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Title: GROMOV’S NON-SQUEEZING THEOREM AND PSEUDOHOLOMORPHIC DISCS

Abstract:
In order to understand the geometry of a given symplectic manifold (M,ω), one can study how

elementary geometric subsets of M , such as balls, are transformed by symplectomorphisms, i.e.
diffeomorphisms preserving the symplectic structure ω. Although such diffeomorphisms necessarily
preserve the volume, M.Gromov proved in 1985 that symplectomorphisms behave in a more rigid
way than volume preserving maps by establishing his celebrated non-squeezing theorem; roughly
speaking, one cannot deform symplectomorphically a ball to a thin ball in order to squeeze it in a
cylinder. Very recently, A. Sukhov and A. Tumanov in [13] gave an elegant and self-contained proof
of Gromov’s non-squeezing theorem based on the theory of attached pseudoholomorphic discs. The
main goal of the proposed Master thesis is to study their approach.
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Introduction

Symplectic geometry is an important branch of differential geometry and topology, carrying pre-
cious global information on the geometry of the ambient manifold; its development goes back to the
Hamiltonian formulation of classical mechanics systems such as the planetary system. According to
Darboux’s theorem, symplectic manifolds are all locally equivalent and therefore there is no local
invariants in Symplectic Geometry. The absence of local invariant gives rise to an infinite dimen-
sional group of symplectomorphisms, i.e. diffeomorphisms preserving a given symplectic structure.
Understanding the dynamical and rigidity properties of the group of symplectomorphisms, such as
its relative size in the group of volume preserving diffeomorphisms, has attracted lots of attention
in the development of Symplectic Geometry.

In 1985, M.Gromov [6] proved his important non-squeezing theorem, stating that symplecto-
morphisms behave in a more rigid way than volume preserving maps; more precisely, one cannot
deform symplectomorphically a large ball in order to squeeze it in a thin cylinder. His approach was
based on the interplay between Symplectic Geometry and Almost Complex Geometry and more
precisely on the method of pseudoholomorphic curves.

Very recently, A. Sukhov and A. Tumanov [13], gave a new original and short proof of Gromov’s
non-squeezing theorem. Their methods relies on a new construction of J-homolomorphic discs
attached cylinder with triangular base. Such discs are solutions of the classical Beltrami equation
and the idea of attaching a J-homolomorphic disc to a cylinder is a boundary value problem in
Partial Differential Equations. Their main idea was to consider triangular cylinders instead of
circular ones in order to make use of linear boundary value conditions.

The present thesis is organized as follows. In Chapter 1 we cover the necessary preliminaries.
In particular we recall the basic facts of Almost Complex Geometry and Symplectic Geometry.
Chapter 2 is devoted to the classical and modified Cauchy-Green operators which are the main
tools in the study of the Beltrami equation. In the Chapter 3 we construct a J-holomorphic disc
attached to a triangular cylinder following A. Sukhov and A. Tumanov. We also suggest a simplified
construction based on the Banach fixed point theorem. Finally, in Chapter 4 we state and prove
Gromov’s non-squeezing theorem using the J-holomorphic disc previously constructed.
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Chapter 1

Preliminaries

We start this chapter by defining some notations that will be used in this thesis.

• In R2n, every point z is represented by the coordinates (x1, y1, ..., xn, yn). R2n is identified
with Cn in which the variable will be denoted by z = (z1, ..., zn) where each zj = xj + iyj .

• In C, the unit disc will be denoted by D={ζ ∈ C; ζζ = 1}.

• We will denote the identity map by Id : R2n → R2n for any n.

1.1 Function Spaces: Defintions and Notations

In this section we intend to define some spaces that we will use in the coming sections. In what
follows, k ∈ N and α, p ∈ R with 0 < α < 1.

• We denote by Lp(D), the space of measurable functions f : D→ C such that∫∫
D
|f(z)|pdxdy <∞.

The Lp norm of a function f ∈ Lp(D) is defined to be

‖f‖p :=

(∫∫
D
|f(z)|pdxdy

)1/p

.

• We denote by W k,p(D) the Sobolev space of functions f on D whose derivatives to order k
are in Lp(D). We define the W k,p-norm of a function f ∈W k,p(D) by

‖f‖Wk,p :=

∑
j<k

‖Djf‖pp

1/p

We will be only dealing with W 1,p(D), namely the Sobolev space of functions f on D whose
first derivative is in Lp(D).
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• We denote by C0(D) the space of all continuous functions

• We denote by Ck(D) to be the space of functions f : D → C differentiable up to order k,
whose kth derivatives are continuous. More precisely, a function f is said to be of class Ck

if f (1), f (2), f (3)..., fk exist and are continuous. We also define C∞(D) to be the space of
infinitely differentiable functions.

• We denote by Ck,α(D) the space of functions f : D → C differentiable up to order k, whose
partial derivatives of order k satisfy the following Hölder condition:

|Dkf(ζ)−Dkf(ω)| ≤ C|ζ − ω|α

for some positive constant.

• Finally, we denote by Ck0 (D), k ∈ N ∪ {∞}, the set of functions f of class Ck on D with
compact support. A function is said to be of compact support if it is equal to zero outside a
compact set.

1.2 Almost Complex Geometry

Definition 1.2.1. An almost complex structure J on R2n, is a continuous map J : R2n →
End(R2n), which associates to every point z ∈ R2n a linear isomorphism satisfying J(z)2 = −Id.

Example 1.2.2. In R2, Jst =

[
0 −1
1 0

]
= i, and (R2, Jst) ' (C, i). We will denote by i the

standard structure in R2, known as the rotation matrix. One can show that J2
st = −Id:

J2
st =

[
0 −1
1 0

]
×
[

0 −1
1 0

]
=

[
−1 0
0 −1

]
= −

[
1 0
0 1

]
= −Id.

More generally, almost complex structures in R2 are of the form

J(z) =

[
a(z) −1+a(z)2

c(z)

c(z) −a(z)

]
. (1.1)

Indeed, if

J(z)2 =

[
a b
c d

]
×
[
a b
c d

]
=

[
a2 + bc ab+ bd
ac+ cd bc+ d2

]
=

[
−1 0
0 −1

]
then,

a2 + bc = −1

ab+ bd = 0

ac+ cd = 0

bc+ d2 = −1.

By solving this system of equations, we get the form (1.1), where a(z) and c(z) are continuous
functions in R2, c(z) 6= 0.
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Example 1.2.3. In R2n, Jst the standard complex structure is represented by the block 2n × 2n
diagonal matrix:

Jst =



0 −1 · · · · · · 0 0
1 0 · · · · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...
0 0 · · · 0 0 −1
0 0 · · · 0 1 0


.

Note that:

J2
st = −I

J−1st = −Jst.

Definition 1.2.4. Let R2m and R2n be endowed with two almost complex structures J ′ and J
respectively, and let D′ and D be two subsets of R2m and R2n respectively. A C1 map f : D′ → D
is called (J ′, J)-holomorphic if it satisfies the Cauchy-Riemann equation:

df ◦ J ′ = J(f) ◦ df (1.2)

Example 1.2.5. Let D′ ⊆ (R2m, Jst), D ⊆ (R2n, Jst), then f is (Jst, Jst) holomorphic if and only
if f is holomorphic in the usual case, namely each of components of f is holomorphic.

Definition 1.2.6. For D′ = D and J ′ = i, we call the map f a J-holomorphic disc. In other words
a J-holomrphic disc or pseudo-holomorphic disc is a (i, J) holomorphic map u : D→ D ⊂ R2n.

The J-holomorphy equation (1.2) for a J-holomorphic disc u : D → Cn can be written in the
form:

∂u

∂y
= J(u)

∂u

∂x
. (1.3)

Indeed let
∂u

∂x
= (

∂u1
∂x

,
∂u2
∂x

, ...,
∂u2n
∂x

)t and let
∂u

∂y
= (

∂u1
∂y

,
∂u2
∂y

, ...,
∂u2n
∂y

)t and note that[
∂u

∂x

∂u

∂y

]
is a 2n× 2 matrix. The equation du ◦ i = J(u) ◦ du can be written:[

∂u

∂x

∂u

∂y

]
◦
[

0 −1
1 0

]
= J(u) ◦

[
∂u

∂x

∂u

∂y

]
[
∂u

∂y
−∂u
∂x

]
= J(u) ◦

[
∂u

∂x

∂u

∂y

]
.

So, we get
∂u

∂y
= J(u)

∂u

∂x
and −∂u

∂x
= J(u)

∂u

∂y
. This gives (1.3).

Remark 1.2.7. A. Nijenhuis and W. Woolf proved in [11] the existence of small J-holomorphic
discs. More precisely, if the structure J is of class Ck,α for k > 0, for any point z ∈ R2n and
any tangent vector X of z, there exists a J-holomorphic disc u of class Ck,α where u(0)=z and
∂u

∂x
(0) = λX where λ > 0 is small enough.
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1.3 Symplectic Geometry

We start this section by discussing linear symplectic geometry. For more details, see the monography
[8].

Definition 1.3.1. Let V be a real vector space.

(i) A bilinear form ω on a vector space V is a bilinear map ω : V × V → R, namely satisfying:

a- ω(X + Y, Z) = ω(X,Z) + ω(Y, Z)

b- ω(X,Y + Z) = ω(X,Y ) + ω(X,Z)

c- ω(λX, Y ) = ω(X,λY ) = λω(X,Y )

for all X,Y, Z ∈ V and λ ∈ R.

(ii) A bilinear map is said to be skew-symmetric if ω(X,Y ) = −ω(Y,X) for all X,Y ∈ V .

Note that a bilinear map ω : V × V → R induces a linear map ω∗ : V → V ∗ where V ∗ is the
dual space of V . In case ω∗ is an isomorphism, we say that ω is non-degenerate. In other words, ω
is non-degenerate whenever the kernel ker ω = {X ∈ V / ω(X,Y ) = 0, for all Y ∈ V } is trivial.

Definition 1.3.2. Let V be a real vector space.

(i) A 2-form ω on V is a bilinear skew-symmetric map ω : V × V → R. In other words ω is an
element of V ∗ ∧ V ∗.

(ii) A linear symplectic form ω on V is a non-degenerate 2-form.

Example 1.3.3. A model example in R2n with the coordinates zj = xj + iyj, j = 1, ..., n, is the
standard symplectic form

ωst =
n∑
j=1

dxj ∧ dyj =
i

2

n∑
j=1

dzj ∧ dzj .

Here dx1, dx2, ...., dxn, dy1, dy2, ...., dyn denotes the standard basis of the dual (R2n)∗ respectively.

Definition 1.3.4. An inner product on R2nis a bilinear symmetric positive definite form g : R2n×
R2n → R.

Recall that g is positive definite if g(X,X) > 0 for every non-zero vector X.

Example 1.3.5. A model example in R2n is the inner product of two vectors X =
(X1, X2, · · · , X2n) and Y = (Y1, Y2, · · · , Y2n) defined by:

g(X,Y ) :=

2n∑
j=1

Xj .Yj .

We can now discuss the not necessarily linear symplectic geometry.

Definition 1.3.6. A symplectic form on R2n is a closed (dω = 0) non-degenerate exterior 2-form
ω on R2n; i.e. ω is a smooth map that associates to each point z ∈ R2n a non-degenerate (linear)
2-form ωz.
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Example 1.3.7. The standard symplectic form

ωst :=
n∑
j=1

dxj ∧ dyj =
i

2

n∑
j=1

dzj ∧ dzj

plays a major role in Symplectic Geometry. By Darboux theorem [8], any symplectic form on a
given smooth real manifold is locally diffeomorphic to ωst, i.e. can be expressed in local coordinates
as ωst. In particular this implies that there is no local invariants on a symplectic manifold. This is
a great contrast with Riemannian Geometry where the curvature is a local invariant.

We will need the following convenient definition

Definition 1.3.8. Let Φ : R2n → R2m be a smooth map.

(i) Let f : R2m → R be a smooth function, we define the pullback of f by Φ by:

Φ∗f = f ◦ Φ.

(ii) Let α be a differential k-form on R2m, we define the pullback of α by Φ by:

(Φ∗α)z(X1, X2, ..., Xk) = αφ(z)(DzΦ(X1), DzΦ(X2), ..., DzΦ(Xk)).

Note that Φ∗α is a k-form on R2n.

Definition 1.3.9. Let ω1 and ω2 be two symplectic forms on R2n. A smooth map Φ : (R2n, ω1)→
(R2n, ω2) is called a symplectomorphism if it satisfies

Φ∗(ω2) = ω1.

Definition 1.3.10. A Riemannian metric on R2n is a smoothly varying collection of inner products
z → gz:

g := {gz : R2n × R2n → R inner product, z ∈ R2n}.

Definition 1.3.11. Let ω be a symplectic structure on R2n. An almost complex structure on
(R2n, ω) is called ω-tamed if ω(X, JX) > 0, for all X 6= 0. In such case g(X,Y ) := ω(X, JY )
defines a Riemannian metric.

Example 1.3.12. A model example is provided by R2n endowed with the standard symplectic form
ωst and the standard complex structure Jst, (R2n, ωst, Jst).

To check that Jst is ωst-tamed, let us prove that for all non-zero vector X =
(X1, Y1, · · · , Xn, Yn) ∈ R2n, ωst(X, JstX) > 0. We first find the expression of JstX.

JstX =



0 −1 · · · · · · 0 0
1 0 · · · · · · 0 0

0 0
. . . 0 0

...
...

. . .
...

...
0 0 · · · 0 0 −1
0 0 · · · 0 1 0


×



X1

Y1
X2
...
Xn

Yn


=



−Y1
X1

−Y2
...
−Yn
Xn


.

It follows that,
ωst(X, JstX) = X2

1 + Y 2
1 +X2

2 · · ·+X2
n + Y 2

n > 0.
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Finally, we need to define the symplectic area of a map:

Definition 1.3.13. Let u : D→ R2n be a map, we define the symplectic area of u by:

Area(u) =

∫
D
u∗ω. (1.4)

1.4 Local J-holomorphic Equations of Discs

Proposition 1.4.1. Let J be an almost complex structure ωst-tamed on R2n = Cn. Equation (1.2)
for a J-complex disc u : D→ Cn, u : ζ 7→ u(ζ) can be written in the form:

uζ = A(u)uζ , (1.5)

where ζ = x+ iy and
A(z)(X) = (J(z) + Jst)

−1 (Jst − J(z)) (X)

is a complex linear endomorphism for every z ∈ Cn.

Proof. We set

∂u

∂ζ
=

1

2
(
∂u

∂x
− Jst

∂u

∂y
), (1.6)

and

∂u

∂ζ
=

1

2
(
∂u

∂x
+ Jst

∂u

∂y
). (1.7)

Recall that Jst is the standard complex structure in R2n. By adding (1.6) and (1.7), we get:

∂u

∂ζ
+
∂u

∂ζ
=
∂u

∂x
.

By subtracting (1.6) and (1.7), we get:

∂u

∂ζ
− ∂u

∂ζ
= −Jst

∂u

∂y
.

And also,
∂u

∂y
= (−Jst)−1

(
∂u

∂ζ
− ∂u

∂ζ

)
= Jst

(
∂u

∂ζ
− ∂u

∂ζ

)
.

By substituting in (1.3), we get:

Jst

(
∂u

∂ζ
− ∂u

∂ζ

)
= J(u)

(
∂u

∂ζ
+
∂u

∂ζ

)

Jst
∂u

∂ζ
− Jst

∂u

∂ζ
= J(u)

∂u

∂ζ
− J(u)

∂u

∂ζ

(−Jst − J(u))
∂u

∂ζ
= (J(u)− Jst)

∂u

∂ζ
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(J(u) + Jst)
∂u

∂ζ
= (Jst − J(u))

∂u

∂ζ
.

Having J tamed by ωst,

ωst (X, (J + Jst)X) = ωst (X, JX) + ωst (X, JstX) > 0.

So, ker (J + Jst) = {0} and therefore (J + Jst) is invertible. We can then write

∂u

∂ζ
= (J(u) + Jst)

−1 (Jst − J(u))
∂u

∂ζ
.

This proves the proposition.

Remark 1.4.2. (i) For all z ∈ Cn, A(z) can be considered as a n × n matrix with complex
coefficients. Moreover, A has the same regularity as J .

(ii) A is called the complex matrix of J , denoting the matrix representation of the complex anti-
linear operator (Jst + J)−1(Jst − J) and can be uniquely determined by J .

(iii) A(z) = 0 if and only if (Jst + J(z))−1(Jst − J(z)) = 0, that is J(z) = Jst.

(iv) In the Cauchy-Riemann Equation (1.5) the n× n matrix function A satisfies:

‖A(z)‖ < 1 (1.8)

for all z ∈ Cn, where the matrix norm ‖.‖ is induced by the Euclidean inner product, namely

‖A(z)‖ = max
X∈Cn\{0}

|A(z)X|
|X|

.

Proposition 1.4.3. A satisfies the following properties:

(i) A is conjugate linear operator in the identification of R2n of Cn, i.e. A(iX) = −iA(X). In
other words, in real notations:

AJst = −JstA.

(ii) Having the following equality (J + Jst)A = (Jst− J) and given the conjugate linear operator
A, the corresponding almost complex structure J is given by J = Jst (1−A) (1 +A)−1.

(iii) Define J = Jst(Id −A)(Id +A). Then J is an almost complex structure, namely J2 = −Id.

Proof. (i) We have,

(Jst + J)× Jst = −1 + JJst = J (J + Jst)

Taking inverses we get:

J−1st (Jst + J)−1 = (J + Jst)
−1 J−1

−Jst (Jst + J)−1 = − (J + Jst)
−1 J.

8



We also have:
J (Jst − J) = − (Jst − J) Jst.

So,

JstA = Jst (J + Jst)
−1 (Jst − J)

= (J + Jst)
−1 J (Jst − J)

= − (J + Jst)
−1 (Jst − J) Jst

= −AJst.

(ii) Expanding the following equality, (J + Jst)A = (Jst− J), we get:

JA+ JstA = Jst − J

J (A+ Id) = Jst (Id −A)

J = Jst (Id −A) (Id +A)−1 .

This is defined when the operator norm of A satisfies ‖A‖ < 1, in other words when J is close
to Jst.

(iii) Note that:

Jst(Id −A) = Jst − JstA
= Jst +AJst

= (Id +A)Jst.

We compute

J2 = Jst (Id −A) (Id +A)−1 Jst (Id −A) (Id +A)−1

= (Id +A) Jst (Id +A)−1 (Id +A) Jst (Id +A)−1

= (Id +A) JstJst (Id +A)−1

= (Id +A) (−Id) (Id +A)−1

= − (Id +A) (Id +A)−1

= −Id.

Hence, J2 = −Id.

Lemma 1.4.4. Let J be an almost complex structure on Cn, then J is tamed by ωst if and only if
the complex matrix A of J satisfied the condition ‖A(z)‖ < 1, for all z ∈ Cn.

Proof. The complex matrix A is defined by A = (Jst + J)−1(Jst − J), where A(z)(X) =
(J(z) + Jst)

−1 (Jst − J(z)) (X). Our first goal will be proving that A is well defined and this is
done by proving that if J is tamed by ωst then the det(Jst + J) 6= 0, and that will automatically
lead to A being well-defined. Note that ωst (X, (J + Jst)X) = ωst (X, JX) +ωst (X, JstX) > 0. So,
ker (J + Jst) = {0} and therefore (J + Jst) is invertible.
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We have

A = (Jst + J)−1(Jst − J)

= (Jst(Id − JstJ)−1(Jst(Id + JstJ))

= (Id − JstJ)−1(Jst)
−1Jst(Id + JstJ)

= (Id − JstJ)−1(Id + JstJ)

Now, having A = (Id − JstJ)−1 (Id + JstJ) = (Id + JstJ) (Id − JstJ)−1. Now, having ‖A‖ < 1,
then

|AX| < |X|

| (Id + JstJ) (Id − JstJ)−1X| < |X|

| (Id + JstJ)X| < | (Id − JstJ)X|

‖ (Id + JstJ) ‖ < ‖ (Id − JstJ) ‖

Now,

|X−JstJX|2−|X+JstJX|2 = ωst (X − JstJX, Jst (X − JstJX))−ωst (X + JstJX, Jst (X + JstJX))

= ωst (X − JstJX, JstX) +ωst (X − JstJX, JX)−ωst (X + JstJX, JstX)−ωst (X + JstJX,−JX)

= ωst (X, JstX)− ωst (JstJX, JstX) + ωst (X, JX)− ωst (JstJX, JX)− ωst (X,JstX)

−ωst (JstJX, JstX)− ωst (X,−JX)− ωst (JstJX,−JX)

= ωst (X, JstX)− ωst (JstJX, JstX) + ωst (X, JX)− ωst (JstJX, JX)− ωst (X, JstX)

−ωst (JstJX, JstX) + ωst (X,JX) + ωst (JstJX, JX)

= −2ωst (JstJX, JstX) + 2ωst (X, JX)

= 2ωst (X,JX)− 2ωst (JX,X)

= 2ωst (X,JX) + 2ωst (X,JX)

= 4ωst (X,JX)

10



So, J is ωst tamed if and only if ωst (X, JX) > 0
Now,

|X − JstJX|2 − |X + JstJX|2 > 0

(|X − JstJX|+ |X + JstJX|) (|X − JstJX| − |X + JstJX|) > 0

|X − JstJX| > |X + JstJX|

‖A‖ < 1

11



Chapter 2

Modified Cauchy-Green Operator

2.1 Notation

In this chapter we will denote by:

• ∆: the triangle ∆ = {ζ ∈ C : 0 < Im ζ < 1 − |Re ζ|}, which is bounded by the straight lines
of equations y = 1 + x, y = 1− x and y = 0. The triangle ∆ is an isosceles triangle with base
of length equals to 2 and height equals to 1. The area of ∆ is Area(∆) = 1.

y = 1 + xy = 1− x

y = 0 y = xy = −x

Figure 2.1: the triangle ∆

• Σ: the triangular cylinder Σ = ∆ × Cn−1 in Cn using the notation z = (z1, z2, · · · , zn) =
(z1, z

′) ∈ C× Cn−1 = Cn for representing a point in Cn.

2.2 Construction of a Riemann Mapping for ∆

First we start introducing important theorems for our construction and then we will move forward
in constructing the Riemann Mapping.

Theorem 2.2.1. Riemann Mapping Theorem [14]: Let D be a non-empty proper simply
connected domain in the complex plane C, D ⊂ C. Then there exist a biholomorphism ω = f(ζ)
from D onto the unit disc D.

A famous example is the Möbius function ω = f(ζ) = i(1+ζ)
1−ζ which maps the unit disc D to the

upper half plane H = {ω; Im(ω) > 0} and where the inverse function of f is f−1(ω) = ω−1
ω+i .

12



In order to find a biholomorphism from the unit disc D onto the triangle ∆, we will use the
Möbius function f from the unit disc D onto the upper half plane H and then find a bihlomorphism
from the upper half plane H to the triangle ∆ using Schwartz Christofell Transformation.

Theorem 2.2.2. Schwartz Christofell Transformation [14]: Let P be a polygon in the com-
plex plane with vertices p1, p2, · · · , pn and interior angles α1, α2, · · · , αn, where −π < αj < π.
There exist a biholomorphism f from the upper half plane H to the polygon P

f(ζ) = c1

∫
[0,ζ]

((ω − x1)1−α1/π(ω − x2)1−α2/π · · · (ω − xn)1−αn/π)dω + c2,

for some constants c1, c2.

Although the biholomorphism Φ from the unit disc to the isosceles triangle shown in figure (2.1)
can not be expressed explicitly, one can in theory find it via Schwartz-Christofell Transformation.
The biholomorphism g : H→ ∆ using Schwartz Christofell Transformation is given by:

g(t) = c1

∫
[0,t]

dω

(ω − 1)3/4(ω + 1)3/4
+ c2

= c1

∫
[0,ζ]

dω

(ω2 − 1)3/4
+ c2.

So,

Φ(ζ) = g ◦ f(ζ) = c1

∫
[0,ζ]

dω((
i+iω
1−ω

)2
− 1

)3/4
+ c2

= c1

∫
[0,ζ]

(1− ω)−3/2dω(
− (1 + ω)2 − (1− ω)2

)3/4 + c2

= c1

∫
[0,ζ]

(1− ω)−3/2dω

(i2(2− 2ω2))3/4
+ c2.

Since we look for a biholomorphism satisfying the extra conditions Φ(1) = 1,Φ(i) = i,Φ(−i) =
−i, we have

Φ(1) = c1

∫
[0,1]

(1− ω)−3/2dω

(i2(2− 2ω2))3/4
+ c2 = 1

Φ(i) = c1

∫
[0,i]

(1− ω)−3/2dω

(i2(2− 2ω2))3/4
+ c2 = i

Φ(−i) = c1

∫
[0,−i]

(1− ω)−3/2dω

(i2(2− 2ω2))3/4
+ c2 = −i.

This is enough for our purpose.
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2.3 Cauchy-Green Operator

Cauchy-Green operator was first introduced in Cauchy-Pompeiu’s formula, which is a generalization
of Cauchy’s formula for non-holomorphic functions.

Theorem 2.3.1. Cauchy-Pompeiu Formula [14]: Suppose D is a bounded domain with piece-
wise smooth boundary. If g(ω) is a smooth complex-valued function on D ∪ ∂D, then

g(ζ) =
1

2πi

∫
∂D

g(ω)

ω − ζ
dω − 1

π

∫∫
D

∂g(ω)

∂ω

1

ω − ζ
dxdy = Cg(ζ) + T

∂g

∂ω
(ζ)

for ζ ∈ D.

Here C denotes the Cauchy transform

Cg(ζ) :=
1

2πi

∫
∂D

g(ω)

ω − ζ
dω,

and

T
∂g

∂ω
(ζ) :=

1

π

∫∫
D

∂g(ω)

∂ω

1

ζ − ω
dxdy.

Cauchy-Pompeiu’s formula differs from the Cauchy’s formula by what is called the correction term

T
∂g

∂ω
. Once can notice that if g(ω) was chosen to be a holomorphic function on the domain D,

the second term would be equal to zero since
∂g

∂ω
= 0. This motivates the introduction of the

Cauchy-Green operator T on a domain D ⊆ C:

TΦ(ζ) :=
1

π

∫∫
D

Φ(ω)

ζ − ω
dxdy,

where Φ is such that TΦ makes sense (see Proposition 2.3.4). Notice when g has compact support
on D,

g(ζ) =
1

π

∫∫
D

∂g

∂ω
(ω)

1

ζ − ω
dxdy = T

∂g

∂ω
(ζ),

and

[
1

πω
∗ g](ζ) =

1

π

∫∫
D

g(ω)

ζ − ω
dxdy.

Therefore
1

πω
can be considered as a distribution. Moreover

∂

∂ω
[

1

πω
∗ g] = (

∂

∂ω

1

πω
) ∗ g =

1

πω

∂g

∂ω
= T

∂g

∂ω
= g.

We have proved the following proposition

Proposition 2.3.2. We have

(i)
∂

∂ω
(

1

πω
) ∗ g = g.
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(ii)
∂

∂ω
[

1

πω
∗ g] =

∂

∂ω
Tg = g, which means that

∂

∂ω
◦ T = Id.

A major consequence is that the Cauchy-Green operator solves the ∂ problem for compactly
supported smooth function.

Proposition 2.3.3. Let g ∈ C1
0 (D) where D ⊂ C. Then there exists a function u such that

∂u

∂ω
= g.

Solutions u are of the form Tg + f where f is holomorphic on D.

Proof. Set u := Tg + f , where f is a holomorphic function over D and let us check that u solves
the ∂ problem. First let us find the partial derivative with respect to ω, we get:

∂u

∂ω
=
∂Tg

∂ω
+
∂f

∂ω
= g

since
∂

∂ω
◦ T = Id and

∂f

∂ω
= 0 , f being holomorphic function. Therefore, u solves the requested

equation.
Note that in order to insure unicity, boundary conditions need to be added; e.g. u|D = Φ.

Indeed it follows by Cauchy’s formula

f(ζ) =
1

π

∫
∂D

f(ω)

ω − ζ
dω = CΦ(ζ)

that the unique solution to the ∂ problem with the boundary condition u|∂D = Φ is given by
u = Tg + CΦ.

In the next proposition we recall some classical facts about T :

Proposition 2.3.4. The Cauchy-Green operator T satisfies

(i) T : Lp(D)→W 1,p(D) is bounded for p > 2.

(ii)
∂

∂ζ
Tf = f as Sobolev’s derivative. In other words, T solves the ∂ problem in the unit disc.

(iii) Tf is holomorphic on C \ D.

The proof of this classical proposition can be found in the monography [15] for instance. For
seek of completeness we prove the third point.

Proof. (iii) Let us prove that Tf is holomorphic on C \ D using the Cauchy-Riemann equation.

∂

∂ζ
Tf(ζ) =

1

π

∂

∂ζ

∫∫
C\D

f(ω)

ζ − ω
dxdy.

Since
f(ω)

ζ − ω
is integrable over C \ D, then we can interchange ∂

∂ω with the integral, we get:

∂

∂ζ
Tf(ζ) =

1

π

∫∫
C\D

∂

∂ζ

f(ω)

ζ − ω
dxdy.

=
1

π

∫∫
C\D

0dxdy = 0

f(ω)

ζ − ω
being holomorphic in ζ over C \ D. So Tf is holomorphic over C \ D.
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2.4 Modified Cauchy-Green Operator

Introduce the functions

R(ζ) = e3πi/4(ζ − 1)1/4(ζ + 1)1/4(ζ − i)1/2,

and
X(ζ) = R(ζ)/

√
ζ

choosing the branch of R continuous in D with R(0) = e3πi/4. We are interested in the function X
only on the circle bD. For definiteness, we choose the branch of

√
ζ continuous in C with deleted

positive real line, with
√
−1 = i, although we do not care about the sign of X.

Proposition 2.4.1. (X(ζ))4 is pure real for ζ ∈ bD.

Proof.

(X(ζ))4 = (R(ζ)/
√
ζ)4

= (e3πi/4(ζ − 1)1/4(ζ + 1)1/4(ζ − i)1/2)4/ζ2

= e3πi(ζ − 1)(ζ + 1)(ζ − i)2/ζ2

= −1(ζ2 − 1)(ζ2 − 2iζ − 1)/ζ2

= −1(ζ4 − 2iζ3 − 2ζ2 + 2iζ + 1)/ζ2

= −1(ζ2 − 2iζ − 2 + 2iζ−1 + ζ−2)

= −1(ζ2 + ζ2 − 2i(ζ − ζ)− 2)

= 2Reζ2 − 2 + 2Im(ζ)

Hence, X(ζ))4 is pure real.

The term X(ζ)4 could be alternatively written as:

X(ζ)4 =e3πi(cos(2θ) + isin(2θ) + 2sin(θ)− 2icos(θ)− 2 + 2sin(θ)

+ 2icos(θ) + cos(2θ)− isin(2θ)) + e3πi(2cos(2θ)− 2 + 4sin(θ)). (2.1)

We claim that since X(ζ) is continuous on the boundary of the disc bD, and since each of 1,
−1 and i are the roots of X(ζ) = 0, then argX is constant over each of the intervals γ1 = {eiθ :
0 < θ < π/2}, γ2 = {eiθ : π/2 < θ < π}, γ3 = {eiθ : π < θ < 2π} and is equal to 3π/4, π/4 and 0
respectively, bounded by these roots whose respective arguments are π/2, π and 2π. Since we have
proved that X(ζ)4 is pure real number of argument 3π, the fourth root of this complex number has
argument equal to 0, π/4, 3π/4 or 2π/4 .

To be able to prove this claim, we intend to choose a complex number of argument lying in
each of the intervals γ1, γ2, γ3. First, let us choose the value of the argument to be θ = π/4 ∈ γ1.
Substituting in (2.1), we get,

X(ζ)4 = e3πi(2cos(π/2)− 2 + 4sin(π/4)) = e3πi(0− 2 + 2
√

2) = e3πi(2
√

2− 2),
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and hence argX(ζ) = 3π/4. Second, let us choose the value of the argument to be θ = 3π/4 ∈ γ2.
By substituting in (2.1)

X(ζ)4 = e3πi(2cos(3π/2)− 2 + 4sin(3π/4)) = e3πi(−2 + 2
√

2) = e3πi+π(2
√

2− 2) = eπi(2
√

2− 2)

and so argX(ζ) = π/4. Finally, let us choose the value of the argument to be θ = 3π/2 ∈ γ3. Once
again by substituting in (2.1)

X(ζ)4 = e3πi(2cos(3π/2)− 2 + 4sin(3π/2)) = e3πi(−2− 2 + 4) = e3πi(0) = e0i

and hence argX(ζ) = 0.
Another property of X is:

Proposition 2.4.2. The function X satisfies the boundary conditions
Im (1 + i)X(ζ) = 0, ζ ∈ γ1,

Im (1− i)X(ζ) = 0, ζ ∈ γ2,

ImX(ζ) = 0, ζ ∈ γ3,

(2.2)

which represent the lines passing through the origin 0 parallel to the sides of the triangle ∆.

Proof. For ζ ∈ γ1,
(1 + i)X(ζ) =

√
2eiπ/4(re3iπ/4) = r′eiπ,

for ζ ∈ γ2,
(1− i)X(ζ) =

√
2ei3π/4(reiπ/4) = r′eiπ,

and for ζ ∈ γ3,
X(ζ) = r′ei0

Each of these numbers is pure real number, and therefore imaginary parts are equal to zero in each
of the above mentioned cases.

We will modify the classical Cauchy-Green operator

Tf(ζ) =
1

2πi

∫
D

f(ω)

ω − ζ
dω ∧ dω.

Here, we have used the fact that − 1

2πi
dω ∧ dω =

1

π
dxdy. For a function Q defined on D, define

the modified Cauchy-Green operator using the weight Q:

TQf(ζ) :=Q(ζ)
(
T (f/Q)(ζ) + ζ−1T (f/Q)(1/ζ)

)
=Q(ζ)

∫
D

(
f(ω)

Q(ω)(ω − ζ)
+

f(ω)

Q(ω)(ωζ − 1)

)
dω ∧ dω

2πi
.

We will consider only two special special weights, namely T1 = TQ with Q = ζ − 1 and T2 = TQ
with Q = R. The operator T1 was first introduced by Vekua in [15], whereas operators similar to
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T2 apparently were first introduced by Antoncev and Monakhov in [1] for applications related to
gas dynamics.

We also define formal derivatives Sjf(ζ) := ∂
∂ζTjf(ζ) as integrals in the sense of the Cauchy

principal value. That is to say;

Sjf(ζ) = lim
ε→0

(
Q′(ζ)

∫
|ω−ζ|

(
f(ω)

Q(ω)(ω − ζ)
+

f(ω)

Q(ω)(ωζ − 1)

)
dω ∧ dω

2πi

+Q(ζ)

∫
|ω−ζ|

(
f(ω)

Q(ω)(ω − ζ)2
+

−ωf(ω)

Q(ω)(ωζ − 1)2

)
dω ∧ dω

2πi

)

The modified Cauchy-Green operators satisfy the following properties:

Proposition 2.4.3. (i) Each Sj : Lp(D) → Lp(D), j = 1, 2, is a bounded linear operator for
p1 < p < p2. Here for S1 one has p1 = 1 and p2 = ∞ and for S2 one has p1 = 4/3 and
p2 = 8/3. For 2 < p < p2, one has Sjf(ζ) = ∂

∂ζTjf(ζ) as Sobolev’s derivatives.

(ii) Each Tj : Lp(D) → W 1,p(D), j = 1, 2, is a bounded linear operator for 2 < p < p2. In
particular, Tj : Lp(D) → L∞(D) is a compact operator. For f ∈ Lp(D), 2 < p < p2, one has
∂
∂ζ
Tjf = f on D as Sobolev’s derivative.

(iii) For every f ∈ Lp(D), p > 2, the function T1f satisfies ReT1f |bD = 0 whereas T2f satisfies
the same boundary conditions (2.2) as X.

(iv) Each Sj : L2(D)→ L2(D), j = 1, 2, is an isometry.

(v) The function p 7→ ‖Sj‖Lp approaches ‖Sj‖L2 = 1 as p↘ 2.

Due to the technicality of the proof, we will prove only points iii) and iv) and refer to [15, 1]
for the other points

Proof. (iii) We will first start by proving that T1f(ζ) satisfies ReT1f |bD = 0.

T1f(ζ) = (ζ − 1)

∫
D

(
f(ω)

(ζ − 1)(ω − ζ)
+

f(ω)

(ζ − 1)(ωζ − 1)

)
dω ∧ dω

2πi

=

∫
D

f(ω)

(ω − ζ)

dω ∧ dω
2πi

+ ζ − 1

∫
D

f(ω)

(ζ − 1)(ωζ − 1)

dω ∧ dω
2πi

= Tf(ζ) +
ζ − 1

ζ(ζ − 1)

∫
D

f(ω)

(ω − 1/ζ)

dω ∧ dω
2πi

= Tf(ζ) +
ζ − 1

ζζ − ζ

∫
D

f(ω)

(ω − 1/ζ)

dω ∧ dω
2πi

= Tf(ζ) +
ζ − 1

1− ζ

∫
D

f(ω)

(ω − 1/ζ)

dω ∧ dω
2πi

= Tf(ζ)− Tf(1/ζ).
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We need to show that ReT1f |bD = 0. Note that since ζ ∈ bD then |ζ| = 1 and ζ = eiθ, so 1/ζ = eiθ.
So, T1f(ζ) = Tf(ζ)− Tf(ζ) is a pure imaginary number and hence ReT1f |bD = 0.

Now let us prove that T2f satisfies the same boundary conditions (2.2) as X,

T2f(ζ) = R(ζ)(T (f/R)(ζ) + ζ−1T (f/R)(1/ζ))

= R(ζ)(T (f/R)(ζ) + ζ−1
∫
D

f(ω)

R(ω)(ω − 1/ζ)

dω ∧ dω
2πi

= R(ζ)(T (f/R)(ζ) + 1/ζ

∫
D

f(ω)

R(ω)(ω − ζ)

dω ∧ dω
2πi

.

On the other hand, we know and since |ζ| = 1 then
√
ζ/ζ =

√
ζ. So,

T2f(ζ) = R(ζ)(T (f/R)(ζ) + 1/ζ(T (f/R)(ζ)

= (R(ζ)/
√
ζ)
(√

ζT (f/R)(ζ) +
√
ζT (f/R)(ζ)

)
and since T (f/R)(ζ) + 1/ζT (f/R)(ζ) is pure real, then T2f(ζ) and (R(ζ)/

√
ζ) have the same

argument. But we have defined (R(ζ)/
√
ζ) = X(ζ) and therefore T2f(ζ) and X(ζ) have the same

boundary conditions.
(iv) Let f ∈ C∞0 (D). Since Tjf(bD) lies on finitely many lines, then Area(Tjf) = 0. In other

words, for j = 1, we have
∫
bD T1fdT1f = −

∫
bD T1fdT1f = 0 using the properties of T1, and similarly

for j = 2. Now, by Stokes’ formula

0 = (i/2)

∫
bD
TjfdTjf = (i/2)

∫
D
dTjf ∧ dTjf

= (i/2)

∫
D

(
∂Tjf

∂ζ
dζ +

∂Tjf

∂ζ
dζ) ∧ (

∂Tjf

∂ζ
dζ +

∂Tjf

∂ζ
dζ)

= (i/2)

∫
D

(Sjfdζ + fdζ) ∧ (Sjfdζ + fdζ)

= (i/2)

∫
D

(
|Sjf |2dζ ∧ dζ + Sjffdζ ∧ dζ + fSjfdζ ∧ dζ + |f |2dζ ∧ dζ

)
= (i/2)

∫
D
|Sjf |2dζ ∧ dζ − (i/2)

∫
D
|f |2dζ ∧ dζ.

Hence, ∫
D
|Sjf |2dζ ∧ dζ =

∫
D
|f |2dζ ∧ dζ.

Therefore,
‖Sjf‖L2(D) = ‖f‖L2(D).

The above cancellations were due to the fact that dζ ∧dζ = 0, dζ ∧dζ = 0,
∂Tj

∂ζ
= Id,

∂Tj
∂ζ

= Sj .

Since C∞0 (D) is dense in Lp(D), the equality holds for all f ∈ L2(D).

To prove (iv), we have used Stoke’s Theorem.
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Theorem 2.4.4. Stoke’s Theorem [5]: Let D ⊂ R2n be a domain with piecewise C1 boundary
except on finite number of points. Let α be a differential form of degree k. Suppose that dα is
Lebesgue integrable over D then

∫
∂D α =

∫
D dα.
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Chapter 3

Attaching a J-Holomorphic Disc to a
Triangular Cylinder

3.1 Fixed Point Theorems

In this section we recall some useful theorems that will be used in our proofs.

Definition 3.1.1. In a metric space (V, d); a map f : V → V is called a contraction map on V if
there exists 0 < α < 1, such that d(f(x), f(y)) ≤ αd(x, y) for all x, y ∈ V .

Theorem 3.1.2. Contraction Principle [3]: Let f : V → V be a contraction map defined on a
non-empty complete metric space (V, d). Then f admits a unique fixed point z0, i.e. f(z0) = z0.

Theorem 3.1.3. Schauder Fixed Point Theorem [12]: Let K be a non-empty, compact and
convex subset of R2n. Let f : K → K be a continuous map. Then f has a fixed point z0 in K, i.e.
f(z0) = z0.

3.2 Main Theorem

Theorem 3.2.1. Let A be a continuous n × n complex matrix map defined on Cn vanishing on
Cn \ Σ. Suppose there is a constant 0 < a < 1 such that

‖A(z)‖ ≤ a (3.1)

for all z ∈ Σ. Then there exists p > 2 such that for every point (z0, w0) ∈ ∆×Cn−1 = Σ there is a
solution u = (u1, w) ∈W 1,p(D) of (1.5) such that:

(i) u(D) ⊂ Σ

(ii) (z0, w0) ∈ u(D),

(iii) Area(u) = 1,

(iv) u(bD) ⊂ bΣ = (b∆)× Cn−1.

We first construct a candidate disc u satisfying (1.5), we will check afterwards that the con-
structed disc satisfies (i), (ii), (iii) and (iv) of Theorem 3.2.1.
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3.2.2 Construction of a J-Holomorphic Disc

We look for a solution u = (u1, w) : D→ Cn of the Beltrami equation (1.5), of the form:


u1 = T2g + Φ,

w = T1h− T1h(τ) + w0.
(3.2)

for some τ ∈ D and for some (g, h) ∈ Lp(D,C × Cn−1) to be defined later. Recall that Φ is the
Riemann mapping from Section 2.2.3. Notice that by substituting τ in the second equation, we
have:

w(τ) = T1h(τ)− T1h(τ) + w0 = w0.

The suggested form (3.2) ensures that u1 satisfies the requested boundary conditions (by propo-
sition 2.2.4, part iii)), in other words it takes the boundary of the disc bD to the boundary of the
triangle b∆. The boundary conditions of w need not to be specified since each wj component takes
the boundary of the disc to a line Rewj = constant (Proposition 2.2.4 part iii) ReT1h|bD = 0, so
the w component will not have any effect on the area of the disc.

In order to find a solution u = (u1, w) of (1.5) of the form (3.2), let us differentiate (3.2) with
respect to ζ and ζ. We first find the partial derivative with respect to ζ

∂u1
∂ζ

=
∂T2g

∂ζ
+
∂Φ

∂ζ
= S2g + Φ′

and then the partial derivative with respect to ζ

∂u1

∂ζ
=
∂T2g

∂ζ
+
∂Φ

∂ζ
= g

since Φ is a holomorphic function and since ∂
∂ζ
◦ T2 = Id. As for w,

∂w

∂ζ
=
∂T1h

∂ζ
− ∂T1h

∂ζ
(τ) +

∂w0

∂ζ
= S1h

since T1h(τ) and w0 are constants, and,

∂w

∂ζ
=
∂T1h

∂ζ
− ∂T1h

∂ζ
(τ) +

∂w0

∂ζ
= h

since ∂
∂ζ
◦ T1 = Id.

Therefore the Beltrami equation (1.5) for u = (u1, w) of the form (3.2), turns into a singular
integral equation (

g
h

)
= A(u)

(
S2g + Φ′

S1h

)
. (3.3)

To solve this equation, fix u : D→ Cn and introduce the map

L : Lp(D,Cn)→ Lp(D,Cn)
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defined by, (
g
h

)
7→ A(u)

(
S2g + Φ′

S1h

)
. (3.4)

Note that a fixed point of L, is precisely a solution of (3.3). We first prove that L is well defined,
namely that L(g, h) ∈ Lp(D,Cn) for any (g, h) ∈ Lp(D,Cn). Let (g, h) ∈ Lp(D,Cn), we compute:
S2g+ Φ′, which is in Lp(D,Cn) having Φ a function in W 1,p, than Φ′ ∈ Lp(D,Cn), Sj being defined
from Lp(D,D), so S2g + Φ′ ∈ Lp(D,Cn) and therefore S2g + Φ′ ∈ Lp(D,Cn). Similarly, for S1h.
Hence L(g, h) ∈ Lp(D,Cn) and as a result L is well-defined.

Now, we prove that the function L is a contraction map. Let (g, h), (g′, h′) ∈ LP (D,Cn), we
compute

L(g, h)− L(g′, h′) = A(u)

(
S2g + Φ′

S1h

)
−A(u)

(
S2g′ + Φ′

S1h′

)
= A(u)

((
S2g + Φ′

S1h

)
−
(
S2g′ + Φ′

S1h′

))
= A(u)

(
S2(g − g′)
S1(h− h′)

)
.

Taking norms, we get,

‖L(g, h)− L(g′, h′)‖p =

∥∥∥∥A(u)

(
S2(g − g′)
S1(h− h′)

)∥∥∥∥
p

.

By (3.1), we have

‖L(g, h)− L(g′, h′)‖p ≤ a
∥∥∥∥( S2(g − g′)

S1(h− h′)

)∥∥∥∥
p

= a‖S2(g − g′), S1(h− h′)‖p
= a(‖S2(g − g′)‖p + ‖S1(h− h′)‖p)
≤ a(‖S2‖p‖(g − g′)‖p + ‖S1‖p‖(h− h′)‖p).

Let s = max(‖S1‖p, ‖S2‖p), we get;

‖L(g, h)− L(g′, h′)‖p ≤ as
∥∥∥∥( g − g′

h− h′

)∥∥∥∥
p

= as

∥∥∥∥∥
(
g − g′
h− h′

)∥∥∥∥∥
p

= as

∥∥∥∥( g − g′
h− h′

)∥∥∥∥
p

= as‖(g, h)− (g′, h′)‖p

and hence,
‖L(g, h)− L(g′, h′)‖p ≤ as‖(g, h)− (g′, h′)‖p.
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By proposition 3.4.3(v), we know that ‖Sj‖ approaches 1 as p approaches 2. Decreasing the constant
a < 1 in (3.1) if necessary, we get as < 1. Thus L is a contraction. By theorem 4.1.2, this gives us
for every fixed u = (u1, w), a unique fixed point v = (g, h) ∈ D and therefore a solution of (3.3).
We have therefore constructed a map that associates to each disc u an element (g, h) ∈ LP (D,Cn)
solution of (3.3). the strategy is to use this map to construct the desired disc u.

Notice that the unique solution v = (g, h) satisfies the following inequality:

‖v‖p ≤ a
(
s‖v‖p + ‖Φ′‖p

)
‖v‖p − as‖v‖p ≤ a‖Φ′‖p

‖v‖p ≤
a‖Φ′‖p
1− as

= M1.

This implies that by (3.2),

‖u1‖p ≤ ‖T2g‖p + ‖Φ‖p ≤ cM1 + ‖Φ‖p

since the operator T2 is bounded by Proposition 3.4.3 (iii). Similarly,

‖w‖p ≤ ‖T1(h− h(τ))‖p + ‖w0‖p ≤ cM1 + w0.

So, ‖u1‖∞ ≤ M and ‖w‖∞ ≤ M where M is a constant depending on M1 and w0 and where the
L∞-norm ‖.‖L∞ = sup

0<p<∞
‖.‖p.

Next, we define a continuous map Ψ : C→ D

Ψ(ζ) =


Φ−1(ζ), ζ ∈ ∆,

Φ−1(b∆ ∩ [z0, ζ]), ζ ∈ C \∆,

where [z0, ζ] is the line segment joining z0 to ζ, and the intersection of this line segment with the
sides of the triangle previously defined b∆ ∩ [z0, ζ] is a single point.

We define the following balls Eu1 = {u1 ∈ L∞(D) : ‖u1‖L∞ ≤ M} and Ew = {w ∈ L∞(D) :
‖w‖L∞ ≤M} and the set E = Eu1 × Ew × D. We define a new map

F : (E, ‖.‖∞)→ (E, ‖.‖∞),

by F (u1, w, τ) = (ũ1, w̃, τ̃) with

ũ1 =T2g + Φ,

w̃ =T1h− T1h(τ) + w0,

τ̃ =Ψ(z0 − T2g(τ)).

where (g, h) is the unique solution of (3.3). Since A is continuous, we get that the map F a
continuous. The set E is convex and the operators Tj : Lp(D)→ L∞(D) are compact. By applying
Schauder’s principle, we assure that the map F has a fixed point (u1, w, τ) satisfying (3.2), (3.3)
where τ = Ψ(z0 − T2g(τ)).
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3.2.3 Properties of the Constructed Disc

The disc u = (u1, w) ∈ W 1,p(D) that we have constructed satisfies the Cauchy-Riemann equations
(1.5) and w(τ) = w0. In order to finish proving Theorem 3.2.1, it remains to prove u(D) ⊂ Σ,
(z0, w0) ∈ u(D), Area(u) = 1, and u(bD) ⊂ bΣ = (b∆)× Cn−1.

Lemma 3.2.4. τ ∈ D and u1(τ) = z0.

Proof. We will prove this lemma by contradiction. Suppose that τ /∈ D in particular suppose that
τ ∈ bD, then Φ(τ) /∈ ∆ since Φ is a biholomorphism, so it takes the interior of the disc D to the
interior of the triangle ∆ and the boundary of the disc D to the boundary of the triangle ∆. Now,
by the definition of Ψ,

Φ(τ) = Φ(Ψ(z0 − T2g(τ)) = Φ(Φ−1(z0 − T2g(τ)) = z0 − T2g(τ) /∈ ∆.

Denote q := T2g(τ) = u1(τ) − Φ(τ). Having z0 − T2g(τ) /∈ ∆, then q 6= 0. Indeed, suppose that
q := u1(τ)−Φ(τ) = 0, then z0−T2g(τ) = z0− q = z0 /∈ ∆, which contradicts the fact that z0 ∈ ∆.
Using the definition of Ψ, we have

Φ(τ) = Φ((Ψ(b∆ ∩ [z0, z0 − q] = Φ((Φ−1(b∆ ∩ [z0, z0 − q] = b∆ ∩ [z0, z0 − q].

z0 being chosen arbitrarily, without loss of generality, one can assure z0 = i/2, and we will also
suppose τ ∈ γ1. Then Φ(τ) ∈ [1, i]. And since Im (1 + i)X(ζ) = 0 the number (1 + i)T2g(ζ) is a
pure real complex number, say r. So,

(1 + i)T2g(ζ) = r

T2g(ζ) =
r

(1 + i)

T2g(ζ) =
r(1− i)

2
.

This means that T2g(ζ) is a real multiple of 1− i and so is q. So, Ψ, Φ(τ) = [1, i]∩ [z0, z0− q], and
by supposing that z0 = i/2, we notice that and since i/2− q = i/2− r(1− i) = 3/2i− 1 the slope
of the segment [i/2, i/2 − q] = −r

r = −1. On the other hand, the slope of the straight line [1, i] is
1
−1 = −1 and hence the two straight lines are parallel and no point of intersection exists.

So our supposition that τ /∈ D is not right and therefore τ ∈ D. Then, τ = Ψ(z0 − T2g(τ)) =
Φ−1(z0 − T2g(τ)). Therefore, Φ(τ) = z0 − T2g(τ) = z0 − u1(τ) + Φ(τ), and hence u1(τ) = z0.

Lemma 3.2.5. The map u1 satisfies u1(D) ⊂ ∆, u1(bD) ⊂ b∆, and deg u1 = 1; here deg u1 denotes
the degree of the map u1|bD : bD→ b∆. In particular, u satisfies u(bD) ⊂ bΣ = (b∆)× Cn−1.

Proof. Once again will prove the lemma by contradiction. Define G = {ζ ∈ D : u1(ζ) /∈ ∆} and
suppose G 6= ∅. Since u1 is continuous, and ∆ is closed then its complement ∆

c
is open and hence

G is open (as inverse image of an open set by a continuous map). Let G1 be a non-empty connected
component of G. Then u1(bG1) ⊂ ∆. Since we notice that if u1(bG1) 6⊂ ∆ then G1 will be G itself.
Since A = 0 on Cn \Σ and since uζ = A(u)uζ , then ∂u

∂ζ
= 0. And by the Cauchy-Riemann equation

in R2, we conclude that u1 is holomorphic on G1. But then the set u1(G1) has the farthest point

25



from ∆ (when ∂g

∂ζ
= 0 this point represents an extrema of the function, which violates the maximum

principle stating that if we have a continuous holomorphic function u on a closed subset D of the
domain, then the maximum value of |g| on D (which always exists) occurs on the boundary of D).
Therefore our supposition on G is not true and so G = ∅, u1(D) ⊂ ∆, and by continuity u1(D) ⊂ ∆.

Having constructed Φ under the conditions that Φ(±1) = ±1 and Φ(i) = i and since
Im (1 + i)T2g(ζ) = 0, ζ ∈ γ1,

Im (1− i)T2g(ζ) = 0, ζ ∈ γ2,

ImT2g(ζ) = 0, ζ ∈ γ3,

(3.5)

the map u1 = T2g + Φ takes the arcs γj , j = 1, 2, 3, to the lines containing the corresponding sides
of the triangle ∆. But we have proved that u1(D) ⊂ ∆, so the the images u1(γj), j = 1, 2, 3, are
exactly the sides of ∆. Hence u1(bD) ⊂ b∆ indicating that the domain wraps one time around the
range under the considered mapping that is deg u1 = 1.

Lemma 3.2.6. Area(u) = 1.

Proof. By Stokes’ formula

Area(u) =

∫
D
u∗ω =

i

2

∫
D

du1 ∧ du1 +
n−1∑
j=1

dwj ∧ dwj

 =
i

2

∫
bD
u1 du1 +

n−1∑
j=1

i

2

∫
bD
wj dwj .

Since u1(bD) ⊂ b∆, and deg u1 = 1, then (i/2)
∫
bD u1 du1 = Area(∆) = 1. Since wj = T1

∂wj

∂ζ
−

T1
∂wj

∂ζ
(τ) + w0

j then Rewj = ReT1
∂w
∂ζ
− ReT1

∂w
∂ζ

(τ) + Rew0 on b∆. By Proposition 2.4.3 (iii) if

follows that Rewj = Rew0
j and is constant on b∆, therefore

∫
bDwj dwj = 0. Hence Area(u) = 1 as

desired.

3.3 Alternative Construction

In case the structure A is of class C1, a more natural way to construct the disc in Theorem 3.2.1
is to use the contraction principle directly. However it is quite unclear how to preserve the initial
condition u(τ) = (z0, w0). This point is crucial and the way τ was constructed in the Proof of
Theorem 3.2.1 is important in order to obtain the property (ii) of Theorem 3.2.1.

Therefore instead of proposing a simpler proof of Theorem 3.2.1 under the assumption that A
is C1, we suggest an alternative construction of a holomorphic disc. Instead of using the Schauder
fixed point argument to construct the disc, we will apply the contraction principle directly. Let
us emphasize that the disc that we will construct satisfies conditions (i), (iii) and (iv) of Theorem
3.2.1. Trying to simplify the proof, the usual solution that comes to someones mind is the use of
smooth functions, i.e. functions of class C1. But the Riemann mapping Φ is merely W 1,p, and so
the C1-norm can not be applied to Φ from one side and on the other side, we have no idea about
the boundedness of the operators Tj and Sj in the C1- norm. That is why one can notice that in
what follows we will be dealing with a solution in W 1,p-norm.
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Proof. Alternative construction. We denote by l1 the first row of A and by A1 the remaining n−1×n
matrix after deleting the first row.

A =


l1 A1




Next, we introduce the map
L : W 1,p(D,Cn)→W 1,p(D,Cn)

defined by
L(u) = L(u1, w) = (L1(u1, w), L′(u1, w))

with 
L1(u1, w) = T2l1(u)u1ζ + Φ,

L′(u1, w) = T1A1(u)wζ − T1A1(u)wζ(τ) + w0.
(3.6)

One can check that each of the components of the suggested solution satisfy the requested Cauchy-
Riemann Equation.

First of all we will check whether the suggested solution is well-defined, namely if (u1, w) ∈
W 1,p(D,Cn) then L(u1, w) ∈ W 1,p(D,Cn). Knowing that (u1, w) ∈ W 1,p(D,Cn), then each of u1ζ
and wζ being the partial derivative with respect to ζ will be in W 0,p(D,Cn) = Lp(D,Cn). Applying
the T2 and T1 transforms on l1(u)u1ζ and A1(u)wζ respectively we will get that each of T2l1(u)u1ζ
and T1A1(u)wζ are in W 1,p(D,Cn).

Now, notice that a fixed point of L, is precisely a solution of (1.5). Planning to prove that
L = (L,L′) is a contraction map, we will prove that L1 is a contraction map itself. The proof for
L′ is similar. Let (u1, w), (u′1, w

′) ∈W 1(D,Cn), we compute:

L1(u1, w)− L1(u
′
1, w

′) = T2l1(u)u1ζ − T2l1(u
′)u′1ζ .

Taking norm

‖L1(u1, w)− L1(u
′
1, w

′)‖W 1,p = ‖(T2l1(u)u1ζ − T2l1(u
′)u′1ζ‖W 1,p

= ‖T2l1(u)u1ζ + T2l1(u)u′1ζ − T2l1(u)u′1ζ − T2l1(u
′)u′1ζ‖W 1,p

≤ ‖T2l1(u)u1ζ − T2l1(u)u′1ζ‖W 1,p + ‖T2l1(u)u1ζ − T2l1(u
′)u′1ζ‖W 1,p

≤ ‖T2l1(u)(u1ζ − u′1ζ)‖W 1,p + ‖(T2l1(u)− T2l1(u′))u1ζ‖W 1,p

Let us try to deal with each term alone:

‖T2l1(u)(u1ζ − u′1ζ)‖W 1,p ≤ C‖l1(u)(u1ζ − u′1ζ)‖Lp

≤ C‖l1(u)‖‖u1ζ − u′1ζ‖Lp

≤ C‖A(u)‖‖u1ζ − u′1ζ‖Lp

≤ C‖A(u)‖‖u1 − u′1‖W 1,p .
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On the other hand,

‖(T2l1(u)− T2l1(u′))u1ζ‖W 1,p ≤ C‖(l1(u)− l1(u′))u1ζ‖Lp

= C

(∫
|(l1(u)− l1(u′))|p|u1ζ |

pdζ

)1/p

Now, using the Mean Value Theorem, we have:

‖l1(u)− l1(u′))‖C0 ≤ ‖l1‖C1‖u− u′‖C0 ≤ ‖A‖C1‖u− u′‖C0 .

So,

‖(T2l1(u)− T2l1(u′))u1ζ‖W 1,p ≤ C‖A‖C1

(∫
|u− u′|p

C0 |u1ζ |
pdζ

)1/p

≤ C‖A‖C1‖u− u′‖W 1,p .

Following the same strategy we prove that:

‖T1A1(u)wζ − T1A1(u
′)wζ)‖W 1,p ≤ ‖A‖C1‖u− u′‖W 1,p

Finally we get that:
‖L(u)− L(u′)‖W 1,p ≤ C‖A‖C1‖u− u′‖W 1,p

Since the C1-norm of A is sufficiently small, this proves that L is a contraction. By theorem 4.1.2,
this gives us a unique fixed point u = (u1, w) ∈ D and therefore a solution of (1.5).
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Chapter 4

Gromov’s Non-Squeezing Theorem

4.1 A Useful Lemma

Lemma 4.1.1. Let

ψ : G ⊂ RD× Cn−1 → G′ ⊂ ΣR :=
√
πR∆× Cn−1

be a diffeomorphism defined by ψ(z1, z
′) = (f(z1), z

′), where f is an area preserving map. Then ψ
is a symplectomorphism, namely ψ∗ω = ω.

Proof. Write
ψ(z1, z

′) = (ψ1(x1, y1), ψ2(x1, y1), x2, y2, x3, y3, · · ·xn, yn).

Let X = (X1, Y2, · · ·Xn, Yn) and Y = (X ′1, Y
′
2 , · · ·X ′n, Y ′n) be two vectors in R2n, we need to show

that ψ∗ω(X,Y ) = ω(X,Y ), in other words, we need to show that ω(DψX,DψY ) = ω(X,Y ). First
of all let us compute the Jacobian matrix for ψ

Dψ =



∂ψ1

∂x1
∂ψ1

∂y1
0 · · · 0 0

∂ψ2

∂x1
∂ψ2

∂y1
0 · · · 0 0

0 0 1 0 · · · 0
...

...
. . .

...
...

0 0 · · · · · · 1 0
0 0 · · · · · · 0 1


.

So,

DψX =



∂ψ1

∂x1
∂ψ1

∂y1
0 · · · 0 0

∂ψ2

∂x1
∂ψ2

∂y1
0 · · · 0 0

0 0 1 0 · · · 0
...

...
. . .

...
...

0 0 · · · · · · 1 0
0 0 · · · · · · 0 1





X1

Y1
X2
...
Xn

Yn


=



∂ψ1

∂x1
X1 + ∂ψ1

∂y1
Y1

∂ψ2

∂x1
X1 + ∂ψ2

∂y1
Y1

X2
...
Xn

Yn


,
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and

Dψv =



∂ψ1

∂x1
X ′1 + ∂ψ1

∂y1
Y ′1

∂ψ2

∂x1
X ′1 + ∂ψ2

∂y1
Y ′1

X ′2
...
X ′n
Y ′n


.

Now we compute ω(DψX,DψY )

ω(DψX,DψY ) =(
∂ψ1

∂x1
X1 +

∂ψ1

∂y1
Y1)(

∂ψ2

∂x1
X ′1 +

∂ψ2

∂y1
Y ′1)

− (
∂ψ1

∂x1
X ′1 +

∂ψ1

∂y1
Y ′1)(

∂ψ2

∂x1
X1 +

∂ψ2

∂y1
Y1)

+X2Y
′
2 −X ′2Y2 + · · ·+XnY

′
n −X ′nYn

=
∂ψ1

∂x1
X1

∂ψ2

∂x1
X ′1 +

∂ψ1

∂x1
X1

∂ψ2

∂y1
Y ′1 +

∂ψ1

∂y1
Y1
∂ψ2

∂x1
X ′1 +

∂ψ1

∂x1
Y1
∂ψ2

∂y1
Y ′1

− ∂ψ1

∂x1
X ′1

∂ψ2

∂x1
X1 −

∂ψ1

∂x1
X ′1

∂ψ2

∂y1
Y1 −

∂ψ1

∂y1
Y ′1
∂ψ2

∂x1
X1 −

∂ψ1

∂y1
Y ′1
∂ψ2

∂y1
Y1

+X2Y
′
2 −X ′2Y2 + · · ·+XnY

′
n −X ′nYn

=
∂ψ1

∂x1
X1

∂ψ2

∂y1
X ′1 +

∂ψ1

∂y1
Y1
∂ψ2

∂x1
X ′1

− ∂ψ1

∂x1
X ′1

∂ψ2

∂y1
Y1 −

∂ψ1

∂y1
Y ′1
∂ψ2

∂x1
X1

+X2Y
′
2 −X ′2Y2 + · · ·+XnY

′
n −X ′nYn

=(
∂ψ1

∂x1

∂ψ2

∂y1
− ∂ψ1

∂y1

∂ψ2

∂x1
)X1Y

′
1

+ (
∂ψ1

∂y1

∂ψ2

∂x1
− ∂ψ1

∂x1

∂ψ2

∂y1
)Y1X

′
1

+X2Y
′
2 −X ′2Y4 + · · ·+X ′nY

′
n −X ′nYn.

But since f is area preserving map then
∂ψ1

∂x1

∂ψ2

∂y1
− ∂ψ1

∂y1

∂ψ2

∂x1
= 1

∂ψ1

∂y1

∂ψ2

∂x1
− ∂ψ1

∂x1

∂ψ2

∂y1
= 1

and thus
ω(DψX,DψY ) = X1Y

′
1 + Y1X

′
1 +X2Y

′
2 −X ′2Y4 + · · ·+X ′nY

′
n −X ′nYn.

On the other hand, ω(X,Y ) = X1Y
′
1 + Y1X

′
1 +X2Y

′
2 −X ′2Y4 + · · ·+X ′nY

′
n −X ′nYn And therefore,

the required result is attained.
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4.2 Gromov’s Non-Squeezing Theorem

We denote by Bn the unit ball in Cn.

Theorem 4.2.1. Gromov’s Non-Squeezing Theorem Let r,R be two positive real number, let
G ⊂ RD× Cn−1 be a domain. Let φ : rBn → G be a symplectomorphism for ω, then r ≤ R.

Proof. We define a diffeomorphism

ψ : G ⊂ RD× Cn−1 → G′ ⊂ ΣR :=
√
πR∆× Cn−1

by ψ(z1, z
′) = (f(z1), z

′), where f is an area preserving map. Due to Lemma 4.1.1, the map ψ is a
symplectomorphism. Therefore the proof is reduced to considering G ⊆ ΣR.

Since φ∗ω = ω then the almost complex structure J := dφ ◦ Jst ◦ dφ−1 is tamed by ω, namely

ω(X, JX) = ω(X, dφ ◦ Jst ◦ dφ−1X) = ω(dφ−1X, Jst ◦ dφ−1X) > 0,

since Jst is ω-tamed. Then the complex matrix Ã of J satisfies ||Ã(z)|| < 1 for z ∈ G by Lemma
1.4.4.

Now consider a smooth cut-off function χ with support in G

χ =


1 on φ((r − ε)Bn),

0 on ΣR \G,

and define a new matrix A by A := χÃ. Since J is continuous on G, so is A and therefore there
exists a constant a < 1 such that ‖A(u)‖ < a. By theorem 3.2.1, there exists a solution u of (1.5)
such that φ(0) ∈ u(D), u(bD) ⊂ bΣR and Area(u) = πR2.

The curve C = φ−1(u(D))∩ (r− ε)Bn is a closed Jst-complex curve in (r− ε)Bn. More precisely
φ−1 ◦ u is a (standard) holomorphic disc. Indeed, since

du ◦ i = J(u) ◦ du = dφ ◦ Jst ◦ dφ−1 ◦ du

we have
dφ−1 ◦ du ◦ i = Jst ◦ dφ−1 ◦ du.

Moreover 0 ∈ C and Area(C) ≤ πR2. On the other hand, by a classical result of P. Lelong (see [4]
for instance), we have Area(X) ≥ π(r − ε)2. Since ε is arbitrary πR2 ≥ πr2 and finally, r ≤ R as
desired.

4.3 Analogy with Heisenberg Uncertainty Principle

In this thesis, we have introduced and proved Gromov’s non-squeezing theorem. Hereby we give
a small glance of the importance of this theorem. One of its important consequences lies in its
application in Quantum Physics in particular Heisenberg Uncertainty Principle introduced in 1927,
by the German physicist Werner Heisenberg stating that

∆Pj∆Xj ≥
1

2
h,
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where h is the Planck’s constant, Xj is the position of the particle and Pj is its corresponding
momentum. In other words, the Heisenberg Uncertainty Principle states that the precision in
determining the position and the momentum of a certain particle are inversely proportional. After
Gromov’s non-squeezing theorem, the Uncertainty Principles and the classical and quantum physics
in particular became easier to understand using classical physical settings. The non-Squeezing
Theorem permitted the derivation of Heisenberg uncertainty principle in a way resembling the
Schrödinger uncertainty principle.
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