
AMERICAN UNIVERSITY OF BEIRUT

A HIGH-LEVEL MODELING LANGUAGE FOR THE
EFFICIENT DESIGN, IMPLEMENTATION,
AND TESTING OF ANDROID APPLICATIONS

by

JOHN ABOU-JAOUDEH

A thesis
submitted in partial fulfillment of the requirements

for the degree of Master of Science
to the Department of Computer Science

of the Faculty of Arts and Sciences
at the American University of Beirut

Beirut, Lebanon
September 28, 2015

ACKNOWLEDGEMENTS

I would like to thank my advisor Dr. Mohamad Jaber who guided me all throughout
the thesis. Thank you for sharing your knowledge, and experience with me.
And, I want to thank Dr. Yliès Falcone, Mr. Kinan Dak Al Bab, and Mr. Mostafa
El-Katerji for their help.

I also want to acknowledge my committee members for their advice which was
extremely helpful, and precise.

In addition, I must thank Dr. Wassim El Hajj, I appreciate your support all
throughout my Computer Science masters degree at the American University of
Beirut.
I would also like to thank Mr. Mustapha Hammam who was always there when I
needed advice.

Last but not least, a thank you to my family for the support you’ve given me. I
don’t know how I could have weathered everything without you by my side. The
love, and concern you’ve all showed truly means a lot to me. I am forever grateful.

v

AN ABSTRACT OF THE THESIS OF

John Abou-Jaoudeh for Master of Science
Major: Computer Science

Title: A High-Level Modeling Language for the Efficient Design, Implementation,

and Testing of Android Applications

Smartphones global penetration is on the rise, and currently covers more
than quarter of the globe’s population. Yet, developing mobile applications remains
difficult, time consuming, and error-prone, in spite of the number of existing plat-
forms and tools. In this report, we define MoDroid, a high-level modeling language
to ease the development of Android applications. MoDroid allows the development
of models which represent the core of applications. MoDroid provides Android
programmers with the following advantages: (1) Models are built using high-level
primitives that abstract away many implementation details allowing application
development to be divided over several types of developers; (2) It allows the defini-
tion of interfaces between models to automatically compose them, which facilitates
testing, and code reusability; (3) Java native android can be automatically gen-
erated along with the required permissions thus increasing performance, security,
and privacy; (4) It supports efficient model-based testing that operates on models.
MoDroid has been fully implemented and was used to develop several non-trivial
Android applications. Moreover, MoDroid was compared against current market
tools.

vi

CONTENTS

ACKNOWLEDGEMENTS . v

ABSTRACT . vi

LIST OF FIGURES . ix

LIST OF TABLES . x

1 INTRODUCTION . 1
1.1 Simple native Android application example 2
1.2 Issues faced when developing Android applications 5

1.2.1 Issues when designing an Android application 5
1.2.2 Issues when testing an Android application 6

1.3 Contributions. 6
1.4 Report organization. 7

2 RELATED WORK . 9
2.1 Introduction . 9
2.2 Modeling Frameworks . 10
2.3 Mobile Development Frameworks . 10

2.3.1 Native Development . 10
2.3.2 Hybrid Development . 11
2.3.3 Web-Based Development . 11

2.4 Visual Development Tools . 12
2.4.1 Comparison . 13

2.5 Android Application Testing . 15
2.5.1 GUI Based Testing . 15
2.5.2 Non-GUI Based Testing . 16

3 THE ANDROID META-MODEL . 17
3.1 Introduction . 17
3.2 LibModel . 17
3.3 LibActivity . 18
3.4 GUI Elements . 18

3.4.1 LibView . 18
3.4.2 Controls . 19
3.4.3 Layouts . 19

3.5 Handlers . 21
3.6 Resource Management . 23

vii

4 PROJECTS COMPOSITION . 24
4.1 Introduction . 24
4.2 Principles . 24
4.3 Example . 26
4.4 Other Advantages . 27

5 PERMISSION AUTO-DETECTION AND GENERATION 28
5.1 Introduction . 28
5.2 Motivating Example . 28
5.3 Proposed Solution . 29

6 MODEL-BASED TESTING . 32
6.1 Introduction . 32
6.2 Model-Based Testing Module . 33

6.2.1 LibTest . 33
6.2.2 Text Manipulation . 33
6.2.3 Click and Long Click Actions 33
6.2.4 Activity Manipulation . 34
6.2.5 Activity Fields . 34
6.2.6 Exception ElementNotFoundException 34

6.3 Example . 35

7 CODE GENERATION . 36
7.1 Definition and Usage . 36
7.2 Implementation . 36
7.3 Cloud-based Compilation . 37

8 TOOL-SET - MODROID . 39
8.1 Introduction . 39
8.2 Implementation . 39
8.3 Design-Flow Development . 42

8.3.1 Development of Models . 42
8.3.2 Composition of Models . 42
8.3.3 Project Generation . 42

9 EXPERIMENTAL RESULTS . 43
9.1 Introduction . 43
9.2 Code Length . 43
9.3 Performance Testing Evaluation . 44

9.3.1 Scientific Calculator Benchmarks 44
9.3.2 Volleyball Statistics Benchmarks 45

10 CONCLUSION AND FUTURE WORK 47
10.1 Conclusion . 47
10.2 Future Work . 48

viii

LIST OF FIGURES

1.1 Screenshot from the simple application 2

2.1 Screenshot from Appery’s visual tool 13

3.1 Basic elements of the Meta-Model . 21

4.1 Example of models composition. 26

7.1 Cloud-based Compilation . 38

8.1 Development design-flow in MoDroid. 41

9.1 Volleyball Statistics Application Screenshot 46

ix

LIST OF TABLES

2.1 Comparison of available tools. 14

9.1 Code length comparison. 44
9.2 Testing time scientific calculator (in seconds). 45
9.3 Testing time volleyball statistics (in seconds). 46

x

CHAPTER 1

INTRODUCTION

Contents

1.1 Simple native Android application example 2

1.2 Issues faced when developing Android applications 5

1.2.1 Issues when designing an Android application 5

1.2.2 Issues when testing an Android application 6

1.3 Contributions. 6

1.4 Report organization. 7

Smartphones have become a big part of our daily life. Whether to commu-

nicate, read articles, listen to music, watch videos, track our fitness, or any other

task we do, it involves our smartphone. Smartphones are categorized into brands

such as: Samsung, Apple, Nokia, Motorola, Sony, Blackberry. Each of these brands

comes with a default platform/operating system installed. Android is the most pop-

ular platform for mobile devices, with over 84% of the market share at the end of

2014.

Developing native applications on Android platform requires a developer to

be an expert in Java and the Android SDK; the Android software development kit

(SDK) contains libraries to build Android applications, and without this SDK one

cannot create an application. There are several toolsets available to guide the devel-

opment of applications; toolsets such as Eclipse and Android Studio. Both contain

graphical tools which can help the developer with the GUI side of an application,

and a source editor where Android code can be written. Section 1.1 below shows an

example of a simple android application.

1

Figure 1.1: Screenshot from the simple application

1.1 Simple native Android application example

This simple application contains two activities; an activity in Android represents a

window/frame in the GUI. The first activity contains a button, which, when clicked

on, navigates us to the second activity. The second activity contains a text box

which displays Hello world! to the user. Figure 1.1 shows a screenshot from this

application.

Below is the code for the first activity MainActivity whose layout is a

LinearLayout, and contains a button with text A Button, which, when clicked on,

starts the second activity MainActivity2.

1 package com.example.simplebutton;

2 import android.os.Bundle;

3 import android.app.Activity;

4 import android.content.Intent;

5 import android.view.Menu;

6 import android.view.View;

7 import android.view.ViewGroup.LayoutParams;

8 import android.widget.Button;

9 import android.widget.LinearLayout;

10 public class MainActivity extends Activity {

11 @Override

12 protected void onCreate(Bundle savedInstanceState) {

13 super.onCreate(savedInstanceState);

14 LinearLayout parent = new LinearLayout(this);

15 parent.setLayoutParams(new LinearLayout.LayoutParams(LayoutParams.MATCH_PARENT, LayoutParams.WRAP_CONTENT));

16 parent.setOrientation(LinearLayout.HORIZONTAL);

17 Button bt = new Button(this);

18 bt.setText("A Button");

19 bt.setLayoutParams(new LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.WRAP_CONTENT));

20 bt.setOnClickListener(new View.OnClickListener() {

21 public void onClick(View v) {

22 Intent myIntent = new Intent(MainActivity.this, MainActivity2.class);

2

23 MainActivity.this.startActivity(myIntent);

24 }

25 });

26 parent.addView(bt);

27 setContentView(parent);

28 }

29

30 @Override

31 public boolean onCreateOptionsMenu(Menu menu) {

32 getMenuInflater().inflate(R.menu.main, menu);

33 return true;

34 }

35 }

Next, we need to develop the second activity. We notice that in the first

activity we generated the layout programatically. In the second activity, we will

generate the layout using an XML file which can be built using the visual tools in

Eclipse and Android Studio.

The second activity, MainActivity2, in this case is contains the minimal

code required to create an activity. We notice that we set the content view to be

the XML file activity main activity2.

1 package com.example.simplebutton;

2 import android.os.Bundle;

3 import android.app.Activity;

4 import android.view.Menu;

5 public class MainActivity2 extends Activity {

6 @Override

7 protected void onCreate(Bundle savedInstanceState) {

8 super.onCreate(savedInstanceState);

9 setContentView(R.layout.activity_main_activity2);

10 }

11 @Override

12 public boolean onCreateOptionsMenu(Menu menu) {

13 // Inflate the menu; this adds items to the action bar if it is present.

14 getMenuInflater().inflate(R.menu.main_activity2, menu);

15 return true;

16 }

17 }

Now we generate the XML file which represents the GUI of this activity.

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"

xmlns:tools="http://schemas.android.com/tools"

android:layout_width="match_parent"

android:layout_height="match_parent"

android:paddingBottom="@dimen/activity_vertical_margin"

android:paddingLeft="@dimen/activity_horizontal_margin"

3

android:paddingRight="@dimen/activity_horizontal_margin"

android:paddingTop="@dimen/activity_vertical_margin"

tools:context=".MainActivity2" >

<TextView

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="@string/hello_world" />

</RelativeLayout>

Finally, we have the AndroidManifest.xml file which is the configuration

file of the applications. It contains the list of activities and other Android compo-

nents available in this application. Any access to a device feature (such as GPS,

camera, etc.) requires a permission which must be manually added to this file.

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.example.simplebutton"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk android:minSdkVersion="8" android:targetSdkVersion="18" />

<application

android:allowBackup="true"

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity android:name="com.example.simplebutton.MainActivity"

android:label="@string/app_name" >

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

<activity android:name="com.example.simplebutton.MainActivity2"

android:label="@string/title_activity_main_activity2" >

</activity>

</application>

</manifest>

4

1.2 Issues faced when developing Android applications

Various frameworks/tools have been developed to facilitate the development of ap-

plications, each of which has its own pros and cons. Yet, creating a correct and

efficient Android application remains a difficult endeavor for several reasons that

can be categorized under design or testing issues.

1.2.1 Issues when designing an Android application

First, the programming model in Android involves different components (e.g.,

Activity, Service, BroadcastReceiver, ContentProvider, etc.), with a complex

interaction model between these components (e.g., Handler, Intent, etc.). Second,

to separate the internal representation of information from its presentation to the

user, most of the frameworks supporting the development process use the Model-

View-Controller (MVC) design pattern to split an application into three intercon-

nected parts. However, as applications become more complex, the MVC pattern

must be augmented with a new paradigm that guides developers on how to split

the core of an application into different interconnected parts. Such paradigm shall

facilitate and encourage the concurrent development of an application by several

developers. Third, Android provides a protection mechanism to device-specific fea-

tures (e.g., GPS, camera, vibrator, internet, SMS, address book, SD card, etc.) by

offering a specific set of programmatic APIs to access them. Then, the application

configuration file (AndroidManifest.xml) must explicitly include access permissions

for all features that are used within the application. At installation, the application

is given permission to the corresponding features (from the configuration file) and

the user will be aware about the required permissions. If an application calls an API

to access a specific feature that requires a permission access and the configuration

file does not contain that access permission, a runtime exception will be raised at

the start-up of the application. Clearly, users prefer applications with minimum set

of permissions. This protection mechanism is often error-prone and in most of the

5

cases developers end up using permissions they do not require in their code, or the

opposite [Bartel et al.(2012)Bartel, Klein, Le Traon, and Monperrus].

1.2.2 Issues when testing an Android application

Ensuring that applications are performing as required has become more challenging

given the daily dynamic change in the domain of mobile technology. Application

users mainly face problems of the following kind: incorrect behavior, crashes, and

Application becoming Not Responsive (ANR), etc. Keeping in mind the complexity

of mobile application development, and the inability to eliminate bugs and errors,

an essential component of mobile development is testing. The process of Mobile

Application Testing is used to detect the errors that might have occurred during

the development of the application, to ensure that user expectations are met, and

to make sure that applications have been executed properly. This is essential to

be done by application developers who aim to keep their customers satisfied, and

entertained by the final product.

1.3 Contributions.

The challenges of programming mobile applications have prompted us to reconsider

the best practices of their design development. For this purpose, a framework with

the following features is desirable: (1) the framework should abstract away differ-

ent implementation details; (2) decompose the development process into different

stages; and (3) include automated code manipulation and generation. To do so,

we define a Meta-Model for the development of mobile android applications. Meta-

modeling drastically improves flexibility of development, hence allows us to manage

applications more easily.

The Meta-Model consists of a set of modules that represent Graphical User

Interfaces (GUIs) and their respective handlers in an abstract and a simpler way than

Native Java Android. We implement the Meta-Model along with several modules

6

in MoDroid to tackle the aforementioned problems. MoDroid contains the following

modules:

1. A composition module takes as input Android Java models and the connec-

tions between them. The composition module allows to easily parallelize the

development process.

2. A permission analysis that automatically discovers the required permissions

of an application.

3. A code generator which automatically generates native Android Java code

given an android Java model.

4. An activity-builder module automatically builds an activity in the Android

Java model given an XML file representing that activity.

5. An efficient model-based testing that allows to easily write test cases using

high-level primitives and to efficiently execute them.

Our framework facilitates and speeds-up the development process. It transforms

an Android application into an Android Java model that is compliant to the Meta-

Model and contains all the necessary information about the application. The current

version of our Meta-Model covers a subset of Android API that includes all the

main constructs and functionalities. Consequently, it is designed with backward

compatibility in mind so that developers can write native Android code within the

model to use features currently not covered within the Meta-Model.

1.4 Report organization.

The rest of this report is structured as follows. Chapter 4 presents the Meta-Model.

The following sections present the components associated to the Meta-Model: model

composition is presented in Chapter 5; and automatic permissions detection is pre-

sented in Chapter 6; model-based testing framework is presented in Chapter 7; and

7

automatic code generation (from high-level model to native android) is presented

in Chapter 8. Chapters 9 and 10 describe MoDroid, a full implementation of our

framework and some benchmarks. Chapter 3 discusses related work. Chapter 11

draws some conclusions and perspectives.

8

CHAPTER 2

RELATED WORK

Contents

2.1 Introduction . 9

2.2 Modeling Frameworks . 10

2.3 Mobile Development Frameworks . 10

2.3.1 Native Development . 10

2.3.2 Hybrid Development . 11

2.3.3 Web-Based Development . 11

2.4 Visual Development Tools . 12

2.4.1 Comparison . 13

2.5 Android Application Testing . 15

2.5.1 GUI Based Testing . 15

2.5.2 Non-GUI Based Testing . 16

2.1 Introduction

This report advocates the use of modeling to improve the development of Android

applications. In this section we first discuss some of the available modeling frame-

works, we then go into existing Android development frameworks, and finally we

put forward the current market testing tools.

9

2.2 Modeling Frameworks

Modeling parts of an application simplifies and accelerates the development process

and frees the developer from writing repetitive code.

The use of models in the development of Java applications has received a lot

of attention, and several tools are available. For instance, Eclipse Modeling Frame-

work (EMF) [Steinberg et al.(2003)Steinberg, Budinsky, Merks, and Paternostro] is

a powerful modeling tool based on two metamodels Ecore, and Genmodel. EMF

stores the model information using XMI (XML Metadata Interchange), and cre-

ates its meta-model via UML, Java annotations, XML Schema, and XMI. Similarly,

Xcore [Foundation(2011)], another tool from Eclipse, is a textual syntax for Ecore.

Both EMF and Xcore are powerful tools when it comes to modeling Java

applications. However, to the best of our knowledge they have not been used to

develop Android applications.

2.3 Mobile Development Frameworks

Mobile development frameworks are usually categorized into native, cross-platform,

and web based. In addition to the above categories, there are visual tools which

provide a graphical interface that facilitates the development.

A native mobile development framework creates applications in native code.

Each of those categories has its advantages, and disadvantages. For example, native

has the best performance, while visual tools and web based allow for the fastest

development. We compare our approach with some of the frameworks in those

categories.

2.3.1 Native Development

Native applications naturally, do not use HTML and CSS; development is done

by writing code in the native language of the platform, and using the libraries

10

provided by this platform. In our case, for a developer to produce a native Android

application, the code must be written in Java, and using Android SDK.

Applications developed using the native language use a device’s resources

more efficiently, and thus excel in performance compared to hybrid, or web based

applications.

On the other hand, hybrid and web-based frameworks are not developed

using the native language. The code is compiled into a mobile application. This

allows for the same code to be compiled into several platforms (cross platform de-

velopment); therefore drastically reduces the development time of applications as

compared to writing the native language of each platform alone to generate the

same application but on different operating systems.

2.3.2 Hybrid Development

PhoneGap [Systems(2009)] and Cordova [Apache(2011)] are

two commonly used cross platform mobile development frame-

works [Palmieri et al.(2012)Palmieri, Singh, and Cicchetti]. They allow the

developer to generate mobile applications that work on almost all devices by

using HTML, CSS, and JavaScript. Using JavaScript to interact with the phone’s

features prevents from using native code since JavaScript is slower in processing

data. Moreover, these frameworks lack the ability for background processing, which

might be important in several applications. This could be improved with the use

of Web Workers which is currently not compatible with a wide range of browsers.

Furthermore, performance issues were reported due to the lack of hardware CSS

acceleration of Android [Wolf and HUFFSTADT(2013)].

2.3.3 Web-Based Development

jQuery mobile [jQuery Team(2010)] is one of the most used web based mobile de-

velopment frameworks. It allows for extremely rapid development of responsive web

11

sites, and applications which can be accessed via all smartphone, tablet, and desktop

devices.

Another trending framework which is commonly used is Boot-

strap [Otto and Thornton(2011)]. Bootstrap is an HTML, CSS, and JavaScript

framework for developing responsive, mobile first web applications.

Two main disadvantages arise when using web based frameworks: poor

performance [Rösler et al.(2014)Rösler, Nitze, and Schmietendorf], and losing the

ability to use smartphone features.

2.4 Visual Development Tools

App Inventor 2 [Mitchell(2014)] is a GUI-based tool which supports the rapid devel-

opment for simple applications. However, when it comes to complex applications,

App Inventor 2 sets a lot of limits on the developer, and on the application itself

since users cannot write their own code, and are only limited to what is provided

by the GUI.

On the other hand, MobiA [Balagtas-Fernandez and Hussmann(2008)] pro-

pose a model driven graphical modeling language for mobile application develop-

ment. It is easy to use, but does not support model composition, nor does it have

a dedicated testing model.

Furthermore, Appery [Appery(2010)] provides a cloud-based mobile app

builder which is GUI based. It allows the creation of pages and services. In addition

to the GUI based tool, Appery allows the developer to write their own Javascript

and CSS files manually if needed, and to use all the features present in Adobe

Cordova [Apache(2011)]; giving the developer more control over the application.

The project may be exported as Android, iOS, and Windows Phone applications;

the project may also be exported as an HTML/JS/CSS website. Figure 2.1 shows

a screenshot of the interface used to develop applications.

12

Figure 2.1: Screenshot from Appery’s visual tool

Appery is not the only cloud-based tool; we could find tens of similar tools.

These tools share the disadvantages of hybrid and web-based frameworks when it

comes to performance, and the use of phone features.

2.4.1 Comparison

None of the above Android development frameworks allows for the composition

and decomposition of applications. Our framework allows for this, as shown in

Section 5. Moreover, it allows for permission auto-detection and generation as spec-

ified in Section 6. The main advantage is that any unneeded permission will not

be included in the Android Manifest file allowing the application to be available

for more devices, and most importantly protecting the user’s privacy when using

additional unneeded permissions [Feng et al.(2014)Feng, Anand, Dillig, and Aiken]

[Au et al.(2012)Au, Zhou, Huang, and Lie].

Table 2.1 shows a comparison between the frameworks and tools discussed

above.

13

MoDroid Native PhoneGap Cordova
jQuery
Mobile

Bootstrap Appery

Language Java Java
HTML/
CSS/JS

HTML/
CSS/JS

HTML/
CSS/JS

HTML/
CSS/JS

HTML/
CSS/JS

Ease of
Development

X X X X X X X

Cross-Platform X X X X X X X

Access to
Features

X X Limited Limited Limited Limited Limited

Ease of
Decomposition

X X X X X X X

Permission
Auto-Detection

X X
Adds

Unneeded
Adds

Unneeded
Uses Browser Uses Browser

Adds
Unneeded

Hardware
Acceleration

X X X X X X X

Background
Processing

Future Work X X
Compatibility

Issues
Compatibility

Issues
Compatibility

Issues
Compatibility

Issues

Testing Tool X X X X X X X

Model Based
Testing

X X X X X X X

Testing
Efficiency

X X X X X X X

Testing
Simplicity

X X X X X X X

Table 2.1: Comparison of available tools.

14

2.5 Android Application Testing

Testing of android applications has become more challenging. In general, android

testing tools can be divided into two main categories: GUI based testing and non-

GUI based testing.

2.5.1 GUI Based Testing

This category requires testing on an emulator or on a real android device. Google

presents several tools some of which fall under this category. First is Instrumentation

[Google(2007)], a set of classes and methods which control Android components

and how Android loads applications. These classes allow the developer to test any

component at any given time in its lifecycle. Developing a test case with this tool

is time consuming and very complex. This lead Google to develop another tool

Espresso [Google(2013)]. Espresso is built over Instrumentation and its main goal

is to simplify testing techniques.

Another commonly used tool is Robotium [Reda(2009)]. This tool is well

documented and could be easily configured. In addition to the above, developing

test cases is simple; all action calls are being done on a single object solo. The

main disadvantage one would face using this tool is the speed of running test cases.

Other tools under this category parse applications and automat-

ically generate test cases, e.g., Monkey [Google(2010)], Android GUI-

TAR [Amalfitano et al.(2014)Amalfitano, Fasolino, Tramontana, Ta, and Memon]

and ORBIT [Yang et al.(2013)Yang, Prasad, and Xie].

Whether on an emulator or on a real android device, running an enormous

number of test cases would require a huge amount of time (see Section 10). This

would make GUI based testing tools fall a lot behind non-GUI based testing tools.

On the other hand, GUI based testing is more expressive and would be useful to

test hardware devices (e.g., camera, sensors, etc.).

15

2.5.2 Non-GUI Based Testing

Robolectric [Labs(2010)] allows developers to test Android applications without the

use of an Android emulator or device. Robolectric presents the user with several

objects and methods to imitate an android application’s lifecycle. The main advan-

tage is the speed of running test cases. We would be able to perform thousands of

operations by the time GUI based testing is able to perform just tens.

Configuring this tool as well as writing test cases are complicated and time

consuming. Moreover, it is dependent on several other libraries. For instance,

Listing 2.1 is a sample code to access the value of a TextView using Robolectric.

Listing 2.1: Sample code to access the value of a TextView using Robolectric.

1 ActivityClassName activity =

2 Robolectric.buildActivity(ActivityClassName.class).create().start().visible().get();

3 TextView results = (TextView) activity2.findViewById(viewID);

4 results.getText();

Our framework falls under the category of non-GUI based testing. We target

ease of configuration, simplicity and performance.

16

CHAPTER 3

THE ANDROID META-MODEL

Contents

3.1 Introduction . 17

3.2 LibModel . 17

3.3 LibActivity . 18

3.4 GUI Elements . 18

3.4.1 LibView . 18

3.4.2 Controls . 19

3.4.3 Layouts . 19

3.5 Handlers . 21

3.6 Resource Management . 23

3.1 Introduction

The Meta-Model consists of a set of modules used to model the core of an Android

application. The Meta-Model allows to model an Android application as a Java

object. The modeling process abstracts away implementation details. Moreover,

the resulting object model can be easily and efficiently manipulated by applying

model transformation and composition as described in the remainder of this report.

3.2 LibModel

The Meta-Model consists of a hierarchy of classes. The top element of the hierarchy

is the project: LibModel. Each instance of this type represents an independent

application. A LibModel consists of a set of activities mapped to names, global

variables, and meta-information related to the project. Listing 3.1 shows how a

LibModel is initialized.

17

Listing 3.1: Example of a LibModel inside the BMI module.

1 LibModel bmiModel = new LibModel("bmiModel", "health.app", "John");

3.3 LibActivity

An activity LibActivity is the android equivalent of a window or frame. The

developer can create instances of LibActivity, fill it up with GUI elements, and

then add it to a LibModel. A LibActivity can contain GUI elements (e.g., layout,

button, etc.), packaging information, and activity scope variables. The developer

can also provide methods for handling events related to the activity’s life cycle:

onCreate, onStop, etc. Moreover, LibActivity has a constructor that takes an

XML file as argument containing a view description of the activity and automatically

instantiates the corresponding object. That is, we can still benefit from MVC design

pattern supported for native android development. Listing 3.2 gives an example on

how to create a LibActivity object, and how to add this activity inside a LibModel.

Listing 3.2: Example of a LibActivity inside the BMI module.

1 LibActivity userInputActivity = new LibActivity();

2 //Initialize the LibActivity Object

3 ...

4 //Implement the activity’s layout and actions

5 bmiModel.addActivity(userInputActivity, "userInputActivity");

6 //Add the activity to the module

7 ...

3.4 GUI Elements

3.4.1 LibView

GUI elements, also called views, are the building blocks of an application. All

GUI elements inherit their basic attributes from LibView, an abstract class that

contains the basic attributes and methods for the manipulation of appearance of an

18

element such as width, height, padding, etc. Views are categorized into Controls,

and Layouts. A view can be either added to an Activity or to a layout.

3.4.2 Controls

The controls currently provided by the Meta-Model, prefixed with Lib, are the

following: Button, ImageButton, TextView (equivalent to a Label), TextField,

ToggleButton (on/off button), Spinner (similar to drop-down list), RadioButton,

CheckBox, etc. Listing 3.3 presents how a LibTextView object is initialized, and

also shows how to change the TextView’s width, and text.

Listing 3.3: Example of a LibTextView inside the BMI module.

1 LibTextView heightLabel = new LibTextView();

2 heightLabel.setWidth(LibView.MATCH_PARENT);

3 heightLabel.setText("Height (cm)");

3.4.3 Layouts

Layouts are special views that can contain other views. They control the position

of the view within the activity. A layout is treated as a View. It has its own

attributes such as width, height, and others. It can be added to activities, or to

other layouts. The layouts provided by the Meta-Model, prefixed with Lib, are

the following: LinearLayout (views are placed in order in a line; can be horizon-

tal, or vertical), RadioGroup (a LinearLayout that acts as a RadioButton group

as well), FrameLayout (displays all views in the same position above each other),

RelativeLayout (controls the position of views by using them as anchors), and

TableLayout (organizes the views into rows and columns). Listing 3.4 gives an

example of a LibLinearLayout object creation with orientation settings. It also

shows how to add a View(LibTextView) to this layout, and finally how to set this

layout as an activity’s main view.

Listing 3.4: LibLinearLayout BMI Module Example.

19

1 LibLinearLayout layout = new LibLinearLayout();

2 layout.setOrientation(LibLinearLayout.ORIENTATION.vertical);

3 ...

4 //Adding a view to a layout

5 layout.addView(heightLabel);

6 ...

7 //Setting an activity’s layout

8 userInputActivity.setView(layout);

9 ...

These views cover all the basic elements of Android applications. Moreover,

it is possible to extend the Meta-Model by adding more views in an easy and modular

way. Figure 3.1 depicts the basic elements of the Meta-Model.

Hereafter, we show a step-by-step example on how to build a simple health

application using our paradigm. The health application consists of two basic mod-

ules: (1) Body Mass Index (BMI); and (2) Menu Planner/Meal Planner. The BMI

module is composed of two activities. The first activity manages user inputs (weight

and height) and computes the BMI. Then, it sends the computed value to the second

activity. If the user does not enter a value and clicks on compute, the phone vibrates

signaling an error. Moreover, the user inputs are stored in the activity scope vari-

ables. The second activity is where the BMI value is displayed. From this activity,

a user may either navigate back to activity one or navigate to Menu Planner/Meal

Planner module. Listing 3.5 shows a snapshot of the code of BMI module.

Listing 3.5: Snapshot of the code of BMI module.

1 LibModel bmiModel = new LibModel("bmiModel", "health.app", "John");

2 LibActivity userInputActivity = new LibActivity();

3 LibActivity resultActivity = new LibActivity();

4 bmiModel.addActivity(userInputActivity, "userInputActivity");

5 bmiModel.addActivity(resultActivity, "resultActivity");

6 setUserInputActivityLayout(userInputActivityLayout);

7 setResultActivityLayout(resultActivityLayout);

8 ...

20

Figure 3.1: Basic elements of the Meta-Model

3.5 Handlers

Some views have special events that trigger specific handlers (e.g., on button click).

A developer can either write a method which handles the event or use some pre-

defined shortcuts. The code within the handlers can either use functionalities of the

Meta-Model or directly use native Android code. Views can be accessed within han-

dlers by passing them as parameters of the handler method. A handler can be used

for the communication between activities. For example, when a button is clicked or

some text field gets modified, one common functionality is to go to another activity.

21

For a given view, one specifies its handler method by calling setOnClickHandler.

The Meta-Model simplifies control transfer by using high-level shortcut. For in-

stance, within a handler, startActivity method redirects to another activity by

taking the name of the activity and any view objects as parameters. Another short-

cut is to directly specify the next activity in the setOnClickHandler.

Data parameters can be sent with a control transfer to communicate be-

tween activities. These parameters can be passed either as parameters (1) to

startActivity along with the next activity; or (2) directly to setOnClickHandler.

Listing 3.6 shows the code of the button from the first activity where its

handler computes the BMI value and sends it to the second activity. Note that, if

the user does not enter a value and clicks on compute, the phone vibrates signaling

an error.

Listing 3.6: Example of a handler with data transfer.

1 calculateButton.setOnClickHandler("Handler:health.BMI.calculate", height, weight);

2

3 // package health.BMI

4 public void calculate(LibView ht, LibView wt) {

5 if(!ht.getText().equals("") && !wt.getText().equals("")) {

6 double val = computeBMI (ht, wt);

7 LibModel.startActivity("resultActivity", val);

8 }

9 else {

10 Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

11 if(v.hasVibrator()) v.vibrate(500);

12 }

13 }

These parameters can be accessed in the main method by using a special

formatted string (@param {i} to get the ith parameter). Within a handler, these

parameters can be also accessed by calling LibActivity.getParameter(i) to get

the ith parameter. Listing 3.7 shows a snapshot of the code that sets some of the

views of the second activity. It sets the value of a text view to the passed parameter

22

that comes from the first activity. Also, it uses a shortcut to set the handler of the

button that redirects to the first activity.

Listing 3.7: Example of shortcut handler and data access.

1 bmiValueText.setText("@param_0");

2 ...

3 goBackButton.setOnClickHandler("GoToActivity:userInputActivity");

3.6 Resource Management

One of the most effort consuming tasks in developing Android applications is re-

source management: images, application icons, and other types of resources. These

resources are copied to specific folders within the resource folder. In our Meta-

Model, resources are automatically added and generated into their corresponding

folders. For example, to use an image, the developer only needs to add the path of

the image/icon to be used. Listing 3.8 shows an example that specifies the icon of

an application, displays an image, and creates a button with an image displayed.

Listing 3.8: Example of resource management.

1 ...

2 model.setIcon("images/application.jpg"); // sets the application icon

3 // Create a label to display the given image.

4 LibImageView imageView = new LibImageView("images/image.jpg", ...);

5

6 // Create a button with an image displayed on it.

7 LibImageButton imageButton = new LibImageButton("images/button.jpg", ...);

23

CHAPTER 4

PROJECTS COMPOSITION

Contents

4.1 Introduction . 24

4.2 Principles . 24

4.3 Example . 26

4.4 Other Advantages . 27

4.1 Introduction

Decomposing projects into smaller parts is a key concept in software engineering.

Using the Meta-Model, it is possible to develop several models and automatically

compose them according to a user-provided configuration. Additionally, developers

may create models, and use them across all their applications; for example, a login

model. The composition operation takes as input a configuration file that specifies

the links between the interfaces of models. Each link specifies some control and data

transfer that have to take place upon the occurrence of an event in the models: the

activity from another project that has to be executed and the parameters that have

to be sent.

4.2 Principles

Given n models m1,m2, . . . ,mn, where mi consists of ai1, a
i
2, . . . , a

i
Ii

activities. Re-

call that each activity has views that may have handlers. Each handler runs some

code that may transfer the control to another activity that can be an identified

activity in the model or a symbolic activity (i.e., an activity which is identified by a

symbolic value). Symbolic activities within a handler are specified by using method

24

goToUnknown that takes an identifier and a set of objects (to be passed to the other

activity) as parameters. A model that has a handler that transfers to a symbolic

activity is considered as a partial model.

If a handler only redirects to a symbolic activity, it is possible to use pre-

defined high-level shortcut to do so. At an abstract level, the composition module

relies on two functions: interface that returns the symbolic activities in a model,

and, configuration that associates (concrete) activities to symbolic activities. The

definition of function interface is obtained by an automatic analysis of models (see

Chapter 9). Function configuration is defined by the user through a configuration

file. A configuration file is of the form depicted in Listing 4.1.

Listing 4.1: General shape of a configuration file.

1 <New Project Name>

2 <New Project Package>

3 <New Project Author>

4 <Model>.<Activity>; //indicates the main activity of the composed project

5 <Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

6 <Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

7 <Model>.<Unknown ID> -> <Model>.<Activity Name>; // mapping

8 ...

It first contains the new project name, package, author and main activity. Then, it

defines the mapping between identifiers and activities of different models. Let mi be

a partial model with some of its handlers associated to symbolic activities id i1, id
i
2

(interface(mi) = {id i1, id
i
2}).

For example, Let a
j
k be an activity of model mj , one can have

configuration(id i1) = a
j
k, which means that identifier id i1 of model mi is mapped

to activity akj of model mj .

Figure 4.1 is an example of two partial models M1 and M2. The handler

of button button2, a handler of activity A2 and the handler of button button3

redirect to symbolic activities through interfaces I1, I2 and I3, respectively. The

configuration file connects I1, I2 and I3 to activities A5, A4 and A1, respectively.

25

M1 M2

M

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

button1

text

...

button2

?I1

?I2 button3

button4

?I3

button1

text

...

button2

button3

button4

Connections

M1.I1 → M2.A5
M1.I2 → M2.A4
M2.I3 → M1.A1

Figure 4.1: Example of models composition.

4.3 Example

Listing 4.2 shows a snapshot of the shortcut handler of the button from the second

activity (result activity) of the health application that redirects to a symbolic activity

of a different model through the interface menuPlannerInterface.

Listing 4.2: Example of unknown shortcut handler.

1 menuPlannerButton.setOnClickHandler("GoToActivity:Unknowns(menuPlannerInterface)");

Finally, models can be composed to build the final project by using one of

LibModel’s overloaded constructors that takes a configuration file and a set of mod-

els. The composition of BMI and Menu Planner modules is depicted in Listing 4.3.

Listing 4.3: Composition of BMI and Menu Planner modules.

1 LibModel healthAppModel = new LibModel("config.txt", bmiCalculatorModel, menuPlannerModel);

26

Listing 4.4 shows the configuration file that connects (1) the menu planner

interface of BMI calculator model to user information activity of the menu planner

model; and (2) the BMI calculator interface of menu planner model to user input

activity of BMI calculator model.

Listing 4.4: Configuration file connecting BMI and Menu Planner models.

1 Health App // project name

2 health.app // project package

3 John // project author

4 bmiCalculatorModel.userInputActivity // main activity of the composed model

5 // connections/mapping

6 bmiCalculatorModel.menuPlannerInterface -> menuPlannerModel.userInformationActivity

7 menuPlannerModel.bmiCalculatorInterface -> bmiCalculatorModel.userInputActivity

Note that, a set of models can be composed successively to build the final

model. Listing 4.5 shows an example of successively composing three models.

Listing 4.5: Successive composition of models.

1 LibModel model12 = new LibModel("config1.txt", model1, model2);

2 LibModel model123 = new LibModel("config2.txt", model12, model3);

4.4 Other Advantages

Although mobile applications almost certainly harbor undetected errors, using mod-

els composition approach, it is possible to directly apply software testing paradigm

to reduce and locate them: unit and integration testing. This can be done by test-

ing partial models separately (unit testing) to find local errors and then test the

complete model (integration testing) to find interface errors.

27

CHAPTER 5

PERMISSION AUTO-DETECTION AND GENERATION

Contents

5.1 Introduction . 28

5.2 Motivating Example . 28

5.3 Proposed Solution . 29

5.1 Introduction

Manually managing permissions in the configuration file is time consuming. It often

entails several compilation attempts of the application to narrow down the proper

set of required permissions. Consequently, most of the developers add permissions

more than it is needed which contradicts the users’ preferences.

5.2 Motivating Example

To use the phone’s vibrator, one needs to retrieve the vibrator object using

the method getSystemService(Context.VIBRATOR SERVICE), then call one of

the following methods: hasVibrator(), vibrate(), or cancel(). Note that,

method hasVibrator() returns a boolean and does not require the vibrate

permission (android.permission.vibrate), while cancel() and vibrate() do.

Listing5.1 shows an example of native Android Java code that calls hasVibrator()

but does not require permission access which is actually not needed. Intu-

itively, developers may assume that method hasVibrator(), or/and class method

getSystemService() requires permission android.permission.VIBRATE and adds

it to the manifest configuration file. Note that, if one replaces line 8 with

v.vibrate(500), the permission access would be required only for mobiles that

28

have a vibrator. Consequently, code modifications demand a manual reconsidera-

tion of the required permissions.

Listing 5.1: Example of native Android Java code that does not require permission.

1 @Override

2 protected void onCreate(Bundle savedInstanceState) {

3 super.onCreate(savedInstanceState);

4 setContentView(R.layout.activity_main);

5

6 Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

7 if(v.hasVibrator()) {

8 Toast.makeText(context, message, duration).show();

9 }

10 }

5.3 Proposed Solution

In our case, APIs which access device-specific features are called within handlers of

listener GUI elements. Note that some external libraries may call some of these APIs.

Our permission detection/generation module must take into account: (1) modifica-

tion (add/remove/update) of permissions; (2) modification (add/remove/update) of

APIs; (3) modification (add/remove/update) of external library that may call those

APIs.

In other words, any of these modifications should not drastically affect the

code that automatically detects and generates permissions. For this, we define a set

of templates that represent all the APIs that require a permission. For instance,

object initializations (constructors), method calls (method name, parameter types,

calling object’s type), etc.

This gives us maintainability for future permission modification as well as

ease to extend our supported set of permissions. We define two types of templates

permissions.xml and permissionExternals.xml that contain templates for native

APIs and external library APIs, respectively, that require permission access. The

template file is of the form depicted in Listing 5.2.

29

Listing 5.2: General shape of a template file for a given permission.

<permission name="PERMISSION_1">

<class name="Class_1">

<method name="method_1">

<parameters>

<parameter type="param1" />

</parameters>

</method>

<method name="method_2">

<parameters>

<parameter type=" " />

</parameters>

</method>

<method name="method_3">

<parameters>

<parameter type="param2" />

<parameter type="param3" />

</parameters>

<parameters>

<parameter type="param4" />

</parameters>

</method>

</class>

<class name="Class_2">

<method name="method_4" />

<method name="method_5" />

</class>

<class name="Class_3" />

</permission>

The template depicted in Listing 5.2 defines all the API calls shown in 5.3

that require permission PERMISSION 1:

Listing 5.3: API calls requiring permission PERMISSION 1.

2 (Class_1).method_1(param1);

30

4 (Class_1).method_2();

6 (Class_1).method_3(param2, param3);

8 (Class_1).method_3(param4);

10 (Class_2).method_4(/*Any set of parameters*/);

12 (Class_2).method_5(/*Any set of parameters*/);

14 Class_3 var = new Class_3(/*Any set of parameters*/);

For example, the template for permission android.permissions.VIBRATE

is depicted in Listing5.4.

Listing 5.4: Template for permission android.permissions.VIBRATE.

<permission name="android.permissions.VIBRATE">

<class name="Vibrator">

<method name="vibrate" />

<method name="cancel">

<parameters>

<parameter type=" " />

</parameters>

</method>

</class>

</permission>

From the template of permission android.permissions.VIBRATE, we can

deduce that permission android.permissions.VIBRATE is required whenever one

of the lines of code in Listing5.5 is detected.

Listing 5.5: API calls requiring permission android.permissions.VIBRATE.

1 // v is an object of type Vibrator

2 // E.g., Vibrator v = (Vibrator) getSystemService(Context.VIBRATOR_SERVICE);

3

4 v.vibrate(500); // vibrate(long milliseconds) method

5

6 v.vibrate({{12}, {23}, {12}}, 50); // vibrate(long[] pattern, int repeat) method

7

8 v.cancel(); // cancel() method

31

CHAPTER 6

MODEL-BASED TESTING

Contents

6.1 Introduction . 32

6.2 Model-Based Testing Module . 33

6.2.1 LibTest . 33

6.2.2 Text Manipulation . 33

6.2.3 Click and Long Click Actions 33

6.2.4 Activity Manipulation . 34

6.2.5 Activity Fields . 34

6.2.6 Exception ElementNotFoundException 34

6.3 Example . 35

6.1 Introduction

Performing test cases on an Android emulator or device is time consuming. Running

hundreds of operations usually takes hours, if not days. Android SKD does not

allow for test cases to be executed directly from inside an IDE, thus throwing a

RuntimeException error.

In order to integrate efficient model-based testing in our framework, we

extend our model to be executable. That is, each model can be represented as

a state consisting of the current activity, the value of the views, the value of the

activity scope variables and global variables. We implement all the functionalities

to perform operations on any given MoDroid model. For example: (1) modify or

get the value of a view; (2) perform click/event.

32

6.2 Model-Based Testing Module

6.2.1 LibTest

The model-based testing framework consists of a module LibTest that allows to

perform high-level operations on the model under test (e.g., setText, click, etc.).

LibTest takes a model under testing as input with an optional entry point (i.e.,

name of an activity) and a set of test cases to be performed.

Listing 6.1: LibTest Example.

1 ...

2 LibTest test = new LibTest(bmiModel);

3 ...

Recall that, it is possible to test partial models separately (unit testing)

to find local errors and then test the composed model (integration testing) to find

interface errors. Below we present some of the operations that can be performed on

an Android model.

6.2.2 Text Manipulation

The developer can use LibTest to get, and modify a view’s text using the getText,

and setText methods respectively. An ElementNotFoundException is thrown when

the view being used is not found.

Listing 6.2: Text Manipulation Example.

1

2 test.setText("weight", "70");

3 assertEquals("Incorrect Weight", "70", test.getText("weight"));

4 ...

6.2.3 Click and Long Click Actions

LibTest allows the developer to test click, and long click actions on a view using

two methods: click, and longClick. An ElementNotFoundException is thrown if

33

the view’s click/longClick functionality wants to change the current activity into

an activity which does not belong to the model.

Listing 6.3: Click Example.

1 ...

2 test.click("calculateButton");

3 ...

6.2.4 Activity Manipulation

LibTest contains methods to manage activities; these methods allow a tester to

use functionalities such as to get current activity name, and set the current activity.

These kind of actions might throw an ElementNotFoundException when the activity

specified does not belong to the model.

Listing 6.4: Activity Manipulation.

1 ...

2 assertEquals("Incorrect Activity", "resultActivity", test.getCurrentActivityName());

3 ...

6.2.5 Activity Fields

LibTest provides the method getCurrentActivityFields which returns the extra

fields for the current activity.

6.2.6 Exception ElementNotFoundException

ElementNotFoundException is an exception used in LibText to signal that the

developer is trying to access an element which is not available. The element can be

a view, or an activity.

34

6.3 Example

Listing 6.5 shows an example of some test cases of BMI calculator model. It mainly

tests the redirection of activities and the computation of BMI. It consists of the

following steps:

1. Create a LibTest instance that takes the model as input. Note that, it is

possible to specify an activity to be an entry point of the model.

2. Set the weight and the height values and check if the values have been set

properly.

3. Perform click on calculateButton button and check if (1) the next activity

is the result activity; and (2) the BMI was correctly computed.

Listing 6.5: Example of test cases.

1 @Test

2 public void testcase1(LibModel bmiModel) {

3 try {

4 LibTest test = new LibTest(bmiModel);

5 test.setText("height", "175");

6 assertEquals("Incorrect Height", "175", test.getText("height"));

7

8 test.setText("weight", "70");

9 assertEquals("Incorrect Weight", "70", test.getText("weight"));

10

11 test.click("calculateButton");

12

13 assertEquals("Incorrect Activity", "resultActivity", test.getCurrentActivityName());

14 assertEquals("Incorrect Value", "22.9", test.getText("value"));

15 } catch (ElementNotFoundException e) {

16 fail("Element Not Found: " + e);

17 }

18 }

35

CHAPTER 7

CODE GENERATION

Contents

7.1 Definition and Usage . 36

7.2 Implementation . 36

7.3 Cloud-based Compilation . 37

7.1 Definition and Usage

Given an Android model we implement a module that generates equivalent native

Android code (along with its resources, manifest configuration file, etc.). This is

done by calling generate(path) method on a given model. The generated code

preserves the order of statements and comments. This allows to easily integrate

other functionalities to the generated code.

An example of code generation is depicted in Listing 7.1.

Listing 7.1: Example of code generation.

1 public class Application {

2 public static void main(String[] args) throws FileNotFoundException, IOException {

3 ...

4 healthAppModel.generate("gen/");

5 }

6 }

7.2 Implementation

The generate method recursively traverses the model shown in Figure 3.1 starting

from LibModel, LibActivity instances, and all the way down to the layouts, and

controls. Each object has its own generate method, which produces its equivalent

native Android code.

36

Additionally, further methods written by an application developer are also

parsed using ANTLR [Parr(2007)] and StringTemplate [Parr(2000)]. These addi-

tional methods are then translated into the equivalent native Android code. It is

also possible to write native code inside these methods, where our permission de-

tection module validates it against the defined templates, and gradually builds the

AndroidManifest.xml configuration file with only the required permissions.

Finally, when model composition has been used to combine two or more

models, the generation process correspondingly parses the configuration file which

binds these two models. The result is one native application.

7.3 Cloud-based Compilation

Android SDK (Software Development Kit) is a set of components that include li-

braries, a debugger, a handset emulator, and others. Its main role in development

is to generate native Android application executable files (.apk). Android SDK is a

heavy module that requires memory, and time.

For this, we have developed a web service, and placed it online to generate

an application’s executable without installing the SDK. We have configured a server

on the cloud with: (1) all the updated Android SDK libraries; (2) ant-apache which

is a command based tool to create, and update an application given its source code;

(3) compiled version of MoDroid. The web service takes as parameter a model of an

Android application developed using MoDroid. The server compiles an application

and generates an executable file (.apk) ready to be installed on Android devices, and

shared on Google Play Store. As a plus, in order to efficiently test an application on

different real devices, the web service, can send the generated executable to a list of

email addresses (application beta testers).

Figure 7.1 illustrates the process of uploading a MoDroid Android Java

code, and receiving an executable native Android code compiled by our server.

37

Figure 7.1: Cloud-based Compilation

38

CHAPTER 8

TOOL-SET - MODROID

Contents

8.1 Introduction . 39

8.2 Implementation . 39

8.3 Design-Flow Development . 42

8.3.1 Development of Models . 42

8.3.2 Composition of Models . 42

8.3.3 Project Generation . 42

8.1 Introduction

MoDroid1 implements the Meta-Model and its supported tools: composition of mod-

els, permission detection, testing and code generation. The tool is packed and com-

piled into a single jar file. The jar file must be imported as a library to the project

being developed.

8.2 Implementation

To promote extensibility and modularity of MoDroid, we implement a visitor pattern

that traverses the tree structure (GUI element, handlers, etc.) of an Android model.

The pattern takes as input an interface that declares methods to be executed de-

pending on the node that was localized. We have developed several implementations

of that interface:

1. Implementation to detect unknown interfaces (symbolic activities) used in

models composition.

1. http://ujf-aub.bitbucket.org/modroid/

39

2. Implementation that takes templates representing all the APIs that require

permissions and detect the required permissions accordingly.

Model

visitor()permission()templates AndroidManifest

3. Implementation to make the model executable by performing operations on

a view (e.g., LibText) that are used by model-based testing module. It re-

cursively navigates into the layouts to reach the intended view, and then per-

forms the action specified. Two executable actions are available. The first

is Clickable action, where the reached view is clickable, and the action is

to perform a click, or a long click. The second is HasText action, where the

reached view has text, and the action is either to get the text, or to set the

text of a view.

[Partial] Model

visitor()testing() verdicttestcases()

4. Implementation to generate equivalent native Android code (along with its

resources, manifest configuration file, etc.) from an Android model. Code

generation module uses antlr and template engine library StringTemplate

[Parr(2000)] for parsing handlers and generating native Java Android from an

Android model.

40

Model

visitor()codegeneration()

Java

Native

Android

templates

Figure 8.1 shows the development design-flow which is based on MoDroid.

M1 M2

M

A1

A2

A3

A4

A5

A1

A2

A3

A4

A5

button1

text

...

button2

?I1

?I2 button3

button4

?I3

button1

text

...

button2

button3

button4

Connections

M1.I1 → M2.A5
M1.I2 → M2.A4
M2.I3 → M1.A1

visitor()permission()

codegeneration()

testing()testcases()

Java

Native

Android

templates

templates

Figure 8.1: Development design-flow in MoDroid.

41

8.3 Design-Flow Development

8.3.1 Development of Models

Models are built and tested separately using high-level primitives provided by MoD-

roid. Recall that, it is also possible to build models without their handlers (e.g.,

only GUI layouts) from an XML file and then handlers can be programmatically in-

tegrated. That is, using the Meta-Model, one can still benefit from MVC design

pattern supported for native Android development.

8.3.2 Composition of Models

Given a configuration file describing the mapping between models, we generate and

test the final model of the application. It is worth mentioning that, we can build

several applications given different mappings without any modifications of the mod-

els.

8.3.3 Project Generation

After executing the generate method, a native Java Android code is generated in-

cluding all permissions that are required by the application core. Developers may

edit the generated code by writing native Android code to add any extra function-

alities before producing the Android Package Kit (.apk) file.

42

CHAPTER 9

EXPERIMENTAL RESULTS

Contents

9.1 Introduction . 43

9.2 Code Length . 43

9.3 Performance Testing Evaluation . 44

9.3.1 Scientific Calculator Benchmarks 44

9.3.2 Volleyball Statistics Benchmarks 45

9.1 Introduction

We have developed several applications using both native Java Android and MoD-

roid; both versions of the code have the same design, and perform exactly the same

functions. We then compared the code length of both. Furthermore, we developed

test cases which used the current available tools, and we compared their performance

with respect to our model-based testing tool. The results are displayed below.

9.2 Code Length

Table 9.1 compares the number of lines of code of several applications (Breadcrumb

Viewer, Guessing Game, Scientific Calculator, and Volleyball Statistics) between

native Java android, MoDroid, and automatically generated code. It is clear that

building an Android model drastically reduces the number of lines of code. Moreover,

it is much less time consuming with respect to writing native Java Android. We

notice an overhead of 25% in the automatically generated code. This overhead is

mainly due to the code generation of handlers. In fact we duplicate handlers of

different views which can be technically eliminated by creating only one method for

the same handler code of different views.

43

Application
Name

MoDroid Generated Native
Written Code

Reduction

Overhead
Code

Generated

Breadcrumb
Viewer

63 329 276 77% 17%

Guessing Game 158 340 246 35% 27%
Scientific
Calculator

180 377 282 36% 25%

Volleyball
Statistics

137 702 510 73% 27%

Table 9.1: Code length comparison.

9.3 Performance Testing Evaluation

Moreover, we have conducted other benchmarks to compare the performance of

our model-based testing framework and the following tools that are currently being

widely used: Robolectric, Robotium, and Espresso on both an Emulator and a real

device.

Robotium and Espresso perform actions on an emulator or on a real device;

whereas Robolectric and MoDroid testing do not need an emulator nor a real device.

Taking this factor into consideration, we would expect our testing framework and

Robolectric to have a better performance.

9.3.1 Scientific Calculator Benchmarks

The first benchmark was performed on the scientific calculator application that we

developed using MoDroid. The test actions were simply to click on values and

operations; then to check the output of the calculator.

Table 9.2 shows a comparison of the time taken to perform test cases that

require 10, 25, 50 up to 1 million operations by all the tools. Operations consist of

performing clicks and text value modifications and searches.

As expected, Robolectric and MoDroid drastically outperform Robotium

and Espresso. The results were close between Robolectric and MoDroid if we take

into account the initialization phase required by Robolectric. The time taken to

44

XXXXXXXXXXXXPlatform

Operations (#)
10 25 50 75 100 150 1000 10000 100000 1000000

Robotium 36 88 180 268 360 541 3605.4 > 10 hours > 10 hours > 10 hours
Espresso Emulator 1.8 4.3 8.1 12 15.6 23.1 159.3 1645.5 16411.7 > 10 hours
Espresso Sony Z2 0.9 2.4 4.5 6.8 8.9 13.4 88.6 918.9 9189 > 10 hours
Robolectric 4.4 4.5 4.7 4.9 5.1 5.4 5.6 5.9 6.9 27
MoDroid 0.021 0.031 0.038 0.039 0.04 0.05 0.14 0.4 1.118 7.7

Table 9.2: Testing time scientific calculator (in seconds).

perform test cases requiring one million operations with Robolectric is 27 seconds

as opposed to 7.7 seconds using MoDroid.

9.3.2 Volleyball Statistics Benchmarks

The second benchmark was performed on a Volleyball Statistics application devel-

oped using MoDroid. It is composed of two activities. The first activity is the splash

screen which contains a button to navigate to the second activity where statistics

are done. The second Activity is composed of two teams and the players for each

team. Each player has two buttons to increment and decrement the points scored

by this player. This application can be used by coaches, statistics frameworks, and

so on. Figure 9.1 displays screenshots of both activities, one on a Sony Z2 device,

the other on a Nexus One emulator.

We test this application by randomly selecting a player and performing

operations. We also test the navigation between activities.

Table 9.3 shows a comparison of the time taken to perform test cases re-

quiring 10, 25, 50 up to 1 million operations by all the tools. Similar to the first

benchmark, Robolectric and MoDroid outperform other tools. Moreover, the time

taken by test cases that require one million operations with Robolectric is 118 sec-

onds as opposed to 12 seconds using MoDroid.

45

Figure 9.1: Volleyball Statistics Application Screenshot

XXXXXXXXXXXXPlatform

Operations (#)
10 25 50 75 100 150 1000 10000 100000 1000000

Robotium 5.2 12.8 25.8 37.1 49.9 73.5 486.1 4861.1 > 10 hours > 10 hours
Espresso Emulator 3.1 7.6 15.5 22.5 29.9 43.6 290.9 2845.1 28760.2 > 10 hours
Espresso Sony Z2 1.1 2.6 5.5 7.7 10.3 15.3 111.9 1148.5 11275.2 > 10 hours
Robolectric 4.81 4.94 5.1 5.3 5.64 5.95 6.3 8.88 18.94 118.84
MoDroid 0.01 0.02 0.03 0.04 0.06 0.07 0.19 0.62 1.78 12.14

Table 9.3: Testing time volleyball statistics (in seconds).

46

CHAPTER 10

CONCLUSION AND FUTURE WORK

Contents

10.1 Conclusion . 47

10.2 Future Work . 48

10.1 Conclusion

This report proposes a new way to develop Android applications. It offers a com-

promise between expressiveness and ease of development: at the price of slightly re-

ducing expressiveness, MoDroid facilitates and speeds up the development process.

Yet, using our framework does not prevent developers from building applications

using the full range of features of Android because, after automatically generating

the base of the application, expert developers can still use Android features by com-

pleting the generated code template. Moreover, our framework introduces several

interesting features for developers:

1. Decomposition of applications for parallel development and modularity; thus

boosting code re-usability, and facilitating the option of having multiple devel-

opers on a certain application; as a result making development exponentially

faster.

2. Automatic detection of permissions and generation of the AndroidManifest

file. Consequently, making the application safer, and increasing users’ privacy.

3. Efficient model-based testing of applications. Thus allowing a huge number of

test cases to be executed in a reasonable amount of time.

47

4. Automatic code generation of some parts of applications which allows split-

ting application’s development on several developers each having their own

language skills. Moreover, allowing for native Android code to be added by

expert Android developers.

10.2 Future Work

In the near future, we plan to add several features in the road-map of MoDroid.

1. Initially, we plan to add emulators for hardware components such as the GPS

and camera. For instance, this should allow the user to pre-define GPS loca-

tions to be passed to the application.

2. Moreover, we plan to extend MoDroid to support a high-level description of

multi-tasking, services, broadcast receivers, etc.

3. Additionally, we plan to make automatic permission detection compatible with

the permissions model of the latest version of Android.

4. Furthermore, we plan to allow programmers to develop applications right on

our cloud-based service via a web-based development kit without having to

download any tool or library.

5. Finally, we plan to make MoDroid compatible with existing tools for automatic

test generation for Android.

48

REFERENCES

[Amalfitano et al.(2014)Amalfitano, Fasolino, Tramontana, Ta, and Memon]

Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung

Ta, and Atif M. Memon. Mobiguitar – a tool for automated model-based

testing of mobile apps. IEEE Software, NN(N):NN–NN, 2014.

[Apache(2011)] Apache. Cordova, http://cordova.apache.org/, 2011. URL

http://cordova.apache.org/.

[Appery(2010)] LLC Appery. Appery.io, 2010. URL http://www.appery.io.

[Au et al.(2012)Au, Zhou, Huang, and Lie] Kathy Wain Yee Au, Yi Fan Zhou, Zhen

Huang, and David Lie. Pscout: analyzing the android permission specification.

In Proceedings of the 2012 ACM conference on Computer and communications

security, pages 217–228. ACM, 2012.

[Balagtas-Fernandez and Hussmann(2008)] Florence T Balagtas-Fernandez and

Heinrich Hussmann. Model-driven development of mobile applications.

In Automated Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM

International Conference on, pages 509–512. IEEE, 2008.

[Bartel et al.(2012)Bartel, Klein, Le Traon, and Monperrus] Alexandre Bartel,

Jacques Klein, Yves Le Traon, and Martin Monperrus. Automatically securing

permission-based software by reducing the attack surface: An application to

android. In Proceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering, pages 274–277. ACM, 2012.

[Feng et al.(2014)Feng, Anand, Dillig, and Aiken] Yu Feng, Saswat Anand, Isil Dil-

lig, and Alex Aiken. Apposcopy: Semantics-based detection of android malware

through static analysis. In SIGSOFT FSE, 2014.

49

[Foundation(2011)] Eclipse Foundation. Xcore is an extended concrete syntax for

ecore that, in combination with xbase, transforms it into a fully fledged pro-

gramming language with high quality tools reminiscent of the java development

tools., 2011. URL http://wiki.eclipse.org/Xcore.

[Google(2007)] Google. Testing instrumentation, 2007. URL

https://developer.android.com/tools/testing/index.html.

[Google(2010)] Google. Application exerciser monkey, 2010. URL

http://developer.android.com/tools/help/monkey.html.

[Google(2013)] Google. Espresso, 2013. URL

https://code.google.com/p/android-test-kit/wiki/Espresso.

[jQuery Team(2010)] jQuery Team. Jquery mo-

bile, http://www.jquerymobile.com/, 2010. URL

http://www.jquerymobile.com/.

[Labs(2010)] Pivotal Labs. Robolectric, 2010. URL

http://www.robolectric.org/.

[Mitchell(2014)] Edward Mitchell. App Inventor 2: Tutorial: The fast and easy way

to create Android apps, volume 1. Edward Mitchell, 2014.

[Otto and Thornton(2011)] Mark Otto and Jacob Thornton. Twitter’s bootrsrap,

2011. URL http://getbootstrap.com/.

[Palmieri et al.(2012)Palmieri, Singh, and Cicchetti] Manuel Palmieri, Inderjeet

Singh, and Antonio Cicchetti. Comparison of cross-platform mobile de-

velopment tools. In 16th International Conference on Intelligence in

Next Generation Networks, ICIN 2012, Berlin, Germany, October 8-11,

2012, pages 179–186, 2012. doi: 10.1109/ICIN.2012.6376023. URL

http://dx.doi.org/10.1109/ICIN.2012.6376023.

50

[Parr(2000)] Terence Parr. String template, 2000. URL

http://www.stringtemplate.org.

[Parr(2007)] Terence Parr. The definitive antlr reference: building domain-specific

languages. 2007.

[Reda(2009)] Renas Reda. Robotium, 2009. URL http://www.robotium.com/.

[Rösler et al.(2014)Rösler, Nitze, and Schmietendorf] Florian Rösler, André Nitze,

and Andreas Schmietendorf. Towards a mobile application performance bench-

mark. In ICIW 2014, The Ninth International Conference on Internet and Web

Applications and Services, pages 55–59, 2014.

[Steinberg et al.(2003)Steinberg, Budinsky, Merks, and Paternostro] Dave Stein-

berg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF: eclipse

modeling framework. Pearson Education, 2003.

[Systems(2009)] Adobe Systems. Phonegap, http://www.phonegap.com/, 2009.

URL http://www.phonegap.com/.

[Wolf and HUFFSTADT(2013)] Florian Wolf and KARSTEN HUFFSTADT. Mo-

bile enterprise application development-a cross-platform framework. FHWS

Science Journal, page 33, 2013.

[Yang et al.(2013)Yang, Prasad, and Xie] Wei Yang, Mukul R. Prasad, and Tao

Xie. A grey-box approach for automated gui-model generation of mobile

applications. In Fundamental Approaches to Software Engineering - 16th

International Conference, FASE 2013, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,

March 16-24, 2013. Proceedings, pages 250–265, 2013. doi: 10.1007/978-3-642-

37057-1. URL http://dx.doi.org/10.1007/978-3-642-37057-1.

51

