumed convenient for auxiliary heat-
ing and current drive of the tokamak plasma by Parker and Hooke in 1971 [61, 62]. The
LH antenna based on stacked arrays of phased waveguides (front surface called “Grill”)
was first proposed in 1974 [63]. The antenna properties were studied by Brambilla [64].
At n‖0 ∼ 2, LH waves were successfully tested on the Japanese tokamak JFT2 [65] and
American tokamak PLT [66] and thus drew a lot of attention world wide. Due to its CD
efficiency, the LH wave has been efficiently applied in the plasma of the large tokamaks
Tore Supra tokamak [67], JET [68] and JT60 [69, 70]. However, scaling to ITER relevant
conditions has shown that the LH wave can not sustain a fully non inductive current [71].
It has been recently shown that 20 MW of LH power can provide only 1 MA of the plasma
current which is a very small fraction of the needed current in ITER that requires a large
percentage of the recycling power [45]. However the LH wave designates a versatile tool
for controlling the current density and power deposition profiles in ITER that could play
an important role for the achievement of long pulse operation, stabilzing sawteeth, driving
significant toroidal plasma rotation, in addition to reducing flux consumption especially
during current ramp-up phase[72, 73, 74, 75, 76, 77, 78].

1. LH antenna design

In the last 20 years, two designs of the LH antenna were well developed and
tested on different tokamaks such as JET, Tore Supra, JT60, Alcator C-Mod, FTU, HT-7,
etc.1 [72, 74, 78, 39].

In order to launch an asymmetric power spectrum in parallel wave number at
|n‖| ≈ 2, the lower hybrid antenna phasing is adjusted either at the level of the transmission

1Jet (Joint European Torus) is the largest operating tokamak in the world and is built in UK [79]. Tore
Supra (torus super conducting tokamak) is one of the largest tokamaks in the world, that operated from 1988
till 2013. It characterized by its super conducting toroidal magnetic coils and actively cooled walls and was
built in South of France in Cadarache [80, 81]. TS is being upgraded with a divertor limiter and is named
TS WEST in accordance with the EAST (Experimental Advanced Superconducting Tokamak) tokamak sit-
uated in eastern China. Both JET and TS have supported the efforts for realizing the ITER project [82, 83],
in addition to the other tokamaks around the world such as JT60 (Japan Torus) in Japan, KSTAR (Korea Su-
perconducting Tokamak Advanced Research) in South Korea, Alcator C-Mod (ALto CAmpo TORo, High
Field Torus) in U.S., EAST (Experimental Superconducting Tokamak) in China, FTU (Frascati Tokamak
Upgrade) in Italy, ASDEX Upgrade (Axially Symmetric Divertor EXperiment) in Germany, COMPASS
(COMPact ASSembly) in the Czech Republic, etc.

61
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lines, [84, 85] or at the level of the antenna itself employing multijunction concept system
as used in Tore Supra (TS).

Fig. 23 shows FAM (fully active multijunction) and PAM (Passive active mul-
tijunction) antennas that constitute the LH system in TS and which are were tested in
several discharges including fully non-inductive long discharges [67, 74, 75, 86].

FAM antenna or C3, [87], is an improved design of earlier LH antennas C1 and
C2 [88, 89]. Firstly, C3 allows a larger output power of 4 MW instead of 2 MW for C2
due to adding more waveguides with a maximum power density of 25MW/m2 which is
the maximum that allows a steady state operation [37]2. Secondly, the power in C3 is
poloidally divided between three rows of the upper or lower part of the antenna via a
TE10-TE30 mode converter with 99% conversion efficiency [89, 91]. C2 was operating
in TS along side with C3 until 2009 [89], when it was replaced by the passive active
multijunction (PAM) antenna. PAM concept was first proposed in 1993 to allow a better
cooling of the antenna. Recently it was successfully tested for ITER relevant conditions
owing to a water cooling system and a new arrangement of passive and active waveguides
which allows it to endure thermal stress and eddy currents for long discharges, in addition
to achieving low power reflection coefficients <2% [73, 75, 92]. Fig. 27 shows the reflec-
tion coefficient calculated by the LH wave code ALOHA3, for FAM and PAM antennas,
where the density in the SOL is characterized by a decay length 10mm. The FAM and
PAM antennas are composed of six rows of waveguide arrays poloidally adjacent while
each row is made of eight modules as shown in Fig. 23.

The FAM module along one row is an array of six active waveguides, where
passive waveguides (short circuited and have a depth of λLH/4) are placed between con-
secutive modules. However, the PAM module is made of alternating 2 passive and 2 active
waveguides as shown in Fig. 24.

The availability of technological advances have allowed to overcome major chal-
lenges for building the LH wave system in particular high power generation and efficient
transmission [94]. The LH system components include the high power suppliers (multi-
MW) provided by 2x8 klystrons (700kW each) for two antennas at TS [41], long trans-
mission lines (6 m), hybrid junctions to divide the power of one klystron between lower
and upper parts of the antenna, bi-directional couplers, RF windows, TE10-TE30 mode
converters that divide the power poloidally between the three rows of a module, and the
multijunction antenna made of phase shifters (E-plane bijunction) and of both passive and
active waveguides (Fig. 24). Fig. 25 shows the FAM and PAM module description and
the various components of the PAM lower hybrid system which weighs 8 tonnes.

2C3 achieved a 6 min at the 3 MW LHCD power level in Tore Supra [37, 90]
3ALOHA stands for ’Advanced Lower Hybrid Antenna coupling code’, it is an LH wave coupling code

which incorporates the scattering matrix of the LH antenna as specified by another RF software or code
such as HFSS and couples it to the SOL plasma via the spectral surface admittance at the plane separating
the Grill and the plasma, the output of the code includes the directivity, reflection and the n‖ power spectrum
[93].
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Figure 23: PAM and FAM antennas placed next to each other in Tore Supra, with
langmuir probes in blue. One module of the lower part of the antenna, the side limiters

and the position of passive and active waveguides are indicated.

Figure 24: The front face (Grill) structure for one module of FAM (C3) and PAM (C4)
(left), and the phase shifters (right)
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Figure 25: The lower hybrid system components with the PAM antenna structure
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Figure 26: Time evolution of the plasma current with the application of the LH wave at
t = 5s for the 6-min TS discharge # 16379 [2]. The decreasing flux sustains the current

in the inductive phase. At t = 5s the flux is maintained constant, thus the flux
consumption and loop voltage drop to zero, while the current is completely provided

non-inductively by an LH power of 3.5 MW.

B. LH wave off-axis current drive efficiency

LHCD efficiency is based on the fact that at high phase velocities energy is de-
posited on fast electrons which have less Coulomb collision cross section area and thus
collide less with other electrons. In particular, at parallel velocities v‖L ' [2.5− 4]vte

4

[36], the LH wave transfers momentum to the fast electrons inside the plasma. Conse-
quently, LHCD efficiency given by the ratio J/P ∝ v2

‖, becomes large due to the high LH
parallel phase velocities as argued by Fisch [27, 25].

Tore Supra had been a test bed for long plasma pulses, in which the LH wave
has demonstrated successful CD [75, 87, 46]. In particular a 3.5 minutes fully nonin-
ductive plasma discharge was recorded on 2002 with 3 MW power equivalent to 600 MJ
of thermal energy used to drive current and a longer 6 min discharge was achieved on
1996 [37, 2] with 280 MJ energy exhaust using C2 and C3 antennas. Fig. 26 shows the

4v‖L is the parallel LH phase velocity at which Landau damping takes place and vte is the thermal phase
velocity of the electrons.
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Figure 27: ALOHA coupling code results for the reflection coefficient as a function of
the electron density in front the antennas ne0 for FAM (green curve) and PAM (magenta
curve), where the density profile is increasing with a decay length of 10 mm. This figure

is extracted from [3].

plasma current time evolution during the inductive phase and upon the application of the
LH wave that provides noninductive CD with zero flux consumption. On the other hand,
50s of fully noninductive discharge was achieved with the PAM antenna alone with the
plasma current maintained Ip = 0.5 MA [75].

For ITER high temperatures, Te ≥ 10–12keV , the LH wave deposits energy far
from the plasma core at ρ ∼ 0.65−0.7, where ρ is the normalized radius from the plasma
center; however its high phase velocity allows electrons to escape trapping which makes
it an attractive method for off-axis CD [78]. Consequently, the LH wave is employed in
controlling the current density and power deposition profile which is well suited for an
accurate control of the safety factor profile which turns out to be critical for improving the
performances and stability of the plasma, especially when the pressure gradient becomes
high [95, 96, 97]. In fact, tailoring the q profile can change position of the internal trans-
port barrier (ITB) and thus helps to suppress tearing mode instabilities. In addition, the
LH wave can help in the first seconds of plasma ignition by saving volts seconds during
the current ramp up [75, 76, 72]. Henceforth, the LH wave shall be considered for various
plasma scenarios for achieving a steady state in ITER and later in DEMO5 [72, 40].

5DEMO is the first plasma reactor to study the possibility of a power plant based on fusion energy, to be
implemented after realizing the first fusion reactions in ITER.
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Figure 28: Lines of sight of the HXR system at Tore Supra

C. LH wave modeling and diagnostics

LH modeling has witnessed a breakthrough lately due to the availability of more
elaborate technological advances. Firstly, this section gives a brief idea of the diagnostics
used in LH wave experiments. These include Langmuir probes, RF probes, Hard X-ray
(HXR) cameras, and fast imaging and infrared cameras. The probes are small metallic
devices imbedded on the launchers to have measurements at the launchers’ mouth. RF
probes quantify frequency fluctuation while langmuir probes measure the electron den-
sity and temperature and plasma potential (see Fig. 23). Cameras are set on the walls of
the tokamak and are of different uses, for example fast imaging cameras used to moni-
tor turbulence and propagating filamentary structures called blobs [98, 99] and infrared
camera or visible camera to see striations on the LH antenna that indicate the distribu-
tion of the heat flux on the antenna [89, 100]. On the other hand, HXR camera captures
bremsstrahlung photon emission energies in the range [20−200] keV . Those in the range
of [50− 110] keV result from the collision of the LH accelerated suprathermal electrons
via Landau damping with ions or bulk electrons in TS 28, hence HXR spectroscopy de-
termines the spatial, the energy and the temporal characteristics of the LH accelerated
electrons6with accurate resolution [101, 102]. Only, after Abel inversion of noisy line-
integrated HXR signals, power deposition profiles of the accelerated electrons could be
spatially determined, a critical issue for reverse shear scenarios [103].

In order to calculate the RF driven current inside plasma, a set of codes has been
developed to solve self consistently the equations that describe the wave fields and the

6Suprathermal tail of electrons generated from the damping of the LH wave has a very low radial dif-
fusivity and thus information on the position of the electron emissivity gives information on the power and
consequently the current deposition profiles [101].
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plasma. These include a ray tracing code C3PO and the 3D linearized relativistic bounce-
averaged electron Fokker-Plank solver LUKE. While the ray tracing method was used
to calculate the wave propagation inside plasma [104, 105, 106] such as that of the LH
and electron cyclotron waves. C3PO was further improved, [107], so that it can use any
coordinate system in particular the magnetic flux coordinates (ψ, θ , φ ) which in turn have
more advantage for an integrated modelling of an axisymmetric plasma equilibrium. On
the other hand, LUKE, [108, 18, 109], has been developed for calculating the electron
distribution function and thereby deducing the current and power deposition profiles of
RF waves , by solving the Fokker-Plank equation given by

d f
dt

=
∂ f
∂ t

+ ẋ.∇x f + ṗ.∇p f = C ( f ) (88)

where f is the electron distribution function with variables in space, velocity space and
time, x represents a 3D vector in space, p is the momentum and C is an operator for
particle conservation [18]. In order to compare LHCD simulation with HXR signals, fast
electron bremsstrahlung (FEB) is reconstructed with LUKE using the numerical code R5-
X2 [110] as described in the code suite shown Fig. 30. Note that, the chain of codes used
in LHCD calculations have been validated in [111]. As a result, C3PO and LUKE are suit-
able for integarted tokamak modeling [112, 18]. Fig. 29 shows the LH wave propagation
and absorption in plasma beyond LCFS where LCFS stands for the last closed magnetic
surface in the plasma which separates the plasma from the scrap-off layer (SOL). Start-
ing with Tore Supra database, METIS (or CRONOS) code uses equilibrium and transport
equations to calculate the evolution of the discharge [112], ALOHA code specifies the LH
power spectrum at the Grill which is in turn used by C3PO at the LCFL to determine the
path of the LH rays in the plasma assuming the power is divided between a finite number
of rays; C3PO is coupled to LUKE to resolve the rays absorption inside the plasma and
consequently the electron distribution function f is obtained. f is then used to calculate
the LH current and power deposition profiles as well as to calculate the line-integrated
FEB to be compared with the experimental HXR signals [110].

Note that integrated modeling has achieved a new level via the ITM-TF which the
European Integrated Tokamak Modeling Task Force which combines a suite of validated
codes and experimental data for a testing the stability of tokamak scenarios. A selection
of first physics results applied on ITER and ASDEX Upgrade were presented in [113].
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Figure 29: The LH wave propagation path from the antenna through the scrape-off layer
(SOL) and across the LCFS (separatrix) into the plasma core where it is absorbed.

Figure 30: Chain of codes used in LH wave dynamics
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LH WAVE SPECTRAL GAP PROBLEM

A. Spectral gap problem

The LH wave is absorbed by the usual Landau damping process. The wave is
excited at the plasma edge with a frequency ω and a narrow power spectrum which peaks
at the parallel refractive index n‖0 = k‖0/κ0, such that an anisotropic tail of fast resonant
electrons can be continuously pulled out from the thermal bulk. Here, κ0 = ω/c, c is the
speed of light and k‖0 = k0·b̂, where k0 is the LH wave vector excited by the antenna
with b̂ the local magnetic field direction. Since the electron collision frequency scales
as v−3, where v is the electron velocity, the smallest possible value of n‖0, that fulfills
the Stix-Golant accessibility condition, is used, in order to maximize the current drive
efficiency [27, 25]. This leads to enlarge the so-called spectral gap, δn‖' n‖L−n‖0, where
n‖L ' 5.5/

√
Te [keV ] is the parallel refractive index at which the linear absorption of the

LH wave becomes strong [36]. Consequently, without an efficient physical mechanism
that can bridge the spectral gap, the plasma is virtually transparent to the LH wave. The
spectral gap problem is illustrated in figure 31 where n‖ = c/v‖; v‖L ' 4vthe and n‖0 is the
LH nominal refractive index determined by the antenna.

Since, the LH wave is always fully absorbed experimentally, many mechanisms
that could lead to a spectral upshift in the plasma and bridge the spectral gap have been
proposed [78]. Among them, the commonly preferred and currently used mechanism in
most LH current drive simulations, is the toroidal refraction [114, 115, 116]. Even if it
is intrinsic to the tokamak magnetic configuration, its universality is questionable, espe-
cially for machines with a high aspect ratio [117]. The spectral upshift, as the LH wave
propagates in the plasma, is usually determined by a ray tracing code 1, while the distri-
bution function of the fast electrons that interact resonantly with the wave is calculated
by a solver of the Fokker-Planck equation. When the spectral gap is small or moder-
ate2, δn‖ ≤ 2− 3∆n‖0, where ∆n‖0 is the width of the main lobe in the launched power
spectrum, a good quantitative agreement is found between the experimental observations
and the numerical predictions [4]. This result represents a remarkable success for the
physics of the LH wave and is also an important assessment for the chain of codes that
are used for this purpose [111, 18]. Bridging narrow spectral gap via LHCD simulations
is shown in figure 33, where the LH waves are fully absorbed in single or few passes
around the plasma, the n‖ upshift fills the spectral gap, and the HXR tomography mea-
surements almost coincide with the reconstructed FEB in LUKE simulations. It is noted
that CD results are independent of initial conditions such as the positions of the rays and
the power spectrum at the separatrix [110]. On the contrary, using same simulation tools
and keeping the power spectrum at the separatrix unchanged does not reproduce experi-

1It has been also calculated by full wave techniques [49, 118, 119]
2δn‖ < 0.5 for Te > 5keV

70
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mental results when the spectral gap is wide as figure 34 shows. Here the n‖ upshift due
to toroidal refraction is not enough to bridge the spectral gap. The rays undergo multi
passes around the plasma such that stochasticity develops well before full absorption of
the wave, while the results become unpredictable and sensitive to initial conditions [18],
as shown for Tore Supra 6 mins discharge in which both FAM and PAM antennas were
operated with a total power of 3 MW [120, 4, 121]. The HXR results for a density scan
in figure 34 show smooth evolution for experimental measurements compared to chaotic
behavior of the reconstructed FEB. It is concluded that unlike the case of strong damping
regime, the codes are rather erratic in the weak damping regime where there spectral gap
is large.

Notably, the LH wave efficiently drives current even in presence of a large spec-
tral gap and negligible toroidal upshift as in LH fully driven discharges at TRAIM-1M
which is a large aspect ratio tokamak [117]. In particular, a full wave study has suggested
that the power spectrum should be already bridged at the separatrix to be able to explain
the LH wave dynamics [49]. Same results have been obtained with C3PO and LUKE
simulations applied to weak damping regimes at TS which show similarity in LH wave
dynamics with TRIAM-1M [4].

Recently, the good agreement between simulations and experiment has been ex-
tended to high density and cold plasmas, for which the spectral gap is known to be very
large, i.e. ∆n‖0 � δn‖ [7]. In this case, the smooth and progressive parametric depen-
dencies with the plasma parameters or the phasing between antenna waveguides can be
reproduced quantitatively, as well as the fast electron bremsstrahlung profile at all pho-
ton energies [7]. For such an agreement to be found, the spectral gap must be already
bridged as the LH wave passes through the separatrix and penetrates the central region
of the plasma. The fraction of the power that is transferred from n‖0 to lobes at higher
n‖ values, thus forming a tail in the interval n‖0 < n‖ < n‖L, must exceed 50%, which
represents a considerable modification of the narrow power spectrum excited by the LH
antenna. From this finding, a statistical picture of the broad power spectrum used for ray
tracing calculations has emerged (figure 32), which may be interpreted as the probability
distribution function of a

fluctuating narrow spectrum, provided the fluctuation time is much shorter than
the collision time of fast electrons [7]. Figure 35 shows how experimental results agree
well with the Fokker-Plank and ray tracing simulations that incorporate the tail-model
spectrum [7], unlike the results obtained using the initial spectrum as illustrated in figure
34. Since this regime is usually characterized by large amplitude electron density fluctu-
ations in the scrape-off layer (SOL) in front the LH antennas [122, 123], the interaction
between the LH wave and the electron density fluctuations is a natural candidate to ex-
plain the spectral broadening that must be introduced at the plasma edge to reproduce
the observed parametric dependencies and the measured non-thermal bremsstrahlung. An
original approach of this problem is presented in this study, the standard model used to
describe the scattering of the LH wave by electron density fluctuations being unable to
predict a strong modification the power spectrum as it propagates in the scrape-off layer
[124, 125, 121]. The numerical model is based on the diffraction of the LH wave by a
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Figure 31: The Maxwellian distrubution function (red) extended so that the LH power spectrum
(blue) could be absorbed in the plasma bulk, also a tail is drawn from the power spectrum to show

how the spectral gap between v‖L ' 4vT and v‖0 (left) or equivalently between n‖0 = c/v‖0 and
n‖L (right) is roughly bridged, where v‖L is the velocity at which the LH wave is absorbed by
Landau damping, v‖0 is the phase velocity of the emitted wave at the antenna and vT is the

thermal velocity of electrons.The figure is extracted from Ref. [4].

time dependent spatial perturbation of the electron density along the magnetic field line.

B. Interaction of the LH wave with electron density fluctuations in the
scrape-off layer

The interaction between the LH wave and the electron density fluctuations at
the plasma edge has been first investigated in the framework of the electromagnetic wave
scattering theory, assuming that fluctuations are likely driven by the electron drift wave
for which k̃‖ ' 0 [121, 126, 7, 127]. Consequently k‖ remains unchanged during this pro-
cess, while k⊥= k× b̂ rotates 3. The LH wave, once scattered by long wavelength density
fluctuations, is still solution of the local cold dispersion relation which depends only of
k2
⊥ = ‖k⊥‖2, as the magnetic field direction b̂ is a local axis of symmetry. This physical

mechanism cannot bridge itself the spectral gap, but the toroidal refraction between suc-
cessive scattering events may contribute indirectly to this effect, if their number is large
enough. However, with few centimeters thick, the SOL in all tokamaks is far too thin
so that fluctuations of the electron density driven by the electron drift wave can modify
significantly the power spectrum between the antenna and the separatrix.

Much in the same way, the large and fast shift of the launched power spectrum

3Fluctuations may contribute to the cold mode conversion between the slow and the fast LH wave,
provided the interaction takes place near the conversion layer, which is usually located well inside the
separatrix. Therefore, this process is not considered, and wave-wave interaction is supposed to be restricted
to wave vector rotation.



CHAPTER V. LH WAVE SPECTRAL GAP PROBLEM 73

Figure 32: The LH power spectrum (blue) versus the tail model which has heuristically
proven to bridge the spectral gap in RFTP simulations which have successfully

reproduced experimental observations in TS. The tail model is either static or a PDF with
fluctuation time much less than fast electron slowing down time scale. The figure is

extracted from Ref. [4].

that is needed to interpret quantitatively the experimental observations during the LH
current drive discharges in the Tore Supra tokamak cannot be the consequence of the
non-linear ponderomotive force, which is well known to modify the coupling conditions
of the LH antenna at high power, by creating a density depletion almost transverse to
the magnetic field lines [3, 100]. Full wave calculations in the SOL have shown that
this effect leads principally to a modification of the antenna directivity by changing the
relative amplitudes between the various lobes which form the launched power spectrum
[3]. The main lobe remains always centered at n‖0 and is never shifted significantly to
higher n‖ values, as required according to Ref. [7]. In addition, there is no evidence that
increasing the LH power has any effect on the spectral gap problem from measurements
of the fast electron bremsstralung [90].

In this context, for fluctuations of the LH power spectrum suggested in Ref. [7]
to be effectively caused by fluctuations of the electron density in the SOL implies the
following assumptions: (i) the electron density fluctuates along the magnetic field lines
with a time scale shorter than the fast electron slowing down time, (ii) the fluctuating LH
parallel power spectrum 4 must reach higher k‖ values of the order of at least k‖L , (iii) the
LH wave must be diffracted in the SOL between the antenna and the separatrix.

The lack of homogeneity of the electron density along the magnetic field line at
the space-scale of the LH wavelength is in contrast with the commonly accepted state-
ment that the parallel transport is high even in the SOL as it is supposed to scale as
∇‖ ∼ (Rq)−1 where q� 1 is the local safety factor and R the major radius [123]. How-

4The correlation time of the fluctuations must be shorter than the fast electron slowing down time as
discussed in Ref. [7].
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ever, some experimental observations may indicate that such an effect likely exists near
the antenna mouth. Indeed, measurements of the reflection coefficients (RC) show that
they fluctuate from one waveguide to the other, with a dispersion of about 30% around
the mean value over a given row, whatever the input power or the antenna phasing [5] as
shown in Fig. 36. Since the RC depends principaly upon the electron density in front of
each waveguide, this result suggests that the electron density itself is perturbed along the
toroidal direction in a thin plasma layer. Given that the excited LH parallel wavelength
is about four times the waveguide width for most LH antennas, the upper bound k̃max

‖ for
the wave vector fluctuation spectrum k̃‖ of the electron density perturbation in the toroidal
direction may reach 4k‖0, which is enough to fill the spectral gap in typical tokamak plas-
mas. An indirect signature of the density perturbation may be also given by the glow in
front of the antenna, that is always observed when the antenna is powered [89, 5, 6, 128].
As shown in Fig. 37, the up/down poloidal asymmetry is well connected to a convective
cell in front of the antenna related to the E×B force which leads to an excess in density
and a slight corresponding increase of the reflection coefficients from a poloidal row to
another, depending upon the magnetic field direction. Whereas the radiation emission in-
volves several complex coupled physical processes, it gives some insight into the electron
density pattern in front of the antenna and its time evolution. The lack of toroidal unifor-
mity is clearly visible in general, which support the assumption made in the present study
[89, 5, 6, 128]. Recent accurate measurements have shown that the perturbations of the
striations take place on a fast time scale that less than 1ms for the LH wave in C-MOD
tokamak [6], which is much less than the fast electron slowing down, as stated from Ref.
[7]. The observed phenomenology suggests that the fluctuation of the electron density
is a local process in the vicinity of each waveguide, which is always present, whatever
the plasma regime. Several physical mechanisms may potentialy contribute, like local
ionization of neutrals [129], by the LH wave electric field itself, LH driven fast electron
flux [128], edge particle recycling, ponderomotive force and local turbulence, all of them
being able to change on a short time scale the local electron density at the mouth of the
antenna [5, 6, 128]. In fact, calculations in Chapter 3, show that random phase fluctua-
tions at the waveguides mouth lead to perturbing the power spectrum. Actually this can
be a consequence of varying reflection coefficient in front the Grill and thus is related to
toroidal density variation.

Moreover, measurements of the radial electron density profiles by Langmuir
probes have shown that the decay length from the separatrix is much larger in front of
the antenna than far away from it, as if the density was locally self-sustained by the LH
power. As a consequence, the coupling of the LH wave remains very good even if the an-
tenna is placed at a very long distance,∼ 15cm, from the last closed magnetic flux surface
[89, 130, 131]. This result obtained during a fully non-inductive L-mode discharge could
indicate an enhanced radial turbulence in front of the antenna by the LH wave, leading to
an apparent local flattening of the electron density, while this effect disappears outside,
at another toroidal position. In addition, the limiters of the LH antenna act as a sink and
modify the parallel mach number M‖ resulting in density drop by 50% at the limiters
along the toroidal direction [16].

It is important to recall that experimental measurements have shown unambigu-
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Figure 33: Narrow spectral gap corresponding to a strong damping regime. (a)
Propagation of LH ray corresponding to the main lobe for TS shot #45525. (b) Evolution
of n‖ along the ray trajectory where the thick lines denote absorption. (c) Comparison of
HXR count rate between experiment and LUKE simulations showing good agreement.

ously the correlation between the amplitude of the density fluctuations in the SOL and the
current drive performances of the LH in the core region of the plasma [132, 133].
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Figure 34: Wide spectral gap corresponding to a weak damping regime. (a) Propagation
of LH ray corresponding to the main lobe for TS shot #45155 bouncing between the

plasma edge due to cut-off and the core plasma due to (b) Evolution of n‖ along the ray
trajectory doesn’t achieve absorption except after a long time which is explained as

accumulation of numerical error. (c) Comparison of HXR count rate between experiment
and LUKE simulations for a density scan showing chaotic simulation results
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Figure 35: Modeling results using tail-model of the power spectrum at the separatrix
with 50% of the power in the tail and n‖ ≤ n‖L. (a) Power deposition profile of original

power spectrum and tail-model of the power spectrum obtained from simulations
compared to the experimental profile obtained by Abel inversion of the HXR signal. (b)
Comparison of HXR count rate between experiment and LUKE simulations for a density

scan (TS shot #45155) showing good agreement.

Figure 36: The reflection coefficient along the LH antenna mouth in Ref. [5], indicates a
density variation in front the Grill for different phasing cases and differnt LH power
values. The density variation parallel wavelength ranges between a minimum ∼ 1cm

which is the width of a waveguide and may reach a maximum equal to the toroidal width
of the Grill showing the effect of the LH antenna. 30% density variation is observed.
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Figure 37: Camera shots of the Grill of the LH launcher while it is powered. Upper:
FAM antenna snapshot during Tore Supra shot 34116 taken from presentation by Annika
Ekedahl at Tore Supra scientific meeting in 2004, lower: LH launcher at Alcator C-Mod

for different phasing cases from Ref. [6]. Both figures show striations due to the
formation of a vortex by E×B drift. Obviously, striations change toroidaly and

poloidaly thus breaking density uniformity in front at the LH launcher mouth with up to
100% density fluctuation rate.



CHAPTER VI

DESCRIPTION OF DENSITY FLUCTUATION MODEL

A. Introduction

COMSOL Multiphysics® software [134] is a finite element solver used to model
physics and engineering problems with an interactie environment and several modules de-
signed for different applications. The radio frequency module is chosen to simulate the
Grill of the LH antenna and the scrape-off layer (SOL) in Tore Supra (TS). The electron
density fluctuations are incorporated as a thin layer along the parallel to magnetic field di-
rection in the SOL. Using COMSOL, the evolution of the n‖ power spectrum1 at different
distances from the antenna is investigated by calculating the electric and magnetic fields
according to the plasma wave. In particular, the dielectric permittivity is expressed in
COMSOL as tensor which allows the modelling of the anisotropic plasma medium. Since
the plasma under study is a cold plasma, thermal effects are neglected and thus not taken
into account. Thus the propagation of the LH wave in the SOL in front of the antenna is
performed by solving the usual propagation equation for the wave electric field E

∇× (∇×E)−κ
2
0 (1−

iσ
ε0ω

)E = 0 (89)

where ε0 is the vacuum permittivity and σ is the conductivity tensor. In COMSOL
Multiphysicsr, Eq. 89 is expressed in a slightly different mathematical form

∇×µ
−1
r (∇×E)−κ

2
0 (ε−

iσ ′

ωε0
)E = 0, (90)

where µr is the relative permeability, ε the dielectric tensor,

ε =
[ S iD 0
−iD S 0

0 0 P

]
(91)

is the cold dielectric tensor of the plasma using Stix notation [135], and iσ ′/ωε0 is used to
model an isotropic RF power dissipation with a scalar conductivity σ ′. Therefore µr = 1
and ε = 1− iσ/ε0ω in the COMSOL solver, while σ ′ is used as a free parameter to force
the full absorption of the LH wave at the boundaries of the integration domain and avoid
possible spurious non-physical solutions. In the propagating area, σ ′ is set to negligible
value. Physically, the expression (90) with σ ′ 6= 0 at the boundary implies that the wave
is assumed to be fully absorbed in the plasma core.

A 2-D slab geometry is considered where the toroidal direction is assumed to
match the magnetic field one, ẑ = b̂ , since the safety factor q� 1 at the plasma edge. The

1n‖ power spectrum is the power density versus n‖ the LH parallel refractive index.

79
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FAM PAM
number of rows and modules/row 6 rows, 8 modules/row

number of active/passive waveguides per module 6 / 1 2/ 1
active waveguides: length, width, thickness (mm) 70, 8 , 2 76, 14.65, 4.325

passive waveguides: length, width, thickness (mm) λg/4, 6.5,3 λg/4, 12, 4.325
phase shift between consecutive modules 3π/2 rad π rad

phase shift between active waveguides π/2 rad 3π/2 rad
power injected 4 MW 3 MW

n‖0 2.03 1.72

Table 2: Characteristics of FAM and PAM

poloidal direction, ŷ, is taken infinite and therefore this dimension is not considered in the
calculations. The radial one, x̂, is along the direction of the density gradient. The size
∆x of the integration domain along x̂ is corresponding to the thickness of the scrape-off
layer. For the calculations, ∆x = 11cm. The lower limit of the width ∆z along ẑ depends
approximately of the number of modules Nm used in the simulation, their width ∆m

z but
also of the cone angle θ which characterizes the propagation of the LH wave from the
antenna. Therefore, ∆z is approximately given by the relation

∆z ≥ Nm∆
m
z +δz +2∆x tanθ (92)

taking into account that the LH wave has propagating components in both toroidal direc-
tions. In Eq. 92, δz is the width of a passive waveguide added at one end of the antenna2.
Usually, δz� Nm∆m

z and its contribution for estimating the minimum value of ∆z for the
full wave calculations may be neglected. For the plasma parameters of the scrape-off layer
that are considered, θ ≈ π/4, while ∆m

z ' 7cm as shown in Tab. 2. The upper limit of ∆z
is fixed by numerical constraints related to the computer on which the COMSOL solver
is installed. For standard LH wave calculations with a quiescent plasma in the scrape-off
layer, all the modules of the LH antennas are considered, but for simulations with density
fluctuations, the number of modules is reduced to two only (see Fig. 38), and in the latter,
the size of the integration domain along ẑ is about 45cm as shown in Fig. 39.

The meshing must be performed carefully in order to catch the correct physics,
while keeping the computational effort at a reasonable level. It is set from the ratio of
the LH wavelength to the size of the integration domain, and the number of nodes that
must be used to describe accurately a wave period. For the full wave calculations of the
LH wave, the numerical difficulty arises principaly from the small size of the perpendic-
ular component of the wavelength, λ⊥, which can be estimated from the cold dispersion
relation expressed in the usual form

P4(n‖)n
4
⊥+P2(n‖)n

2
⊥+P0(n‖) = 0, (93)

where the coefficients P4, P2 and P0 are functions of the elements S, P and D of the di-
electric tensor in the Stix notation [135]. The parallel and perpendicular wavelengths

2The antenna has Nm + 1 passive waveguides placed between modules and at each end of the antenna
with each module including one passive waveguide.
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toroidal ẑ direcction // Bradial x̂
direction

Figure 38: Front image of FAM (right) and PAM (left). The green box encloses two
modules per row of the FAM antenna to show the part incorporated in the fluctuation

model constructed in COMSOL Multiphysicsr. Radial direction, x̂, and toroidal one, ẑ
parallel to B the magnetic field in the SOL, are illustrated.
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Figure 39: Lower hybrid wave propagation for a two modules antenna, (upper)
ne0 = 2×1017 m−3 and a density decay length 2cm.
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λ‖,⊥ may be deduced from the corresponding components of the refractive index n‖,⊥
by the relation λ‖,⊥ = c/

(
fLHn‖,⊥

)
= λ0/n‖,⊥, where fLH = ω/2π , and λ0 = 2π/κ0 is

the theoretical LH wavelength in vacuum used here as a reference. For fLH = 3.7GHz,
λ0 ≈ 8.1cm.

At the antenna mouth, n‖ = n‖0 is determined by the antenna arrangement made
of arrays of waveguides that are grouped in modules. For the FAM, n‖0 = φ0/(κ0d) =
(φ0/2π)(λ0/d) where d is the periodicity of the waveguides along ẑ and φ0 the phasing
between consecutive waveguides. For the phasing φ0 = π/2 corresponding to the max-
imum of the antenna directivity [57], n‖0 ' 2.0, since d = 1cm and therefore λ FAM

‖0 ≈
4.0cm. The estimate for the PAM is more approximative, since d cannot be defined un-
ambiguously, because the antenna is a complex array made of active and passive waveg-
uides with slightly different widths. With φ0 = 3π/2 and an averaged value d ≈ 3.5cm,
n‖0 ' 1.7 for the PAM and λ PAM

‖0 = 4.7cm. Another parameter is also used in order to
have an n‖0 scan, which is φmod the phasing between consecutive modules. N‖ is given
by n‖ = n‖0[1+(φmod − φmod,0)/Nφ0], with φmod,0 is the module phasing that achieves
n‖ = n‖0 where φmod,0 = 3π/2 for FAM and π for PAM, and N is the number of modules
[57, 46].

Note that the electric field in COMSOL is excited at the input port of each active
waveguide as follows:

the electric field in the ith active waveguide of the first module is

ei(k.x−ωt−(i−1)φ)V/m

and in the ith waveguide of the jth module it has the form

ei(k.x−ωt−[(i−1)φ+( j−1)φm])V/m

where φ and φm are the phase difference between adjacent waveguides and the feeding
phase between adjacent modules respectively.

The value of λ⊥ may be easily obtained by taking the electrostatic limit of Eq.
93, n2

⊥ = −Pn2
‖

3since S ∼ 1 or n⊥ ≈ (ωpe/ω)n‖ where ωpe is the local electron plasma
frequency and λ⊥ ≈ (ω/ωpe)λ‖ ≈ ( fLH/ fpe)λ‖ with fpe = ωpe/2π . For fLH = 3.7GHz
and fpe = 89.8

√
ne [10+20m−3]GHz, λ FAM

⊥0 ≈ 2.6cm and λ PAM
⊥0 ≈ 3cm for an electron

density ne0 = 4×1017 m−3 in front of the antenna close to the cut-off density nc = 1.7×
1017m−3. However, the density in the scrape-off can increase by a factor ten from the
antenna to the separatrix, and λ⊥ may drop down to 5mm, 4 assuming that n‖ has not
evolved significantly in the SOL. Note that |P| increases as density ne becomes larger,
and consequently λ⊥ decreases. For example, for ne0 = 4×1017 m−3 i.e λ⊥= 10mm, an
increase in ne by a factor of 10 results in a decrease by a factor of 4 in λ⊥, as shown

3P is negative for densities greater than the cut-off density nc.
45 mm corresponds to 2 cm decay length at the separatrix with ne0 = 2e17/m3 and separatrix at 8 cm

from antenna
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in Fig. 40; consequently, k⊥ ∈ [628,2616]m−1. Taking the shortest length characteristic
λ⊥ at the separatrix as the reference whatever the direction and 10 nodes per wavelength,
the minimum requirement for accurate calculations, the mesh size along x̂ is Nx > 140,
while it is Nz > 500 along ẑ, which corresponds to a reasonably small memory size of the
order of∼ 0.5MBytes. Therefore, in order to improve the accuracy of the calculations, 20
nodes per wavelength have been considered, which corresponds to an acceptable trade-off
between performances and memory consumption.

The above estimate must be significantly revisited in presence of electron den-
sity fluctuations, since wavelengths as small as one tenth of λ⊥ at the separatrix have to
be considered in the parametric studies. Therefore, the required memory size may in-
crease up a much larger value of 250MB. However, it is possible to reduce the memory
consumption by using a non-uniform meshing, reducing the mesh size in areas where the
plasma is quiescent.

Besides, calculations concern also the electric field pattern in the waveguides,
which must be calculated consistently with its evolution in the SOL. The meshing tech-
nique that is used is detailed in [134] and the additional amount of memory that is required
reaches about 12GB.

In conclusion, in order to ensure accurate meshing at different radial positions
in the SOL, a uniform mesh over the perturbed domain is chosen. Moreover, the largest
mesh element size in the main SOL including the Grill is taken as λm,⊥/20 where λm,⊥is
the minimum size of λ⊥ as density varies. In this manner, a lower bound of 20 mesh
points per wavelength is retrieved at different positions which minimizes the error in the
results and optimizes the total number of mesh elements.

Fig. 41 shows the radial mesh evolution where:

1 - Antenna domain, mesh size: 0.4mm, since λLH ∼= 8cm.

2 - Nonfluctuating plasma domain (blue) has constant density, ne0 = 2.6× nc,
mesh size: λ⊥(ne0)/20 ' 0.045mm.

3 - SOL domain (red), ne fluctuates around the mean density ne0, mesh size:
λ⊥(ne,max)/20 ' 0.034mm, where ne,max is the highest density attained in the SOL when
50% density fluctuations are considered.

1. Wave damping

The conductivity σ ′ in Eq. 90, which is a scalar function, is employed to control
the wave damping. Actually, the imaginary term iσ ′/ωε0 represents power dissipation.
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Figure 40: The magnitude of the LH wavelength perpendicular to magnetic field lines
λ⊥ plotted as a function of x, the radial distance from the antenna, shows how λ⊥

decreases when the density ne increases.
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Mesh Regions
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Figure 41: Meshing layers (unit is m). (left)The plasma antenna model is divided into
three regions: the antenna (black) where plasma density is zero and thus LH wavelength

is that in vacuum, the grill (blue) which is the region just in front the antenna and the
outer boundaries (blue) added to damp the wave and have constant density and thus the

mesh size is set according to the corresponding λ⊥ value being less than λ‖ at the
densities used, and the fluctuating SOL plasma (red) where density fluctuates and thus

the mesh size is set according to the smallest λ⊥ value given by the maximum attainable
density resulting from fluctuations. Note that the mesh size is 20 points per λ⊥

(wavelength) in the SOL (antenna) domain. (right) The corresponding mesh size
distribution in the antenna, grill and SOL.

Knowing that the wave propagates without absorption in the SOL and is damped inside
the plasma, iσ ′/ωε0 is set to a negligible value in the SOL (iσ ′/ωε0 ≈ 5×10−5� (S, P)
where S' 1, P� 1) and it is increased smoothly beyond the propagation area where the
wave is absorbed as shown in Fig. 42. Consequently, the wave is fully damped at the
boundaries and thus no spurious reflection occurs.

Actually, the walls adjacent to the antenna are the only walls that exist realisti-
cally and thus the wave is damped along the remaining outermost boundaries, which are
the toroidal wall in front the antenna and the two lateral walls on the sides. A constant
negligible damping inside the SOL is maintained so that it continuously increases in the
damping layer added around the SOL region. It is crucial to adjust the damping function
σ ′ as well as the mesh between the SOL and the outer damping region to enhance the
continuity of the wave as it crosses the SOL without being reflected by an abrupt change
in the meshing or damping. First, the damping function σ ′ is constructed such that it
imposes a constant negligible damping (d pcstin) in the SOL, constant damping outside
the SOL (d pcstr, d pcstt) and an exponentially increasing damping around the SOL. More
explicitly, σ ′ is the sum of a radial, toroidal and inner components i.e.

σ
′ = σ

′
r +σ

′
t +σ

′
in (94)

with

σ ′r = d pcstr×H(y,dcstr)+d pexpr×H(y,dexpr)× exp(v(y−dexpr))× (y−dexpr)
σ ′t = d pcstt×H(x,dcstt)+d pexp×H(x,dexpt)× exp(v(x−dexpt))× (x−dexpt)

+d pcstt×H(−x,dcstt)+d pexp×H(−x,dexpt)× exp(v(−x−dexpt))× (−x−dexpt)
σ ′in = d pcstin×H(−x,−dcstin)×H(x,−dcstin)×H(y,dcstr)
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Figure 42: A log scale sketch of the magnitude of the damping function given by σ ′ in
Eq. 90 where σ ′ is employed in the plasma wave equation to damp the LH wave at the

walls to mimic an infinite medium and avoid spurious reflection.

where H is the Heaviside function,

d pcstr is the coefficient of constant damping outside the SOL starting from radial
distance x = dcstr ,

d pcstt is the coefficient of constant damping outside the SOL starting at toroidal
positions z = dcstt and z =−dcstt ,

d pexp is the coefficient of exponential damping outside the SOL both radially
and toroidally starting at a radial distance x = dexpr and at toroidal positionsz = −dexpt
and z = dexpt ,

d pcstin is the coefficient of constant damping within the SOL starting between
toroidal positions z =−dcstin and z = dcstin,

dcstt , dexpr, dexpt , dcstin are described in the above definitions, and ν is fixed.

Fig. 43 shows the distribution of damping within the model geometry.

Tab. 3 displays the damping coefficients in the damping function σ ′ which are
tuned to obtain the optimized model.

Note that d pcstin is optimized to 1× 10−4 so that more than 93% of the power
launched at the Grill is retrieved 8 cm away from the antenna as shown in Tab. 4.
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Toroidal and Radial damping Coefficients shown in Corresponding Regions
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Figure 43: Damping distribution with enlarged vertical dimension

d pcstr d pcstt d pexp d pcstin

0.15 0.15 0.05 0.0001

Table 3: Damping power coefficients
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x (cm) input 1 3 5 7 8 9 10 11 11.8
Px(105W/m) 4.46 4.45 4.39 4.34 4.28 4.2 3.94 3.25 2 0.13

Table 4: Evolution of power time average Px integrated along ẑ

The optimal damping values are shown in Fig. 42, indicating almost zero values
in the SOL and highest values on the boundaries. The extended domain of the exponential
damping along the radial direction damps the power gradually especially that the power
is stronger in this direction, and should not be suppressed abruptly. Fig. 39 shows the
electric field magnitude distribution in the antenna and plasma after optimizing damp-
ing coefficients, so that the model area and thus calculation memory requirements are
optimized.

B. Validation

Before studying the effect of electron density fluctuations on the LH wave prop-
agation in the SOL, the simulations performed with the COMSOL solver of the full wave
equation (89) have been validated for a quiescent plasma against results obtained in sim-
ilar conditions with the ALOHA 1-D LH coupling code [93]. Both FAM and PAM like
antenna structures have been considered with a full row of 8 modules, and the input pow-
ers are 3MW and 4MW respectively. Fig. 44 shows a COMSOL simulation for FAM
and PAM where the wave is damped only one centimeter in front the antenna to reduce
calculation stress.

Once the solution of the full wave equation has been calculated, the LH power
spectra dP/dnz is determined by applying a fast Fourier transform to the 2-D power den-
sity along ẑ and at different radial positions along x̂. The density in the SOL is almost
linearly decreasing from the separatrix to the antenna with a decay length ne/∇ne = 2cm,
the electron density being ne0 = 1.2nc for the FAM and ne0 = nc for the PAM. As shown
in Fig. 45 the results obtained by the two codes are in excellent agreement either for both
the negative and positive parts of dP/dnz and whatever the applied phasing values. The
comparison is performed for three module phasing values with 0 and ±π/6 differences
respectively from φmod,0 = π/2 for the FAM and 3π/2 for the PAM as shown in Tab. 5.
Fig. 45 shows the position of the LH power spectrum main lobe while the module phas-
ing increases, such that dP/dnz peaks at nz = 1.92, 2.01, 2.11 for FAM and at nz =1.63,
1.72, 1.81 for PAM. For the positive part of the LH power spectrum, the main lobes are
centered at the correct theoretical nz values and their widths are also well determined,
such that the total input power for each antenna is well retrieved.
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Figure 44: 2-D simulation of one row in FAM (top) and PAM (bottom) emphasizing the
Grill structure and the propagating LH wave which is damped close to the antenna to

reduce calculation effort resulting from having a radial density gradient in the SOL and a
full row of the antennas. length unit is meter.
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φmod
ne0(1017m−3) φmod,0 φmod,0−π/6 φmod,0 φmod,0 +π/6

FAM 2.0 π/2 nz0 ' 1.9 nz0 ' 2.0 nz0 ' 2.1
PAM 1.7 π nz0 ' 1.6 nz0 ' 1.7 nz0 ' 1.8

Table 5: Parameters used in validating the COMSOL model, with the nz0 values relative
to three module phasing cases, expressed in terms of φmod,0 which achieves highest

directivity
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Figure 45: Comparison of LH nz (equivalently n‖) power spectra for FAM and PAM like
LH antennas based on power values calculated in COMSOL Multiphysicsr (solid)

against power spectra calculated in ALOHA 1D coupling code (dashed) for three module
phasing values: φmod = φmod0−π/6(red),φmod0 (blue),φmod0 +π/6(green) where

φmod0 = (3π/2,π) for (FAM,PAM) is the module phasing that achieves highest
directivity.
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Figure 46: Lower hybrid wave propagation for a two modules antenna with a flat density
with ne0 = 4.4x1017 m−3

C. Fluctuation Model

As density fluctuates at high rates above 50%, meshing becomes extremely fine
and calculation stress increases beyond the capabilities of the computer on which COM-
SOL is installed and which has 24 Gbytes of cache memory. Hence, in order to reduce
the calculation stress a flat density is assumed in the SOL for the fluctuation model with
ne0 = 4.4× 1017m−3. Though the electric field propagation is different for a flat density
SOL as the comparison between Fig. 39 and Fig. 46 shows, the power spectrum obtained
using COMSOL is the same (shown in Fig. 47). Note that the spectral width is four times
larger than that of a full row of the antenna since only two modules are assumed knowing
that ∆n‖ ∝ 1/L where L is the ẑ dimension of the antenna.
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Figure 47: Power spectrum of 2 module FAM like antenna at different distances from the
antenna for a quiescent plasma and flat density.



CHAPTER VII

SIMULATIONS RESULTS

A. Fluctuation Model

Electron density fluctuations in the SOL are incorporated in front of a FAM like antenna
using the model discussed in Ref. [121]. The background density is set to n0 = 2.6×nc
to avoid reflections due to densities nearing cut-off in the presence of high fluctuation
amplitudes up to 50%. The SOL size is set to ∆x = 8 cm and is representative to the Tore
Supra tokamak. The module phasing is assumed to be φmod,0 = π/2 and the total input
power of the two modules is set to 0.5 MW. The electron density is n = n0 + ñ, where the
average over the toroidal direction is ¯̃n = 0. In accordance with the model discussed in
Chap. 4, fluctuations are represented by a thin perturbed layer varying along ẑ, assuming
a monochromatic wave-like parallel dependence with a random phase as shown in Fig.
48.

ñ = σnn0 sin(k̃zz+ φ̃)exp
(
−(x− x̃)2

∆x̃

)
(95)

where k̃z is the fluctuation parallel wave number, σn ∈ [0,1] is the relative amplitude of
perturbations, φ̃ ∈ [0,2π] is the perturbation phase, x̃ is the radial position of the
fluctuating layer assuming a Gaussian radial dependence, and ∆x̃ is the corresponding
FWHM1.

More explicitly, Fig. 48 shows a perturbation layer centered at x̃ = 0.375 and extending
by ∆x̃ = 0.125 in both x̂ directions, with a 50% density fluctuation amplitude. Also,
k̃z = 0.5k‖0 where k‖0 (also denoted kz0) is the LH parallel wavenumber
(k‖0 = κ0×n‖0 ' 1.58 cm−1). The fluctuating layer in the simulations is positioned in
the middle of the SOL. Even though physical arguments lead to consider it closer to the
antenna mouth, positioning the perturbation in the middle of the simulation box makes it
possible to identify clearly the effect of fluctuations between the antenna and the
perturbed layer. It is found that the results obtained are almost independent of its
position.

The effect of density fluctuations on the LH electric field and power spectrum is
investigated in the presence of the perturbed layer described in Fig. 48 with φ̃/π ' 1.6
and k̃z = k‖0. The LH electric field shown in Fig. 49 indicates that the LH beam is
diffracted along the perturbed layer, and then continues to propagate towards the
separatrix.

1x̃ and ∆x̃ are scaled to the SOL depth of 8 cm, hence x̃ = 0 and x̃ = 1 correspond to the antenna and
the separatrix respectively.

94
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Figure 48: COMSOL model of two modules FAM like antenna and a thin density
fluctuating layer in the SOL for x̃ = 3 cm, ∆x̃ = 1 cm, σn = 0.5, k̃z = 0.5kz0, φ̃ random

In a quiescent plasma, the LH power spectrum, which is peaked at nz0 ' 2.0 with
negligible amount of power in the tail, remains unchanged from the antenna to the
separatrix. A significant fraction of the LH power in the main peak is transferred to
multiple satellite peaks in dP/dnz once the wave propagates through the perturbed
region, an irreversible process until the separatrix is reached. As shown in Fig. 50, the
LH power spectrum exhibits large fluctuations depending upon the perturbation phase, a
result which is consistent with the heuristic quantitative analysis of LHCD TS discharges
with a large spectral gap [7]. Interestingly, the density fluctuations in the SOL have no
effect on the power spectrum in front of the antenna, and the coefficients of the scattering
matrix must remain consistent with the theory based on a quiescent local plasma, as
observed experimentally.

B. Density perturbation effect on the power spectrum at the separatrix

The main effect of the density perturbation layer is the appearance of new lobes in the
LH power spectrum, whose positions and amplitudes could change considerably
depending upon the phase φ̃ and the wavevector k̃z. The perturbed power spectrum is
fitted by two lobes with a Gaussian shape. The first one is located at nz0 and corresponds
to the main lobe calculated for a quiescent plasma with fixed mean and standard
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Figure 49: Electric field distribution resulting from the fluctuating ayer described in Fig.
48. Diffraction of the electric field is observed.
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Figure 50: (a), (b), (c), (d) : Instantaneous power spectra for different phases φ̃ (π)
= 0.28 ,1.9, 0.97, 1.5 and at different positions in the SOL. Here k̃z = 0.5kz0 x̃ = 3 cm,

∆x̃ = 1 cm, σn = 0.5. The figures show satellite peaks that change position and
amplitude with in the domain 1 < nz0 < 5 which corresponds to a large spectral gap.
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deviation given by µ(nz0)∼= 2, and σ(nz0) = 0.21. Its position and width are found to
remain almost unchanged by the fluctuations whereas its amplitude changes due to
power transfered to the tail. The second lobe, which characterizes the spectral tail, is
centered at µ(nz) corresponding to the equivalent mean value of all new satellite lobes,
with a standard deviation σ(nz) such that the total power in the spectrum remains
unchanged. In order to find the equivalent Gaussian curve of the tail, all tail lobes are
fitted by a Gaussian and consequently the mean, standard deviation and power amplitude
of the tail µ(nz), σ(nz) and P(nz) are derived from those of the lobes that form the tail
according to the formulas:

µ(nz) =
4

∑
i=1

pi×µi(nz) (96)

σ(nz) = (
4

∑
i=1

pi× [µi(nz)
2 +σi(nz)

2])1/2−µ(nz)
2 (97)

P(nz) =
1

σ(nz)

4

∑
i=1

piσi(nz) (98)

where i = 1, ...,4 corresponds to the index of a lobe that constitutes the tail with a
maximum of 4 lobes and pi, µi(nz) and σi(nz) are the power amplitude, mean, and
standard deviation of the ith lobe deduced using a Gaussian fit. Note that P(nz) is
calculated by conserving the area of the lobes that form the tail, knowing that the area of
a Gaussian curve with amplitude p and standard deviation σ is pσ

√
2π .

The time averaged power spectrum is calculated by summing over a large number of
random phases, assuming that the correlation time of the fluctuations is much shorter
than the sampling time [121]. Such approach is consistent with the prescription
discussed in Ref. [7] that fluctuations of the LH power spectrum must be much shorter
than the fast electron slowing down time, in order to reproduce the experimental
observations. The number of phases is chosen such that the statistical noise is almost
negligible. It is shown that the phase (or time) averaged quantities µ , σ , Ptail/Ptot and
Pmain/Ptot are independent of the number of phases when it exceeds 20, whatever the
ratio k̃z/k‖0, knowing that µ , σ , Ptail/Ptot and Pmain/Ptot are obtained by applying the
two-Gaussian fit described above on the phase averaged power spectrum.

Fig. 51 illustrates the fitting procedure by showing the basic Gaussian curves that fit the
main lobe and the tail lobes, in addition to tail equivalent Gaussian (dashed). Though
such a description is simplified regarding the complexity of the tail in the power
spectrum, it allows to characterize easily the fraction of power that is transfered from the
main peak to the tail, the mean position of the tail and its width. This approach is
particularly convenient for identifying general trends from parametric studies.
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k̃z 0.1kz0 0.34kz0 0.95kz0

µ(nz) 2.3 2.8 3.8
σ(nz) 0.33 0.73 0.64

Table 6: This table corresponds to the power spectra in Fig. 51. It shows the
characteristics of the tail, µ(nz) (mean) and σ(nz) (standard deviation), as the fluctuation

parallel wave number k̃z varies.

An example is given for three wavevector values k̃z/kz0 = [0.1,0.34,0.95] in Fig. 51
where the main lobe corresponds to µ(nz0)∼= 2, and σ(nz0) = 0.21. The other
parameters in the calculations are x̃ = 0.375, ∆x̃ = 0.125, n0 = 2.6nc, and σn = 0.5. For
k̃z/k‖0 = 0.1, the fluctuations lead to an apparent broadening and a small shift of the
main lobe; hence the main lobe and the tail overlap resulting in tail with a mean
µ(nz) = 2.3 and standard deviation σ(nz) = 0.33. Increasing k̃z to k̃z = 0.34k‖0 leads to
the appearance of four satellite lobes, one with n‖ < n‖0 and three with n‖ > n‖0. The
equivalent lobe is then centered at µ(nz) = 2.8 with the corresponding standard deviation
σ(nz) = 0.73 as shown in Tab. 6. In this case, 50% of the power in the main lobe is
transfered to the satellite lobes. Moreover, the satellite lobes have gradually decreasing
power amplitude values in nz showing a resonance condition in consistence with the
model described in Fig. 32, [4]. By increasing k̃z to k̃z = 0.95k‖0, the satellite lobes
resulting from the fluctuations are shifted to higher n‖ values, while their amplitudes are
decreasing. Consequently, the fraction of the power transfered to the tail is lower. The
case k̃z = 0.95kz0, results in a power spectrum in which the main lobe is back to be very
similar to the quiescent plasma one and a tail with much less power, showing that the
perturbation effect on the power spectrum is fading away. Remarkably, the tail center of
gravity shift upwards with µ(nz) = 3.8, and due to having less number of lobes σ(nz)
decreases to 0.64.

1. k̃z Scan

The spectral broadening of the LH wave by the fluctuations of the electron density
strongly depends of the ratio k̃z/k‖0 as shown in Sec. B.. Using the simplified
two-Gaussian description for the power spectrum, and averaging over multiple phases, it
is possible to identify the range of wavevectors for which density fluctuations lead to
significant modifications of the excited LH power spectrum. The parameters of reference
for all simulations are those used for the calculations presented in Sec. A. given by
x̃ = 0.375, ∆x̃ = 0.125, σn = 0.5, and ne0 = 2.6nc. Since the simulations indicate a
significant perturbation of the LH power spectrum for a Fourier component of the
fluctuating density layer comparable to the LH wavelength, the k̃z scan is performed over
the range [0.1,1]kz0 in which fluctuations can contribute to filling the spectral gap.

Based on the changes in µ(nz), σ(nz), and power fraction of the main lobe and the tail
shown in Fig. 60, a substantial understanding of the fluctuation parallel wavelength k̃z
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Figure 51: Power spectrum resulting from fluctuation layer given by: x̃ = 0.375,
∆x̃ = 0.125, ne0 = 2.6nc, σn = 0.5. Fitting the power spectrum, main lobe and tail using
Gaussian fit: power spectrum (solid), Gaussian fit of main lobe (x marker) and tail lobes

(square markers). Dashed curve is the Gaussian equivalent of the tail lobes since its
mean and standard deviation are calculated from the mean and standard deviation of the
Gaussian lobes fitting the tail, while its amplitude is chosen so that the area of the tail is

conserved. Dotted curve shows the nonfluctuating power spectrum as reference. Three k̃z
values are taken: (a) k̃z = 0.1kz0, (b) k̃z = 0.34kz0, (c) k̃z = 0.95kz0.
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role in modifying the LH power spectrum is drawn. In particular, the different k̃z cases in
Fig. 51 point out the main stages of the evolution of the power spectra as k̃z varies. First,
the power spectrum at the separatrix that propagates through density fluctuations of large
parallel wavelength of λ̃z = 40cm i.e k̃z = 0.1kz0, is widened at the level of the main lobe
as shown in Fig. 51. This explains the large power fraction in the tail against low µ(nz)
and σ(nz) at k̃z = 0.1kz0 as given in Fig. 60. As k̃z/k‖0 is increased, the tail lobe becomes
progressively resolved from the main lobe. The broadening and the spectral upshift of
the tail lobe increase almost linearly with k̃z/k‖0 up to k̃z/k‖0 = 0.35, but its fraction of
power remains constant, at about 70%. For k̃z/k‖0 > 0.35, the spectral upshift is still
proportional to k̃z/k‖0, but the fraction of power carried by the tail lobe decreases
linearly, while its width remains almost constant. Finally, when k̃z/k‖0 > 1, the effect of
density fluctuations fades out, and the power spectrum is identical to that obtained with a
quiescent plasma.

The study clearly shows that density fluctuations in the toroidal direction over a rather
wide range of k̃z/kz0 values [0.1,1] can contribute to fill the spectral gap by an upshift
and a broadening of the tail lobe. In particular for k̃z ∈ [0.2,0.5]kz0, i.e at fluctuation
wavelengths in the range [8−20]cm, the tail is reasonably consistent with the tail model
in Fig. 32 with µ(nz) ∈ [2.3,3.4] and σ(nz) ∈ [0.5,0.74] and with large power transfer
that exceeds 50% as required by calculations done in Ref. [7] in order to reproduce the
experimental observations.

2. Effect of increasing x̃ and ∆x̃

Monitoring the increase of x̃ and ∆x̃ aims at looking for the impact of the positioning of
the fluctuating layer at different distances from the antenna as well as increasing the
fluctuation layer radial width, on modifying the LH power spectrum at the separatrix.

This study compares two plots that independently display the results for three ∆x̃ values;
each corresponding to a different position of the fluctuating layer with σn = 0.5 and
ne0 = 2.6nc.

Consistent results were obtained when applying k̃z scan for the two x̃ values
x̃ ∈ {0.375,0.5}, as shown in Figs. 64(a) and 64(b) for x̃ = 0.375 and x̃ = 0.5
respectively. This observation shows that varying the position of the fluctuating layer
doesn’t affect the results in terms of the characteristics of the perturbed LH power
spectrum at the separatrix.

Conversely, the radial width of the fluctuation layer contributes slightly to the variations
of µ , σ , Ptail/Ptot and Pmain/Ptot as shown in Fig. 64, for both x̃ values. The power
transferred to the tail is larger up to 20% in the interval 0.1kz0 < k̃z < 0.5kz0 as ∆x̃ is
increased to double its value. On the contrary, in the interval 0.5kz0 < k̃z < 1.0kz0, a
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Figure 52: Phase averaged k̃z sweep used as a reference for upcoming parameter scans
comparison. The fluctuation layer is characterized by: x̃ = 0.375, ∆x̃ = 0.125,

ne0 = 2.6nc, σn = 0.5.
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reverse effect is obtained; as k̃z increases a decreased power transfer to the tail is
obtained at larger ∆x̃. Hence enlarging the radial width of a fluctuating layer for
λ̃z > λLH , increases the power transfered to the tail.

3. Effect of the amplitude of density fluctuations σn and its relation to the fluctuation
width

The effect of density fluctuations amplitude (σn) on the LH power spectrum is addressed
independently and in relation to increasing the fluctuation radial width (∆xtot). First, k̃z
scans for density perturbations at different fluctuation amplitude values given by
σn ∈ {0,0.2,0.35,0.5} for x̃ = 0.375, ∆x̃ = 0.125, ne0 = 2.6nc, show that decreasing the
density fluctuation amplitude decreases the power transferred to the tail for k̃z values in
the interval k̃z ∈ [0.1−1]kz0 as shown in Fig. 67(a). The observation of µ(nz) and σ(nz)
evolution for the different σn cases, points out that as σn decreases, the tail form
develops at higher values of k̃z, and is maintained over a smaller k̃z interval, given by
k̃z ∈ [0.3−0.5]kz0 for the case σn = 0.35 and k̃z ∈ [0.33−0.45]kz0 for the case σn = 0.2
compared to larger interval k̃z ∈ [0.2−1]kz0 for the case σn = 0.5.

Though high density fluctuation amplitude of more than 50% is observed in the SOL in
most tokamaks, [123], the following study aims at looking for other parameters effect in
presence of low density fluctuation amplitude, in particular the radial width of the
fluctuating layer. The fluctuating layer radial dependence is assumed as a box car
function with total width ∆xtot in place of Gaussian radial dependence, to increase the
impact of the perturbations. Fig. 67(b) shows a k̃z scan comparison for
∆xtot ∈ {0.413,0.625,0.8} with 20% fluctuations amplitude. In addition, Fig. 67(b)
includes k̃z scans with Gaussian radial dependence given by ∆x̃ = 0.125 for 50% and
20% fluctuation amplitude cases with x̃ = 0.375, where ne0 is fixed, ne0 = 2.6nc for all
cases, to clarify the difference between low fluctuation amplitude cases with increasing
radial width ∆xtot , and previous scans with Gaussian radial dependence ∆x̃.

The 20% fluctuation amplitude case for ∆x̃ = 0.125 shows a slightly varying mean and
very low power in the tail; however, for increasing ∆xtot the tail power also increases
such that it is possible to recover the effects obtained with σn = 0.5 and ∆x̃ = 0.125 as
shown in Fig. 67(b). This is due to main lobe widening that occurs for all values of k̃z,
demonstrated by the low values of the mean µ(nz). For ∆xtot = 0.79, the tail separates
from the main lobe at k̃z > 0.2kz0, attaining a maximum in mean at k̃z = 0.34kz0.

As a conclusion, increasing the fluctuation width with a box car radial dependence
increases the power in the tail up to 80% at low k̃z values. This entails a strong widening
effect on the main lobe, and complies with the tail model over determined interval of k̃z
over [0.25−0.4]kz0 with a 40% of the total power for large enough radial width.
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Figure 53: Phase averaged k̃z sweep for evaluating the effect of increasing the fluctuation
layer radial width ∆x̃ = [0.125,0.1875,025] for two x̃ cases : (a) x̃ = 0.375 , (b) x̃ = 5

where ne0 = 2.6nc and σn = 0.5.
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Figure 54: (a) Phase averaged k̃z sweep for evaluating the effect of changing the
fluctuation density amplitude where x̃ = 0.375, ∆x̃ = 0.125, ne0 = 2.6nc,

σn = [0,0.2.0.35,0.5]. (b) Radial box dependence of the density fluctuation layer with
total radial width ∆xtot = [0.413,0.625,0.79], ne0 = 2.6nc, σn = 0.2, compared to

Gaussian radial dependence with x̃ = 0.375, ∆x̃ = 0.125, ne0 = 2.6nc, σn = [0.2,0.5]
shows that at low density fluctuation amplitude of 20%, high fraction of the power is

transferred to the tail when the radial width of the fluctuation is increased and is assumed
to be a box car function.
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Figure 55: Phase averaged k̃z sweep for evaluating the effect of changing the reference
density ne0, where x̃ = 0.375, ∆x̃ = 0.125, ne0 = [2.6,2.95,3.3]nc, σn = 0.5.

4. Reference density ne0 and phase average comparison

The reference density ne0 is also varied up to 30%, ne0 ∈ {2.6,2.95,3.3}nc, as given by
Fig. 55 where x̃ = 0.375, ∆x̃ = 0.125, σn = 0.5. The k̃z scan comparison for the three
density cases for the tail power, µ(nz) and σ(nz) are negligible. Therefore, changing the
value of the reference density ne0 has no effect on the fluctuation results as long as the
density in the SOL is not close to the cut-off density value.

In order to figure out the effect of averaging over a different number of phases (initially
20 phases were taken), a k̃z scan is repeated for the fluctuation parameters x̃ = 0.375,
∆x̃ = 0.125, ne0 = 2.6nc, σn = 0.5 while averaging over independent sets of phases of
different numbers. Simulations are done for 10, 15 and 25 phases chosen randomly and
uniformly distributed over [0.2π[. The phase averaged power spectra for each case are
compared to the basic scan shown in Fig. 60.

Fig. 56 shows minimal differences in power transferred to the tail for the different phase
average cases, in particular for a smaller perturbation wavelength that corresponds to
k̃z > 0.14kz0, where the maximum power difference is 8%. Conversely, due to having a
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Figure 56: Phase average Comparison for different number of phases where x̃ = 0.375,
∆x̃ = 0.125, ne0 = 2.6n, σn = 0.5.

larger perturbation parallel wavelength at lower values of k̃z, the difference in the power
fraction transferred to the tail attains a maximum of 20% between the 25 phases average
and the 20 phases average over the interval k̃z < 0.14kz0. The tail mean and standard
deviation are consistent for all phase averaging cases showing that the tail evolves in a
similar manner under the effect of changing k̃z. In conclusion, 20 phases average is a
good estimate of the pdf of perturbed LH power spectrum at the separatrix.

C. Full density model: k̃x dependence for a combination of k̃z modes

A 30% density fluctuation is introduced over the SOL by including multiple fluctuation
layers at many radial positions and dividing the fluctuation energy over many k̃z values
chosen in the vicinity of the LH wavelength. The density distribution for two sets of k̃z
values is considered, one given by k̃z ∈ [0.3−0.5]kz0 and the other by [0.1−0.7]kz0,
while the phases are chosen randomly and independently for each wavenumber and each
layer. ñe takes the form
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ñe =
L

∑
l=1

N

∑
n=1

1√
N

σnne0 sin(k̃z,nz+ φ̃l,n)exp(−x− x̃l

∆x̃
) (99)

where L is the number of layers and N is the number of k̃z modes. In the calculation, ∆x̃
is uniform over all layers and |x̃l− x̃l+1| is constant. Based on the radial positions and
∆x̃, the radial Fourier component of the fluctuation k̃x is calculated. Fig. 57(a) shows the
density distribution over the SOL upon introducing 7 fluctuation layers having same
fluctuation radial width (∆x̃ = 0.053) and uniformly separated along the radial direction,
while the Fourier modes [0.1−0.7]kz0 are superposed along each layer.

For a total fluctuation radial width of 0.75 (normalized to the SOL depth), σn = 0.3 and
ne0 = 2.6nc, the power spectrum at the separatrix averaged over 20 phasing cases for
k̃x ∈ [1−11.1] (k̃x is scaled to κ0, the LH wavenumber), and k̃z ∈ [0.3−0.5]kz0 or
k̃z ∈ [0.1−0.7]kz0 with equal fluctuation energy over all modes, has one peak at nz0 and
a tail occupying up to 25% of the total power as shown in Fig. 57(b). Conversely, the tail
mean and power vary largely in time as shown in Fig. 57(c), which indicates that even
when the density fluctuation amplitude is lower, a combination of modes in the vicinity
of the LH wavelength extending over the SOL have a large instantaneous effect on the
power spectrum for which the tail mean and power could oscillate between large values.

1. Example of long fluctuation wavelength effect as fluctuation radial width increases

Turbulence observations in the plasma edge suggest long wavelength fluctuations along
the parallel to magnetic field lines direction, [123], while parallel fluctuations in the SOL
in front the LH antenna require more experimental effort. Hence, the following example
aims at showing that even at large fluctuation parallel wavelength of 1.0m, the power
spectrum undergoes a significant widening if the radial width ∆x̃ is increased. Fig. 58
displays the power spectra evolution for three ∆x̃ values 0.31, 0.38, and 0.44 for which
the main lobe spectral width increases as ∆x̃ increases. The power spectra fit shows both
the red and yellow Gaussian lobes that fit the main lobe and they correspond to the
original lobe at fixed standard deviation, and the tail respectively. As a result, the power
spectrum main lobe spreads over a large interval given by nz ∈ [1.3−3] for
∆x̃ = 0.31, 0.38, 0.44.
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Figure 57: 7 radial fluctuation layers with total density fluctuation energy of 30%
distributed equally over k̃z values: k̃z = [0.1,0.2, ...,0.7]kz0 for ne0 = 2.6nc. (a) Density
plot (unit is m−3) for a random phasing case with k̃x(k0) = 11.1 where k̃x is the radial
fluctuation wave number calculated from the width of the fluctuation layers and the
distance between two consecutive layers. (b) Phase averaged power spectrum at the
separatrix for k̃x(k0) = 7.2. (c) Phase dependent power and mean of the tail for 20

randomly chosen phasing cases where k̃x(k0) = 7.2.
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Figure 58: Power spectrum resulting from a fluctuation layer with a large parallel
wavelength: λ̃z = 12.5×λLH , where ∆x̃ = 0.31, 0.38, 0.44.



CHAPTER VIII

CONCLUSION

A 2-D slab model of the SOL and a FAM like antenna with two modules is simulated in
COMSOL Multiphysicsr to solve the full plasma wave equation in presence of a thin
perturbed electron density layer. Since meshing imposes a challenge due to the very
short LH wavelength at higher densities, a constant background density is assumed.
When the range of the Fourier component of the density fluctuations parallel to the
magnetic field is of the same order of the LH parallel wavelength, the power spectrum is
strongly modified by diffraction. As a result, the LH power spectrum at the separatrix
exhibits satellite peaks carrying a significant amount of power, as inferred from ray
tracing and Fokker-Planck calculations [7]. Other fluctuation parameters are studied,
showing that the radial width of the perturbed layer and the relative amplitude of the
electron density fluctuations are the main parameters that contribute to broadening the
LH power spectrum and increasing the power in the spectral tail. On the other hand, it is
found that the average density, radial position of the fluctuating layer, LH input power
(see Appendix F), and averaging over larger number of phases have a minimal effect.

While other mechanisms suggested to bridge the LH large spectral gap in weak damping
regimes do not fully explain the necessary n‖ upshift [78], ray tracing and Fokker-Planck
calculations have shown that a fluctuating tail model of the LH power spectrum at the
separatrix successfully reproduces experimental observations in TS large spectral gap
regimes [7, 18]. Despite its simplicity, the model developed in the present work is able to
yield the characteristics of the initial power spectrum at the separatrix required by
ray-tracing and Fokker-Planck calculations for reproducing experimental results. This
suggests that density variation parallel to the magnetic field in a thin layer in front the
LH antenna can break the usual picture given by standard antenna spectrum calculations.
A short review of existing experimental data concerning the time-space characteristics of
the density in front of the LH antenna may support this analysis. Based on the results
presented here, further theoretical studies and experimental measurements are necessary
to provide the physical mechanisms at play in the vicinity of the waveguides, and
quantify their contribution. In summary, the present study suggests that diffraction by
local electron density fluctuations in the SOL in front the LH antenna could modify the
LH power spectrum in accordance with Ref. [7], and thus exhibit a plausible mechanism
to bridge the large spectral gap at the plasma edge.
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APPENDIX A

MODES INSIDE A WAVEGUIDE

Consider a rectangular waveguide that has dimensions y = a and z = b . Assume
time harmonic fields with eiωt time dependence, propagating in the x̂ direction. The
electric and magnetic fields have the form,

E(x,y,z) = [e(y,z)+ ẑex(y,z)]e−ikxx

H(x,y,z) = [h(y,z)+ ẑhx(y,z)]e−ikxx

where e(y,z) and h(y,z) are functions to be determined and kx is the x component of the
wave vector .

Fourier transform in time of Maxwell’s equations for source free wave guides
gives

∇×E =−iωµH (100)

∇×H = iωεE (101)

The field components could be written in terms of Ex and Hx and their derivatives [136].
Consequently, solving for the T EM which is characterized by zero electric and magnetic
fields in the wave direction of propagation which is the 0x axis, renders all other field
components zero. Therefore the T EM mode does not propagate inside a rectangular
waveguide. Only T Emn and T Mmn modes propagate inside rectangular wave guides in
which Ex and Hx are respectively zero. Therefore one field should be solved in each case
by applying Helmholtz1 equations and boundary conditions2.

1Helmholtz equations are second order differential equations in E or H given by:
∇2H + k2H = 0,
∇2E + k2E = 0.
These equations result from using both Faraday’s and Ampere’s laws.
∇×∇×H = ∇× (iωεE) = iωε(−iωµH) = (ω2/c2)H = k2H.
with k = ω

√
µ0ε0 where µ0 and ε0 are the vacuum permeability and permittivity respectively.

Also note that ∇×∇×H = ∇(∇.H)−∇2H = ∇((1/µ)∇.B)−∇2H = −∇2H =− x̂∇2Hx− ŷ∇2Hy−
ẑ∇2Hz.

Thus for i = x, y, z

(
∂

∂x2 +
∂

∂y2 +
∂

∂ z2 + k2)Hi = 0.

2For perfect conductor materials, the boundary conditions resulting from having zero fields inside the
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For the T Emn mode, Ex = 0 since its electric field is transverse to the direction of
propagation. Thus Helmholtz wave equation for Hx is given by

(
∂

∂x2 +
∂

∂y2 +
∂

∂ z2 + k2)Hx = 0 (102)

which becomes when substituting ∂/∂x2 by −k2
x ,

(
∂

∂y2 +
∂

∂ z2 + k2
c)Hx = 0 (103)

where (kc)mn is called the cut-off wave number. k2
c = k2− k2

x = k2
y + k2

z with ky, kz un-
knowns to be solved. Similarly, for the T Mmn mode since Hx = 0 (T Mmn modes are char-
acterized by a magnetic field transverse to the direction of propagation), the Helmholtz
wave equation for Ex is solved,

(
∂

∂x2 +
∂

∂y2 +
∂

∂ z2 + k2)Ex = 0 (104)

which becomes when substituting ∂/∂x2 by −k2
x ,

(
∂

∂y2 +
∂

∂ z2 + k2
c)Ex = 0. (105)

A. Rectangular Waveguides Modes

Applying boundary conditions given by zero tangential electric field Et = 0 at the
walls of the waveguide. For the T Emn modes, Eq. (103) is solved by method of separation
of variables [137] which gives ky = mπ/a and kz = nπ/b , m,n = 0,1,2, . . .

Ey(y,z) = i
nπ

b
ωµ0

(mπ

a )2 +(nπ

b )2 Amncos(
mπ

a
y)sin(

nπ

b
z)ei(ωt−kxx)V.m−1 (106)

Ez(y,z) =−
mπ

a
iωµ0

(mπ

a )2 +(nπ

b )2 Amnsin(
mπ

a
y)cos(

nπ

b
z)ei(ωt−kxx)V.m−1 (107)

Ex = 0, (108)

material are: n̂.−→D = ρs, n̂.−→B = 0, n̂×−→E = 0, n̂×−→H =
−→
Js , where ρs and Js are the surface charge and

current density distributions respectively.
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and

Hx(y,z) = Amncos(
mπ

a
y)cos(

nπ

b
z)ei(ωt−kxx)A.m−1 (109)

Hy(y,z) =
mπ

a
ikx

(mπ

a )2 +(nπ

b )2 Amnsin(
mπ

a
y)cos(

nπ

b
z)ei(ωt−kxx)A.m−1 (110)

Hz(y,z) =
nπ

b
ikx

(mπ

a )2 +(nπ

b )2 Amncos(
mπ

a
y)sin(

nπ

b
z)ei(ωt−kxx)A.m−1 (111)

where Amn has the same unit as the magnetic field intensity (A.m−1), µ0 is the vacuum
permeability (H.m−1 orV.s.A−1.m−1) and

(
mπ

a
)2 +(

nπ

b
)2 + k2

x = k2. (112)

Similarly, the T Mmn mode field equations are obtained by solving Eq. (105),

Ey(y,z) =−
mπ

a
ikx

(mπ

a )2 +(nπ

b )2 Bmncos(
mπ

a
y)sin(

nπ

b
z)ei(ωt−kxx)V.m−1 (113)

Ez(y,z) =−
nπ

b
ikx

(mπ

a )2 +(nπ

b )2 Bmnsin(
mπ

a
y)cos(

nπ

b
z)ei(ωt−kxx)V.m−1 (114)

Ex(y,z) = Bmnsin(
mπ

a
y)sin(

nπ

b
z)ei(ωt−kxx)V.m−1, (115)

and

Hy(y,z) =
nπ

b
iωε0

(mπ

a )2 +(nπ

b )2 Bmnsin(
mπ

a
y)cos(

nπ

b
z)ei(ωt−kxx)A.m−1 (116)

Hz(y,z) =−
mπ

a
iωε0

(mπ

a )2 +(nπ

b )2 Bmncos(
mπ

a
y)sin(

nπ

b
z)ei(ωt−kxx)A.m−1 (117)
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Hx = 0 (118)

where Bmn has the same unit as the electric field intensity V.m−1, ε0 is the vacuum per-
mittivity (F.m−1 or A.s.V−1.m−1). Now

kx =

 β =
√

k2− [(mπ

a )2 +(nπ

b )2] i f k2 > (mπ

a )2 +(nπ

b )2

−iα =−i
√

(mπ

a )2 +(nπ

b )2− k2 i f k2 < (mπ

a )2 +(nπ

b )2
(119)

where k = ω/c is real since vacuum is a loss free dielectric medium, β is the phase con-
stant which defines the guide wavelength by β2π = λg and α is the attenuation constant.
Thus a mode propagates (kx = β ) if

k2 > (
mπ

a
)2 +(

nπ

b
)2,

which gives

ω2

c2 > (
mπ

a
)2 +(

nπ

b
)2,

equating both sides gives the cut-off frequency of both T Emn and T Mmn modes is obtained

fcmn = c
√

(
m
2a

)2 +(
n

2b
)2, (120)

with the lowest cut-off frequency determining the dominant propagating mode.

Consequently, a launched wave propagates in a specific mode if it’s frequency is
above the cut-off frequency of that mode.

B. Parallel Plates Waveguide Modes

The modes that propagate in a parallel plate waveguide shall be studied. A par-
allel plate waveguide models an antenna that is infinite in the ŷ direction.

The fields for the T EM mode (Ex = Hx = 0), where the wave propagates in the
x̂ direction as in the left sketch in Fig. 59 are obtained by solving Laplace’s equation:
∇2φ(y,z) = 0 to find the electrostatic potential between the two plates φ = V0z/b where
the potential is assumed zero on one plate takes the value V0 on the other one. Ez is then
deduced Ez =−∇φ =−V0/b. So the total electric field is
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Ez =−(
V0

b
)ei(ωt−βx) (121)

where

Hy =
Y0

b
x̂×Ezẑ =

V0
√

ε0

b
√

µ0
ei(ωt−βx) (122)

where β = k, and
Ex = Ey = Hx = Hz = 0. (123)

The T En mode field equations are obtained by solving the Helmholtz equation
for Hx where Ex = 0 and ∂/∂y = 0 (Fig. 59),

Ez = Ex = Hy = 0 (124)

Hx = Ancos(
nπz

a
)ei(ωt−βx) (125)

Ey =
iωµ0b

nπ
Ansin(

nπz
b

)ei(ωt−βx) (126)

Hz =
iβb
nπ

Ansin(
nπz

b
)ei(ωt−βx) (127)

where β =
√

k2− (nπ

b )2 is real (i.e the T En mode propagates) if nπ/b. Thus the cut-off
frequency is concluded by

ω

c
>

nπ

b
hence

fc,n =
n× c
2b

.

Also Refering to the model of parallel waveguide given by Fig. 59, the T Mn
mode field equations for a wave propagating in the x̂ direction are obtained. For Hx = 0,
Helmholtz equation is solved for Ex, where the other field components are obtained using
Maxwell’s equations,

Ey = Hz = Hx = 0 (128)

Ex = Bnsin(
nπz

b
)ei(ωt−βx) (129)
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Figure 59: parallel plate waveguide

Ez =−i
βb
nπ

Bncos(
nπz

b
)ei(ωt−βx) (130)

Hy =
iωε0b

nπ
Bncos(

nπz
b

)ei(ωt−βx). (131)



APPENDIX B

ELECTROMAGNETIC DISPERSION RELATION IN COLD
PLASMA

The electromagnetic dispersion relation is analyzed and the characteristics of the
lower hybrid wave propagation inside plasma are studied. Assume that the density has a
gradient in the x̂ direction such that |k| � |∇n

n |, and that k has projections in the ⊥ and ‖
directions only.

First start with Maxwell’s equations for the electric and magnetic fields,

∇×E =−∂tB (132)

∇×B = µ0J+
1
c2 ∂tE (133)

Consider variations in the form,

E(x, t) = Ẽ(x, t)ei(k·r−ωt), (134)

where, the envelope Ẽ(x, t) is slowly varying in time and space. Using Eqs. 132 and 133,
and neglecting higher orders in Eq. 134 that is considering the zero order plane wave
only, the wave equation in E becomes,

∇× (∇×E)+
1
c2 ∂

2
t E+µ0∂tJ = 0. (135)

Apply spatial and time Fourier transform and substitute J = σE where σ is the local
conductivity tensor,

ik× ik×E− ω2

c2 E− iωµ0J = 0

⇐⇒−k× k×E− ω2

c2 E− iωµ0σE = 0

⇐⇒ (k× k× I+
ω2

c2 I+ iωµ0σ)E = 0

⇐⇒ (k× k× I+
ω2

c2 (I+
i

ωε0
σ))E = 0. (136)
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Let

K= I+
i

ε0ω
σ . (137)

where σ/ωε0 is the susceptibility tensor. σ is obtained by identifying the x, y, and z
components of equations:

J = σE (138)

and
J = nqv = ne ∑

i=x,y,z
(vs,i− ve,i). (139)

The particle equation of motion is used to write the velocity components of the ions and
electrons as a function of the components of the electric field,

ms∂tvs = qs(E + vs×B0), (140)

where vs and E are the perturbed quantities inside plasma where s stands for different ion
species inside plasma and v0 and E0 are both assumed zero. Also B0 = B0ẑ is the static
magnetic field. Decomposing Eq. 140 gives,

−iωvα,x =
qα

mα

(Ex + vα,y×B0)

−iωvα,y =
qα

mα

(Ey− vα,x×B0)

−iωvα,z =
qα

mα

(Ez),

where α stands for electrons and ions species. Let’s find ve,x, ve,y, vs,x and vs,y explicitly.

ve,x

[
1−

ω2
c,e

ω2

]
=

e
iωme

Ex−
ωc,e

ω2
e

me
Ey.

Therefore,
ve,x =

e
ime

ω

ω2−ω2
c,e

Ex−
ωc,e

ω2−ω2
c,e

e
me

Ey. (141)

Subsequently,

ve,y =
e

me

ωc,e

ω2−ω2
c,e

Ex +
e

iωme

ω2

ω2−ω2
c,e

Ey (142)
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Similarly,

vs,x =
−e

iωms
(Ex)−

ωc,s

iω

[
−e

iωms
(Ey)+

ωc,s

iω
vs,x

]
which gives

vs,x =−
ω

ω2−ω2
c,s

e
ims

(Ex)−
ωc,s

ω2−ω2
c,s

e
ms

(Ey). (143)

Also

vs,y =
e

ms

ωc,s

ω2−ω2
c,s

Ex−
e

iωms

ω2

ω2−ω2
c,s

Ey. (144)

Now

Jx = ne(∑
s

vs,x− ve,x)

= ne2
[
−∑

s
(

ω

ω2−ω2
c,s

1
ims

+
ω

ω2−ω2
c,s

1
ims

)Ex +(
ωc,e

ω2−ω2
c,e

1
me
−

ωc,s

ω2−ω2
c,s

1
ms

)Ey

]
.

But Eq. 138, gives Jx = σxxEx +σxyEy +σxzEz, hence

σxx =−ne2(
ω

ω2−ω2
c,e

1
ime

+∑
s

ω

ω2−ω2
c,s

1
ims

),

σxy = ne2(
ωc,e

ω2−ω2
c,e

1
me
−∑

s

ωc,s

ω2−ω2
c,s

1
ms

),

σxz = 0.

Similarly
Jy = σyxEx +σyyEy +σyzEz = ne(∑

s
vs,y− ve,y)

= ne
[
∑
s

e
ms

ωc,s

ω2−ω2
c,s

Ex−∑
s

e
iωms

ω2

ω2−ω2
c,s

Ey−
e

me

ωc,e

ω2−ω2
c,e

Ex−
e

iωme

ω2

ω2−ω2
c,e

Ey

]
Then

σyx = ne2(∑
s

1
ms

ωc,s

ω2−ω2
c,s
− 1

me

ωc,e

ω2−ω2
c,e

),



APPENDIX B. ELECTROMAGNETIC DISPERSION RELATION IN COLD PLASMA121

σyy =−ne2(∑
s

1
iωms

ω2

ω2−ω2
c,s

+
1

iωme

ω2

ω2−ω2
c,e

),

σyz = 0.

Also

Jz = σzxEx +σzyEy +σzzEz = ne(∑
s

vs,z− ve,z) =−ne2(∑
s

1
iωms

+
1

iωme
)Ez.

then
σzx = σzy = 0,

and
σzz =−ne2(∑

s

1
iωms

+
1

iωme
).

K in Eq. 137 is obtained,

K=

 1 0 0
0 1 0
0 0 1

+ i
ε0ω

σ

Using Stix notation:

K=

 ε⊥ −iεxy 0
iεxy ε⊥ 0
0 0 ε‖

=

 S −iD 0
iD S 0
0 0 P

 ,
where,

ε⊥ = S = 1+
ω2

pe

ω2
ce−ω2 +∑

s

ω2
ps

ω2
c,s−ω2

∼= 1+
ω2

pe

ω2
ce
−∑

s

ω2
ps

ω2 ,

ε‖ = P = 1− (
ωpe

ω
)2−∑

s
(
ωpe

ω
)2,

εxy = D =
ω2

pe

ω

ωc,e

ω2
c,e−ω2 −∑

s

ω2
ps

ω

ωc,s

ω2
c,s−ω2

∼=
ω2

pe

ωωc,e
.

Since

k× k× I= (k.I)k− k2I= kk− k2I=

 k2
x − k2 0 kxkz

0 −k2 0
kxkz 0 K2

z − k2

 ,
Eq. 136 can be written as

D.E = 0, (145)

where

D = k× k× I+
ω2

c2 (I+
i

ωε0
σ) =

 k2
x − k2 0 kxkz

0 −k2 0
kxkz 0 −k2

x

+ ω2

c2 K
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=

 −k2
z 0 kxkz

0 −k2 0
kxkz 0 −k2

x

+ ω2

c2

 S −iD 0
iD S 0
0 0 P

=
ω2

c2

 S−n2
‖ −iD n⊥n‖

iD S−n2 0
n⊥n‖ 0 P−n2

⊥

 ,
(146)

The solution for Eq. 145 excluding the trivial solution, is obtained by setting

|D|= 0.

i.e.

P4(n‖)n
4
⊥+P2(n‖)n

2
⊥+P0(n‖) = 0. (147)

where
P4 = ε⊥ = S,

P2 = (ε‖+ ε⊥)(n2
‖− ε⊥)+ ε

2
xy,

P0 = ε‖[(n
2
‖− ε⊥)

2− ε
2
xy].

Now let’s estimate ε‖, ε⊥, εxy for ω = 2×π×3.7×109rad/s, ns,e =(1017−3×1019)m−3,
and B = 3.5 T . Since ε⊥ ∼= (1.0008−1.1553) and ε‖ ∼= (−175.9147−0.4273) where ε‖
is decreasing for increasing density, and εxy ∼= (0.02162−6.6764).1

Now P0 and P2 shall be calculated for n = 1017 m−3,

P0 = ε‖[(n
2
‖− ε⊥)

2− ε
2
xy]
∼= 1.8

P2 = (ε‖+ ε⊥)(n2
‖− ε⊥)+ ε

2
xy
∼= 3.6,

1

For hydrogen plasma with n = 1017m−3,
ε⊥ ∼= 1+ω2

pe/ω2
ce−ω2

ps/ω2 ∼= 1.0008, ε‖ ∼= 1− (ωpe/ω)2− (ωps/ω)2 ∼= 0.4273,
εxy ∼= ω2

pe/ωωc,e ∼= 0.02162,
For n = 3×1019m−3,

ε⊥ ∼= 1.1553, ε‖ ∼=−175.9147, εxy ∼=
ω2

pe
ωωc,e

∼= 6.6764,

To make sure ε‖ is sufficiently negative, n = 1018 m−3 is taken

ε‖ ∼= 1− (ωpe/ω)2− (ωps/ω)2 ∼= 1−10(
2.8
3.7

)2−10(
0.0664

3.7
)2 ∼=−4.7271,
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while for n = 3×1019, P0 ∼=−19953, P2 ∼=−452. Note that since P4 ∼= 1, and |ε‖| � ε⊥,
εxy then P0 > 0, P2 < 0. Solving for the roots of Eq. 147.

n2
⊥ =
−P2±

√
4

2P4
, (148)

where 4 = P2
2 − 4P4P0 is always nonnegative in the lower hybrid range. The root with

(+) sign is the slow wave branch, since it has lower v⊥, and the root with the (−) sign
is the fast wave branch. For ∆ = 0, it has a cold confluence that is the double root solu-
tion signifies a slow-fast wave mode conversion at a specific value of na (n accessibility)
which is density dependent [35]. Thus the wave n‖ refractive index should exceed na
corresponding to the highest plasma density to avoid mode conversion into a fast wave.

Let’s study the slow wave branch, characterized by 2

n2
⊥
∼=−(n2

‖−S)(
p
S
). (149)

Resonance occurs for n⊥ = 0 that is for S = 0, which gives

ω
−1 = ω

−1
LH =

√
(ωcsωce)−2 +ω

−2
ps . (150)

Cut-off takes place at P = 0, which is when the wave frequency matches the natural
frequency of the plasma hence at cut-off ωLH = ωpe. Hence ncut,slow = 1.6×1017 m−3. 3

The fast wave is given by

n2
⊥ =
−P2−

√
4

2P4
.

Since P0 = 0, gives n⊥ = 0 and P0 = 0 gives (n2
‖− ε⊥)

2− ε2
xy = 0, then n2

‖− ε⊥ = εxy

describes cut-off. As a result, ncut, f ast ∼= 8.4×1018 m−3.

4

2

n2
⊥ =
−P2 +

√
4

2P4
∼=−(n2

‖−S)(
p
S
)

[
(S+P)(−1+(1−4SP(−D2/(S+P)2(n2

‖−S)2))1/2

2P

]

3

ncut,slow =
ω2

LHε0m
e2 = ω

2
LH(

8.8×10−12×9.1×10−31

1.62×10−38 ) = 16862×1013 ∼= 1.6×1017 m−3.

4

n2
‖− ε⊥ = εxy⇐⇒ n2

‖− (1+
ω2

pe

ω2
ce
−

ω2
ps

ω2 ) =
ω2

pe

ωωc,e

=⇒ ncut, f ast =
3

35.67
×1020 ∼= 8.4×1018m−3.
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Note that ncut, f ast � nslow, f ast , thus it is more difficult to launch.

Now using Eqs. 145 and 146, Ex,y/Ez is to be compared for slow and fast waves.
Eq. 145 gives

(S−n2
‖)Ex− iDEy +n⊥n‖Ez = 0

but Ey = 0 for the slow wave, thus

(
Ex

Ez
)slow =

n⊥n‖
(S−n2

‖)
=

n‖
(S−n2

‖)

√
−(n2

‖−S)(
p
S
)∼

√
P/S (151)

(
Ex

Ez
) f ast =

P−n2
⊥

n⊥n‖
∼ P/S, (152)

So
Ez,slow

Ez, f ast
∼
√

P/S ∼ 10. (153)

Hence slow wave is more efficient for Landau damping since it has larger parallel electric
field.



APPENDIX C

REFLECTION COEFFICIENT CALCULATION

The electric field along a cross section of a waveguide (x = constant) is the sum
of the incident and reflected parts:

E1 = Eiexp(−ikx)+Erexp(+ikx)

where at x+λ/4,

E2 = Eiexp(−ik(x+λ/4))+Erexp(+ik(x+λ/4)),

Hence
Ei =

1
2
(E1+ iE2)eikx

and
Er =

1
2
(E1− iE2)e−ikx

The reflection coefficient is given by Γ = (Er/Ei)
2.
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APPENDIX D

COMPARING THE POWER BETWEEN COMSOL
SIMULATIONS AND ALOHA FOR FAM AND PAM

In order to compare the power spectra obtained in Aloha with those obtained
using the electric field calculated by Comsol, it is necessary to figure out which are the
dominant modes in the 2 D configuration used in Comsol and modes description used
in Aloha. Actually, Aloha takes the T E10 mode as the pricipal mode since it considers
the antenna as rectangular waveguides array. However; in Comsol the T EM mode is the
principal mode, since the antenna is modelled as a parallel plate waveguide. Thus

Emax(rect) = Emax(parallel plate)×

√
2k0

a×β10

where k0 the wave number in vacuum and β10 is the T E10 mode wave number.

Thus
Power(Aloha) = Power(Comsol)

2k0

a×β10

However, for simple comparison the power spectra were normalized to maxi-
mum power.
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APPENDIX E

THE LH WAVE PARALLEL PHASE VELOCITY AND THE
LANDAU DAMPING PHASE VELOCITY

Let the electron temperature Te in a tokamak be Te = [3−10]KeV . Note that n‖=
c/v‖, where n‖ is the refractive index of the Lower hybrid wave parallel to the magnetic
field lines and c is the velocity of light.

For the FAM antenna, n‖ ' 2, hence v‖ = c/2. Therefore

vthe =
√

Te/me ∈ c× [0.045−0.14], (154)

where vthe is the electron phase velocity, thus v‖ = [3.57−11.1]vthe.

On the other hand, n‖,L ' 5.5/
√

T [KeV ] ∈ [1.74−3.17] where n‖,L is the paral-
lel refractive index corresponding to Landau damping. Therefore,

v‖,L = c/n‖,L ' [4.1−7]vthe ≡ [0.32−0.57]c. (155)

In particular, for Te = 5KeV, v‖ ' 5vthe, while v‖,L ≡ 0.4c which is lower than v‖
thus describes the spectral gap problem in low temperature plasmas.
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APPENDIX F

CALCULATING THE SPECTRUM OF DENSITY
FLUCTUAIONS

A. Introduction

In order to formulate the plasma electron density perturbation in the SOL heuris-
tically, the mathematical background that describes the fluctuations is presented. A stochas-
tic description is used based on the large difference of fast fluctuations correlation time
and that of the fast LH electrons slowing down time scale.

B. Statistical Description of Plasma Fluctuations

1. Reynold’s Decomposition

First, the plasma density fluctuations are considered in the parallel ẑ dimension.
Let ne(z, t) be a continuous density function dependent on space component z and time t.
The fluctuating part with a zero time average ñe(z, t) could be seperated from the slowly
evolving part ne0(z, t) using Reynold’s decomposition. Thus

ne(z, t) = ne0(z, t)+ ñe(z, t). (156)

Notice that ne0(z, t) is the average of ne(z, t) over a time δ t,

ne0(z, t) = ne(z, t) =
1
δ t

ˆ t+δ t

t
ne(z, t ′)dt ′ (157)

where δ t is chosen such that

( ˆ̃ω−∆ω̃/2)−1� δ t� ( ˆ̄ω +∆ω̄/2)−1 (158)

with ˆ̃ω, ∆ω̃ and ˆ̄ω, ∆ω̄ being the central frequency and the bandwidth of the high fre-
quency and low frequency bands distinguished in the spectrum of ne(z, t) respectively.

Note that, Eq. 157 gives, ñe(z, t) = 0, but a zero mean does not imply that the
fluctuations are small. And (158) indicates that ne0(z, t) is almost constant on the time
interval δ t, thus ne0(z, t) ' ne0(z), where δ t is taken as the slowing down time scale
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of fast electrons. Also, in this study, the density background is flat and therefore low
frequency is taken to be zero and ne0 is fixed in space and time.

2. Fourier Transform and Random Phase Approximation

Lets designate ne , ne0, and ñe by a, A, and ã to simplify the notation. The time
and space autocorrelation functions measure the self similarity over specified space and
time intervals respectively which allows the determination of the limits beyond which an
event is nondeterministic and thus is dealt with as a random variable. Moreover, they
provide a tool to measure the loss of information with respect to the considered scales in
space and time. The single space Eulerian time correlation function is given by

Rt
aa(z, t,z, t−∆t) = ã(z, t)ã∗(z, t−∆t), (159)

and the single time autocorrelation function is given by

Rt
aa(z, t,z−∆z, t) =< ã(z, t), ã∗(z−∆z, t)>, (160)

where

< ã(z, t), ã∗(z−∆z, t)>=
1
L

ˆ +L/2

−L/2
ã(z, t)ã∗(z−∆z, t)dz. (161)

An important property is to have Rt
aa independent of the choice of time but

rather dependent on the time difference ∆t. This is applicable by assuming stationary
fluctuations over δ t. Thus

Rt
aa = Rt

aa(∆t). (162)

Similarily, assuming homogeneous fluctuations in space gives

Rz
aa = Rz

aa(∆z). (163)

Let’s designate by τ f and ξ f the time and space correlations respectively. Thus
Rt

aa is a random variable of time if ∆t � τ f and similarily, Rz
aa is a random variabe of

space if ∆z� ξ f .

Now using the fourier transform, ã(z, t) is written as a superposition of plane
waves,

ã(z, t) =
ˆ +∞

−∞

dω̃

ˆ +∞

−∞

ãk̃,ω̃eiS̃k̃,ω̃ dk̃, (164)
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where the phase Sk̃,ω̃ = k̃.z− ω̃(k̃)t, knowing that

k̃ =
2π

λ̃

is the fluctaution wave vector, λ̃ is the corresponding fluctuation wave length and ω̃(k̃) is
the dispersion relation. Eq. 164 sums over many wavelengths which form a wavepacket
traveling at a groug velocity vg = dω̃/dk̃. The fluctuation period relative to a wave with a
wavelength λ̃ , τ̃(k̃) is given by

τ̃(λ̃ ) =
2π

ω̃(k̃)
=

1

f̃ (k̃)
.

For the case of ∆t� τ f and ∆z� ξ f , a deterministic evolution allows approximating the
phase in (164) by ∆S' 0, hence

∆z

λ̃

− ∆t

τ̃(λ̃ )
= 0. (165)

A linear dispersion relation ω̃(k̃) = ṽk̃ or τ̃(λ̃ ) = λ̃/ṽ, gives ∆z = ṽ∆t, which is valid for
the low frequency fluctuations.1

The loss of space coherence is accompanied by a loss in time coherence. Conse-
quently, the criterion for statistical description is based on the following equation,

ξ f ' ṽτ f . (166)

When ∆t exceeds τ f , ∆S̃k̃,ω̃ assumes any value and the term ∆tṽ/λ̃ is mapped to a random
phase

−∆tṽ/λ̃ −→ χk̃

for each mode k̃ with uniform distribution over [0,1].

Thus the phase increment becomes

∆S̃k̃,ω̃ = 2π(
∆z

λ̃

+χk̃), (167)

so that ã(z, t) describes discrete events in time while continuity in space is maintained.
Now, linear dispersion relation gives ãk̃,ω̃ = ãk̃δ (ω̃− ṽk̃), hence

ã(z, t) =
ˆ +∞

−∞

dω̃

ˆ +∞

−∞

ãk̃,ω̃ei(k̃.z−ω̃t)dk̃

1ṽ is the phase velocity.
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=

ˆ +∞

−∞

dω̃

ˆ +∞

−∞

ãk̃δ (ω̃− ṽk̃)ei(k̃.z−ω̃t)dk̃

=

ˆ +∞

−∞

ãk̃ei(k̃.z−ṽk̃t)dk̃. (168)

Now for a given time step t j, where t j =∑
j′= j
j′=1 ∆t j′ for ∆t j′� τ f , the discretized phase term

−ṽk̃t j could be reformulated as a uniform random variable φ
( j)
k̃

having values in [0,2π],

ã(z, t j) = ã( j)(z) =
ˆ +∞

−∞

ãk̃ei(k̃.z−φ
( j)
k̃

)dk̃. (169)

A genralization to the multidimensional case is obtained by neglecting the cross correla-
tions between various dimesions,

ã(z, t j) = ã( j)(z) =
ˆ
· · ·
ˆ

ãk̃ei(k̃.x−φ
( j)
k̃

)dk̃ (170)

where φ
( j)
k̃

is a uniform random variable between 0 and 2π . For further simplification,

ã( j)(x) =
ˆ +∞

0
ãk̃

[
ei(k̃.x+φ

( j)
k̃

)
+ e−i(k̃.x−φ

( j)
−k̃

)
]
dk̃, (171)

also since ã( j)(z) is a real function of x, the conditionφ
( j)
k̃

= −φ
( j)
−k̃

must be satisfied and
hence,

ã( j)(z) = 2
ˆ +∞

0
ãk̃cos(k̃.z+φ

( j)
k̃

)dk̃, (172)

which could be written as

ã( j)(z) = 2
ˆ +∞

0
ãk̃sin(k̃.z+φ

( j)
k̃

)dk̃, (173)

since φ
( j)
k̃

and φ
( j)
k̃
−π/2 have same probability distribution functions (pdf). The discrete

sum of Eq. 173 gives,

ã( j)(z) = 2 lim
∆k̃−→0

∆k̃
l=∞

∑
l=0

ãk̃(k̃ = l∆k̃)sin(l∆k̃.z+φ
( j)
l ), (174)

where K̃ = l∆k̃. Let’s assume ã j(z) to be periodic in x with a period L, then

k̃L = 0 mod(2π) (175)
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i.e.
k̃ =

2π

L
l. (176)

thus
∆k̃ =

2π

L
. (177)

(incrementing k̃ by ∆k̃, is obtained by increasing l by 1).

Replacing Eq. 177 in Eq. 174,

ã( j)(z) =
4π

L

l=∞

∑
l=0

ãk̃(k̃ = l∆k̃)sin(2π(
lz
L
+χ

( j)
l )), (178)

since φ
( j)
l = 2πχ

( j)
l and putting

ãl ≡
4π

L
ãk̃(k̃ =

2π

L
l) (179)

or for a unitary definition of the fourier transform (let κ̃ = k̃/2π)

ãl ≡
2
L

ãκ̃(κ̃ =
l
L
). (180)

Therefore Eq. 178 becomes,

ã( j)(x) =
l=∞

∑
l=0

ãlsin(2π(
lx
L
+χ

( j)
l )), (181)

But ã(z, t) = 0 at any z, and ergodicity gives < ã( j)(z)>= 0 at any time t,

< ã( j)(z)>=
1
L

ˆ +L/2

−L/2
∑
l≥0

ãlsin(
2π

L
lz+φ

( j)
l )dz

= ã0sin(φ ( j)
0 )+

1
L

ˆ +L/2

−L/2
∑
l≥1

ãlsin(
2π

L
lz+φ

( j)
l ))dz

= ã0sin(φ ( j)
0 ),

hence ã0 = 0 since φ
( j)
0 can take any value between 0 and 2π. Finally,

ã( j)(z) = ∑
l≥1

ãlsin(2π(
lz
L
+χ

( j)
l )), (182)

is the starting point of fluctuations.
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3. Fluctuations Level and Time Average

Having discretized time; the number of time realizations in relation to the fluc-
tuation level should be well determined for calculating the mean value A(z). Let δ t be
decomposed into equal time steps ∆t j = ∆t

δ t =
j=N

∑
j=1

∆t j (183)

then

A(z) = a(z, t) =
1
δ t

ˆ t+δ t

t
a(z, t ′)dt ′

=
1
δ t

j=N

∑
j=1

ˆ t j+∆t

t j

a(z, t ′)dt ′

=
1
δ t

j=N

∑
j=1

(ˆ t j+∆t

t j

A(z, t ′)dt ′+
ˆ t j+∆t

t j

ã(z, t ′)dt ′
)

= A(z)+
1
δ t

j=N

∑
j=1

ˆ t j+∆t

t j

ã(z, t ′)dt ′ (184)

where by Eq. 158 and since ∆t � δ t for N � 1, A(z, t) is taken constant on the interval
[t j, t j +∆t]. Regarding the fast fluctuations term

ˆ t j+∆t

t j

ã(z, t ′)dt ′ = ã(z, t j)∆t +O(∆t2) (185)

thus

ã(z, t) =
1
δ t

j=N

∑
j=1

ˆ t j+∆t

t j

ã(z, t ′)dt ′ =
1
N

j=N

∑
j=1

ã j(z)+O(∆t2) (186)

Let EN(ã(z, t)) = 1
N ∑

j=N
j=1 ã j(z), be the mean of ã j(z) taken at N instants of time, where

each value has been assigned equal probability of 1/N due to having ∆t � τ f (time step
is well beyond correlation time)

ã(z, t) = EN(ã(z, t))+O(∆t2) (187)

Henceforth, an unbiased estimator of A(x) could be valid

AN(z) = EN(a(z, t)).
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AN(z) = A(z)+EN(ã(z, t))

with
EN(AN(z)) = EN(A(z))+EN(ã(z, t)) = A(x)+EN(ã(z, t))

if convergence is obtained in the statistical sense

lim
N−→∞

EN(ã(z, t)) = ã(z, t) = 0.

Since the amplitude of ã(z, t) need not be small relative to A(z), N should be large enough
to uncover the fluctuations effect shown by the ratio ã(z, t)/A(z). If A(z) is not known,
one woul have to determine N especially if ã(z, t)/A(z) is large. Moreover, if the auto-
correlation function is assumed as gaussian in time,

Rt
aa(0,∆t) = σ

2
a e−∆t2/τ2

f , (188)

where σ2
a = limN→∞ σ2

a,N , with σ2
a,N is the variance of a(z, t) after N realizations, then for

α = 0.01 chosen as a reasonable level of decorrelation at ∆t, i.e

Rt
aa(∆t)

Rt
aa(0)

≤ α, (189)

∆tα ≥ τ f
√
−lnα = 2.14τ f (190)

Therefore
Nα = δ t/τ f

√
−lnα (191)

4. Determining the coefficients ãl from Power spectrum and auto correlation function

Fourier decomposition of density fluctuation spectrum helps deducing the coef-
ficients from the autocorrelation function.

Rz
aa(∆z, t j) =

1
L

ˆ L/2

−L/2
dz ∑

l≥1
ãlsin(2π(

lz
L
+χ

( j)
l )) ∑

l′≥1
ãl′sin(2π(l′

z−∆z
L

+χ
( j)
l′ ))
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=∑
l≥1

ãl ∑
l′≥1

ãl′
1
L

ˆ L/2

−L/2
sin(2π(

lz
L
+χ

( j)
l ))sin(2π(l′

z−∆z
L

+χ
( j)
l′ ))dz

=
1
2 ∑

l≥1
ãl ∑

l′≥1
ãl′

1
L

ˆ L/2

−L/2
cos(2π(

lz
L
+χ

( j)
l −(l

′ z−∆z
L

+χ
( j)
l′ )))−cos(2π(

lz
L
+χ

( j)
l +(l′

z−∆z
L

+χ
( j)
l′ )))dz

if l 6= l′, both terms in the integrand vanish, and if l = l′, second term of the integrand
vanish, by the rule: sin(a±b) = sin(a)cos(b)± sin(b)cos(a). Thus,

Rz
aa(∆z, t j) =∑

l≥1
ãl ∑

l′≥1
ãl′

1
2

cos(2πl′
∆z
L
)δll′

=∑
l≥1

ã2
l

2
cos(2π

l
L

∆z) (192)

Hence

ãl =
2
L

ˆ L/2

−L/2
Rz

aa(z
′)cos(2π

l
L

z′)dz′

By change of variable y = 2π

L z,

ãl =
1
π

ˆ
π

−π

Rz
aa(

L
2π

y)cos(ly′)dy (193)

The variance of the signal is given by

Rz
aa(0) =

1
L

ˆ L/2

−L/2
ã2(z, t j)dz = σ

2
a

which is the square of the ampliude of density fluctuations.

Now for large values of κ̃ given in eq. 180, an interval ∆κ̃ contains an increas-
ingly higher number of plane waves. Hence, a density of plane waves is defined as fol-
lows,

∑
κ≤κl≤κ+∆κ

ãl
2

2
' 2Γ(κ)∆κ (194)

and equivalently,
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Γ(κ) =
1
4 ∑

l≥1
ãl

2
δ (κ− l

L
).

Therefore for l� 1, by eq. 192

Rz
aa(∆z) =

ˆ +∞

0
2Γ(κ)cos(2πκ∆z)dκ (195)

thus

Rz
aa(∆z) =

ˆ +∞

−∞

Γ(κ)exp(2πiκ∆z)dκ (196)

by Weiner -Kintchine theorem. In order to express ãl in terms of Γ(κ), Γ(κ) is integrated
over a narrow interval of κ . In the interval [l/L−∆κ/2, l/L+∆κ/2] with ∆κ � 2/L,
Γ(κ) is almost constant since l−1 and l +1 are outside the interval, so

ˆ l/L+∆κ/2

−l/L−∆κ/2
Γ(κ)dκ =

1
4 ∑

l≥1
ãl′

2
ˆ l′/L+∆κ/2

−l′/L−∆κ/2
δ (κ− l′

L
)dκ

=
1
4

ãl
2 (197)

and hence

ãl ' 2

√
κ(

l
L
)∆κ. (198)

By Eq.192, ∑l≥1 ã2
l = 2σ2

a , thus for ãl ' α
√

Γl where Γl = Γ(l/L),

α
2
∑
l≥1

Γl = 2σ
2
a , (199)

therefore eq.(182) becomes

ã( j)(z) =
√

2σa ∑
l≥1

√
Γl

∑l≥1 Γl
sin(2π(

lz
L
+χ

( j)
l )) (200)

which is independent of the units of Γl . Note that l is bounded since L the width of the
plasma box is finite, and is considered as the period of the density fluctuation modes,
eq.(177).

5. Uniform Gaussian Autocorrelation

The Autocorrelation function is spacially gaussian such that
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∑
l≥1

ã2
l

2
cos(2π

l
L

∆z) = Rz
aa(0)e

∆z2

ξ 2
f (201)

Hence

ã2
l

2
=

2
L

ˆ +L/2

−L/2
Rz

aa(0)e
− z2

ξ 2
f cos(−2π

L
lz)dz

= Rz
aa(0)

2
L

ˆ +L/2

−L/2
e
− z2

ξ 2
f cos(−2π

L
lz)dz

=
2Rz

aa(0)
2πL

ˆ +lπ

−lπ
e−α2

l y2
cos(y)dy

=
2Rz

aa(0)
πL

ˆ +lπ

0
e−α2

l y2
cos(y)dy (202)

where 2πlz/L = y and

αl =
L

2πl
ξ f =

1
2πlε

(203)

with ε = ξ f /L is the ration of density parallel correlation length to the plasma box parallel
width. Hence

ã2
l

2
=

2Rz
aa(0)
πl

{ i
√

π

4αl
e
− 1

4α2
l (Er f i[

1
2αl
− ilπαl]−Er f i[

1
2αl

+ ilπαl])}

= Rz
aa(0)εi

√
πe−π2l2ε2

(Er f i[πlε− i
2ε

]−Er f i[πlε +
i

2ε
]) (204)

knowing that Er f i(z) is the imaginary error function defined as

Er f i(z) =−iEr f (iz) =
Er f (iz)

i
(205)

where z is complex, and Er f is the error function. Assume

πlε � 1
2ε

(206)

i.e
l� 1

2πε2 (207)
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then, the appoximation

πlε± i
2ε
' i

2ε
, (208)

is valid, thus

ã2
l

2
= Rz

aa(0)εi
√

πe−π2l2ε2
(Er f i[πlε− i

2ε
]−Er f i[πlε +

i
2ε

]) (209)

But in the limit z→ ∞, asypmtotic expansion gives

lim
z→∞

(Er f i[−iz]−Er f i[iz]) =−2i(1− e−x2
(

1√
πz

+O[
1
z2 ])) (210)

Substituting by the leading term,

ã2
l ' 4

√
πRz

aa(0)εe−π2l2ε2
(211)

i.e

ãl ' 2(
√

πε)1/2
√

Rz
aa(0)e−

π2l2ε2
2 (212)

With the condition lmax ≤ (2πε2)−1,and since Rz
aa(0) = σ2

a , Eqs. 197 and 212 give

Γl ≡
ã2

l
4

=
√

πεσ
2
a e−π2l2ε2

(213)

Thus Eq. 200 becomes

ã( j)(z) =
√

2σa ∑
l≥1

√
e−π2l2ε2

∑l≥1 e−π2l2ε2 sin(2π(
lz
L
+χ

( j)
l ))

=

√
2σa

(∑l≥1 e−π2l2ε2
)1/2 ∑

l≥1
e−

π2l2ε2
2 sin(2π(

lz
L
+χ

( j)
l )) (214)
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But since ∑l≥1

√
e−π2l2ε2

∑l≥1 e−π2l2ε2 > 1, this leads to going beyond cut-off. Hence to ensure the

wave propagation, the term ∑l≥1

√
e−π2l2ε2

∑l≥1 e−π2l2ε2 has to be normalized. Therefore,

ã( j)(z) =
√

2σa
1

∑l≥1 e−π2l2ε2/2 ∑
l≥1

e−π2l2ε2/2sin(2π(
lz
L
+χ

( j)
l )) (215)



APPENDIX G

PRIMARY EVALUATION OF THE PERTURBED LH POWER
SPECTRUM

A. Parametric Scan Results: Systematic Comparison of Power Spectrum at Three
Radial Positions for The Fluctuations Parameters : k̃z, σn, x̃, ∆x̃, ne0

This chapter shows the primary scan results of the fluctuation parameters k̃z, σn,
x̃, ∆x̃ and ne0 which are the fluctuation parallel wave number, amplitude, radial position,
radial extent and background density respectively. Since evaluating how the electron den-
sity fluctuations modify the nz power spectrum at the separatrix can be done in different
methods; a rather basic way is first used in which the mean and standard deviation of the
power spectrum, denoted µ and σ respectively, are calculated in order to account for the
weight of nz values in the interval nz ∈ [1,5]. nz is considered as a random variable with
probability distribution function Pz, which is the nz Fourier value of the power known as
the power density spectrum value of nz. Therefore, the statistical mean of the nz Power
spectrum function is given by

µ = ( ∑
1≤nz≤5

Pz)
−1

∑
1≤nz≤5

nz ∗Pz, (216)

and the standard deviation is given by

σ = (( ∑
1≤nz≤5

Pz)
−1

∑
1≤nz≤5

(nz−µ)2 ∗Pz)
1/2. (217)

Henceforth, additional emerging lobes, with variable nz positions could be pin-
pointed in the parameter scan results. Note that x̃ and ∆x̃ will be normalized to the SOL
width which is 8 cm and all results are phase averaged over 20 phases equiprobable over
[0,2π].

1. k̃z scan

For ne0 = 4.4× 1017/m3, σn = 0.5, x̃ = 0.375, ∆x̃ = 0.125 , and an input total
power 0.5 MW , a scan over k̃z with 50 points between 0.1 and 10 is done.

Fig. 60 shows the change in µ and σ upon varying the wavelength of the density
fluctuations. The increase in µ for 0.2kz0 < k̃z < 0.5kz0 ( kz0 is the parallel wavevector
Kz0 = κ0× nz0) indicates a upshift in the averaged peak of the nz power spectrum at the

140



APPENDIX G. PRIMARY EVALUATION OF THE PERTURBED LH POWER SPECTRUM141

2

2.2

2.4

2.6

2.8

µ

0.1 1 10

0.5

0.8

1

k̃z/kz0

σ

 

 

Grill

Fluctuation layer

Separatrix

Figure 60: k̃z scan for σn = 0.5, ∆x̃ = 0.125, x̃ = 0.375

separatrix. A maximum value of 2.57 is attained by µ at 0.49 compared to 2.06 for
nonfluctuating plasma. Note that µ = 2.16 for k̃z = 0.1kz0, due to the side lobes that
appear for nz values greater than those of the main lobe as demonstrated in Fig. 61. σ

increases by 200% on the interval k̃z ' (0.45,1.3)kz0, which shows a widening of the
power spectrum main lobe or the appearance of new satellite lobes. Also, the value of σ

drops sharply from 0.69 at k̃z = 1.4kz0 to 0.4 at k̃z = 1.7kz0.

The phase averaged power spectrum at the peaks k̃z = [0.5, 1.3, 5.2]kz0 is given
in Fig. 62. At k̃z = 0.5kz0, the power is distributed over three lobes at the separatrix.
However, for k̃z = 1.3kz0, which seems to be beyond the resonant region in k̃z, the power
is again concentrated around the main lobe at nz = 2.2, with secondary lobe emerging at
nz = 4.7, which is also noticed for the case k̃z = 5.2kz0. The peak at k̃z = 5.2kz0 (Fig. 60)
could be due to the fact that λ̃z ' waveguide parallel width. Though it is not important
due to its negligible amplitude, the electric field and power spectra at k̃z = 4.4kz0 and
k̃z = 5.2kz0 were investigated. Fig. 63 shows that power is transfered from the negative
side of the power spectrum to the positive side for k̃z = 5.2kz0, where the electric field
shows as well a slight energy transfer from the wave secondary propagative part to main
one.
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Figure 61: k̃z = [0.01, 0.1]kz0 shows the power spectrum at low low fluctuation wave
number, in particular the initial power spectrum is retrieved at vary large fluctuation

wavelength
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Figure 62: Comparison of the Power Spectra at 3 different peaks in k̃z scan Analysis
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Figure 63: Comparison of electric field and power spectra for k̃z = 4.4kz0 and k̃z = 5.2kz0

2. Effect of increasing ∆x̃ and changing x̃

A comparison between three values of ∆x̃ is done to investigate the effect of
enlarging the radial extent of fluctuations. Fig. 64 shows the obtained results for 17 points
of k̃z for both values of x̃ = [0.375, 0.5]. The strongest effect at the separatrix is attained
at k̃z '0.5kz0, where as ∆x̃ increases the peaks in µ and σ attain higher values given by
µmax = [2.48, 2.51, 2.67] and σmax = 0.83, 0.91, 0.945 for ∆x̃ ∈ [0.125, 0.1875, 0.25]
respectively. This indicates that increasing ∆x̃ induces more broadening in the nz power
spectrum.

Note that for the LH wave, λ⊥ ' 0.09 when the density is highest i.e for ne =
ne0(1 + σn) and σn = 0.5. Hence, ∆x̃ = 0.09 is explored. Fig. 65 shows a similar
evolution of the µ and σ curves as in Fig. 60 in which ∆x̃ = 0.125. Fig. 60 also shows
that for a very small value of ∆x̃ given by the example ∆x̃ = 0.02, there is no effect.

The similar results obtained for both values x̃ = [0.375, 0.5] as observed in Fig.
64 , shows that the position of the fluctuation layer has no effect on the power spectrum
at the separatrix.
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Figure 64: Effect of Increasing ∆x̃ on k̃z scan for σn = 0.5, ∆x̃ = [0.125, 0.185, 0.25], (a)
x̃ = 0.375, (b) x̃ = 0.5.
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Figure 66: Effect of Increasing ne0 on k̃z scan

3. Effect of Increasing the Reference Density ne0

The reference density ne0 effect is also investigated. Fig. 66 compares k̃z scan (17
points in [0.1−10]kz0) for ne0 ∈ [4.4, 5, 5.6 ]×1017m−3, where σn = 0.5, ∆x̃= 0.125, x̃ =
0.375. It shows as a primary conclusion that as density increases, the nz power spectrum
shift and broadening at the separatrix slightly decreases. However, another study shows no
effect in changing the fluctuation background density given by adding 0.5ne0 and 1.6ne0 to
the fluctuating layer as shown in Fig. 68, indicating no effect of background density. Note
that only 6 points of k̃z are used in Fig. 68 which are k̃z = [0.1, 0.5, 1, 1.7, 5.2, 10]kz0.

4. Effect of Changing the Amplitude of Density Fluctuations σn

A low fluctuation amplitude given by σn = 0.2 has negligible effect on the power
spectrum as shown in Fig. 67.

a. Linearity in Power

The Linearity of the power effect is checked at three points of k̃z (k̃z ' [0.5, 0.6, 0.8]kz0).
Fig. 69 shows that the fluctuations effect doesn’t depend on power since µ and σ curves
coincide for three different power values given by Pin = [1, 0.5, 0.25]MW .
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