
AMERICAN UNIVERSITY OF BEIRUT

INTELLIGENT ENERGY MANAGEMENT
SYSTEM FOR HYBRID ELECTRIC

VEHICLES

by

DIMA AMINE FARES

A dissertation
submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
to the Department of Electrical and Computer Engineering

of the Faculty of Engineering and Architecture
at the American University of Beirut

Beirut, Lebanon
February 2015







AMERICAN UNIVERSITY OF BEIRUT

THESIS, DISSERTATION, PROJECT
RELEASE FORM

Student Name:
FARES DIMA AMINE
Last First Middle

◦ Masters Thesis ◦ Masters Project ◦ Doctoral Dissertation

� I authorize the American University of Beirut to: (a) reproduce hard or elec-
tronic copies of my thesis, dissertation, or project; (b) include such copies in
the archives and digital repositories of the University; and (c) make freely
available such copies to third parties for research or educational purposes.

� I authorize the American University of Beirut, three years after the date
of submitting my thesis, dissertation, or project, to: (a) reproduce
hard or electronic copies of it; (b) include such copies in the archives and
digital repositories of the University; and (c) make freely available such
copies to third parties for research or educational purposes.

Signature Date



Dedicate to my mother Iman, whose love and support helped me finish this
dissertation



Acknowledgements

I would like to thank my advisor Prof. Riad Chedid for helping me
throughout the thesis work and providing me with his knowledge and expertise
to complete the dissertation. I would also like to thank my co-advisor Prof.
Ferdinand Panik from the university of applied sciences in Germany who added
to my knowledge in the vehicle electrification field and who provided all resources
needed to complete the work. I would like to thank my committee members Prof.
Farid Chaaban, Prof. Sami Karaki and Prof. Rabih Jabr.

I would like to thank my hidden soldiers in the ECE department for their
continuous support, Mrs. Rabab Abi Shakra and Mr. Khaled Joujou. Special
thanks to my friends Lise, Zareh, Ahmad, Manal, Rawad and Jihad.

I would like to thank my family, my inlaws Farouk and Samar, my sister
in law Rima and my brother Bilal.

Thanks to my husband Kareem who supported me and bore with me
and handled my meltdowns. I could not have done it without him. Thanks to
my daughter Vera who gave me the warmest hugs when I needed them.

Last but not least, I would like to thank my mother Iman, who believed
in me from the first day, who raised me and nurtured me to be the person I am
today. I owe everything to her and this dissertation is dedicated to her.

vi



An Abstract of the Dissertation
of

Dima Amine Fares for Doctor of Philosophy
Major: Electrical and Computer Engineering

Title: Intelligent Energy Management System for Hybrid Electric Vehicles

Hybrid electric vehicles positively influence the transportation industry
with regards to reducing the use of fossil fuels and minimizing emissions. A class
of such vehicles incorporates fuel cells and energy storage systems as alternatives
to the internal combustion engines. The energy management system in these
vehicles locates the power split between the available sources while adhering to
operational and component requirements. This dissertation develops an efficient
energy management system for fuel cell hybrid vehicles for the purpose of achiev-
ing a sub-optimal power allocation between the energy sources while adhering to
component requirements and maintaining the required operational performance.
A power train configuration model based on a Simulink model of the electric
vehicle is used for testing the energy management system.

The dissertation addresses two stage control methodologies, pre-driving
off-line optimization using an improved dynamic programming algorithm and
on-line optimization using PID controller. In the first stage, the optimization
strategies depend on the degree of knowledge of the driving cycle. If the cycle is
known before hand, then the improved dynamic programming technique is used
to find the sub-optimum power allocation for the whole cycle. Weighted improved
dynamic programming algorithm analyses the effect of changing the relative cost
of the battery with respect to the fuel cell. Stochastic estimation of the driving
cycle is adopted if apriori knowledge of the cycle is not accurately known. On-line
optimization is performed using a complete Simulink designed model of the fuel
cell hybrid vehicle. The numerical outcomes of the off-line optimization are used
to test the efficiency of the improved dynamic programming algorithm in lowering
operational cost while ensuring drivability. PID controller is used to minimize
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the error between the actual and the approximated vehicle speeds during on-line
optimization.

A looped improved dynamic programming technique is tested during on-
line operation, to tweak deviations from pre-set cycles by updating the optimal
power allocation matrix during the trip and to cater for special events. The
performance criteria are based on the overall operational cost as well as the
hydrogen consumption per trip when compared to an existing state machine rule
based method. Moreover, battery state of charge and system efficiencies are also
measured and analyzed.
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Chapter 1

Introduction

Going Green is becoming one of the main mottos of this era. There is an increas-
ing awareness regarding the dangers of polluting emissions and the depletion of
energy resources. Global greenhouse gas emissions are contaminating our envi-
ronment by causing temperature changes and depleting the ozone layer. This has
led to an excessive investment in research for alternative and clean energy re-
sources. One of the main sectors contributing to the emissions of such pollutants
is the transportation sector. Therefore, trends are adopted in-order to develop
new policies and trigger technological improvements in an attempt to surmount
these effects. According to a report published for the new center on global climate
changes, emissions can be lowered up to 65% from their level in 2010, by the year
2050 [1]. Moreover, the automotive industry ACEA should lower the amount of
CO2 emissions from 190g/km in 1995 to 120g/km in 2010 [2].

These improvements can be achieved by switching to emission free fu-
els and enhancing electric vehicles operations and efficiencies. Research in the
automotive industry is heading towards replacing the internal combustion en-
gine (ICE) of the vehicle with energy sources that have nearly zero polluting
emissions such as fuel cells (FC) and energy storage systems. Fuel cell hybrid
vehicle (FCHV) is one promising candidate. FCHV with battery storage systems
have low emissions, high energy efficiency and independence on fossil fuel based
resources. However, they have a high cost of production which is around 88%
higher than ICE based vehicles [3]. According to a test performed on a three
wheeled vehicle, FC based vehicles have better performance and fuel economy
than ICE based vehicle. However, it will cost around $10,000 to convert a vehicle
into a FC based one [4].

The propulsion system of FCHV is equipped with fuel cells supplemented
with a hydrogen tank and energy storage components. The addition of such
power peaking sources results in further degree of freedom in the allocation of
power resources as well as solving the transient power effects on FC. FC and
battery systems aid each other to provide cruising power. The battery system
is responsible to provide additional accelerating power as well as absorbing re-
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generative braking power. Therefore, the FC size will decrease because FC can
only be sized to take cruising power demands while high loads can be supplied
by storage devices. This will lower the cost of the FCHV and will improve the
life of the FC [5]. FCHV have proven their advantageous performance in various
demonstration programs under all operating conditions including cold-starts, but
there is still a room for further improvement in order to reach the target costs in
production and operation as well as lifetime requirements.

Research is heading towards improving different components of the FCHV
system such as the design of the FC [6] [7], chemistry of the battery [8] [9] [10], hy-
bridization topology [11], the technology and efficiency of the converters [12] [13] [14].
Moreover, they are indulged in the design and optimization of the energy man-
agement system (EMS) [15] [16]. Of importance is to find the best fit in scaling
and managing the different power sources and storage units. The next section
presents a detailed literature review of the different EMS studied for FCHV.

1.1 Optimum Power Allocation in FCHV

FCHV employ energy management systems to identify the power allocation among
the different sources. The EMS addresses the power distribution among the dif-
ferent vehicle power sources in an attempt to meet the load demand while ad-
hering to operational and component constraints. EMS algorithms range from
simple rule based methods and heuristic approaches to complex optimization al-
gorithms. The key element is the degree of knowledge of the driving cycle and
the computational complexity of the algorithm [17].

There is a wealth of paper that addresses the design of the energy
management systems in FCHV. A comprehensive review of the state of art of
FCHV architectures along with the most tackled approaches in EMS is presented
in [3] [18] [19]. A comparative analysis between the different methods for the
optimal power allocation is presented by Motapon el al [20]. EMS is tested for
different driving scenarios such as highway driving cycle, urban driving cycle, fast
acceleration and maximum driving distance [21]. In addition, EMS is designed to
satisfy the five different modes of operation in FCHV which are starting, cruising,
passing, braking and stopping.

Two kinds of EMS controllers are addressed, off-line controllers and on-
line controllers [22]. On-line controllers are real time controllers, which use PI
controllers, frequency decoupling strategies or rule based controllers.

Off-line controllers use intelligent or non-intelligent approaches in order
to find the optimal power split between energy sources in an attempt to mini-
mize hydrogen fuel consumption or system cost. Optimization approaches can
use linear programming techniques [23], dynamic programming [24], stochastic
dynamic programing [21], game theory [25], genetic algorithm [26], load shift-
ing [27], equivalent consumption minimization strategy, control theory [28] [29],
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neural networks [30] [31] [32], predictive controllers [33] [34],adaptive optimal
control [35], thermostat and power follower controls [36] [37]and H-infinity con-
trol [38].

In load shifting [27], a rule based method is defined in order to assure
drivability. The demanded loaded is shifted between the FC and battery accord-
ing to the SOC of the battery. Seven different SOC set points are defined and load
shifts between power generation, regenerative braking, and continuous boosting
to dynamic boosting. Hegazy et al [39] used genetic algorithm as well as parti-
cle swarm optimization mechanism to minimize the cost, mass and volume of a
FCHV. Higher vehicle performance was achieved along with better sizes. Clas-
sic PI controllers monitor the performance of the main variables of the FCHV
on-line. The variables can be the battery state of charge or the voltage at the
DC bus. These controllers do not depend on previous knowledge of an expert
nor on the driving cycle [40] [41] [42]. This method allows the FC to supply a
steady load for the power demand and the energy storage component to deliver
the extra power required. Frequency decoupling strategy splits the demand into
low and high frequency. The FC provides the low frequency part of the demand
and the other components provide the high frequency component. This is done
using low pass filters, wavelets [43] or fast Fourier transforms [11]. The advan-
tage of such a strategy is to prolong the lifetime of the FC system by preventing
dynamic stresses. Therefore, the FC always supplies the base load and other
sources supply the extra load or absorb the energy when demand is below base
load value. The detailed modeling of the FCHV powertrain reveals high levels of
non-linearity. In [44], the authors optimized a FC system by minimizing hydro-
gen consumption. The method is formulated as an NLP aiming at minimizing
the stack current subject to non-linear constraints depending on the net power of
the fuel cell and the oxygen excess ratio. Then they generate look-up tables that
hold the optimum variables for each specified demand. The method is solved by
an NLP simulator called gams.

1.1.1 Rule Based Energy Management Systems

Rule based EMS excels in real time applications because it does not require prior
knowledge of the driving cycle. It is easy and simple however it is based on
heuristics, designer expertise and engineering intuition. Rule based methods can
be either fuzzy or deterministic approaches such as state machine control.

State machine control is based on person’s expertise as well as heuristic
approaches [45] and [46] [47]. The performance of such a method is highly de-
pendent on the approach and the efficiency of the rules. For example, one can
formulate a set of states and choose the power required from the FC according
to battery SOC level and demanded load. The main drawback is the hysteresis
component that results from the switching between the states. This component
is usually hard to control. Deterministic rule based EMS are usually based on

3



look-up tables where demand actions are known. Fernandz et al [48], adopted
the method of state machines to a tramway composed of four electric motors
and FC and battery systems. The control mechanism determines the degree of
hybridization depending on the load demand, the tramway speed and battery
SOC.

Fuzzy logic power allocation is based on membership functions and if-
then statements. The method can be tuned to achieve better results than the
state machine control method, however it still relies on conditional statements
which are derived from person expertise in the subject [49] [50] [51], [32]. Li
et al. [32] optimized the width and centers of membership functions in order to
find the optimal degree of hybridization between FC and battery system. The
response is usually faster than that of state machine control, and with higher
precision. Ravey et al [22], adopted a fuzzy logic for the control of a FCHV. The
control strategy uses SOC based membership functions that demand the state
of the power from FC. For known driving cycles, genetic algorithm is used to
find the optimal parameters of the membership function to result in minimum
hydrogen consumption. Trapezoidal membership function of the battery SOC
can be employed along with a series of if-then statements in-order to determine
the fuel cell power supply. The fuzzy rule based EMS address the nonlinearity
of the automotive power management problem and is adaptive to different oper-
ational modes. EMS have been tested under conventional [30], adaptive [16] and
predictive [52] fuzzy control strategies.

1.1.2 Adaptive Control

Dalvi et al [15] presented an adaptive gradient based control. They revealed
the challenges that face engineers when designing a controller for FC systems.
Namely, the interaction between the compressor and FC stack. These two com-
ponents have different response to dynamics and thus may lead to errors in output
values. The electrolyte and catalyst surface of the FC can be damaged completely
if they are subjected to low oxygen concentrations. During transients, the de-
manded current is higher so the controller should increase the flow of oxygen to
the FC in order to maintain oxygen partial pressure. The compressor takes more
time to supply the oxygen to the cathode when more current is demanded from
the FC. So an oxygen stoichiometry dip is revealed along with a decrease in the
voltage. This is due to the fact that higher oxygen pressure leads to lower voltage
losses. To avoid oxygen starvation, the oxygen excess ratio is stabilized around
2.

1.1.3 Optimization based Energy management systems

Optimization strategies [53] [54] are complex methods with high computational
processing which causes problems in the response time of the energy management
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system. They minimize an objective function addressing cost, emissions, power
levels or others. The optimal solution converges while satisfying the demand
and enhancing vehicle efficiency. Some methods can be adopted in real time
simulations [55] [56].

Global Optimization

Yu [57] proposed a FC, battery and super-capacitor hybrid electric vehicle based
on active power flow control strategy which aimed to meet vehicle demand, mini-
mize total cost, optimize battery life and reduce volume and mass of components.
The proposed method tuned global optimization parameters to be applied to real
time systems. They used a weighted cost function that force SOC to be closed
to a predefined limit and force the FC to operate around rated power so as to
improve its efficiency. Weights are re-adjusted depending on the cycle. With
urban cycles where the power demand is usually low, higher weight is associated
with FC power so as to minimize hydrogen fuel consumption. On the contrary
during highway cycles, lower weights accompany the FC power so as to protect
the battery from over discharging.

Equivalent Consumption Minimization Strategy

Equivalent fuel consumption minimization strategy (ECMS) minimizes the cost
function which includes the hydrogen fuel consumption of the FC and an equiv-
alent energy consumption method of the storage component [53] [54] [58] [20]. It
is an optimization method used to approximate the optimal allocation of power
and could be adaptable to real time situations. It is an optimization method used
to find an approximate value for the optimal split. It is based on formulating
the problem by setting the battery power as equivalent hydrogen fuel consump-
tion. This method approximates the power needed from the sources. In [44],
the authors optimized a FC system by minimizing hydrogen consumption. The
method is formulated as an NLP aiming at minimizing the stack current subject
to non-linear constraints depending on the net power of the fuel cell and the
oxygen excess ratio.

Rodatz et al [53], formulated the problem by minimizing the total sum
of power supplied by the FC and super-capacitor system. The battery power is
penalized by a certain factor based on ECMS principle. They used a lookup table
indexed with the electrical energy used by the super-capacitor and electric energy
consumed by hydrogen. To make the method adaptable to real time situations,
they used a probabilistic approach to find the feasible value for the penalty fac-
tor based on the lookup tables and the charging/discharging mechanisms of the
super-capacitor system. The probability function is a fraction of the sum of the
storage energy and demanded energy from the available FC energy. It avoids
deviations of SOC from minimum and maximum limits. The method proved to
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work well in real time situations because the penalty factor can be easily tuned as
well as the method is self-adaptive. Geng et al [29] also minimized the cost func-
tion of plug in FCHV using ECMS. The battery in the cost function is modeled
as a weighted factor multiplied by the battery power and divided by the lower
heat value of hydrogen. Sciarretta et al [56] employed an equivalent probabilis-
tic factor for the battery energy in the minimization function. The algorithm is
based on ECMS and is independent on the driving cycle. At each step in time,
the vehicle speed and acceleration are measured and the torque at the wheels is
calculated. Then the energy from the FC and battery are computed for different
values of the split and the one leading to a minimum cost is selected. It is noted
that the weighted coefficient of the battery energy takes into consideration the
SOC limitations.

Linear Programming

Tate et al used linear programming [23] techniques to optimize the split of power
between an internal combustion engine (ICE) and a battery system. The method
is formulated as a convex problem and then approximated as a large linear pro-
gram. To account for the change in battery efficiencies during charging and
discharging, they implemented them as two separate variables. On the other
hand, the whole power train is modeled on efficiency basis. The authors in [59],
adopted the same methodology to a FCHV and implemented a controller based
on linear programming technique. The main issue with linear programming is
that it can give us a gist of the control while mainly to model the components in
the FCHV power train high levels of non-linearity is involved.

Dynamic Programming

Dynamic programming (DP) is a popular technique of choice for the optimal
power allocation of FCHV. It is widely used and adopted to control the degree of
hybridization between the vehicle sources whether ICE based [24] or purely elec-
trical. It is used for solving recursive problems and it ensures optimality within
certain tolerance and depicts ease of implementation [60]. The main problem
with DP is the curse of dimensionality where the number of states increases ex-
ponentially with time [61]. Moreover, DP relies on the previous knowledge of the
driving cycle. It has been used to optimize the power split between the different
energy resources in hybrid electric vehicles (HEV) [62]. It was tackled by many
researchers and applied to different types of HEV. In [62], the HEV power sources
are the internal combustion engine (ICE) and the battery system. DP is used
to test the effect of battery weight and storage capacity on the operational cost.
The analysis leads to the selection of the most feasible battery capacity to lower
system costs. Vinot et al [63] used DP for an electric vehicle with ICE. The
outcome of the program locates the optimal split factor between the engine and
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the motor. As well as locating the optimum operating point of the engine. Xu et
al [64] developed a controller based on dynamic programming where the cost of
FC and battery are minimized while subjected to limit constraints. The authors
introduced a penalty factor on the SOC where the cost increases cubically if SOC
is outside the limit margin. Dokuyucu et al [65] formulated a controller based on
dynamic programming to find the torque split between the internal combustion
engine and the electric motor. The control signal considered is the battery SOC
which is bounded between 0.4 and 0.7. Results show that during low torque
demands, the vehicle operates in motor mode and charging is favored. While
during high torque demands, both the battery and the ICE assist in feeding the
load. They analyzed two different series parallel architectures for the HEV. They
used an electric variable transmission concept which leads to slightly higher fuel
consumption range, but it can be tweaked by using a gear between the engine
and motor. To address the dimensionality constraint limitation of DP, improved
dynamic programming technique (IDP) is used. This novel method considers a
tunnel of fixed states rather than an exponential increase in the number of states.
In [66], power levels of fuel cell are considered in the state vector while in [67]
the authors take SOC levels as state vectors. Both latter papers consider the
improved DP and the results are not far from using the regular DP. To overcome
the problem of previous knowledge of the driving cycle, stochastic dynamic pro-
gramming (SDP) is adopted where the control laws can directly be implemented.
Using SDP, the system is modeled as a Markov chain and an optimal policy based
on fuel minimization is defined. The optimal path is located by minimizing the
cost, which corresponds to the optimal policy [68]. Lin et al presented in [69] a
control for a hybrid electric truck based on SDP. The power demanded is modeled
as a Markov process. Two state variables are studied which are the battery SOC
and the wheel speed. The power demand and the wheel speed are assumed to
take discrete values. The authors’ goal is to minimize the fuel consumption along
with the emissions. To achieve that, they developed an optimal EMS to manage
the power flow between the vehicle engine and the electric motor [70]. Kim et
al in [21], combined the optimization of the hybrid FC system components along
with optimizing the control of power. The goal is to minimize the cost of the sys-
tem using SDP. To obtain that, the authors started by modeling the future load
as a probability function based on tested driving cycles. SDP constructs optimal
strategies for each Markov state and those are employed as lookup tables.

1.2 Thesis Contribution

Modern engineering is investing extensive research on the development of hybrid
vehicles which are effective alternatives to fossil fuel based vehicles. One of the
challenges facing fuel cell hybrid vehicles is to implement a control strategy to find
the optimal split of power between the different power sources. The dissertation
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tackles contemporary issues in the energy management system of the FCHV. The
configuration addresses two stage control methodologies, pre-driving optimization
algorithms and on-line optimization using PID controller.

In the first stage, an improved version of dynamic programming is adopted
to find the sub-optimal power split between the fuel cell and the battery during a
certain driving cycle. This technique proves convergence faster than the normal
dynamic programming algorithms which suffer from dimensionality problems.
Battery weighting factor is added to the existing cost function to have different
versions for the battery utilization profiles.

The improved dynamic programming is one of the powerful optimization
algorithms, however it needs apriori knowledge of the driving cycle. A loop-
ing version of the technique is used to cater for totally unknown driving cycles
and special event occurrences. Stochastic approximation of the driving cycle is
adopted if apriori knowledge of the cycle is not accurately known.

On-line optimization is performed using a complete Simulink designed
model of the fuel cell hybrid vehicle; improved dynamic programming is used to
test the efficiency of such algorithm in lowering operational cost while ensuring
drivability. A PID controller minimizes the error between the actual and ap-
proximated vehicle speeds. A looped improved dynamic programming technique
is tested during on-line operation, to tweak deviations from pre-set cycles by
updating the weighted IDP algorithm as the vehicle accelerates.

A final objective of this dissertation is to investigate real time testing
which is held on a stationary miniature model of the FCHV in UAS labs in
Germany. The driving cycles chosen mimic those tested in the off-line and on-
line operations discussed in the previous paragraph. The only difference is in the
sample time which is downsized to match the capacity of the stationary system
sources.

The performance criteria are based on the overall operational cost as well
as the hydrogen consumption per trip. Moreover, battery state of charge and sys-
tem efficiencies are also measured and analyzed. To measure the life-cycle of the
FCHV subsystems, an approximation based on a wavelet transform of instanta-
neous power of the system components is considered. The proposed dissertation
is expected to yield several outcomes. The achievement of the said outcomes is
expected to result in lower system cost, improved efficiency of the drive train and
prolonged life of FC and battery. Comparison with an existing EMS will high-
light the distinct features of the intelligent EMS. Comparison is done between
a controller using the optimization algorithms for the whole driving cycle and a
controller using state machine rule based techniques. Results indicate a reduction
in system cost and in hydrogen fuel consumption. Moreover, the results high-
light the importance of using optimizing algorithms in urban driving cycles since
reduction in hydrogen consumption is much higher compared to highway cycles.

The approach is based on solving several problems. It is divided into
theoretical and experimental modules. The theoretical part is developed at the
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Figure 1.1: Dissertation outline.

American University of Beirut (AUB) under the supervision of professors from
AUB and the University of Applied Sciences at Esslingen in Germany. The
experimental part is carried out in collaboration with the University of Applied
Science (UAS) in Germany. UAS provided both FCHV lab facilities and technical
expertise. They built a stationary miniature model of the FCHV where the tests
for the EMS are carried out. Based on literature review, there has been no work,
to my knowledge, on such a design of a intelligent EMS which helps the driver
optimize fuel usages and better utilize the vehicle.

1.3 Organization of the Dissertation

An overview of the dissertation outline is shown in Fig. 1.1.

1.4 Abbreviations

The list of abbreviations used in this dissertation is presented in Appendix A.
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Chapter 2

Modeling the FCHV PowerTrain
The construction of the FCHV subsystem models in graphical simulation envi-
ronment software is widely exploited in literature. It is essential for the models
to emulate the real dynamics of the vehicle in-order to have efficient simulation
results [17] [16] [15] [71]. Figure 2.1, reveals the topology of the system under
discussion. In this dissertation, the FCHV is composed of at least seven different
subsystems as indicated in table 2.1. The sources in the subsystem are a primary
one-way energy source unit and a secondary bi-directional storage component.
The former source is a PEM fuel cell system and the latter is a Li-ion battery.

The vehicle considered in this paper is a light duty sprinter. It has two
energy sources which are the FC and the battery in a parallel configuration. The
drive train is of the series type with a 70 kW induction electric motor. The
battery system has a nominal energy of 1.9 kWh. The 70kW FC System is
based on hydrogen fuel with an operating voltage range between 250 and 430V.
Therefore, the battery system can assist with power during fast dynamics to
prolong the life cycle of the FC and to reduce fuel consumption.

In figure 2.1 the solid black arrows indicate the flow of energy between
the subsystems. The dashed blue arrows are for sensing information and the dark
blue arrows represent the controller’s actions. The black dashed arrows represent
the flow of data.

The FC is connected to the DC bus via a DC/DC converter that serves
to stabilize the voltage at the bus. The fuel cell is supplied by a hydrogen tank.
The level of hydrogen in the tank (MoH2) is monitored by the efficient energy
management system.

The battery system is joined to the DC bus in parallel using a bi-
directional DC/DC converter. This enables the battery to discharge current into
the system to serve the load, and charge current during regenerative braking.
The converter is controlled by the system controller. The state of charge of the
battery is sensed by the efficient energy management system.

The electric motor is connected to the DC bus via a DC/AC inverter.
It is serially coupled to the transmission system and wheels. The information of
the inverter and electric motor is sensed by the controller system.

The DC bus supplies the vehicle auxiliaries with DC power which will be
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Table 2.1: FCHV Subsystems.

Subsystem Description

FC System PEM FC with a rated power of 70 kW
Battery System Lithium ion battery with a capacity of

6.5 Ah
DC/DC Two Way Con-
verter

For the battery discharging and charg-
ing currents with a high voltage of 250-
400V

Electric Motor An induction AC motor along with its
inverter rated at 180 Nm, 70 kW

Vehicle Dynamics Dynamic models of all the forces acting
on the vehicle

Drivers Model Calculates the torque demand from the
speed profile of the driving cycle

EMS Optimal power allocation of the de-
mand
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transformed to AC by inverters. The auxiliary path is split in two branches. The
first branch connects the 24V DC board to the bus using a DC/DC converter.
The other branch embeds a DC/AC inverter to join the DC bus to the electric
drives of the subcomponents such as the air conditioning, servo brakes and water
pumps. This is a fuel cell dominant model similar to Daimler A, B class vehicles.

The energy management system block consists of two components, the
efficient energy management system (EEMS) and the controller. The data block
sends system costs and characteristics to the EEMS. Moreover, it sends the es-
timated torque demand (τref) based on the selected driving cycle. The EEMS
block senses the initial state of charge of the battery and the initial level of hy-
drogen in the tank. It feeds the power split between the fuel cell and battery
to the controller. The controller feeds back the actual vehicle information to the
EEMS.

The controller receives the control actions from the EEMS and sends
it to the battery’s bi-directional converter and the converter of the fuel cell. It
senses information from the driver action, electric motor, inverter and DC bus
voltage.

The mathematical models that govern these subsystems encompass high
levels of computational complexity. For this reason, simple dynamic equations
as well as test-benched experimental results indexed as lookup tables are used
to model the subsystems in Simulink. The model of the subsystems is based
on a distributed control system with a CAN bus communication method. The
CAN network is designed to regulate the performance of the FCHV. An energy
management system strategy based on optimization algorithms is formulated
to coordinate the power split between the sources. The model is built at the
University of Applied Sciences in Esslingen with the help of several engineering
students from the mechanical and electrical field disciplines. It is comprehended
and tuned to fit the runs needed to complete the dissertation objectives.

In this chapter, the subsystems of the FCHV are modeled based on math-
ematical models of the FCHV dynamics. Then based on approximations of the
models and experimental data, a model of the subsystems is built using Simulink.
This model emulates the real time behavior of the vehicle. The chapter has the
following structure. The fuel cell model is detailed in 2.1 and the battery model
is presented in 2.2. The vehicle model is presented in Section 2.3. The model
for the electric motor and transmission subsystems is shown in Section 2.4 and
2.5. The power conditioning subsystem is explained in section 2.7. Finally, the
energy management system is modeled and executed in section 2.8. 1.

This chapter has several contributions and relevance to the whole disser-
tation and these are summarized in the bullets below:

1. Fully understand the modeling phenomenon of the FCHV especially with

1This chapter is done in collaboration with Mr. Ying Huang at the University of Applied
Sciences where he developed the Simulink Model of the FCHV during his master thesis
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the lack of documentation for the existing Simulink model.

2. Simplifying and implementing the models in MatLab/Simulink in-oder to
perform testing of the different algorithms that will be discussed in the
subsequent sections.

3. Formulating the dynamic equations and gathering the test-benched exper-
imental data of the different components of the FCHV powertrain.

4. Editing the Simulink model in order to install the energy management sys-
tem that is formulated in this chapter of the dissertation in attempt to
launch system testing and perform diagnostic analysis of the results.

2.1 Fuel Cell System Modeling

Fuel cell systems are composed of cells that convert the chemical energy present
in hydrogen fuel into electrical energy by oxidation-reduction reaction. They
produce a continuous amount of electricity as long as they are provided with fuel
and oxygen to maintain the reaction process. Figure 2.2, shows the cathode at the
positive side, the anode on the negative side and the electrolyte that facilitates
the path of electrons to complete the circuit. Electrons travel from the anode
and into the cathode producing a DC current. At the anode, hydrogen oxidizes
into protons and electrons. The protons travel through the electrolyte while the
electrons are forced to move through the external circuit because the electrolyte
acts as an insulator. The charges reunite at the cathode and react with oxygen
to produce water.

There are different types of FC depending on the type of membrane used
as an electrolyte. These can be polymer exchange, phosphoric acid, solid oxide,
molten carbonate or other type of fuel cells. The difference is in start-up time,
power density and operating temperature. For example, PEM FC has a starting
time of one second while solid oxide fuel cells need at least ten minutes to start
up. Fuel cells are manufactured as small cell units each having an open circuit
voltage of around 0.7 V. They are stacked in series to reach the required voltage
level. This voltage is affected by activation losses, ohmic losses or mass transport
losses.

Proton exchange membrane fuel cells are usually embedded in vehicular
applications due to their fast start-up time, high power density and low operating
temperature [15]. Their transient performance when responding to load demand
is limited due to the chemical reactions that occur in the FC. Sometimes, it takes
1 to 2 seconds for the FC to respond to the load demand [57]. High dynamic
operations may cause significant negative impacts to the overall lifetime of the
cells. Moreover, during high or fast power demand there is a high voltage drop
in the FC. This means that more oxygen supply is needed from the compressor
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Figure 2.2: Fuel Cell System.

which is usually powered by the FC. The latter case might give rise to the concept
of oxygen starvation which draws high currents from the FC. Oxygen starvation
causes drainage of the FC and might severely damage the membranes [15]. The
other challenge facing PEM FC is in controlling the water and air supply. This
means that the membrane needs to remain hydrated at the same rate of water
evaporation. For this reason, a constant ratio between oxygen and reactants
should be maintained in order for the FC to continue its efficient operation. Oth-
erwise, the membrane will either dry out or be flooded with water if evaporation
in the membrane is too fast or too slow respectively. On the other hand, the
reaction that produces water is exothermic which leads to additional thermal
energy accumulations in the FC. This needs a temperature control mechanism
to keep the cell from thermal loading. FC auxiliary components, such as the
compressor, need additional power supply which can be approximated to 4kW.
This is around 95% of power demanded by FC auxiliaries [15]. The service life
of PEM FC for automotive applications is 5000 hours under normal conditions.
The efficiencies of the FC ranges between 25 to 60% and they require more main-
tenance than batteries or super capacitors [57]. However in the transportation
sector, the efficiency of PEM FC is around 60% [72].

FCHV high cost can be cut via volume production of units for automo-
tive applications. The department of energy approximated that with a volume
production of 100,000 units per year the cost of PEM FC is 67 $/kW. The cost
can decrease to 55 $/kW with a volume production of 500,000 units per year [73].
Improvements of FC system along with the supervisory control between the FC
and its converters to control the flow of reactants as well as maintain the voltage
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on the DC bus. The coordination between the compressor and the converter is
needed [74]. The FC system depends on the FC current, the partial pressure of
oxygen, hydrogen and the cathode, stack temperature and humidity.

2.1.1 Fuel Cell Dynamic Model

In this section, a static model of a PEM FC is selected consisting of 350 cells
in series. To avoid complex chemical equations of the FC, the net power output
of the fuel cell is shown in equation 2.1, where the power demanded by the
compressor, the FC auxiliaries and system losses is deducted from the power
supplied by the stack. The auxiliary components in the FC are the radiator fan,
coolant pump and others. The auxiliary power is neglected because 95% of the
power demanded by the auxiliaries is consumed by the compressor. To avoid
non-linearity, the compressor power demand can be approximated to 1kW. The
FC power losses are mainly the ohmic and activation losses.

The rate of consumption of hydrogen in the FC stack depends on the
current of the stack according to equation 2.2. The rate of air flow into the
cathode is formulated in equation 2.3. The minimum and maximum limits of the
power from the FC are defined based on the efficiency maps of the FC system.
While the dynamic response of the FC is limited between ramp-up and ramp-
down rates.

PFC = nstVstIst − Pcomp − PFC−aux − PFC−losses (2.1)

ṁH2 =
MH2nstIstλH2

nF
(2.2)

ṁair =
MO2nstIstλO2

4wO2F
(2.3)

2.1.2 Fuel Cell Simulink Model

The aforementioned static model is used to derive the parametric values to con-
struct the FC system. To build a fast and correct Simulink model of the FC,
lookup tables are used to approximate the equations discussed in section 2.1.1.
These tables were derived from experimental testing on an actual FC test-bench
in the labs of the University of Applied Sciences of Essligen Germany.

Figure 2.3, shows a schematic of FC system incorporated in the Simulink
model. The current requested from the FC (IFC−req) is limited to the maximum
current (IFCmax) that could be supplied by the FC according to the manufac-
turer’s data sheet. Then the power required from the FC is calculated by multi-
plying the requested current with the corresponding voltage of the DC bus (Vbus).
The FC power request (PFC−req is also limited between the maximum (PFCmax)
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Figure 2.3: Fuel Cell Simulink Block Diagram.

Table 2.2: Fuel Cell Characteristics.

FC Current ramp up/down rates [A/s] [290 , 290]
FC Power ramp up/down rates [kW/s] [10 , -10]
FC max/min power [kW] 70/0
Resistance factor for series and parallel connection 40
FC stack number of cells 350
FC OCV [V] 345.8
FC minimum voltage [V] 250
FC maximum voltage [V] 430
Area for heat exchange on stack surface [m2] 1.5

and minimum (PFCmin) power of the FC that is provided in the data sheet. From
the resulting FC current request, the net current request is computed using the
net current curve in figure 2.4 which considers the fuel cell efficiency. Then, the
net current is used to calculate the FC voltage using the polarization curve in
figure 2.5. The latter takes into consideration the losses in the FC system such as
activation and ohmic losses. The stack voltage is a function of the stack current
and the cathode pressure. This voltage is the same voltage at the DC bus because
the FC system is directly connected to the DC bus. Finally, using the net FC
current request, the hydrogen consumption is approximated using the hydrogen
consumption curve in figure 2.6. This curve is a function of the current requested
from the FC.

In this dissertation, the characteristics of the chosen FC is shown in
table 2.2. For a PEM fuel cell, the theoretical open circuit voltage is 1.23 V at
298 K, in practice it is around 1 V at open circuit. Under load conditions, the cell
voltage is between 0.5 and 0.8 V. So taking the theoretical OCV as the maximum
voltage, 1.23×350=430V; and a cell voltage of 0.714/cell (between 0.5V/cell and
0.8V/cell) is taken as the minimum voltage (0.714x350=250V). For open circuit
voltage, we just take the practical value of 0.988V/cell.
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Figure 2.4: Fuel Cell Net Current Curve.
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Figure 2.6: Hydrogen Fuel Consumption Rate.

2.2 Battery System

The next building block of the FCHV power-train is the energy storage com-
ponent system. Energy storage components aid the FC to overcome transient
response effects. They have faster dynamics and thus can quickly respond to
power fluctuations. Normally, two devices are considered, super capacitors and
batteries. Batteries have higher energy densities than super capacitors while ex-
hibiting a lower power density. Batteries are mainly needed to capture the large
amount of kinetic or potential energy that could be recovered by regenerative
braking when reducing speed or running downhill. They can also power FC aux-
iliaries and provide additional power for accelerations. The types of batteries
that are used in FCHV are lead acid, NiMh, or lithium ions. Improvements in
battery systems in terms of performance as well as building high efficiency charg-
ing converters contribute to the growing interest in FCHV [48]. Variation in SOC
of the battery affects the voltage, for instance a drop in SOC causes a decrease
in the voltage. These variations affect the life of the BT and sometimes it can
be deeply drained. The SOC of the battery system in automotive applications is
limited between 20 to 80%.

The battery that is adopted for this work is a Li-ion because it is more
attractive to the automotive applications. This is due to the fact that it has higher
efficiency and better energy density when compared to lead-acid or NiMh/NiCad
batteries [58] [75], as well as a minimum charge loss when it is not working. The
charge and discharge efficiency is usually high ranging from 80 to 90% depending
on the application [76]. The selection of the sizes is based on the Mercedes-Benz
Sprinter used for the EU project HySYS (FP6) [77]. However, a 70kW FC is
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Figure 2.7: Battery Equivalent Circuit Model.

used for research instead of the 80kW FC used in the EU project.
The lithium ion battery stack is modeled as a simple resistive model [78]

shown in figure 2.7. The output battery current depends on the open circuit
voltage as well as the battery internal resistance and output power as shown in
equation 2.4. The internal resistance of the battery is a function of the SOC
(charging or discharging) and on the battery temperature. When the battery
temperature increase, a factor is multiplied by the battery internal resistance to
show its effects. The SOC of the battery is calculated in equation 2.5 according
to the charging or discharging current. Li-batteries have the lowest discharge rate
of 1.5-2 % per month [79] as compared to NiMh with 30% discharge rate. This
can be approximated to a discharge rate of 80μ per second.

To derive the optimum range of the battery SOC, a test benched process
is held at the UAS labs in Germany. After several tests, it is noticed that the
favorable SOC range is between 0.55 and 0.65 as shown in figure 2.8. However,
if the requirement is to drain the battery through the cycle and then charged
again at night, then 20% is the lowest limits and lower hydrogen consumption is
achieved.

The model used for the battery is the internal resistance model where
the open circuit voltage and the internal resistance are functions of the SOC. The
mathematical relation governing this dependency is shown in equation 2.4 and
equation 2.5.

IBT =
VBT−oc − (

√
V 2
BT−oc − 4RBTPBT)

2RBT
(2.4)

SOC(tk) = SOC(0)− 1

CBT

∫ tk

t0

IBTdt (2.5)

2.2.1 Battery Control System

In Simulink, the battery controller is used to monitor and calculate the maximum
charging and discharging currents that are permissible. The battery control sys-
tem calculates the maximum charge and discharge limits of the battery system
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Figure 2.8: Battery SOC Range.

depending on the SOC level, open circuit voltage (VBT−oc), internal resistance
(RBT) and temperature (TBT). The maximum permissible positively charging
current is shown in equation 2.6 and the maximum allowable negatively dis-
charging current is shown in equation 2.7.

IBT−ch−max =

⎧⎨
⎩
VBT−max − VBT−oc

RBT

SOC < SOCmax

0 SOC >= SOCmax

(2.6)

IBT−disch−max =

⎧⎨
⎩
VBT−min − VBT−oc

RBT
SOC > SOCmin

0 SOC <= SOCmin

(2.7)

2.2.2 Battery Simulink Model

The Simulink model for the battery is shown in figure 2.9. It receives the battery
current request and accordingly computes the battery voltage depending on the
SOC, internal resistance and temperature. It is composed of four different blocks
that are interconnected. These blocks are the SOC generator block, the open
circuit voltage generator block, the battery resistance generator block and the
thermodynamics block.

In the SOC generation block, the SOC is updated from the current value
inputted to the block as shown in equation 2.5.
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Figure 2.9: Battery Simulink Model.

The open circuit voltage generation block adds the effects of SOC and
temperature on the battery open circuit voltage according to equation 2.8. The
open circuit voltage depends on the current SOC level so VBT−oc0 is estimated
according to figure 2.10. Then the battery voltage can be derived accordingly
depending on the ambient temperature and the actual battery temperature. Note
that at the beginning of the simulation the battery temperature is equal to the
ambient temperature.

The battery internal resistance RBT for a certain level of SOC and for
a specific battery temperature is calculated using the method in equation 2.10.
Figures 2.11 and 2.12 indicate the resistive factor added to the battery during
charging and discharging processes depending on the SOC level as shown also
in equation 2.9. Similarly, figure 2.13 shows the relation between resistance and
battery temperature as shown also in equation 2.9. Therefore, after interpolating
the factors αR−SOC and αR−T using figures 2.11, 2.12 and 2.13 respectively, the
battery internal resistance can be computed using equation 2.10.

To calculate the temperature changes in the battery in degrees Celsius,
a simple equation is adopted based on the thermodynamic system inside the bat-
tery. It is the continuous integration of three factors as shown in equation 2.11.
The first factor is the heat loss by the current; while the second is the entropy
generator which multiplies the battery current and the number of cells and tem-
perature in kelvin by an entropy of cell reaction factor. Finally, the third factor
is the difference between the ambient and battery temperature multiplied by the
battery thermal resistance which depends on the power in each cell with respect
to the area.

Finally, the output voltage of the battery system is calculated using
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Figure 2.10: Battery OCV-SOC Dependency.
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Figure 2.11: Battery Resistance-SOC Dependency during Charging.
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Figure 2.12: Battery Resistance-SOC Dependency during Discharging.
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Figure 2.13: Battery Resistance dependency on Temperature.
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Table 2.3: Battery Characteristics.

Number of cells in series 80
Number of cells in parallel 1
Type Li-ion
Resistance factor for series and parallel connection 40
Nominal cell capacity [Ah] 6.5
Nominal capacity of battery [Ah] 6.5
Minimum/Maximum cell voltage [V] 2 / 4.1
Minimum/Maximum BT voltage [V] 160 / 328
Nominal cell voltage [V] 3.6
Nominal battery voltage [V] 288
Temperature coeff. for OCV [V/K] -0.00013
U damping factor 0.005
Resistance of one cell interconnector[Ohm] 0.00025
Resistance of all cell interconnectors[Ohm] 0.01
SOC at simulation start 0.8
Initial battery temperature [C] 20
battery ambient temperature [C] 20
Battery voltage at start of simulation [V] 280.75
Battery resistance at start of simulation [ohms] 0.3186
Max. Charge/Disch. I [A] at 25C, 60% SOC 155 / -360
Max. Charge/Disch. P [kW] at 25C, 60 % SOC 50.8 / -57.5
Entropy of cell reaction [J/(As K)] -0.00013
Module surface [m2] 0.048
Module volume [m3] 0.000554
Battery Surface Estimation [m2] 0.64
Battery Volume Estimation [m3S] 0.012
Battery [W/Km2] 50
Module heat capacity of battery [J/K*module] 1214
Battery heat capacity of battery [J/K] 48560
Maximal battery temperature [C] 50
Module Weight (kg) 1.02
Power Density (W/kg) 137.6471
kW/kg module power density 4.2313
kg Total weight 15.7122
SOC Limits 20 / 90

equation 2.12. The battery model that is adopted for this dissertation has certain
characteristic factors shown in table 2.3.
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VBT−oc = βBTVBT−oc0 + (αOCV(TBT − Tamb))(nBT) (2.8)

αR−SOC = f(SOC) αR−T = f(TBT) (2.9)

RBT = αR−SOCαR−T (2.10)

TBT =

∫
1

HBT

[
(I2BTRBT) + [nBTIBTδsiBT(TBT + 273)] + 32(Tamb − TBT )

]
(2.11)

VBT = VBT−oc +RBTIBT (2.12)

2.2.3 Drivers Model Subsystems

The driving cycle is usually indexed by a velocity profile. The user can choose
between the common known cycles such as FTP-75, FUDS, Highway, JAP-1015,
NEDC or can generate a user defined cycle. The driver’s model subsystem is re-
sponsible to send control signals to the energy management system. These signals
represent the magnitude of the accelerating and braking torques. The derivation
of these signals is based on the reference speed set by the user and the actual
vehicle speed measured at the level of the wheels. In order to minimize the speed
difference between the referenced value and the measured value, a proportional
integral derivative controller (PID) is adopted. This type of controllers is widely
used in the control systems in-order to minimize the error between the measured
and the desired process value.

The PID controller as shown in figure 2.14 consists of three parallel
blocks: Proportional, Integral and Derivative. The proportional part reduces
almost the overall error while the integral part drives the system to a smaller
error. Finally, the derivative part minimizes the overshoot and reduces settling
time for the overall system. Equation 2.13 calculates the torque demand. This
torque is limited to the maximum torque of the vehicle electric motor which is
230Nm in this case. The error e(t) is the difference between the measured speed
and the reference speed. Table 2.4, indicates the values of the parameters of the
PID controller. These values resulted from multiple testing and tuning of the
controller to fit the Simulink model.

τreq(t) = Kpe(t) +Ki

∫
e(t) dt+Kd

d(e(t))

dt
(2.13)
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Figure 2.14: PID Controller.

Table 2.4: Drivers Model Characteristics.

Controller proportional factor Kp 130
Controller integral factor Ki 2
Controller derivate factor Kd 1
Avoid integrator overflow factor aw 0.05

2.3 Vehicle Dynamics Subsystem

In this research, the forward model for vehicle dynamics is adopted. The vehi-
cle block calculates the actual vehicle speed and acceleration as shown in equa-
tion 2.14. The speed is a function of the traction, resistive and braking forces
acting on the vehicle. The block includes four different sub-modules which are:
the driving resistance, traction concept, traction limit and moment of inertia.
The model is based on the balance of forces acting in the longitudinal direction.

The actual road height and ambient air pressure are computed using
equation 2.15 and equation 2.16.

va = Rw +

∫
(Ftrac − Fres − Fbrake)Rw

θt
dt (2.14)

Ha = Hin +

∫
va sin(αs)dt (2.15)

Pa = Pin + e
−gM(Ha−Hin)

RairTamb (2.16)

The total moment of inertia θt is the sum of the moments of inertia of the
wheels and motor, along with the mass of the vehicle as shown in equation 2.17.
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Table 2.5: Vehicle Model Characteristics.

Total mass m (kg) 3500
Frontal area Af (m2) 3.48
Drag coefficient Cd 0.44
Traction Coefficient μr 0.9
Air density ρair (kg/m3)
Tyre radius Rw (m) 0.314
Wheels moment of inertia θw (kgm2) 3.2
Maximum braking force fbr−max (m/s2) 0.8
Center of gravity Cog (m) 0.314
Wheel base wb (m) 2.778
Front wheel distance to center of gravity Cogf (m) 1.22
Rear wheel distance to center of gravity Cogr (m) 1.558
Axle load distribution μal 0.5

θt = mvR
2
w + θw + θm (2.17)

2.3.1 Vehicle-Driving Resistance

This block calculates the resistive forces acting on the wheels for a specified
velocity. These forces are the rolling resistance force in equation 2.18, the air
drag force in equation 2.19, the gravitational force in equation 2.20 and the swirl
resistance force FSwirl which is due to wheel environmental effects. The latter
is dependent on the vehicle velocity and is implemented with a lookup table
indexed by the vehicle speed. The graphical curve of the relation is sketched in
figure 2.15. Finally, the driving resistance force is computed from the sum of the
aforementioned forces as shown in equation 2.21.

Fr = mvg cos(αs)frol (2.18)

Fw =
1

2
CDAfρairv

2
a (2.19)

Fg = mvg sin(αs) (2.20)

Fres = Fr + Fw + Fg + FSwirl (2.21)
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Figure 2.15: Wheel Swirl Resistance.

2.3.2 Vehicle-Braking Force

The braking force is deduced from the braking torque demand on the rear and
the front brakes as shown in equation 2.22.

Fbrake =
τbr + τbf

Rw

(2.22)

2.3.3 Vehicle-Traction Force

Finally, the traction concept of the vehicle which could be front drive, rear drive
or four wheel drive is specified by the user. For this dissertation, the rear wheel
torque is the only one considered and it is equal to the output torque of the
transmission system.

The actual torque acting on the rear wheels which is the vertical force
at the rear wheels is derived in equation 2.23.

Ftrac = min

{
Ttraction

Rw

μrmCoG

[
lR
l
g − hCoG

l
av
] (2.23)

2.4 Electric Motor

In FCHV, there is one propulsion driving source which is the electric motor. Its
size is determined at the early stage of power train design to satisfy the peak
power requirements [21]. Many kinds of electric motors for FCHV are studied in
reference [80]. However, these models have a high degree of complexity especially
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Table 2.6: Motor System Characteristics.

Continuous Power (kW) 70
Peak Power (kW) 90
Continuous Torque (Nm) 180
Peak Torque (Nm) 230
Max Speed (rad/s) 1248.8
Motor mass (kg) 50
Cp (J/kg K) 1500
Surface Area (m2) 0.5
Heat transfer coeff. (W/m2K) 10
Motor Inertia (kgm2) 0.1098

if one tried to incorporate them into a bigger model. Failure to provide a fast
response time can crash the whole model. For this reason, in FCHV control
applications, the electric motor is modeled as a static entity with certain power
losses [81]. The power losses and efficiency maps are usually referred to by look-up
tables.

The electric motor Simulink block translates the power demanded from
the sources to torque and speed to drive the wheels as shown in equation 2.24.
Table 2.6, indicates the motor characteristics. The losses in the motor and in-
verter are handled using 2-D lookup table based on the rotor speed and output
torque. This relation is based on the motors efficiency map shown in figure 2.16.
The dynamics of the electric motor are ignored because the period of the power
train of the FCHV is much larger than the period of the motor dynamics. This
is why it is redundant to go into the motor dynamics. Therefore, the motor is
modeled with its efficiency maps and equation 2.24.

Pmotor = f(τreq, ωm) = τreqωm + Ploss (2.24)

2.5 The Transmission System Unit

The transmission system translates the torque from the motor system into gear
ratio, torque and speed values to the wheels. The gear box is based on the motor
speed and thus alters the gearshift lever consequently. After the gear command
is generated, it is translated to a gear ratio. In the FCHV the gear is assumed to
be always at one and so the gear ratio is 13.

The transmitted torque is subjected to several factors, such as losses due
to acceleration of rotational inertia and friction of gear rotation. Moreover, the
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Figure 2.16: Electric Motor System Efficiency Map.

Figure 2.17: Transmission System Model.

gear ratio causes torque multiplication and speed reduction. Figure 2.17 shows a
sketch of the Simulink topology of the transmission system. The calculation of the
transmission torque and speed is indicated in equation 2.25 and 2.26 respectively.
The losses in the transmission system are derived from the efficiency map samples
of the gearbox which is approximated at 95 percent.

1. The gear output is 1.

2. The gear ratio is 13

3. Differential efficiency and ratio is 1

4. The position of the clutch is the same because the gear number is constant

τT = grτM − PTloss

ωT
(2.25)

ωM = grωT (2.26)
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Table 2.7: Auxiliaries Power.

Air Conditioning Power 600W
Power Steering 120W
Power Braking 20W
FC Auxiliaries 1000W

2.6 Auxiliaries

The Simulink model considers the auxiliary power that is required from the FCHV
components. These include the power required from the cooling system, power
braking, power steering, air-conditioning and fuel-cell system auxiliaries as shown
in table 2.7. The fuel cell auxiliary current demand is calculated in figure 2.4 in
section 2.1.2.

2.7 The Power Conditioning System Block

The power conditioning of the FCHV is composed of two components. The first
is a bi-directional DC/DC converter connected between the battery and the DC
bus. The second is the three phase inverter which transforms the DC power from
the bus into AC current to be fed to the electric motor. The latter is modeled as
power losses along with the electric motor losses. It is shown in figure 2.16.

The DC/DC converter allows the passage of the current from the DC
bus to the battery system and vise versa depending on the voltage level on both
sides. The current at the input of the converter idc−in is related to the current at
the output idc−out of the converter according to equation 2.27. These equations
are then subjected to the minimum and maximum power limits of the converter.
Table 2.8 indicates the characteristic data of the DC/DC converter adopted for
this dissertation.⎧⎪⎨

⎪⎩
Battery Charging idc−in =

idc−outVbusηbuck
VBT

Battery Discharging idc−in =
idc−outVbus

ηboostVBT

(2.27)

2.8 The Energy Management System Block

The main subsystem in the FCHV is the energy management system (EMS)
block. The EMS block in figure 2.18, is the main drive of the FCHV since it or-
ganizes the power allocation between the FC system and the battery system. The
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Table 2.8: Power Conditioning Characteristic Data.

Current Limit in buck mode during battery charging (A) 40
Current Limit in boost mode during battery discharging (A) -40
Buck converter efficiency 0.96
Boost converter efficiency 0.96
Converter specific weight (kW/kg) 2

algorithms that are dealt with in this dissertation exhibit a slow response time
especially when compared to the response time of the FCHV. For this reason, the
EMS is tweaked for it to be adaptable to all algorithmic scenarios. This is accom-
plished by using lookup tables linked directly to the output of the algorithmic
blocks in the matlab files environment.

The FC status block pinpoints the conditions in which the FC is turned
on or off SFC . The algorithm used is shown in table 2.1. There are four lookup
tables embedded in the EMS block. These lookup tables are derived beforehand
from the algorithmic techniques discussed in the forthcoming chapters. All tables
are horizontally indexed by the cycle time of the FCHV. Vertically, they are in-
dexed by the FC power requirements, battery power requirements, motor torque
request and braking torque request respectively. Figure 2.19, reveals a topologi-
cally view of the above mentioned design. The FCHV model is based on current
calculations and not power computations. For this reason the FC and battery
power requests are translated into current request by dividing those requests with
the voltage at the DC bus.

Algorithm 2.1 EMS FC Status Algorithm

1: {Battery SOC}
2: if SOC(k) ≥ 100% then
3: SFC ← 0
4: end if
5: {Motoring or Idling Mode}
6: if vm(k) ≤ 0 or τreq(k) ≥ 0 then
7: SFC ← 0
8: end if
9: {Generating Mode}
10: if τreq(k) < 0 then
11: SFC ← 0
12: end if
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SOC control:
- Don't allow charging during motor operation, if SOC is within its desired range
- If battery is boosting, don't allow SOC control to reduce boost current
- Charging during generator operation is not limited by SOC control
- Don't allow discharging during idle (minimum I_fcs_req = I_veh_aux)
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Figure 2.18: EMS Simulink.

2.9 Summary

The problem of studying an existing Simulink model of a FCHV and editing the
EMS system was investigated. Starting from formulating the dynamic equations
of the power train subsystems, an analytical simplification of the equations based
on experimental results was derived. The EMS of the FCHV was modeled and
explained and made adaptable to the different algorithmic settings that will be
discussed in the next chapters.
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Chapter 3

Efficient Energy Management
System

Mathematical optimization is a technique utilized to achieve the best possible
outcome for a certain problem. It can take different forms depending on the
type of the objective function. The numerical formulation of the FCHV power
train discussed in chapter 2 exhibits nonlinear equations. Therefore, it is crucial
to select an optimization technique that will closely model the drive train of
the FCHV in-order to lead optimum results. The goal is to optimize the power
allocation between the FCHV sources which are the FC system and the battery
system.

Optimization algorithms when embedded into the vehicle have a slower
response time than the vehicle dynamics. For this reason, the optimization phase
is calculated beforehand. This means that the optimization of the EMS is done
off-line using optimization algorithms. Then during on-line simulation, the pre-
registered references are embedded in the Simulink model as lookup tables in-
dexed by the sources power values. The embedded PID controller furthers im-
prove the optimization procedure. The selection criteria of the style of optimiza-
tion method used depends on the degree of knowledge of the driving cycle and
the trip characteristics.

Total knowledge of the driving cycle occurs when the same route is re-
peatedly driven and a velocity log is recorded. This is the case with city buses
for instance where they propel through the same route every day. However, even
with total knowledge of the driving cycle, sometimes unpredictable events might
occur like rain, collisions or technical problems. This optimization is performed
off-line using Matlab software. After the sub-optimal power allocation matrix is
obtained, it is injected into the EMS of the Simulink model that is explained in
the previous chapter. In the efficient energy management system proposed for
the FCHV in this dissertation, three different algorithmic techniques are adopted
and tweaked to fit the model and consider different degrees of knowledge of the
driving cycle as well as unpredictable events. These are presented in the items
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below:

• Known driving cycle: If the driving cycle is known beforehand then an
improved dynamic programming technique.

• Mean knowledge of the driving cycle: If the driving cycle can be ap-
proximated by weighted stochastic functions then the improved dynamic
programming technique is instigated.

• Minimal knowledge of the driving cycle: If the driving cycle is not
comprehended, then it is fairly approximated in small steps and a looped
improved dynamic programming technique is tested during on-line oper-
ation, to tweak deviations from pre-set cycles by updating the algorithm
along the trip. This technique is also used to amend the unpredictable
events striking known cycles.

The performance criteria for the different adopted techniques are the
total operational cost and hydrogen consumption of the FC system. The perfor-
mance of the FC system is tested using a metric based on the efficiency maps of
the FC system. Moreover, to measure the stress factor on the system components,
the standard deviation of haar wavelet decomposition of the power supply pro-
file for the sources is considered. The standard deviation value is the measuring
parameter to indicate which source has been exploited more than the other [20].

The mathematical optimization is formulated off-line for a pre-defined
or approximated driving cycle. Section 3.1 defines an approximation of power
demand using a simple power train model based on subsystem losses.

To verify that the results of the weighted improved dynamic program-
ming are close to the global optimal results, a linear approximation of the system
sources is derived and applied to a linear program formulation.

3.1 Approximation of the Off-line Power De-

mand

In a supervisory control problem like the one tackled in this dissertation, it is
sufficient to study an abstracted scheme of the system. The power demand at
the DC bus is computed by taking the power train losses from the wheels until
the input of the electric motor as shown in figure 3.1. The driving cycle is usually
a matrix indexed by time and speed. The first step is to calculate the total forces
acting on the wheel during each time step and then derive the power demand at
the levels of the wheel. The total sum of forces FT acting on the wheels are the
aerodynamic force Fw, the force of rolling resistance or friction losses Fr, the force
due to inclination or load slope Fi and the acceleration force Fa. These forces are
described in equation 3.1. The power demanded Pw by the vehicle as a function
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Figure 3.1: Power Train Losses.

of speed at the level of the wheels is given in equation 3.1. For simplicity, the
road is considered to be flat and therefore the road inclination is zero.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aerodynamic Force: Fw = 1
2
ρAfCwv

2

Rolling resistance/ Friction losses: Fr = mgCr cos(θ)

Inclination/ load slope Force: Fi = mg sin(θ)

Acceleration Force: Fa = ma

Total Sum of Forces: FT = Fw + Fr + Fi + Fa

Power Demand at the Wheels: Pw = vFT

(3.1)

The power train is composed of the transmission system and electric
motor/inverter system as well as the two energy sources. Losses of the power train
are modeled using experimental results derived at UAS test-benches. Therefore,
the power required by the electric motor PL is the sum of the power required at
the wheels Pw, the transmission system losses PTL and the electric motor losses
PML as shown in equation 3.2.

PL = Pw + PTL + PML (3.2)

The losses in the transmission system are derived from experimental re-
sults. Then a 3-D matrix is generated indexed by the transmission system torque
and transmission system speed. The third dimension would be the transmission
system losses. This is translated in our model using a lookup table where the
inputs are the speed and torque of the transmission system and the result is the
power loss coefficient. Linear interpolation applies if an input is not indexed and
so a linear interpolant is plotted between the adjacent coordinates of the unknown
point. Similarly, the power losses of the electric motor and inverter system are
derived from a 3D matrix indexed by the electric motor speed, torque and power
losses as shown in figure 2.16. Now, after computing the power demanded at
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the DC bus, it is time to try to model the sources with their losses to optimally
allocate this demanded power.

3.1.1 FC System Characteristics

Life cycle analysis of the FC system is considered in this paper. The current
service life of FC that is embedded in automotive systems is 5,000 hours under
cycling conditions, which is equivalent to 242,000 km [82]. The current cost of
the system is $50/kW [82]. However, it is still double the cost of ICE. Therefore,
a cost measure for the service life γSL−FC of a FC is indicated in equation 3.3.

γSL−FC = 0.01 $/kWh (3.3)

There are three important parameters that need to be approximated.
These are: the rate of consumption of hydrogen molecules per kW in g/kWh,
the cost of energy from hydrogen consumption in $/kWh, and the initial mass of
hydrogen molecules available in the tank in grams.

The Rate of Consumption of Hydrogen Molecules per KW

The consumption rate of hydrogen molecules per kW depends on the type of fuel
cell used and on the manufacturer’s datasheet. Table 3.1 shows the experimental
data recorded from running a FC under certain conditions. Our goal is to find
a constant relation between the hydrogen fuel consumption rate and the power
capacity of the fuel cell. The derivation is shown in equation 3.4 and equation 3.5.

PFC = IFC−reqVFC (3.4)

ṁH2 = MH2ṅH2 (3.5)

Figure 3.2 shows the plot of ṁH2 versus PFC. The rate of consumption
of hydrogen molecules per kW, λ, is the slope of the graph which is 0.015 g/kWs.
It is obtained by using a basic linear curve fit of the available data. Therefore,
λ=54 g/kWh.

The nonlinear relation between the power provided by the FC and the
respective hydrogen consumed is modeled. The data is used in the Simulink
model and derived from experimental testing on the FC system. Equation 3.6
provides the curve fitting model.

ṁH2(PFC) = 3.9× 10−5P 2
FC + 0.012PFC − 0.0031 (3.6)
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Table 3.1: FC Experimental Data.

IFC−req(A) ṅ(/sec) VFC(V )
1.49 0.003 360
3.06 0.005 359
7.82 0.015 358
13.48 0.025 356
25 0.05 352
46.51 0.1 344
68.45 0.15 336
94.51 0.2 328
118.75 0.258 320
190 0.4 300
285.71 0.5952 280

The Cost of Energy from Hydrogen Consumption

Hydrogen is produced using electrolysis of water or from steam reformation of
natural gas. At a cost of energy of 8 cents/kWh, the price of hydrogen production
ranges from 14 to 16 $/kg [83]. The higher price is for hydrogen production via
electrolysis of water. An average cost for hydrogen of 15 $/kg is used. The value
for the cost of energy from hydrogen consumption can be approximated from the
consumption of hydrogen molecules per kWh. It is shown in equation 3.7.

γFC = λ× 0.015 = 0.81 $/kWh (3.7)

The Initial Mass of Hydrogen Molecules Available in the Tank

The initial mass of hydrogen molecules available in the tank is calculated by
using the ideal gas equation in equation 3.8. The tank has a volume (V) of 0.08
cubic meters and is maintained at a pressure (Pa) of 300 atm and temperature
(Tamb) of 20 degrees celcius. Therefore, after calculating the number of moles (n)
in equation 3.8, the initial molar mass of hydrogen in the tank is estimated in
equation 3.9.

PaV = nRTamb (3.8)

MoH2 = nMH2 � 1970g (3.9)
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Figure 3.2: Fuel Cell - Hydrogen consumption Map.

3.1.2 Battery Storage System Characteristics

The selected battery is a lithium-ion cell battery [84] suitable for vehicular appli-
cations. The test-bench based datasheet shown in table 3.2 indicate the relation
between the DOD and the cycles that the battery can withstand till the end of
its life.

It can be fairly assumed that the amount of energy that is delivered by
the battery system during its lifetime is constant depending on the DOD. From
Table 3.2, at a discharge efficiency of 80%, the average energy delivered by the
battery system over its life is 7863 kWh. The current cost of the battery is 500
$/kWh [85] [86]. Therefore, the cost of the battery for its service life is shown in
equation 3.10.

γBT =
500× 1.9

7863
= 0.12$/kWh (3.10)

The losses of energy sources are also taken into consideration. Q maps
are used to model the losses in the battery, which include the power value of
the battery while considering internal resistance losses, charge losses and other
battery losses. These Q-maps are derived from test-benches where actual battery
values are measured [87]. Figure 3.3, shows a Q-map for a battery derived in [87].
To approximate the losses, the basic fitting equation given in equation 3.11 is
used.

QBT(PBT) = −0.0076P 2
BT − 1.1PBT + 0.4 (3.11)
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Table 3.2: Battery LifeCycle Estimation.

DOD (%) Number of Cycles Energy Delivered
during Battery Life
(kWh)

100 1000 1520
90 1000 1368
80 2000 2432
70 3000 3192
60 4000 3648
50 5000 3800
40 6000 3648
30 10000 4560
20 30000 9120
10 100000 15200
5 500000 38000
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Figure 3.3: Battery Q Maps.
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3.2 Linear Programming

Linear programming is a sect of optimization techniques that is characterized by
linearity in the objective function and constraints. The feasible region addressed
by the constraints is a convex polyhedron. The program chooses the global opti-
mum point that minimizes the objective function. The canonical form expressing
LP is shown in equation 3.12.

maximize cTx

subject to Ax ≤ b

and x ≥ 0

(3.12)

The objective function and constraints of the FCHV power allocation
problem is formulated using only linear equations. Afterwards, the optimiza-
tion problem is solved using linear programming algorithm. Linear programming
provides the feasible optimal solution of the linear model of the FCHV power allo-
cation problem which can be used to compare the efficiency of the other proposed
methods when linearized.

The EMS for FCHV problem can be expressed with linear objective
function and linear constraints. For this reason, LP is adopted to test the effect of
simple optimization techniques on the controller of the FCHV. The linear program
takes the initial SOC of the battery as well as the initial hydrogen availability in
the tank. The system costs and characteristic block in figure 2.1, which is also
an input to the linear program block represents the vector of fixed input values
which are the cost ofH2 consumption γFC in $/kWh, the initial cost of FC system
γSL−FC in $/kWh, the cost of battery γBT in $/kWh, battery energy capacity
EBT , the minimum power provided by the FC system PFCmin , the maximum
power provided by the FC system PFCmax , the minimum power provided by the
battery system PBTmin , the maximum power provided by the battery system
PBTmax, the minimum battery state of charge SOCmin, the maximum state of
charge of the battery SOCmax, FC ramp down and up rates (Rdown−fc , Rup−fc),
the battery ramp down and up rates (Rdown−bt , Rup−bt), the consumption rate
of H2 molecules per kW (λ) , and the initial mass of hydrogen in the tank in
grams MHo. The linear program yields the optimal split of power between the
FC and the battery for a specific driving cycle. The program feeds the results to
the Simulink model to yield optimal power flow management.

The problem is formulated as a constrained optimization problem with
linear constraints. The main aim is to find the optimal split of power between
the components of the FCHV, thus to find the power required from the FC (PFC)
and the power required from the battery (PFC). The cost function is depicted in
equation 3.13.
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J = min

[
N∑
k=1

[(γFC + γSL−FC)PFC(k) + γBTPBT(k)]Δt

]
(3.13)

The cost minimization function calculates the cost of energy from the
FC. The cost of the FC includes the hydrogen consumption cost as well as a
penalty factor. The latter is a fraction of the life of the fuel cell. In this manner,
the cost function will consider the life cycle of the FC. The cost of the battery
is considered during charging and discharging phases. This cost comprises the
depletion of the battery towards its end life.

3.2.1 System Constraints

The system constraints are described in equations 3.14 till 3.21 respectively.

SOC Period Coupling Constraint:

SOC(t) = SOC(t− 1)− PBT(t)Δt

ηBTCBT

(3.14)

Power Balance Constraint:

PFC(t) + PBT(t)− Pbr(t) = PL(t)
(3.15)

Fuel Cell Power Limits:

PFCmin(t) ≤ PFC(t) ≤ PFCmax(t)
(3.16)

Battery Power Limits:

PBTmin(t) ≤ PBT(t) ≤ PBTmax(t)
(3.17)

Battery State of Charge Limits:

SOCmin(t) ≤ SOC(t) ≤ SOCmax(t)
(3.18)

FC Ramp Rate Constraint:

Rdown−FCΔt ≤ PFC(t)− PFC(t− 1) ≤ Rup−FCΔt
(3.19)

Battery Ramp Rate Constraint:

Rdown−BTΔt ≤ PBT(t)− PBT(t− 1) ≤ Rup−BTΔt
(3.20)
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Hydrogen Tank Capacity Constraint:

N∑
k=1

λPFC(t)Δt ≤MHo

(3.21)

The SOC period coupling constraint calculates the available state of
charge of the battery after each discharge in a given time step Δt. The sub-
tracted value represents the fraction of energy from the total energy available
in the battery spent at time (t). The power balance constraint ensures that the
load is served at each step (t). The system dumps any available extra power
via Pbr, which is usually the case when the battery is fully charged and the load
demand is generative. A convention adopted for this dissertation states that a
positive battery power flows implies that the battery is discharging its current
into the FCHV system. Constraints shown in equation 3.16, equation 3.17 and
equation 3.18 are limitation constraints for the power that can be provided by
the FCHV components. The ramp rate constraints limit the ramp rate of both
the FC and the battery. This is very important to prevent a phenomenon known
as oxygen starvation of the FC system. The latter occurs when a high instanta-
neous power is required from the FC. Due to the stoichiometry of the chemicals
present, the FC does not respond fast to the requirement yielding oxygen star-
vation causing FC degradation. Similarly the battery needs a certain amount of
time to be able to deliver the required power. The storage capacity constraint
ensures that the hydrogen tank is able to cover the entire desired trip [29]. The
calculation of the initial available hydrogen consumption is done using the ideal
gas equation.

3.3 Dynamic Programming

The FCHV energy management system formulation is not easy to solve using
optimal control theory due to its non-linearity. The feasibility region is wide
and to satisfy all the constraints many Lagrange multipliers are required and
karush-kuhn-Tucker conditions need to be satisfied.

Dynamic programming is an algorithmic optimization tool based on Bell-
mans principle of optimality for solving recursive problems. The algorithm is easy
to implement but suffers from the dimensionality drawback. The problem size
grows exponentially with the number of time steps [60]. It is one of the tech-
niques used to optimize the power split between the different energy resources in
FCHV [62]. It is implemented by many researchers and applied to different types
of hybrid vehicles. In [62], the vehicle power sources are the internal combustion
engine (ICE) and battery system. DP is used to test the effect of battery weight
and storage capacity on the operational cost. The analysis leads to the selection
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of the most feasible battery capacity to lower system costs. Dokuyucu et al. [65],
formulated a controller based on dynamic programming to find the torque split
between the internal combustion engine and the electric motor. The control sig-
nal considered is the battery SOC which is bounded between 0.4 and 0.7. Results
show that during low torque demands, the vehicle operates in motor mode and
charging is favored. While during high torque demands, both the battery and the
ICE assist in feeding the load. Vinot et al. [63], use DP to find the optimal split
between the internal combustion engine and battery to study two different series
parallel architectures for the hybrid electric vehicle. They used an electric vari-
able transmission concept which leads to slightly higher fuel consumption range,
but it can be tweaked by using a gear between the engine and motor. In [64],
DP has successfully found the optimal split between the power sources for HEV
consisting of fuel cell and battery.

Improved dynamic program is used so as to overcome the problem of
dimensionality. IDP takes into consideration the non-linearity of system sources.
This novel method considers a tunnel of fixed states rather than an exponential
increase in the number of states. In [66], power levels of fuel cell are considered in
the state vector while in [67] the authors take SOC levels as state vectors. Both
latter papers consider the improved DP and the results are not far from using
the regular DP.

In this dissertation, the finite horizon optimization problem is formulated
as a constrained structure and the improved DP (IDP) is adopted. The formula-
tion presented in [66] to optimally manage the energy flow between the fuel cell
and the battery storage for FCHV is enhanced and applied. The IDP is used to
overcome the problem of dimensionality normally faced in dynamic programming
algorithms. Power levels of fuel cell are considered in the state vector and SOC
levels are control vectors. The paper deals with the power allocation of the fuel
cell and battery to minimize the cost function in equation 23. For this reason,
the power of the fuel cell or the power of the battery can be considered as the
state vector. By fixing one, the other can be derived from the power balance
equation in 25, hence this power fixing method lends itself for an easier solution
of the problem and is natural to program. In this case, the supervisory control of
the vehicle is exerted by the fuel cell, and then the battery satisfies the remain-
ing power demand within the SOC constraints. The optimal path is located by
minimizing the cost through a weighted fitness function, which corresponds to
the optimal policy [68]

3.3.1 IDP General Formulation

Improved dynamic programming is an upgraded version of DP through which
the number of states at each level does not change with time. It bypasses the
problem of dimensionality suffered using dynamic programing. In such a super-
visory control model, an objective function along with the constraints is defined.
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The independent variables are defined through a set of actions and the dependent
variables are defined in number states.

The time horizon is sampled into T discrete stages that are equally spaced
along the length of the driving cycle. The vertical axis is quantized into S different
states. The state vector u is composed of fuel cell power levels that range from 0
to PFCmax in equal steps. Figure 3.4, reveals a model of the network along with
all interconnected nodes. The total number of nodes is S × T which depends
on the number of selected states and time samples. Each of these nodes (N) is
indexed according to the its current stage location and corresponding state. For
example node Niuj corresponds to the node at stage i and state uj. At the first
stage each node is characterized by a cost function Ciuj symboled as nodal cost.
This is a discrete closed form function that defines a certain objective. The nodal
cost represents the cost of being in the associated state. Starting the second stage
until t = T , each node has two associated costs which are the nodal cost and the
transition cost. The transition cost Ruk,iuj is the cost of moving from the previous
states uk at i− 1 to the current state uj at i. The total cost Fiuj associated with
each node at a certain stage is the sum of its nodal cost and the minimum value
of all transition costs to the node from previous stage as shown in equation 3.22.
If a transition to a node or a certain state of the current node violates any of
the constraints, then the node is infeasible and could not be considered on the
optimum path. For this reason and to remove it from the optimal path, a very
high cost is associated with the transitional cost. The idea behind correlating a
high cost rather than removing the transition node from the path is just for the
idea of having a faster algorithmic convergence in Matlab without adding extra
functionalities. It is assumed that there is at least one possible transition guk,iuj
that is feasible so removing a link from the path is meaningless. Finally, at stage
T, the minimum cost FTuj is selected and traced back to the first stage following
the minimum cost path. The algorithm is depicted in steps in 3.1. All index
correlations are summarized in equation 3.23.

Fiuj = Ciuj +min
k

[
Ruk,iuj

]
where i = 1 : T j, k = 1 : S (3.22)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

State Vector: u = [u1 u2...uj...uS] where j = 1 : S

Stage Vector: Stage = [1 2...i...T ] where i = 1 : T

Node Representation: Niuj

Node Cost: Ciuj

Transition Cost: Ruk,iuj where k = 1 : S

(3.23)

To further explain the methodology behind IDP, we consider a finite
time horizon of 3 discrete time steps and a problem with 2 state levels. Figure 3.5
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Algorithm 3.1 Improved DP Algorithm

1: {Forward Path Generation}
2: for i such that i = 1 : T do
3: for j such that j = 1 : S do
4: for k such that k = 1 : S do
5: Compute Ciuj

6: Compute Ruk,iuj ∀ k
7: Locate minimum of Ruk,iuj

8: Save index of min Min = [i, kmin] for min of Ruk,iuj

9: Compute Fiuj = Ciuj +Ruk,iuj + C(i−1)uk

10: end for
11: end for
12: end for
13: {Backward Path Trace}
14: for m such that m = 1 : T do
15: Locate N∗(T ) = min(FTuj) ∀ j
16: Locate all N∗ = Min(:, 2)
17: end for
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Figure 3.5: Improved Dynamic Programming Sketch.

depicts this model. It starts at t=1 where different states u1 and u2 are initialized
and the corresponding costs C1u1 and C1u2 are calculated. In stage two, two nodes
are considered N2u1 and N2u2 . The cost of node N2u1 is its own cost added to
the minimum sum of the transitional cost and the nodal cost from the transition
node in the previous state. Node N2u1 can be reached from node N1u1 or node
N1u2 . The minimum cost to reach node N2u1 is 7 from node N1u1 as indicated
by the blue line in figure 3.5. Similarly, the minimum cost to reach node N2u2 is
from node N1u1 . Next, the total cost of the nodes at stage 2 is updated such that
F2u1 = 9 and F2u2 = 6. Similarly, at stage 3 the minimum cost to reach nodes
N3u1 and N3u2 , is from node N2u2 . The total nodal cost at stage three is updated
again and F3u1 = 15 and F3u2 = 13. Finally, the minimum cost at stage three is
selected and traced back to stage one following minimum cost node procedure.
This is shown in the dashed red line in figure 3.5. This is a simple problem, if
it was tackled using nornal DP then the total number of states will be fourteen
rather than 6. Therefore, the main benefit behind using IDP over DP is to solve
the problem of dimensionality without brutally affecting the optimal path.

3.4 IDP Formulation for FCHV EMS

The improved dynamic programming is formulated for the FCHV EMS. In this
context, the nodal cost and the transitional costs are defined. Two approaches
are considered, a linearized IDP approach and a non-linear IDP approach. The
linearized IDP approach considers linear functions similar to those used in the LP

48



formulation. It is used for comparison against the LP approach. This assessment
is important to verify that the IDP converges to a sub-global optimum point, and
provides results similar to the LP algorithm. The non-linear IDP better models
the dynamics of the vehicle.

3.4.1 Linearized IDP Formulation for FCHV EMS

In the linearized IDP formulation, the nodal cost represents the cost of energy
for being in the current state. It is the cost of consumption of hydrogen fuel as
well as the life cost of the battery and FC.

Ciuj =

[
(γFC + γSL−FC)PFC,iuj +

1

2
γBTPBT,iuj

]
�t (3.24)

At each time step, the battery SOC needs to be updated according
to 3.25. It is important to note that when the battery power is positive, the
battery is considered to be discharging power and thus feeding the load. During
this period the power supplied to the load by the battery is lower than the actual
energy produced by the battery due to losses. This is accounted for in equa-
tion 3.25 by splitting the operation of the battery into charging and discharging
modes. When the power supplied by the battery is negative, the battery is con-
sidered to be charging and thus the load is generative. However, during this
period the actual energy delivered to the battery is lower than that generated
from the wheel’s kinetic energy and so the efficiency is multiplied by the battery
energy.

SOCiuj =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
SOC(i−1)uj

− PBT,iuj�t

ηBTCBT
if PBT,iuj ≥ 0

SOC(i−1)uj
− ηBTPBT,iuj�t

CBT
if PBT,iuj < 0

(3.25)

In each state at a certain discrete time, it is important to adhere to the
power equation represented in equation 3.26:

PFC,iuj + PBT,iuj − Pbr,iuj = PL,i (3.26)

Transitional costs are linked to the feasibility of a step from a node to
the other. If the jump from a node to the next is infeasible then a very high
cost is associated with the transitional cost. On the contrary, if a link is feasible
between the nodes then a zero cost defines the transitional cost. This feasibility
of a move is verified through the fact that the power source variables adhere to
their limits as defined by equations 3.16 to 3.20. If a step violates the above
limits then it will be an infeasible state.
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Figure 3.6: Improved Dynamic Programming Forward Algorithm.

The forward algorithm behind the improved dynamic programming adopted
for FCHV is summarized in figure 3.6. Note that after the forward algorithm ter-
minates, then the node at t=T that corresponds to the minimum cost among
the set of nodes at the final stage is chosen. Afterwards a backward algorithm
traces the optimum nodes corresponding to that node all the way towards the
beginning. This backward traced path represents the optimal path.

3.4.2 Weighted IDP Formulation for FCHV EMS

In the IDP objective function, the coefficients of the power demand of the fuel cell
and the battery are in the order of micro units. They are calculated in sections
1.1.1 and 1.1.2. The fuel cell has two coefficients associated with it as shown in
equation 3.3 and equation 3.6. The first equation corresponds to the fuel cell
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service life. The second equation, when multiplied by the hydrogen cost, results
in the cost of hydrogen consumption for a given fuel cell power level. The battery
cost coefficient is shown in equation 3.10 and corresponds to its service life.

The relative cost of the fuel cell with respect to that of the battery in
the cost objective function is very high. The cost coefficient of the fuel cell can
range from 25 to almost 200 times more than that of the battery depending on
the power supplied by each. For this reason, the IDP treats the battery in a
charge depleting mode since the objective is to minimize the cost function. This
section introduces a different view of the cost objective function by treating the
battery cost as a control parameter. This permits changing the relative value of
cost of the fuel cell with respect to the battery.

There are some real life examples where the trip conditions force the
power circumstances of the cycle. For example, if the trip is long and there are
no fuel stations available on the road, therefore, it is better for the battery to work
in charge depleting mode and save hydrogen fuel consumption until reaching a
fuel station. Another case arises when there is plenty of fuel supply on the road so
the battery can work in charge sustaining mode while considering minimization
of the hydrogen fuel. In certain cities the municipality might force vehicles to
utilize the battery more than the fuel cell to save hydrogen fuel. In this case, the
battery needs to be in charge depletion mode.

Therefore, it is essential to study the IDP while having more or less
emphasis on the battery. This is achieved by adding a certain weighting factor to
the battery cost in the objective function. The weighting factor (wBT) introduces
a mechanism of controlling the mode of operation of the battery. It changes
the relative cost of the battery with respect to the fuel cell in the cost objective
function. It enables the battery to change between charge depleting and charge
sustaining modes. The cost calculation at the end of the cycle is performed based
on the IDP cost objective function and not the weighted one.

The objective function of the weighted improved dynamic program (WIDP)
is now denoted by (V ). It includes a weight added to the battery cost coefficient
in an attempt to achieve another desired response of the system. The function
with the battery weight added is shown in equation 3.27. It is used to calculate
the nodal cost of the states in a similar manner to the IDP calculations of the
nodal costs using equation 3.24. The transitional and total costs are calculated
in the same way as that for the IDP. Moreover, the same backward path tracing
method is used in the WIDP.

Viuj =

([
(γFC + γSL−FC)PFC,iuj

]
+

1

2
wBT

[
γBTPBT,iuj

])�t (3.27)

This new method is formulated and tested based on the system require-
ment and trip conditions. In the next chapter, the search technique using brute
force search method for weight selection is presented. Comparative simulation
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runs on the two major driving cycles is presented. These include the analysis
of the outputs of the IDP and weighted IDP methods comparing the hydrogen
consumption levels, the energy provided by the fuel cell and battery SOC profiles
of both methods.

3.5 Looped Dynamic Programming Algorithm

Standard driving cycles are created by engineers to assess the vehicle performance.
The daily driving conditions faced by drivers are different from the standard
cycles. On the other hand, even the driving habits that are unique for each
driver affect the driving cycle. The IDP algorithm presented in the previous
sections can be applied only for known driving cycles. It is one of the powerful
optimization algorithms, however it needs apriori knowledge of the driving cycle.

This section introduces a novel method to find the sub-optimal power
split matrix between the sources of unknown cycles. The technique caters for
totally unknown driving cycles and special event occurrences using a looped dy-
namic programming algorithm. Unknown driving cycles that do not mimic any
of the commonly known cycles can be forecasted using traffic information signals.
The derivation of such a forecast is beyond the scope of this work; however it is
assumed that a certain demand is forecasted for a period of time between 0 and
T. The forecast is approximated in small time limited windows.

This means that for a certain cycle, there is a fair prediction of the driving
conditions before the cycle occurs. The window size for prediction is determined
before the vehicle starts the trip. Therefore, the unknown driving cycle is fore-
casted in steps determined by the window size and prior to the occurrence of the
cycle in the corresponding window. This implies that the driving speed profile
is now identified and the IDP can be applied to the window. The problem with
the window size is the possibility of converging into less efficient solutions. If the
whole cycle is known, then IDP can locate the sub-optimal power allocation of
the sources in-order to lower the hydrogen fuel consumption levels. In looping
methodology, the window size is much smaller than the duration of the total
driving cycle because of the lack of efficient equipment and technology that could
forecast the whole cycle in one shot. For this reason, there is a huge risk that the
IDP converges into a solution which is far from the sub-optimal solution pursued.

When the unknown cycle finishes and the speed profile is gathered, IDP
can be performed on the whole cycle. It would be best if the profiles of the power
sources in all windows gathered together is close to the profile of the sources when
the IDP is applied to the whole cycle. For this reason, other data constraints
need to be considered for the optimization to be comparable. This is mainly the
amount of battery discharge during each window.

The size of the prediction window affects the speed of the IDP, the smaller
the size, the faster is the rate of convergence of the IDP algorithm. This rate is
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an essential factor for the EMS when it is applied in real time situations. On
the other hand, the window size reflects the accuracy of the forecast. A smaller
window implies that the forecast is more efficient and closer to reality.

The objective behind this section is to develop a novel method to update
the sub-optimal power allocation matrix of the vehicle sources in unknown driving
cycles. The cycle speed is assumed to be forecasted in a certain window size prior
to vehicle operation in this window. These values are used by the IDP to find the
optimal power allocation matrix that minimizes the hydrogen fuel consumption
for the corresponding window while limiting the battery SOC in that window.

Figure 3.7 depicts the methodology followed to implement the looping
technique. There are two initialized time frames, the off-line activity and the
on-line activity. Both activities extend from 0 to T seconds where T symbolizes
the length of the unknown cycle which is also unidentified.

The initialization block on the top left corner, is performed before the
vehicle starts the trip. The driver sets the road path from point A to point B. The
road data is not known so the speed profile for the path can not be calculated. For
this reason, the path from A to B is assumed to take T seconds to be completed.
Then, the time frame of T seconds is split into k windows of size N. Each current
window is symbolized by k varying from 1→ N . The next window is symbolized
by k : N + 1→ 2N .

The vehicle acquires the initial road conditions from the data manage-
ment center and it forecasts the speed profile (v̂1:1→N) for the first window of
the cycle. The speed forecasts for the whole cycle are calculated per window
based on the traffic information and the measured vehicle speed for the current
window. The latter is computed in the vehicle drive block during the on-line
simulations. Therefore, the forecast block acquires the measured vehicle speed
during the current window (v̂m,k:1→N) and forecasts the speed for the next window
(v̂k:N+1→2N).

The switch shown in the figure is a signal routing switch. It passes the
first input if the condition of the second input is satisfied. Therefore, the initial
forecasted vehicle speed profile for the first window of size N (v̂1:1→N) passes
through the switch since the time (t) is not greater than zero. When the vehicle
starts accelerating during the first window, the time (t) is greater than or equal
to zero. The third input of the switch passes through because the second input is
not satisfied. Therefore, initially (v̂1:1→N) and during the next phases (v̂k:N+1→2N)
passes.

The speed signal enters the vehicle dynamics block which calculates the
load power profile based on the speed profile as explained in the first section of
this chapter. The efficiencies of the power train are calculated in the drive system
block. They are added to the corresponding demand before entering the improved
dynamic programming block. Therefore, the output of the vehicle model block
is the forecasted power demand of the current window (P̂L,k:1→N).

At this stage, the input power demand to the IDP block is the demand
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at the DC bus which connects the fuel cell and battery systems to the power
train of the vehicle. The other input of the IDP block is the final state of charge
for each corresponding window. This value is required in-order to achieve better
results from the IDP algorithm in-terms of total minimization of the hydrogen
consumption for the whole cycle. The IDP algorithm tends to use the battery
more in each window so as not to consume more hydrogen thus causing the
battery to be depleted in the first window which hinders its advantageous use in
the other windows. For this reason, by limiting the amount of battery discharge
per window, it is guaranteed that the cycle can make use of the battery during
most of the other windows.

The IDP block calculates the sub-optimal power allocation matrix which
is composed of the split of power between the fuel cell and the battery during the
corresponding window. Thus, the matrix holds the power split between the fuel
cell and the battery at each second of the N sized window. The calculation of
the power split matrix is performed during the off-line activity. The IDP block
also considers the final state of charge of the battery (SOCf) per window. This
specification leads to better utilization of the battery during all the windows of
the cycle. If this is not specified, then the IDP program will tend to discharge
the battery during the initial windows and thus hinder its usage in the other
windows.

This power split matrix is fed to the power split matrix block (PSM). The
latter gathers the data of all the matrices of each corresponding window collected
during the whole cycle. The PSM block sends the estimates of the fuel cell power
(P̂FC,k:1→N) and battery power (P̂BT,k:1→N) to the vehicle energy management
system operating through the on-line activity.

During the on-line operation, the vehicle drives block measures the ve-
hicle speed (vm,k:1→N) and sends it to the forecast block. The forecast block uses
the measured speed along with some traffic information in-order to estimate the
vehicle speed for the next window. The vehicle drives block also calculates the
load demand (PL,k:1→N) and sends it to the PID controller.

The PID controller compares the actual calculated demand with the
forecasted one derived during the off-line operation. The PID controller tries
to minimize the difference between the measured and forecasted demands using
proportional, integration and derivation values of the error signal. The output of
the PID controller is a power measure (�P ) symbolizing the added power request
for minimizing the error between the measured and the forecasted vehicle power
demand.

The power requested from the fuel cell system (P̂FC−req,k:1→N) during the
on-line operation is the sum of two signals. The first is the estimated value of the
power split for the fuel cell (P̂FC,k:1→N) which is calculated in the IDP off-line
block. The second signal is the error in power measure (δP ) which is computed
by the PID controller. The addition of these two signals provides the total power
request required from the fuel cell system (P̂FC−req,k:1→N). The output of the
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fuel cell system is the actual fuel cell power used (PFC,k:1→N). This value is fed
back to the vehicle drives block in-order to calculate the vehicle speed and power
demand.

The battery system block calculates the actual battery power demand
(PBT,k:1→N) and feeds it back to the vehicle drives block. It takes two inputs. The

first input is the estimated value of the power split for the battery (P̂BT,k:1→N)
which is calculated in the IDP off-line block. The second input is the battery
request (PBT−req,k:1→N) calculated by the power balance constraint. The power
balance constraint computes the difference between the actual power demand
(PL,k:1→N) and the fuel cell power (PFC,k:1→N). The difference is fed to a battery
limitation test block. The latter block tests the need for power brake. This case
occurs during two scenarios. First, when the load is generative and the battery
is full. The second scenario is when the load is generative but greater than the
maximum battery charging power. If one of the two scenarios is satisfied then
the power brake (Pbr,k:1→N) is a non-zero value. The driver hits the brake and
automatically the controller specifies whether it needs to activate the frictional
braking system or the regenerative braking system.

This methodology is applied and tested for known driving cycles in chap-
ter 5.6. Two scenarios are presented. First, the cycle is assumed to be unknown
and thus it is split into a number of windows and the looped IDP is performed on
each window as explained previously. The vehicle speed of the next window is as-
sumed to be forecasted and the sub-optimal power allocation matrix is calculated.
The second scenario is to consider the whole driving cycle. This means that the
IDP algorithm is applied to the whole cycle. The two scenarios are compared in
terms of fuel cell power profiles and battery SOC. This comparison verifies the
efficiency that the windows of the looped IDP would be fairly comparable profiles
to the global optimum of the cycle.

The novel EMS presented also considers special event occurrences on the
road. These occurrences might happen during the trip. They represent accidents,
sudden road traffic or unexpected effects of weather conditions. These events
alter the driving cycle. The operating vehicle usually decelerates and sometimes
stops before reaching the point where the event happened. The vehicle can really
benefit from this deceleration by using the recuperation of energy to charge the
battery. However, it can only benefit if the event occurred some time (t) before
the vehicle reaches the point of the event. The traffic control signal updates the
vehicle controller about the occurrences of the event. The speed profile of the
trip can be speculated. The IDP algorithm performs additional runs to cater for
the special event. When the vehicle reaches the special event, it would have been
updated with the new sub-optimal power allocation matrix. These events are to
be known at time (t) and before the vehicle reaches the event location, so the
looped IDP algorithm can update the power split signals in-order to minimize
the total cost.
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This method is applied in chapter 5.4 where an event at time (t) occurs,
a certain time before the vehicle reaches the location. The vehicle off-line speed
profile is updated to cater for a deceleration before the event and a stop near
the event and then an acceleration phase. This off-line speed profile is fed into
the vehicle dynamics block and motor system to approximate the power demand
at the DC bus. The latter power demand is fed to the off-line IDP block which
calculates the sub-optimal power allocation matrix of the sources. This matrix
is fed back to the on-line operation of the vehicle before it reaches the event. In
this way, the vehicle deceleration before reaching the location of the event helps
to save more hydrogen fuel by utilizing the recuperation energy to charge the
battery.

3.6 State Machine Control Algorithm for Com-

parison Methodology

The proposed methodology of efficient energy management system using IDP is
compared against a state machine control algorithm. The latter is proposed and
tested by Panik [88]. Different states are formulated depending on the demanded
power and the battery SOC. The different states are defined in the items below:

• State 1: Motoring PL > 0, vL > 0, PL ≥ PFC−min: If the demanded load
is positive and greater than the minimum power that can be supplied by the
FC, then the FC system is turned on and limited to the minimum power
values. The battery system supplies the difference between the required
load and minimum power value of the FC.

• State 2: Motoring PL > 0, vL > 0, PFC−min < PL < PFC−max: If the de-
manded load is positive and ranges between the minimum and maximum
power that can be supplied by the FC, then the FC system is turned on
and limited to the demanded power values while preserving the ramp rate
constraint. The battery system supplies the difference between the required
load and supplied power value of the FC.

• State 3: Motoring PL > 0, vL > 0, PL ≥ PFC−max: If the demanded load
is positive and is greater than the maximum power that can be supplied
by the FC, then the FC system is turned on and limited to its maximum
power value while preserving the ramp rate constraint. The battery system
supplies the difference between the required load and supplied power value
of the FC.

• State 4: Generating PL < 0, vL > 0, PL ≥ Pm−min: If the demanded load
is generative and is greater than the minimum power that can be endured
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by the motor, then the FC system is turned on and limited to its mini-
mum power values. The battery system supplies the difference between the
required load and supplied power value of the FC.

• State 5: Generating PL < 0, vL > 0, PL < Pm−min: If the demanded load
is generative and is less than the minimum power that can be endured by the
motor, then the FC system is turned on and limited to its minimum power
values. The battery system supplies the difference between the minimum
motor power and the supplied power value of the FC.

• State 6: Idling PL = 0, vL = 0, PL < PFC−min: If the demanded load is in
idle mode and is less than the minimum power that can be supplied by
the FC system, then the FC system is turned on and limited to its mini-
mum power values. The battery system supplies the difference between the
auxiliary power demand and the supplied power value of the FC.

• State 7: Idling PL = 0, vL = 0, PL ≥ PFC−min: If the demanded load is in
idle mode and is greater than the minimum power that can be supplied by
the FC system, then the FC system is turned on and limited to its mini-
mum power value while preserving the ramp rate constraint. The battery
system supplies the difference between the auxiliary power demand and the
supplied power value of the FC.

3.7 Stress Analysis using Haar Wavelet

The haar wavelet transform of a certain function x with n inputs xn is yn. Equa-
tion 3.28, shows the relation between the input and output of the transformation.
The haar transform matrix is derived from the 2x2 haar matrix, shown in equa-
tion 3.29, which is associated with the wavelet. This discrete wavelet transform
converts any sequence of even length into a two component vector. Depending on
the length of the sequence, the elements can be transformed as building blocks
of the 2x2 haar wavelet. The general form of the 2Nx2N haar matrix is shown in
equation 3.30. The second component of the matrix is the identity matrix with
a diagonal value of 1. The product symbolized in the equation is the Kronecker
product [89] [90].

yn = Hnxn (3.28)

H2 =

[
1 1
1 −1

]
(3.29)

H2N =

[
HN ⊗ [1, 1]
IN ⊗ [1,−1]

]
(3.30)
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Haar wavelet transform is the simplest transform that can divide a signal
into its low and high frequency components. It exhibits advantageous results with
signals incorporating sudden transitions. Motapon et al. [20], discovered that
it can be used for stress analysis of the FCHV sources. In their analysis, they
compared the performance of five different energy management system strategies.
They used the haar wavelet analysis to associate the stresses on the sources for the
different strategies. They discovered that the classic PI control based EMS exerts
the highest stress on the fuel cell while the frequency decoupling and fuzzy logic
based EMS exerts the lowest stress on the fuel cell. The latter EMS algorithm
exerts the highest stress on the battery system. In this thesis, the stresses on
the fuel cell and the battery will be compared for the proposed EMS algorithms
based on the same haar wavelet decomposition method.

The technique they used is based on decomposing the power supplied
by the FC and the battery for a given load using Haar wavelet transform. The
decomposition results in a low and a high frequency component of the signal. It is
noticed that the high frequency component has a zero mean and so the standard
deviation is used as a measure to indicate the stress component on the source.

In the analysis of the stresses on the FCHV sources, the Matlab function
’dwt’ from the wavelet toolbox is used. The ’dwt’ function decomposes any signal
into its low and high frequency components using a low pass and a high-pass filter
respectively. It computes the two coefficients of the wavelet by convolving the
input signal with a low pass filter and a high pass the filter. The standard
deviation of the high pass filter is used as a measure of the stresses exerted on
the FCHV components.
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Chapter 4

Improved Dynamic Programming
Algorithm for Known Driving
Cycles

The improved dynamic programming algorithm discussed in the previous sec-
tion is applied, tested and analyzed for known driving cycles. A multiple of
simulated comparative experiments demonstrates the efficiency, significance and
applicability of the algorithmic strategy. The IDP algorithm for electric vehicles
is verified by linearizing its objective function and constraints and then compar-
ing it against a linear programming algorithm. It is tested for a small test cycle
and then for known driving cycles such as highway and FUDS driving cycles.
Sensitivity analysis is applied to highlight the effects of the variables.

The outcome of the algorithm which is obtained from off-line simulation,
is the sub-optimal power split between the FC and the battery. This is injected
in the vehicle Simulink model which incorporates also a PID controller for on-
line testing. The behavior of the system resources and electric motor is analyzed
and the hydrogen consumption is compared against the state machine controlled
algorithm discussed in the previous section.

MatLab is the simulation environment that beds the adopted IDP al-
gorithm. The performance of the system in terms of runtime is derived on an
intel core i7-3610QM CPU at 2.30GHz. Using the conventional DP, during a
certain stage three loops will be initialized, the time, state variable and control
variables [81]. IDP limit the number of states and the exponential growth in
states which makes it easier to mask one of the loops.

4.1 Algorithm Validation

The IDP algorithm is validated by comparing it against a linear programming
algorithm. The IDP method proposed converges into a sub-optimal solution for
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Table 4.1: Comparative Results for LP and LIDP.
Highway FUDS
LP LIDP LP LIDP

The Cost of Operation ($) 2.767 2.804 1.29 1.31
Electric Energy Supplied by FC (kWh) 3.897 3.898 1.785 1.786
Electric Energy Supplied by BT (kWh) 0.63 0.67 1.28 1.31
Total amount of H2 fuel consumption(g) 178.7 180.7 76.94 77.51

obtaining the power split between the fuel cell and the battery.
The IDP has limited number of states so it does not consider the out-

comes from all of the combinations. To verify that the achieved results are accept-
able within a certain tolerance, the equations of the IDP technique are linearized
(LIDP). Then, it is compared against the optimal results obtained from the linear
programming technique.

The LP method converges into a global optimal solution for the power
allocation problem. It would be the best technique of choice for the problem,
however it does not accept non-linear equations which model the FCHV. For
this reason, LP is used to test the efficacy of the sub-optimal solution acquired
from a linearized IDP technique. The objective function and constraints of both
methods are similarly defined.

Table 4.1 shows the comparative measures of the highway and FUDS
cycles trips when using LP and LIDP. For the highway cycle, the hydrogen con-
sumption using the linearized IDP method is 1 percent more than the LP method.
The energy supplied by the fuel cell is 3.898 and 3.897 kWh based on the LIDP
and LP technique respectively. This is less than 1% difference.

Similar analysis is carried out for the FUDS driving cycle. The hydrogen
consumption difference is less than 1% in favor of the LP method. Moreover,
the fuel cell and battery utilization in terms of energy supplied throughout the
cycle is very close in both method. The fuel cell supplied energy in kWh is 1.786
and 1.785 for the LIDP and LP method respectively. Similarity, the battery
overall kWh during the cycle is 1.31 and 1.28 for the LIDP and LP methods
respectively. This means that the split of energy between both methods is very
similar and with little discrepancy. For this reason, it is safe to conclude that the
LIDP method converges to an acceptable sub-optimal solution very close to the
optimal solution achieved by the LP.

4.2 Sample Driving Cycle

The efficacy of the IDP algorithm is then verified with respect to a small test
cycle shown in figure 4.1a. Table 4.2 indicates the base case data chosen for
analysis.
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Figure 4.1: Sample Driving Cycle.

Figure 4.1b, shows the power distribution using IDP. During the first
three seconds, the vehicle is in its idle state with a zero demand, the FC is set
to its minimum power which is 5kW and so its energy is used to charge the
battery. The FC and the battery start supplying the load between 5 and 12
seconds. Then the fuel cell goes back to its minimum power supply until second
48. Between 25 and 47 seconds when the load is mostly generative, the battery is
charging. However, it is using power not just from regenerative braking but also
from the minimum set power of the FC. The battery considers the efficiency of
regenerative braking. This depends on the efficiency of the transmission system,
motor/inverter system and battery. The efficiencies are speculated as discussed
in chapter 2. Although the battery is charged and can supply the load between
40 and 48 seconds, the sudden drop in load at around 49 seconds, forces the
FC to supply the load in its ramp rate steps so as not to violate the ramp rate
constraint of the battery.

Figure 4.1c, shows the result when the FC minimum power is lowered
to zero. In this case, the fuel cell is supplying the load aided by the battery.
Between 40 and 50 seconds, the program didn’t drain the battery to respect its
ramp rate constraint especially with the sudden drop in power at second 49. The
minimum permissible level of the fuel cell power is set by its manufacturer. This
test is performed to validate that the program respects the limits when they are
altered.

The savings in hydrogen consumption in the second case is almost 33%
with respect to the base case. This goes back to changing the minimum permis-
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Table 4.2: Vehicle Parameters.

Variable Value
PFC−max (kW) 70
PFC−min (kW) 5
PBT−max (kW) 40
PBT−min (kW) -40
SOCmax 0.9
SOCmin 0.79
SOC0 0.8

sible fuel cell level from 5 to 0 kW. The stresses on the fuel cell are measured in
both cases following the haar wavelet transform method explained in chapter 3.
The second case exerts more pressure on the fuel cell with respect to the base
case. In the base case the fuel cell is maintained at a minimum power of 5kW
so the shifts in power from minimum to a certain supply is not that much. The
frequency of high transitions in the second case is more noticeable due to the
lower minimum permissible fuel cell power level.

The effect of limiting the battery power between [-10,10]kW is shown in
figure 4.1d. The FC plays a more important role in-order to supply the demand.
This is due to the fact that the battery could not supply the load due to its upper
limits constraint. As well as the regenerative power used to charge the battery is
shaved due to the battery lower limit constraint.

4.3 Optimum Power Allocation using IDP

After analyzing the small test cycle, the normal driving cycles are set. It is
time to monitor and analyze the behavior of the light duty sprinter using IDP for
different driving cycles. The analysis includes the activities of the FC and battery
operations during the vehicle acceleration and deceleration modes. Moreover,
comparison against the state machine control method discussed in the previous
section is investigated.

The IDP algorithm is launched in off-line mode for the corresponding
driving cycle using MatLab program. The split of power between the FC and
battery is derived from the algorithm. This split is fed to energy management
system block in the Simulink model that simulates the selected vehicle in on-line
mode.

The outcomes from each cycle are analyzed. The curves resulting from
the on-line Simulink model of the vehicle are compared against the curves result-
ing from the off-line IDP algorithm. The chain of analysis is shown in figure 4.2.
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4.3.1 Highway Driving Cycle

The power profile of the highway driving cycle is shown in figure 4.3. The upper
curve indicates the speed profile over the 766 seconds period. The lower curve
shows the calculated demand at the level of the wheels (Pwheels) and the electric
motor (Pm) as per the equations derived in chapter 3.
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Figure 4.3: Highway Power Profile.

The off-line power split between the fuel cell and the battery is obtained
by running the IDP MatLab program. Then the power split is fed to the Simulink
model which mimics the electric vehicle dynamics. Figure 4.4a shows the behavior
of the fuel cell and battery during on-line and off-line operations.

Figure 4.4a indicates the role of the PID controller in matching the refer-
ence speed (Vreq) to the measured speed (Vact). The two speed profiles are almost
identical. However, at some instances, specifically at 150 and 300 seconds there
is a mismatch in the system occurring due to the errors in the PID controller.
This occurs because the PID controller is trying to minimize the errors between
the provided vehicle speed and the measured one.

The power allocation profile of the light duty sprinter operating on a
highway driving cycle is shown in figure 4.4b. At the beginning of the cycle,
the battery enters a charge depleting mode to save some of the hydrogen fuel
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especially at start-ups. Then at around 100 seconds, the FC starts supplying
the load. The FC continues to supply the load almost throughout the cycle.
This coincides with the fact that the sprinter has a small battery and a large
FC which makes the later the main energy source in the system. To relieve
the stresses on the FC, the battery tends to aid the FC in supplying the load
at several instances of time. These figures resulted after the simulation of the
optimal power allocation matrix in Simulink environment.
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Figure 4.4: Highway Cycle using IDP.

To further analyze the results a zoom into the power allocation profile
shows different episodes. In figure 4.4c, the simulation shown is between 60 and
150 seconds. It is noticed that the FC power is higher than the load, to cater for
the power needed for FC compressor and auxiliaries. When the load is generative,
the battery charges power through regenerative braking. This power is less than
the power provided by the load, to account for the losses in the power train. It is
noticed around 141 seconds, the load shifts from generative into motoring. The
battery plays the important role of aiding the FC in supplying the load in order
to respect the fuel cell ramp rate constraint. When the load was generative the
fuel cell was not supplying any power.

Figure 4.4d, shows an episode of the fuel cell power profiles. The blue
curve in the figure is obtained during the on-line simulation of the cycle in the
Simulink environment. The red curve is obtained from the IDP off-line runs in
Matlab to obtain the sub-optimal power split between the sources. There is an
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approximate match between the on-line and off-line results in terms of FC power
of the simulation. The on-line power curve is shifted up by almost 2kW.

Figure 4.4e, shows an episode of the battery power profiles during the
off-line and on-line operations. It is noticed that the profiles are almost the same.
Some mismatches occur due to the difference in modeling the battery during the
on-line and the off-line operations. At around 300 seconds the battery requested
more power during the on-line operation as compared to the off-line one. In this
sense, the battery is catering for the mismatched in the PID controller by adding
the powers of the error to its load.

Figure 4.4f shows the SOC profiles of the cycle during the on-line and the
off-line operations. The software is trying to keep the SOC within the favorable
limits and thus SOC is not dropping below 45%. The figure shows the approxi-
mate match between the battery SOC during on-line and off-line optimization.

Table 4.3, shows an analysis of the results including costs and hydrogen
consumption levels. The cost of operation as calculated by equation 3.24, is $2.8.
This includes the battery and fuel cell service life costs as well as the hydrogen
consumption cost for the highway trip. The total amount of hydrogen spent
during the trip is 182 grams. The highway cycle is 16.45 km long, therefore the
amount of hydrogen fuel spent per km of the trip is 11 grams.

During on-line operation, the total amount of hydrogen consumed is
185 grams which is close to the off-line one. The on-line operation showed that
it mismatched the off-line one in terms of fuel cell power by a maximum of
3kW. This explains the higher amount of hydrogen consumed during the on-line
operation.

The electric energy supplied by the battery and fuel cell throughout the
trip are 0.6 and 3.9 respectively. This coincides with the power plots that the
fuel cell is the main source of energy in the trip and the battery aids it whenever
it is necessary.

The stresses on the system components are derived based on the haar
wavelet transform explained in chapter 3. They are higher for the FC than the
battery. The latter means that the sudden changes in power levels of the system
sources are more on the FC side and thus the FC is exploited more. This is
normal for highway cycles because the fast dynamics don’t provide a room for
battery to charge and discharge frequently. Such sudden changes add stresses to
the components. For instance if the FC is supplying 5kW now, it is better to
maintain this supply rather than shifting between 5 and 0 kWS or 5 and 20 kW.

Finally, the off-line program took 8 seconds to converge into the sub-
optimal solution. This is fairly fast for a controller finding a sub-optimal solution
in dynamic programming.

66



Table 4.3: Highway Driving Cycle Results.

Variable IDP
The Cost of Operation ($) 2.8
Electric energy supplied by the FC (kWh) 3.9
Electric energy supplied by the BT (kWh) 0.6
Total amount of H2 fuel consumption(g) 181.6
Fuel Cell Stress Factor 17.3
Battery Stress Factor 11.4
Off-line Runtime (seconds) 8

4.3.2 FUDS Cycle

The speed profile of the FUDS driving cycle is shown in figure 4.5a. The cycle is
characterized by low speeds and fast dynamics especially because the cycle shifts
between accelerating, decelerating and idling states. This induces negative and
positive fluctuations in the power profile.
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Figure 4.5: FUDS Cycle using IDP.

The power allocation profile of the light duty sprinter operating on the
FUDS driving cycle is optimized using the off-line IDP method. Then the off-
line matrix is embedded into the FCHV Simulink model for on-line testing. Fig-

67



ure 4.5b shows the power profile behavior of the sources against the load demand.
Since the system has a small battery and a larger FC capacity, the FC supplies
the demanded load almost throughout the cycle. Due to the fact that urban cy-
cles are rich with generative loads based on the frequent idling mode, the battery
is being charged often. The charging efficiency is added to account for the power
train losses.

In figure 4.5c, an episode of the simulation profile is shown between 250
and 450 seconds. The battery is charging every time the load is generative. It is
aiding the fuel cell in supplying the load so as to lower the hydrogen consumption
especially when high loads are encountered such as around 350 and 410 seconds.
The battery plays a more active role in this cycle as compared to highway cycle
due to its frequent charging. The battery discharging efficiency is also considered.

Figure 4.5d, shows an episode of the fuel cell power profiles. The blue
curve in the figure is obtained during the on-line simulation of the cycle in the
Simulink environment. The red curve is obtained from the IDP off-line runs in
Matlab to obtain the sub-optimal power split between the sources. There is an
approximate match between the on-line and off-line results in terms of FC power
of the simulation. The on-line power curve is shifted up by almost 2kW.

Figure 4.5e, shows an episode of the battery power profiles during the off-
line and on-line operations. The profile are almost the same. Some mismatches
occur due to the difference in modeling the battery during the on-line and the
off-line operations.

Figure 4.5f, shows the SOC profiles of the cycle. These curves show
a comparative SOC profiles between the off-line IDP optimal power allocation
matrix and the Simulink calculated matrix. The latter is traced in the blue curve
while the former is shown in the red curve in the corresponding figure. The
battery SOC is kept within the favorable limits. The match between the SOC
during off-line and on-line simulation is very close. This is common SOC profile
for urban cycles because the battery tends to charge and discharge frequently due
to the cycle dynamics.

Table 4.4, shows an analysis of the results including costs and hydrogen
consumption levels. The cost of operation as calculated based on equation 3.24,
is $1.4. This includes the battery and fuel cell service life costs as well as the
hydrogen consumption cost for the highway trip. The total amount of hydrogen
spent during the trip is 84 grams. During on-line operation, the total amount of
hydrogen consumed is 89 grams which is close to the off-line one. The on-line
operation showed that it mismatched the off-line one in terms of fuel cell power
by a maximum of 3kW. This explains the higher amount of hydrogen consumed
during the on-line operation.

The electric energy supplied by the battery and fuel cell throughout the
trip are 1.1 and 1.9 respectively. This coincides with the power plots that the fuel
cell is the main source of energy in the trip and the battery aids it whenever it
is necessary. However, since the battery is charging frequently during the cycle,
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Table 4.4: FUDS Driving Cycle Results.

Variable IDP
The Cost of Operation ($) 1.39
Electric energy supplied by the FC (kWh) 1.935
Electric energy supplied by the BT (kWh) 1.097
Total amount of H2 fuel consumption(g) 84.39
Fuel Cell Stress Factor 11.3
Battery Stress Factor 12.2
Off-line Runtime (seconds) 13

it is supplying more power to the vehicle. This explains the higher energy share
of the battery as compared to the highway cycle.

The stresses on the system components based on the haar wavelet trans-
form are comparable between the fuel cell and battery. Both of these resources
are utilized in the FUDS cycle which explains the haar results. This indicates
that in fast dynamics driving cycles comparable stresses occur on the fuel cell and
battery. It is justified by the frequent idle state visited during urban cycles which
increases regenerative braking via kinetic energy recuperation which drains the
fuel cell and battery.

Finally, the off-line program took 13 seconds to converge into the sub-
optimal solution. It is a bit slower than the highway cycle. This is because the
time sample in the highway cycle is 766 seconds and that for the FUDS cycle is
1373 seconds.

4.4 Weighted Improved Dynamic Programming

In this section, different values of the battery weight of the WIDP objective
function are set and analyzed for the highway and FUDS driving cycles using a
brute force search technique. These values are responsible to change the mode of
operation of the battery between charge depletion and charge sustaining modes.
The main trade-off through the weight setting is between the total cost and
the desirable SOC profile during the trip. The more the battery is set to work
in charge sustaining mode, the higher is the cost of operation and hydrogen
consumption levels.

4.4.1 Battery Weight Analysis

The battery enters a charge sustaining mode when its cost coefficient in the
objective function becomes higher than that of the fuel cell. The fuel cell cost
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Figure 4.6: Highway Cycle - SOC Profiles for Weighted Battery Cost.

coefficients calculated in sections 1.1.1 and 1.1.2 in equation 3.3 and equation 3.6,
are higher than that of the battery coefficient shown in equation 3.10. The relative
cost of the fuel cell with respect to that of the battery in the cost objective
function is very high. The cost coefficient of the fuel cell can range from 25 to
almost 200 times more than that of the battery depending on the power supplied
by each.

The battery weights are selected using a brute force method in an at-
tempt to find different SOC profiles. Figure 4.6, shows the different SOC profiles
for the highway driving cycle based on different values for battery weight in the
objective function shown in equation 3.27. By setting the weight at a value of
ten or below, the battery is working in a pure charge depleting mode. This is
shown in the leftmost blue curve in the figure. This means that the battery cost
coefficient is still very low in comparison to that of the fuel cell.

Below a weight value of 50, the battery still acts in a charge depleting
mode but with different behavioral profile. At a weight setting of 12 and 12.5,
the battery takes a longer time to be depleted to the minimum SOC level set by
the user. At a weight level of 13, the relative cost of the battery with respect
to that of the fuel cell started to increase. This kept the battery in a charge
depletion mode but sustained the minimum SOC at almost 0.6. At a weight level
of 14 and 20, the SOC is sustained at 0.7 and 0.75 respectively. At weight levels
of 50 and above, the relative cost of the battery is higher in comparison to the
fuel cell. Therefore, the battery is purely in charge sustaining modes and it is
charging throughout the cycle.

Figure 4.7, shows the behavior of the battery in terms of SOC profile for
different weight settings under the FUDS driving cycle. Due to the nature of the
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Figure 4.7: FUDS Cycle - SOC Profiles for Weighted Battery Cost.

cycle, the battery is more utilized in such a cycle which is rich in regenerative
braking cycles. However, when the relative cost of the battery with respect to
the fuel cell increase, then the WIDP tends to decrease the battery usage and
thus goes into a charge sustaining mode. The first leftmost curve in the figure
corresponding to a weight settings of 10 makes use of the battery in a charge
depletion mode. The battery is being discharged to its minimum SOC level
during the FUDS cycle.

At a battery weight level of 12, the battery is still in charge depletion
mode but the charge is sustained at a lower SOC level of 0.6 and not 0.45 as set
by program. At around 12.5, the battery entered a small charge depletion mode
at the beginning of the cycle and then after 300 seconds, it started the charging
mode. From a weight level of 13 onwards, the battery barely discharges into the
cycle. At a weight level of 50, the battery is in pure charge sustaining mode.
The battery charges from the fuel cell until it reaches its maximum permissible
charging level which is 0.9 in this case.

4.4.2 Comparative Modes

Three weights for the battery in the cost objective function are tested for the
highway and FUDS driving cycles. These weights define a mode of operation for
the battery. The first is charge depletion mode (CDM) with a battery weight for
the highway and FUDS cycles of 10. The second is the charge sustaining mode
(CSM) with a battery weight for the highway and FUDS cycles of 30 and 12.5
respectively. Finally, the third mode is the charging mode (CM) with a battery
weight for the highway and FUDS cycles of 100 and 50 respectively.
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Table 4.5: WIDP Results.

CDM CSM CM
Highway Driving Cycle

The Cost of Operation ($) 2.8 3.1 3.2
Electric Energy Supplied by FC (kWh) 3.9 4.4 4.5
Electric Energy Supplied by BT (kWh) 0.6 0.2 0.1
Total amount of H2 fuel consumption(g) 181.6 204.6 208.4
Fuel Cell Stress Factor 17.3 14.3 14.0
Battery Stress Factor 11.4 5.4 5.3
Off-line Runtime (seconds) 8 8 8

FUDS Driving Cycle
The Cost of Operation ($) 1.39 1.75 1.9
Electric Energy Supplied by FC (kWh) 1.935 2.519 2.7
Electric Energy Supplied by BT (kWh) 1.097 0.6 0.5
Total amount of H2 fuel consumption(g) 84.39 110.2 116
Fuel Cell Stress Factor 11.3 10.71 10.5
Battery Stress Factor 12.2 8.07 7.5
Off-line Runtime (seconds) 13 13 13

Table 4.5 shows the numerical results during CDM, CSM and CM modes
for the highway and FUDS cycle. The cost of operation and hydrogen consump-
tion levels for both cycles for CM is higher that CSM. The numerical outcome of
the CSM are higher than CDM.

During CDM, the battery is supplying the load as much as possible. For
the this reason, the electric energy supplied by the battery is the highest during
CDM when compared to CSM and CM for both cycles. The opposite case occurs
for the fuel cell since it has to cover the load if the battery is not. CDM has the
lowest fuel cell energy supply in both cycles. This directly implies that the CDM
has the lowest cost and hydrogen consumption levels.

The runtime for both cycles during the three battery modes of operation
is the same. For the highway cycle, the IDP program take 8 seconds to converge.
It takes 13 seconds for the IDP to converge for the FUDS cycle.

For both cycles, the stresses on the sources is related to the changes in
supply. CDM has the highest battery supply, therefore it has the highest battery
stresses. CM has the highest fuel cell supply, however since the switching to high
frequency is minimal then lower stresses on the fuel cell are noted.
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4.5 IDP and RB Comparative Analysis

Comparative analysis is needed to verify the methodologies presented. It is based
on tabular and graphical comparative analysis of the methods output parameters
such as the hydrogen consumption levels, stress levels and power/SOC profiles.
Comparison between the IDP and the RB method shows the superiority of the
former method in lowering hydrogen consumption levels. The latter comparative
argument is not novel and is expected. It is now well known that rules versus
optimization of the commutation level change drastically the cost. However, the
message is to highlight the savings achieved as well as the methodologies to utilize
the IDP technique for on-line testing.

The comparative analysis is launched for the two major driving cycles
discussed in the previous section. These are the highway and the FUDS driving
cycles. The two cycles have different dynamics which present different analysis
for the validation of the methodologies. The comparative analysis is displayed in
tabular and graphical forms. The latter visualize of the trajectories of the two
profiles under study are virtually identical and measures the discrepancy between
them.

The RB method that is used is based on the model discussed in the
paper with citation number [88] and presented in chapter 3.6. This model is not
an optimized version of a rule based model. It was implemented and tested on an
actual sprinter in Germany. The goal was to implement the IDP strategy on the
same vehicle. However, the sprinter was no longer available and so the IDP is only
tested on a real-time stationary system which is explained in chapter 6. Although
the rules are not optimized, they are used in the effort that in future the sprinter
will be available and IDP testing can be carried on it. Therefore, the comparison
of the IDP and RB methodologies is carried out based on the Simulink model of
the vehicle. The vehicle is set for the runs of both methodologies and the battery
and fuel cell performance is compared in these runs for the highway and FUDS
driving cycles.

Table 4.6 shows the outcomes of the IDP and RB methods for the high-
way and FUDS driving cycles. The IDP ensures a better hydrogen fuel economy
than the RB in both cycles. Concerning costs and hydrogen consumption levels,
it is noticed that those are the highest using the RB method. The latter does
not foresee the demand power profile and thus performs a per step optimization
which blinds it from locating the sub-optimal allocation range.

The savings in cost and hydrogen consumption levels for the highway
cycle when IDP is used as compared to RB are around 0.4% and 0.06% respec-
tively. The savings are higher for the FUDS cycle because the IDP tends to
utilize the battery more frequently by charging and discharging it. The savings
in hydrogen consumption using the FUDS driving cycle is approximated at 0.3%
in favor of the IDP method. The savings in cost are 0.7% in favor of the IDP
method. FUDS cycle is rich with regenerative braking energy which makes the
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Table 4.6: IDP/RB Comparative Results.

IDP RB
Highway Driving Cycle

The Cost of Operation ($) 2.80 2.81
Electric Energy Supplied by FC (kWh) 3.9 3.91
Electric Energy Supplied by BT (kWh) 0.6 0.5
Total amount of H2 fuel consumption(g) 181.6 181.7
Fuel Cell Stress Factor 17.3 17.6
Battery Stress Factor 11.4 11.6
Off-line Runtime (seconds) 8 2

FUDS Driving Cycle
The Cost of Operation ($) 1.39 1.4
Electric Energy Supplied by FC (kWh) 1.935 1.936
Electric Energy Supplied by BT (kWh) 1.097 0.92
Total amount of H2 fuel consumption(g) 84.39 84.62
Fuel Cell Stress Factor 11.3 11.5
Battery Stress Factor 12.2 12.4
Off-line Runtime (seconds) 13 2

IDP optimally use the battery so as to save hydrogen consumption.

In the highway and FUDS cycles, it is noticed that the convergence
speed of the RB method outweighs that of the IDP. This convergence speed
is the time it takes Matlab to perform the off-line runs and thus calculate the
power allocation matrix that is fed to the Simulink model. This time is of value
because it is the time the driver needs to spend in his vehicle waiting for the sub-
optimal power allocation to be calculated and delivered to the vehicle controller
before he/she can start the trip. As commonly known that each power allocation
algorithm has a certain superiority over the other. While the IDP one ensures
lower hydrogen consumption rates, the RB method guarantees faster convergence
speed. Therefore, the answer for the question of which is better remains in the
kind of application. If the whole cycle is known, then the driver would need a
few more seconds to optimize the power allocation matrix and thus find the sub-
optimal solution. The driver can do that before starting the trip. The few extra
seconds needed to wait are worth the savings in the hydrogen fuel. If the cycle is
not known and looped dynamic programming is used then for sure IDP is superior
over RB. The windows in the looping IDP are small and therefore the convergence
rate of the IDP is much faster and comparable to the convergence rate of the RB.
Consequently, lower hydrogen fuel consumption levels are highlighted in the IDP.

Another parameters worth mentioning are the stresses that are added
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on the sources using the IDP and RB methods. The stresses on the battery and
fuel cell are approximated based on the haar wavelet transform. For the highway
cycle, the RB method tends to relax the battery thus using it at the beginning of
the cycle in a charge depleting mode. The fuel cell supplies most of the load all
the time. So the frequency of shifting power supply in the fuel cell is higher using
the RB method. For the FUDS cycle, the fuel cell has higher stresses using the
RB method because the algorithm does not make use of the battery intelligently
so it tends to switch the fuel cell between high and low frequency ranges. The
RB cycle adds 2% more stresses on the FC and battery in the highway and FUDS
cycles as compared to the IDP method.

For the highway and FUDS cycles, the electric energy supplied by the
fuel cell is higher using RB method than using IDP method. During the highway
cycle the FC is supplying 3.9 kWh using the IDP method and 3.91 kWh using
the RB method. This is approximately a 0.3% difference in favor to the IDP
method. On the other hand, the IDP method utilized the battery more than the
RB method. During the highway cycle, the battery supplied 0.6 kWh of energy
using the IDP method and 0.5 kWh of energy using the RB method. During the
FUDS cycle, the battery supplied 1.097 kWh of energy using the IDP method
and 0.92 kWh of energy using the RB method. The IDP method tends to utilize
the battery more than the RB method in an attempt to lower down the hydrogen
fuel consumption.

Figure 4.8a,b shows the behavior of the power supplied by the fuel cell
and battery using the IDP and RB methods tested on the highway driving cycle.
In figure 4.8a, the battery profile based on the IDP and RB methods is traced in
the blue and red curves respectively. The battery is discharged a bit more using
the IDP method during the window ranging from 610 till 650 seconds. This result
is expected based on the numerical outcomes that show higher energy supply of
the battery using the IDP method.

In figure 4.8b, the blue curve shows the fuel cell power profile based on
the IDP method, while the red curve shows the fuel cell power profile based on
the RB algorithm. The profiles almost match one another, however it is noticed
that the IDP method tends to use the fuel cell at lower power levels. This is
evident also in the numerical results where the energy supplied by the fuel cell
using the IDP method is lower than that of the RB method.

Similar plots for power source curves based on IDP and RB method are
superimposed for the FUDS cycle. Figure 4.8c shows the battery profiles for the
IDP and RB strategies in blue and red curves respectively based on the FUDS
cycle. Figure 4.8d shows the behavior of fuel cell power levels in the blue and red
curves corresponding to the IDP and RB strategies respectively.

The profiles are similar in analysis to the highway ones. The battery is
used slightly more in the IDP method in an attempt to lower hydrogen consump-
tion level. This is shown in figure 4.8c. The fuel cell is used more using the RB
method as shown in figure 4.8d.
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Figure 4.8: IDP RB Comparative Results.

This is a conforms with the nature of the RB solution which tends to
have a local control on the cycle. Unlike the IDP method which employ the
apriori knowledge of the cycle to set the power allocation between sources so as
to reach a sub-optimal solution.
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Chapter 5

Improved Dynamic Programming
Algorithm for Analogous,
Unknown and Special Event
Driving Cycle

The objective behind this chapter is to formulate a methodology to approximate
and tackle unknown driving cycles. Three different problems are considered.
First, if the cycle is not known but can be compared to existing driving cycles.
Second, the methodology to handle special events occuring on the road for certain
trips. Finally, using a novel looping methodology where a cycle fore-cast is exe-
cuted. The improved dynamic programming algorithm is applied to analogous,
unknown and special events driving cycles that are approximated.

5.1 Analogous Driving Cycles

Analogous driving cycles represent a sequence of speeds that are similar to the
known driving cycles. They are approximated based on the person’s technical
expertise of the road trip. In this section, two roads in Beirut, Lebanon are
adopted and the speed is approximated according to the technique that will be
shortly explained. Then a power profile is generated and the optimal power
allocation matrix is derived.

The novel technique approximates an analogous cycle based on the tran-
sition probability matrix. Analogous cycles refer to cycles that have similar char-
acteristics to the highway and urban cycles. First, the transition probability
matrix for the known driving cycles is derived. This square matrix is based on
the speed profile. The entries in the matrix represent the one step transition
probability that the vehicle is accelerating at a certain speed during time (t+1)
given that it was cruising at a certain speed at time (t). Then, the pattern of
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each known driving cycle is extracted in accordance to the transition probability
matrix.

Each pattern is converted to a base unit in-order to be dependent on
the characteristics of the analogous driving cycle. The latter is segmented into
N divisions where each subdivision is associated with three values. These values
are the speed limit, the probability factor relating it to the highway and urban
cycles and the traffic coefficient. In other words, in-order to approximate the
speed profile of the analogous cycle, the cycle is segmented. Each segment holds
values that define its characteristics.

After the derivation of the speed profile, the IDP is simulated in-order
to get the optimum power allocation for the analogous cycle trip. The latter is
tested under the Simulink environment to calculate the required parameters and
analyze the results.

5.1.1 Stochastic Approximation of a Driving Cycle

Stochastic approximation of a driving cycle is used to solve some of the issues of
previous knowledge of the driving cycle [22]. The optimization is performed using
a transition probability matrix for known power demands. It is characterized by a
transitional probability matrix indexed by the current vehicle speed. This matrix
maps the current values into the future required power value.

The transition probability matrix is derived by using standard driving
cycles. These cycles range from highway, urban and European cycles. They carry
the speed profile information for a certain period of time. The speed vectors are
vh, vu, and ve for the highway, urban and European driving cycles respectively.
However, each has a different size. For this reason, nearest neighbor quantization
algorithm is used to map the observed speed values of the driving cycle into the
quantized values [69]. The transition probability (TranM) is then estimated by
dividing the number of occurrences of a specific transition from a certain speed to
another given the total number of speed incidents. The length of TranM depends
on the chosen speed sample. For M speed samples, TranM will be an MxM tran-
sition matrix. Weights are assigned to the transition matrix probability function
to emulate the respective driving cycle conditions as shown in equation 5.1.

V = [whvh wuvu weve] (5.1)

The weights are wh, wu, and we for the highway, urban and European
driving cycles respectively. The weights symbolize the utilization of a cycle more
than the other. For instance, if weights are added to the highway cycle, it implies
that the current cycle is more similar to a highway one rather than an urban one.

The transition probability matrix is a right stochastic matrix and thus
singular, since all the elements are non-negative and the sum of each row is
one. Moreover, the state space of operation is finite in time. For this reason, a
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Figure 5.1: Steady State Speed Probability Distribution.

stationary markov chain distribution vector can be approximated for each desired
set of weights. This vector is derived by using linear algebra to solve the set of
linear equations defined by the TranM and a 1xM unity vector.

Figure 5.1, shows the vehicle speed versus the stationary probability
distribution for five weighting scenarios. The considered scenarios are the urban
cycle, the highway cycle, a weighted urban cycle, a weighted highway cycle and
an equally weighted cycle. It is noticed that the equally weighted stationary
distribution exhibits high and low speed values with relatively high probability
distributions. For instance, local high probability peaks occur at 12, 22 and 26
m/sec. While the urban and weighted urban profiles have local high probability
peaks only at 12 m/sec. Highway and weighted highway profiles exhibit 22 and
26 m/sec as their local high peaks. This difference provides a surf knowhow of
the trend that the cycles follow. For instance, for urban cycles at least 50% of the
cycle is spent within a low range of speed extending from 8 till 14 m/sec. While
for highway cycles, more than 60% of the cycle takes place at a high speed limit
between 18 and 26 m/sec. These bounds are now considered as reference points
when deriving an analogous cycle speed profile. When the cycle is weighted then
it will tend to spend more time in this speed range.
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5.2 Two-minutes Cycle derivation

Using the analysis from the stationary probability distribution, a two minutes
range sub-driving cycle mimicking the highway and urban cycles is derived. The
two new sub-cycles stay in the previously specified ranges for approximately 60
% of the cycle duration. Figure 5.2 and figure 5.3 show the speed and power
profiles of the two minutes highway cycle. It is noticed that the cycle stays in the
range of speed from 18 till 26 m/s for approximately 60% of the time. Similarly,
figures 5.4 and 5.5 show the speed and power profiles for a two minutes urban
cycle where the cycle stays for at least 60% of the time within a speed range of
8 till 14 m/s.

5.2.1 Analogous Cycle Derivation Procedure

To apply this method, a certain range of an unknown cycle is selected. This
analogous driving cycle is segmented into N divisions with different or equal
durations. Each segment is then divided into samples of two minutes each. Then,
the speed profile of the sample is the result of a three component multiplication
as shown in equation 5.2. The first component is the traffic coefficient (ρTr) which
depends on the time of the day. Urban cycles are characterized with congested
roads so they exhibit low speeds and fast dynamics. However, each cycle should
depend on the amount of traffic it faces. NEDC for example, derives the speed
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Figure 5.3: Two Minutes Highway Power Profile.
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Figure 5.4: Two Minutes Urban Speed Profile.

profiles of the cycle based on the traffic congestion on the European roads. In
Beirut, the traffic congestion depends on the time of the day. For instance, at
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Figure 5.5: Two Minutes Urban Power Profile.

8:00 am the roads in Beirut are usually highly congested, however at night the
congestion drops down. Therefore, a coefficient of congestion is added to the
derivation of the speed profile. It is set as low, medium or high with coefficients
set according to table 5.1. The second component is the speed limit (Splim) that
is usually set by the country’s municipality corresponding to the road. Finally,
the third component is the normalized speed of the two minute cycle. Thus, if the
sample is evaluated as close to the highway cycle then the two-minutes highway
cycle profile (vhs) is normalized with respect to its maximum value (vhs−max).
Similarly, if it is close to the urban cycle then the speed profile (vus) is divided
by the maximum value (vus−max).

{
Highway Analogy: VH−ana = ρTrSplim

vhs
vhs−max

Urban Analogy: VU−ana = ρTrSplim
vus

vus−max

(5.2)

5.3 Analogous Cycle Derivation Example

In order to test the analogous cycle derivation, two roads are considered. All
the roads are in Beirut Lebanon and the time of testing occurs at around 2:00
p.m. The road data and the segmentation characteristics are derived based on
personal expertise and knowledge of the driven road. These roads are of different
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Table 5.1: Traffic Coefficients.

Traffic Value Highway Analogy Urban Analogy
Low 1 1.5
Medium 0.8 1
High 0.5 0.8

Table 5.2: 5 Minutes Road Data Characteristics.

Segment Analogy Cycle ρTr Time (min) Splim (km/hr)
1 till 2 Urban high 1.5 60
2 till 3 Highway low 0.25 60
3 till 4 Highway low 0.5 60
4 till 5 Highway low 0.5 60
5 till 6 Urban high 1.5 60
6 till 7 Highway low 0.5 60
7 till 8 Highway low 0.25 60

time duration, five minute road data is shown in table 5.2 and figure 5.6 and the
19 minutes road data are shown in table 5.3 and figure 5.7.

5.3.1 Speed Curves and corresponding Load Profiles

The speed curves and corresponding torque characteristics of the 5 and 19 minutes
cycles are shown in figures 5.10 and 5.13. For the five minutes cycle, the vehicle
speed has a mismatch at around 170 seconds due to the sudden shift in its speed.
This is due to the fact that the vehicle dynamics need time to adapt to such a

Table 5.3: 19 Minutes Road Data Characteristics.

Segment Analogy Cycle ρTr Time (min) Splim (km/hr)
1 till 2 Urban high 3 60
2 till 3 Urban high 3 100
3 till 4 Highway low 4 100
4 till 5 Highway low 1.5 100
5 till 6 Highway low 1.5 100
6 till 7 Highway high 3 100
7 till 8 Urban high 3 60
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Figure 5.7: 19 Minutes Road Profile.
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Figure 5.8: 5 Minutes Power Allocation Profile.

change. For the 19 min driving cycle, the speed curve was followed smoothly
with no sudden shifts or controller’s errors.

The power allocations for the two driving cycles using the IDP algorithm
explained in chapter 3 are indicated in figures 5.8 and 5.11. It is noticed for the
5 min driving cycle that the battery is incorporated more since it is a small cycle
and it can recuperate at around 40 and 270 seconds.

For the 19 min driving cycle, the battery plays a more important role
due to its frequent charging. It is limited to -40kW as a lower limit. A zoomed in
episode for the 19 minutes cycle is shown in figure 5.11. The battery aids the FC
during the high power demands in-order to lower hydrogen consumption levels
and relieve stresses on the FC.

The battery SOC comparison between on-line and off-line results for the
driving cycles are shown in figures 5.9 and 5.12. For the five minute cycle the
battery SOC is used till about 60%. While for the 19 minute cycle, it is drained
till 40%.

5.4 Driving Cycles with Special events

Special and unpredictable events might occur during a driving cycle. These
can range from a sudden vehicle accident to a police patrol halt signal. The
improved dynamic programming algorithm caters for these special event by using
an adaptive looping methodology. This methodology is based on a forecast that
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Figure 5.9: 5 Minutes SOC Profile.
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Figure 5.10: 5 Minutes Speed-Torque Profile.
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Figure 5.11: Episode - 19 Minutes Power Allocation Profile.
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Figure 5.12: 19 Minutes SOC Profile.
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Figure 5.13: 19 Minutes Speed-Torque Profile.

is recognized at least a minute before the occurrence of the event. Then the
speed profile is updated based on intuitive approximation. IDP algorithm is
simulated to yield the updated power allocation values. Therefore, when the
vehicle approaches the episode the system would have already updated its entries.

5.5 Special Events Formulation

During a highway driving cycle and at about 300 seconds after the beginning of
the trip, the traffic control station signals a vehicle collision occurring when the
vehicle reaches 500 seconds in time. For this reason, the vehicle needs to do a stop
at around 500 seconds by gradually decreasing the speed until it reaches its idle
state. Then accelerating again to finish the required distance. This deceleration
results in regenerative braking energy which will charge the battery. The IDP
algorithm uses this extra charge to lower the hydrogen consumption when the
vehicle accelerates again. By not incorporating this looping methodology, the
vehicle will not optimally benefit from this extra energy charging the battery.
This is shown in figure 5.14 where the vehicle decreases it speed by about 500
seconds to reach a stop at around 550 seconds. It stays in idle mode for about
10 seconds and then accelerates back again and continues the path that occurred
at the episode start time. This is the reason for the time shift of the two curves.
The power allocation curve for the episode occurrence is shown in figure 5.15.
The behavior of the battery SOC during the episode where the battery charges
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Figure 5.14: Wheel Speed Before and After the Special Event.

Table 5.4: After 500 seconds Cost and Hydrogen Consumption Comparison.

State Value
Cost without Episode Occurrence ($) 1.45
Cost with Episode Occurrence ($) 1.59
Hydrogen Consumption without Episode Occurrence (g) 68.9
Hydrogen Consumption with Episode Occurrence (g) 75.3

approximately to full charge due of the vehicle deceleration is shown in figure 5.15.
The behavior of the power with and without the episode occurring is shown in
figure 5.17. Figure 5.18, reveals the power levels during the episode where the
battery charges the power and can discharge it at later stages. Table 5.4 illustrates
the comparative results of cost and hydrogen consumption with and without the
episode occurrence. The slight increase highlights the importance of knowing the
episode occurrence beforehand.
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Figure 5.15: The optimal power allocation for the Episode Occurrence.
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Figure 5.16: The Battery SOC for the Episode Occurrence.

5.6 Unknown Driving Cycles Looping Mecha-

nism

The looping mechanism is a novel technique to provide the optimum power allo-
cation between the vehicle sources while the vehicle accelerates. The driving cycle
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Figure 5.17: The Power Behavior with and without the Episode Occurrence.
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Figure 5.18: The Power Behavior During the Episode Occurrence.

in this case is not known, however the time length of the cycle is speculated. The
cycle can be approximated from environmental, traffic or road conditions. The

91



Window
1

Window
2

Window
3 Demand Profile

N1 N2 N3 N4 NT

Trip Ends

Figure 5.19: Looping Method.

technique opens the window to apply the IDP in smaller chunks targeting real
time optimization. In essence, this method can help applying an optimization
algorithm during real time optimization for a certain small fore-casted driving
cycle.

Figure 5.19 shows a simple sketch to clarify the procedure for implement-
ing the looping strategy. The horizontal arrow in the figure represents the load
demand which is unknown in this case. However, it can be assumed that this
demand is for a certain period of time. Then, the demand is split into chunks
depending on the selected sample time. For example, if a 50 seconds sample
time is selected, then the windows that are indicated in figure 5.19 each have a
duration of 50 seconds. The nodes (N1, N2...NT ) fragment the windows. When
the trip is identified and before the vehicle starts accelerating, the power demand
during window 1 is approximated and fed to the off-line IDP algorithm to obtain
the optimal power allocation matrix. At N1 the first optimal power allocation
matrix which corresponds to window 1 is fed to the system and so the vehicle
can start to accelerate accordingly. While the vehicle is accelerating through
window 1, the power profile of window 2 is estimated based on traffic and road
conditions. During the motion in window 1, the off-line IDP algorithm provides
another optimal power allocation for the system sources and feeds it to the sys-
tem at node 2. When the vehicle reaches node 2, it can accelerate based on the
provided optimal matrix derived from the optimal IDP. This is repeated until
the trip ends. For each window the vehicle is in, the power demand of the next
window is approximated and then fed to the off-line IDP optimization tool. The
result from the latter is fed to the initial node of the next window. When the
vehicle ends the current window and reaches the node of the next window, it will
be accelerating using the optimal allocation matrix fed at that node.

To test the feasibility of this method, a 200 seconds sample from the
highway driving cycle is considered. The method is tested against a known driving
cycle to validate the results. The known cycle is selected and then treated as if
it is unknown. It is split into several windows and the program assumes that the
cycle is fore-casted during each window. The looping algorithm is validated when
compared against the whole selected cycle before splitting it.

The most important thing to consider when dealing with the looping IDP
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algorithm is the battery SOC at the end of each window. Each window considers a
small sample of the load demand. The proposed IDP algorithm tends to discharge
the battery in-order to decrease the hydrogen fuel usage and thus lowers the
system cost. This is important when considering the whole driving cycle, because
the IDP can locate the sub-optimal positions of the battery discharge periods
based on the location of the battery charges using regenerative braking. This
is not the case when considering only small windows of the cycle when it is not
known. For this reason, the amount of battery energy used for discharge should
be identified prior to the cycle. This guarantees that the battery can continue to
aid the fuel cell throughout the trip. Moreover, the battery can benefit from the
regenerative braking during the unknown trip. To clarify this with an example,
a 200 second of the highway driving cycle is considered. This is sampled into 50
seconds intervals and results in four windows for the power demand. The looped
IDP algorithm is executed for each interval and the IDP algorithm is simulated
for the 200 second cycle. The comparison between the two results determines the
efficiency and efficacy of the model.

First, the 200 seconds of the highway driving cycle is split into 4 windows
and 5 corresponding nodes. Each window considered the power demand for a
duration of 50 seconds. The initial battery SOC considered is 0.8 and the amount
of drop in this SOC during each window is 0.1. Therefore, at node N1 and before
the cycle starts, the load demand through window 1 is fed to the IDP algorithm
to get the optimal matrix of power allocation. The vehicle starts accelerating
based on this matrix which contains the split of power between the fuel cell and
battery. During window 1, as if the cycle is unknown, the control system of the
vehicle receives the necessary signals to estimate the next driving cycle of window
2. The approximated driving cycle is fed to the IDP algorithm. Now the initial
SOC that was used during window 1 is changed to the final approximated SOC
at the end of window 1. Thus at a rate of 0.1 decrease in SOC for each window,
the approximate final SOC for window 1 and the initial SOC for window 2 is 0.7.
The derived optimal allocation matrix of the power demand of window 2 is fed to
node 2 before the cycle of window 2 starts. The vehicle continues its acceleration
through window 2 following the updates received at node 2. Similarly the case
for window 3 and window 4. The final SOC estimated at node 4 is 0.4.

The IDP algorithm is simulated simultaneously for the 200 seconds driv-
ing cycle. The initial battery SOC is considered to be 0.8 and the final battery
SOC is approximated at 0.4. Comparison is carried out between the looping
technique performed in windows of 50 seconds on the 200 seconds highway cycle,
to the whole 200 seconds of the highway. The SOC initial and final limits for
both cycles are the same. The significance of this comparison is in monitoring
the behavior of the system sources during the windowed cycle versus the normal
cycle. Definitely, it is not expected to have the same source power profiles but
what is noticed is that the two runs had the same hydrogen consumption levels.
Therefore, the fuel cell profiles are different but they have the same total energy
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Figure 5.20: Fuel Cell Power Profile Comparison.

over the duration of both cycles. Figure 5.20 shows the fuel cell power profile
where the blue curve is derived by the off-line simulation of the IDP algorithm in
windows of 50 second duration. The red curve corresponds to the simulation of
the IDP algorithm for the 200 seconds highway cycle. Although the two curves
do not overlap, they have similar layouts at different intervals of time. The two
power peaks shown in the blue curves during 40 to 120 seconds is comparable
to the one shown by the red curve during 160 to 190 seconds. The total energy
calculated under both of the fuel cell curves and thus the hydrogen consump-
tion levels are the same. The SOC profiles for the two methods are shown in
figure 5.21. The blue curve which corresponds to the looping method, discharges
the battery in steps of 0.1 as specified by the program. If these steps were not
identified, then the battery would have discharged most of its energy during the
first window and thus exhaust the fuel cell and increase the hydrogen consump-
tion levels for later windows. The two curves have the same initial and final SOC
levels. The battery during the 200 second cycle is used more in the beginning
while during the looping methodology it took more time to discharge it.

This comparison validates the efficiency of the looping methodology in
terms of consuming the same amount of hydrogen energy. The choice of the
permissible SOC level during each window is also vital for the simulations. The
IDP algorithm has limited number of states at each level and thus does not
consider all possible candidates. For this reason, if the selection of SOC limits is
narrow, the program might go into infeasible states.

The whole highway driving cycle is tested under the looping methodology.
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Figure 5.21: SOC Profile Comparison.

It is split into 13 windows with an approximate duration of one minute. The
battery is considered to be fully charged with a SOC of 0.95. This makes use of
battery energy by placing it in a charge depleting mode and therefore decrease
hydrogen consumption levels. Figure 5.22, shows the fuel cell profile and the
SOC profile while using the looping methodology. Another curve is overlaid
on the figure which corresponds to the profiles without considering the looping
methodology. It is noticed from both curves that the profiles can not be overlaid.
However, by measuring the energy supplied under the two fuel cell power curves,
it is noticed that the difference is less than 2 percent. Therefore, the looping
methodology guarantees a minimum hydrogen consumption similar to the known
cycles.

95



0 100 200 300 400 500 600 700 800
0

20

40

60

Time (sec)

F
ue

l C
el

l P
ow

er
 (

kW
)

 

 
PfcLoop
PfcT

0 100 200 300 400 500 600 700 800
0.2

0.4

0.6

0.8

1

Time (sec)

S
O

C

 

 
SOCLoop
SOCT

Figure 5.22: HW Profile Comparison.
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Chapter 6

Real Time Testing

The validity of the power management strategy proposed is experimentally tested
using a low cost hardware in the loop model. It emulates the power flow between
the sources of the FCHV power train. The test bench is used to compare the
effect of hydrogen consumption using the IDP and RB algorithms while cruising
the highway or the urban driving cycles. The battery is the main driving source
in the system. It gets charged from the fuel cell and from the negative load during
regenerative braking.

Real time testing is a process to test the software algorithms in hardware.
It would have been ideal to use an actual sprinter to test the IDP algorithm,
however this was not available. For this reason, the stationary test bench is built
in the University of Applied Sciences labs in an attempt to launch the testings.
The system embeds a fuel cell, a battery, a power supply and an inverter. Labview
model is used to provide an interface between the user and the system.

The goal behind testing in real time is to compare the results that are
achieved during the off-line simulations and the ones resulting from the real time
model. During the off-line simulations, the outcome is the power allocation matrix
holding the values of the power from the fuel cell and battery for each sample of
time for a given driving cycle. This matrix is obtained using the IDP algorithm
which is proposed in this thesis or the state machine control based algorithm
which is used for comparison. The off-line simulations also result in the hydro-
gen consumption levels for the IDP algorithm and the state machine rule based
algorithm.

For each driving cycle, two matrices are obtained from the off-line sim-
ulations and two corresponding hydrogen consumption levels. The first one is
acquired using the improved dynamic programming algorithm. It holds the sub-
optimal power allocation between the fuel cell and the battery. It also embeds
the SOC profile for the corresponding driving cycle while using the IDP method.
The corresponding hydrogen consumption level is calculated and saved for the
driving cycle under test. The second matrix holds the power split between the
fuel cell and battery along with the SOC profile while undergoing an energy man-
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agement system based on the state machine rule based algorithm. The hydrogen
consumption level for the corresponding algorithm and driving cycle is stored.

These off-line matrices are fed to the real time system one at a time. For
example, for the highway driving cycle, a certain off-line matrix is obtained along
with the hydrogen consumption level. This matrix is fed to the real time system
via the Labview interface. Moreover, the corresponding power demand is also
fed to the real time system. This power is calculated as explained in previous
chapters by taking into account the losses in the electric motor and transmission
system. The demanded power is the power at the DC bus before the electric
motor and inverter system. The real time system starts running by first turning
on the fuel cell and then start feeding the load values. The fuel cell and battery
system take the power values from the matrices so as to feed the load accordingly.
In the end, the actual hydrogen level obtained from the real time simulation is
noted down so as to compare it with the off-line one. This is similarly done to the
other cycles and to the matrices based on the state machine rule based algorithm.

6.1 Real Time System Model

To carry out the real time simulations, a test bench model is developed for the
FCHV equipped with a fuel cell, battery, inverter and power supply. The compo-
nents of the model are interfaced using Labview. The difference between this real
time system model and the Simulink model explained in the previous chapter lies
in the system sizes. The size of the system in the Simulink model emulates the
real hybrid sprinter values. For example, the Simulink model embedds a 70kW
fuel cell, a 70kW electric motor and a 6.5 Ah battery. On the contrary, the real
time system model addressed in this section is composed of small sized sources.
It has a 1.2kW fuel cell, a 40Ah battery, a 320W power supply and a 2000W
inverter as summarized in table 6.1.

The interface of the system components is build using Labview. In Lab-
view, there is a user interface which is defined as the front pannel. The latter is
tied to the development cycle. The front panel for our model is shown in figure 6.1.
The layout shows the connection of the fuel cell and DC/DC converter. The out-
put current and the output power of the fuel cell can be monitored through the
interface via a potentiometer. Also, the output current and the output power
of the DC/DC converter can be tracked. The DC/DC converter is manually
designed to fit the application using an Arduino Uno controller. The DC/DC
converter is connected to the battery. The latter supplies the electronic DC load
and is charged by the fuel cell and the power supply. The electronic load current
and power can be monitored from the interface. This load mimics the actual
vehicle motoring load which in our case is a positive quantity. The power supply
represents the negative load of the system which identifies recuperation. On the
left tabs of the front panel, is the interface where the load profile and the power
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Table 6.1: FCHV Test Bench Subsystems.

Subsystem Description

FC System PEM FC with a rated power of 1.2 kW
Battery System Lithium ion battery with a nominal

voltage 26V of and a capacity of 40Ah
DC/DC Two Way Con-
verter

For the battery discharging and charg-
ing currents

Power Supply Power Rating of 320W
Inverter DC input power up to 2000W

allocation matrix are identified through spread sheets.
The second panel is for the fuel cell which is shown in figure 6.2. The

fuel cell variables are measured, such as the stack temperature, voltage as well as
the hydrogen consumption levels. The schematic panel shown in figure 6.3 shows
the architecture of connection between the components. The flow of current as
well as the nodal voltage can be monitored throughout the runs. The sources
panel shown in figure 6.4 shows the power profile of the sources and the load
throughout the period of testing. The latter is beneficial for the comparison
between this real time testing and the off-line results obtained from the Matlab
runs. National instruments also used Labview as an interface for the hardware
in the loop simulation of a hybrid electric vehicle [91].

6.2 Fuel Cell System Model

Ballard power systems develop and manufacture PEM fuel cell systems [92]. They
have shipped up to 150 MW of such fuel cells up until 2014. In this test bench,
a nexa FC stack from Ballard sized to supply a 1.2 kW net output power is
employed. The output voltage is a function of the power and ranges from 26
to 43 volts. In cases of failure or under unsafe conditions the FC shuts down
immediately. The hydrogen is supplied and monitored by the FC system.

The Nexa FC system shown in figure 6.5, is composed of the hydrogen
tank maintained between 0.7-17 bar, a 5V start/stop signal and the FC stack with
cooling fan. The FC stack has a membrane electrode assembly structure where
the membrane is a catalyst coating membrane with a gas diffusion layer. The air
is not compressed in this FC and the natural air existing in the lab environment
is used. The connection to a PC is done via a RS 486/232 serial communication
bus. The display on the PC include the stack temperature, voltage, current,
pressure, leak, consumption and power. All this data can be logged in a text file
for processing. The FC stack depends on the temperature, so as the temperature
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Figure 6.1: Labview Command Panel.

Figure 6.2: Labview Fuel Cell Panel.
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Figure 6.3: Labview Schematic Panel.

Figure 6.4: Labview Sources Panel.

increases the losses decrease because the reaction runs faster. However, this
increase depends on the mechanical strength of the membrane. Usually in the
smart car the FC runs at 55 degrees Celcius. The FC characteristics are shown
in table 6.2.

6.3 Battery System Model

The battery system is specially manufactured for this application at Hyliontec
development facility in Stuttgart [93]. It is a lithium ion phosphate battery with
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Figure 6.5: Ballard Nexa Fuel Cell.

approximately a straight line discharging curve. The advantage is that the battery
exhibits a long lifetime and a better power density. In contrast, it has a constant
power distribution; therefore one can not measure the SOC by measuring the
voltage. The losses of this battery are measured and tested and approximated
as 10% loss per 1000 cycle. When temperature rises by 10% the aging speed
doubles. In vehicular applications and at ambient temperatures ranging from 20
to 25 degrees Celsius, the battery is considered dead when the SOC is at 80% full
charge which implies after 2000 cycles. For other applications 50% is considered
the limit for stationary power systems. Some dealers take batteries from vehicle
industries that are considered dead (80% SOC) at zero prices and use them to
build backup power systems. The battery system was simulated to derive its
characteristics which are shown in table 6.3.

6.4 Inverter BFC2000

To emulate the system load demand at the DC bus, an electronic DC load inverter
from ETSystem [94] is used. The characteristics of the inverter are shown in
table 6.4. It is connected in parallel with the battery system and consumes the
power provided by the FC and battery. The power demand is specified by the
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Table 6.2: Nexa Fuel Cell Characteristics.

Characteristic Range

Rated Power 1200 W
Operating voltage range 22 V to 50 V
Voltage at Rated Power 26 V
Total system mass 13 kg
Minimum number of oper-
ating hours before End of
Life

1500 hours

Temperature Range 3C-40C

Table 6.3: Serial Battery Characteristics.

Characteristic Range

Nominal Capacity 40Ah at 0.3C Discharging
Minimum Capacity 40Ah at 0.3C Discharging
Nominal Voltage 3.2 V
Number of cells 8
Internal Resistance 1m
Recommended SOC Usage
Window

10%-90%

Operation Thermal Ambi-
ent Charging

0C-45C

Operation Thermal Ambi-
ent Discharging

-20C-55C

Storage Humidity less than 70%
Battery Weight Around 1.4kg
Shell Material Plastic
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Table 6.4: Electronic Load Characteristics.

Characteristic Range

DC input voltage [0 60]V
DC input current [0 80]A
DC input power [0 2000]W
AC output 230 V, 50Hz

Table 6.5: Power Supply Characteristics.

Characteristic Range

Power Supply Output Type Adjustable
Power Rating 320W
Input Voltage Min 115VAC
Input Voltage Max 230VAC
Input Frequency 50Hz
Input Voltage 115V AC , 230V AC
Output Voltage Min 0V
Output Voltage Max 32V
Output Current Min 0A
Output Current Max 10A
Operating Temperature 40C
Power Supply Type Voltage Converter
Weight 10kg

user through the labview interface and signals are sent to the inverter to apply
these values. Thus the load limitations are between -0.44 and 2 kW.

6.5 Power Supply

The regenerative braking considers a negative load demand, thus a power supply
is added to the configuration to emulate this phase. It is a 32V, 10A rated
power supply by farnell [95]. The characteristics of this power supply is shown
in table 6.5.

104



Table 6.6: Data Characteristics.

Characteristic Range

FC maximum power (W) 800
FC minimum power (W) 60
Battery capacity (Wh) 40× 26
Battery maximum power
(W)

3200

Battery minimum power
(W)

-440

Load maximum power (W) 2000
Load minimum power (W) -440

6.6 Real Time System Characteristics

The real time system built in hardware and interfaced in Labview is constrained
by size. The maximum power that can be supplied by the battery and the fuel
cell at favorable conditions should not exceed 2 kW. The data for the components
is shown in table 6.6. Although the Nexa fuel cell of the system is rated at 1.2
kW, it has lost its rated power by age. It was already existing and functional for
several years in the University of Applied Sciences laboratory. For this reason,
the maximum power that it can supply is 0.8 kW. The minimum supplied power
by the fuel cell is 0.06 kW. This implies that the condition of shutting off the
fuel cell is not available. Moreover, this minimum power is needed to run inner
functionalities in the fuel cell system. The battery has power limits between -0.44
and 3.2 kW. These data were provided by the manufacturer of the battery who
was attending the simulations and ensuring that the battery is supplying power
when needed. The system load is limited between -4.4 and 2 kW.

The international cycles namely the highway, FUDS and NEDC, that
were optimized in the previous sections have higher power demand than what
the real time system can supply. In order to launch the testings, the known
cycles power demand is scaled down to the maximum power demand that can be
supplied by the real time system which is limited between -4.4 and 2 kW [87].

6.6.1 Load Profile Modification

To launch the testing on the system, two cycles were considered. These are
the highway and the NEDC driving cycle. The power profiles of both cycles is
scaled down to the system limitations. They are named the Hc and Uc cycles
respectively. Hc cycle that has high speeds and slow dynamics like the highway
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Figure 6.6: Load Curves for Hc Cycle.

cycle. Uc cycle with low speeds and fast dynamics like the urban cycles. The Hc
and Uc cycle load curves are shown in figure 6.6 and figure 6.7.

6.6.2 Off-line Optimization Variables

The real time system needs the matrix derived from the off-line algorithms namely
the IDP and RB. This matrix accommodates the power split between the fuel cell
and battery as well as the battery SOC profile. To calculate this matrix using
IDP method explained in chapter 3, the power coefficients of the cost function in
equation 3.24 need to be updated.

The nexa FC is purchased at 5000$/kW and has 1500 hours of operations.
The hydrogen cost is still the same as discussed in chapter 3. The battery cost
is considered around 70% of the FC cost. Nexa hydrogen consumption curve is
shown in figure 6.8 calculated at standard liter per minute, measured at 1 atm,
0C. By using a basic curve fitting lambda is calculated at 0.22 g/Wsec. Therefore,
the costs are updated according to equation 6.1.

γFC = 0.02$/kWh γSL−FC = 3.3$/kWh γBT = 0.7γSL−FC = 2.3$/kWh
(6.1)
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Figure 6.7: Load Curves for Uc Cycle.

Figure 6.8: Nexa FC Hydrogen Consumption Curve.
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Figure 6.9: FC IDP/RB Comparative Curves during Online operation for Hc
Cycle.

6.7 Real Time System Testing, Analysis and Re-

sults

The edited load profiles discussed in the previous section are embedded into the
off-line Matlab based IDP algorithm as well as the RB algorithm. Four different
matrices are ready for real time testing. These are the Hc cycle with power
split obtained by IDP and RB method; the Uc cycle with the power allocation
obtained by IDP and RB method. After these matrices are acquired, they are
fed to the Labview interface of the real time simulation one after the other. With
each matrix the Labview interface also takes the corresponding cycle demand.
Comparisons include the power profile of the sources as well as the stresses on
the sources. The latter is derived using the the standard deviation of the high
frequency component of the haar wavelet transform as explained in previous
chapters.

6.7.1 Real time Comparative Results

Figure 6.9 shows the behavior of the FC during the Hc cycle when using the IDP
and RB algorithm. These two profiles are derived from the real time system. This
means that the power allocation matrix derived from the off-line IDP runs is fed
to the Labview interface. The real time system is simulated for a fixed period of
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time depending on the corresponding driving cycle which is the highway scaled
cycle in this case. Similarly, the power split matrix derived from the off-line RB is
tested in real time system. The FC behavior in these two cases which is obtained
after the real time simulation terminates is plotted in figure 6.9. In both cases
the minimum fuel cell power is 60W as specified by the hardware limitations.
The fuel cell is more exploited in the RB strategy. It is important to recall the
characteristics of the highway cycle even the scaled one. It features high speeds
and low vehicle dynamics. For this reason, it does not tend to exploit the battery
charging and discharging capabilities using regenerative braking. The fuel cell
is usually abused more during highway cycles. This is revealed here when using
RB or IDP, the fuel cell is doing the job and supplying the power demand. By
measuring the stresses on the fuel cell during the scaled highway cycle using the
haar wavelet transform, it is noticed that more stresses are added on it using the
RB method than while using the IDP method. The RB method does not exploit
the resources in an optimum fashion so the program tends to add more stresses
on them.

To clarify the fuel cell profiles more, a window of the figure 6.9 is shown
in figure 6.10. The maximum fuel cell power is limited to 800W in both cases.
The frequency of shifting is almost the same in both cases. However, the sudden
transitions which are not beneficial for the fuel cell are more witnessed during
the RB algorithm. This tends to show more stresses on the fuel cell via the haar
wavelet transform.

It is noticed that using RB, the FC is exhausted more than while using
the IDP method which increases the hydrogen consumption levels. The hydrogen
consumption is measured in both cases for the corresponding highway scaled
driving cycle. These measurements are read directly from the Nexa fuel cell
Labview interface. The savings that can be achieved during the real time system
are almost 13% in the hydrogen fuel consumption in favor of the IDP over the RB
power allocation strategy. During off-line operation, before the power matrix is
tested in the hardware in the loop method, the hydrogen fuel consumption savings
between the IDP and RB strategies are 11% in favor for the IDP optimization
algorithm. This discrepancy between the on-line and off-line hydrogen savings is
based on the difference between the software simulations and the actual physical
hardware. Mainly, the accuracy of the readings of the hydrogen consumption via
the Labview interface is around 85%.

Figure 6.12 corresponds to the fuel cell profile during real time simula-
tion while using the Uc cycle. The two tested strategies are the IDP and RB
algorithms. These are the outcomes from the hardware system which sends the
signals via the Labview model interface. It is observed that RB tends to exploit
the FC much more than the IDP method. The Uc cycle is scaled down from the
NEDC driving cycle. The characteristic of such a cycle is slow speeds and fast
dynamics. The importance of the algorithmic strategy is to try to exploit the
battery to preserve hydrogen fuel consumption as well as protecting the sources
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Figure 6.10: Window - FC IDP/RB Comparative Curves during Online operation
for Hc Cycle.
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Figure 6.11: Window - FC IDP/RB Comparative Curves during Online operation
for Uc Cycle.
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from the fast dynamics of such a cycle. A window of the fuel cell behavior us-
ing the IDP and RB algorithms is shown in Figure 6.11. The RB algorithm is
revealed to exploit the fuel cell more than the IDP algorithm. The latter tries
to harness energy from the regenerative braking and supplies the system more
efficiently. Using haar wavelet transform, the stresses on the fuel cell are calcu-
lated using the two algorithms. The RB algorithms exerts 8% more stresses on
the fuel cell rather than the IDP algorithm. This tends to decrease the life of the
fuel cell. The existing fuel cell has already been extensively used in the UAS labs
which limited it from supplying the maximum output power of 1.2kW and only
supplying a maximum of 0.8kW. By using the RB algorithm this tends to limit
the fuel cell maximum power more and thus deteriorate it.

The hydrogen consumption savings is derived for both power allocation
strategies. During the real time simulations the savings in the consumption is up
to 21% in advantage to the IDP optimization strategy. This percentage is higher
than that for the highway scaled cycle one. It is expected because in urban cycles
the battery is exploited more due to the fast dynamics that characterize the cycle.
This relaxes the fuel cell more and thus lowers down the hydrogen consumption.
The hydrogen savings achieved from the off-line simulations of the IDP and RB
strategies mark a 30% saving in favor of the IDP method. This discrepancy in
savings between the real time simulations and the off-line simulations results from
the errors in the actual model of the hardware. Moreover, the technique used
to supply the fuel cell with the actual hydrogen could not be perfectly modeled.
The hydrogen consumption curve for the fuel cell adopted from the data sheet
corresponds to a new fuel cell and the one available was abused as shown from
its maximum power limits.

Another obstacle arising from the hardware in the loop system is the
failure of reading the battery output power from the system. The battery output
power is calculated based on the balance of the power equation. Using the fuel cell
power levels and the load demand, the battery output power can be concluded.
The battery SOC could also be estimated. This was enough to compare the
behavior of the battery during the real time simulations and the off-line runs.

The battery power profile for the IDP and RB algorithms based on the
highway scaled and NEDC scaled driving cycles is shown in figures 6.13 and 6.14.
These are derived from the Labview interface during the real time system sim-
ulation. The IDP method in both scenarios tends to exploit the battery more
so as to lower the hydrogen consumption levels. The battery is kept between its
limits so as not to violate the system constraints. The stresses on the battery are
7% more when using the IDP method over the RB method for the urban cycle.
This percentage is lowered down to 3% during highway scaled cycle. This is one
of the trade-offs between the IDP and RB methods. Savings in hydrogen con-
sumption is more notable while using the IDP optimal power allocation strategy
while a slight increase in the battery stresses in witnessed. The stresses on the
battery while driving the urban cycle increase to 7% with IDP. The cycle has
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Figure 6.12: FC IDP/RB Comparative Curves during Online operation for Uc
Cycle.

high dynamics which make the IDP algorithm exploit the battery more so as to
save hydrogen fuel.

6.7.2 Real time/Off-line Comparative Results

The real time system is built to verify the results obtained from software sim-
ulations. The fuel cell power profile, the battery power profile and the battery
SOC profile that are derived during the off-line runs of the IDP algorithm need
to match those derived from the real time hardware in the loop model with the
Labview interface. The degree of matching between the off-line and real time
system results depend on several factors. First, the efficiency of the off-line mod-
els. The fuel cell and battery models used in the off-line simulations emulated
the actual ones. However, software models can never exactly mimic the actual
behavior of the components. For example, in the off-line model of the fuel cell,
the hydrogen consumption curve provided by the fuel cell manual is used. In re-
ality, the life of the fuel cell has decreased due to extensive use. This is revealed
from the maximum output power that the fuel cell is supposed to supply which is
1.2kW and the actual one supplied which is 800W. Second, the errors in reading
the actual values from the real time system. The battery is manually designed
and several factor can not be read because they are not software interfaced and
for this reason manual calculations were performed. Finally, losses in the system

112



0 200 400 600 800 1000 1200
−1.5

−1

−0.5

0

0.5

1

Time

P
ow

er
 (

kW
)

Battery IDP−RB Comparative Behaviour − Hc Cycle Optimum Method

 

 
PFC−IDP
PFC−RB

Figure 6.13: Battery IDP/RB Comparative Curves during Online operation for
Hc Cycle.
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Figure 6.14: Battery IDP/RB Comparative Curves during Online operation for
Uc Cycle.
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sources even if modeled based on the measured data can not emulate the actual
real time losses. However, within a certain tolerance, the results tend to match
as discussed below.

The comparison between the off-line and real time curves is based on
the root mean square error (RMSE). This method is often used to quantify the
difference between the values predicted by a model (x) and the values experi-
mentally observed (x̂) over a number of samples N. The equation used for such a
calculation is shown in equation 6.2. The lower the value of this error the better
is the system model.

RMSE =

√∑N
1 (x− x̂)2

N
(6.2)

Figure 6.15 compares the fuel cell profiles derived from the off-line and
real time runs of the IDP power allocation strategy while incorporating the high-
way scaled driving cycle. The IDP algorithm is simulated for the respective load
and then feeds the values of the power levels of the FC and battery to the on-line
system through the Labview model interface. There is an approximate match be-
tween the real time and off-line results. Using the software the maximum power
of the FC is limited to 0.8kW because it is presumed that this is the maximum
power that the FC can supply. Although the FC is rated at 1.2kW, it’s frequent
usage by the university labs shaved its rated power to 0.8kW. However, some-
times it can still provide a bit higher than the rated value. Moreover, errors
might occur in the readings because the FC might have a sudden unexpected
purge voltage loss which was noticed while running the tests for several times.
It is calculated that the error in matching the real time and off-line FC power
curves is 0.36 for Hc cycle which is an acceptable value.

Similarly for the urban cycle, the fuel cell power profile comparison be-
tween the real time and off-line simulations while using IDP is shown in fig-
ure 6.16. The degree of match is high, however there were some errors that
occurred during the measurements because of the cycle dynamics which tend to
overuse the fuel cell and battery. The error of mismatch is found to be 0.3 which
is fairly good for the system.

The behavior of the state of charge of the battery during real time and
off-line simulations is also compared. The SOC curves for the Hc and Uc cycles
are shown in figures 6.17 and 6.18. Losses are added cumulatively to the battery
SOC at each step at a rate of 6μ. The matching between the off-line and on-line
SOC for the two methods is approximately perfect giving a RMSE of 0.004 for
the Hc cycle and 0.005 for the Uc cycle. This verifies that the battery power
curves have some errors in their reading and not their SOC results.
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Figure 6.15: FC IDP online/offline Comparative Curves for Hc Cycle.
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Figure 6.16: FC IDP online/offline Comparative Curves for Uc Cycle.
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Figure 6.17: SOC IDP online/offline Comparative Curves for Hc Cycle.
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6.8 Summary

The objective of this chapter is to validate the results achieved during the off-line
runs using Matlab. A real time, low cost hardware in the loop model is built for
this purpose. It emulates the power flow between the sources in the power train
of the FCHV. The system has limited supply of power so the power profiles of
the known driving cycles are scaled down to be used for testing. The outcomes
are summarized in the bullets below:

• The IDP proved superiority over the RB method in real time simulations as
well as the off-line runs. Real time savings in hydrogen consumption while
running the scaled highway and urban cycles are 13 percent and 21 percent
respectively.

• The experimental validations aim at testing the degree of matching between
the profiles of the fuel cell and battery SOC. For the IDP optimal power
allocation strategy, there is a high match between the fuel cell curves which
are achieved in the real time simulations and off-line runs. The root mean
square error is calculated to be less than 0.4 for highway scaled and urban
cycles. This error is due to the fuel cell mechanics and its purge voltage
losses which results in a higher power consumption.

• The SOC profiles exhibit a better match between the off-line and real time
simulations, with RMSE error of less than 0.005. The profiles are compared
for the real time and off-line simulations of both the scaled highway and
urban cycles.
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Chapter 7

Conclusions

This dissertation presented a methodology to optimize the controller of FCHV
based on an improved dynamic programming technique. The problem formula-
tion took into account the life-cycle cost of the system components and considers
minimizing hydrogen usage along with operational cost. Detailed Simulink model
of the vehicle subsystems is built. Test simulations were performed on driving
cycles. The objective is to develop a conceptual approach for an energy opti-
mization which is able to consider a wide range of constraints and targets. The
simulations in this dissertation served to explain and to prove the process. Com-
parison against a rule based EMS indicated that the system cost can be reduced
depending on the driving cycle.

7.1 Contributions

The novelty and contribution of the dissertation is through formulating and ex-
ecuting the improved dynamic programming technique. Out of the other tech-
niques presented, it proves superiority over LP and DP in achieving a fast and
feasible sub-optimal solution for the off-line resource allocation problem. The
Simulink model that is developed and edited to accommodate for the sub-optimal
off-line results, succeeded in emulating the actual vehicle performance. The es-
timation of the driving cycle presented a new method for optimizing the vehicle
performance even when the cycle is not known. In essence, the technique is ap-
plied in smaller chunks targeting real time optimization. A summary of the main
contributions of this dissertation are stated.

• Studying the optimal conditions for a FCHV energy management system.
Four algorithms are discussed, linear programming, linear improved dy-
namic programming, improved dynamic programming and state control
based EMS. First linear programming is formulated using linear constraints
and simulated for highway and urban cycles to achieve the global optimum.
Then linear improved dynamic programming is explained, formulated and
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simulated for the mentioned cycles. Comparison between the LP and lin-
ear IDP validates the improved dynamic programming algorithm. This is
due to the fact that linear IDP is formulated based on the known tunnel
dynamic programming as well as personal expertise in the corresponding
driving cycles and due to the fast dynamics of the urban cycles. Next, the
IDP is formulated which considers the non-linear hydrogen consumption
curve of the FC and the non-linear battery Q-maps which is adopted for
this dissertation. Battery weights are added to the cost function to tune the
battery behavior between charge depleting, charge sustaining and charging
modes.

• The second consideration is to account for analogous, unknown and special
event driving cycles. For analogous cycles, a stochastic approximation of the
driving cycle is calculated using a transition probability matrix for known
power demands. Then a stationary probability distribution is developed
and the driving cycle is approximated based on vehicle speed, speed limit
and traffic coefficient. IDP is used for two such cycles. For unknown cycles
a looping methodology is applied based on a 50 second window and a known
cycle. The looping technique is performed using the IDP algorithm as well
as the state control rule based algorithm. Results prove the lower levels of
hydrogen consumption that could be achieved. Finally, the special events
that occur during known driving cycles are also considered. The optimal
allocation is updated before the incident happens and benefits from any
vehicle deceleration occuring for energy recuperation.

• The FCHV Simulink model built at the University of Applied Sciences in
Germany is fully comprehended in-order to launch the testing for the FCHV
system under study. The energy management system block is completely
changed to fit the design proposed in this dissertation. Results show the
actual FC current performance as well as the battery SOC profile. On-line
monitoring of the vehicle performance is achieved using classic PI controller.

• A system built as hardware in the loop using Labview is tested against the
state control rule based model and IDP. Comparative savings witnessed on
the system measuring the difference in on-line hydrogen consumption when
the IDP algorithm is applied and the RB algorithm is applied.

The performance criteria are based on the overall operational cost as well
as the hydrogen consumption per trip. Savings in cost and hydrogen consumption
are witnessed in the highway cycle and FUDS cycle as compared to state space
rule based methods. The savings in hydrogen consumption are 0.06% and 0.3%
for the highway and FUDS cycles respectively. However, the runtime of the latter
is lower. So mainly, it is a trade-off between cost and runtime. The stresses on
the FCHV subsystem sources are approximated based on a wavelet transform
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of instantaneous power of the system sources. More stresses are added on the
battery in urban cycles than on highway cycles. The simulations indicate that
the proposed method leads to savings in hydrogen consumption levels and costs.

7.2 Future Work

The work discussed in this dissertation could be extended in different areas. There
are several open ended questions that could be addressed in-order to develop a
general purpose optimal algorithm for hybrid fuel cell vehicles.

One suggestion would be to develop a prototype for the controller of a
real FCHV and test it on the developed IDP algorithm proposed in this thesis.
The integration of the algorithm into a real hybrid vehicle evaluates the actual
on-line performance of the algorithms [96]. Moreover, the possibility of installing
an optimization console on an actual vehicle will give rise to the limitations faced.
This might tend to tweak or change some parts of the algorithm.

Secondly, it is important to link the IDP with sizing optimization algo-
rithm to arrive at an overall optimized vehicle. This becomes like an optimal
looping methodology. The size setting can be one multi-objective optimization
problem, the EMS could be another optimization problem. The two problems are
linked together via efficiency, performance and requirement analysis. A similar
technique was applied to a stationary hybrid renewable energy system [97]. The
optimal sizes of the system components are derived using linear programming.
The sizes are then applied to the on-line system that is running and feeding the
load. The sizes are evaluated based on the total cost of the system.

Thirdly, forecast of the road data is required to train and build unknown
driving cycles. Such a forecast requires a collection of data. This combines
the traffic data, population capacity, employment rate, trip rate, travel costs,
weather data and political situations. These data can be extended more in-order
to provide estimates of future road traffic. The road is usually segmented similar
to the idea behind chapter 5, and typically the fore-cast will be for the next
infrastructure in question.

Another proposal is to investigate the possibility of using neural networks
as a learning algorithm. After incorporating the vehicle optimal sizes, the IDP
algorithm and the cycle fore-cast, a neural network that can be trained based
on these data. This can present a framework in-order to acquire the knowledge
behind size optimization, EMS optimization and cycle fore-cast for a certain
vehicle [96].
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Appendix A

Abbreviations and Notations

A.1 Abbreviations

FCHV: Fuel cell hybrid vehicles
HEV: Hybrid electric vehicles
ICE: Internal combustion engine
EMS: Energy management system
EEMS: Efficient Energy management system
FC: Fuel cells
PEM: Proton exchange membrane
SOC: Battery state of charge
ECMS: Equivalent fuel consumption minimization strategy
DP: Dynamic programming
LP: Linear programming
IDP: Improved dynamic programming
LIDP: Linear Improved dynamic programming
WIDP: Weighted improved dynamic programming
SDP: Stochastic dynamic programming
UAS: University of applied sciences
RB: State machine rule based technique
Cons.: Consumption
RMSE: Root Mean Square Error
CDM: Charge Depletion Mode
CSM: Charge Sustaining Mode
CM: Charging Mode

A.2 Notations

Notation Definition
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PFC FC Power request (kW)
PBT Battery Power request (kW)
PL Load Demanded Power (kW)
ṁH2 Flow rate of reacted hydrogen (g/s)
ṁair Flow rate of air (g/s)
MH2 Molar mass of Hydrogen (g/mol)
MO2 Molar mass of Oxygen (g/mol)
λO2 Oxygen Excess Ratio (g/mol)
λH2 Hydrogen Excess Ratio (g/mol)
nst Number of cell in the FC system
F Faraday number (C/mol)
Ist FC stack current (C/s)
Vst FC stack voltage (V)
IFC−req FC cell current request (A)
IFCmax Maximum FC cell current request (A)
Pfc−aux Power consumed by the FC auxiliaries (kW)
wO2 Molar fraction of oxygen in air
PFC−losses Losses in the fuel cell system (kW)
PFC−req FC power request (kW)
PFCmax FC maximum power request (kW)
PFCmin FC minimum power request (kW)
VFC FC polarization voltage (V)
Rdown−fc FC ramp down power (kW)
Rup−fc FC ramp up power (kW)
n number of electrons
ηm Motor Efficiency
τm Motor Torque (Nm)
ωm Motor rotational speed (rpm)
Pmotor Motor power request (kW)
Ploss Motor power losses (kW)
IBT Battery current (A)
RBT Battery internal resistance (Ohm)
CBT Battery nominal capacity (Ah)
OCV Battery open circuit voltage (V)
VBT−oc Battery open circuit voltage (V)
VBT−oc0 Initial Battery open circuit voltage (V)
VBT−min Battery Minimum voltage (V)
VBT−max Battery Maximum voltage (V)
UBT Battery voltage (V)
βBT Battery damping factor
αOCV Battery temperature coefficient for OCV (V/K)
αR−SOC Battery resistive-SOC dependency coefficient
αR−T Battery resistive-temperature dependency coefficient
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TBT Battery temperature (degrees Celsius)
Tamb Ambient temperature (degrees Celsius)
nBT Number of cell in the Battery system
HBT Battery heat capacity of battery (J/K)
δsiBT Entropy of cell reaction (J/(A.s. K))
SOC Battery state of charge
PBT Battery power (kW)
QBT Battery power with losses (kW)
PBTmax Battery maximum power request (kW)
PBTmin Battery minimum power request (kW)
Rdown−bt Battery ramp down power (kW)
Rup−bt Battery ramp up power (kW)
SOCmin Battery SOC minimum level
SOCmax Battery SOC maximum level
ηBT Battery Efficiency
IBT−ch−max Battery maximum permissible charging current (A)
IBT−disch−max Battery maximum permissible discharging current (A)
Vbus Voltage on the DC bus (V)
VRegB Regenerative braking Voltage (V)
ηbuck Efficiency of the buck converter
ηboost Efficiency of the boost converter
idc−in Converter input current (A)
idc−out Converter output current (A)
Ha Actual Vehicle height (m)
Hin Initial Vehicle height (m)
va Actual Vehicle speed (m/sec)
Pa Actual Vehicle pressure (atm)
Pin Initial Vehicle pressure (atm)
g 9.8 m per seconds square
M Molar mass of Earth’s air
Rair Universal gas constant
V Volume of hydrogen in the tank (l)
Rw Tyre radius (m)
Ftrac Tractive force (Nm)
Fres Driving resistance force (Nm)
Fbrake braking force (Nm)
θt Total vehicle moment of inertia
θw Wheel moment of inertia
θm Motor moment of inertia
Fr Rolling resistance force (Nm)
mv Vehicle mass (kg)
αs slope angle
frol rolling resistance factor
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Fw Air drag force (Nm)
CD Drag coefficient
A Frontal area (square meter)
ρair Air density
τbr Rear braking torque (Nm)
τbf Frontal braking torque (Nm)
τreq Torque request(Nm)
kp PID Controller proportional factor
ki PID Controller integral factor
kd PID Controller derivative factor
e PID Controller error signal
aw PID Controller overflow factor
τT Transmission system output torque (Nm)
gr Gear Ratio
PT loss Transmission system power losses (kW)
ωT Transmission system rotational speed (rpm)
SFC FC on/off signal
γFC The cost of hydrogen consumption ($/kWh)
γSL−FC The initial cost of FC system ($/kWh)
γBT The cost of Battery system ($/kWh)
λ Consumption rate of hydrogen molecules per kW (g/kWh)
MHo Initial mass of hydrogen in the tank (g)
δt Sample duration time (seconds)
Niuj Node Representation
Ciuj Node Cost
Ruk,iuj Transition Cost
Viuj Fitness function
guk,iuj Transition function
vh, vu, ve Speed vectors for highway, urban and European cycles
wa, wb, wc IDP weights
wh, wu, we Transition matrix cycle weights
vhs Two minutes highway cycle speed
vus Two minutes urban cycle speed
vhs−max Two minutes highway cycle maximum speed
vus−max Two minutes urban cycle maximum speed
Splim Speed limit
ρTr Traffic coefficient
v̂m,k:1→N Loop IDP: Current window speed forecast
v̂k:N+1→2N Loop IDP: Next window speed forecast

P̂L,k:1→N Loop IDP: Forecasted power demand of the current window
SOCf Loop IDP: Final state of charge of the battery per window

P̂FC,k:1→N Loop IDP: Forecasted fuel cell power demand of the current window
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P̂BT,k:1→N Loop IDP: Forecasted battery power demand of the current window
PL,k:1→N Loop IDP: Power demand of the current window
�P Loop IDP: Error in power measure

P̂FC−req,k:1→N Loop IDP: Power requested from the fuel cell system
PFC,k:1→N Loop IDP: Fuel Cell power demand of the current window
PBT,k:1→N Loop IDP: Battery power demand of the current window
PBT−req,k:1→N Loop IDP: Power requested from the battery system
Pbr,k:1→N Loop IDP: Braking power demand of the current window
Pwheels Power demand at the level of the wheels
Pm Power demand at the level of the electric motor
Vreq Vehicle reference speed
Vact Vehicle measured speed
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