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An Abstract of the Thesis of

Cynthia Raymond Saad for Master of Sciences
Major: Physics

Title: Effect of the magnetic field on the early collapse phase of a dense protostellar
cloud

The purpose of this study is to investigate the role of magnetic field on the
first collapse of rotating molecular clouds.

The process of ambipolar diffusion has been considered and analyzed. Order
of magnitude estimates are presented to justify the use of the ideal MHD approach
to study the initial collapse phase in our work.

As a first step, an isothermal magnetized and rotating sphere of uniform
density was considered. More realistic initial conditions were used consisting of a
centrally condensed cloud with a barotropic equation of state. A small perturbation
was introduced to the clouds and a three-dimensional MHD code was used to study
the effect of the variable magnetic field strengths suggested by observations.

The results obtained in this work suggest that the magnetic field is a sup-
porting agent against gravitational collapse as expected. Furthermore, the initial
strength of the magnetic field determines whether the stellar cloud undergoes frag-
mentation into multiple objects.

We propose some ideas for future work taking the advantage of multidi-
mensional simulation. In particular, it is interesting to study the process of star
formation under the conditions leading to the formation of the first stars in the
universe.
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Chapter 1

Introduction

This chapter describes the molecular clouds as the site of star formation.

We introduce several physical processes involved in this fundamental process in

astrophysics.

1.1 Molecular clouds

Molecular clouds are considered to be the major site of star formation in

the interstellar medium. They represent the coldest and densest components in

the interstellar medium. They are large associations of molecular hydrogen, He-

lium and traces of heavier elements. These clouds are characterized by relatively

high number densities in the range (103cm−3 − 104cm−3) and relatively low tem-

peratures about 10 K. Cores inside them could have even higher densities between

(105cm−3 − 106cm−3). Their sizes are in the range (1-5) parsec where 1pc is 3.26

lightyears, and masses of the order of 104 solar masses (Myers, 1985). The aver-
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age time required to collect gas into giant molecular clouds is about 30 Myr in the

Galactic average or 50Myr in the solar neighborhood. Whereas, the cloud’s lifetime

is about 20Myr (Larson, 1993).

The molecular clouds are subject to energetic cosmic rays of energies > 100MeV

leading to the ionization of neutral particles. However, cosmic rays are able to ionize

a small fraction of neutral particles, about 10−7 particle/s.

Due to their low temperature, molecular clouds are also called dark clouds. Since

molecular hydrogen does not have a permanent magnetic dipole moment (it is called

homo-nuclear), the first allowed transition is from the rotationally excited state of

J=2 to the ground state. However, at such low temperatures, the occupation of

J=2 is extremely small of the order of 10−22. Therefore, molecular clouds with these

properties are called dark cloud (Krumholz, 2011). This is in contrast with the

atomic hydrogen, for which the hyperfine transition leading to the 21cm wavelength

corresponds to an average temperature of 0.068 K and thus can occur even in coldest

region of the cloud.

Another property of molecular clouds is that they are magnetized. Their magnetic

field strengths is a function of their neutrals number density (see figure (3.1)). For

instance, for nH = [103 − 105cm−3], the magnetic field strength ranges between 10

and 100µG (Crutcher, 2012).
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1.2 Star formation time line

The time scale of star formation can be divided into three phases. A first

phase is a contraction toward the formation of a protostar. This phase is fol-

lowed by a second one when a hydrostatic protostar is formed and starts accreting

mass. When the mass accretion stops, a contraction third phase starts on a Kelvin-

Helmholtz time scale that is a time scale determined by gravitational contraction

at constant mass. This phase is associated with the T Tauri stars, which became

observable and evolve finally to the zero-age main sequence, where hydrogen burns

under hydrostatic and thermal conditions.

One important question is whether the time scale of the formation of the

T Tauri star measures the time of the whole formation process?. It seems (Tassis

& Mouschovias, 2004) that neglecting the first phase would be a serious under-

estimation of the time scale of stellar formation. As described in section sec-

tion:ADtimescale, the ambipolar diffusion would affect the time scale of star for-

mation.

A controversial issue is the duration of the first phase compared to the last

T Tauri phase. According to Mouschovias, et al. (2006), the time scale of the

first phase can be longer than the last one. So it is not correct to identify the

timescale of the star formation with the timescale of the formation of the T Tauri

star. Instead it is crucial for the time line to start with a coreless cloud rather than

with a hydrostatic protostar.
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Chapter 2

Standard theory of star formation

In this chapter, we focus on the first phase of star formation and describe

the conditions under which the magnetized molecular cloud collapses to form a

protostar.

2.1 Jeans criterion

Star formation is initiated by the gravitational collapse of a large molecular

cloud or even a region of the cloud.

The total energy (Etot) of the cloud is the kinetic energy (EK) and gravitational

potential energy (Egrav).

If EK < |Egrav|, or Etot < 0, the cloud is bound and may collapse.

The Jeans criterion (Jeans, 1902) is a simple argument that indicates the collapse
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of a gas cloud. The total energy is:

Etot = EK + Egrav (2.1)

Etot < 0 (2.2)

EK < −Egrav (2.3)

Since Egrav < 0, this equivalent to EK < |Egrav|.

This kinetic energy limit requires a relatively cold cloud in order to form stars. The

Jeans criterion can be expressed in terms of a limit on the mass and density of the

cloud.

Consider a sphere of uniform density, its gravitational potential energy is:

Egrav = −3

5

GM2

R
(2.4)

However, the factor 3/5 is in reality larger towards the center , therefore one can

use approximately

Egrav = −GM
2

R
(2.5)

The kinetic energy of N particles in the cloud is EK = 3
2
NkT . Then the Jeans

criterion reads:

3

2
NkT <

GM2

R
(2.6)
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Using M = NµmH and R =

(
3M

4πρ

)1/3

and some rearrangements, one obtains the

relation:

M >

(
3kT

2µmHG

)3/2(
3

4πρ

)1/2

≡MJ (2.7)

MJ is the Jeans mass, which is the minimum value of the cloud mass to undergo

gravitational collapse for given composition T and ρ.

It is important to notice that MJ ∝ T 3/2ρ−1/2. The collapse timescale tff when

M > MJ is the time a mass element at the cloud surface needs to reach the centre,

which is given by equation (2.18).

Following the collapse, the density has to increase, because the cloud is

shrinking, that is the volume decreases but the mass remains unchanged. Concerning

the temperature T, the situation is different: its evolution depends on the exchange

of energy between the clouds and its surroundings.

The matter in the cloud is heated by cosmic rays penetrating the cloud and ionizing

the atoms. Also the liberated electrons due to ionization may collide to the atoms

to ionize them as well.

On the other hand, the cloud can be cooled by radiation. Cooling processes seem

to be efficient with a consequence that the cloud will be in good approximation

isothermal.

A consequence of this is that since T stays constant and ρ increases, the Jeans mass

MJ decreases. If there are within the cloud inhomogeneities with mass larger than

MJ , they will collapse with there local tff different from the initial tff . this process

is called “fragmentation” .
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2.2 The role of the magnetic field

A magnetic field supports the cloud against gravitational collapse. The

question is whether this magnetic support is capable of inhibiting the collapse of the

cloud. Also, is it possible for a previously supported cloud to eventually undergo

collapse?

Despite the fact that the origin of the magnetic field in the interstellar medium is

still not well known, its effect on the process of star formation is worth studying.

For a gas cloud with typical temperature T=10K and density nH ≥ 50cm−3, the

Jeans mass can be estimated to be MJ ≤ 80M� and the free fall time (see Eq. 2.18)

is tff ≤ 5 × 106yrs. Assuming the thermal pressure is the only support against

gravitational collapse, free fall collapse would lead to a galactic star formation rate

of Ṁ∗ ≥ 200M�yr
−1, which is far in excess of the observed galactic average of

approximately 3M�yr
−1(Braiding, 2011).

Also, observations of individual cores indicate that the non-thermal motions

within the cores are subsonic (Benson & Myers, 1989), (Fuller & Myers, 1992),

indicating that these motions are unlikely to contribute to the support of the cores

against their self-gravity. This is because random supersonic motion is a supporting

agent against gravity (Klessen, Heitsch, & Mac Low, 2000).

Hence, in general, molecular clouds must be supported by another mecha-

nism (Zuckerman and Palmer (1974), Ward-Thompson et al. (2007)). Various alter-

natives to thermal pressure support of molecular clouds have been suggested: mag-

netic fields (e.g. Chandrasekhar and Fermi (1953), Basu and Mouschovias (1994),
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Adams and Shu (2007)), rotation (e.g. Field (1982), N. J. Evans (1999)) and tur-

bulence (e.g. Norman and Silk (1980), Mac Low and Klessen (2004), Vázquez-

Semadeni et al. (2007)). These effects may play a role, but the magnetic field is

mostly important (Braiding, 2011).

Based on the strength and nature of magnetic field in molecular clouds,

there are three theoretical models for star formation:(Crutcher, 2012)

1. Models with strong field:

In this model, the magnetic pressure is sufficiently strong to counteract gravity

and prevent gravitational collapse. The ionized gas remains frozen into the

field, while the neutral gas and dust contract gravitationally through the field

and the ions, increasing the mass in the cloud cores. In this process which is

called “ambipolar diffusion”, the magnetic field strength than the mass.

2. Models with weak field:

If the magnetic fields are sufficiently weak (then the low-density cloud is super-

critical, and the cloud will collapse in roughly the free-fall timescale. Although

magnetic pressure cannot stop the collapse, it can dominate turbulent pressure

during the late stages of core collapse.

3. Significant turbulent magnetic field: Turbulence mainly enhances am-

bipolar diffusion rate, i.e. allows collapse of a subcritical cloud: the star-

formation timescale is reduced by an order of magnitude for a subcritical

cloud (Nakamura & Li, 2005).

How does the magnetic field support the cloud against gravitational col-
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lapse? It could do so in two ways:

1. The magnetic pressure adds up to the gas pressure to support the cloud against

gravitational collapse.

2. The magnetic tension reduces forces due to self-gravity once collapse proceeds

and a thin disk forms (Basu, 1997), (Li & Shu, 1997). We can safely ignore

this effect in the early collpase phase before the disks form.

The effect of the magnetic field investigated in this work is considered

through the magnetic pressure. It is possible to eliminate the magnetic tension

contribution if one assumes an initially aligned magnetic field along the ẑ-axis i.e.

B = (0, 0, Bz). Given this configuration of the magnetic field, the magnetic tension

vanishes from the MHD momentum equation (A. P. Boss, 1997).

The momentum equation is given by:

ρ
∂u

∂t
+ ρu.∇u = −ρ∇Φ−∇P +

1

4π
(∇×B)×B (2.8)

The last term of Eq. 2.8 represents the Lorentz force. To find it, we use the following

vector identity:

1

2
∇ (B.B) = (B.∇)B + B× (∇×B) (2.9)

This gives for the Lorentz force:

1

4π
(∇×B)×B = −∇

(
B2

8π

)
+

1

4π
(B.∇)B (2.10)
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For the configuration chosen above,
∂Bz

∂z
= 0, then (B.∇)B = 0.

In this approximation, the MHD momentum equation becomes:

ρ
∂u

∂t
+ ρu.∇u = −ρ∇Φ−∇

(
p+

B2

8π

)
(2.11)

Implementing this equation is called the pseudo MHD code first introduced by

A. P. Boss (1997). Here, the effect of magnetic field comes down to augmenting

the gas pressure.

Note that the magnetic pressure is an exact representation of MHD effects for high

conductivity and straight magnetic field lines. Detailed simulations

(Fiedler & Mouschovias, 1993) have shown that initially straight magnetic field lines

stay remarkably straight even when density increases by a factor of 106.

Having established the role of the magnetic field in supporting the cloud

against gravitational collapse, one needs a parameter that measures whether the

cloud can be supported by magnetic field or not. This parameter is the mass-to-

flux ratio of the cloud.

For a sphere it is given by:

M

Φ
=

M

4πR2B0

(2.12)

where M is the mass of the cloud, Φ is the magnetic flux threading the cloud surface

at radius R and B0 is a uniform magnetic field.

There exists a critical mass-to-flux ratio below which the cloud is said to be

magnetically supported. For a uniform spherical cloud this critical value takes the
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form (Mestel, 1999), (Mac Low & Klessen, 2004):

(
M

Φ

)
crit

=
2c1
3

√
5

πGµ0

(2.13)

where G and µ0 are the gravitational constant and the permeability of free space

respectively, and c1 ' 0.53 is a numerically determined parameter

(Mouschovias & Spitzer, 1976).

If a cloud has a mass-to-flux ratio below this critical value, it is capable of

being supported by magnetic field. A frozen-in magnetic field would then prevent

collapse even if external pressure were to be infinite. A large external pressure would

only transform the cloud into a thin sheet with its plane perpendicular to the field

lines.(Mouschovias, 1991).

However, if the cloud’s mass-to-flux ratio is above this critical value mag-

netic field alone is incapable to support it against gravitational collapse

(Mestel & Spitzer, 1956), (Mouschovias & Spitzer, 1976), (McKee, Zweibel, Good-

man, & Heiles, 1993).

The previous condition is a sufficient condition for collapse if the external

pressure is greater than the critical value:(Mouschovias, 1991)

Pcrit = 1.89
c8s

G3M2
[
1− (Mcrit/M)2

]3 (2.14)

Where cs =
(

kT
µmH

)1/2
is the isothermal speed of sound, k the Boltzmann constant, µ

the mean mass per particle in units of the atomic hydrogen mass mH (Mouschovias,
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1987).

For any given mass-to-flux ratio of a cloud, one can find the initial value of

the magnetic field B0 using the following equation (Price & Bate, 2007):

B0 = 814µG

(
M

Φ

)−1(
M

1M�

)(
R

0.013pc

)−2

(2.15)

2.2.1 Magnetic diffusion

A rough estimate of the magnetic field flux in a cloud’s core and in a newborn

star show that the magnetic flux should be reduced by several orders of magnitude

(Inutsuka, 2012).

Although it is difficult to measure the field strength in dense molecular cloud cores,

various Zeeman effect based observations indicate that the cores, with typical ra-

dius of 0.01pc ≈ 1016cm, have a magnetic field of at least 10µG (Crutcher, 1999),

(Crutcher, Hakobian, & Troland, 2009). Thus, its magnetic flux can be estimated as:

Φcore ∼ BcoreR
2
core ∼ 10µG×

(
106cm

)2
= 1027Gcm2 (2.16)

In contrast, the observed field strengths of young stellar objects, with typical radius

of 1011cm, are reported to be at most of the order of kG (Inutsuka, 2012). Thus,

the magnetic flux of the star should be smaller than the following estimate:

Φ∗ ∼ B∗R∗
2 ∼ kG×

(
1011cm

)2
= 1025Gcm2 (2.17)
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This means, that through the star formation process, the cloud’s core must have

lost magnetic flux. Thus, the question arises: how to reduce the magnetic flux in a

protostar?

The diffusion of the magnetic field in a weakly ionized gas can be considered as the

result of various effects.

1. Ambipolar diffusion: This effect takes place in the limit of low ionization. In

this case, the magnetic field is frozen into the charged species only and it drifts

along with them through the neutrals.

2. Resistive diffusion: In this limit the ionization is high and the charged particles

are completely decoupled from the field by collisions with neutrals (Wardle,

2004).

Since the medium of interest has low ionization fraction, the ambipolar dif-

fusion scenario may be dominant. And this process will be explained in the following

section.

2.3 Ambipolar diffusion

2.3.1 Basic process

The magnetic field plays an important role during the process of star forma-

tion, in particular during its initial phase. It is likely to control the onset of collapse.
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The free fall time scale for a pressureless cloud to collapse from rest is well

known to be :

tff =

(
3π

32Gρ

)1/2

(2.18)

In a dense core, tff ≈ 103yr, which is relatively short by astronomical standard

(Crutcher, 1999). So a magnetized cloud is supported against collapse, which makes

the timescale of the collapse longer than the tff . As it has been mentioned in the

previous section, a frozen-in magnetic field increases the gas pressure, and if the

magnetic field does not decay, a stable cloud will remain stable. But is it possible

for a previously stable cloud to collapse? In other words, could a subcritical cloud

become supercritical? The answer is yes, and it is related to ambipolar diffusion.

Charged particles like electrons or ions are tied to the magnetic field lines by

the Lorentz force, but neutrals are not affected directly. Given that dense molecular

cores are dominated by neutrals because of lack of ionization, how can a magnetic

field have a significant effect on the collapse? This is possible through collisions

between the neutrals and ions (electrons do not play a significant role). In low

ionization region, the charged particles do not collide sufficiently with the neutrals

in order to keep them locked to the magnetic field. As a result the ions remain

frozen into the magnetic field lines, while the neutrals drift away from them. In the

neutrals rest frame, the ions appear drifting away to the periphery along with the

field lines. This drift between the ions and neutrals in called “ambipolar diffusion”.
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Now the question remains, how does this drift between the ions and neutrals

allow a subcritical cloud to collapse? When neutrals migrate into the center of the

cloud, the mass is going from the peripheral tubes to the central flux tubes. This

is why ambipolar diffusion is said to redistribute the mass in the flux tubes. When

the mass in the central flux tubes increases, a central core forms with increasing

mass-to-flux ratio. This leads to the collapse of the core.

In the previous subsection, we mentioned that ambipolar diffusion is a mechanism

for the cloud to lose magnetic support. This occurs when the neutrals move toward

the center, and leave behind the ions along with the magnetic field lines. Then, in

the neutral supercritical core that would eventually collapse, the magnetic flux is

smaller than that in the initial cloud.

2.3.2 Ambipolar diffusion timescale

From the previous discussion, the ambipolar diffusion timescale is expected

to depend on the ionization of the cloud and the magnetic field.

To find the ambipolar diffusion timescale, one needs to find the drift velocity between

the ions and neutrals. In a first consideration this can be done by neglecting the ion’s

pressure and momentum compared to that of the neutral species. In this case, the

Lorentz force FL exerted on the ions is in equilibrium with the drag force Fd exerted

by the neutrals. On one hand, the Lorentz force is the driving force leading the ions

to travel through the “sea” of neutrals. This motion achieves a terminal velocity

owing to the balance between the Lorentz force and the drag force. Therefore, we
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have the following equations:

1

4π
(∇×B)×B = γρnρi (u i − un) (2.19)

where γ = 3.5× 1013cm3g−1s−1 is the drag coefficient.

Then, the drift velocity becomes:

uD = u i − un =
1

4πγρnρi
(∇×B)×B (2.20)

Considering due to symmetry the drift occurring across a cylindrical region of radius

R, with a typical bend in the field of order R, the Lorentz force becomes:

1

4π
(∇×B)×B =

B2

4πR
(2.21)

Then, the ambipolar diffusion timescale tAD is given by (Mac Low & Klessen, 2004)

tAD =
R

uD
=

4πγρiρnR

(∇×B)×B
≈ 4πγρiρnR

2

B2
(2.22)

Or:

tAD = (25Myr)

(
B

3µG

)−2 ( n

102cm−3

)2( R

1pc

)2 ( xi
10−6

)
(2.23)

Where B is the magnetic field, n is the number density of the neutrals, R is the

radius of the clouds and xi is the degree of ionization.

This equation shows that the timescale of ambipolar diffusion is proportional to the

degree of ionization. So, a smaller degree of ionization leads to a shorter ambipolar
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diffusion timescale. Since the ionization in the center of the cloud is smaller than

the ionization in the envelope, ambipolar diffusion becomes more important in the

core of the cloud. Therefore, the core of a cloud could undergo gravitational collapse

while the envelope remains stable. Equation (2.23) shows that ambipolar diffusion

is significant when the initial magnetic field is large. And, a smaller radius leads to

faster drift, which supports the view that only the core would collapse instead of

the whole cloud.

The ambipolar diffusion timescale is usually expressed in units of the free

fall timescale tff . It is given by (A. P. Boss, 1997):

tAD
tff
≈ 9

(
L

0.1pc

)2 ( n

103cm−3

)3/2 ( xi
10−7

)
(2.24)

where L is the tenth of the cloud’s radius, n the number density of the neutral atoms

and xi the degree of ionization.

For L = 0.0010pc, n = 4×106cm−3, and xi = 10−7, used in our thesis, the timescale

of ambipolar diffusion becomes tAD ≈ 200.tff .

This is in contrast to the typical value of ambipolar diffusion timescale tAD = 10tff .

If the timescale of ambipolar diffusion is significantly longer than the free fall

timescale, how can this process still be relevant to star formation?

The view was that the process of ambipolar diffusion was only important when its

timescale is comparable to the free-fall time (Nakano & Tademaru, 1972). But, when

magnetic field is taken into consideration, the free fall timescale is not the relevant

timescale to consider. In this case, ambipolar diffusion should be compared to the
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timescale of the formation of a protostar starting from a coreless cloud (Mouschovias

et al., 2006).

For a significant magnetic field support, B = 1600µG, the ambipolar diffusion

timescale is as short as tAD ≈ 2Myr. So, for clouds with ages of a few million

years, ambipolar diffusion is relevant to star formation. (No cloud with similar

magnetic field strength were observed.)

2.4 Objections on the standard theory

Although previous observations (Greaves & Holland, 1999) have found that

ion neutral drift indeed occurs in molecular clouds. The most recent observations

(Crutcher, 2012) seem not to support the role of ambipolar diffusion in molecular

clouds. This author suggests the magnetic field dominates turbulence in molecu-

lar clouds but there were no definitive evidence that it dominates gravity nor for

ambipolar-diffusion-driven star formation. Despite his observations, Crutcher ad-

mitted that his astrophysical conclusions remain tentative, so that more investiga-

tion on ambipolar diffusion remains an interesting topic.

Ambipolar diffusion predicts that the mass-to-flux-ratio of the core of the

cloud increases compared to that of the envelope.

We define R =
[M/Φ]core
[M/Φ]env

.

The ambipolar diffusion theory of core formation requires R to be approximately

equal to the inverse of the original subcritical
M

Φ
, or at least R > 1.

Normally observation of magnetic field is tricky. A line of sight measurement based
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on the Zeeman effect yields only an upper limit. Therefore one has to determine

the angle between the magnetic field vector and the line of sight in order to get the

reasonable value of the magnetic field.

But testing ambipolar diffusion is relatively easier, because all one has to determine

is the change in
M

Φ
from an envelope region to a core region of a cloud whose con-

traction was driven by ambipolar diffusion. Thus, the exact value of the magnetic

field isn’t necessary for such a test.

In order for ambipolar-diffusion theory to pass the test, the value of R found should

be above 1.

Four dark clouds had strong detected BLOS in the Troland & Crutcher OH Zeeman

survey (Troland & Crutcher, 2008). R was measured for these clouds

(Crutcher et al., 2009). The results were:

R (L1448CO) = 0.02± 0.36, R (B217− 2) = 0.15± 0.43, R (L1544)) = 0.42± 0.46

and R (B1) = 0.41± 0.20.

Hence, R < 1 in all four cases and the result didn’t match the ambipolar diffusion

prediction.

This result means that the mass-to-flux ratio increases in the envelope compared

to that of the core, implying that the magnetic field strength decreases and the

magnetic flux is lost. Crutcher (2012) suggested that this could be due to magnetic

reconnection (Lazarian, 2005), which is a sort of speculation and needs to be verified.

Another theoretical prediction of ambipolar diffusion is the scaling of the

magnetic field in terms of the density. The magnetic field may be parameterized as
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a function of density as (A. P. Boss, 1997) :

B = B0

(
ρ

ρ0

)κ
(2.25)

which holds in the envelope of the cloud, where B0 is a scaling time-dependent fac-

tor, ρ0 is the initial density, and ambipolar diffusion predicts that κ is between 1/2

and 1/3.

Based on the most recent observational review on magnetic fields in molecular

clouds by Crutcher (2012), the power-law exponent is 2/3 for number densities

nH & 300cm−3.

Another objection against ambipolar diffusion is that it distinguishes be-

tween the formation of low-mass and high-mass stars. The standard theory sug-

gested that low-mass stars form from low-mass magnetically subcritical cores, whereas

high-mass stars and stellar clusters form from magnetically supercritical cloud cores

(Shu, Adams, & Lizano, 1987), (Lizano & Shu, 1989). According to Mac Low and

Klessen (2004), interstellar turbulence may unify both descriptions of star formation.

This issue is still controversial.
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Chapter 3

Formulation of the problem

3.1 Equations of magneto-hydro-dynamics (MHD)

First we present the set of equations of the non-ideal MHD, which will be

later simplified to match our calculations.

In a single fluid approximation, the equations are:

∂ρ

∂t
+ ∇. (ρu) = 0 (3.1)

∂u

∂t
+ u.∇u = −∇Φ− 1

ρ
∇P +

1

ρ
(∇×B)×B (3.2)

∂B

∂t
−∇× (un ×B) = ∇× {[ηAD (∇×B)×B ]×B − η∇×B} (3.3)

∇.B = 0 (3.4)

where ρ and u are the density and velocity of the neutrals, Φ is the gravitational

potential, P the gas pressure, and B is the magnetic field. We omit the index n

because the ions are not taken into consideration.
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To get Φ, the Poisson’s equation is added:

∇2Φ = 4πρ (3.5)

Furthermore, an equation of state should be added. An isothermal equation of state

can be used given by:

P = c2sρ (3.6)

with cs is the isothermal speed of sound, temperature dependent (see Eq. 2.14)).

When ionization is taken into account, the right hand side of the continuity equation

(Eq. (3.1)) is not zero. Instead, a source term should be included which is according

to Brandenburg and Zweibel (1995):

∂ρ

∂t
+ ∇. (ρun) = −ζρ+ αρ2i (3.7)

where ζ is the ionization coefficient and α is the recombination coefficient.

The effect of the term on the right hand side is that it describes the residual density

of the neutrals.

The single fluid approach can be justified physically. In molecular clouds the pressure

and momentum of the ions can be neglected compared to those of the neutrals.

Under these conditions, the Lorentz Force exerted on ions is balanced by the drag

force exerted on neutrals. This is the case of strong coupling between the neutrals

and the field lines. Thus, the plasma is reasonably described by a single fluid of

neutral density ρn >> ρi where ρi is the ion density (Shu et al., 1987) (Choi &
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Wiita, 2009) ; (Kim, 2011).

The single fluid approach is a possible treatment and it has been widely used in

modeling the ambipolar diffusion (Kudoh et al. 2007)

On the other hand, the two-fluid approach has been suggested to describe the case

when a molecular cloud would have a neutral fluid collapsing inward with respect

to an ionized fluid locked to magnetic field.

Indeed, the two-fluid approach is more realistic to describe ambipolar diffusion. It

is certainly more complicated approach and beyond the scope of the present thesis,

and is worth investigating in future work.

In the following, we present a simplified version of the non-ideal MHD equation

which we have used to obtain the result described in chapter 5 of this thesis.

3.2 The non-ideal induction equation

It is instructive to derive the induction equations taking into account resis-

tive effects, such as Ohmic resistivity and ambipolar diffusion.

Starting with the Ampere’s law and the Faraday’s law, one has:

J =
1

µ
∇×B (3.8)

∂B

∂t
= −∇×E (3.9)

J = σ (E + u i ×B) (3.10)

23



where µ is the permeability, σ is the conductivity and u i is the ions velocity.

If the electrical conductivity is high in a molecular clouds, then the Ampere’s law is

valid for a long time scale process like the ambipolar diffusion (see appendix A).

The electric field can be obtained from equation (3.10):

E =
1

σ
(J − u i ×B) (3.11)

Inserting Eqs.(3.8) and (3.11) into Eq. (3.9) leads to the induction equation:

∂B

∂t
= ∇× (u i ×B − η∇×B) (3.12)

where η =
1

µσ
is the magnetic diffusivity (or Ohmic resistivity).

Assuming η to be constant leads to:

∂B

∂t
= ∇× (u i ×B)− η

(
∇2B −∇ (∇.B)

)
(3.13)

Using (∇.B = 0) leads to:

∂B

∂t
= ∇× (u i ×B)− η∇2B (3.14)

The first term on the right-hand side of this equation represents advection , while

the second term is a diffusion term.

In Eq. (2.20), the drift velocity was introduced as uD = u i − un. This replaces

the ion velocity from the induction equation (Brandenburg & Zweibel, 1994); which
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becomes:

∂B

∂t
= ∇× (un ×B + uD ×B − η∇×B) (3.15)

Inserting Eq. (2.20) into this equation, one obtains an induction equation of the

following form:

∂B

∂t
−∇× (un ×B) = ∇×

[
(∇×B)×B

4πγρiρn
×B − η∇×B

]
(3.16)

Let ηAD =
1

4πγρiρn
be the ambipolar diffusion coefficient (Brandenburg & Zweibel,

1994).

Finally, the induction equation including the effects of both Ohmic and ambipolar

diffusion:

∂B

∂t
−∇× (un ×B) = ∇× {[ηAD (∇×B)×B ]×B − η∇×B} (3.17)

3.3 Estimates of the resistive effects

The resistive effects introduced in the set of non ideal MHD above are the

ambipolar diffusion and the Ohmic resistivity. In this paragraph, we first check the

dimensions of the terms, then estimate their numerical values, and finally decide

whether or not this system of equations to solve could reduce to ideal MHD in we

are adapting.

We begin with the dimensional analysis, and the dimensions of the diffusion

terms in Eq.(3.17) should be consistent with that of
∂B

∂t
=

[B]

[T ]
.
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The ambipolar diffusion term from equation (3.17) is ∇× [ηAD (∇×B)×B ]×B .

As seen in Eq. (2.20), its dimension is:

dim [ηAD (∇×B)×B ] = dim (uD) (3.18)

So, the dimensions of the ambipolar diffusion term are:

dim (∇× [ηAD (∇×B)×B ]×B) =
1

[L]

[L]

[T ]
[B] =

[B]

[T ]
(3.19)

Q.E.D

From Eqs. (3.8) and (3.10), respectively:

[µ] =
[B]

[L] [J ]
(3.20)

[σ] =
[J ] [T ]

[L] [B]
(3.21)

We hence deduce the dimensions of the magnetic diffusivity:

[η] =
[B]

[L] [J ]

[J ] [T ]

[L] [B]
=

[L]2

[T ]
(3.22)

So, the dimensions of the Ohmic resistivity term are:

dim (∇× (η∇×B)) =
1

[L]

[L]2

[T ]

[B]

[L]
=

[B]

[T ]
(3.23)

Q.E.D.
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After proving that the two terms have the same dimensions as the change of B with

respect to time, we will calculate their maximal numerical values for our models.

Figure 3.1: Line of sight magnetic field strength and maximum total magnetic field
strength as a function of the neutrals number densities. Taken from Crutcher (2012)

Crutcher (2012) plotted the magnitude of the line-of-sight component BLOS

of the magnetic vector B against the number densities of the neutrals (see figure

3.1). Also, this figure shows the most probable maximum values for BTOT .

In our calculation, we consider a neutral number density nH = 105cm−3. According

to Fig. (3.1), the maximum magnetic field is a few hundreds of microGauss. So the
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maximum magnetic field strength we used in our simulations is B = 400µG. The

radius of the sphere is R = 0.010pc = 3.0857× 1016cm.

The ambipolar diffusion term can be approximated by:

∇× [ηAD (∇×B)×B ]×B ≈ 1

4πγρiρn

B3

R2
(3.24)

For our models, the neutral density is ρn = µnnmH = 3.3471 × 10−20g.cm−3, the

degree of ionization is xi =
ni
nn

= 10−7. The mass of the ions is mi = 10mn, so the

ion density becomes ρi = mini = 10mnxinn = 10−6ρn. Then:

1

4πγρiρn

B3

R2
=

106

4πγρ2n

B3

R2
≈ 1.5903× 10−17G/s (3.25)

The Ohmic resistivity term:

∇× (η∇×B) ≈ B

ηR2
(3.26)

where η =
1

µσ
, and with T=10K in Eq. (A.3) we find σ = 3.0826 × 1010. Then

η = 2.5815× 10−12.

B

ηR2
= 1.0845× 10−48G/s (3.27)

Therefore, for the density and magnetic field of interest, the Ohmic resistivity term

is clearly negligible compared to the ambipolar diffusion term. But the latter is also

very small, and to computer precision it could be safely considered zero.

Since these two terms can be approximated by zero, the non-ideal induction equation
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reduces to:

∂B

∂t
−∇× (un ×B) = 0 (3.28)

This is the ideal induction equation. We will solve this equation, along with the

equations (3.1), (3.2), (3.4) and (3.5). These equations are called the ideal MHD

equations.

3.4 Chemical cloud composition

Ionization process in molecular clouds are expected to be less effective. The

estimated value of the degree of ionization is about 10−7s−1. Based on available

data, Spitzer and Tomasko (1968) obtained for the ionization rate (ζ) of hydro-

gen atoms a probable lower limit of 6.7 × 10−18s−1 and a probable upper limit of

1.2× 10−15s−1.

More recently, Webber (1998) estimated minimum ionization rate of (3− 4) ×

10−17s−1 for H atoms, and pointed out the possibility of enhanced rates exceed-

ing 10−16s−1 near massive stars with strong stellar winds.

No definitive value for dense clouds emerges from the various studies, but it seems

that a value of 1× 10−17s−1 is too small and 5× 10−17 or even 1× 10−16, may be a

more realistic mean value (Dalgarno, 2006).

Cosmic rays are the primary cause of ionization in molecular cloud cores.

Their energies range from MeV to ultrarelativistic values, but the rays that mostly

ionize the interstellar medium are those with energies smaller than 1 GeV (Viti,

Hartquist, Bell, Williams, & Banerji, 2013). These particles are capable of entering
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the cloud’s envelope and ionizing Hydrogen in the core. Ultraviolet photoioniza-

tion is practically shielded and is not very significant when it comes to the core’s

ionization.

Over the range of densities of interest (103 − 106cm−3), the number of ions

can be approximated by a power law (Fiedler & Mouschovias, 1992):

ni = KCR

( nn
105cm−3

)1/2
(3.29)

where KCR ≈
(

105ζ

αdr

)1/2

, ζ is the cosmic ray ionization coeeficient,

and αdr = 2.0× 10−7

(
T

300K

)
s−1 is the dissociative coeficient.

Even though the UV ionization is negligible in the central of the cloud, it is possible

for it to penetrate into the cloud and directly ionize atomic species such as sulfur,

iron, silicon, carbon, and magnesium greatly increasing the ionization in the low-

density envelope. Thus, a very small correction term to the equation above is needed

to take UV ionization into account. That finally gives the number density of ionized

particles (Fiedler & Mouschovias, 1992):

ni = KCR

( nn
105cm−3

)1/2
+KUV

(
103cm−3

nn

)2

(3.30)

where

KCR = 1, 3 or 5× 10−3cm−3

KUV = 4.68× 10−4cm−3
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As discussed in the previous section, in the range of the density and magnetic field

strengths of interest the resistive terms are negligible. Hence, the use of ideal MHD

is justified.

In the ideal MHD approach, the magnetic flux is constant and the ionization does

not come into play. In contrast, in the non-ideal approach, the ionization plays a

decisive role in star formation, and namely in the ambipolar diffusion process (see

section (2.3.2)).

So, the ionization has been so far discussed qualitatively, its effect on the ambipolar

diffusion timescale was explained. Henceforth, the ionization will not be included in

the numerical work because the ideal MHD will be used. Implementing non-ideal

set of equations, taking into account the ionization, heating and cooling processes

is worth investigating in future work.
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Chapter 4

The cloud models

In this chapter, we introduce the initial conditions used to explore the col-

lapse of a magnetized rotating cloud. We firstly describe a spherical cloud with

uniform density to which a small perturbation is introduced. Then, two different

shapes of centrally condensed clouds are studied: the flattened sphere, and the expo-

nentially decreasing density profile. Finally, we describe the method of calculations

used to investigate the problem.

For all models, the clouds are taken to be in a solid body rotation, the mass of the

clouds is fixed to one solar mass (M = M�) and the initial temperature is set to

Ti = 10K. The solid body rotation is only considered for simplicity. A molecular

cloud is likely to have a differential rotation.

The parameters are the density ρ and angular velocity Ω. They are often replaced

by the parameters α and β, which are the ratios of thermal and rotational energies
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to the gravitational energy, respectively.

α =

∣∣∣∣ Ethermal
Egravitational

∣∣∣∣ (4.1)

β =

∣∣∣∣ ErotationalEgravitational

∣∣∣∣ (4.2)

The magnetic field is also presented by the parameter mass-to-flux ratio
M

Φ
. These

parameters are easily found for a uniform spherical cloud, but hard to find for the

other density profiles.

4.1 Uniform density

For the sake of comparison, we reproduce the model by A. Boss and Keiser

(2013) (hereafter BK13) which was based on MHD calculations assuming a sphere

of uniform density. The model was originally proposed by Boss and Bodenheimer

(A. Boss & Bodenheimer, 1979) (hereafter BB79) and studied neglecting the effect

of magnetic field. This work is considered interesting because we monitor more

closely the effect of magnetic field not only on the collapse of the cloud itself, but

also on the shape of the cloud during the collapse and the magnetic braking effect

that arises due to the magnetic field and rotation.

The cloud in this section has a uniform spherical density. It has a solar mass

M = 1.0M� and radius R = 3.2× 1016cm = 0.010pc. The cloud is assumed to be in

solid body rotation around the ẑ−axis with angular velocity Ωi = 1.6×10−12rad.s−1.

The initial neutral Hydrogen density is ρ0 = 1.44 × 10−17g.cm−3, the ratio of the
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cloud’s density to the medium density is 144:1. The mean molecular weight is taken

to be equal to 2, reflecting composition of Z=N (equal protons and neutrons).

To make sure that the initial values are consistent with observations, we

calculate the gravitational energy, the thermal energy and the rotational energy of

the cloud. These energies are given by:

Egrav = −3

5

GM2

R
(4.3)

Eth =
3

2
NkBT (4.4)

Erot =
1

5
MR2Ω2 (4.5)

where N =
M

muµ
, mu the atomic mass unit and Ω is the cloud’s angular velocity.

Taking the ratio of thermal to gravitational energy to be α, and that of the rota-

tional to gravitational energy to be β, and with the initial values above, one finds

αi = 0.2179 and βi = 0.20, consistent with values inferred from observations.

Magnetic field will be chosen to be parallel or perpendicular to the axis of rotation,

oriented along the ẑ−axis or x̂−axis. We chose these two directions in order to ob-

tain single or multiple system instead of a disk. An arbitrary angle could have been

chosen between them,and this is called “Magnetic Field-Rotation Misalignment”.

Li, Krasnopolsky, and Shang (2013) confirmed the basic result of Joos, Hennebelle,

and Ciardi (2012) that the misalignment between the magnetic field and the axis of

rotation of the cloud is indeed conducive to disk formation. This is why we chose

the magnetic field parallel and perpendicular to the axis of rotation.

Crutcher (2012) plotted the line of sight component of the magnetic field as a func-
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tion of the neutral number density. So the values chosen throughout this work fulfills

two requirements:

1. The magnetic field strength is below the maximum value plotted in Crutcher

(2012) for the corresponding neutral density (see Fig. (3.1)).

2. The magnetic field strength is low enough for the ambipolar diffusion term (see

section (3.3)) to remain small so that an ideal MHD approach can be used.

Starting with a sphere of uniform density, a perturbation is needed to trigger the

collapse of the cloud. In BB79, the initial density perturbation is azimuthal, of the

second order and of amplitude 0.5. In our work, we take a smaller amplitude of 0.1.

The perturbation introduced to the initially uniform density reads:

δρ = 0.1cos(2φ) (4.6)

Thus, the initial perturbed density becomes:

ρ = ρ0(1 + δρ) = ρ0 (1 + 0.1cos(2φ)) (4.7)

The equation of state is taken to be isothermal (Eq. (3.6).

Finally, the boundary conditions are chosen to be periodic on each face of the grid’s

cubic box.
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4.2 Centrally condensed clouds

4.2.1 Flattened sphere density profile

Observational evidence shows that pre-stellar cores do not posses uniform

densities (Froebrich, 2015). Rather the density increases towards the center and

reach a plateau. Analytically such functions can be described by:

ρ = ρ0

[
R0(

R0
2 + r2

)1/2
]η

(4.8)

where ρ0 is the central density, R0 is a free parameter. For η = 5, this gives the

classical Plummer sphere and η = 4 was used by Whitworth and Ward-Thompson

(2001). For our model we will use η = 2, so that the density profile reduces to:

ρ = ρ0

[
R2

0(
R0

2 + r2
)]

ρ =
ρ0

1 +

(
r

R0

)2 (4.9)

This is the non singular version of the power law density distribution where ρ ∝ r−2.

For the power law profile, the density is infinite for r=0, which is not a physical limit.

We consider a central density 10 times bigger than the density at the boundary, and
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we find the parameter R0:

ρ0 = 10
ρ0

1 +

(
R

R0

)2 (4.10)

R0 =
R

3
(4.11)

Hence, the initial density is taken to be:

ρi =
ρ0

1 +

(
3r

R

)2 (4.12)

where ρ0 is the density at the center of the cloud and R is the radius of the cloud.

Two values for the initial densities are considered ρ0 = 1.8 × 10−18g.cm−3 and

ρ0 = 3.1× 10−17g.cm−3. And the radius of the cloud is chosen to be R = 0.07pc.

We introduce to this cloud a density perturbation similar to that introduced to the

uniform density (see Eq. 4.6).

The cloud is considered to be in solid body rotation around the ẑ-direction with two

values for the angular velocity: Ω0 = 2.9×10−13rad.s−1 and Ω0 = 2.9×10−15rad.s−1.

The first one represents a fast rotating cloud and the second is a slowly rotating

cloud. As for the magnetic field, we will deal with three values B0 = 0, 10µG and

100µG, parallel to the axis of rotation.

Although it was straightforward to calculate the energies in Eqs.(4.3), (4.4) and

(4.5), it is very difficult to calculate them for this density profile. So the numerical

values of the radius and angular velocities were chosen empirically for this model.
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The radius is big enough to clearly show the density profile, and the angular velocity

was chosen small so that the cloud would be slowly rotating.

We will solve the MHD set of equation with a barotropic equation of state:

P = Kργ (4.13)

where γ = 1, K = cs
2 for ρ < ρc (isothermal calculations),

and γ = 7/5, K = cs
2ρ

−2/5
c for ρ > ρc.

A critical density ρc = 10−14gcm−3 is branching the two descriptions.

We note that in case of ρ > ρc, the cloud becomes optically thick (or opaque) to

infrared radiation, so that its temperature starts rising upon compression. This

equation of state is more realistic than the one used in the uniform model above,

because it mimics the non-isothermal effects of the cloud and also the radiative

transfer (A. Boss & Keiser, 2013).

4.2.2 Exponential density profile

We also consider the density profile described the exponential profile. This

will be intermediate between the two options described above. and the flattened

sphere, the initial density profile is chosen to be:

ρi = ρ0exp

[
−
(
r

R0

)2
]

(4.14)
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where ρ0 is the central density, R0 is a free parameter.

We choose the central density to be 20 times bigger than the density at the boundary

ρB to achieve a better resolution:

ρ0 = 20ρB (4.15)

20exp

[(
R

R0

)2
]

= 1(
R

R0

)2

= ln(20)

R0 =
R√
ln20

= 0.58R (4.16)

Hence the unperturbed initial density profile is:

ρi = ρ0exp

[
−
( r

0.58R

)2]
(4.17)

where ρ0 = 5.0 × 1018g.cm−3 and R = 7.5 × 1016cm ≈ 0.02pc. This density profile

is also perturbed by the perturbation given in Eq. (4.6).

The initial cloud is in solid body rotation around the ẑ axis, with initial angular

velocity Ω0 = 5.4× 10−15rad.s−1.

The magnetic field was chosen along the ẑ-axis with strength in the range B0 =

0− 200µG.

For exponential density profile, simple analytical expressions for α (Eq. (4.1)) and
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β (Eq. (4.2)). From dimensional analysis one could find:

α ∝ RT

M
(4.18)

β ∝ Ω2

ρ
(4.19)

The radius R, the initial central density ρ0, and the initial angular velocity Ω0 are

those of the model C3 from the paper by (A. P. Boss, 1987). This model was

hydrodynamical with α = 0.39 and β = 0.000016.

The equation of state used for these models is also a barotropic equation (Eq. (4.13)).

4.3 Method of calculations

One challenging aspect of a full MHD code is to preserve the divergence

free condition of the magnetic field (∇.B = 0). It is important that this condition

to be satisfied during the time step. Otherwise, a non-zero divergence can grow ex-

ponentially during the computation causing the Lorentz force to be non-orthogonal

to the magnetic field (Brackbill & Barnes, 1980).

Trying to perform the numerical simulation and giving the fact that a con-

struction of a numerical code is beyond the time limit of a master thesis, it was

fortunate to get access to the so called “Enzo 2.4” code (Bryan et al., 2014). We

used this three-dimensional code to solve the set of ideal MHD. It has a remark-

able feature of adaptive mesh refinement (AMR) capability. This allows the code to

“reach extremely large spatial and temporal dynamical ranges with limited compu-
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tational resources, opening doors to applications otherwise closed by finite memory

and computational time” (Bryan et al., 2014).

Two MHD methods are implemented in the Enzo code: the Dedner-based divergence

cleaning (Dedner et al., 2002) and the Godunov MHD with Constrained Transport

(CT) (C. R. Evans & Hawley, 1988).

We will work on the Dedner method. It ensures that ∇.B = 0 for all time, provided

it is so initially. This is accomplished by having B0 = (B0x, 0, 0) or , B0 = (0, 0, B0z).

The Enzo code solves the Poisson’s equation for self-gravity using a fast Fourier tech-

nique (Hockney & Eastwood, 1988). It is done on the root grid on each timestep.

The advantage of using this method is that it is fast, accurate, and naturally allows

periodic boundary conditions for the gravity. The maximum number of Green’s

functions used to calculate the gravitational potential is 10, with 10 iterations per-

formed on the gravitational potential at each step. This is to avoid over densities

on the grid boundaries.

In the present calculations, the Enzo code is initialized on a 3D Cartesian

grid with 64 grid points in each direction. So the initial resolution is 643. But we

also permit a maximum of six levels of refinement with a refinement factor equals to

2. This means that the maximum effective resolution is 26 = 64 times greater than

the initial resolution. Hence, we get a maximum resolution of (26 × 64)
3

= 40963 .

Finally, the time step used is 0.3 of the limiting Courant time step. This courant con-

dition is used to ensure numerical stability in the time-explicit code. This timestep

is embedded in Enzo, and it was not modified by hand.

Appendix B presents directions to getting, installing and running Enzo.
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The visualization of the results were made using the yt-project (Turk et al.,

2011).
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Chapter 5

Results

We have performed three-dimensional MHD simulations using various initial

conditions presented in the previous section. Since ideal MHD was adopted, the

magnetic flux of the cloud remains constant throughout the collapse. This applies to

the range of densities and magnetic field strengths adopted for the cloud models. In

this chapter, we discuss the various results in terms of the effect of the magnetic field

on the collapse of uniform density and centrally condensed clouds. After that, we

investigate the degree to which the code conserved the mass, the angular momentum

and the magnetic flux.

5.1 Uniform density

To investigate the effect of the magnetic field on the initially uniform cloud,

calculations are performed with a gradually increasing magnetic field up to 400µG.

Table 5.1 summarizes the results at the critical density ρc = 10−14g.cm−3.
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Model Bx (µG) Bz (µG) tc/tff Result

hydro 0 0 1.230 thin bar with two cores

mag-z-20 0 20 1.2827 thin bar with two cores

mag-z-60 0 60 1.3403 two fragments with spiral arms

mag-z-80 0 80 1.3973 two fragments with spiral arms

mag-z-100 0 100 1.4054 two fragments with spiral arms

mag-z-300 0 300 1.4502 single with little spiral arms

mag-x-300 300 0 1.4986 single with significant spiral arms

mag-z-400 0 400 1.5229 single with spiral arms

Table 5.1: Initial magnetic field strengths (in Microgauss), the time tc (in free fall
time units) is the time when the density is ρc = 10−14g.cm−3 and the results at tc for
the collapse of uniform density MHD models with initial 10% density perturbations

In the table, the hydrodynamical model, neglecting the magnetic field, is

named hydro. The magnetohydrodynamical models are named mag-(direction of

magnetic field)-(strength of magnetic field). This follows the notation in BK13 and

facilitates the comparison.

Table 5.1 shows that the main effect of increasing magnetic field is to delay

the collapse of the initially slightly perturbed magnetized cloud. This is expected

due to the fact that a magnetic field is a supporting agent against gravitational

collapse. This result represents a nice test of the numerical simulation. The value

of magnetic field is not strong enough to inhibit the collapse of the cloud, however

it acts to delay the collapse.

It is interesting to find that for an initial magnetic field smaller than 200µG,
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the cloud undergoes fragmentation leading to a binary star formation). Whereas,

for initial magnetic field strength larger than 200µG, the cloud eventually collapsed

to form a single protostar instead of a binary system. So the value of magnetic field

determined whether or not the cloud form a single or binary system.

Another difference is that the collapse of the model mag-x-300 is slower than

that of the model mag-z-300. This shows that the orientation of initial magnetic field

also affects the evolution of the cloud, indicating that the star formation problem

is indeed a three-dimensional problem. This is the way to describe the effect of the

magnetic field in the collapsing cloud.

Although collapse is found in both models, there is an obvious difference between

the outcomes. In mag-x-300, the collapse does not maintain a spherical symmetry

like in the mag-z-300 case. Instead, it is somewhat elongated in the x-y plane (see

Figure (5.1)). In fact, the density perturbation initially in the x-y plane will grow

preferentially along the x̂ axis, especially that the magnetic field is also along the x̂

axis and particles will move more freely in the direction of the magnetic field lines.

This results in a significant difference between the two model descriptions.

The outcomes of the hydro model and mag-z-20 model are the same, so

that a 20µG initial magnetic field had a very small implication on the evolution of

the cloud. Both models fragmented into two almost radial cores and then formed a

bar-like configuration.

When the magnetic field is increased to 60µG, 80µG and 100µG, the spiral

arms of the fragments accentuated. This is obviously due to the increase in magnetic

field and not to the rotation of the cloud. This could be explained with magnetic
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braking. When a high density region is connected to a low density region by magnetic

field lines and is rotating faster than the background, magnetic field lines become

twisted. The torque generated by this twist slows down the rotation of the high

density material and transfers it to the low density medium around it. This would

lead to the spiral arms we have noticed from our results.

Beyond the critical density, the fragments of all the models merged together

and formed a final single protostar with spiral arms. For models with initial mag-

netic field B0 ≥ 300µG the spiral arms have different shapes than the models with

B0 ≤ 300µG. Figure 5.2 the outcome at the final time of all magnetized models.

We clearly see the spiral arms in (a), (b), (c) and (d) have circular shapes, and (e)

and (f) have more elongated shape. A 300µG magnetic field and above leads to a

single protostar. We also tried 600µG, but the simulation was heavy and slow, we

reached t = 2tff and the density had only increased by one order of magnitude.

This suggests that the cloud was more magnetically supported.
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(a) mag-x-300 at t = 1.4986tff (b) mag-z-300 at t = 1.4127tff

Figure 5.1: Collapse of a magnetized molecular cloud with two different orientation
of the magnetic field along the x-axis (left panel) or along the z-axis (right panel).
Symmetry of the outcome is obvious. (See text for details)
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(a) mag-z-20 at t = 1.4854tff (b) mag-z-60 at t = 1.5626tff

(c) mag-z-80 at t = 1.6258tff (d) mag-z-100at t = 1.5868tff

(e) mag-z-300 at t = 1.5537tff (f) mag-z-400 at t = 1.5910tff

Figure 5.2: Outcome of the initial collapse phase of a magnetized uniform stellar
cloud with variable magnetic field. Notice that (a) to (d) show circular shape, while
(e) and (f) show elongated shapes.
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Comparing our calculations with those obtained by BK13; we find the fol-

lowing:

Our simulations based on an isothermal equation of state (EOS, hereafter) as shown

in Fig 5.2a and 5.2c are similar to the finding by BK13 on the basis of a barotropic

EOS.

Using an isothermal EOS may be questioned due to radiative heating beyond the

critical density. The fact that we get similar results with the isothermal EOS indi-

cates that our results are reasonable up to the densities we have reached. However,

further calculations will require a kind of radiative transport to be included or a

suitable energy equation.

This discussion shows at least that our simulation was reasonably tested not only

compared with other results, but also by using 3D Cartesian grid with 20 grid points

in each direction, 32 and 64. The runs of these different grids converged into the

same results.

5.2 Centrally condensed clouds

5.2.1 Flattened sphere density profile

In the following, we present the results of the initially flattened sphere (see

Eq. (4.12)). Four models we investigated, and for each model several values of the

magnetic field were introduced. Table (5.2) gives a summary of the results of each

model. In this table, ρmax is the maximum density at the final time tf measured in

units of thydro not in units of free fall time tff , where thydro is the final time for the
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model with no magnetic field. This allows for an easier comparison, and conclusion

concerning the question whether the magnetic field is able to delay the collapse

process. The models with the lower initial central density are labeled “L”, and

higher initial central density are labeled “H”. The models with the higher angular

velocity are labeled “F” and the lower angular velocity are labeled “S”. Then the

magnetic field strength is mentioned in the name of the model. For the maximum

density column, the number inside the parentheses is the power of ten, i.e. 10(−13)

is 10−13

For instance LS10 is the model with the lower density, slower rotation and

magnetic field strength 10µG.

For the LF models, the introduction of the magnetic field inhibited the fragmen-

tation of the cloud, without delaying the collapse. The hydro model fragmented

into a binary system, while including magnetic field the cloud collapsed into a single

protostar.

All the LS models collapsed into a single protostar without spiral arms. And the

delay in the collapse was larger than in the case of fast rotation.

All the H models, for both velocities, collapsed into a bar-like shape. For the hydro

model, the bar has two cores. Regardless of the angular velocity of the cloud, the

magnetic field (up to B0 = 100µG) merely had no effect on the collapse. So we in-

creased the magnetic field strength to B0 = 400µG, which is still an observationally

acceptable value for B. In this case, for both values of the rotation, the bar has a

single core instead of two.

Figures 5.3, 5.4 and 5.5 illustrate these results also given in the table 5.2. To have an
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idea about the timescales of the problem, we first calculated the free fall timescale

(Eq.(2.18)), only for the sake of comparison. We emphasize that this timescale is

not realistic, because it is linked to uniform spherical density supported only by its

thermal pressure. Also, from the simulations, we have the collapse timescale of the

hydrodynamic models, thydro, that depends on both the initial central density and

the initial angular velocity. These timescales are given in table (5.3)

ρ0(g.cm
−3) tff (yrs) Ω0(rad.s

−1) thydro(yrs)

1.8× 10−18 4.9618× 104 2.9× 10−13 7.6142× 104

2.9× 10−15 6.4195× 104

3.1× 10−17 1.1956× 104 2.9× 10−13 1.2994× 104

2.9× 10−15 1.2063× 104

Table 5.3: The free fall timescale and the collapse timescale of the hydrodynamic
model

We note form the table that the faster the cloud’s rotation is, the longer the

collapse timescale is. This is understandable because the rotation is a supporting

agent against gravity, like the magnetic field. Also, due to the extra support from

rotation, thydro is bigger than tff . From table (5.2), the collapse time increases with

increasing the magnetic field, due to the extra support added because of the mag-

netic pressure.

In summary, we have seen from the numerical models presented in this

section that,in a flattened sphere, the main effect of the magnetic field is to inhibit
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the formation of a binary system, along with delaying the collapse.

(a) B = 0 (b) B = 10µG

Figure 5.3: The collapse of the models with the lower density and the higher angular
velocity with two different magnetic field strengths: A binary system (left panel)
and a single protostar (right panel).

(a) B = 0 (b) B = 100µG

Figure 5.4: LThe collapse of the models with the lower density and the lower angular
velocity with two different magnetic field strengths: A single protostar (left panel)
and a single protostar with supported surrounding (right panel).
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(a) B = 0 (b) B = 400µG

Figure 5.5: The collapse of the models with the higher density and the higher angular
velocity with two different magnetic field strengths: A bar with two cores (a) and a
bar with one core (b)

5.2.2 Exponential density profile

This section presents the results of the collapse of the models with initial

exponential density profile (see Eq. (4.17)). They are summarized in the table (5.4).

The models are labeled with E followed by the magnetic field strength.

The main of effect of the magnetic field on a slowly rotating, initially ex-

ponentially decreasing density is to delay the collapse. However, the magnetic field

did not influence the shape of the collapse. All the magnetized clouds collapsed

into a point-like single protostar (see Figure (5.6)). This is the same outcome as

the non-magnetized model. This indicates the important role of the initial density

distribution of the effect of the magnetic field.

As the table shows, the time it took the cloud to collapse by 5 to 6 orders of mag-

nitude increases by increasing the initial magnetic field strength.

The table also shows that with an initial magnetic field of strength B0 = 100µG
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Figure 5.6: The point like final protostar for all collapsing models with initial expo-
nential density

and higher, the cloud did not collapse. On the contrary, the cloud’s maximum den-

sity oscillated between 10−17g.cm−3 and 10−18g.cm−3. Hence, for B0 ≥ 100µG, the

magnetic field supports the cloud against gravitational collapse. We note that for

an non uniform density, it is harder to calculate a critical mass-to-flux ratio as it

was the case for the uniform density (see Eq.(2.13)).

As for the timescales: tff = 2.9771 × 104yrs and thydro = 6.0882 × 104yrs, then

the collapse timescale of the magnetized clouds increases with increasing the mag-

netic field strength. Then for B0 ≥ 100µG, the clouds remain stable even after

tf = 3.9661× 105yrs.

To summarize, for an initially exponentially decreasing density, there exist a

value for the magnetic field strength above which the cloud is stable. For our initial

central density ρ0 = 5× 10−18g.cm−3, the threshold of stability is Bstable ≥ 100µG.

But the magnetic field did not alter the shape of the collapse, since all models

collapsed into a point-like single protostar.
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5.3 Conservation results

5.3.1 Mass and angular momentum conservation

After having ran all the simulations using the Enzo code, and presented the

respective results in the sections above, we will test the runs for the conservation of

mass, angular momentum and magnetic flux.

By design, Enzo is able to conserve mass and linear momentum(Bryan et

al., 2014), since it is a Cartesian coordinate code. So we will check to which degree

was the mass conserved in each of our runs. Furthermore, unlike other codes written

in spherical or cylindrical coordinates, Enzo does not necessarily conserve angular

momentum. Hence we also test here Enzo’s ability to conserve angular momentum.

Table (5.5), (5.6) and (5.7) present for each model the mean change in mass

and angular momentum in units of initial mass and initial angular momentum,

respectively.
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Model Bx (µG) Bz (µG) ∆M(M0) ∆J(J0)

hydro 0 0 -0.0039 -0.0084

mag-z-20 0 20 -0.0024 -0.0049

mag-z-60 0 60 -0.0121 -0.0026

mag-z-80 0 80 -0.0026 -0.0019

mag-z-100 0 100 -0.0042 -0.0028

mag-z-300 0 300 -0.0089 -0.0664

mag-x-300 300 0 -0.0038 -0.2838

mag-z-400 0 400 -0.0024 -0.1607

Table 5.5: The change in mass and angular momentum for the uniform sphere
models

For the initial uniform sphere, the mass was conserved to the 0.5% level.

For low magnetic field (B0 ≤ 100µG), the angular momentum was practically con-

served to the 0.4% level. But for models mag-x-300 and mag-z-400, the change in

angular momentum becomes 28% and 16%, respectively. This shows that the an-

gular momentum was lost for high magnetic field. Even though, in reality angular

momentum should be lost to solve the angular momentum problem, it should not

do so numerically.

Closer investigations of mag-x-300 and mag-z-400 showed that the loss was at the

very end after a very dense central core has formed. This suggests that the resolu-

tion might be the reason for this unacceptable loss of angular momentum. If this

is the case, increasing the initial resolution of the simulation could minimize these
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losses. In order to do so, the size of the initial grid was increased from 323 to 643,

the refinement factor was also increased from 2 to 12 and the maximum levels of

refinement from 6 to 16. This leads to an increase in resolution from 323 × 26 to

643 × 1216. For this resolution, the loss in angular momentum becomes 0.021 and

0.041 for mag-x-300 and mag-z-400. Hence, although the resolution was enhanced

significantly a loss in angular momentum was still present, but acceptable.

In BK13, the model mag-z-400-10 in table 3 is similar to the mag-z-400 in our simula-

tions. The change in angular momentum obtained by BK13 was ∆Jtot = +9.7%. So

the angular momentum wasn’t lost but instead was increased by 9.7%. This might

be due to the MHD solver or the version of Enzo used. In table 2, mag-z-300 and

mag-x-300 are also similar to our models but with a larger initial perturbation (am-

plitude 50% instead of 10%). The model mag-z-300 in BK13 had ∆Jtot = −5.0%,

close to the change obtained in this work for mag-z-300. We note that the final time

in BK13 for this model is close to the final time in this work. On the contrary, the

model mag-x-300 in BK13 lost 0.9% of the angular momentum only. This discrep-

ancy could be due to the time of the simulation which was equal to 5.8tff in BK13

instead of 1.5tff in our work.

Why is the angular momentum lost during an MHD simulation?

Allen, Li, and Shu (2003) showed that angular momentum can be removed in a

low-speed outflow driven by magnetic braking during the collapse, provided that

the cloud is magnetized and the ideal MHD approximation holds. Also Hennebelle

and Ciardi (2009) explained that due to magnetic braking, the magnetic field twist

transports angular momentum outward and effectively outside of the computational
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volume by virtue of the field handling on the boundaries of the cube.

Model ∆M(M0) ∆J(J0)

LF0 -0.0078 -0.0230

LF10 -0.0066 -0.0220

LF100 -0.0331 -0.0185

LS0 -0.0200 -0.0459

LS10 -0.0052 -0.0544

LS100 -0.0053 -0.0855

HF0 -0.0056 -0.0266

HF10 -0.0056 -0.0267

HF100 -0.0054 -0.0265

HF400 -0.0049 -0.0471

HS0 -0.0044 -0.0164

HS10 -0.0045 -0.0164

HS100 -0.0049 -0.0164

HS400 -0.0045 -0.0322

Table 5.6: The change in mass and angular momentum for the flattened sphere
models

As for the flattened sphere, both the mass and the angular momentum were

conserved, to the 0.8% and to the 3% level, respectively.
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Model ∆M(M0) ∆J(J0)

E0 -0.0646 -0.0849

E10 -0.0715 -0.0234

E20 -0.0708 -0.0866

E40 -0.0755 -0.0883

E60 -0.0892 -0.1126

E80 -0.0924 -0.1146

E100 -0.1077 -0.1946

E200 -0.0831 -0.1538

Table 5.7: The change in mass and angular momentum for the exponential density
models

In the case of the exponentially decreasing density, the change in mass was

8% and the change in angular momentum is 10%. The loss of angular momentum

increased with increasing magnetic field strength. This again shows that as the

loss of the angular momentum is related to the magnetic field and rotation. As

explained earlier, it is actually due to the magnetic braking process where the angular

momentum is pushed away from the protostar.

5.3.2 Magnetic flux conservation

Magnetic field is a divergence free field (∇.B = 0), so the magnetic flux

should be conserved in the ideal MHD picture. So, in this section, we test for the

magnetic flux conservation. In order to do that, we will investigate the parameter
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(∇.B).dx

B
instead of ∇.B . The advantage of doing so is that this parameter is

dimensionless. Knowing that “zero” cannot be reached numerically, using a dimen-

sionless parameter would give insight about the quantity regardless of the problem

studied. So this parameter should be a lot smaller than 1.

In our simulations, we use the Dedner et al. (2002) divergence cleaning method

(Wang, Abel, & Zhang, 2008). This method does not conserve the magnetic field to

a very high level. Even if ∇.B = 0 initially, ∇.B does not stay zero throughout the

simulation. It actually peaks when a region becomes very dense, as also observed

in BK13. But Wang and Abel (2009) has shown that the non-zero field divergence

that arises during a typical calculation is not large enough to be dynamically im-

portant. And to make sure this is true, we monitor the
(∇.B).dx

B
parameter. The

constrained transport MHD (Collins, Xu, Norman, Li, & Li, 2010) method could be

more accurate than the cleaning method.

We tested all the runs for the magnetic flux conservation, and in the worst case

scenario the parameter
(∇.B).dx

B
is of the order of 10−3. This means that the di-

vergence of the magnetic field is zero to the 0.1% level. In average, this parameter

is in the range 10−3 − 10−6. These values are typical for a cleaning method.

Thus, this shows that the magnetic field was conserved reasonably well.
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Chapter 6

Conclusion and Future Work

The work in this thesis can be divided into two categories:

1. Idealized settings: A rigidly rotating uniform magnetized stellar cloud with

isothermal equation of state.

2. More realistic initial conditions: Rigidly rotating centrally condensed magne-

tized stellar clouds with polytropic equation of state.

The standard theory of gravitational collapse of a magnetized cloud con-

sists of a subcritical cloud unable to collapse because of the magnetic field support

against gravity. But, due to ambipolar diffusion, described in section 2.3.1, this

cloud could eventually collapse under its own gravity.

However, the theory of ambipolar diffusion does not give a unified explanation of

the collapse for both high and low mass clouds. Furthermore, the most recent

observations of interstellar magnetic fields didn’t find any proof of the ambipolar

diffusion driven cloud collapse. And molecular clouds were found to be supercritical

63



or slightly critical. Hence, the so called ”standard theory” of star formation was no

longer thought to be relevant in stellar formation.

In sect (3.3), the diffusion terms of the induction equation were estimated for the

densities and magnetic field strengths considered in the present work. These terms

were found small enough to be neglected: Ohmic resistivity term was of the order of

10−47G/s, and the ambipolar diffusion term was of the order of 10−21G/s. Hence,

we found arguments in favor of using the ideal MHD approximation. We empha-

size that this conclusion does not necessarily rule out ambipolar diffusion from the

theory of star formation. The ambipolar diffusion term for low densities and high

magnetic field can become of the order of 10−11G/s. And in this range the ideal

MHD will no longer be a valid approximation.

In the first part of the thesis, we reproduced the MHD model according to

A. Boss and Keiser (2013) using an isothermal equation of state. In the second part,

we considered a more realistic model with a more realistic equation of state (EOS).

This was a centrally condensed clouds, with barotropic EOS. This latter mimic the

non-isothermal effects arising when the density is higher than 10−14gcm−3. This

EOS, although not totally accurate, is more realistic than a pure isothermal equa-

tion of state. An energy equation should be used to fully understand the radiative

transfer processes, which is subject to future considerations.

We first summarize the results of the uniform density cloud as follows: Using

the isothermal equation of state is only accurate for densities below the critical
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density ρc, so the results of the magnetized models are first compared for ρmax = ρc

(see table 5.1), then compared at the final time where ρmax > ρc.

1. At ρmax = ρc, models with magnetic field strength below a critical value

Bc = 200µG formed binary systems. In contrast, for B > Bc , the models had

collapsed into a single system.

2. At the final time where ρmax > ρc, all the models collapsed into a single

protostar with spiral arms. The models with B < Bc, the spirals are circular,

while the models with B < Bc, the spirals are more elongated (see figure5.2).

3. The main effect of the magnetic field was found to delay the collapse of the

clouds. This is expected because the magnetic field supports the cloud against

collapse by increasing the gas pressure.

4. If the magnetic field is taken perpendicular to the axis of rotation, the collapse

was delayed longer than when the field was parallel. The cloud was no more

spherical like in the x-y plane, it became elongated. The reason is that the

particles are able to move easily along the direction of the field.

The results of the more realistic centrally condensed clouds are summarized

as follows:

1. For the flattened sphere density profile (see Eq. 4.12):

(a) The main effect of the magnetic field in all models was to inhibit the

formation of binary systems. The models with zero magnetic field formed
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with two cores, while for stronger magnetic field they formed a bar with

one core.

(b) We also noticed a slight delay in the collapse with increasing magnetic

field. This effect was not as important for this initial condition than it

was for uniform initial density.

2. For the exponentially decreasing density profile (see eq. (4.17)):

(a) For these models, we found a critical magnetic field Bc = 100µG. For B <

Bc, the collapse was delayed with increasing magnetic field. Whereas, for

B ≥ Bc, the cloud did not collapse, and the magnetic field was able to

stabilize the clouds.

(b) The magnetic field did not affect the shape of the collapse. All the models

collapsed into a point-like single protostar.

Finally, we conclude the effect of magnetic field on the collapse of a molec-

ular cloud in the ideal MHD approximation as follows:

1. If the unmagnetized cloud collapses into a single protostar and the magnetic

field is not strong enough to inhibit its collapse, the magnetic field delays

it. While, if the magnetic field is strong enough, the cloud is stable against

gravitational collapse.

2. If the unmagnetized cloud collapses into a binary system, the magnetic field

leads to a final single protostar.
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We emphasize that these results may not be the same if the non-ideal MHD is used.

In the non-ideal MHD picture, fragmentation could be enhanced, because not all

the cloud would have the same magnetic support. And regions of the cloud would

be more prone to collapse, while other regions would stay magnetically supported.

We tested for the conservation of mass, angular momentum and magnetic

flux.

1. Mass conservation: By design, Enzo conserves the mass, and we found that

the mass was indeed conserved to the 0.8% level as an average for all the runs.

2. Angular momentum conservation: Enzo does not necessarily conserve angular

momentum because it a Cartesian code. Angular momentum was conserved for

some runs, and for other runs with higher magnetic field angular momentum

was lost between 18 and 25%. An increase in the resolution minimized this

loss to 2.1% and 4.1%.

3. Magnetic flux conservation: To solve the MHD set of equation a cleaning

method was used, during which the magnetic flux was conserved to the 10−6

or the 10−3 level. Keeping the magnetic field divergence free would be more

efficient if the method used is the Constrained Method which is very accurate

(to the 10−15 level). But the problem with this method is that it crashes more

often, while the cleaning method is more stable.

In a future perspective, it is important to add an energy equation to fully

study the radiative transfer in magnetized clouds. Also, it is interesting to investi-
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gate a differential rotation instead of a solid body rotation.

Also, an interesting application of the present approach is to investigate the forma-

tion of early stars in the universe. The dark age started 380000 yr after Big Bang

and lasted 400 million years. The first stars were formed reionizing the medium.

The nature of the first star is not well known, especially their mass range. An

interesting review on this subject is given by Bromm (2013).
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Appendix A

The induction equation

In order to derive the induction equation in the subsection 3.1.1, the Am-

pere’s law was used (Eq. (3.8)) and the displacement current

(
∂D

∂t

)
from Maxwell’s

equations is neglected. A. P. Boss (1997) showed that this term can be neglected

for a long timescale process such as ambipolar diffusion, if the conductivity of the

medium is very high. In this appendix, we evaluate the value of the electrical con-

ductivity in typical molecular clouds.

The electrical conductivity is given by σe (Tanenbaum, 1967):

σe =
nee

2

meν
(A.1)

where ne is the number density of electrons, e is the electron charge, me is the
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electron mass and ν is the electron-neutral collision frequency. ν given by:

ν = 4.5× 10−9nn

(
Te
300

)1/2

(A.2)

where nn is the neutrals number density and Te is the electron temperature roughly

equal the gas temperature T .

Eq. (A.2) in Eq. (A.1) gives the conductivity as a function of temperature and

ionization:

σe = 6× 1016xi

(
300

T

)1/2

(A.3)

where xi = ne/nn is the fractional ionization.

For typical values of xi and T in molecular clouds, the electrical conductivity is very

high close to σe ≈ 3× 1010.

For this large value of conductivity, the displacement current

(
∂D

∂t

)
in Maxwell’s

equations can be neglected for long timescale phenomena such as ambipolar diffu-

sion

(A. P. Boss, 1997).
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Appendix B

Enzo code

In this thesis, we performed the numerical simulations to solve the set of

ideal MHD using the publicly available Enzo code1. In this chapter, we present a

quick guide to obtaining, building and running this code. After that, we test the

code on exactly solvable problem.

B.1 Obtaining and building the code

First, necessary libraries have to be obtained in order to run the code:

1. HDF5: When compiling HDF5, do not enable parallel, as Enzo is not compat-

ible with that, and it won’t compile.

2. MPI: Although, Enzo compiles without MPI, having MPI for multi-processor

parallel jobs allows computation that would otherwise take infinite computa-

1http://enzo-project.org
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tion time to complete.

3. Mercurial: It will be needed for a straightforward download of Enzo. This is

what the hg command stand for.

4. yt: It is a visualization and analysis tool that enables the easiest analysis of

Enzo outputs.

Now, run the following command to make a copy of the existing Enzo source code :

∼ $ hg clone https://bitbucket.org/enzo/enzo-stable

After having downloaded Enzo, you must initialize the Build System and this is by

running the configuration tool.:

∼/enzo-stable $ ./configure

Now in order to build the Makefile, go and choose the machine-specific configuration

from the list Make.mach.*.

∼/enzo-stable/src/enzo $ make machine-linux-gnu

∼/enzo-stable/src/enzo $ make

The last command compiles the code and creates an executable file “enzo.exe” in

the current directory.

It is now straightforward to build the two other tools for enzo: inits and ring. Inits

creates the initial conditions for your simulation, and ring splits up the root grid

which is necessary if you’re using parallel IO.

∼/enzo-stable/src/inits $ make

∼/enzo-stable/src/ring $ make These two commands create inits.exe and ring.exe

respectively in the inits and ring directories.
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B.2 Running the code

In the run directory, there are several test problems each for a problem type,

like: Kelvin-Helmholtz instability, the collapse of a rotating cylinder, spherical in-

fall, pressureless collapse, gravity equilibrium test, shearing box simulation, as well

as several radiation-hydrodynamics tests.

The Enzo test case of interest to this thesis work is the 3 dimensional Magneto-

Hydro-Dynamical collapse.

Two C++ programs initialize our problem: CollapseMHD3DInitialize.C and

Grid CollapseMHD3DInitializeGrid.C. The problem type is 202.

Generally, the ProblemInitialize.C program reads the problem-specific parameters

from the Problem.enzo file. Then the

Grid ProblemInitializeGrid.C initializes the grid by setting the parameters of every

cell and adding any particles that are needed at the simulation start.
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