

AMERICAN UNIVERSITY OF BEIRUT

A GENERAL FRAMEWORK FOR THE INTEGRATION
OF CROSSCUTTING CONCERNS IN BIP

by

ANTOINE PIERRE EL HOKAYEM

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon

ACKNOWLEDGEMENTS

Special thanks as to my advisor, Prof. Mohamad Jaber, for his supervision, avail-
ability and assistance, and to Prof. Yliès Falcone for his added insight and review.

The thesis has received funding from the University Research Board (URB) at AUB.

v

AN ABSTRACT OF THE THESIS OF

Antoine Pierre El Hokayem for Master of Science
Major: Computer Science

Title: A General Framework for the Integration of Crosscutting Concerns in BIP

Most computer systems almost certainly harbor undetected errors because of the
gap between requirements and implementation. In this thesis, we define a method
that combines Aspect Oriented Programming (AOP) and Component-based Systems
(CBSs). AOP is a programming paradigm aiming at supporting the separation of
concerns during the development of monolithic systems. We use the Behavior Inter-
action Priority (BIP) framework which is a component-based framework with formal
operational semantics. We distinguish two types of aspects: Local and Global. Lo-
cal aspects are used to model concerns to refine components. Global aspects are
used to model concerns at the architecture-level, and hence refine communications
(synchronization and data transfer) between components. We formalize local and
global aspects as well as their composition and integration into a BIP system. Our
combination of AOP and CBS yields a CBS framework with formal semantics and
rigorous transformation primitives. Our method is fully implemented and tested on
non-trivial examples.

vi

Contents

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF FIGURES . x

LIST OF TABLES . xi

1 INTRODUCTION . 1
1.1 Problem Definition . 1
1.2 Our Approach . 2
1.3 Thesis Organization . 3

2 BEHAVIOR INTERACTION PRIORITY (BIP) 4
2.1 BIP Framework . 4
2.2 Atomic Components . 4
2.3 Interactions . 6
2.4 Priorities . 8
2.5 BIP System . 9
2.6 BIP Toolchain . 10

3 ASPECT ORIENTED PROGRAMMING 12
3.1 Crosscutting Concerns . 12
3.2 AOP Concepts . 14

3.2.1 Joinpoints . 14
3.2.2 Pointcuts . 15
3.2.3 Advice . 16
3.2.4 Aspect . 17
3.2.5 Weaving . 17

3.3 Overview of applying AOP in BIP . 18

vii

4 LOCAL ASPECTS . 20
4.1 Preliminaries . 21
4.2 Local Joinpoints . 22
4.3 Local Pointcuts . 24

4.3.1 Location . 25
4.3.2 Variable Access . 26

4.3.2.1 Variable Read Guard 26
4.3.2.2 Variable Read/Write Function 27

4.3.3 Ports . 28
4.3.3.1 Port Execution . 28
4.3.3.2 Port Enablement . 29

4.3.4 Composing Pointcut Expressions 30
4.4 Local Advice . 32
4.5 Local Aspect . 33
4.6 Weaving Local Aspects . 34

4.6.1 Strategy . 34
4.6.2 Weaving 〈CB,CA〉 . 35
4.6.3 Weaving 〈PA,CB〉 . 36
4.6.4 Weaving 〈ADD,CB〉 . 37
4.6.5 Weaving Reset Location Pairs 40
4.6.6 Weaving the Local Aspect . 40

5 GLOBAL ASPECTS . 45
5.1 Global Joinpoints . 45
5.2 Global Pointcuts . 46
5.3 Global Advice . 48
5.4 Global Aspect . 49
5.5 Weaving . 49

6 ENCAPSULATING ASPECTS . 53
6.1 Interference . 53
6.2 Containers . 54
6.3 Weaving Procedures . 55

7 AOP-BIP . 60
7.1 Overview . 60
7.2 Language Description . 61
7.3 Frontend . 66
7.4 Backend . 68
7.5 Utility . 71

viii

8 CASE STUDY . 73
8.1 Overview . 73
8.2 Logging Concern . 74
8.3 Security Concerns . 75
8.4 Performance Concerns . 76
8.5 Fault Tolerance Concerns . 77
8.6 Using Inter-type Structures . 77

9 RELATED WORK . 78
9.1 Aspect-Oriented and Component-Based Design Integration 78
9.2 Integration of Aspect-Oriented concepts in Automata 81

10 CONCLUSION AND FUTURE WORK 82
10.1 Conclusion . 82
10.2 Future Work . 83

ix

List of Figures

2.1 Example Atomic Component . 6
2.2 Composite Component . 8
2.3 BIP Tool-Chain . 10

3.1 Multiple Concerns in a Simple System 13
3.2 Local and Global Views . 19

4.1 Origin, Destination, and Siblings . 21
4.2 Identifying Joinpoints in Atomic Components 22
4.3 Execution Ordering in Atomic Components 24
4.4 Matching atLocation(`2) . 25
4.5 Matching readVarGuard(x) . 27
4.6 Matching Function Variables . 28
4.7 Matching Ports . 29
4.8 Pointcuts and Joinpoint Frames . 30
4.9 Combining Pointcut Matches . 31
4.10 Applying Advice to atLocation(`2) 33
4.11 Weaving 〈CB,CA〉 . 36
4.12 Weaving 〈PA,CB〉 . 38
4.13 Weaving 〈ADD,CB〉 . 41
4.14 Weaving Reset Locations . 42

5.1 Example Composite Component . 46
5.2 Matching Global Pointcuts . 47
5.3 Inter-type Weaving . 50
5.4 Completing The Weave . 51

6.1 Interference In Atomic Components 54
6.2 Weaving Procedures . 58

7.1 The AOP-BIPTool . 60
7.2 The Aspect Interface . 67
7.3 The Pointcut Interface . 69

8.1 The Network Component . 74

9.1 Aspect Components, Aspect Bindings and Aspect Domains 79

x

List of Tables

2.1 Possible enabled ports at `0 . 6
2.2 Multiple Enabled Interactions . 9

4.1 Summary of Pointcut Match Frames 35

xi

Chapter 1

INTRODUCTION

Contents

1.1 Problem Definition . 1

1.2 Our Approach . 2

1.3 Thesis Organization . 3

1.1 Problem Definition

On the one hand, one of the most sensible techniques to tackle complex and

large problems is to decompose them into smaller ones. The component-based ap-

proach [1] consists in building complex systems by composing components (building

blocks). This confers numerous advantages (e.g., productivity, incremental con-

struction, compositionality) that allow to deal with complexity in the construction

phase. Component-based systems (CBSs) are desirable because they allow reuse

of sub-systems as well as their incremental modification without requiring global

changes. Their development requires methods and tools supporting a concept of

architecture which characterizes the coordination between components. An archi-

tecture structures a system and involves components and relationships between the

externally visible properties of those components. The global behavior of a system

can, in principle, be inferred from the behavior of its components and its archi-

tecture. Component-based design is based on the separation between coordination

and computation. Systems are built from units processing sequential code insu-

lated from concurrent execution issues. The isolation of coordination mechanisms

allows a global treatment and analysis on coordination constraints between compo-

nents even if local computations on components are not visible (i.e., components are

“black boxes”).

On the other hand, Aspect Oriented Programming (AOP) [2, 3] is a programming

paradigm aiming at supporting the separation of concerns [4] during the develop-

ment of monolithic systems. A concern is defined in [5] as a “domain used as a

decomposition criterion for a system or another domain with that concern”. Such

1

different domains could include logging, security, persistence, maintenance and syn-

chronization. Concerns are often found in different parts of a system, or in some

cases multiple concerns overlap one region. AOP aims at modularizing crosscutting

concerns by identifying a clear role for each of them in the system, implementing

each concern in a separate module, and loosely coupling each module to only a lim-

ited number of other modules. Moreover, AOP uses weaving rules to specify how to

integrate concerns in order to build the final system.

Developers must address all requirements in order to satisfy the overall system

goal. For this, validation and verification (V&V) are paramount during system devel-

opment. From an abstract point of view, V&V consist of proving that the delivered

system satisfies the given requirements. Nonetheless, the system almost certainly

harbors undetected errors. This is mainly due to the gap between requirements and

implementations.

To tackle the aforementioned issues, we need a framework that combines (1)

component-based approach in order to specify the core of the system; and (2) well-

defined cross-cutting concerns that refine the system to build the final implementa-

tion.

We use the Behavior Interaction Priority (BIP) framework [1, 6, 7] which is

a component-based framework with formal operational semantics. Coordination

between components is achieved by using multiparty interactions and dynamic pri-

orities for scheduling interactions. BIP consists of three layers: (1) behavior which is

handled by atomic components; (2) Interaction that describe the collaboration be-

tween the atomic components; (2) Priority chooses which interaction to execute out

of many. BIP is used to specify CBSs and is also capable of efficient code generation.

In case of CBSs, crosscutting concerns arise at the level of components [8, 9]

(building blocks) and architectures (communications). Integrating crosscutting con-

cerns in CBSs improves the progressivity of building complex systems by refining

its core specification. More importantly, it allows users to separately reason about

crosscutting concerns.

1.2 Our Approach

Our approach targets to combine the BIP framework with the aspect oriented

paradigm. We first seek to formalize the identification and description of concerns in

the context of BIP. In general, concerns are expressed by determining their locations

2

in the system, and their behavior at the given locations. Once concerns are formal-

ized, we determine the rules that govern the integration of these concerns in the

BIP model. Therefore, given an existing BIP system, and a description of concerns,

we are to transform the model so as to include the desired concerns. We distinguish

two types of aspects: Local and Global. Local aspects are used to model cross-

cutting concerns within components. Hence, they are used to refine the behaviors

of components. On the other hand, global aspects are used to model crosscutting

concerns at the architecture level. Hence, they are used to refine communications

(synchronization and data transfer) between components. We additionally define

aspect containers which serve as constructs for grouping aspects. We formalize the

composition of aspects and their integration into a BIP system. Moreover, we define

a high-level language for writing local and global aspects as well as aspect containers.

Our framework is fully implemented and tested on non-trivial examples.

Note that, there exists two approaches to integrate AOP into CBS: symmetric

and asymmetric [10]. A symmetric approach presents aspects as components, and

are therefore integrated homogeneously within the existing components in the sys-

tem. An asymmetric approach uses a different representation for aspects than the

system itself. Our approach is asymmetric, aspects are described using a different

representation than BIP models.

1.3 Thesis Organization

The thesis consists of 10 chapters. Chapter 2 introduces the context and the prob-

lem, along with an overview of the proposed approach. Chapter 3 presents the

BIP framework. Chapter 4 presents the concepts used in AOP. Chapters 5 and 6

define local and global aspects, respectively. Chapter 7 defines the composition of

aspects. Chapter 8 described AOP-BIP, the tool implementing our method. Chap-

ter 9 presents some experimental results on a case study. Chapter 10 presents some

related work. Finally, Chapter 11 draws conclusions and presents future work.

3

Chapter 2

BEHAVIOR INTERACTION PRIORITY (BIP)

Contents

2.1 BIP Framework . 4

2.2 Atomic Components . 4

2.3 Interactions . 6

2.4 Priorities . 8

2.5 BIP System . 9

2.6 BIP Toolchain . 10

2.1 BIP Framework

The Behavior Interaction Priority (BIP) framework [1, 6, 7] presents a system as

a set of atomic components with prioritized interactions. Atomic components are

Labelled Transition Systems (LTS) extended with data. The atomic components

define their own interface by exposing a set of ports. Interactions are defined over

ports and can be used for synchronization and data transfer between components.

The interactions are prioritized based on the priority layer.

2.2 Atomic Components

Definition 1 (Port). A port
〈
p, xp

〉
in an atomic component B is identified by a port

identifier p and a set of attached local variables x. We denote a port by its identifier

p and its variables by p.vars.

An atomic component behaves as an LTS extended with data.

Definition 2 (Atomic component). An atomic component B is defined as a tuple

〈P,L, T,X〉, where:

• X is a set of variables.

• L is a set of control locations

• P is the set of ports such that ∀p ∈ P : p.vars ⊆ X.

4

• T = L × P × B[X] × Exp[X] × L is the set of transitions, where B[X] is

the set of boolean predicates over X and Exp[X] is the set of single variable

assignment statements in the form x := f(X) such that x ∈ X.

A transition τ ∈ T is denoted by
〈
`, p, g, f, `′

〉
where:

• ` is the source location, `′ is the destination location;

• p is a port that is exposed by the component;

• g is the guard, a boolean function over X;

• f =
〈
x1 := f1(X1), . . . , xn := fn(Xn)

〉
is the computation when τ is executed

and ∀i ∈ [1, n] : xi ∈ X, ∀i ∈ [1, n] : Xi ⊆ X.

For a component B = 〈P,L, T,X〉 we denote P , L, T , X, by B.locs , B.ports ,

B.trans , B.vars respectively. Additionally, we denote by B the set of all atomic

components. Furthermore, for a transition τ =
〈
`, p, g, f, `′

〉
we denote `, p, g, f, `′

by τ.src, τ.port , τ.guard , τ.func, τ.dest respectively.

Definition 3 (Semantics of Atomic Components). The semantics of an atomic com-

ponent B = 〈P,L, T,X〉 is an LTS SB = 〈QB , PB ,→〉. We denote by X the set of

valuations of the variables X, we have:

• QB = L×X is the set of states;

• PB = P ×X is the set of labels;

• →=
{〈
〈l, v〉 , p(vp),

〈
l′, v′

〉〉
| ∃τ =

〈
l, p[Xp], gτ , fτ , l

′〉 ∈ T : gτ (v) ∧ v′ = fτ (vp/v)
}

.

After executing an interaction, atomic components receive new data on their

ports. For a given port p, its variables (Xp) are updated with the new values vp.

The transition 〈l, v〉
p(vp)
−−−→

〈
l′, v′

〉
is possible in the LTS iff the component has a

transition ∃τ =
〈
`, p[Xp], gτ , fτ , `

′〉 ∈ T such that:

• The guard before receiving the port variables vp evaluates to true: gτ (v) =

true.

• The application of the computation function fτ (vp/v) yields v′.

5

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

p1 p2

B

x

Figure 2.1: Example Atomic Component

Example 1 (Atomic Component). Figure 2.1 depicts an atomic component B. B has

two ports {p1, p2} and one variable x. The port p1 is attached to x. Additionally,

B has a set of five locations `0, `1, . . . , `4 where `0 is the initial location. Each

transition is represented by its guard followed by its port and then its computation.

If B is in location `0 and that g5 = false, but g0 = true, then port p1 is enabled.

Possible enabled ports at `0 are shown in Table 2.1 . Assuming p1 is selected to

execute, and upon receiving data v through p1, the variables are changed x := v and

then B will execute f0 moving to `2.

g0 g5 Ports Enabled
false false {}
true false {p1}
false true {p2}
true true {p1, p2}

Table 2.1: Possible enabled ports at `0

2.3 Interactions

Interactions serve as the glue that co-ordinates the components behavior. In BIP

atomic components only expose their ports to the external system, as expected

from components in component based design. Interactions are defined over ports.

Combining the atomic components results in a composite component.

Definition 4 (Interaction). An interaction a is a tuple 〈Pa, Fa, Ga〉, where:

6

• Pa ⊆
⋃
B∈B(B.ports) is a nonempty set of ports not containing more than

one port per atomic component: ∀B ∈ B : |B.ports ∩ Pa| ≤ 1. Let X =⋃
pi∈Pa(pi.vars).

• Fa is a function to execute on the interaction, F =〈
x1 := f1(X1), . . . , xn := fn(Xn)

〉
such that ∀i ∈ [1, n] : xi ∈ X, ∀i ∈

[1, n] : Xi ⊆ X.

• Ga is a boolean expression, the guard expression on the interaction.

For an interaction a, we denote Pa, Ga, Fa, as a.ports , a.guard , a.func respec-

tively. We have additionally:

• The variables read during the interaction execution are defined by: varr (a) =

X1 ∪X2 ∪ . . . ∪Xn;

• The variables read during the interaction execution are defined by: varl (a) =

{x1, x2, . . . , xn}.

Definition 5 (Semantics of Composite Components). Let B = {B1, . . . , Bn} be a set

of atomic components with their associated LTS SBi = 〈QBi, PBi,→〉. Let γ be the

set of interactions. The composite component determined by B and γ is C = γ(B)

its semantics is the LTS C = 〈Q, γ,→〉 where:

• Q = QB1 ×QB2 × . . .×QBn;

• → is the least set of transitions satisfying the following rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga(
{
vpi
}
i∈I)

∀i ∈ I, qi
pi(vi)−−−−→i q

′
i ∧ vi = F ia(

{
vpi
}
i∈I) ∀i 6∈ I, qi = q′i

〈q1, . . . , qn〉
a−→
〈
q′1, . . . , q

′
n

〉
where vpi is the valuation of the variables attached to port pi and F ia is the

partial function derived from Fa restricted to the variables associated with pi.

An interaction a will be enabled iff its guard Ga is true and all of its ports are

enabled. At a given time multiple interactions can be enabled but eventually one will

be chosen to execute. Once chosen an interaction, a will execute its computation.

The computation Fa is able to modify each of its port variables. The ports along

7

with their respective valuations vi will now execute, changing the associated atomic

component appropriately.

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

f0

[g1]

f1

[g2]

f2[g3]

f3

a0
a1

a2

a3

Figure 2.2: Composite Component

Example 2. Figure Figure 2.2 depicts a composite component consisting of four

atomic components B = {A,B,C,D} and four interactions γ = {a0, a1, a2, a3}. For

interaction a0 to be enabled, the ports {pa1, pb1, pc1} must be enabled and also g0

must evaluate to true. When a0 is executed, its computation f0 handles assignment

of port variables (data transfer) if necessary.

2.4 Priorities

Multiple interactions can be enabled at once. Therefore, a strict partial ordering is

defined on the interactions so as to choose one from the many. Formally:

Definition 6 (Priority). A priority model π is a strict partial order on the set of

interactions γ. Given a priority model π, we abbreviate
〈
a, a′

〉
∈ π by a ≺π a′. The

LTS defining the behavior of a composite component C = γ(B) is C = 〈Q, γ,→〉.
Adding priority to C results in a new composite component C′ = π(C), the associated

semantics for C′ is the LTS C ′ = 〈Q, γ,→π〉 where →π is the least set of transitions

satisfying the following rule:

q
a−→ q′ ¬(∃a′ ∈ γ, ∃q′′ ∈ Q : a ≺π a′ ∧ q

a′−→ q′′)

q
a−→π q

′

8

Ports Enabled Interactions Enabledi Executed
{pb2, pc2, pd1} {a1, a3} a3

{pa2, pc2, pd1, pd2} {a1, a2, a3} a2

{pa1, pb1, pc1, pa2, pc2, pd1, pd2} {a0, a1, a2, a3} a2

Table 2.2: Multiple Enabled Interactions

Example 3. Table 2.2 lists the possible enabled interactions given a set of enabled

ports. The priority layer helps us choose between these interactions. The last column

depicts the chosen interaction to execute given the following order (least to highest

priority): a0, a1, a3, a2.

An execution step proceeds as follows:

1. For every atomic component, the guards of the outgoing transitions at the

location are evaluated.

2. The transitions whose guards are true will have the ports enabled.

3. These enabled ports will then be used along with the interaction guards to

determine which interactions are enabled.

4. The priority model then selects only one interaction.

5. Once selected, the interaction will execute its computation updating its port

variables.

6. The ports will execute in their corresponding atomic components.

7. The associated atomic components will then execute their local computation

functions associated with the transition labelled by the ports executing.

2.5 BIP System

Definition 7 (BIP System). A BIP system S is a tuple 〈C, Init, v〉 where:

• C is the LTS of a composite component C.

• Init ∈ B1.locs × . . . × Bn.locs where Bi ∈ B is the set of initial locations of

atomic components.

• v ∈ XInit are the initial valuations of all atomic components variables XInit ⊆⋃
B∈B(B.vars).

9

2.6 BIP Toolchain

The BIP tool-chain consists of a set of tools for modeling, execution and validation

of BIP models [1, 11]. Figure 2.3 displays the relationships between those tools.

Mainly, the tool-chain consists of the following.

C++ Generator
(engine based)

BIP Executable

BIP Engine Runtime

Platform

DFinder

nesC DOL SimuLink

Source2source transformers

BIP COMPILER

C Lustre

Distributed Platform

C++
C /

C++
C /

C++
C /

Transformers

C++

BIP
Executable

BIP
Executable

BIP
Executable

Communication Primitives (Send/Receive)

BIP BIP
Language

Language
Factory

Code Generation &
Runtimes

Validation

Parser

S/R BIP Model

BIP Model
BIP
Meta-Model

Distributed BIP
Generator

Figure 2.3: BIP Tool-Chain

Front-end. The front-end consists of an editor with a compiler, for describing

textually a system in BIP language. The compiler generates a BIP model from BIP

description source. The BIP model conforms to BIP meta-model which is built on

top of the Eclipse Modeling Framework (EMF) [12].

Back-end. The back-end consists of several code generators that produce central-

ized and distributed implementations from a BIP model. For instance, it is possible

to generate (1) a single-threaded C++ code running on the BIP engine; (2) multi-

threaded C++ implementation; (3) distributed C++ implementation based on MPI

or Socket.

Middle-end. The middle-end consists of source-to-source transformations that

transform (1) a BIP model to another BIP model for optimization purposes; or (2)

another language (e.g., C, Lustre, Simulink, etc.) to a BIP model.

10

Validation. The validation module includes DFinder [13] which is capable of com-

positional verification. For instance, it can be used to check invariants and deadlock-

freedom of models. Moreover, using the validation module it is possible to do a

statistical model checking of BIP models.

11

Chapter 3

ASPECT ORIENTED PROGRAMMING

Contents

3.1 Crosscutting Concerns . 12

3.2 AOP Concepts . 14

3.2.1 Joinpoints . 14

3.2.2 Pointcuts . 15

3.2.3 Advice . 16

3.2.4 Aspect . 17

3.2.5 Weaving . 17

3.3 Overview of applying AOP in BIP . 18

3.1 Crosscutting Concerns

A typical system consists of its main logic along with tangled code that implements

multiple other functionalities. Such functionalities are often seen as secondary to the

system. For example, logging is not particularly related to the main logic of most

systems, yet it is found in the code. On the other hand, when logging is implemented,

it is often scattered throughout multiple locations in the code. Logging and the main

code are separate domains and represent different concerns. A concern is defined in

[5] as a “domain used as a decomposition criterion for a system or another domain

with that concern”. Domains include logging, persistence and system policies like

security. Concerns are often found in different parts of a system, or in some cases

multiple concerns overlap one region. These are called crosscutting concerns. The

implementation of crosscutting concerns leads to two typical problems: scattering

and tangling [9]:

• Tangling is the condition where concerns overlap in one region of the program.

Consequently, enforcing one concern may affect others.

• Scattering can be seen as the dual of tangling. Scattering is the condition

where one concern is spread across different regions of the program. Scattering

12

concerns violate encapsulation. Developers have to manually keep track the

location of a specific concern in multiple areas of the system.

Account

---- + getOwner() : User
---S + getBalance() : Dollars
PL-S + deposit(amt : Dollars)
PL-S + withdraw(amt : Dollars)

AccountController

PL-S + wire(from : Account, to : Account, amt : Dollars) : bool
PL-S + close(acct : Account) : bool
PL-S + open(user : User, balance : Dollars) : Account
-LC- + list(user : User) : Account[]

UserController

PL-S + create(data : UserData) : User
--C- + get(code : Integer) : User
--C- + find(name : String) : User[]
PL-S + block(user : User) : bool

User

--CS + getInfo() : UserData
---- + getCode() : Integer
-L-- + getLastActivity() : Date

P: Persistence L: Logging C: Caching S: Security Policy

Figure 3.1: Multiple Concerns in a Simple System

Example 4 (Crosscutting Concerns). Figure 3.1 illustrates four different concerns:

logging, caching, persistence and policy. The policy given is a form of security policy.

For example, the policy may (1) restrict access to bank account information based

on customer information; (2) set a maximum withdrawal, wiring or deposit limit;

(3) limit the number of accounts of users. The class diagram methods are prefixed

with the four concerns as flags. If a method has a concern then some code related to

the logic of that concern is included in the method. For example, Account.withdraw

method has three tangled concerns: persistence, logging and policy. Thus, withdraw

method has to include code for persistence, logging and logic. This code enforces the

policy in addition to its own main logic. The policy concern is scattered across all

four classes, hence maintaining it requires to modify all four classes when a change

is needed.

The purpose of Aspect-Oriented Programming (AOP) is to localize crosscutting

concerns in an aspect. An aspect is defined in [14] as “a well modularized imple-

mentation of a crosscutting concern”. These concerns are separated from the main

program logic and contained in separate logical units. In the example above four as-

pects would encapsulate each of the four concerns respectively: persistence, logging,

caching and security policy. We will subsequently use AspectJ examples to illustrate

the concepts. AspectJ [14] is an aspect-oriented extension to the Java programming

language.

13

3.2 AOP Concepts

3.2.1 Joinpoints

A Joinpoint is a well-defined point in program execution where a concern needs

to be handled. It acts as a reference point to coordinate the behavior of multiple

concerns. Typically, a joinpoint can be seen as a node in the program’s call graph

where additional code can be hooked when the node is either entered or exited.

public class AccountController {

2 private Policy securityPolicy;

public boolean wire(Account from, Account to, Dollars amount) {
1 if(amount.isNegative()) {

logger.warning("Negative debit");

return false;

}

if(!securityPolicy.canWire(from, to, amount)) {

logger.warning("Blocked by Policy");

return false;

}

try {
3 Persistence.init();

from.withdraw(amount);

to.deposit(amount);

Persistence.commit();

} catch (Exception e) // Exception Handling
4 logger.warning(e);

return false;

}

return true;

}

}

Listing 3.1: Joinpoints example in AccountController.wire

Example 5. Listing 3.1 displays a sample code for AccountController.wire method.

Joinpoints are dynamic execution points happening at runtime. Sample code is only

used to describe execution steps. Below are some examples of joinpoints:

1. Capture a call to method isNegative in the object amount of class Dollars.

2. Capture access to private field securityPolicy in the object of class

AccountController.

3. Capture access to a static method call init in the class Persistence.

4. Capture error handling.

14

Note that, it is possible to capture a call to Amount.isNegative within the call to

AccountController.wire and targeting a specific instance of AccountController.

To further understand the dynamic nature of the joinpoint, we consider three

types of method selectors for AspectJ [3]. It provides method call, reception and

execution. Method call captures the context of the calling object (or none for static

invocation). Reception captures the receiving object upon receiving the call but prior

to invoking the method. Finally, execution captures the receiving object’s method

invocation. Additional joinpoints include field access (Set and Get), constructors

(call, reception, execution) and exception handling, etc.

3.2.2 Pointcuts

A pointcut refers to a set of joinpoints and execution context information. AspectJ

provides several basic primitive to define pointcuts. Basic pointcuts can be com-

posed and identified so as to increase re-usability. In AspectJ, pointcut designation

can include wildcard expressions so as to easily match multiple methods. For in-

stance, call(packagenamevoid ∗ .set ∗ (∗)) matches all the setters that return void

for all classes in packagename having any parameter signature. Pointcut regulates

scattering by matching exactly the joinpoints needed to implement the concern.

Example 6 (Designating the Logging Joinpoints). The user-defined pointcut in List-

ing 3.2 matches the execution points where the logging concern holds. Logging con-

cerns are defined in Figure 3.1. call is used to designate the various method calls.

The basic primitive call pointcuts are composed using the “or” (||) operator. The

composed pointcut matches if any of the basic primitive call pointcuts match.

pointcut log() :

call(void Account.deposit(Dollars)) ||

call(void Account.withdraw(Dollars)) ||

call(* AccountController.*(*)) ||

call(Date User.getLastActivity()) ||

call(User UserController.create(UserData))||

call(bool UserController.block(User)

Listing 3.2: Logging Pointcut

15

3.2.3 Advice

Advice defines the code to be executed at each specific joinpoint in a pointcut.

Depending on the required behavior, multiple types of advice are defined so as

to surround the joinpoint. AspectJ defines the following types: before, after

and around. The code of an advise is a java method invocation. To account for

exception handling, AspectJ provides two special cases of advice with type after:

after returning and after throwing. All advices except for type around are strictly

additive. That is, they cannot modify the original computation at the joinpoint. An

advice of type around allows the user to bypass the computation at the joinpoint

as it wraps the entry and exit of a joinpoint. The computation at the joinpoint is

executed only if a special proceed instruction is called.

Example 7. Listing 3.2 defines a pointcut that captures the various joinpoints of the

logging concern. An advice that executes a computation after the joinpoints is shown

in Listing 3.3

after() returning() : log() {

logger.log("Some Logging text");

}

Listing 3.3: A Simple Logging Advice

While the example illustrates running a simple logging message, it is often neces-

sary to have access to more information. This information may contain parameters

or return values. This is known as the joinpoint context. To do so, pointcut syntax

in AspectJ allows defining parameters and binding them to the pointcut definition.

Details on how this is possible is defined in [14]. For the sake of simplicity, the con-

text is accessed with thisJoinPoint in the body’s advice. thisJoinPoint object

captures various context information including arguments and the method signature.

The return value is captured using returning(Typeid).

after() returning(Object res) : log() {

logger.info(thisJoinPoint.getSignature().toShortString()

+ Arrays.toString(thisJoinPoint.getArgs())

+ " -> " + res);

}

Listing 3.4: The Complete Logging Advice

Example 8 (Logging Advice). Listing 3.4 displays a general purpose logging advice.

To match any return type including void, we use the Object type as it captures all

16

possible types. All parameters are captured by using the getArgs() method on the

thisJoinPoint object.

3.2.4 Aspect

Aspects serve as the modular unit that contains both advices and pointcuts. More-

over, aspects in AspectJ may contain their own methods and fields. This is referred

as inter-type declarations. The term inter-type designates the fact that these extra

objects and code are accessible in different types (based on the matching joinpoints).

Inter-types allow for additional logic to handle complex concerns in one unit. List-

ing 3.5 displays the Logging aspect. It combines the pointcut, advice and a Logger

object.

import java.util.logging.Logger;

public aspect Logging {

private static Logger logger = Logger.getLogger(Logging.class.getName());

pointcut log() :

call(void Account.deposit(Dollars)) ||

call(void Account.withdraw(Dollars)) ||

call(* AccountController.*(*)) ||

call(Date User.getLastActivity()) ||

call(User UserController.create(UserData))||

call(bool UserController.block(User)

after() returning(Object res) : log() {

logger.info(thisJoinPoint.getSignature().toShortString()

+ Arrays.toString(thisJoinPoint.getArgs())

+ " -> " + res);

}

}

Listing 3.5: The Logging Aspect

3.2.5 Weaving

Concerns are isolated in their own modular unit, the Aspect. The main task of an

Aspect Oriented Programming (AOP) language implementation is to coordinate the

execution of the non-aspect code with the aspect code. This coordination has to

ensure a correct execution at the joinpoint of both primary and secondary concerns.

17

This process is called Aspect Weaving. When multiple advices are woven onto the

same joinpoint, the behavior of the advices is defined as follows:

1. around advice executes first, ordered from most specific to least specific. It

must invoke proceed so as to allow the next around advice to execute. When

all around advices have executed, control moves to step 2. Not calling proceed

allows a user to stop the execution of the rest and even the existing code at

the joinpoint.

2. before runs next from most specific to least specific.

3. At this stage the computation at the joinpoint is run. This runs the main

logic.

4. Execution of after returning and after throwing is then run depending on the

computation of the main code and the prior afterreturning advices. They

match least specific first.

5. after advices are then run ordered by least specific first.

6. After all after are done running, the return value from the main computation

(3) is returned to the inner most call of the proceed in the around (from 1)

and that around keeps running.

7. When an around returns, control is passed to the surrounding around until

all around advices are exhausted.

8. Control then returns to the end of the joinpoint.

Weaving can be done at compile-time or run-time. AspectJ tends to offset most

weaving to be done at compile time while some constructs are needed still at run-

time.

3.3 Overview of applying AOP in BIP

Developing component-based systems consist of progressively repeating the following

two stages. The first stage consists of building atomic or basic components. This

stage considers components as white-boxes. The second stage consists of composing

components to build a complex one. This stage considers components as black-boxes.

18

It only uses the interfaces of components to compose them. BIP framework mimics

exactly this development-flow. It starts first with developing atomic components,

then compose them through their ports using interactions. Note that, this can be

progressively applied to build composite components [15]. For this, we distinguish

two views of aspects when dealing with BIP systems (see Figure 3.2).

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

p1 p2

B

x

(a) Local View

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

f0

[g1]

f1

[g2]

f2[g3]

f3

a0
a1

a2

a3

(b) Global View

Figure 3.2: Local and Global Views

Local View. The local view (Figure 3.2(a)) deals with looking inside a component

(i.e., first stage). This view is useful for the developers of atomic components in order

refine their behaviors. Moreover, it allows to augment atomic components with

many crosscutting concerns such as testing, runtime verification [16], enforcement

and monitor synthesis. At the local view, concerns are at the level of location, state,

transitions, guards and computations on transitions.

Global View. The global view (Figure 3.2(b)) deals when composing components

(i.e., second stage). Thus, it considers interactions between components. In this

case, components are considered as black-boxes. This view evaluates concerns that

crosscut interactions. Concerns are at the level of the ports (interfaces), interactions

and data transfer between components.

Recall that, the BIP framework is based on an abstract model with a well-defined

operational semantics. This allows to easily map joinpoints, pointcuts, advices and

aspects to the model and its semantics. The weaving procedure is then defined using

model-to-model transformations along with their semantics.

19

Chapter 4

LOCAL ASPECTS

Contents

4.1 Preliminaries . 21

4.2 Local Joinpoints . 22

4.3 Local Pointcuts . 24

4.3.1 Location . 25

4.3.2 Variable Access . 26

4.3.2.1 Variable Read Guard 26

4.3.2.2 Variable Read/Write Function 27

4.3.3 Ports . 28

4.3.3.1 Port Execution . 28

4.3.3.2 Port Enablement . 29

4.3.4 Composing Pointcut Expressions 30

4.4 Local Advice . 32

4.5 Local Aspect . 33

4.6 Weaving Local Aspects . 34

4.6.1 Strategy . 34

4.6.2 Weaving 〈CB,CA〉 . 35

4.6.3 Weaving 〈PA,CB〉 . 36

4.6.4 Weaving 〈ADD,CB〉 . 37

4.6.5 Weaving Reset Location Pairs 40

4.6.6 Weaving the Local Aspect . 40

The first view deals with local aspects. Local aspects target atomic components

in order to refine their behaviors. An atomic component’s inner state is studied to

locate possible points where crosscutting concerns happen.

20

4.1 Preliminaries

In this section, we introduce some preliminary concept and notations over BIP.

Given an atomic component B, and a set of transitions M ⊆ B.trans , we define the

following:

Definition 8 (Location Sets). The origin set is defined as: origin(M) =

{τ.src | τ ∈M}. The destination set is defined as: dest(M) = {τ.dest | τ ∈M}.

The origin (resp. destination) consists of the source (resp. destination) locations

of the transitions M .

Definition 9 (Relative Transitions). The siblings set is defined as siblings(M) =

{τ | τ.src ∈ origin(M) ∧ τ ∈ B.trans}. The previous set is defined as

previous(M) = {τ | τ.dest ∈ origin(M) ∧ τ ∈ B.trans}

The siblings (resp. previous) set consists of transitions that have their source

(destination) locations within the origin locations of transitions M .

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

p1 p2 B

x

Figure 4.1: Origin, Destination, and Siblings

Example 9 (Origin, Destination, and Siblings). Figure 4.1 shows an example of

atomic component B with the set of transitions M colored in magenta. Location

`2 is both in the origin and the destination set of M , this is because of the self

loop. The destination set contains the locations to which the transitions in M lead

to: {`1, `2, `3, `4}, and are colored in green. The origin set consists of the locations

to which the transitions M are outbound: {`0.`2}, colored in blue. The transitions

belonging to the siblings set are dashed.

For a transition τ , below we define the variables evaluated in τ.guard and accessed

(either read or write) in τ.func.

21

Definition 10 (Accessed Variables). Given a transition τ in component B, X =

B.vars, and τ.func =
〈
x1 := f1(X1), . . . , xn := fn(Xn)

〉
such that ∀i ∈ [1, n] : xi ∈

X, ∀i ∈ [1, n] : Xi ⊆ X

• varg(τ) is the set of variables appearing in the guard of τ .

• readvar(τ) = X1 ∪X2 ∪ . . . ∪Xn defines the set of variables with read-access

(right-hand side) of the function of transition τ .

• writevar(τ) = {x1, x2, . . . , xn} defines the set of variables with write-access

(left-hand side) of the function of transition τ .

4.2 Local Joinpoints

An atomic component has control locations, variables, ports and transitions labeled

with guards and computation functions. At this level, concerns need to be managed

at the following points: port execution/enablement, guard evaluation, access and

modification of state’s variables.

`0 `1

`2

`3 `4

1

2

2 3

4

6

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

p1 p2 B

x 5

Figure 4.2: Identifying Joinpoints in Atomic Components

At the very base of an AOP design is to locate where concerns needs to be

handled. The first step is to localize points where concerns happen. In an atomic

component, concerns may be at the following points:

1. Guard Evaluation: designates the point where guards are evaluated.

22

2. Port Enablement : designates the point where given a port p in an atomic

component at location ` one outgoing transition has its guard evaluated to

true and is labelled by p.

3. Port Execution: once ports are enabled they are sent to the higher layer (i.e.,

the engine) to decide on the interaction to execute. After an interaction is

executed, the ports that define the interaction are executed. This leads an

atomic component to execute a transition labeled with its corresponding port.

4. Local Computations : designates the point where a certain transition’s compu-

tation is executed. Concerns could be part of that computation.

5. Variable Access : designates read/write access to the state variables in a com-

ponent.

6. Location: designates entry or exit of a given control location.

These various joinpoints are all represented as a transition τ in an atomic com-

ponent and a range relative to that transition. This range maps the execution steps

where a given joinpoint holds.

Definition 11 (Execution Point). Given a transition τ . We identify four execution

points:

1. PA (Previous After): designates the time after a local computation function is

finished on any of the previous transitions that lead to τ ;

2. ADD (Create): designates the need to add extra computation before evaluating

or executing τ ;

3. CB (Current Before): designates the time right before the current local com-

putation on τ ;

4. CA (Current After): designates the time right after the current local compu-

tation on τ .

The set of execution points is EP = {PA,ADD,CB,CA} and is strictly ordered,

according to their executions: PA ≺ ADD ≺ CB ≺ CA.

23

Figure 4.3 shows relative EPs for a selected transition τ . PA happens right

after a previous transition has finished its computation. Once that computation is

complete, the component enters the location `1. Upon entry to the location, ADD

will happen and additionally the component. At this stage the atomic component

evaluates its guards and determine enabled ports. An interaction is executed and

eventually reaches the point where the atomic component must execute the compu-

tation f1 of the transition τ . Before executing f1 the component reaches the CB

stage and after executing f1 the component reaches the CA stage.

`0 `1 `2

[g0]

p1
f0

[g1]

p1
f1

τ :

f0() → Location → Port Exec

Guards f1()

Ports En

PA ADD CB CA

Figure 4.3: Execution Ordering in Atomic Components

Definition 12 (Local Joinpoint). A local joinpoint in an atomic component B is

represented as a tuple 〈τ, ps, pe〉 where τ ∈ B.trans and ps, pe ∈ EP.

ps (resp. pe) indicates the execution step relative to the start (resp. end) of the

joinpoint. That is, the joinpoint starts right after ps and ends right before pe.

Example 10 (Example Joinpoint). The joinpoint 〈τ, CB,CA〉 in Figure 4.3 covers

the execution frame ranging right at the start of the component executing f1 and

right at the end of executing f1. This joinpoint captures a port execution.

4.3 Local Pointcuts

Local pointcuts designate a group of joinpoints. We define local pointcut expressions

to represent a combination of execution points. Then, we define match`(B, pc) that

matches joinpoints given a local pointcut expression pc and an atomic component

B.

Definition 13 (Local Pointcut Expression). A pointcut expression pc ∈ LPC de-

scribes a local pointcut expression. LPC is the set of local pointcut expressions.

LPC = 2atLocation(l)×2readVarGuard(x)×2readVarFunc(x)×2write(x)×2portEnabled(p)×
2portExecute(p) where x ∈ B.vars , l ∈ B.locs , p ∈ B.ports.

24

The operation match`(B, pc) yields a pointcut match. A pointcut match in an

atomic component B is a tuple 〈M, ps, pe〉 where M ⊆ B.trans and ps, pe ∈ EP . M

is a set of transitions such that ∀τ ∈M : 〈τ, ps, pe〉 is a joinpoint.

The operation match` is defined in the following sections. First, match` is de-

fined for each of the primitive pointcut expressions: atLocation, readVarGuard ,

readVarFunc, write, portEnabled , portExecute. Then, we define the composition of

primitive pointcut expressions.

4.3.1 Location

Given an atomic component B, the expression atLocation(`) where ` ∈ B.locs cap-

tures B when its state is at location `. This is matched: (1) just after the execution

of transitions with destination location ` and; (2) right before transitions with source

location ` that begin their computations. The frame of reference of atLocation(`)

consists of all transitions with source location `.

Definition 14 (Matching Location). Given an atomic component

B, match`(B , atLocation(`)) = 〈M,PA,CB〉 such that: M =

{τ | τ ∈ B.trans ∧ τ.src = `}.

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

atLocation(`2)

x

Figure 4.4: Matching atLocation(`2)

Example 11. Figure 4.4 shows match`(B , atLocation(`2)) = 〈{t2, t3, t4} , PA,CB〉.
The pointcut match contains the set of all outgoing transitions from `2, M =

{t2, t3, t4}. The incoming transitions to `2 are marked with dashes and are Mprev =

{t0, t1, t4}. Loops such as t4 are both in the match, and the incoming transitions.

PA designates the point after any transition in Mprev executes its computation.

25

This marks the last step before entering `2 and therefore happens right before it.

Upon exiting `2 the component must execute one of the computation functions of

transitions in M . This marks the first step after exiting `2 and therefore happens

right after it. Hence the execution frame of atLocation(`2) starts right after PA and

ends right before CB.

4.3.2 Variable Access

Variable access happens in three different scenarios: (1) a variable is read when a

guards is evaluated; (2) a variable is read during a transition function execution; (3)

a variable is written to during a transition function execution.

Note that, we do not consider variable accesses that take place at interaction

level in the local scope. This is considered in case of the global scope.

4.3.2.1 Variable Read Guard

First, we study variables read during guard evaluation. Guards are evaluated upon

entry in a location and their evaluation ends right before a port is executed. Once

guards are evaluated, enabled ports are evaluated. Then, atomic components wait

to execute the selected ports by the engine, if any. This frame is identical to the

atLocation pointcut, but instead can match multiple locations. Multiple locations

are matched since transitions whose guards evaluate, a variable could be outbound

from multiple locations.

Definition 15 (Matching Guard Variables). Given an atomic component B, and a

variable x ∈ B.vars, match`(B, readVarGuard(x)) = 〈M,PA,CB〉 such that M =

{siblings({τ | τ ∈ B.trans ∧ x ∈ varg(τ)})}

Transitions that have x in their guard expressions are selected first. The initial

selection is referred to as Mpre. Guards are, however, evaluated upon entry to a

given location and it terminates after exiting a location. Therefore effectively the

match consists of all locations from which one or more transitions in Mprev are

outbound. To indicate so, the selection is expanded to include M = siblings(Mpre).

This is equivalent to matching atLocation at each of ` ∈ origin(Mpre). As explained

in the section before, entry in a location ` ∈ L happens right after PA, and exit

happens right before CB.

26

`0 `1

`2

`3 `4

[true]

p2
f5

[true]

p1
f0

[x ≥ 1]

p1
f1

[x < 2]

p1
f2

[true]

p2
f3

[true]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

(A) Locations of Guard Evaluation

x

`0 `1

`2

`3 `4

[true]

p2
f5

[true]

p1
f0

[x ≥ 1]

p1
f1

[x < 2]

p1
f2

[true]

p2
f3

[true]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

(B) Siblings

x

`0 `1

`2

`3 `4

[true]

p2
f5

[true]

p1
f0

[x ≥ 1]

p1
f1

[x < 2]

p1
f2

[true]

p2
f3

[true]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

(C) Previous

x

Figure 4.5: Matching readVarGuard(x)

Example 12. Figure 4.5 shows match`(B , readVarGuard(x)) =

〈{t1, t2, t3, t4} , PA,CB〉. The left-most image displays the selection of tran-

sitions which only contain x in their guards, Mpre = {t1, t2}. The locations

highlighted in blue are the locations where the guard evaluation happens. These

are origin({t1, t2}) = {`1, `2}. The match is then expanded so as to match all

transitions outbound from {`1, `2}. This results in selecting M = siblings(Mpre). It

is possible for t3 to excute, and upon execution of t3 the component will leave `2.

In that case it is still valid that x has been evaluated in the guards. The transitions

that lead to our joinpoint are previous(M) = {t0.t1, t4, t5}. When a transition

τ ∈ previous(M) finishes it computation the component will enter the joinpoint. If

the component leaves `2 by executing t4, readVarGuard(x) will happen again.

4.3.2.2 Variable Read/Write Function

Second, we consider read/write variables while executing a computation on a transi-

tion. These variables are accessed during the execution frame of a local computation.

Therefore, they are bound by CB and CA for a given transition.

Definition 16 (Matching Function Variables). Given an atomic component B and a

variable x ∈ B.vars1:

• match`(B, readVarFunc(x)) = 〈Mread, CB,CA〉
where: Mread = {τ | τ ∈ B.trans ∧ x ∈ readvar(τ)}.

1. See Definition 10 for readvar and writevar

27

• match`(B,write(x)) = 〈Mwrite, CB,CA〉
where: Mwrite = {τ | τ ∈ B.trans ∧ x ∈ writevar(τ)}.

`0 `1

`2

`3 `4

[g5]

p2
[x = 1]

[g0]

p1
[]

[g1]

p1
[x = x+ y]

[g2]

p1
[]

[g3]

p2
[y = x]

[g4]

p2
[]

t5

t0 t1

t2
t3

t4

p1 p2

readVarFunc(x)

x y

`0 `1

`2

`3 `4

[g5]

p2
[x = 1]

[g0]

p1
[]

[g1]

p1
[x = x+ y]

[g2]

p1
[]

[g3]

p2
[y = x]

[g4]

p2
[]

t5

t0 t1

t2
t3

t4

p1 p2

write(x)

x y

Figure 4.6: Matching Function Variables

Example 13. Figure 4.6 expands the example to explicitly list the functions and add

an additional variable y. The left image shows the transitions where x is read. The

right image shows the transitions where x is written to. Variable access happens

when a specific transition function is executed. The transition is executed right after

its labelled port has been selected to execute. For example, upon execution of port p1

at `1, t1 is selected for execution. The component enters CB and then right after,

the function [x = x + y] will then execute, both reading and writing to x. Once the

function is done executing the component reaches the point CA.

4.3.3 Ports

Two pointcut expressions for ports are necessary: port execution and port enable-

ment.

4.3.3.1 Port Execution

The execution of a port p, within an atomic component, corresponds to the firing

of a transition labeled with port p, i.e., the firing of the following set of transitions

{τ.func | τ ∈ B.trans ∧ τ.port = p}. This pointcut selects transitions labeled with

port p, and its execution frame starts after CB and ends before CA for transition

labeled with port p.

28

Definition 17 (Matching Port Execution). Given an atomic component B and

a port p ∈ B.ports, match`(B, portEnabled(p)) = 〈M,CB,CA〉 where M =

{τ | τ ∈ B.trans ∧ τ.port = p}.

4.3.3.2 Port Enablement

Given an atomic component B with its corresponding semantics 〈QB , PB ,→〉, a port

p is enabled at state q = 〈`, v〉 ∈ QB , where v ∈ X, iff ∃τ ∈→:
〈
〈`, v〉 , p(vp),

〈
`′, v′

〉〉
.

This requires at least one outgoing transition from 〈`, v〉 to be labelled with port

p. Since state information is accessible only at runtime, determining enabled ports

requires to add extra transitions before all the transitions labeled with those ports.

Pointcut of port enablement is assigned its own frame, ADD. This indicates that

additional computation needs to be taken at the corresponding location, whose out-

going transitions labeled with ports to be matched. The port enablement joinpoint

ends when a port is executed. This happens right after CB. It is possible at a given

location to have multiple ports enabled. For this, the executed port may be be dif-

ferent from the port enabled. Consequently, it is important to match all transitions

outbound from the location since they happens just after the port enablement.

Definition 18 (Matching Port Enablement). Given an atomic component B and a

port p ∈ B.ports, match`(B, portExecute(p)) = 〈M,ADD,CB〉 such that M =

siblings({τ | τ ∈ B.trans ∧ τ.port = p}).

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

portExecute(p1)

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

portEnabled(p1)

x

Figure 4.7: Matching Ports

Example 14. Figure 4.7 on the left shows the transitions matched with

portExecute(p1). To match the execution of port p1 all transitions labeled with p1

29

are selected. These transitions are fired only if the port p1 is executed. The Figure

on the right shows the transitions matched with portEnabled(p1). Note that, more

transitions are selected since enablement of p1 may be followed by the execution of

port different than p1 (e.g., p2). Port p1 is enabled at `2 iff g2 is evaluated to true.

That is, it is not possible to determine if p1 is enabled without pre-evaluating g2.

Therefore, ADD is used even though port enablement (runtime/semantic dependent)

is similar to guard evaluation (syntactic dependent). On the other hand, p2 may be

executed while p1 is enabled at `2. Then, the component may fire either t3 or t4.

Therefore, the joinpoint must include t3 and t4. However, if g2 is evaluated to false,

p1 is not enabled. Thus the joinpoint must not include t3 and t4. These issues are

handled during the weaving procedure.

4.3.4 Composing Pointcut Expressions

L0 L1 L2

[g0]

p1
f0

[g1]

p1
f1

f0() → Location → Port Exec

Guards f1()

Ports En

PA ADD CB CA

atLocation/guard

portEnabled

portExec/read/write

Figure 4.8: Pointcuts and Joinpoint Frames

A pointcut expression is composed of one or more of the primitive expres-

sions: atLocation(`), readVarGuard(x), readVarFunc(x),write(x), portEnabled(p),

portExecute(p). Figure 4.8 summarizes the execution time frames of their matching

joinpoints.

Definition 19 (Combining Matches ⊗). The combination of two pointcut matches

m1 = 〈M1, ps1, pe1〉, m2 = 〈M2, ps2, pe2〉 is denoted by r = m1⊗m2 where r is a

new pointcut match r = 〈Mr, psr, per〉 where:

• Mr = M1 ∩M2;

30

• psr = max(ps1, ps2);

• per = max(pe1, pe2).

First, when combining matches, the result must ensure that the match is com-

mon. For this, the transitions from both matches are intersected to ensure that

the result has transitions present in both. Second, the start of the execution frame

denotes the execution point right before a match starts. A combination is consid-

ered to be started when a component has passed both ps1 and ps2 (i.e., the most

delayed frame). Third, the end of the execution frame denotes the execution point

right after the match has ended. A combination is considered to be ended when a

component has passed both pe1 and pe2 (i.e., both frames have ended).

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

atLocation(`2)

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

portExecute(p1)

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

Combination

x

Figure 4.9: Combining Pointcut Matches

Example 15. Figure 4.9 combines two pointcut matches r = m1⊗m2, where m1 =

match`(B , atLocation(`2)), and m2 = match`(B , portExecute(p1)). We have, m1 =

〈{t2, t3, t4} , PA,CB〉, m2 = 〈{t0, t1, t2} , CB,CA〉, and r = 〈{t2} , CB,CA〉. r

matches only transition t2. The frame starts after both have started, i.e., directly

after CB. This happens after port p1 is selected for execution. If the frame were

to start at PA then it would still be undetermined whether or not port p1 would

execute. The frame ends at CA, i.e., after the port p1 is done executing. Right after

this point, the component is neither at location `2 nor executing p1. If the frame

were to end at CB, the component would no longer be at location `2 but would still

be executing p1. The execution frame is bound to the execution of f2, i.e., function

of transition t2. The result represents the execution of port p1 on transitions with

source location `2.

31

Finally, several primitive pointcut expressions are pairwise matched (⊗) accord-

ing to the following definition. Note that, since ∩ and max are associative and

commutative, ⊗ is also associative and commutative. That is, match order does not

matter.

Definition 20 (Matching a Pointcut Expression). Given an atomic compo-

nent B, matching a pointcut expression match`(B, {pc1, pc2, . . . , pcn}) =

match`(B, pc1)⊗match`(B, pc2)⊗ . . .⊗match(B, pcn).

4.4 Local Advice

The advice determines the extra behavior to be added a joinpoint. A joinpoint

is a tuple 〈τ, ps, pe〉 consisting of a transition, start and end execution point. An

advice is typically applied to a group of joinpoints. The pointcut match 〈M, ps, pe〉
designates a set of joinpoints. Given an atomic component B, a local advice may

change its location, its variables B.vars , or additional extra variables V . An advice

has then access to Xadv = B.vars ∪ V . A local advice consists of three elements:

1. A before computation function fb =
〈
x1 := f1(X1), . . . , xn := fn(Xn)

〉
such

that ∀i ∈ [1, n] : xi ∈ Xadv,∀i ∈ [1, n] : Xi ⊆ Xadv. This computation

happens right at ps, the point that directly precedes the joinpoint.

2. An after computation function fa =
〈
y1 := f1(Y1), . . . , ym := fn(Ym)

〉
such

that ∀i ∈ [1,m] : yi ∈ Xadv,∀i ∈ [1,m] : Yi ⊆ Xadv. This computation

happens right at pe, the point that directly follows the joinpoint. Note that,

the execution of fb must be followed by the execution of fa. Since the execution

of fa implies that a joinpoint was matched and its start point executed. Hence,

the end point of that joinpoint must also execute.

3. A reset location set R. R is a set of tuples r = 〈`, g〉. Each tuple r indicates

that after the end of the joinpoint the component has to modify its location

to ` if guard g evaluates to true.

Note that fb and fa computations are not necessarily before and after τ , they could

happen before or after a different transition depending on the execution frame of

the joinpoint.

Example 16. Figure 4.10 shows the advice fb = [x = x + 1], fa = [x = x − 1] and

R = {〈`1, (x > 1)〉} applied to match(B , atLocation(`2)) = 〈{t2, t3, t4} , PA,CB〉.

32

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

atLocation(`2)

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0fb

[g1]

p1
f1fb

[g2]

p1
faf2

[g3]

p2
faf3

[g4]

p2
faf4fb

p1 p2

Applying fb and fa

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0fb

[g1]

p1
f1fb

[g2]

p1
faf2

[g3]

p2
faf3

[g4]

p2
faf4fb

[x > 1]

[x > 1]

[x > 1]

p1 p2

Applying R

x

Figure 4.10: Applying Advice to atLocation(`2)

The figure illustrates the behavior expected after the weaving is done. fb executes at

PA and fa at CB. Thus, function fb executes after f0, f1 and f4, while function

fa executes before f2, f3 and f4. After fa is done executing, the component enters

a location ` ∈ dest(M) = {`2, `3, `4} depending on the transition executed. Then, R

forces the component to move to `1 if x > 1 evaluates to true.

4.5 Local Aspect

A Local Aspect is defined on an atomic component as a combination of: (1) its extra

variables; (2) a pointcut expression; (3) an advice. Formally:

Definition 21 (Local Aspect). A local aspect LA is defined as a tuple

〈B, pc, V, fb, fa, R〉, let Xadv = B.vars ∪ V where:

• B is an atomic component;

• pc ∈ LPC is a pointcut expression;

• V is a set of extra variables;

• fb =
〈
x1 := f1(X1), . . . , xn := fn(Xn)

〉
, where ∀i ∈ [1, n] : xi ∈ Xadv, ∀i ∈

[1, n] : Xi ⊆ Xadv, is the computation to be executed before the pointcut match;

• fa =
〈
x1 := f1(X1), . . . , xm := fn(Xm)

〉
such that ∀i ∈ [1,m] : xi ∈

Xadv, ∀i ∈ [1,m] : Xi ⊆ Xadv is the computation to execute after the pointcut

match.

• R is a set of tuples r = 〈`, g〉 where:

33

– r.` ⊆ B.locs is a reset location;

– r.g = g(Xadv) is a guard to reset to location r.`.

4.6 Weaving Local Aspects

Weaving is the process of injecting concerns at a given joinpoint. The weaving

procedure enforces the behavior of an aspect into a given BIP system. The advice

is woven as part of the BIP model using source-to-source transformations. This

approach provides flexibility as the output of the weaving is also a BIP model.

Weaving is integrated within the BIP tool-chain.

Given a composite component C = π(γ(B)) weaving a local aspect onto an

atomic component B ∈ B yields
〈
C′,m

〉
. The result of the weave is a new composite

component C′ and a map function m. The resulting composite component is C′ =

π′(γ′((B \ B) ∪ B′)) where B′ is the instrumented atomic component. Hereafter,

T and T ′ denote the transitions B.trans and B′.trans respectively. A transition is

denoted by t =
〈
`, p, g, f, `′

〉
∈ T . m : T → 2T

′
is an injective function that keeps

track of the modified transitions. This is useful for weaving multiple aspects.

4.6.1 Strategy

Recall that, an advice may update components’ variables at the before and after

computations. However, when a joinpoint is matched, the execution of the before

computation must ensure the execution of the after computation. For one aspect,

this is guaranteed since when composing joinpoints we take the latest before and the

earliest after (see Definition 19). Note that, this is, however, not ensured if the user’s

advice results in a deadlock state. For example, the before computation may modify

the state so as to have no outgoing enabled transition. Hence, the after computation

is not executed. However, since the weaving transforms a BIP model into another

one, it is particularly possible to use verification tools (such as DFinder) on the

transformed model to check deadlocks. On the other hand, when weaving several

aspects we need to add some extra variables to ensure the stipulated property.

The general weaving strategy uses one boolean variable per aspect baop. baopis

set to false right before matching the joinpoint and set to true upon joinpoint

entry. The corresponding computations to manipulate the boolean variable are

fset = [baop := true] and fclear = [baop := false].

34

For a given execution frame 〈ps, pe〉 the before computation is woven at ps while

the after computation is woven at pe. Table 4.1 lists the frames obtained from

matching primitive pointcut expressions. When exhausting all combinations, the

following frames are only possible: 〈PA,CB〉 , 〈CB,CA〉 , 〈ADD,CB〉.

Primitive Pointcut Expression Match Execution Frame 〈ps, pe〉
atLocation, readVarGuard 〈PA,CB〉

readVarFunc,write, portExecute 〈CB,CA〉
portEnabled 〈ADD,CB〉

Table 4.1: Summary of Pointcut Match Frames

Weaving of reset location is similar to all execution frames, it will be described

last. The following advice for the frame weaving is used : adv = 〈fb, fa, {}〉. The

advice adv provides both the before and after computation but no reset location.

4.6.2 Weaving 〈CB,CA〉

Given a pointcut match 〈M,CB,CA〉 weaving 〈fb, fa, {}〉 onto the match requires

weaving fb on CB and fa on CA. Recall that CB indicates the execution point right

before executing a computation f and CA indicates the execution point right after

executing f , where f is the computation function of a transition in M . Therefore

fb (resp. fa) is simply preceded (resp. succeeded) to f , and hence resulting in

f ′ = [fb; f ; fa]. All transitions leading to the transitions in M , namely previous(M)

must invoke fclear after finishing their computation. After executing fa, fset is

invoked to indicate that the joinpoint matched. This is used as a guide by the reset

location to indicate that the joinpoint was matched.

The following three rules define the required

weaving procedure corresponding to 〈CB,CA〉:

t ∈M ps = CB pe = CA

t′ =
〈
`, p, g, fbffafset, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈CB,CA〉

t ∈ previous(M) \M pe 6= PA

t′ =
〈
`, p, g, ffclear, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Clear〉

t ∈ T t 6∈M (t 6∈ previous(M) ∨ ps = ADD)

t ∈ T ′ m(t) = {t}
〈Copy〉

35

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

B

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
fbf2fafset

[g3]

p2
f3

[g4]

p2
fbf4fafset

p1 p2

B′

xbaop

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0fclear

[g1]

p1
f1fclear

[g2]

p1
fbf2fafset

[g3]

p2
f3

[g4]

p2
fbf4fafset

p1 p2

B′

xbaop

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0fclear

[g1]

p1
f1fclear

[g2]

p1
fbf2fafset

[g3]

p2
f3

[g4]

p2
fbf4fafset

p1 p2

B′

xbaop

Figure 4.11: Weaving 〈CB,CA〉

Example 17. Figure 4.11 displays the weaving of adv onto 〈{t2, t4} , CB,CA〉. Us-

ing the rule 〈CB,CA〉 the transitions t2, t4 are added to T ′ while modifying their

computation to account for the advice and to set the aop variable. Using the rule

〈Clear〉 the previous transitions previous(M) = {t0, t1} have fclear appended to

their computation. Even though selected loop transitions (e.g., t4) do not invoke

fclear it is unnecessary to do so, as fset is appended and therefore require no special

rule. The last rule, 〈Copy〉 copies the unaffected transitions.

4.6.3 Weaving 〈PA,CB〉

Given a pointcut match 〈M,PA,CB〉 weaving 〈fb, fa, {}〉 onto the match requires

weaving fb onto PA and fa onto CB. Recall that PA indicates the point where

36

the functions of transitions in previous(M) have finished executing. CB indicates

the point before the functions of transitions in M start executing. Therefore fb is

appended to all the functions of transitions in previous(M) and fa is appended to

all the functions of transitions in M . Special care needs to be taken to loops since

they could be both in M and previous(M).

The following rules define the weaving procedure:

t ∈M \ previous(M) ps = PA pe = CB

t′ =
〈
`, p, g, faf, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Current〉

t ∈ previous(M) \M ps = PA

t′ =
〈
`, p, g, ffbfset, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Previous〉

t ∈M ∩ previous(M) ps = PA pe = CB

t′ =
〈
`, p, g, faffbfset, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Loop〉

t ∈ T t 6∈M (t 6∈ previous(M) ∨ ps = ADD)

t ∈ T ′ m(t) = {t}
〈Copy〉

Example 18. Figure 4.12 displays the weaving of adv onto

match(B, atLocation(`2)) = 〈{t2, t3, t4} , PA,CB〉. Using the rule 〈Current〉,
the transitions 〈t2, t3〉 are added to T ′ and contain the after fa prepended to their

function as it should happen CB. Using the rule 〈Previous〉, the transitions 〈t0, t1〉
are added to T ′ and contain the before fb appended to their function as it should

happen PA. These transition would also set the aop variable indicating entry to

the joinpoint. It is unecessary to clear upon entry as all entry paths will match,

since executing fclear followed by fset results in fset. Using the rule 〈Loop〉 loop

transitions are copied correctly adding the fa to execute before the function as

the transition is previous and adding fb followed by fset as the transition is also

current. The last rule, 〈Copy〉 copies the unaffected transitions.

4.6.4 Weaving 〈ADD,CB〉

Given a pointcut match match(B, pc) = 〈M,ADD,CB〉 weaving 〈fb, fa, {}〉 onto

the match requires extra considerations. The ADD indicates that additional com-

putations needs to be handled. These computations refer to port enablement since

only matching at least one port enablement can lead to ADD. In the first step, we

define the selected ports sp. Selected ports are the ports required to be matched as

37

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

B

x

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
faf2

[g3]

p2
faf3

[g4]

p2
f4

p1 p2

B′

xbaop

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0fbfset

[g1]

p1
f1fbfset

[g2]

p1
faf2

[g3]

p2
faf3

[g4]

p2
f4

p1 p2

B′

xbaop

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0fbfset

[g1]

p1
f1fbfset

[g2]

p1
faf2

[g3]

p2
faf3

[g4]

p2
faf4fbfset

p1 p2

B′

xbaop

Figure 4.12: Weaving 〈PA,CB〉

part of the pointcut.

SP = {p | portEnabled(p) ∈ pc}

Given a location ` a boolean operation mkPortCondition(p, `,M), determines if

a port p in a location ` is enabled 2. Note that portEnabled , by Definition 18,

matches all outgoing transitions from ` provided one of them is in M . This is due

to portEnabled matching siblings(M).

mkPortCondition(p, `,M) =
∨

τ∈M∧τ.src=`∧τ.port=p
(τ.guard)

2. See page 29 for discussion on port enablement at a location.

38

If multiple ports SP are being matched for enablement at a location `, then they

must all be enabled at a location `

mkAddGuard(SP, `,M) =
∧
p∈SP

(mkPortCondition(p, `,M))

Port enablement must be captured to handle ADD. To do so, given ` ∈ B.locs an

extra control location `⊥ is added to B′. Therefore, B′.locs = Lresult = B.locs ∪
Ltemp

Ltemp =


{
loc⊥ | loc ∈ origin(M)

}
iff ps = ADD

∅ otherwise

` and `⊥ are then connected with two transitions. The first transition: (1) checks

if the ports in SP are enabled, (2) executes fb and, (2) does fset. The second:

(1) checks if the ports in SP are not enabled and, (2) invokes fclear. A new port

ip is created and added to B′.ports = (B.ports ∪ {ip}) to label these transitions3.

loc⊥ ∈ Ltemp ps = ADD〈
loc, ip,mkAddGuard(SP, loc,M), fbfset, loc

⊥
〉
∈ T ′

〈
loc, ip,¬mkAddGuard(SP, loc,M), fclear, loc

⊥
〉
∈ T ′

〈Create〉

Once `′ is created all its outgoing transitions from ` are redirected

from ` to `′ and cloned. This results in two versions. The first

checks for the joinpoint match (baop = true) and applies fa. The sec-

ond checks for (baop = false) and does not apply fa weaving in CB.

t ∈M ps = ADD

t′ =
〈
`⊥, p, baop ∧ g, faf, `′

〉
∈ T ′ t′′ =

〈
`⊥, p,¬baop ∧ g, f, `′

〉
∈ T ′ m(t) =

{
t′, t′′

} 〈Adjust〉

The unaffected transitions (i.e., 6∈ M) are then copied.

t ∈ T t 6∈M (t 6∈ previous(M) ∨ ps = ADD)

t ∈ T ′ m(t) = {t}
〈Copy〉

Example 19. Figure 4.13 displays weaving adv onto

match(B, {atLocation(`2), portEnabled(p1), portEnabled(p2)}) =

〈t2, t3,t 4, ADD,CB〉. At first SP = {p1, p2} is computed, then the origin is

3. This simulates the behavior of an if/else construct without adding it to the com-
putation functions.

39

determined, origin({t2, t3, t4}) = {`2}. Once the origin is defined, all locations

are copied, Ltemp =
{
`⊥2

}
. The conditional expression for the joinpoint is then

defined as gadd = mkAddGuard({p1, p2} , `2, {t2, t3, t4}) = g2∧ (g3∨ g4). Both ports

{p1, p2} are enabled when p1 is enabled: g2 is true and p2 is enabled: (g3 ∨ g4)

is true. Using the rule 〈Create〉, two transitions are created per location upon

entering the joinpoint. One transition executes iff the ports are both enabled, and

another iff they are not both enabled. The first executes fb from the advice and

invoke fset. The second simply clears invoking fclear. The rule 〈Adjust〉 is then

applied to copy over the originally outgoing transitions from `2, and creating two

versions of them: one has fa and guarded by baop and another executes normally

and guarded by ¬baop. Remaining unaffected transitions are copied with the 〈Copy〉
rule.

4.6.5 Weaving Reset Location Pairs

Given am advice 〈[], [], R〉 applied to a pointcut match 〈M, ps, pe〉
reset location pairs are woven on all dest(M). ∀r ∈ R and

∀`dest ∈ dest(M). The following transitions are added to T ′

r ∈ R `dest ∈ dest(M)〈
`dest, ip, baop ∧ r.guard, fclear, r.loc

〉
∈ T ′

〈Reset〉

Moreover, the transitions are guarded by baop so as to only execute if the atomic

component has entered the joinpoint. And once executed invoke fclear.

Example 20. Figure 4.14 shows the weaving procedure of 〈[], [], {〈`4, ga〉 , 〈`1, gb〉}〉
onto 〈{t0, t5} , CB,CA〉. The destination set is dest(M) = {`1, `2}. Reset locations

are added to B′. In green we show the pair r1 = 〈`4, g1〉 and in blue r2 = 〈`1, gb〉.

4.6.6 Weaving the Local Aspect

The rules presented for each frame are consolidated into one weave operation. The

local weave applies an advice on joinpoints.

Definition 22 (Local Weave). Given a composite component C = π(γ(B)), an atomic

component B = 〈P,L, T,X〉 ∈ B, a local pointcut match = 〈M, ps, pe〉 such that

M ∈ B.trans, and an advice adv = 〈fb, fa, R〉 to be applied on B with inter-type

40

`0 `1

`2

`⊥2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

[gadd]

ip

fbfset

[¬gadd]

ip

[]

p1 p2

B

x

`0 `1

`2

`⊥2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[baop ∧ g2]
p1
fa [¬baop ∧ g3]

p2
f3

[¬baop ∧ g2]
p1
f2

[baop ∧ g3]
p2
f3

[baop ∧ g4]
p2
f4

[¬baop ∧ g4]
p2
f4

[gadd = (g2 ∧ (g3 ∨ g4))]
ip

fbfset

[¬gadd]

ip

fclear

p1 p2 ip

B′

xbaop

`0 `1

`2

`⊥2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[baop ∧ g2]
p1
faf2 [¬baop ∧ g3]

p2
f3

[¬baop ∧ g2]
p1
f2

[baop ∧ g3]
p2
faf3

[baop ∧ g4]
p2
faf4

[¬baop ∧ g4]
p2
f4

[gadd]

ip

fbfset

[¬gadd]

ip

fclear

p1 p2 ip

B′

xbaop

`0 `1

`2

`⊥2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[baop ∧ g2]
p1
faf2 [¬baop ∧ g3]

p2
f3

[¬baop ∧ g2]
p1
f2

[baop ∧ g3]
p2
faf3

[baop ∧ g4]
p2
faf4

[¬baop ∧ g4]
p2
f4

[gadd]

ip

fbfset

[¬gadd]

ip

fclear

p1 p2 ip

B′

xbaop

Figure 4.13: Weaving 〈ADD,CB〉

variables V ; the local weave weave`(C, B,match, V, adv) is equal to
〈
C′,m

〉
. C′ =

π′(γ′((B \B) ∪B′)) is the resulting composite component, where:

• B′ =
〈
P ∪ {ip} , L ∪ Ltemp, X ∪ V ∪

{
baop

}
, T ′
〉

is the resulting atomic com-

41

`0 `1

`2

`3 `4

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

t5

t0 t1

t2
t3

t4

p1 p2

B

x

`0 `1

`2

`3 `4

[g5]

p2
f5fset

[g0]

p1
f0fset

[g1]

p1
f1

[g2]

p1
f2

[g3]

p2
f3

[g4]

p2
f4

[baop ∧ ga]

ip

fclear

[baop ∧ gb]
ip

fclear

[baop ∧ ga]

ip

fclear

[baop ∧ gb]
ip

fclear

p1 p2 ip

B′

xbaop

Figure 4.14: Weaving Reset Locations

ponent;

• m : T → 2T
′

is an injective function that keeps track of transitions;

• baop is a boolean variable created for each weave;

• Ltemp =


{
loc⊥ | loc ∈ origin(M)

}
iff ps = ADD

∅ otherwise
.

• Let t =
〈
`, p, g, f, `′

〉
∈ T . T ′ is the least

set of transitions satisfying the following rules:

42

t ∈M ps = CB pe = CA

t′ =
〈
`, p, g, fbffafset, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈CB,CA〉

t ∈M \ previous(M) ps = PA pe = CB

t′ =
〈
`, p, g, faf, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Current〉

t ∈M ∩ previous(M) ps = PA pe = CB

t′ =
〈
`, p, g, faffbfset, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Loop〉

t ∈ previous(M) \M pe 6= PA

t′ =
〈
`, p, g, ffclear, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Clear〉

t ∈ previous(M) \M ps = PA

t′ =
〈
`, p, g, ffbfset, `

′〉 ∈ T ′ m(t) =
{
t′
} 〈Previous〉

t ∈M ps = ADD

t′ =
〈
`⊥, p, baop ∧ g, faf, `′

〉
∈ T ′ t′′ =

〈
`⊥, p,¬baop ∧ g, f, `′

〉
∈ T ′ m(t) =

{
t′, t′′

} 〈Adjust〉

loc⊥ ∈ Ltemp ps = ADD〈
loc, ip,mkAddGuard(SP, loc,M), fbfset, loc

⊥
〉
∈ T ′

〈
loc, ip,¬mkAddGuard(SP, loc,M), fclear, loc

⊥
〉
∈ T ′

〈Create〉

r ∈ R `dest ∈ dest(M)〈
`dest, ip, baop ∧ r.guard, fclear, r.loc

〉
∈ T ′

〈Reset〉

t ∈ T t 6∈M (t 6∈ previous(M) ∨ ps = ADD)

t ∈ T ′ m(t) = {t}
〈Copy〉

• γ′ = γ ∪
{
aip = 〈ip, true, []〉

}
;

• π′ =

{
π ∪

{〈
a, aip

〉
| a ∈ π

}
iff aip 6∈ γ

π otherwise

The obtained composite component C′ has one extra singleton interaction aip

associated with port ip. Additionally, interaction aip is given the highest priority

w.r.t. predefined interactions.

Both ip and aip are fixed for all possible weaves. Therefore, if C is the result of

a previous local weave, it already contains them, in which case ip ∈ B.ports and

aip ∈ γ. In this case B.ports = B′.ports , γ′ = γ and the priorities remain unchanged

π′ = π, as no port and interaction has been effectively added.

It is possible for V , or a subset of v ⊆ V , to have already been woven if C is

the result of an earlier weave. However since B′.vars = B.vars ∪ V they will not be

woven again.

Now we are ready to define the weaving of a local aspect into a composite com-

ponent.

Definition 23. Weaving a local aspect LA onto a composite component C = π(γ(B))

is defined as: C′ = C /LA where:

43

• LA = 〈B, pc, V, fb, fa, R〉 such that B ∈ B;

• C′ is the result from the local weave:
〈
C′,m

〉
=

weave`(B,match`(B, pc), V, 〈fb, fa, R〉).

44

Chapter 5

GLOBAL ASPECTS

Contents

5.1 Global Joinpoints . 45

5.2 Global Pointcuts . 46

5.3 Global Advice . 48

5.4 Global Aspect . 49

5.5 Weaving . 49

In this chapter, we target the global view, i.e., interactions between atomic com-

ponents (considered as black-boxes). Crosscutting concerns arise from coordination

between components.

5.1 Global Joinpoints

At the global level, atomic components only export their ports, on which interactions

are defined. Generally, each atomic component determines its enabled ports. Given

the enabled ports and the guards of the interactions, the composite component

executes one interaction which has: (1) all its ports enabled, (2) its guard evaluated

to true, (3) there does not exist another interaction with higher priority which is

also enabled. At the interaction level, the following operations exist: interaction

enablement and interaction execution. For the scope of this thesis we only consider

interaction execution. This is mainly due the complexity of matching interaction

enablement, which requires to include the BIP engine as part of the BIP model. For

this, it is better to handle it using a different approach by interfacing with the BIP

engine. The interaction execution operation can express three joinpoints.

1. Synchronization between different atomic components

2. One or more atomic components sending data;

3. One or more atomic components receiving data.

45

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

f0

[g1]

f1

[g2]

f2[g3]

f3

a0
a1

a2

a3

Figure 5.1: Example Composite Component

The joinpoint is modeled as an interaction execution and specifically, the execu-

tion of the interaction function.

Definition 24 (Global Joinpoint). A global joinpoint in a composite component γ(B)

is defined as an interaction a ∈ γ.

5.2 Global Pointcuts

In the global setting, joinpoints consist of interactions. Matching a group of in-

teractions is done by matching their associated ports. For this, a global pointcut

expression has two parts: the ports themselves and data transfer on those ports.

Data transfer is captured by read or writes of the port variables in the computation

function of the interaction.

Definition 25 (Global Pointcut). A global pointcut expression

is GPC = ports({p1, . . . pn}) × 2pcvars, where pcvars =

{readPortsVars({x1, . . . , xm}),writePortsVars({y1, . . . , ym})} such that:

• {p1, . . . , pn} ⊆
⋃
B∈B(B.ports);

• {x1, . . . , xm, y1, . . . , ym} ⊆
⋃
p∈{p1,...,pn}(p.vars).

Recall that, the global joinpoint only consists of interaction execution. Thus,

matching a global joinpoint yields to a set of interactions.

Definition 26 (Global Pointcut Match). Given a composite component C = π(γ(B)),

matchg (C, pc) = I with pc ∈ GPC and I ⊆ γ, where:

46

• pc = ports({p1, . . . pn}).readPortsVars({x1, . . . , xm}).writePortsVars({y1, . . . , ym});

• I = {a | a ∈ γ ∧ {p1, . . . , pn} ⊆ a.ports ∧ {x1, . . . , xm} ⊆ varr (a) ∧ {y1, . . . , yk} ⊆ varl (a)}1.

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

[xb := xa]

[g1]

[xd := xd + xb]

[g2]

f2[g3]

f3
a0

a1

a2

a3

ports({pa1, pb1})

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

[xb := xa]

[g1]

[xd := xd + xb]

[g2]

f2[g3]

f3
a0

a1

a2

a3

ports(pb2)

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

[xb := xa]

[g1]

[xd := xd + xb]

[g2]

f2[g3]

[xb := 0]
a0

a1

a2

a3

ports(pb2).readPortsVars(xb)

A

B

C

D

pa1

pb1 pb2

pc1 pc2

pd1

pd2

xa

xb xd

[g0]

[xb := xa]

[g1]

[xd := xd + xb]

[g2]

f2[g3]

[xb := 0]
a0

a1

a2

a3

ports(pd1).readPortsVars(xd),writePortsVars(xd)

Figure 5.2: Matching Global Pointcuts

Example 21. Figure 5.2 shows the joinpoints obtained from matching four pointcuts:

1. ports({pa1, pb1}) matches all interactions that contain both {pa1, pb1} in their

ports. This will only match a0 as it is the only interaction that has both ports.

2. ports({pb2}) matches all interactions that have pb2 in their ports. The inter-

actions {a1, a3} will match since they are both connected to pb2.

1. See page 7 for varr and varl

47

3. ports(pb2).readPortsVars(xb) matches interactions that are connected to pb2

and their computation must read the variable xb associated with pb2. This

matches all interactions that depend on pb2 sending data.

4. ports(pd1).readPortsVars(xd),writePortsVars(xd) matches interactions that

are connected to pd1 and their computation must read and write the vari-

able xd associated with pd1. This matches all interactions that depend on pd1

sending and receiving data.

5.3 Global Advice

A global advice allows for extra computation to be executed at a

global joinpoint. While the global pointcut match yields a set of

interactions, a global advice has restricted access to the interac-

tion’s ports and their variables. Given a pointcut expression pc =

ports({p1, . . . pn}).readPortsVars({x1, . . . , xm}).writePortsVars({y1, . . . , ym})
and its match I, the advice is restricted to the ports referenced by ports and extra

variables V called the inter-type. The restriction ensures that an advice can only

modify the ports that it matches, as interactions could include other ports. The

non-matching ports are hidden from the advice2. Given an interaction a, the before

(resp. after) advice is to execute before (resp. after) its computation function (i.e.,

a.func).

Definition 27 (Global Advice). Given a set of ports P and inter-type variables V ,

Xadv = V ∪
⋃
p∈P (p.vars), are the advice variables. A global advice is a pair 〈fb, fa〉

such that:

• A before computation fb =
〈
x1 := f1(X1), . . . , xn := fn(Xn)

〉
such that ∀i ∈

[1, n] : xi ∈ Xadv, ∀i ∈ [1, n] : Xi ⊆ Xadv;

• An after computation fb =
〈
y1 := f1(Y1), . . . , ym := fn(Ym)

〉
such that ∀i ∈

[1,m] : yi ∈ Xadv,∀i ∈ [1,m] : Yi ⊆ Xadv.

2. As by application of the Law of Demeter [17]

48

5.4 Global Aspect

A global aspect binds a pointcut expression to its advice. It also adds additional

inter-type variables. These variables are available to all interactions that match the

pointcut. For instance, they can be used to keep track of global information, e.g.,

count the number of times an interaction is executed.

Definition 28 (Global Aspect). A global aspect GA is a tuple 〈C, V, pc, fb, fa〉 where:

• C denotes a composite component;

• V denotes the variables that are associated with the aspect;

• pc ∈ GPC denotes the global pointcut expression, where P is the set of ports

such that ports(P) ∈ pc. Xadv = V ∪
⋃
p∈P (p.vars);

• fb denotes the advice’s before computation over Xadv;

• fa denotes the advice’s after computation over Xadv.

5.5 Weaving

The weaving of a global aspect requires weaving of the inter-type component and

weaving of the advices. Weaving the inter-type component allows interactions to

access inter-type variables V . The advice is woven to the interactions by attaching

them to the inter-type component.

Weaving The Inter-type

The inter-type component is added to the system as a separate atomic component

BV . BV contains V as its variables, one port pV = 〈pV , V 〉 with all the vari-

ables attached to it, and one control location with a transition labeled with pV and

guarded with true. This ensures that the port will not stop any other interaction

from executing once connected to it.

Given a composite component C = π(γ(B)) and a set of variables V .

Weaving the inter-type modifies B by generating B′ = B ∪ BV where BV =

〈{pV } , {`0} , {〈`0, pV , true, [], `0〉} , V 〉 where pV = 〈pV , V 〉. The component is

identified by V . Therefore, for each V we can have at most one BV associated with

them.

49

`0

[true]

pV
[]

BV

pV

v0 v1
A

B

C

D

BV

pa1

pb1 pb2

pc1 pc2

pd1

pd2

pV

xa

xb xd

v0 v1

[g0]

f0

[g1]

f1

[g2]

f2[g3]

f3
a0

a1

a2

a3

C′

Figure 5.3: Inter-type Weaving

Example 22. Figure 5.3 displays C′ = π(γ(B ∪ {BV })) where V = {v0, v1} and

C = π(γ(B)). A new atomic component is created BV that has two local variables

v0 and v1. And has its port pV always enabled. The variables are attached to pV .

Weaving a Global Aspect

Once the inter-type component has been woven into the system, the advice is woven

by connecting the existing interactions to it.

Definition 29 (Global Weave). Given a composite component C = π(γ(B)), a global

joinpoint I, an inter-type V and a global advice adv = 〈fb, fa〉, the global weave is

defined as
〈
C′,m

〉
= weaveg (C, I, V, adv) where:

• C′ = π(γ′(B′)) is the new composite component;

• m : γ → γ′ is a mapping that tracks changes to interactions;

• B′ = B ∪ {BV } is the new set of atomic components;

• BV = 〈{pV } , {`0} , {〈`0, pV , true, [], `0〉} , V 〉 is the inter-type component

identified by V ;

• pV = 〈pV , V 〉 is the port for the inter-type;

50

• γ′ is the least set of interactions satisfying the following rules:

a ∈ (γ ∩ I)

m(a) =
〈
a.ports ∪ paop, fb a.func fa, a.guard

〉
∈ γ′

〈Inject〉

a ∈ (γ \ I)

a ∈ γ′ m(a) = a
〈Default〉

The inter-type component BV is added to B. Since BV is identified by V if

V was already previously woven into the component then BV ∈ B and B′ = B.

The interactions I are extended with the port pV so as to have access to the inter-

type and their computation function is prepended with fb and fa. The interactions

priorities (π) are not modified, thereby preserving the priorities on the interactions.

A

B

C

D

BV

pa1

pb1 pb2

pc1 pc2

pd1

pd2

pV

xa

xb xd

v0 v1

[g0]

f0

[g1]

f1

[g2]

f2[g3]

f3
a0

a1

a2

a3

C′

A

B

C

D

BV

pa1

pb1 pb2

pc1 pc2

pd1

pd2

pV

xa

xb xd

v0 v1

[g0]

f0

[g1]

fbf1fa

[g2]

f2[g3]

f3
a0

a1

a2

a3

C′′

Figure 5.4: Completing The Weave

Example 23. Figure 5.4 displays weaving the advice to I =

matchg (C, ports({pb2, pd1})) = {a1}.

• The interaction a1 is connected to paop so as to allow access to {v0, v1} on

which fb and fa can operate.

• The computation fb is prepended to a1.func so as to execute before and fa is

appended to a1.func so as to execute after.

• Since pV is always enabled, the interaction a1 will be enabled when pb2 and

pd1 are both enabled and g1 is true. The extension to pV does not affect

enablement.

51

• Once a1 is executed if fb or fa write onto pV .vars they will then be received

in BV and changed accordingly.

We are now ready to define the weaving of a single global aspect GA.

Definition 30. Weaving a global aspect GA onto a composite component C = π(γ(B))

is defined as: C′ = C /g GA where:

• GA = 〈C, V, pc, fb, fa〉;

• C′ is the result from the global weave:
〈
C′,m

〉
=

weaveg (C,matchg (C, pc), V, 〈fb, fa〉).

52

Chapter 6

ENCAPSULATING ASPECTS

Contents

6.1 Interference . 53

6.2 Containers . 54

6.3 Weaving Procedures . 55

An aspect is the single association of a pointcut expression to a joinpoint. It may

also include some extra variables. However, when weaving more than one aspect,

specific problems and extra considerations need to be taken into account. This

section deals with explaining how to weave multiple aspects, and elaborating on

ways to group them.

6.1 Interference

Recall that multiple concerns may happen at one joinpoint in a program. Typically

this can be seen as the tangling phenomenon. When secondary code is added to

the joinpoint, it is possible to interfere with the existing code at the joinpoint. This

behavior is called interference. Since not all concerns are independent, interference

is an important issue to study.

Example 24. Figure 6.1 displays the multiple weaving scenarios of two aspects asp1

and asp2 where:

• asp1 = 〈B, pc, {} , fb, fa, {}〉

• asp2 =
〈
B, pc, {} , f ′b, f

′
a, {}

〉
Both aspects share the same pointcut pc = {atLocation(`1), portExecute(p1)}. Let

t1 be the transition guarded by g1 labeled by p1 and whose computation is f1. Both

aspects will share the same match: m = 〈{t1} , CB,CA〉. According to the execution

frame both fb and f ′b must be prepended to f1. fa and f ′a must be appended to

f1. The four scenarios display the possible arrangements to order fb, f
′
b, fa and

f ′a. The order would not be an issue if all those functions do not write to the

component variables. For example in the case of logging, the ordering would not

53

matter. However suppose fb = [x := 3] and f ′b = [x := 2]. The variable x will be

changed to either 3 or 2 by the end of the before section. This causes the original

computation f1 to behave non-deterministically if it depends on x.

`0 `1

`2

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f ′bfbf1f

′
afa[g4]

p2
f4

p1 p2

Scenario A

x

`0 `1

`2

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
f ′bfbf1faf

′
a[g4]

p2
f4

p1 p2

Scenario B

x

`0 `1

`2

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
fbf

′
bf1f

′
afa[g4]

p2
f4

p1 p2

Scenario C

x

`0 `1

`2

[g5]

p2
f5

[g0]

p1
f0

[g1]

p1
fbf

′
bf1faf

′
a[g4]

p2
f4

p1 p2

Scenario D

x

Figure 6.1: Interference In Atomic Components

Defining the composition of aspects helps to deal with interference in a more

predictable way. To do so, we examine in the following sections: (1) a modular unit

that groups aspects, and (2) the operations that weave multiple aspects.

6.2 Containers

Aspect containers encapsulate a group of aspects. Containers are the equivalent of

an Aspect in AspectJ. A container consists of a sequence of aspects with shared

properties. Local containers apply to local aspects. Global containers apply to

global aspects.

Definition 31 (Local Container). A local container is a tuple 〈〈LA1, . . . ,LAn〉 , B, V 〉
such that ∀LAi ∈ {LA1, . . . ,LAn} : LAi is applied to an atomic component B and

54

has the inter-type V .

Definition 32 (Glbbal Container). A global container is a tuple〈
〈GA1, . . . ,GAn〉 , V ′

〉
where ∀GAj ∈ {GA1, . . . ,GAm} : GAj has the inter-

type V ′.

Containers define an order on the aspects they encapsulate. This helps to define

the weaving order of the aspects. Moreover, containers ensure that aspects share the

same inter-type variables. Sharing allows the inter-type to be encapsulated in the

container. Local aspects operating on different atomic components do not interfere.

In the case of local aspects, aspects are required to operate on the same atomic

component encouraging encapsulation.

6.3 Weaving Procedures

To deal with interference we propose two approaches to compose aspects. These

two approaches specify the system on which aspects match their pointcuts. The

aspects are presented in a sequence 〈asp1, . . . , aspn〉 where asp1, . . . , aspn are all

either global or local aspects.

For a local aspect LA = 〈B, pc, V, fb, fa, R〉 we denote B, pc, V, 〈fb, fa, R〉
as LA.B, LA.pc, LA.V and LA.adv, respectively. For a global aspect GA =〈
C, pc′, V ′, f ′b, f

′
a

〉
we denote C, pc′, V ′,

〈
f ′b, f

′
a

〉
as GA.C, GA.pc, GA.V and GA.adv

respectively.

Weave Serial

The first compositional approach weaveSerial allows the pointcut of aspect aspi

where i ∈ {2, . . . , n} to match any changes introduced by all aspects prior to it:

aspj where ∀j : j < i.

Definition 33 (weaveSerial). Depending on the aspect type we have two operations:

• The procedure weaveSerial` applied to a sequence of local aspects

〈asp1, . . . , aspn〉 is defined as: C′ = weaveSerial`(C, 〈asp1, . . . , aspn〉) =

((((C / asp1) / asp2) / ..) / aspn)

• The procedure weaveSerialg applied to a sequence of global aspects

〈asp1, . . . , aspm〉 is defined as: C′ = weaveSerialg(C, 〈asp1, . . . , aspm〉) =

((((C /g asp1) /g asp2) /g ..) /g aspm)

55

Weave All

The second compositional approach weaveAll allows the pointcut of aspect aspi in

the sequence to not match extra behavior of the advices of all prior aspects aspj

where (∀j : j < i). The non-matched behavior is the added transitions from the

reset locations of local aspects. Therefore weaveAll only applies to local aspects, as

global advices do not introduce new interactions.

The matching of pointcuts is separate from the weaving procedure, therefore it

is possible to match the joinpoints of all the sequence of aspects before we start

weaving them. The operation weaveAll matches all the pointcuts of the sequence,

then weaves the aspects according to their order based on their original match

projected onto the new component.

Given two aspects asp1 and asp2, their corresponding matches on a com-

ponent C0 = π(γ(B)) are: m1 = match`(asp1.B, asp1.pc) and m2 =

match`(asp2.B, asp2.pc) where asp1.B, asp2.B ∈ B. Weaving asp1 results in

〈C1,m1〉 = weave`(C0, asp1.B,m1, asp1.V, asp1.adv). The weaving of asp2 needs

to apply on C1 and therefore its original match m2 needs to apply to transitions in

C1 as the local weave changes the transitions. Therefore m2 is projected onto C1
using project(m2, g1). Which replaces the old transitions with their changes.

project(M,m) =
⋃
t∈M

(m(t))

To enable weaving the kth aspect we need to project over all k − 1 weaves using

〈m1 . . . ,mk−1〉.

follow(M, 〈m1, . . . ,mk−1〉) =

{
project(project(project(M,m1), . . .),mk−1) k − 1 > 1

M otherwise

The weaveAll for a sequence of n local aspects on a composite component C0 is

defined as 〈Cn,mn〉 = weaveAll(C0, 〈asp1, . . . , aspn〉) such that:

56

∀i ∈ {1, . . . , n}:

〈Ci,mi〉 = weaveg (Ci−1, follow(Mi, 〈m1, . . . ,mi−1〉), aspi.V, aspi.adv)

Mi = matchg (C0, aspi.pc)

Discussion

The reset location in local advices is designed to cause the component to directly

move to a location given a guard. In the case of weaveSerial , the reset location

only incorporates advices of aspects that are woven after it, but not before. The

weaveAll provides finer tuning on the behavior of a reset location by making reset

location not incorporate advices of subsequent aspects. This provides another way

to manage interference between various aspects implementing reset location.

For both weaveSerial and weaveAll , the reset location can cause a component to

execute a before advice without its corresponding after. This scenario typically

happens when a reset location is woven on an earlier execution frame than an after

advice. Given a sequence of aspects 〈a1, . . . , an〉 and two aspects ai and aj such

that i < j. Let the frame of ai’s joinpoints be 〈is, ie〉 and that of aj ’s joinpoints be

〈js, je〉. If js ≺ ie and ie ≺ je, a reset location in ai.adv would be woven prior to je.

Therefore, je is not executed along with any after advice woven onto it. It is possible

to avoid the scenario by composing aspects differently. Two example compositions

involve:

1. Ordering aspects by their execution frames;

2. Splitting an aspect into two aspects such that (a) one contains a reset loca-

tion only advice and (b) another contains the before and after advice only.

Then, the ones with reset locations are woven first, the rest are woven with

weaveSerial . This ensures all before and after apply to all reset locations.

Example 25. Figure 6.2 shows the different results obtained by composing two aspects

a and a′ onto an atomic component. The joinpoints are provided by matching a.pc =

{atLocation(`0), portExecute(p2)} and a′.pc = {atLocation(`1)}. The corresponding

advices are a.adv = 〈fb, fa, {〈`0, true〉}〉 and a′.adv =
〈
f ′b, f

′
a, {}

〉
.

• Figure 6.2 (a) and Figure 6.2 (b) show the weaving of each aspect individually.

When weaving the two aspects into one system, overlap causes interference. Let

57

`0 `1

`2

[g5]

p2
fbf5fafset

[g0]

p1
f0

[g1]

p1
f1

[b]

ip

fclear

p1 p2 ip

(a) Weaving a

xb

`0 `1

`2

[g5]

p2
f5f

′
bf

′
clear

[g0]

p1
f0

[g1]

p1
f ′af1

p1 p2 ip

(b) Weaving a′

xb′

`0 `1

`2

[g5]

p2
fbf5fafsetf

′
bf

′
clear

[g0]

p1
f0

[g1]

p1
f ′af1

[b]

ip

f ′afclear

p1 p2 ip

(c) weaveSerial :
〈
a, a′

〉

xbb′

`0 `1

`2

[g5]

p2
fbf5f

′
bf

′
clearfafset

[g0]

p1
f0

[g1]

p1
f ′af1

[b]

ip

fclear

p1 p2 ip

(d) weaveSerial :
〈
a′, a

〉

xbb′

`0 `1

`2

[g5]

p2
fbf5fafsetf

′
bf

′
clear

[g0]

p1
f0

[g1]

p1
f ′af1

[b]

ip

fclear

p1 p2 ip

(e) weaveAll :
〈
a, a′

〉

xbb′

`0 `1

`2

[g5]

p2
fbf5f

′
bf

′
clearfafset

[g0]

p1
f0

[g1]

p1
f ′af1

[b]

ip

fclear

p1 p2 ip

(f) weaveAll :
〈
a′, a

〉

xbb′

Figure 6.2: Weaving Procedures

m denote the match of a, m′ denote the match of a′.pc and t5 the transition

guarded by g5. The transition t5 is both in the joinpoint of m and previous(m′).

Depending on the order of weave the newly created reset location could also be

58

found in m′ as it is outbound from `1.

• Figure 6.2 (c) and Figure 6.2 (d) show the weaveSerial` operation.

1. Figure 6.2 (c) presents the serial weave on a followed by a′. The weave

of a results in 〈C1, g1〉. C1 is shown in Figure 6.2 (a). Upon weaving a′

its pointcut will match the reset location as it is outbound from `1 and

will therefore prepend f ′a to it. The pointcut will also match g1(t5) as it

is inbound, therefore it appends f ′bf
′
clear to its existing function which is

now fbf5fafset since a was already woven.

2. Figure 6.2 (d) presents the serial weave on a′ followed by a. The weave

of a′ results in
〈
C′1, g

′
1

〉
. The component is shown in Figure 6.2 (b).

Upon weaving a the pointcut will match g′1(t5). Its function f5f
′
bf
′
clear is

then appended with fafset. Additionally the reset location is then added

guarded by b ∧ true.

• Figure 6.2 (f) show the weaveAll operation and how it differs from the

weaveSerial . The pointcut of a′ will always match against the original com-

ponent, matching always the transition guarded by g5. The weaveAll projects

the match. The new match result will be t5 if a′ is woven first or g1(t5) if a is

woven first. The joinpoint will therefore not contain the reset location in both

cases. The order of the aspects still define the order of the advices woven onto

overlapping transitions. Figure 6.2 (e) displays the different advices order.

59

Chapter 7

AOP-BIP

Contents

7.1 Overview . 60

7.2 Language Description . 61

7.3 Frontend . 66

7.4 Backend . 68

7.5 Utility . 71

7.1 Overview

The ideas presented in this thesis are implemented in AOP-BIP. AOP-BIPis a proof-

of-concept, aspect-oriented extension to BIP. The main flow and various major com-

ponents are displayed in Figure 7.1 .

AOP

.abip File

.abip File

...

.abip File

BIP

.bip File

Flags

Weave Procedure

Input

Parsers

AOP Parser

BIP Parser

Adapters

BIPSystem

PortData

AOP2BIP

AOP Systems

Global System

Global Procedure Global Validator

Global Container Global Matcher

Global Aspect Global Weaver

Local System

Local Procedure Local Validator

Local Container Local Matcher

Local Aspect Local Weaver

AOP-BIP

BIP Model

.bip File

Output

Figure 7.1: The AOP-BIPTool

AOP-BIP’s command line front-end takes as input:

60

• A .bip file that represents a BIP system written in the BIP language [11];

• The name of the Weaving Procedure to apply when weaving the aspect-oriented

descriptions onto the BIP model.

• A collection .abip files that represent aspect-oriented descriptions.

AOP-BIPwill then produce the BIP model and the aspect containers by parsing the

.bip file and .abip files respectively. It selects a weaving procedure to compose the

aspects per container. The procedure will then weave the containers onto the BIP

model resulting in an output BIP model. A typical weaving procedure will do the

following:

• Call the Validator to validate the aspect container against the BIP model;

• Call the Matcher to match the pointcuts;

• Invoke the Weaver to weave in the advices.

The output BIP model is then written to an output file in the BIP language. The

command-line client is ujf.verimag.bip.aop.Main it can be invoked as:

java − jar aopbip.jar bipin bipout all|serial aspect [aspect, ...]

The ujf.verimag.bip.aop.Main also provides the weave static method that provides

the same functionality:

void weave(String bipin, String bipout, WeaveStrategy strat, Collection<String> input)

7.2 Language Description

The BIP Language

The BIP language is described in full in [11]. We only use a subset of the language

to illustrate the concepts of this paper. The BIP language is typed. That is, com-

ponents, ports and data are associated with types. The syntax covering the scope

of this thesis is shown in Listing 7.1 . Port types define the type of a port, a type

defines the number and corresponding types of variables attached to the port.

61

port type DataPort(int var)

port type VoidPort

atomic type Count (String name)

data int x

data int y

export port DataPort stop(x)

export port VoidPort tick

export port VoidPort start

place L0, L1

initial to L0 do { x = 0; y = 0; }

on start from L0 to L1 provided (x >= 0) do { y++; }

on tick from L1 to L1 provided true do { x += y; }

on stop from L1 to L0 provided (x > 0) do { }

end

Listing 7.1: The Counter Component

An atomic type describes an atomic component. It is characterized by:

• A set of parameters, defined upon instantiation;

• A set of variables;

• A set of ports: export specifies that the port is an interface, if export is

omitted the port is internal and executes as if it were connected to a singleton

connector;

• A set of control locations;

• An initial location with an initializing function;

• A set of transitions in the form of:

on < port > from < location > to < location >

provided < guard > do < function >.

A compound type describes a composite component. A compound type contains

a set of components and a list of connectors that define the interactions between

components. A connector type defines the port types associated with it, a guard and

two functions to execute: up and down. The up defines behavior when the interaction

is enabled while down defines the behavior when the interaction is executed. Listing

62

7.2 creates the composite component and the interactions. The interactions ensure

that: both counters start and stop in synchrony; c1 can tick independently while

c2’s ticking is synchronized with c1.

connector type Sing(VoidPort t0)

define [t0]

on t0 provided true up{} down {}

end

connector type Sync2(VoidPort t1, VoidPort t2)

define [t1 t2]

on t1 t2 provided true up {} down {}

end

connector type SwapData(DataPort c1, DataPort c2)

define [c1 c2]

on c1 c2 provided true up{} down{ //Swap

c1.var = c1.var + c2.var;

c2.var = c1.var - c2.var;

c1.var = c1.var - c2.var;

}

end

compound type Composite

component Count c1 ("Counter 1")

component Count c2 ("Counter 2")

connector Sing tickOne (c1.tick)

connector Sync2 tickAll (c1.tick, c2.tick)

connector Sync2 startAll (c1.start, c2.start)

connector SwapData stopAll (c1.stop, c2.stop)

end

component Composite sys

Listing 7.2: Composing Two Counters

In addition to the BIP system, .bip files also contain a module declaration to en-

capsulate the system and a header section. The header contains arbitrary C code

that will be included in code generation. For example preprocessor directives, type

definitions and extra C functions are defined in the header. Additionally, functions

may be augmented with C code by wrapping it in {# #} tags.

The AOP-BIPLanguage

To designate the joinpoint, we begin by illustrating the pointcut expressions. There

exists two pointcut expressions based on the type of the aspect: local and global.

Listing 7.3 depicts the grammar for local and global aspects. The local pointcuts

adopt a similar style to that in the paper. The local advice is a triple of before,

after and an optional reset location pairs.

63

aspect : pointcuts ’do’ advice;

pointcuts : (pointcut)+ ;

pointcut : pctype ’(’ IDENTIFIER ’)’;

pctype : ’atLocation’

| ’readVarGuard’

| ’readVarFunc’

| ’write’

| ’portEnabled’

| ’portExecute’

;

advice : (before) (after) (resetlocs)? ;

before : ’{’ actions ’}’;

after : ’{’ actions ’}’;

resetlocs : ’{’ (rlocpair (’,’ rlocpair)*)? };

rlocpair : ’(’ IDENTIFIER ’,’ expression);

gaspect : gpoint ’do’ before after

;

gpoint : ’ports’ ’(’ (portspec)+ ’)’ (gread)? (gwrite)?

| ’ports’ ’(’ (portspec)+ ’)’ (gwrite)? (gread)?

;

gwrite : ’writePortVars’ ’(’ port_var+ ’)’;

gread : ’readPortVars’ ’(’ port_var+ ’)’;

portspec : IDENTIFIER ’:’ port_name ;

port_name : IDENTIFIER ’.’ IDENTIFIER;

port_var : IDENTIFIER ’.’ IDENTIFIER;

Listing 7.3: The Aspects Syntax

The global pointcut syntax definition includes an additional layer portspec. The

port specification allows us to alias a port identifier. This is merely provided as syn-

tactic sugar to simplify referring to the port variables in the read, write expressions

and the advice.

Aspects are grouped into containers so as to encapsulate multiple pointcut ex-

pressions and their corresponding advices. The inter-type is defined at the container

level so as to encourage encapsulation of shared data. A container is defined by

declaring the Aspect keyword followed by its identifier. If the container defines

local aspects then it must specify the atomic component it targets right after its

identifier. The inter-type section lists the extra variables and can optionally specify

their initial values. Additionally it is possible to specify extra arbitrary C code to

64

merge with the BIP model’s header. Listing 7.4 depicts the extra syntax.

file : (CODE)? (container)+ ;

container : ’Aspect’ IDENTIFIER ’{’ intertype (gaspect)+ ’}’

| ’Aspect’ IDENTIFIER ’(’ IDENTIFIER ’)’

’{’ intertype (aspect)+ ’}’

;

CODE : ’{#’ .*? ’#}’;

intertype : (intertypedef)*

;

intertypedef

: ’data’ IDENTIFIER IDENTIFIER

| ’data’ IDENTIFIER IDENTIFIER ’=’ literal_expression

;

Listing 7.4: The Containers Syntax

Note that syntactically, containers can only either contain global or local aspects,

however a file can include a mix of both.

Example 26. Listing 7.5 lists two containers: CyclicTimer and BalanceTimers.

1. The CyclicTimer container applies two local aspects to c1. The aspects intro-

duce a new variable cycle. The first aspect executes after the tick operation

and restricts x to the cycle. It also introduces a failsafe, where if it at any point

the cycle is set to 0, the added reset location forces the system to component

to go back to its initial state. In this case this will cause a deadlock stopping

the system. The second aspect re-initializes the cycle range whenever L0 is

entered.

2. The Catchup container applies one global aspect to the system. It introduces

a new inter-type that keeps track of the last maximum value. The aspect is

applied to any interaction both containing the two stop ports for the timers and

data is sent to their var variable. The first aspect happens after the timers

have stopped and swapped their values. It forces the timers to synchronize their

value to their current maximum or the history’s maximum.

65

{#

#define MAX(X, Y) (((X) > (Y)) ? (X) : (Y))

#}

Aspect CyclicTimer (c1) {

data int cycle = 1

portExecute(tick) do

{} //Before

{x = x % cycle;} //After

{(L0, cycle == 0)} //Reset

atLocation(L0) do {cycle = y * 2;} {}

}

Aspect BalanceTimers {

data int lastmin = -1;

ports(p1:c1.stop, p2:c2.stop)

writePortVars(p1.var, p2.var)

do

{}

{

p1.var = MAX(lastmin, MAX(p1.var, p2.var));

p2.var = p1.var;

lastMin = p1.var;

}

}

Listing 7.5: Example Aspects

We select an atomic component or an interaction by its identifier, and not its type.

Therefore, local aspects apply to a specific instance of the atomic type and global

aspects apply to a specific instance of the connector type. The identifiers specified

in the AOP model generated from an .abip are expected to reference identifiers in

the BIP model generated from the .bip file. The validators are responsible for

verifying that the identifiers match.

7.3 Frontend

Loading The Models

The BIPSystem class plays the role of an adapter of the BIP model. It provides the

interface to load the .bip, construct the BIP model and save it to a file. This is

accomplished by interaction with the existing BIP framework tools. The BIPSystem

is also used to query the BIP model: find the corresponding atomic type for an

66

identifier and return all components. It can also be used to perform model-level

edits such as cleaning up the types no longer used and cloning the types.

The AspectLoader is responsible for parsing the .abip files and generating the

corresponding containers. Parsing is done using Antlr4 [18]. It typically reads an

.abip file and return an AspectFile which contains a header and a list of containers.

Aspects

At the very core of the entire tool lie the Aspect interface. it determines the

operations permissible on all types of aspects. Two types of aspects are de-

fined: GlobalAspect and LocalAspect. Figure 7.2 depicts the Aspect in-

terface. The extra operations relative to retrieving additional information are

shown for LocalAspect and GlobalAspect. A local aspect applies to a com-

ponent, therefore it must return its identifier. A global aspect defines a set of

aliased ports in its ports pointcut. An AspectContainer is parametrized by ei-

ther LocalAspect or GlobalAspect, it defines an order over the aspects and

has a name. The base classes for containers are LocalAspectContainer and

GlobalAspectContainer they implement AspectContainer < LocalAspect > and

AspectContainer < GlobalAspect > respectively.

<<interface>>
Aspect

+ getAdvice() : Advice
+ getPointCut() : PointCutExpr
+ getVariables(): List<Variable>
+ getReferencedVariables(): Collection<String>

LocalAspect

+ getComponentName() : String

GlobalAspect

+ getPorts() : Map<String, Port>

Figure 7.2: The Aspect Interface

Interacting with the AOP System

An aspect is typically disassociated from any information about the BIP model. All

higher constructs are parameterized in terms of the aspect type. The AOPSystem

defines the interface that manages the interaction between the aspect container and

67

a BIP system. Classes implementing the AOPSystem interface are GlobalAOPSystem

and LocalAOPSystem The AOPSystem interface defines two operations:

1. valid: validates an aspect container by cross-referencing the identifiers;

2. match: matches all aspects in the container and return their corresponding

Joinpoint objects.

The AOPSystem interface does not define an interface for weaving, weaving is handled

at an upper level by WeaveProcedure which makes use of the AOPSystem. The

AOPSystem keeps track of partial weaving information and history but does not

invoke directly the weaver. Its responsibility is to keep track of both the original BIP

model and the changes to it during a weave. Two weave procedures are presented:

LocalWeaveProcedure and GlobalWeaveProcedure. They implement weaveSerial

and weaveAll as described in Section 6.3. Listing 7.6 displays the weaving of one

local container onto a BIP model.

BIPSystem sys = new BIPSystem("/path/to/bip");

AspectFile file = AspectLoader.load("/path/to/abip");

//Track Created Objects

List<Object> artifacts = new LinkedList<Object>();

//Assuming Local Aspects

LocalAspectContainer container = (LocalAspectContainer)

file.getContainers().get(0);

AOPSystem<LocalAspect> aopsys = new LocalAOPSystem(sys);

WeaveProcedure<LocalAspect> proc = new LocalWeaveProcedure();

//Use Weave Serial

proc.weaveSerial(sys, container, artifacts);

//Save

sys.save("/path/to/output/file");

Listing 7.6: A Simple Weaving

7.4 Backend

Conversion

The AOP2BIP class handles conversion from the AOP model to the BIP model. It is

used by the weavers to perform the necessary edits onto the BIP model. Operations

include:

• Creating extra BIP variables (for inter-type);

68

• Advice code conversion from AOP to BIP;

• Linking variables in AOP to their corresponding BIP variables;

• Merging code headers;

• Extending connectors by additional ports;

• Creating the component for the global inter-type.

Matching

The Matcher has two responsibilities: handling the matching of joinpoints and pro-

viding the search in the corresponding BIP model. The LocalMatcher for example

provides getOriginSet which returns the origin set for a list of transitions. It also

performs checking the guard expressions or the function code for variables.

<<interface>>
PointCutExpr

+ getWeavePointBefore() : WeavePoint
+ getWeavePointAfter() : WeavePoint

<<interface>>
LocalPointCutExpr

+ initialize(AtomType comp)
+ teardown()
+ pass(tau : Transition)
+ match(tau : Transition) : bool
+ getRequirement() : Requirement
+ getWeavePointBefore() : WeavePoint
+ getWeavePointAfter() : WeavePoint

<<interface>>
GlobalPointCutExpr

+ initialize(CompoundType comp)
+ teardown()
+ pass(interaction : InteractionSpecifica-
tion, ports : Map<String, PortData>)
+ match(interaction : InteractionSpecifi-
cation, ports : Map<String, PortData>) :
bool
+ getRequirement() : Collection<PortVar>

Figure 7.3: The Pointcut Interface

The PointCutExpr interface shown in Figure 7.3 , represents the pointcut ex-

pression. A class implementing it must implement the matching logic. The matcher

will first call initialize with an atomic component in the case of local or the com-

posite component in the case of global. The matcher goes through all transitions in

the component twice. The first pass executes pass and is used to gather information

prior to matching. The second pass executes match and is used to filter the interac-

tions, if match returns true the interaction is kept in the match. Typically the first

pass finds the exact match and the second pass matches its siblings . After matching,

it invokes teardown for cleanup. Listing 7.7 displays the matching performed by

the ReadVarGuard pointcut.

69

HashSet<String> states;

public void initialize(AtomType comp) {

states = new HashSet<String>();

}

public void teardown() {

states.clear();

}

public void pass(Transition tau) {

Expression e = (Expression) tau.getGuard();

if(LocalMatcher.findVar(e, name))

states.add(tau.getOrigin().get(0).getName());

}

public boolean match(Transition tau) {

return states.contains(tau.getOrigin().get(0).getName());

}

Listing 7.7: ReadVarGuard Matching

Weaving

The WeaveType provides necessary history when weaving. It has three responsibili-

ties:

1. It keeps track of the AOP objects: the ports relevant to AOP, the additional

boolean variable, the inter-type component (for global weaving).

2. It keeps the original type and the type being woven onto separate during the

weave procedure.

3. It provides necessary operations to map the matches from the original type to

the edited type.

The Weaver provides operations to edit the BIP model at a high level. It im-

plements the weaving rules. The LocalWeaver for example, provides operations

like: weaveAdd and weaveReset1. It implements weaving of one aspect. The

WeaveProcedure implements the weaving of multiple aspects enclosed in an aspect

container.

1. As described in Sections 4.6.4 and 4.6.5

70

public void weaveSerial(AOPSystem<LocalAspect> system,

AspectContainer<LocalAspect> aspects, List<EObject> artifacts)

throws AopException {

//Validate

List<String> messages = new LinkedList<String>();

if(!system.valid(aspects, messages)) return;

//Container used to match a single aspect

AspectContainer<LocalAspect> con = new LocalAspectContainer();

for(LocalAspect aspect : aspects){

//Match the single aspect against the new system

con.clear();

con.add(aspect);

Map<LocalAspect, JoinPoint> matches = system.match(con);

LocalJoinPoint jp = (LocalJoinPoint) matches.get(aspect);

//Matched

if(!jp.getMatches().isEmpty()) {

LocalWeaveType weave = ((LocalAOPSystem) system)

.getWeaveType(aspect);

//Create a new AOP variable

weave.renewVariable();

//Weave inter-type if necessary (existing variables are untouched)

Aop2Bip.createVariables(weave.getTargetType(), aspect, artifacts);

//Weave the Aspect

LocalWeaver.weaveAdvice(aspect, jp, weave, artifacts);

//Commit changes

system.getBIP()

.getComponent(aspect.getComponentName())

.setType(weave.getTargetType());

}

//Cleanup History (new weaves operate on new type)

((LocalAOPSystem) system).cleanup();

}

}

Listing 7.8: Local Serial Weave

7.5 Utility

Three classes are provided for utility functions:

1. The Naming class is responsible for handling the type names and identifier

names of the created types. It determines the naming convention used for

transforming the BIP model. For example StringcopyType(AtomTypetype),

returns the name of the new copied type of an atomic component.

71

2. The Util class provides some extra functionality for labeling transitions in a

BIP model.

3. The TestParser class provides an executable main function that takes in an

.abip file and displays its concrete syntax tree using Antlr4 ’s inspection tool.

72

Chapter 8

CASE STUDY

Contents

8.1 Overview . 73

8.2 Logging Concern . 74

8.3 Security Concerns . 75

8.4 Performance Concerns . 76

8.5 Fault Tolerance Concerns . 77

8.6 Using Inter-type Structures . 77

8.1 Overview

A sample network protocol is used to illustrate crosscutting concerns in BIP. Figure

8.1 presents the Network composite component which is composed of a Server,

Client and a Channel.

The network protocol is an augmented version of the one presented in [19]. The

protocol is as follows:

1. The Server waits for the clear-to-send signal on its cts port. This indicates

that a channel is available.

2. The Server generates a packet and sends it to the Channel.

3. The Channel forwards the packet to client.

4. The Client acknowledges the packet by sending an acknowledgment.

5. The Channel forwards the acknowledgment back to the Server.

73

IDL WAI

[true]

cts

s := 1; t := 0; p = gen()

[s = 1]

send

s := 2; t := 0

[L > 0]

tick

t+ +

[s = 2]

recv

s := 0

[tick ≥ L]

tout

s := −1

Server

cts send

recv
tick

tout

t

L

s p

IDL FWD

WAIREP

[s > 0]

add1

[]

[true]

rem1

[]

[true]

add2

[]

[true]

rem1

[]

[true]

ready

[]

Channel

readyadd1

rem2

rem1add2p s

IDL

REP

[true]

recv

[p := ACKP]

[true]

ack

[]

Client

recvack

p

[ready.s > 0]

[true]
add.p := send.p

[true]
recv.p := rem2.p

[true]
add2.p := ack.p

[true]
recv.p := rem1.p

Figure 8.1: The Network Component

8.2 Logging Concern

Running the initial version of the BIP model produces no output. We begin by

adding logging. The logging can be achieved either by logging the interactions or

the individual components. We will adopt the latter, as we are interested to see

the inner changes. To do so, we match all port executions in Server, Client and

Channel. The standard output is used for logging.

74

{# const char * val(NPacket p) { return p.c_str(); } #}

Aspect LogServer(server) {

portExecute(cts)

do {}{ printf("[%s] Clear to Send\n", id, val(p)); }

portExecute(send)

do { printf("[%s] -> %s (Time: %d)\n", id, val(p), t); } {}

portExecute(recv)

do { printf("[%s] <- %s (Time: %d)\n\n\n", id, val(p), t);} {}

portExecute(tout)

do {}{ printf("[%s] Timeout\n", id); }

}

Aspect LogClient(client) {

portExecute(recv)

do {} {printf("[%s] <- %s\n", id, val(p)); }

portExecute(ack)

do {} {printf("[%s] -> ACK\n", id); }

}

Aspect LogChannel(channel) {

portExecute(add1)

do {printf("[Channel] <- %s\n", val(p)); } {}

portExecute(rem1)

do {printf("[Channel] -> %s\n", val(p)); } {}

portExecute(add2)

do {printf("[Channel] <- %s\n", val(p)); } {}

portExecute(rem2)

do {printf("[Channel] -> %s\n", val(p)); } {}

}

[Server] Clear to Send

[Server] -> 549 (Time: 0)

[Channel] <- 549

[Channel] -> 549

[Client] <- 549

[Client] -> ACK

[Channel] <- ACK

[Channel] -> ACK

[Server] <- ACK (Time: 0)

[Server] Clear to Send

[Server] -> 78 (Time: 0)

[Channel] <- 78

[Channel] -> 78

[Client] <- 78

[Client] -> ACK

[Channel] <- ACK

[Channel] -> ACK

[Server] <- ACK (Time: 5)

Listing 8.1: Logging Aspects

8.3 Security Concerns

The channel presented is a simple channel. It only forwards packets it receives.

One common non-functional requirement which domain is crosscutting is security.

Listing 8.2 introduces authentication to the channel. We seek to authenticate the

connection between the server and channel only. To do so, we add an extra

transition from FWD to IDL in case of failure. Two aspect containers introduce

hash authentication. The third container simulates a man-in-the-middle attack by

intercepting and faking the packet. We use a simple hash function for illustration,

the hash of a string is its last character. The server computes and appends the hash

of its packet when it is ready to send. The channel checks the hash and updates

its new clear variable then removes the hash altogether.

75

Aspect AddHash (server) {

portExecute(cts)

do {} {p = wrap(p); }

}

Aspect VerifyHash (channel) {

data int clear = 0

portExecute(add1)

do {} {clear = check(p); p = unwrap(p);}

{(IDL, clear == 0)}

}

//Example Man-in-the-middle

Aspect Carol {

ports(a:server.send b:channel.add1)

readPortVars(a.r)

do {} {b.r = pfake(a.r);}

}

[Server] -> 886|6 (Time: 0)

[Channel] <- 386|6

[Channel] -> 386

[Client] <- ACK

[Client] -> ACK

[Channel] <- ACK

[Channel] -> ACK

[Server] <- ACK (Time: 3)

[Server] Clear to Send

[Server] -> 763|3 (Time: 0)

[Channel] <- 736|3

[Server] Timeout

Listing 8.2: Authentication Aspects

8.4 Performance Concerns

Another common non-functional requirement which domain is crosscutting is perfor-

mance. Listing 8.3 introduces a congestion avoidance [20] mechanism to the server.

This will cause it to avoid flooding the channel in the occurrence of timeouts. A very

simple algorithm is used to maintain clarity. The algorithm implemented depends

on computing round-trip-time (RTT); the sum of the time spent by the server to

send and receive the packet. RTT is computed in ticks, and only the last RTT of a

successful receive is kept. The server will wait twait = RTT − 6 ticks for any RTT

higher than 6 and in case of timeout, will double its RTT value.

Aspect Throttle (server) {

data int rtt = 1

data int time2send = 0

portExecute(send)

do {time2send = t;} { }

portExecute(recv)

do {rtt = time2send + t + 1 ;} {}

portExecute(tout)

do {rtt *= 2;} {}

portExecute(cts)

do {}{} {(IDL, (rtt > 6))}

atLocation(IDL)

do {rtt--;}

{ printf("[%s] RTT: %d\n", id, rtt);}

}

[Server] RTT: 5

[Server] Clear to Send

[Server] -> 763|3 (Time: 0)

[Channel] <- 736|3

[Server] Timeout

[Server] RTT: 9

[Server] Clear to Send

[Server] RTT: 8

[Server] Clear to Send

[Server] RTT: 7

[Server] Clear to Send

[Server] RTT: 6

[Server] Clear to Send

[Server] -> 281|1 (Time: 0)

[Channel] <- 925|1

Listing 8.3: Congestion Avoidance Aspects

76

8.5 Fault Tolerance Concerns

Listing 8.4 depicts the Failsafe concern. If at any point the channel receives four

extra packets than it had delivered, it shuts down. We simply keep track of the

number of sent packets and the number of received packets. We do it by monitoring

the channel externally. The only port accessible that could alter the channel’s state

is channel.ready. When checking for a ready, we verify the failure, and if detected,

set the channel’s state to closed. The server then times out and never receives the

cts signal. The system deadlocks and terminates gracefully.

{#

#define THR 3

int checkFail(int status, int s, int r) {

return (s - r) >= THR ? -1 : status;

}

#}

Aspect Failsafe {

data int sent

data int received

ports(a:server.send b:channel.add1)

do {} {sent++;}

ports(a:server.recv b:channel.rem2)

do {} {received++;}

//Disable the channel

ports(a:channel.ready)

do {} {a.r = checkFail(a.r, sent, received);}

}

[Server] Clear to Send

[Server] -> 980|0 (Time: 0)

[Channel] <- 862|0

[Server] Timeout

[Server] Clear to Send

[Server] -> 932|2 (Time: 0)

[Channel] <- 12|2

[Server] Timeout

[Server] Clear to Send

[Server] -> 927|7 (Time: 0)

[Channel] <- 856|7

[Server] Timeout

[Server] Clear to Send

[Server] Timeout

scheduler deadlock!

Listing 8.4: Failsafe Aspects

8.6 Using Inter-type Structures

Listing 8.5 depicts a set of aspects that monitors a channel, tracking its history. A

stack is used to keep a history of packets sent to the channel. The channel will then

buffer the packets until delivery and will do some analysis. In this case our analysis

will count odd and even numbered packets in the history.

Aspect History {

data History hist

ports(a:server.send b:channel.add1)

do {push(&hist, a.r);} {}

ports(a:server.recv b:channel.rem2)

do {analyze(&hist); } {}

}

[Client] <- ACK

[Client] -> ACK

[Channel] <- ACK

[History] 16 odd, 8 even

[Channel] -> ACK

[Server] <- ACK (Time: 1)

Listing 8.5: History Aspects

77

Chapter 9

RELATED WORK

Contents

9.1 Aspect-Oriented and Component-Based Design Integration 78

9.2 Integration of Aspect-Oriented concepts in Automata 81

9.1 Aspect-Oriented and Component-Based Design Integration

Pessemier [10] presents a framework to deal with crosscutting concerns in

component-based systems using a component-based approach. The implementa-

tion of a concern is found in an Aspect Component. Aspect components are regular

components augmented with an extra interfaces. They contain the advices necessary

to implement a crosscutting concern. Interaction with the advice happens through

additional interfaces known as advice interfaces. Moreover, Aspects components ex-

pose regular interfaces. Thus, they can be seen as regular components. This model

allows component-based approach to be used when maintaining and developing com-

ponents tackling crosscutting concerns. A joinpoint is of two types: incoming and

outgoing calls on a corresponding interface. A set of joinpoints consists of a combi-

nation of selected interfaces in different components. To select interfaces, pointcut

expressions consist of two main sections: the first section determines whether its

an incoming (CLIENT), an outgoing (SERVER) or both incoming and outgoing

call; the second section is a set of three regular expressions that capture the in-

terface signature. The interception model is based on composition filters [21] but

extended from objects to components. It considers a component a black box and

therefore only intercepts incoming and outgoing calls to it. An incoming filter is

placed on incoming calls to a component. The filter is capable of either forwarding

the calls destined to the component or blocking them. An outgoing filter is placed

on outgoing calls to a component. The filter is capable of either forwarding the calls

originating from the component or blocking them.

After selecting the interfaces, each interface is bound to the corresponding as-

pect component using an aspect binding, therefore executing the appropriate advice

through the component’s interface. The selected interfaces and their aspect bindings

78

to a specific aspect component are logically enclosed in an aspect domain. The pur-

pose of the aspect domain is to keep track of the affected components. Therefore, for

each crosscutting concern coincides one aspect domain. Figure 9.1 depicts the var-

ious relationships between aspect components, aspect bindings and aspect domains.

System

C

A

D

B

E

Concern

Service 1

Aspect Component

Service 2

Aspect Domain

Aspect Binding

Aspect Domain

Regular Binding

Figure 9.1: Aspect Components, Aspect Bindings and Aspect Domains

The model is mapped onto Fractal, a modular and extensible component

model [22]. Additionally, weaving is determined at runtime. This allows the system

to reconfigure by enabling or disabling specific aspects at runtime. This approach

explicitly models dependencies between aspects and components, and allows for their

composition at an architectural level.

This approach contains similar notions found in ours. The interception of the

interactions between individual components views components as black boxes. In

our approach, global aspects target the interaction between components regarding

them as black boxes. The exposed information is the interface and its data transfer.

A global pointcut targets the ports and whether or not their variables have been

written or read. The ports pointcut selects the ports, which is similar to the three

regular expressions selecting the interfaces. The combination of readPortsVars and

writePortsVars can express CLIENT, SERVER and both CLIENT and SERVER

matching. The expression readPortsVars detects incoming data transfer while

writePortsVars detects outgoing data transfer.

However, the approach is symmetric. Aspects are represented using component-

based concepts. The joinpoint, pointcut, weaving information is not lost after the

79

weave, but represented as part of the system. This representation confers several ad-

vantages. First, it allows the aspects to be manipulated and reconfigured at runtime.

Second, it clearly defines the relationships between the aspects and other aspects,

and aspects and the components they modify. Third, it reduces the efforts needed

to maintain the system. Since aspects and non-aspect components have the same

representation, the system is maintained as one. Asymmetrical approaches require

knowledge both in the component-based approaches and the aspect representation.

This approach however does not take into account the semantics of the interaction.

An advice is an arbitrary code execution, a pointcut is an arbitrary function call.

Notions of before, after differ from just executing a function. In the simplest case, a

BIP interaction requires ports to be all enabled, therefore before and after execute

upon synchronization of all involved components. In approaches targeting arbitrary

interface signatures, the implementation itself must explicitly address the issues of

synchronization amongst the different components and data transfer.

The approach stated is an elaboration on other works such as [8],[9], and [23]

which have been done to integrate AOP into CBS systems as well. Duclos’ ap-

proach [8] defines two languages. The Aspect Definition Language describes advices

at an architectural level and the Aspect User Language which defines how the as-

pects are applied into the CBS system. Lieberherr’s approach [9] defines aspects as

part of the modules they apply to, and compares the expressiveness of the approach

with both AspectJ and HyperJ [24]. SAFRAN [23] uses AOP in the Fractal com-

ponent model to define adaptation policies. SAFRAN is asymmetric and mostly

targets adaptation and reconfiguration as a crosscutting concern. It is therefore less

general purpose.

To the best of our knowledge, we have not seen major work on formalizing

aspects in component-based frameworks. Furthermore, BIP confers numerous ad-

vantages over other component-based frameworks. First, it has a well-defined opera-

tional semantics. This allows aspects to be formalized, and thus ensures correct-by-

construction systems. Second, it has a strong expressive synchronization primitive

which does not exist in other component-based frameworks. It has been shown in

[25] that BIP synchronization is more expressive than both CCS [26] and CSP [27].

This allows more concerns to be formalized. Third, it makes a clear separation be-

tween behaviors and coordination, providing a clear distinction between two types

of aspects (local and global). This distinction is aligned with the component-based

80

paradigm.

9.2 Integration of Aspect-Oriented concepts in Automata

Larissa [28] is a language for handling crosscutting concerns in reactive systems.

Systems are modeled as the parallel composition of Mealy automata. The matching

is done by assigning monitor programs that look for a specific execution trace.

Joinpoints are then associated with the input history. Advices consist of two types:

toInit and recovery. The toInit advice places the program back in its original

state. The recovery advice consists of restoring the program to the last recovery

state it was in. Since it is impossible to play the input backwards for recovery, a

set of global recovery points is determined. A recovery state is determined by a

monitor: the recovery program. The recovery states are associated with specific

execution traces and are matched similarity to joinpoints.

The underlying model does not have a clear distinction between communications

and components. Components include direct primitive related to the communica-

tion model. Moreover, the communication model is based on simple input/output

matching. On the other hand, the proposed approach considers only one type of

aspect and does not distinguish between aspect related components and aspects

related to communications. Consequently, this breaks component-based approach.

Finally, advices are not expressive and only consider reset/restore the state of the

system.

81

Chapter 10

CONCLUSION AND FUTURE WORK

Contents

10.1 Conclusion . 82

10.2 Future Work . 83

10.1 Conclusion

Crosscutting concerns are often found both spread across the entire system and tan-

gled at one point of execution. Handling these concerns in component-based systems

helps reduce error and improves maintenance efforts by promoting encapsulation and

separation of concerns.

This thesis proposes a framework for handling crosscutting concerns in the

component-based framework BIP. There are two stages when dealing with CBSs:

(1) the development of the components themselves; and (2) the composition of

these components.

Our method enriches the stages of CBSs by defining local and global aspects to

refine components and their compositions, respectively. Local pointcuts express exe-

cution points found in local components such as entering locations, executing ports.

They are associated with advices to inject extra functionalities (e.g., computation or

change the location of the component). Global aspects are applied to the interaction

of components through their interfaces only. That is, without having information

about the internal representation of components. Global pointcuts express various

ways to match interactions, by considering participating ports and their respective

data transfer operations. Similar to a local pointcut, a global pointcut is associated

with a global advice. A global advise injects extra functionalities to the interac-

tion model (e.g., data transfer, storing global information, etc.). Local and global

aspects have been mapped to BIP semantics. Pointcut matching and advice weav-

ing are implemented by applying model-to-model transformation on BIP models.

Consequently, this work makes a new contribution towards correct-by-construction

system design. Furthermore, to remedy interference and to increase expressiveness,

we present two ways to compose multiple aspects: weaveSerial and weaveAll.

82

We implement the proposed method in AOP-BIPtool-chain. It presents a lan-

guage to describe both local and global aspects and provide an implementation of

matching, weaving and composition. We study the automatic integration of vari-

ous crosscutting concerns (logging, security, performance, fault handling) on a given

input BIP system.

10.2 Future Work

Future work comprises four directions:

• The first direction is to define the semantics for the aspect and the trans-

formation itself. Currently we only define the transformation from the BIP

structure to another BIP structure. Doing so enables us to restrict the aspects

based on the properties they preserve. Work to define aspect categories and

the properties they preserve has been done in [29].

• The second direction is to extend both the reach of pointcuts to capture more

joinpoints and advices. Currently we can only capture existing transitions

locally, and interactions globally. The matching can be extended to add new

interactions to track global state. It could also be designed to handle a com-

position of local joinpoints spread across multiple atomic components in the

system. We also plan to extend advices to allow different changes mostly im-

proving recovery. Work on that could be inspired from the notion of masking,

pure components and component-based recovery defined in [19].

• The third direction deals with improving our weaving techniques to implement

CBS concepts. One approach is to implement advices in separate components.

Thus advices may interact and composed in a CBS fashion. This is similar

to the notion of aspect component, binding and domain defined in [10] and

inspired by [9].

• The fourth direction is to implement model-to-model transformation using

a Domain Specific Language (DSL) targeting the BIP model inspired by

ATL [30], and compare the expressiveness with our approach.

83

References

[1] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen, and

J. Sifakis, “Rigorous component-based system design using the bip framework,”

IEEE Software, vol. 28, no. 3, pp. 41–48, 2011.

[2] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-

ingtier, and J. Irwin, “Aspect-oriented programming,” in ECOOP, 1997, pp.

220–242.

[3] X. Coporation. (2003) The aspectj (tm) programming guide. https:

//www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html

[4] D. L. Parnas, “On the criteria to be used in decomposing systems

into modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

http://doi.acm.org/10.1145/361598.361623

[5] K. Czarnecki, U. W. Eisenecker, and P. Steyaert, “Beyond objects: Generative

programming,” in CES97a [1 46]. THE 23RD INTERNATIONAL CONFER-

ENCE ON SOFTWARE ENGINEERING. Citeseer, 1997, pp. 5–14.

[6] M. Noureddine, M. Jaber, S. Bliudze, and F. A. Zaraket, “Reduction and

abstraction techniques for BIP,” in Formal Aspects of Component Software

- 11th International Symposium, FACS 2014, Bertinoro, Italy, September

10-12, 2014, Revised Selected Papers, ser. Lecture Notes in Computer Science,

I. Lanese and E. Madelaine, Eds., vol. 8997. Springer, 2014, pp. 288–305.

http://dx.doi.org/10.1007/978-3-319-15317-9 18

[7] Y. Falcone, M. Jaber, T. Nguyen, M. Bozga, and S. Bensalem, “Runtime

verification of component-based systems in the BIP framework with formally-

proved sound and complete instrumentation,” Software and System Modeling,

vol. 14, no. 1, pp. 173–199, 2015. http://dx.doi.org/10.1007/s10270-013-0323-y

[8] F. Duclos, J. Estublier, and P. Morat, “Describing and using non functional

aspects in component based applications,” in AOSD, 2002, pp. 65–75.

http://doi.acm.org/10.1145/508386.508394

84

https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
https://www.eclipse.org/aspectj/doc/released/progguide/starting-aspectj.html
http://doi.acm.org/10.1145/361598.361623
http://dx.doi.org/10.1007/978-3-319-15317-9_18
http://dx.doi.org/10.1007/s10270-013-0323-y
http://doi.acm.org/10.1145/508386.508394

[9] K. J. Lieberherr, D. H. Lorenz, and J. Ovlinger, “Aspectual collaborations:

Combining modules and aspects,” Comput. J., vol. 46, no. 5, pp. 542–565,

2003. http://dx.doi.org/10.1093/comjnl/46.5.542

[10] N. Pessemier, L. Seinturier, L. Duchien, and T. Coupaye, “A component-based

and aspect-oriented model for software evolution,” IJCAT, vol. 31, no. 1/2,

pp. 94–105, 2008. http://dx.doi.org/10.1504/IJCAT.2008.017722

[11] Verimag. (2015) Bip tools. http://www-verimag.imag.fr/BIP-Tools,93.html

[12] T. E. Foundation. (2015) Eclipse modeling project. Accessed on Augest 13,

2015. https://eclipse.org/modeling/emf/

[13] S. Bensalem, A. Griesmayer, A. Legay, T. Nguyen, J. Sifakis, and R. Yan,

“D-finder 2: Towards efficient correctness of incremental design,” in NASA

Formal Methods - Third International Symposium, NFM 2011, Pasadena, CA,

USA, April 18-20, 2011. Proceedings, ser. Lecture Notes in Computer Science,

M. G. Bobaru, K. Havelund, G. J. Holzmann, and R. Joshi, Eds., vol. 6617.

Springer, 2011, pp. 453–458. http://dx.doi.org/10.1007/978-3-642-20398-5 32

[14] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold,

“An overview of aspectj,” in ECOOP 2001 - Object-Oriented Programming,

15th European Conference, Budapest, Hungary, June 18-22, 2001, Proceedings,

ser. Lecture Notes in Computer Science, J. L. Knudsen, Ed., vol. 2072.

Springer, 2001, pp. 327–353. http://dx.doi.org/10.1007/3-540-45337-7 18

[15] M. Bozga, M. Jaber, and J. Sifakis, “Source-to-source architecture

transformation for performance optimization in BIP,” IEEE Trans. Industrial

Informatics, vol. 6, no. 4, pp. 708–718, 2010. http://dx.doi.org/10.1109/TII.

2010.2069102

[16] K. Kiviluoma, J. Koskinen, and T. Mikkonen, “Run-time monitoring of

architecturally significant behaviors using behavioral profiles and aspects,”

in Proceedings of the ACM/SIGSOFT International Symposium on Software

Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20,

2006, L. L. Pollock and M. Pezzè, Eds. ACM, 2006, pp. 181–190.

http://doi.acm.org/10.1145/1146238.1146259

85

http://dx.doi.org/10.1093/comjnl/46.5.542
http://dx.doi.org/10.1504/IJCAT.2008.017722
http://www-verimag.imag.fr/BIP-Tools,93.html
https://eclipse.org/modeling/emf/
http://dx.doi.org/10.1007/978-3-642-20398-5_32
http://dx.doi.org/10.1007/3-540-45337-7_18
http://dx.doi.org/10.1109/TII.2010.2069102
http://dx.doi.org/10.1109/TII.2010.2069102
http://doi.acm.org/10.1145/1146238.1146259

[17] K. J. Lieberherr and I. M. Holland, “Formulations and benefits of the

law of demeter,” SIGPLAN Notices, vol. 24, no. 3, pp. 67–78, 1989.

http://doi.acm.org/10.1145/66083.66089

[18] T. Parr. (2014) Antlr homepage. http://www.antlr.org/

[19] B. Bonakdarpour, M. Bozga, and G. Gößler, “A theory of fault recovery for

component-based models,” in Stabilization, Safety, and Security of Distributed

Systems - 14th International Symposium, SSS 2012, Toronto, Canada, October

1-4, 2012. Proceedings, ser. Lecture Notes in Computer Science, A. W.

Richa and C. Scheideler, Eds., vol. 7596. Springer, 2012, pp. 314–328.

http://dx.doi.org/10.1007/978-3-642-33536-5 31

[20] V. Jacobson, “Congestion avoidance and control,” in SIGCOMM, 1988, pp.

314–329. http://doi.acm.org/10.1145/52324.52356

[21] M. Aksit, L. Bergmans, and S. Vural, “An object-oriented language-

database integration model: The composition-filters approach,” in ECOOP

’92, European Conference on Object-Oriented Programming, Utrecht, The

Netherlands, June 29 - July 3, 1992, Proceedings, ser. Lecture Notes in

Computer Science, O. L. Madsen, Ed., vol. 615. Springer, 1992, pp. 372–395.

http://dx.doi.org/10.1007/BFb0053047

[22] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J. Stefani, “An open

component model and its support in java,” in Component-Based Software

Engineering, 7th International Symposium, CBSE 2004, Edinburgh, UK, May

24-25, 2004, Proceedings, ser. Lecture Notes in Computer Science, I. Crnkovic,

J. A. Stafford, H. W. Schmidt, and K. C. Wallnau, Eds., vol. 3054. Springer,

2004, pp. 7–22. http://dx.doi.org/10.1007/978-3-540-24774-6 3

[23] P. David and T. Ledoux, “An aspect-oriented approach for developing

self-adaptive fractal components,” in Software Composition, 5th International

Symposium, SC 2006, Vienna, Austria, March 25-26, 2006, Revised Papers,

ser. Lecture Notes in Computer Science, W. Löwe and M. Südholt, Eds., vol.

4089. Springer, 2006, pp. 82–97. http://dx.doi.org/10.1007/11821946 6

[24] P. Tarr and H. Ossher, “Hyper/j: Multi-dimensional separation of concerns

for java,” in Proceedings of the 23rd International Conference on Software

86

http://doi.acm.org/10.1145/66083.66089
http://www.antlr.org/
http://dx.doi.org/10.1007/978-3-642-33536-5_31
http://doi.acm.org/10.1145/52324.52356
http://dx.doi.org/10.1007/BFb0053047
http://dx.doi.org/10.1007/978-3-540-24774-6_3
http://dx.doi.org/10.1007/11821946_6

Engineering, ser. ICSE ’01. Washington, DC, USA: IEEE Computer Society,

2001, pp. 729–730. http://dl.acm.org/citation.cfm?id=381473.381615

[25] S. Bliudze and J. Sifakis, “A notion of glue expressiveness for component-based

systems,” in CONCUR 2008 - Concurrency Theory, 19th International

Conference, CONCUR 2008, Toronto, Canada, August 19-22, 2008.

Proceedings, ser. Lecture Notes in Computer Science, F. van Breugel

and M. Chechik, Eds., vol. 5201. Springer, 2008, pp. 508–522. http:

//dx.doi.org/10.1007/978-3-540-85361-9 39

[26] R. Milner, Communication and concurrency, ser. PHI Series in computer sci-

ence. Prentice Hall, 1989.

[27] C. A. R. Hoare, Communicating Sequential Processes. Prentice-Hall, 1985.

[28] K. Altisen, F. Maraninchi, and D. Stauch, “Aspect-oriented programming

for reactive systems: Larissa, a proposal in the synchronous framework,”

Sci. Comput. Program., vol. 63, no. 3, pp. 297–320, 2006. http:

//dx.doi.org/10.1016/j.scico.2005.12.001

[29] S. D. Djoko, R. Douence, and P. Fradet, “Aspects preserving properties,”

Sci. Comput. Program., vol. 77, no. 3, pp. 393–422, 2012. http:

//dx.doi.org/10.1016/j.scico.2011.10.010

[30] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “Atl: A model transformation

tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39, 2008.

87

http://dl.acm.org/citation.cfm?id=381473.381615
http://dx.doi.org/10.1007/978-3-540-85361-9_39
http://dx.doi.org/10.1007/978-3-540-85361-9_39
http://dx.doi.org/10.1016/j.scico.2005.12.001
http://dx.doi.org/10.1016/j.scico.2005.12.001
http://dx.doi.org/10.1016/j.scico.2011.10.010
http://dx.doi.org/10.1016/j.scico.2011.10.010

	Acknowledgements
	ABSTRACT
	List of figures
	List of tables
	Introduction
	Problem Definition
	Our Approach
	Thesis Organization

	Behavior Interaction Priority (BIP)
	BIP Framework
	Atomic Components
	Interactions
	Priorities
	BIP System
	BIP Toolchain

	Aspect Oriented Programming
	Crosscutting Concerns
	AOP Concepts
	Joinpoints
	Pointcuts
	Advice
	Aspect
	Weaving

	Overview of applying AOP in BIP

	Local Aspects
	Preliminaries
	Local Joinpoints
	Local Pointcuts
	Location
	Variable Access
	Variable Read Guard
	Variable Read/Write Function

	Ports
	Port Execution
	Port Enablement

	Composing Pointcut Expressions

	Local Advice
	Local Aspect
	Weaving Local Aspects
	Strategy
	Weaving "426830A CB, CA "526930B
	Weaving "426830A PA, CB "526930B
	Weaving "426830A ADD, CB "526930B
	Weaving Reset Location Pairs
	Weaving the Local Aspect

	Global Aspects
	Global Joinpoints
	Global Pointcuts
	Global Advice
	Global Aspect
	Weaving

	Encapsulating Aspects
	Interference
	Containers
	Weaving Procedures

	AOP-BIP
	Overview
	Language Description
	Frontend
	Backend
	Utility

	Case Study
	Overview
	Logging Concern
	Security Concerns
	Performance Concerns
	Fault Tolerance Concerns
	Using Inter-type Structures

	Related Work
	Aspect-Oriented and Component-Based Design Integration
	Integration of Aspect-Oriented concepts in Automata

	Conclusion and Future Work
	Conclusion
	Future Work

