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The connectionist approach to artificial intelligence has made many attempts to 

capture the essence of intelligence by adopting some of the principles underlying the 

operation of the human brain. Since its emergence in the 1950s, this field has been 

evolving with novel algorithms finding their way to the forefront. One such algorithm is 

Hierarchical Temporal Memory (HTM).  

 

While lacking in maturity, HTM’s approach to prediction and online learning 

has garnered the interest of machine learning practitioners. Major players in the tech 

industry like IBM have also taken notice of HTM as of April, 2015 and have dedicated 

their resources to investigating its merit.  

 

The work presented in this thesis reflects that interest and seeks to establish 

where HTM stands in the grander machine learning scheme. To that end, we take 

advantage of the modular design of HTM and propose a number of tests aiming to 

evaluate its individual modules as well as HTM as a whole. In modular testing, HTM is 

put through a series of basic tests for clustering and sequence learning tasks. These 

experiments reveal some of the spatial and temporal pooling promise of HTM but 

ultimately expose some of its inherent flaws. More involved experiments utilizing the 

entire HTM stack go on to demonstrate that further with HTM struggling when adapted 

to multi-class classification tasks and anomaly detection on streaming data. 
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CHAPTER I 

INTRODUCTION 

3. Ch1 
 

The human brain has been at the core of Artificial Intelligence (AI) research 

since the inception of the field. With its web of over 1011 interconnected neurons, its 

unique capacity for learning and adapting has secured its position as the Holy Grail of 

AI and inspired countless theories on both general intelligence and task-oriented 

learning. A considerable part of the work in AI aims for a higher level abstraction of the 

functionality of the brain and employs symbolic structures to encode knowledge and 

conceive intelligent architectures to emulate it. This has become known as the symbolic 

approach to AI. Alternatively, others pursue a bottom-up methodology where low-level 

structural emulation of the physiology of the brain, both simplified and scaled down, is 

the goal. They employ networks of simple, massively connected processors and encode 

knowledge as a pattern of numerical strengths of the connections between these 

processors.29 The latter is the connectionist trend in AI and will be the umbrella under 

which all the ideas presented in this thesis fall.  

At the cornerstone of the connectionist vision are Artificial Neural Networks 

(ANNs). ANNs are collections of basic computational units modeled after the biological 

neuron. Organized in networks of varying topologies, these artificial neurons were 

designed to approximate the information processing capabilities of the brain, and its 

intelligence by proxy, through instance, batch, or incremental learning. ANNs, as a 

means to neuro-computing, marked their beginnings with the McCulloch-Pitts neurons 

proposed in 1943.19 These were basic summation units with uniformly weighted 

excitatory and inhibitory connections and binary activation functions.  They were the 
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first model to demonstrate how artificial neurons can compute arithmetic or logical 

functions. Later models include Frank Rosenblatt’s perceptron26 and Bernard Widrow’s 

ADALINE,32 both of which allowed for continuous activation functions but relied on 

slightly different interpretations of Hebb’s synaptic learning rule.13 ANNs leveraging 

these models (and others) were still being used in single layer configuration throughout 

the 1960s, and their inability to solve simple tasks like the XOR problem was becoming 

evident. In 1969, Marvin Minsky and Seymour Papert’s book Perceptron20 

demonstrated that these single-layered ANNs were only capable of learning linearly 

separable patterns. With that and after premature claims that these ANNs were the 

answer to AI and true machine intelligence, ANN research suffered a decline in both 

interest and funding.  In 1973, Stephen Grossberg proposed in a series of papers multi-

layered perceptron networks as a solution to ANN’s ailments.7 Alas, the field had 

stagnated and would not gain renewed vigor until the 1980s which saw a wider adoption 

of back-propagation and other involved learning algorithms as well as the introduction 

of more complex networks like self-recurrent Hopfield networks,15 self-organizing maps 

(SOM),16 adaptive resonance theory (ART) networks,8 time delay neural networks,31 

and others. Since that resurgence, ANNs have been a mainstay of AI and have been 

heavily utilized in many applications including vision, speech, and natural language.18 

Despite their wide adoption and many successes, ANNs demonstratively failed 

to live up to early promises of human-level intelligence. A major contributing factor to 

this failure has been the reliance on shallow architectures i.e. networks with few layers 

and a limited number of computing units within each layer. Until recently, this trend 

was an unfortunate necessity brought on by the lack of adequate computational power 

and the sub-par scalability of traditional learning algorithms (e.g. back-propagation) due 
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to technical limitations like vanishing gradient. Additionally, the curse of 

dimensionality remained a sticking point for any endeavor into deeper networks. It 

wasn’t until recently that the explosion of computing power and introduction of more 

suitable learning algorithms like Hinton’s greedy algorithm14 that deep learning started 

gaining traction and set itself as a top trend in the research community. Currently, it 

stands as the go-to technique for top tier tech companies like Google and Facebook and 

leads the charge in the ever-growing NN field.  

Whether deep learning will prove to be the key to unlocking true machine 

intelligence is still unclear. With the complexity of the brain and the intricacies of its 

internal dynamics still not fully understood, there still exists room for innovating 

models that borrow more of its fundamental structural elements and operational 

principles. Current literature continues to offer such models. One recent addition is 

Hierarchical Temporal Memory (HTM), a memory model that merges neuro-computing 

and neuroscience in a novel way.   

HTM capitalizes on the current trend of exploiting deep architectures to extend 

the learning abilities of intelligent systems. It was proposed by Jeff Hawkins and 

Georges Dileep as a biomimetic computational model aimed at replicating the 

functional and structural properties of the neocortex. It incorporates a number of 

insights from neuroscience as detailed in Hawkins’ 2004 book “On Intelligence”.12 Its 

foundation is deeply rooted in the Memory Prediction Framework (MPF) proposed by 

Hawkins and Dileep,6 which postulates that the key to intelligence is the ability to 

predict. Consequently, HTM incorporates temporal analysis into its computational 

model, which sets it apart from the majority of available neuromorphic architectures. 
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The hierarchical structure of HTM is inspired by the brain. The brain’s 

structure, specifically that of the neocortex, evolved in such a way as to gain the ability 

to model the structure of the world it senses. At its simplest abstraction, the brain can be 

viewed as a biological data processing black box that discovers causes in an 

environment that imposes massive amounts of data on its inputs (senses). The external 

causes to this continuous stream of information are by nature hierarchical, both in space 

and time. They are a collection of smaller causes or building blocks that combine to 

form a larger picture of the world. For instance, speech can be broken down to 

sentences, sentences to word utterances, word utterances to phonemes, etc. With digital 

imagery, pixels combine into edges, edges into contours, contours into shapes and 

finally objects. Every sensed object in the world reveals a similar structure where it can 

be perceived at varying levels of granularity. It is this hierarchically organized world 

that the neocortex and therefore HTM by imitation aim to model. This modeling 

happens in HTM at every level.  

In HTM, the lowest level nodes of the network are fed sensory information. 

This information can be raw or pre-processed depending on the task the network is 

performing. The nodes learn the most basic features of the data stream by discerning 

repeatable patterns and sequences in which these patterns occur and storing them (either 

in local memory structures or via connectivity configurations). These basic patterns and 

sequences are then used as building blocks at higher levels to form more complex 

representations of sensory causes. As information travels up the hierarchy, the same 

learning mechanics are utilized as higher and higher abstractions of the input patterns 

are formed. Information can also flow down the hierarchy. This allows the network to 
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act as a generative model where higher levels bias lower levels by communicating their 

internal states in order to fill in missing input data and/or resolve ambiguity.12 

HTM has seen two generations during its evolution. The underlying 

implementation in the 1st generation, known as “zeta 1”, is strongly rooted in Bayesian 

Belief Propagation (BBP) and borrows much of its computations and rules of 

convergence from that theory. The 2nd generation algorithms were created to make the 

framework more biologically plausible. Functionally, much of the concepts of invariant 

representations and spatial and temporal pooling carry over. In order to achieve that, 

principles of Sparse Distributed Representations (SDR) and structural changes were 

employed. Nodes were replaced with analogues of cortical columns with biologically 

realistic neuron models, and connectivity was altered to allow for strong lateral 

inhibition. 

The new HTM algorithms replace Zeta 1. These algorithms were initially 

referred to as Fixed-density Distributed Representation (FDR), but are now known 

simply as HTM Cortical Learning Algorithms (CLA). In lieu of the “barrel” hierarchy 

with clean-cut receptive fields, each level in the updated framework is a continuous 

region of cells stacked into columns that act as a simplified model of a cortical column. 

This 2nd generation of the HTM algorithms will be the focus of the empirical study 

presented in this work where we aim to make qualitative assessments of the efficacy of 

HTM and establish its standing in the grander machine learning (ML) scheme. This is 

accomplished through a comprehensive experimental strategy that adapts HTM to a 

wide spectrum of ML applications and pits it against popular and well established ML 

algorithms and will be the main contribution of this work. 
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The remainder of this thesis is organized as follows. Chapter II introduces to 

the reader to the neuroscience behind HTM revealing a number of influential insights 

that motivated its design. Chapter III is a brief listing of HTM related work in the 

literature. Chapter IV offers an overview of HTM and the algorithms that guide its 

learning. This chapter will act as a comprehensive introduction to HTM for the 

interested newcomer. Chapter V marks the beginning of a series of experiments to 

evaluate HTM starting with clustering tests. Chapter VI continues to examine HTM as a 

sequence learning while Chapter VII capitalizes on the previous chapters to evaluate 

HTM using real world data in both classification and anomaly detection tasks. We 

finally wrap up the thesis with a conclusion in Chapter VIII. 
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CHAPTER II 

THE NEUROSCIENCE BEHIND HTM 

4. Ch2 
 

The human brain is an organ weighing less than 3 lbs and comprises a network 

of over 100 billion interconnected nerve cells “that construct our perceptions of the 

external world, fix our attention, and control the machinery of our action.”25 The part of 

the brain most pertinent to any discussion of true intelligence is the neocortex. It is the 

most recently evolved part of the mammalian brain and most developed in man among 

all mammals. This sheet of neural tissue measures around 1000 cm2 in surface area and 

2 mm in thickness and is regarded as the seat of intelligent thought, supporting high 

level vision, hearing, touch, movement, language, and planning. It is the neocortex that 

allows us to perceive, act, learn, and remember at a capacity far superior to any other 

species.  

 

 

Figure 4.1: Diagram of the brain with cerebral lobes and examples of cortical sulci and 

gyri labeled25 
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The study of nervous tissue as a special science did not start until the late 

1800s when Camillo Golgi and Santiago Ramon y Cajal produced detailed descriptions 

of the nerve cells, thus supplying much of the early evidence for the neuron doctrine—

the principle that individual neurons are the elementary building blocks and signaling 

elements in the nervous system. For the next two centuries, every endeavor in the study 

of the brain and the nervous system capitalized on these initial insights to develop a 

bigger picture of how the brain functions. The modern day view of nerve cells, the 

brain, and behavior evolved accordingly and finally emerged from a synthesis of 

various experimental traditions (anatomy, embryology, pharmacology, etc.) during the 

20th century. This happened in the aftermath of two opposing theories on how the brain 

operates. The first dealt with functional localization and was pioneered by Viennese 

physician and neuroanatomist Franz Joseph Gall. Gall argued that the cerebral cortex 

did not function as a single organ but contained within it particular regions that control 

specific functions. His views on the modularity of the brain’s function gave way to the 

doctrine of phrenology during the 19th century which suggested that complex traits such 

as combativeness, spirituality, hope, and conscientiousness are controlled by specific 

areas in the brain which physically expand as the traits develop. The opposing theory 

was the holistic view of the brain championed by the likes of French physiologist Pierre 

Flourens who argued that specific brain regions are not responsible for specific 

behavior, but that all brain regions, participate in every mental operation so that any 

individual part of the cerebral hemisphere can perform all the hemisphere’s functions. 

This holistic view was seriously challenged in the mid-19th century by the French 

neurologist Pail Pierre Broca, the German neurologist Carl Wernicke, and the British 

neurologist Hughlings Jackson who proposed that different motor and sensory functions 
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could be traced to specific parts of the cerebral cortex. This developed into a view of the 

brain function called cellular connectionism. According to cellular connectionism, 

individual neurons are the signaling units of the brain and are arranged in (dozens of) 

functional groups that connect to one another in a precise fashion to produce cognitive 

functionality. With that, connectionism and Gall’s original idea that discrete regions are 

specialized for different functions became the cornerstones of modern brain science. 

New imaging techniques (like positron emission tomography, PET, and 

functional magnetic resonance imaging, fMRI) permit anatomical analysis and the 

visualization of the human brain in action. These techniques have ushered in a level of 

scrutiny of the brain’s structure and its cognitive functions at unprecedented granularity. 

 At the level of intra-cortical connectivity, we now know that brain 

functionality is not produced at specific regions but as a result of a neural pathway, an 

interlinkage of serial and parallel processing in discrete regions characterized by their 

individual sub-functionalities. This interlinkage establishes a “hierarchical” organization 

that guides information processing in sensory and motor systems. Each region conveys 

information to an adjacent, higher order region, a unimodal association area where 

neurons selectively encode specific features of stimuli to represent information at higher 

and higher complexity. For example, at very advanced stages of the visual sensory 

system, individual neurons are responsive to highly integrated information, such as the 

shape of a face.  Another feature of this cortical organization, most evident in sensory 

systems, is that inputs from peripheral receptive surfaces (retina, cochlea, etc…) are 

arranged topographically through successive stages of processing. Neurons at each 

successive relay of a sensory pathway form an orderly neural map of information from 

the receptive surface. These neural maps reflect not only the spatial arrangement of 
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receptors but also the variation in receptor density throughout the receptive surface. The 

density of innervation in an area of skin for example determines the degree of sensitivity 

of that area to tactile stimuli.  

At the structural level, the subcortical regions reveal a nuclear layered 

organization. This organization is defined by six layers that span the thickness of the 

neocortex from its outer surface to the white matter. Figure 2.2 shows the result of 

applying different staining techniques applied to the neocortex. The Golgi stain reveals 

a subset of neuronal cell bodies, axons, and dendritic tree. The Nissi method shows cell 

bodies and proximal dendrites. A Weigert stain reveals the pattern of myelinated fibers. 

Each of the cortical layers is defined primarily by the presence, absence, and packing 

density of distinctive cell types, but other cytoarchitectonic differences like cell size are 

similarly considered. The histological structure of the cerebral cortex can be seen in 

figure 2.3 where different cell types of varying sizes are depicted. We leave the reader 

with a brief description of the cortical layers: 

 Layer I is known as the molecular level. It is occupied by the dendrites of 

cells located in deeper layers and axons that travel through this layer to make 

connections in other areas of the cortex.  

 Layers II and III contain mainly small pyramidal shaped cells. The axons of 

pyramidal neurons in layers II and III project to other cortical areas, thereby 

mediating intra-cortical communication.  

 Layer IV is the main recipient of sensory input from the thalamus and is 

most prominent in primary sensory areas. For example, the region of the 

occipital cortex that functions as the primary visual cortex has a very 
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prominent layer IV. In contrast, the pre-central gyrus, the site of the primary 

motor cortex, has essentially no layer IV.  

 In layer V, larger pyramidal neurons give rise to the major output pathways 

of the cortex projecting to other cortical areas and to subcortical structures.  

 Layer VI blends into the white matter that forms the deep limit of the cortex 

and carries axons to and from areas of cortex. 

 

 

Figure 4.2: Illustration of a cross section of the cerebral cortex using different staining 

techniques.25 
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Figure 4.3: Histological Structure of the Cerebral Cortex.3 

 

As for the direction of information flow, feedforward projections originate 

mainly in layer III and terminate mainly in layer IV of the target cortical area while 

feedback projections to earlier stages of processing originate from cells in layers V and 

VI and terminate in layer I, II, and VI.  

Along the thickness of the neocortex, spanning the cortical layers, congruent 

neurons tend to exhibit similar response properties thus forming a local processing 

network. This structural property was highlighted in a series of pioneering studies by 

Vernon Mountcastle who discovered that the cortex is organized into vertical columns 

or slabs.21 Each of these columns is 300 to 600 μm wide and spans the six cortical layers 

from the surface to the white matter. Neurons within each column receive inputs from 

the same local area of the receptor sheet and respond to the same class of receptors. 

Horizontal connections within layers II and III link neurons in neighbouring columns, 

allowing them to share information when activated simultaneously by the same 
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stimulus. This exchange of information is believed to be part of an inhibitory process 

that regulates columnar activation. With that, the cortical column has come to be viewed 

as an anatomical structure that, by organizing inputs that convey related information on 

location and modality, comprises an elementary functional module of the cortex. More 

importantly, this information processing at the level of the column occurs in all regions 

of the neocortex. It is that uniformity in neural circuitry that gives evidence to the 

existence of a universal and common set of cortical algorithms that enables the brain to 

perform many different intelligence functions.  

 

 

Figure 4.4: A cortical column spanning all six layers of the cerebral cortex.11 

 

At its core, HTM and its founding theory were highly influenced by the 

insights and discoveries of neuroscience. It provides a theoretical framework for 

understanding the neocortex and its many capabilities by leveraging these insights.  

Namely, HTM borrows the concepts of hierarchy, columnar structure, connectivity, and 
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universality of computation across the entire network. Additionally, it aims to model a 

subset of the cortical layers with the plan to model those engaged in feedback and 

thalamic control at later stages of development.  

In its current iteration, HTM is limited to a feed-forward model that represents 

layers III for variable order memory or layer IV for single order memory. This model is 

populated by cells arranged in columnar fashion with proximal connections propagating 

information and inhibitory lateral connections creating sparse activation through the 

model’s network.  
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CHAPTER III 

RELATED WORK 

5. Ch1 
 

In light of the fact that HTM is novel and has a small corpus of published 

work, this brief chapter aims to give the interested reader a clearer idea of the kinds of 

applications that the research community has adapted to HTM. For insight into related 

algorithms, we direct the reader to learning architectures like Deep Belief Networks14 

(DBN), Convolutional Networks,33 and most relevantly Lipasti’s Cortical Algorithm9, 10 

but exclude any detailed discussions of the aforementioned models.  In what follows, 

applications of HTM as seen in recent literature are showcased.  

Zhituo et al. used multiple HTMs in a content-based image retrieval (CBIR) 

system that leverages categorical semantics of a query image rather than low-level 

image features for image indexing and retrieval. Using 10 HTMs and training and 

testing datasets of size 50 each, recall rates higher than 95% where achieved for 4 of the 

5 categories involved and higher than 70% for the 5th.34  

Bobier et al. recreated a handwritten digit recognition experiment on the USPS 

dataset which was reported by Numenta to achieve a 95% accuracy rate. The digit 

images were binarized and fed to the network at varying parameters. The author was 

able to achieve a maximum rate of 96.26%, which was noted to be not on par with other 

classifiers like SVM, which delivered higher rates in a fraction of the computational 

time.1 

Kostavelis et al. presented a biologically inspired object recognition system. 

Saliency maps were used to emulate visual fixation and reveal only the relevant parts of 

the image, thus reducing the amount of redundant information presented to the 



 

16 

classifier. The authors chose to substitute the temporal pooler with a correlation-based 

alternative. Using the ETH-80 and supervised learning at the top node, they were able to 

outperform other HTM based implementations with both SVM and KNN as top-level 

supervisors.17 

Sinkevicius et al. explored using HTM for human traffic analysis in public 

spaces. Two HTM networks are designed, one for human detection, the other for 

direction of movement detection. An experimental setup involving an overhead 

mounted camera on a doorway was performed. Evaluation of detection performance 

was done using multiple scenarios of varying difficulties. The average accuracy 

achieved was 80.94% for pedestrian detection and 73.44% for directional detection.27 

Boone et al. used HTM as an alternative to traditional computer vision 

techniques for diabetic retinopathy. HTM was used primarily for the detection of the 

optic nerve on retina images. Images were segmented into fragments the size of an optic 

nerve and presented with labels (0 or 1) to HTM. Following supervised training, the 

HTM network was able to correctly classify 77.44% of the presented optic nerves 

leading Boone et al. to conclude that HTM is not competitive with traditional techniques 

despite its promise.  

Zhuo et al. supplemented state-of-the-art image classification techniques using 

Locality constrained Linear Coding (LLC) and Spatial Pyramid Matching (SPM) using 

HTM for feature pooling. Image descriptors were extracted and encoded using LLC. 

LLC codes were then fed to HTM and multi-scale SPM to form an image vector. The 

system was evaluated using the Caltech 101 dataset and UIUC-Sport dataset with linear 

SVM as the classifier. Results showed an increase in accuracy on both datasets (73.5% 

vs 71.2%, 86.7% vs 84.2% respectively) when compared to the original LLC model.35    
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Gabrielsson et al. aimed to leverage HTM to create a profitable software agent 

for trading financial markets. A supervised training scheme was used for HTM with 

intraday tick data for the E-mini S&P 500 future markets being used as features. The 

tuned model was used as a predictor of market trends and showed at least comparable 

results when compared to an ANN.5 
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CHAPTER IV 

OVERVIEW OF HTM & CLA 

 

6. Ch4 
A. HTM Structure  

The architecture proposed for the first generation HTM model was strongly 

influenced by the Bayesian rules it implemented. It benefited from structural 

characteristics of the neocortex, namely hierarchical organization, but nodes diverged 

from their biological counterparts. Functional modeling was the emphasis. In the second 

generation, HTM abandoned those roots and attempted to adhere to neocortical 

structural guidelines more strictly. The result was a proposed neuron model, known in 

this context as an HTM cell. Figure 4.1 depicts the model suggested by Hawkins and his 

research team.11 These cells are noticeably more realistic and biologically faithful than 

those used in traditional ANN.  

 

 

Figure 6.1: An HTM cell/neuron model 
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HTM cells have two types of incoming connection structures: proximal 

dendrites and distal dendrites. Dendritic segments of either type are populated by 

synapses that connect them to other cells. These synaptic connections are binary. One 

reason for that is the stochastic nature of real neurons. Any algorithm, according to 

Hawkins,11 that aims to emulate the brain cannot rely on the precision or fidelity of 

individual neurons. Thus, HTM cells were modeled to have binary non-weighted 

synapses. They are either connected or not. To account for a real neuron’s ability to 

retract and extend in order to form connection, HTM cell synapses are assigned a 

parameter called permanence. Permanence is a scalar value between the 0 and 1, which 

is incremented or decremented based on a synapse’s contribution to cell activity. When 

permanence is above a predefined threshold, a synapse becomes connected. Therefore, 

all synapses in an HTM model are potential synapses. They are dynamic elements of 

connectivity.  

Proximal dendrites are responsible for feed-forward (FF) connectivity between 

regions. They are populated by a set of potential synapses that are associated with a 

subset of the input to an HTM region. A single proximal dendritic segment is shared by 

all cells of a column (shared FF connectivity). A column’s activity is defined by a 

scaled linear summation of the synaptic states (1 or 0) on this shared segment. 

Distal dendrites are responsible for lateral connections across a single region. 

Several segments are associated with a distal dendrite. These segments act like a set of 

threshold coincidence detectors i.e. when enough connections are active at any one 

time, they trigger a response in the receiving cell. It is enough for one segment to be 

active to trigger a response in the cell (OR gate). Each segment connects an HTM cell to 
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a different subset of neighboring cells. The activity of those cells is monitored and 

allows the receiving cell to enter a predictive state. This is essentially the root of 

prediction in an HTM network. Every cell constantly monitors the activity of 

surrounding cells to predict is own. 

An HTM cell has 2 binary outputs. The first, due to proximal connections, puts 

the cell into an “active” state if enough activation is present and the cell is chosen as the 

winning cell of its corresponding column. The second, due to distal connections, forces 

the cell into a “predictive” state. Finally, the output of the HTM cell is the OR of these 2 

outputs. This is what regions higher up in the hierarchy receive as input. Figure 4.2 

shows an example of activations of cells in a set of HTM columns. 

 

 

Figure 6.2: HTM columns with cells demonstrating the 3 possible states: active (dark 

grey), predictive (light grey), and inactive (white). 

 

The HTM network is built using these novel cell models. Cells are grouped 

vertically in columns. Columns are arranged horizontally to form regions. This 
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arrangement can extend in dimensionality to form a 3D prism of cells. Finally, the 

regions are laid out hierarchically to form the network as depicted in figure 4.3.  

 

 

Figure 6.3: Structure of an HTM model. 

 

B. Cortical Learning Algorithms  

CLA, as of the date of completion of this thesis, is a work in progress. While 

some aspects of it, like the algorithms that make up Spatial Pooling, are largely 

finalized, other features are still moving targets. This is especially true for the Temporal 

Pooler. The developing team at Numenta used their published white paper11 as a 

guideline in designing an iterative code base for CLA but have been forward about the 

many discrepancies between the theory and principles outlined in the paper and the 

current implementation. In this section, we aim to provide the reader with insight into 

both the founding principles and the current standing of the algorithms while offering 

clues to future direction as announced by the Numenta team and its developing 

community. Figure 4.4 shows a component level diagram of HTM/CLA. In what 

follows, we discuss the function of a number of these components and their current 

status in the software implementation.  
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Figure 6.4: Component level diagram of HTM/CLA 

 

1. Sparse Distributed Representation 

CLA borrows a lot of its principles of operation from its biological analogue, 

the neocortex. The neocortex is made up of over 1011 neurons that are highly 

interconnected. Yet, it is still capable of reacting to stimuli with relatively sparse 

activations levels. This is made possible by the vast amounts of inhibitory connections. 

Inhibition guarantees that only a small percentage of neurons are active at any one time. 

CLA implements this sparsification strategy to produce what is termed Sparse 

Distributed Representations or SDRs. Strongly stimulated columns in CLA inhibit 

nearby activity, thus reducing the number of active columns and yielding a sparse 

internal representation of the input pattern or stimuli. This internal representation is 

distributed across an entire region. 
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With SDR, individual bits of a binary vector representation gain semantic 

meaning. This is in contrast to other representations like ASCII code. With dense 

representations like ASCII code, an individual bit carries no information. SDR, 

therefore, injects a representational quality into individual activations. Since only a 

small fraction of a possibly large number of neurons is active, whatever semantic 

meaning a single neuron gains becomes specific to a very limited number of similar 

patterns. Consequently, even a subset of the active neurons can be a good indicator of 

the input pattern that the activation set represents with little theoretical loss of 

information as claimed by Hawkins.11 

SDRs display a set of properties that confirm their viability in the HTM design 

paradigm: 

 

a. Sparseness 

With a small number of active bits, we compromise the number of possible 

representations for more robust representation. The sparseness ensures that having false 

matches for two substantially overlapping encodings is highly improbable. Additionally, 

any false matches (i.e. different inputs are assigned similar encodings) that come up are 

likely to represent mild semantic errors.  

 

b. Similarity and Comparison 

With sparse active bits retaining semantic meaning, two representations that 

share a number of active bits become semantically similar. With this metric of 

similarity, two SDRs can be compared by taking the intersection of their active bits. The 

more active bits they share, the stronger their semantic link. 
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c. Storage Efficiency 

With only a sparse set of active bits, SDRs can be stored as indices of ON bits. 

This results in significantly lower memory demands considering that current 

implementations of CLA models typically use 2048-bit SDRs at 2% sparsity i.e. only 40 

ON bits. 

 

d. Subsampling 

SDRs can be subsampled because the semantics of the data are distributed 

across the bits. This means that a subset of the active indices will typically be enough 

for comparison. A novel representation that contains all of the subsampled indices has a 

high likelihood of being the same value or at the very least is semantically very similar. 

 

e. Fault Tolerance 

SDRs are inherently fault-tolerant. Since semantics are distributed across the 

bits, several active bits can be discarded without a significant loss in representation. 

This is made possible for the same reason subsampling works.  

 

f. Union 

Due to sparseness and the fact that two different inputs are very unlikely to 

have overlapping representations, multiple sparse representations can be combined into 

one high dimensional vector. Through this superposition, one can store completely 

separate patterns in the same vector with minimal chance of false positives. This is 
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utilized in the Temporal Pooler where multiple predictions based on current input are 

made simultaneously as depicted in figure 4.5.  

 

 

Figure 6.5: An HTM region with FF activations (red) and resulting multiple predictions 

occurring simultaneously (yellow). 

  

2. Encoders 

The first data processing module in the HTM/CLA model is the encoder. 

Encoders in HTM were designed as an analogue for biological sensory devices like the 

cochlea and the retina and are responsible for converting streaming input patterns into 

binary representations that are feed to the HTM network. This conversion process is 

data type dependent and thus requires the design of multiple encoders. For a number of 

these encoders, the output is a unique binary encoding of the pattern at the input stream 

(e.g. category encoder). For others, a quantization step is added that has the effect of 

reducing noise and binning similar input patterns together. This is similar in essence to 

the function of Local Sensitive Hashing23 where the goal is to hash input patterns so that 

similar inputs are mapped to the same buckets with high probability while patterns 

deemed sufficiently different are assigned to different buckets. Below is a list of some 

of the encoders implemented in the CLA code base. We limit detailed discussion to 

scalar and category encoders thereafter. 

http://en.wikipedia.org/wiki/Hash_Function
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 Scalar 

 Adaptive Scalar 

 Random Distributed Scalar 

 Non-uniform Scalar 

 Category  

 Delta  

 Log 

 Date 

 PassThru (Identity) 

 Multi  

 

a. Scalar Types 

A scalar encoder linearly encodes a numeric value into a sparse array of bits 

using a contiguous block of ‘1’s. The location of this contiguous block varies 

continuously as the input spans its entire range; with similar input patterns characterized 

by common semantics assigned overlapping representations. Scalar encoders use a 

number of parameters to determine the encoding for a given input: 

 minval: minimum value of an input 

 maxval: maximum value of an input 

 w: width of a contiguous block of active bits 

 n: number of encoder output bits 

 resolution = (maxval-minval)/(n-w): two inputs separated by more than the 

resolution are guaranteed to have different representations 
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 radius = resolution*w: two inputs separated by more than the radius have 

non-overlapping representations 

The output of the encoder will have n total bits with w contiguous on-bits. 

Values are placed into one of (n-w)+1 equally sized buckets. The smallest bucket is 

represented with the first w bits on and the rest off. The next larger bucket is 

represented by shifting the on bits to the right by one position. In this way, adjacent 

buckets have the most overlap, which helps to capture the semantics of scalar values. 

For example, with a range of 1-5, resolution = 0.5, w = 2, and n = 10, we get the 

following encodings: 

 

1      =>     1100000000 

1.5   =>     0110000000 

2      =>     0011000000 

⋮        ⋮                     ⋮              
5      =>     0000000011 

 
 

 

There are a number of variations that use the design of the Scalar Encoder as a 

base. The Adaptive Scalar Encoder is identical to the Scalar Encoder except for the 

bounds imposed on the minimum and maximum values of the input. The Adaptive 

Scalar Encoder changes the limit values when it receives input that is outside of the 

initially set range. While that avoids the necessary clipping that the Scalar Encoder 

performs for such values, the change in minimum and maximum values means that 

previously encoded patterns become out of date and have to be relearned. 

Another variation is the Non-Uniform Scalar Encoder where buckets are 

unequally distributed over the input range. This allows for more frequent patterns to be 

encoded with a higher resolution than those that occur less frequently. The adaptive 
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behavior of this encoder implies that it suffers the same shortcoming of the Adaptive 

Scalar Encoder in that previous encodings become obsolete as new patterns are 

processed and cause a change in bucket sizes. 

Finally, we discuss one of the more popular encoders, the Random Distributed 

Scalar Encoder (RDSE). The RDSE assigns to input patterns encodings whose on-bits 

are distributed along the output of the encoder instead of presenting them in contiguous 

blocks. This allows the encoder to represent a larger number of patterns while 

dynamically changing the min and max range with no negative effect. The 

representation for a previously in-range scalar is unaffected by a change in range. 

Additionally, it preserves the important properties of overlapping representations. 

Similar scalars have high overlap with overlap decreasing smoothly as scalars become 

less similar.  

 

b. Category 

A Category Encoder performs the simple task of converting a list of discrete 

categories into unique non-overlapping binary representations.  Its operation is that of a 

Scalar Encoder with integer inputs and a window of 1. Each category described by a 

string is assigned an integer, which is encoded as a block of consecutive on-bits of 

width w. The next category is encoded as a similar block of on-bits that is shifted by w 

bits. As an example, an RBG category encoder with w = 3 and n = 9 would produce the 

following encodings: 

 

“Green”:     1  =>     111000000 

“Red”:        2  =>     000111000 
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“Blue”:       3  =>     000000111 

 

3. Spatial Pooler 

Spatial pooling is a task handled at the columnar level of an HTM region. The 

goal here is to group encoded patterns that are spatially similar and assign them a 

unique label. The resulting label is an SDR formed using a few strongly active columns.  

The function of the SP can be interpreted as both a quantizer and an auto-

encoder. On the regional level, similar inputs are pooled or clustered together. Since 

patterns are represented by a select few strongly active columns, minor changes at the 

input levels are less likely to cause the activation pattern to shift. Thus, noisy versions 

of an input are represented similarly at the output level of the SP. In that respect, the SP 

is very similar to a traditional quantizer in function. With the addition of hierarchy, the 

SP gains additional auto-encoding functionality. Using Hebbian like learning rules, 

every column in an HTM region adapts to fire to a certain input sub-pattern. As learning 

progresses and information is propagated up the hierarchy, features are automatically 

learned and extracted at the bottom levels from fast varying data only to be combined 

into more stable abstractions at the higher levels.  

Algorithmically, the SP’s operation is defined by an initialization step and 3 

functional phases: overlap, inhibition, and learning. During an initialization step, the 

proximal synapses of each column in a CLA region are cast over a portion of the input 

bits forming a “potential pool”; typically 50% of input bits. In the whitepaper, each of 

these synapses is configured with a permanence value chosen from a Gaussian 

distribution with higher values registered closer to the natural center of a column over 

the input region. In the current implementation of the SP, permanence allocation is 
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mainly made randomly with values centered on a threshold for synaptic activation. A 

parameter potentialPct is used to determine the size of a random set of potential 

synapses that will have their permanence set above the threshold. 

In Phase I, when presented with input data, all columns in an HTM region 

compute their feed-forward activations, referred to herein as overlap. A column’s 

overlap is a summation of all the input bits in its receptive field multiplied by a boosting 

factor as shown in (4.1) for a column i with k proximal synapses (input bits). 

 

𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑖) =  𝑏𝑜𝑜𝑠𝑡 ∗  ∑ 𝑠𝑦𝑛(𝑘)𝑘                                                    (4.1) 

 

Columns that register overlaps greater than a predefined stimulus threshold are 

eligible to become active. Only a small subset of these strongly stimulated columns will 

be allowed to actually activate. This allows similar inputs to be represented internally by 

a sparse set of strongly active columns thus rendering the representation tolerant to 

noise.  

The sparsification is established in Phase II via an inhibition process. During 

inhibition, candidate columns compete either locally or globally. In local inhibition, the 

number of winning columns in a local area of inhibition (neighborhood of a column) is 

set to a predefined value, N. A column will be a winner if its overlap score is greater 

than the score of the Nth highest column within its inhibition radius. While more 

biologically realistic, inhibition on local neighborhoods is highly computationally 

demanding and restrictive. In global inhibition, reported as 60x less computationally 

expensive, the top columns with the highest overlap scores across an entire CLA region 
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are made active. Current implementations of the algorithm favor a 2% level of sparsity 

with typical counts of 2048 columns per region and global inhibition. 

During the 3rd and final phase of learning, updates to the permanence values of 

all synapses are performed as necessary, as well as to parameters like boost and 

inhibition radius (for local only). For winning columns, if a synapse is active, its 

permanence value is incremented; otherwise it is decremented. To give other columns a 

fair chance of activating and ensure that all regional columns are utilized, two separate 

boosting mechanisms are implemented periodically utilizing duty cycles. If a column 

does not win often enough, its overall boost value is increased. Alternatively, if a 

column's connected synapses do not overlap well with any inputs often enough i.e. 

consistently low overlap scores, its permanence values are boosted. This phase 

terminates with updating the inhibition radius if local inhibition is employed. Figure 4.6 

shows a flow chart of the 3 phases involved in the SP. 
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Figure 6.6: Spatial Pooler flow chart 

 

4. Temporal Pooler 

While the SP groups patterns that are spatially similar, it is the Temporal 

Pooler’s (TP) task to group those that occur close in time i.e. in sequence. This not only 

allows HTM to correlate patterns that are very different yet linked to the same cause, 

but it also enables HTM to make predictions about what it’s likely to perceive next. To 

use the terminology introduced earlier, this means the TP learns transitions between 

SDRs in time to create a high-order memory where learned transitions are not limited to 

a single time step. Using that memory, HTM is able to make multiple, context-rich 

predictions simultaneously.  

Before delving into the details of the TP’s algorithm, a brief divergence is 

necessary to clarify some ambiguous terminology. While temporal pooling is defined as 
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described above, both the pseudo-code in the white paper and the current software 

implementations fall short of that. The algorithms being currently used coincide mainly 

with those of a sequence learner, with a now obsolete version of true pooling 

implemented in code. Consequently, the process carried out by what is termed 

“Temporal Pooler” is to learn pattern-to-pattern sequence transitions in order to exploit 

learned sequences to make future predictions. Temporal pooling in the sense of 

achieving a stable internal state as patterns of a single sequence are seen is currently 

being reformulated and has not been completely implemented in usable and stable code. 

With that, we proceed to a discussion of the workings of the TP. 

With winning columns calculated by the SP and the SDR established, the HTM 

network gains insight into what pattern it might be seeing at its input. What it lacks is 

context. Any one pattern can occur as part of a large number of sequences i.e. multiple 

contexts. For example, pattern B can be part of sequences ABC or XBY. As mentioned 

before, essential to HTM theory is the ability to predict through the learning of 

sequences. In Zeta 1, the Bayesian driven first implementation of HTM, this was 

achieved by creating Markov chains and coincidence transitional probability matrices. 

In CLA, sequence learning is achieved with the aid of multiple cells per column. All the 

cells in a column share feed-forward activation but only a subset (usually a single cell) 

is allowed to be active. This means that the same pattern represented by the same set of 

columns can be represented by different cells in each column depending on the context 

in which it occurs. Going back to the example, B will be represented by the same set of 

columns regardless of context, but its representation on the cellular level will differ 

depending on whether it was preceded by A or X. This representation is created through 

the use of the cells’ distal segments. Each of a cell’s dendritic distal segments has a set 
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of connections to other cells in the same region, which are used to recognize the state of 

the network. Cells can predict their own activity by looking at their connections and the 

current activations. A particular cell might be part of dozens or hundreds of temporal 

transitions. Therefore, every cell has several distal segments, not just one. Distal 

connectivity is depicted in figure 4.2. 

There are three phases involved with temporal pooling. In the first phase, 

correctly predicted cells are activated and unpredicted columns are burst. Phase II 

computes each cell’s predictive state. Lastly, synapses are updated in Phase III, the 

learning phase, by either incrementing or decrementing their permanence values. 

Below, we discuss the general case where online learning is turned on and occurs in 

tandem with inference while reminding the reader that learning in CLA can be switched 

off.  

In Phase I, the active state of every cell of a winning column is computed and 

one cell per column is chosen as a learning cell. If a cell is in a predictive state due to 

activity on one of its sequence segments in the previous time step, it is set to active. If a 

learning cell contributed to this lateral activation, the cell is chosen as a learning cell 

too. On the other hand, if no cell in the column is in a predictive state, all the cells are 

activated to indicate that context is not clear or novel in a process known as ‘bursting’. 

Finally, if no learning cell has been chosen, the best matching cell is assigned as the 

learning cell and a new segment is added to its distal segments. Figure 4.7 shows the 

flowchart associated with Phase I.  
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Figure 6.7: Temporal pooler Phase I 

 

Now that all cells in the winning columns are updated, their states are used in 

Phase II to compute the predictive states for all other cells. For every cell in the region, 

distal segments tally their active connections. If any of the segments are strongly 

stimulated due to enough feed-forward activation in other cells, the cell transitions into 

a predictive state and queues up the following changes:  

 Reinforcement of the currently active segment by incrementing permanence 

values for ‘active’ synapses and decrementing those are inactive, and  

 Reinforcement of a segment that could have predicted this activation, i.e. a 

segment that has a (potentially weak) match to activity during the previous 

time step. 

Phase III is where learning occurs by deciding which of the queued up updated 

are to be committed. On the next time step, once new feed-forward input is processed, 

only cells that are chosen as learning cells will have their temporary segments updates 

carried out. Thus, we reward segments with reinforcement only if they correctly predict 
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the feed-forward activation of their cell.  Otherwise, if the cell ever stops predicting, we 

negatively reinforce the segments that were queued up for updates. Figure 4.8 shows the 

flowchart associated with Phase II and Phase III.  

 

 

Figure 6.8: Temporal Pooler Phase II (left) and Phase III (right). 

 

Many of the high level concepts introduced here carry over to the code 

implementation, but many non-biological additions have been incorporated to speed up 

learning. One major addition we will briefly mention here is backtracking. Backtracking 

is a process used as an alternative to bursting when too many unpredicted column 

activations take place. It occurs at two levels in the TP pipeline: After inference where 

predictive cells are sought out and activated (Phase I), and after prediction where the 

cells’ lateral activity is monitored and their predictive states are computed (Phase II). Its 

main function is to avoid excessive bursting that can impede the network from locking 

in to a sequence or context by going back a few steps and attempting to detect the start 

of a new sequence from which it can derive context.  

 

5. CLA Classifier 
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The CLA classifier is a non-biological module added to the HTM network on 

top of the pooling mechanisms to enable multistep prediction, whereby a set of 

predictions is produced one or more time steps ahead. It is not a classifier in the 

machine learning sense of the word and should not be confused as one. Rather, the CLA 

classifier’s operation is more associative in nature than discriminative, in that it attempts 

to associate the HTM network state in the past (e.g. N-steps back) with the current value 

of a predicted field so that these learned associations can be used to produce predictions 

(N-steps ahead) by leveraging the current network state. 

 

a. Input to CLA Classifier 

The CLA classifier makes use of 4 inputs: network state, predicted field bucket 

index, predicted field actual value, and record number.  

The network state is a binary vector produced at the output of the Spatial 

Pooler, Temporal Pooler, or Encoder, which makes the classifier agnostic to the source 

module. Typically, the CLA classifier is linked to the output of the Temporal Pooler. In 

this common case, the network state is a binary set of the active states at the level of TP 

output. Predictive states are not propagated to the classifier since active bits have the 

context (history of a sequence) encoded within as part of the TP operation. This allows 

the HTM network to produce predictions solely based on active states after utilizing 

predictive states as a tool for contextual encoding. In short, the active states - by design 

- hold all the necessary information to allow the CLA classifier to produce meaningful 

predictions.  

The predicted field bucket index is an integer identifying which encoder bucket 

the predicted field at the input of the HTM network falls into. The predicted field actual 
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value is the raw input to the predicted field encoder. For instance, the string “Green” 

input in the example demonstrated earlier is the predicted field value for a Category 

Encoder while ‘1’ is the bucket index. Similarly, in the example for the Scalar Encoder, 

‘1.5’ is the actual value with bucket index ‘2’.   

Finally, the record number is a long integer computed by dividing the time 

stamp of the input record by the aggregation interval. It allows the CLA classifier to 

deal with missing records. 

 

b. Operation 

Like most other modules in the HTM network, the CLA classifier operates in a 

learning mode and an inference mode. These modes of operation work in tandem to 

create associations between network state and actual values of predicted fields that can 

be later used to produce multi-step predictions. Histograms are maintained and updated 

by every cell to calculate the likelihoods of buckets. Additionally, lookup tables 

mapping bucket indexes to actual values are stored by the classifier and queried to 

output the most likely predictions. In what follows, we discuss the workflow of these 

two modes. 

 

i. Learning  

During learning, every cell maintains and updates a histogram over all bucket 

indexes. For N-step prediction, this histogram is populated by a coincidence factor 

relating the activity of the cell N steps back to the activity of each bucket at the current 

time step. During 1-step prediction for example, a bucket that is currently active will 

update its coincidence factor with every cell that was active during the previous time 
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step, thus establishing a correlation between the current input to the HTM network and 

the prior network state. The coincidence factor is implemented as a rolling average and 

referred to as a Rolling Average Duty Cycle (RADC). Whenever a bucket is active, its 

RADC is updated for every cell that was active N steps prior according to the rule in 

(4.2). It is worth noting that a requirement for this update protocol is to continually store 

network status (cell activity) for future use. 

 

𝑅𝐴𝐷𝐶𝑏(𝑡) =  𝑅𝐴𝐷𝐶𝑏(𝑡 − 𝑚)(1 − 𝑏𝑙𝐴𝑙𝑝ℎ𝑎) 𝑚 + 𝑏𝑙𝐴𝑙𝑝ℎ𝑎                  (4.2) 

 

where b is the bucket index, m is the number of time steps since the bucket was 

last active, and blAlpha is a parameter that controls the rate of learning/forgetting of the 

rolling average. Higher choices of blAlpha favour recent duty cycle values.  

A second function of the CLA classifier during its learning phase is to create 

and maintain an association between every bucket index and an actual value to represent 

it. A simple approach is to assign the center of the range allocated to every bucket as its 

representative actual value. Better results are obtained none the less when the actual 

value reflects the distribution of the actual values over the bucket’s range. A rolling 

average is used here again. Whenever a bucket b is active, the bucket actual value is 

updated according to (4.3). 

 

𝑏𝑢𝑐𝑘𝑒𝑡𝐴𝑐𝑡𝑉𝑎𝑙𝑏(𝑡) =  𝑏𝑢𝑐𝑘𝑒𝑡𝐴𝑐𝑡𝑉𝑎𝑙𝑏(𝑡 − 1)(1 − 𝑎𝑣𝐴𝑙𝑝ℎ𝑎) 

+𝑎𝑐𝑡𝑉𝑎𝑙 ∗ 𝑎𝑣𝐴𝑙𝑝ℎ𝑎                                      (4.3) 
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where actVal is the current actual value of the predicted field, and avAlpha is a 

parameter that controls the influence of a current input on the bucket’s representative 

actual value.  

 

ii. Inference 

The inference mode of the CLA classifier computes the likelihood of each 

bucket using the learned RADC histograms and maps the top buckets to their predicted 

actual values. First, the histograms of all the active cells at the current time step are 

normalized to produce the conditional probability of the buckets. Therefore, with cell c 

belonging to the set active cells AC and b belonging to the set of available buckets B, 

 

𝑃(𝑏|𝑐) =    
𝑅𝐴𝐷𝐶𝑏(𝑡)

∑ 𝑅𝐴𝐷𝐶𝑖(𝑡)𝑖 ∈ 𝐵
                                                     (4.4) 

 

Next, the sum of the likelihoods (LS) for every bucket is calculated then 

normalized as seen in (4.5) and (4.6) respectively. This produces the final likelihood (L) 

for every bucket.  

 

𝐿𝑆𝑏 =   ∑ 𝑃(𝑏|𝑐)𝑐 ∈ 𝐴𝐶                                                        (4.5) 

𝐿𝑏 =   
𝐿𝑆𝑏

∑ 𝐿𝑆𝑖𝑖 ∈ 𝐵
                                                             (4.6) 

 

Finally, the top most likely buckets are selected and then mapped to their actual 

values. These values are then coupled with the calculated likelihoods of their associated 

buckets and outputted as a set of multiple predictions.   
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6. Anomaly Detector 

With streaming data and the number of sensors not only being ubiquitous but 

also constantly increasing, efficient tactics to analyze the large body of information and 

discern what is different or unusual are needed. These tactics are encompassed by what 

is termed anomaly detection, the practice of finding patterns in data that do not conform 

to expected behavior. These anomalous patterns can be point, contextual, or collective 

anomalies.2 

Anomaly detection is fundamental to the HTM theory. In the CLA, the 

anomaly score provides a metric representing the degree to which each pattern is 

predictable. It attempts to detect both novel input patterns—point anomalies that have 

never been observed before—as well as familiar patterns that occur in a novel context—

both contextual (singular) and collective (multiple) anomalies. This anomaly score is 

temporal in nature and is computed as a percentage of active spatial pooler columns that 

were incorrectly predicted by the temporal pooler. 

 

𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 =  
|𝐴𝑡 − (𝑃𝑡−1 ∩ 𝐴𝑡)|

|𝐴𝑡|
                                         (4.7) 

 

where 𝑃𝑡  is the set predicted columns at time t and 𝐴𝑡 is the set of active 

columns at time t. A value of 0 designates a perfectly predicted input while a value of 1 

indicates the input was totally unpredicted.  

In addition to the anomaly score, the CLA are capable of producing anomaly 

likelihoods.  Thresholding a single anomaly score is not a recommended practice 

especially with noisy data. Instead, HTM looks at past anomaly scores and compares 

their recent distribution against the long-term historical distribution. The anomaly 
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likelihood correlates with the probability that the recent anomaly scores come from the 

estimated distribution.  
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CHAPTER V 

SPATIAL POOLER FOR BASIC 

CLUSTERING 

7. Ch5 
 

The principle function of the SP as reviewed in chapter IV is to group input 

patterns in space. This fulfills two purposes. The first is to provide the HTM network 

with robustness against noise. The second, and more important, is to create groupings of 

patterns that are similar. The SP therefore lends itself naturally to clustering tasks. In 

this chapter, we investigate how well HTM performs in this propensity.  

 

A. Impact of Noisy Input 

The first set of experiments will focus on HTM’s ability to tolerate noise at its 

input fields by assigning the same SDR to similar but noisy patterns. For that purpose, 

we created two binary data sets. The first consists solely of clustering centers. These are 

binary vectors of predefined lengths with random on bits spread out. The number of on 

bits is controlled by a sparsity parameter. The second dataset is a collection of noisy 

inputs created from the generated clusters. The noise is created by choosing bits at 

random and flipping them.  

With the use of these two simple datasets, we tested HTM’s tolerance to noise 

at different levels and measured its rate of convergence at different configurations.  

 

1. Clustering without Bias 

For the first clustering test, a newly initialized SP model is trained using the 

dataset of noisy inputs. The dataset is created using 5 clusters of length 256 bits and 5 
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generated noisy copies per center for a total of 30 inputs. The dimensionality of the 

input is fixed at 256. The number of columns in the SP and therefore the ratio of column 

count to input size is varied to evaluate its effect on convergence and clustering 

performance. Other free variables are sparsity level and noise level.  

During training, the inputs generated are fed sequentially into the SP for a 

number of repeated passes. The output of the SP is a vector of the indices of the top 

winning columns. The size of this output is determined by the inhibition radius. For this 

set of test, inhibition is performed globally by retaining a maximum of 20 winning 

columns (2% sparsity). For the sake of readability, the output vectors are mapped into 

hash codes and stored for comparison.  

The aim of this test is to figure out how robust the SP is when exposed to noisy 

input at different levels of input sparsity. The goal therefore is to check whether the SP 

will produce the expected clustering pattern and assign the noisy inputs to the 

corresponding clusters and to quantify how quick it is to do so. The stability criterion 

used to quantify convergence speed to the desired pattern is 10-step stability where the 

output doesn’t vary for 10 consecutive steps. Figures 5.1 and 5.2 use colored patches to 

indicate the number of steps (i.e. training passes) required for SP to achieve the desired 

clustering at different region sizes. The number of steps shown in the plots refers to the 

first of the stable steps. A number of passes of 0 (darkest blue) is used to designate non-

convergence or different yet stable clustering outcomes after the maximum allowed 

steps are exceeded. 
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Figure 7.1: Steps to a desired stable clustering outcome at varying input sparsity and 

noise levels for an unbiased 64-column HTM region. 

 

 

Figure 7.2: Steps to a desired stable clustering outcome at varying input sparsity and 

noise levels for an unbiased 1024-column HTM region. 
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Looking at figures 5.1 and 5.2, it is clear that the smaller HTM region 

outperformed the other. Not only was the former able to converge to the expected 

cluster pattern at higher levels of noise but it also converged faster than the 1024 

column region. This outcome seemingly contradicts the common practice of using HTM 

with column counts as high as 2048. Higher region sizes are claimed to be more suitable 

to achieve the pooling effect Sparse. This is partly true due to the fact that CLA lend 

themselves by design to problems with high volumes of streaming data. In this example, 

the size of the dataset and, more importantly, the limited number of unique clusters 

demands a different approach. With 64 columns and a forced output sparsity of 2%, 

only a single column is allowed to represent an input; as opposed to 20 columns with 

the 1024 column region. Consequently, the probability of having a subset of the 

winning columns vary and therefore the probability of obtaining varied representations 

are drastically diminished for the smaller network.   

 

2. Clustering with Bias 

At its core, HTM is a memory system. Every incoming input pattern is 

processed in the context of past learning. It is therefore interesting to investigate its 

pooling behavior under bias inflicted by prior training. To that end, we modify the 

previous clustering test by having the SP undergo multiple learning passes over the 

clusters alone. This will ensure that the internal representations of these clusters are 

stable and robust since reinforcement learning will have substantially increased the 

permanence values of their corresponding input connections. Figures 5.3 and 5.4 show 

the convergence plots for a 64-column region under 20-pass and 50-pass bias 

respectively. Figures 5.5 and 5.6 depict the same for a 1024-column region. 
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Figure 7.3: Steps to a desired stable clustering outcome at varying input sparsity and 

noise levels for a 64-column HTM region biased using 20 passes of cluster centers. 

 

 

Figure 7.4: Steps to a desired stable clustering outcome at varying input sparsity and 

noise levels for a 64-column HTM region biased using 50 passes of cluster centers. 
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Figure 7.5: Steps to a desired stable clustering outcome at varying input sparsity and 

noise levels for a 1024-column HTM region biased using 20 passes of cluster centers. 

 

 

Figure 7.6: Steps to a desired stable clustering outcome at varying input sparsity and 

noise levels for a1024 column HTM region biased using 50 passes of cluster centers. 
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As expected, prior learning had a positive effect on the clustering outcome. The 

biased SPs for both region sizes achieved faster convergence to the desired cluster 

pattern. Additionally, the SP became more noise tolerant by achieving the desired 

clustering at higher levels of input noise while requiring less steps to stabilize.  

Finally, two interesting points deserve mention. First, the number of training 

passes used to bias the SP produce no added value beyond 50 passes. After the SP has 

learned the patterns, all representations stabilize and little to nothing is learned by 

further training. Second, the results of running the experiment with the same 

configurations can yield different results. This is to be expected considering the random 

connectivity and initialized permanence values of the network’s synapses. 

 

B. SP vs. Clustering Algorithms  

The previous experiments show that the spatial pooling mechanisms of CLA 

perform well in terms of clustering highly similar inputs. This is achieved through the 

compound effect of inhibition and Hebbian learning rules. The first ensures that internal 

representation is controlled by a sparse set of strongly active columns while the second 

endows these columns with feature extraction capabilities by tailoring their activations 

to certain repeatable input patterns. 

The next step in evaluating the SP algorithms is comparison with other 

common clustering techniques. This will allow us to test the SP’s performance on more 

realistic scalar data and offer us the chance to utilize CLA’s, which have their own 

pooling capabilities. For this purpose, we generate 2D clustering data by choosing 5 

random cluster centers in a fixed range and spawning 20 points from each using a 
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multivariate normal distribution function with the centers as mean and a fixed 

covariance matrix. Figure 5.7 shows the 100 generated data points. 

 

 

Figure 7.7: Data points generated for 2D clustering test 

 

The first of the algorithms is k-means clustering. K-means is a vector 

quantization technique that partitions a set of vectors into K clusters by minimizing the 

sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid distances. 

It begins with a random selection of cluster centroids and assigns every point in a set to 

the closest centroid as defined by a selected distance metric (Euclidean is used here). 

Centroids are then recalculated as the mean of their clusters and the process is repeated 

until convergence. Figure 5.8 shows the result of running k-means with 5 clusters on the 

generated data and the effect of random initial selection on the outcome. 
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Figure 7.8: K-means clustering outcome for 4 different runs under the same parameter 

settings 

 

A close variant of K-means is Fuzzy C-means (FCM) clustering.  The FCM 

algorithm minimizes intra-cluster variance and assigns to each point a degree of 

membership to each centroid. Much like K-means, its iterative process produces a 

solution that is associated with a local minimum and that depends on the initial choice 

of weights. Figure 5.9 shows the result of running FCM with 5 clusters on the generated 

data for multiple times. Overall, the outcome is more consistent than that achieved by 

K-means for this sample data. 
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Figure 7.9: Fuzzy C-means clustering outcome for 4 different runs under the same 

parameter settings 

 

Lastly, we use agglomerative hierarchical clustering (AHC) to construct a 

maximum of 5 clusters using distance as a criterion. Each node's height in the 

hierarchical cluster tree represents the distance between the two sub-nodes merged at 

that node.  Figure 5.10 shows the dendrogram (left) produced by the clustering 

algorithm and the clustering outcome (right). A horizontal cut is used to find the 

smallest height at which the tree will have 5 or fewer clusters.  The outcome of AHC is 

consistent and produces the expected clustering pattern.  
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Figure 7.10: Agglomerative Hierarchical clustering dendrogram (left) and outcome 

(right) 

 

Having tested some of the more popular clustering algorithms, the next step is 

to evaluate CLA’s performance on the generated sample data. Since the data is scalar 

and 2-dimensional, we set up a pair scalar encoders of size 128. Scalar encoders map 

scalar values into binary representations by collecting similar values into bins. These 

bins are then represented by blocks of active bits (‘1’s) that shift when the difference 

between two scalars exceeds the resolution. The size of the blocks or windows is 

defined by a parameter w. With n being the length of the encoded input, the resolution 

associated with the scalar encoder is n/(n-w+1). It is therefore evident that the clustering 

outcome is highly dependent on the value of w chosen. Figures 5.11 and 5.12 show the 

clustering outcome when using SP without and with bias. Values of w were increased 

until the number of produced clusters averaged at 5. Higher values produce fewer 

clusters by decreasing the resolution while smaller values do the opposite. The SP 

model used for both cases has an input grid of 16-by-16 and 64 columns in total with 

2% output sparsity.  

The positive impact of bias is evident by comparing figures 5.11 and 5.12. 

With 50 bias passes, the SP was able to produce a clustering pattern in line with our 
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expectation. It did so more consistently as well. Nevertheless, even with no bias, the SP 

still managed to perform well and produced results comparable if not superior to those 

of K-means and C-means on this particular data set. While this does not necessarily 

prove the CLA’s merit as a clustering algorithm, it goes to show that SDRs do indeed 

possess pooling capabilities that warrant its use as a major design pillar for CLA in 

specific and cortically inspired learning algorithms in general.   

 

 

 

Figure 7.11: SP clustering outcome for 4 different runs with w = 45 and no bias passes 
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Figure 7.12: SP clustering outcome for 4 different runs with w = 29 and 50 bias passes 

 

Having tested CLA’s clustering abilities using a small synthetic dataset, we 

expand the tests to incorporate both real and larger synthetic datasets. We then employ a 

set of internal and external clustering validation techniques to compare HTM’s 

performance with that of the above algorithms. We chose 2 real datasets from the UCI 

machine learning repository. The “Seed” dataset has 3 clusters with 70 elements each 

for a total of 210. “Wine” has 178 elements divided between 3 clusters with a 59-71-48 

distribution. For the synthetic 2-D datasets, “SYN1” has 5000 elements divided between 

15 clusters with a Gaussian distribution whereas “SYN2” has 3000 elements and 20 

Gaussian clusters.  

To assess the clustering performance of the algorithms discussed previously, 

we rely on three internal and a single external evaluation measure. Internal measures are 
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produced using the clustering outcome alone. The Calinski-Harabasz (CH), Davies-

Bouldin (DB), and Dunn (DN) internal indices were used here and calculated using 

(5.1), (5.2), and (5.3) respectively. 

 

𝐶𝐻 =
𝑁−𝐾

𝐾−1

𝐵𝐺𝑆𝑆

𝑊𝐺𝑆𝑆
                                                                     (5.1) 

 

where N is the size of the dataset, K the number of clusters, BGSS and WGSS 

the between and within group sum of squares respectively.  

 

𝐷𝐵 =
1

𝐾
∑ 𝑚𝑎𝑥

𝑘′≠𝑘

𝛿𝑘′+𝛿𝑘

𝛥𝑘𝑘′

𝐾
𝑘=1                                                     (5.2) 

 

where 𝛿𝑘 is the average of the distances of the elements of a cluster k to its 

centroid and  Δ𝑘𝑘′ the distance between the two clusters k and k’ (usually defined as the 

distance between corresponding centroids). 

 

𝐷𝑁 =
𝑚𝑖𝑛
𝑘≠𝑘′

𝛥𝑘𝑘′

𝑚𝑎𝑥
𝑘

𝐷𝑘
                                                                        (5.3) 

 

where 𝐷𝑘 is the largest distance between 2 elements of the same cluster k. 

Finally, we chose the Rand index (RI) as an external evaluation measure that 

utilizes “ground truth” labels to evaluate clustering performance. The Rand index or RI 

measures how similar the clusters are to the benchmark classifications. Essentially, it 

takes on the role of classification accuracy for supervised learning tasks. 
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For this set of experiments, the HTM model was configured with a number of 

columns equal to that of the desired number of clusters to put it on equal grounds with 

the other algorithms. Additionally, the columns were allowed to span the entire input. 

As for the input, all scalar features were normalized to a [0-1] range and processed 

using a scalar encoder. The size of the encoder and its window parameters were treated 

as free variables to optimize for. A grid search over both was subsequently conducted to 

find max RI for the 2 real sets. For the synthetic datasets, the size and consequent time 

complexity were too restrictive to perform a grid search. Parameters for these sets were 

therefore configured empirically. Also, since the synthetic data lacked any labels, RI 

calculations were excluded. Table 5.1 presents the evaluation measures for the 4 

datasets using the 4 different clustering algorithms. 

For the real datasets, the HTM model performed surprisingly well. With 

“Seed”, it outperformed all the other algorithms on the DB measure. For all other 

measures on both “Seed” and “Wine”, it achieved results very comparable with the rest 

of the clustering algorithms. Most notable was its ability to score 88% and 81.6% 

accuracy on the RI. Synthetic datasets, oddly, presented a different case. On both, the 

HTM model performed very poorly, coming in last for most measures. Partial 

accountability can be assigned to the lack of a proper grid search to optimize the 

encoder parameters. Never the less, its inability to properly perform on a synthetic data 

set with cleanly separated Gaussian clusters is highly problematic. More so, the variance 

of the results of grid search was highly suspicious. At its worse, results on the RI index 

for fixed encoder parameters on the same dataset varied between 56% and 91%. This 

seems to be due to the initialization stage and the randomness in assigning both 
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connectivity and permanence values. The end result is a lack of consistency in 

performance.  

 

Table 5.1 Clustering evaluation with 3 internal and 1 external measure (Higher is better 

for all measures except DB) 

 

 

C. Overlap as Similarity Measure  

In this last section of evaluating HTM’s Spatial Pooler, we investigate the 

claim that overlapping SDRs created at the SP level exhibit a strong semantic link i.e. 

the overlap in bits between two SDRs can be used as an indication of the similarity 

between their corresponding inputs patterns.  

For this purpose, we employed a 1024-column SP with 41-bit long input field 

populated by a Scalar Encoder with n= 41 and w=21. Inputs in the range [0-20] were 

encoded with a resolution of 1 meaning that consecutive integers in the range have 

  BASE K-MEANS C-MEANS AHC HTM 

SEED CH 0.269 0.315 0.314 0.279 0.307 

DB 2.318 2.076 2.090 2.404 2.066 

DN 0.075 0.080 0.080 0.105 0.091 

RI 1 0.890 0.900 0.919 0.880 

WINE CH 0.079 0.083 0.083 0.001 0.065 

DB 5.4311 6.0054 5.675 10.974 6.354 

DN 0.189 0.142 0.142 0.239 0.181 

RI 1 0.949 0.949 0.3427 0.816 

SYN1 CH - 10.920 22.675 22.445 7.690 

DB - 18.575 4.123 4.196 28.615 

DN - 0.005 0.036 0.065 0.0007 

RI - - - - - 

SYN2 CH - 6.458 7.059 7.330 2.518 

DB - 84.240 24.180 7.567 287.872 

DN - 0.009 0.007 0.039 0.0012 

RI - - - - - 
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encodings that differ by a single bit. The encoded inputs were fed to the network for 10 

training passes with learning turned on. This allows the SP to generate stable SDRs for 

each input. Finally, for each input, we calculated the overlap between its encoding and 

the encoding of input 0 as well as the overlap between its SDR and that of input 0 (as 

produced by the SP). Figures 5.13, 5.14, and 5.15 below show the recorded overlaps for 

3 different runs under the same settings.  

Looking at these plots, the overlap at the encoder level is a straight line as 

expected since the encoder resolution is set to 1, so that every time the input is 

incremented by 1, the resultant encoding shifts by a single bit. The SDR overlaps shown 

in green show a more interesting pattern. For the same configuration of the network, the 

SP responds quite differently with a general non-increasing trend observed in every 

case. Most interesting is what happens in figure 5.15 at 13, which shows more overlap 

with 0 then 12 does. This is problematic to the claim being studied. Figure 5.13 and 5.14 

don’t show strictly decreasing plots as one would expect when monitoring a similarity 

metric as distance from a reference point (0 in this case) is increased. While not ideal, 

this is forgivable considering the heuristic nature of the similarity metric being studied 

here. The up-tick in figure 5.15, on the other hand, proves that there are cases when 

SDR overlap is not indicative of similarity or distance.  
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Figure 7.13: Plot comparing the change in overlap at the level of the encoder with that 

at the level of SP as the input is moved away from the initial value of 0. 

 

 

Figure 7.14: Plot comparing the change in overlap at the level of the encoder with that 

at the level of SP as the input is moved away from the initial value of 0. 

 



 

61 

 

Figure 7.15: Plot comparing the change in overlap at the level of the encoder with that 

at the level of SP as the input is moved away from the initial value of 0. 

 

The silver lining here is that this case seems to be a rarity. Several runs where 

required before the problematic up-tick was observed which makes the case for the 

probability of its reoccurrence being low. Never the less, the negative impact this has on 

HTM’s clustering performance can’t be ignored. If the overlap is not a reliable measure 

of similarity, then it is not viable for use in clustering or pooling patterns. 

To drive the point home, figures 5.16, 5.17, and 5.18 show contour plots 

formed by calculating overlap at points of 2D grid with reference to the point (0, 0). 

These plots show the inconsistency in SP response to the same stream of data as well as 

the pools of inputs where SDR overlap no longer correlates with similarity or distance 

to the reference point. The latter is depicted by the lighter regions of the contours 

surrounded by darker regions. For comparison, figure 5.19 shows the similarity contours 

obtained using Euclidean and Manhattan distance as similarity metrics. The trend of 

gradual decrease in similarity as the input moves away from the reference is clear.  
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Figure 7.16: Overlap Contours for 2D inputs with reference to origin 

 

 

Figure 7.17: Overlap Contours for 2D inputs with reference to origin 
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Figure 7.18: Overlap Contours for 2D inputs with reference to origin 

 

 

Figure 7.19: Similarity Contours for 2D inputs with reference to origin using Euclidean 

(left) and Manhattan (right) distance 
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CHAPTER VI 

TEMPORAL POOLER FOR 

SEQUENCE PREDICTION 

8. Ch6 
 

A crucial component of an intelligent system, be it biological or artificial, is the 

ability to learn sequences. Whether such a system learns a sequence of images, notes, 

events, or actions, the underlying learning principles are highly similar and span four 

categories: sequence prediction, sequence generation, sequence recognition, and 

sequence decision-making.30 Most relevant of these categories are sequence prediction 

and recognition. 

Sequence prediction is the process of predicting elements of a sequence on the 

basis of the preceding elements. More formally, given the sequence 

elements si, si+1, … , sj , we want to predict sj+1. Sequence recognition, on the other 

hand, is the process of deciding whether a sequence of elements constitutes a legitimate 

learned sequence after observing the consecutive occurrence of a number of its 

elements. This is intimately related to sequence labelling where each learned sequence 

is assigned a unique “label” or some form of internal representation (e.g. the activation 

pattern in HTM). At its current state, HTM is more evolved in its ability to do the 

former while the latter is the end goal of current efforts to achieve true Temporal 

Pooling by maintaining stable network activation for the length of a learned sequence. 

For our purposes, we will limit our experimental evaluations to sequence learning. 

Before jumping into the experimental setups, we present in what follows a high-level 

summary of how the CLA perform sequence prediction. 
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In HTM, spatial pooling takes place at the columnar level where feed-forward 

stimulation causes columnar activation patterns that represent a bundle of similar input 

patterns. The temporal pooler leverages these activations and operates at the cellular 

level to learn transitions between different bundles.  This is made possible due to the 

lateral connectivity of the HTM cell. Each cell casts a net of lateral connections over its 

neighbourhood; sometimes the entire region. This allows the cell to monitor the activity 

of the neighbourhood by sampling the cell-level outputs and thus gain insight into what 

patterns are currently observed and the context in which they occur. Groups of cells will 

then attempt to correlate their collective activity with that specific context using the 

same reinforcement learning principles that columns use to associate with specific 

patterns. This happens in two ways. First, the active state of a group of cells belonging 

to the firing columns encodes the history or context of the sequence seen thus far. So, 

the cell level representation of a pattern varies based on the preceding patterns while the 

column level representation of the pattern remains largely stable. Second, the context 

rich active pattern of those cells triggers the predictive state of regional cells. With 

repeated exposure to specific sequences, these predictive activation patterns align with 

the next pattern of a sequence. Every time they align correctly, their active states are 

turned on, and their connections are strengthened thus reinforcing the correlation 

between their activity and the context they encode. The sum of these individual 

processes and the addition of the CLA classifier enable sequence prediction in HTM.  

To evaluate HTM’s efficacy in sequence prediction, we will bypass the SP and 

feed encoded sequences directly to the TP. We differentiate here between different 

types of sequences in terms of two properties. In terms of order, first order sequences 

are sequences where knowledge of the previous element is enough to make a prediction 
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about the next element i.e. P(sj+1|sj, sj−1, … , s1) =  P(sj+1|sj). The next element 

depends on the previous element only and is independent of any history that extends 

beyond the previous time step. High order sequences, it follows, are those where the 

next element is dependent on elements further back in time i.e. P(sj+1|sj, sj−1, … , s1) =

 P(sj+1|sj, sj−1, … , sj−i) for 0 < i < j. This distinction is important to study how the 

multiplicity of cells per column affects HTM’s ability to learn the proper context and 

capture enough history to make a correct prediction. In terms of certainty, we 

differentiate between deterministic sequences and stochastic sequences. Deterministic 

sequences are sequences where elements can be predicted with complete certainty i.e. 

there exists a 1-to-1 mapping between a subsequence of prior elements (context) and the 

next elements to be observed. In stochastic sequences, on the other hand, elements are 

generated by a stochastic process. Future elements are sampled from a probability 

distribution dependent on one or more previous elements. Markov chains are a prime 

example of this type of sequences. Finally, we will limit the experiments to finite length 

sequences with a discrete pool of elements. Sequence prediction of a continuous data 

stream will be the focus of later chapters.  

 

A. HTM Network Configurations 

For the following set of experiments, we rely on a single region network 

structure that excludes the spatial pooler from the module stack. To keep focus on the 

TP and its operation, we achieve this exclusion by tying the output of the encoder to the 

TP’s input directly. The encoded binary input used has the advantage of being similar to 

the SP’s output while providing control over the binary vector through encoder settings 

that the SP doesn’t afford with its scattered and sparse activations.  
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As for the encoder, we implement a category encoder with shifting and non-

overlapping blocks of on-bits as well as an RDSE. The configurations of both encoders 

are set up to provide unique encodings for the sequence elements being used. The 

choice of encoder will only be discussed if it directly affects performance.  

For predictions, we add the CLA classifier to the top of the module stack to 

obtain the most likely predictions. We simultaneously leverage the TP’s raw output to 

monitor the multiple predictions made at each step to assess the level of ambiguity of 

the context and gain insight into how different network settings (especially number of 

cells per column) affect performance.  

Finally, we supplement the module stack with a sequence generator. Where 

needed, the generator will provide sets of sequences with different properties. The 

generator is designed to allow for both random and reproducible sequence sets. 

Additionally, it provides control over the sequence length, the number of sequences, and 

whether sequence elements are sampled with or without replacement. Although the 

sequences used in this chapter will be alphabetical, the generator can produce sequences 

out of any character set, alphanumerical or symbolic.  
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Figure 8.1: Revised HTM Model 

 

B. First-order Deterministic Sequences 

We begin the evaluation process with the simplest scenario to consider, namely 

that where sequences encountered are first-order deterministic sequences where 

knowing the current element of the sequence is enough to make a perfect prediction of 

the next. HTM should be able to capture sequences of this type with no errors barring 

any memory capacity limitations. In such cases where the network size doesn’t provide 

enough resources to uniquely encode a large set of elements, HTM can’t be expected to 

learn properly since different patterns will inevitably be represented identically within 

the network. HTM’s effective memory capacity, as broadly defined here, depends on 

the encoder type and configurations, number of columns, and the fixed level of sparsity 

forced throughout its network.  

To test how well HTM predicts these types of sequences, we feed it a sequence 

of 26 characters. The characters are first encoded in order (A then B then C…) before a 
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26 long sequence is formed by shuffling the alphabet. The number of cells per column is 

kept at 1 since that’s all that is required for first-order transition learning. Table 6.1 

shows the number of training passes the CLA classifier and the TP required to make a 

perfect prediction under varying parameter settings. Different encoders as well as 

different learning rates as defined by the ratio of permanence increment to decrement 

values and initial permanence values are used. As seen in the table, the CLA classifier 

which is unaffected by permanence configurations requires only a single training pass to 

perfectly predict the sequence. The TP, on the other hand, requires up to 5 training 

passes at slow learning settings while matching the CLA classifier at fast learning 

settings.  

 

Table 8.1: Number of training passes needed for the TP and CLA classifier to make a 

perfect prediction at different configurations 

Cells/col Col Encoder w n 
Connected 

Perm 

Initial 

Perm 
PermInc PermDec 

TP 

Passes 

CLA 

Passes 

1 130 Category 5 130 0.5 0.5 0.2 0.1 1 1 

1 130 Category 5 130 0.5 0.1 0.1 0.2 5 1 

1 130 Random 5 130 0.5 0.5 0.2 0.1 1 1 

1 130 Random 5 130 0.5 0.1 0.1 0.2 5 1 

 

 

C. High-order Deterministic Sequences 

A more interesting case to consider in the deterministic scope is high-order 

sequences. These are sequence where the next element can be predicted with complete 

confidence when knowledge of an extended history i.e. 2 or more previous elements is 

available. These sequences are of special interest when evaluating HTM since their 

prediction relates directly to the number of cells per column. In the previous first-order 

scenario, only one cell per column was needed to capture the single context possible for 
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every element of the sequence. Here, the number of possible contexts depends on the 

order of the sequence set. Second order sequences for example have a maximum of k2 

possible unique contexts where k is the size of the element pool from which the 

sequences is drawn.  

In HTM, a pattern’s representation is dependent on the context in which it 

occurs. With c cells per column and a fixed sparseness leading to N active columns, 

HTM is theoretically capable of learning cN possible contexts. For example, for a typical 

2048 column HTM region with 4 cells per column and 2% sparsity, 440 (1.2e24) contexts 

can be learned. What’s interesting about HTM’s context memory, therefore, is that it’s 

not directly dependent on the element pool, and, more importantly, it doesn’t force a 

fixed order on the sequences it admits. Ultimately, it’s not the length of the context but 

the number of unique contexts that is most decisive when choosing HTM’s cell count. 

In practice, there are more factors that come into play. We will attempt to highlight 

these factors in the experiments carried out in this section.  

To test HTM’s ability to capture high order deterministic sequences, we use a 

second-order set of sequences. A 25-state Markov model with 5 character emissions, 

‘ABCDE’, is used to generate the set. 25 (52) states were chosen to represent the set of 

all possible 2-character histories/contexts, and emission probabilities were chosen to be 

1 for one character and zero for all others. To generate second-order sequences 

exclusively, states were made to transition to only one other state as determined by the 

character it emits. For example, if state ‘AB’ emitted ‘C’, it should naturally transition 

to state ‘BC’. With a transition matrix designed accordingly, we generated the 7 six-

character long sequence set in figure 6.2.  
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Figure 8.2: Second-order Deterministic Sequence Set 

 

The character set is encoded and fed directly to the temporal pooler. For this 

setup, a 5-column region is used with a sparsity of 20% (1 active column). The 

sequences above are fed to the TP with learning enabled for 10 training passes. A reset 

to the TP is performed after every complete sequence. This resets all internal states to 

avoid any learning between different sequences. A classifier is additionally used to 

produce best predictions and is configured with a very low alpha value to effectively 

disable forgetting.  

For evaluation, two performance metrics are employed. The first is devised to 

track the performance of the TP’s multiple simultaneous predictions. Here, a correct 

prediction is rewarded partially depending on how many other false but simultaneous 

predictions are made. For example, if ‘A’ is seen and the TP predicts ‘ADE’ from the 

previous time step, the prediction score is incremented by 1/3. This allows us to 

quantify the uncertainty of the network’s predictions under different configurations. The 

second metric is more straightforward. It is a prediction score that is tallied using the 

output of the CLA classifier. Correct predictions increment this score by 1. With both 

metrics, scores are only calculated after enough elements have been observed. For 

second-order sequences for example, these scores are calculated for the third sequence 

element and above. This is to ensure that the network isn’t penalized for incorrect 

predictions made when not enough information is available. Figure 6.3 shows the two 
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metrics scaled to 100 as the number of cells per column is varied in a network that is fed 

the sequence set. Figure 6.4 shows the performance for 3 (left) and 4 (right) cells per 

columns as the number of training passes is changed.  

 
Figure 8.3: Prediction performance with varying number of cells per column 

 

 

Figure 8.4:  performance for 3 (left) and 4 (right) cells per columns for different 

numbers of training passes 
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As seen in figure 6.3, the network was able to perfectly predict the second-

order sequences after 10 training passes when columns were created with 3 cells. To 

validate the consistency of that performance, we fix the number of cells per column to 3 

while varying the number of training passes. The result can be seen in the left panel of 

figure 6.4. It takes only 2 training passes to achieve the noted performance. Above that, 

the number of training passes doesn’t cause any improvement or degradation in the 

performance. Unfortunately, the same can’t be said of the number of cells. While a 

configuration of 3 cells performs perfectly, increasing the cell count results in 

unexpectedly inconsistent results. This is further demonstrated in the right panel of 

figure 6.4 where increasing the training passes for 4 cells per column did not alleviate 

the performance drop.  

The results are cause for concern in a number of ways. First, if the number of 

cells per column is to be interpreted as the HTM network’s memory capacity, then it is 

highly problematic that small increments in that capacity cause its prediction 

performance to significantly fluctuate. The practical consequence of this behaviour is 

that any HTM network needs to be exactly tailored to the data it’s being applied to. 

Parameter searches to accommodate this sort of inflexibility in the design are likely to 

be computationally expensive and impractical. The second and more important 

observation is that the network achieves perfect prediction at a configuration that is 

lower than expected while suffering performance loss at higher settings. To demonstrate 

that, we tabulate the number of unique contexts in which every character in the set 

occurs in table 6.2. With only 3 cells per column, characters A, B, and D cannot be 

assigned unique representations for every context. In fact, by monitoring the activation 

patterns during the single testing pass, it is clear that these characters are achieving 
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similar activations to different contexts. To understand why it is still possible for HTM 

to perfectly predict the sequences, we need to consider how contexts are being learned 

on a lower level. As discussed earlier, every HTM cell has a collection of distal 

segments that monitor activity in the cell’s neighbourhood. It is at the level of these 

segments that learning happens. This means that, as learning progresses, it is the 

segments themselves that align with specific activation patterns in the HTM region. 

Ultimately, context learning happens at the level of these segments. At the cellular level, 

the activity of segments is OR-ed. As a result, a cell will fire predictively to multiple 

contexts. So why did the network still perform so well? To answer that, we look at the 

table 6.2 again for the number of possible future characters each of the character can see 

in the set we used. While the number of possible contexts sets a maximum on the 

number of unique representations we expect to the network to assign to a sequence 

element, the number of elements that will possibly follow sets a minimum. For example, 

if A is always followed by C or E, then it is enough for the network to represent A in 

only 2 unique activation patterns. This explains why 3 cells per column are able to 

perform well. As demonstrated in the right most column of table 6.2, the set is very 

close to being a first order set. While 3 cells aren’t enough to assign a unique 

representation for every context, they are adequate to confidently predict the next 

element.  

 

Table 8.2: Number of unique contexts in which every character occurs 

Character # of unique contexts # of possible futures 

A 5 2 

B 5 1 

C 1 1 

D 6 2 

E 3 1 
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The problem remains that even at 29 cells, the network still made prediction 

errors, which brings HTM’s ability to encode context and learn transitions into question. 

The main contributor to this seems to be cases where intersecting contexts that lead to 

different futures are represented similarly when there’s ample capacity for separate 

representations. This falls down to the lateral connectivity and the lack of a process to 

punish behaviour that leads contexts with diverging futures to be lumped together by the 

same cell, thus losing context resolution. Put more simply, the reader can view the cell 

as a context pooler. When allowed to pool--under the same representation--contexts that 

overlap or intersect at one point before diverging, this can cause loss of context and 

inevitably lead to incorrect predictions.  

This issue is resolved at higher column counts. Larger HTM regions at the 

2048-column and 2% sparsity seemingly reduce the negative effect of the erroneous 

“context pooling” as depicted in figure 6.5 where perfect prediction is achieved and 

maintained for any cell count above 3. We speculate that this is a byproduct of sparsity 

at high columnar counts where the probability of assigning similar representations to 

different contexts is lowered. How effective this approach is at achieving higher 

contextual resolution as defined here is an open question. A point of contention that 

remains is the impracticality of using HTM networks of such size for simple sequence 

learning as conducted in this experiment. Considering the high computational demands 

of the CLA, the compromise between performance and efficiency works against HTM.  
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Figure 8.5: Prediction performance for a 2048 column HTM region with 2% sparsity as 

a function of cells per column 

 

D. Stochastic Sequences 

For the last scenario, we consider stochastic sequences where elements are 

generated from a probability distribution. Here, contexts or sub-sequences can lead to 

multiple successor elements. Therefore, measuring the prediction accuracy of HTM 

when observing such sequences is not helpful. Instead, we draw inspiration from 

Markov models that produce similar sequences. Specifically, we want to test whether 

the CLA classifier under the right configurations will be able to capture the distribution 

of the transition probabilities of the sequence set. For this purpose, we employ a 6-state 

Hidden Markov Model (HMM), 1 starting state and 5 states representing the set. The 

model is configured with single emissions for every state and an arbitrary transition 

matrix. We then use the model to generate 6 character long sequences. The result is 145 

unique sequences. The sequence set is then fed back to the HMM to estimate the 

transition matrix based on this smaller set. Equations (6.1) and (6.2) show the original 

and estimated transition matrices for character states respectively.  
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𝑇𝑜𝑟𝑖𝑔 =

[
 
 
 
 

0 0 1
0.2 0 0.8
0 0.4 0

0 0
0 0

0.6 0

 
0    0  0.2
0   1 0

   0.1 0.7
0 0 ]

 
 
 
 

                                              (6.1) 

 

 

𝑇𝑒𝑠𝑡 =

[
 
 
 
 

0 0 1
0.3577 0 0.64230

0  0.2 0
     

0       0
0       0

0.6094       0

    
0        0     0.3740
0        1     0

          0.4134 0.2126
        0 0 ]

 
 
 
 

                        (6.2) 

 

 

Since the HMM model generates first-order chains, we feed the 145 sequences 

into a 5 column HTM network with a single cell per column; higher column counts 

didn’t significantly affect the results we sought. The alpha parameter of the CLA 

classifier, which controls the rate at which the classifier forgets past entries, is varied 

while the likelihoods of predictions is recorded and assembled into a transition matrix. 

The L2-distance between the resulting matrix and Test is then computed as an error 

metric and tabulated in in Table 6.3 for the different alpha values. The results show that, 

as the CLA classifier is made to forget less, it perfectly captures the transition 

information of the HMM model. This is expected since HTM employs a very similar 

algorithm to construct its DCMA matrix especially with small networks and non-

overlapping representations. With the use of larger HTM regions and overlapping 

representations, the matrices start to naturally diverge. At 2048 columns with 2% 

sparseness and overlapping RDSE encoding, the error increases to 1.065 and the 

resulting matrix is noticeably different.  
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Table 8.3: Error between HMM estimated transition matrix and CLA classifier 

transition matrix 

Alpha Error 

0.1 0.804 

0.01 0.183 

0.001 0.019 

0.0001 0.002 

0.00001 ~0.00 
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CHAPTER VII 

CASE STUDY: HTM IN 

CLASSIFICATION AND ANOMALY 

DETECTION 

9. Ch7 
 

Having put the individual components of HTM through their paces, we turn 

towards the bigger picture with a focus on evaluating the entire framework. We will do 

so in the context of different machine learning tasks, namely classification and anomaly 

detection. Where HTM doesn’t lend itself naturally to the task, we will adapt it to said 

task by leveraging the metrics it outputs. Classification is a prime example of that 

scenario. Lastly, while simple datasets lent themselves to the toy evaluation experiments 

in previous chapters, we introduce here real world datasets that offer more complexity 

and allow us to formulate a better understanding of how the current version of HTM and 

its CLA perform with harder tasks.  

 

A. Case Study I: Smartphone Based Gesture Recognition Using HTM  

To evaluate HTM as a classifier, a custom built dataset for gesture recognition 

was used. Instances of the dataset were generated using the Skywriter framework, a 

gesture tracing and recognition framework for smartphones. Skywriter uses on-board 

inertial sensors with a combination of kinematic models of the human arm and Bezier 

curve fitting to estimate the trajectory of a user’s hand in motion. The result is a 

sequence of 2D coordinates (Bezier control points) representing the trace of a user-made 

gesture using a smartphone.  
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Sixteen gesture classes were used for creating the Skywriter dataset consisting 

of 10 digits and 6 basic shapes. The dataset was created with the help of 15 volunteers. 

Each participant provided 5 instances of each gesture class for a total of 80 instances per 

user and 1200 gesture instances in total. Figure 7.1 shows samples of the created 

gestures from one of the users. 

 

 

Figure 9.1:  Samples of gestures traced by a single user 

 

1. Experimental Setup  

a. Learning Scenarios 

The Skywriter gesture recognition framework was evaluated under 3 distinct 

learning scenarios: user-dependent, user-independent, and mixed. Each scenario 

demands a specific partitioning of the dataset into training and testing subsets.  

In user-dependent learning, only data from a single user is used. This simulates 

the real life scenario where a recognition system runs a user’s personal device to which 

only the user has access (e.g. transparent authentication for mobile platforms). In this 

case, both training and testing data points are extracted from the user’s contribution to 

the dataset. This has the advantage of providing the recognition system with samples 

that are less varied and therefore easier to learn. On the other hand, it often suffers from 

having a very limited amount of data to work with due to the inconvenience of tasking 

the user with providing abundant data samples.  
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In user-independent learning, the recognition system learns from data provided 

by other users. This data is referred to as “community” data. Testing is still conducted 

using the user’s own samples. This approach no contribution from the user for initial 

setup of the system which is preferable from a user experience point of view. On the 

other hand, the data used for learning typically exhibits large variances that reflect the 

specific signature or usage patterns of different user, which can render learning a more 

difficult affair.  

The third and final scenario is a mixed learning scenario. This is a hybrid 

approach that leverages both personal and community data to train the system. Most 

commonly, the community data is used to setup the system so that it can work out of the 

box—in a plug-n-play manner—while personal data is used for fine tuning for a user 

tailored experience.  

 

b. Network Structure 

CLA does not provide support for multi-class learning. We therefore adopt a 

learning scheme similar to HMM training for multi-class tasks by assigning each of 16 

separate HTM regions to a single class.  Each region will learn from data points 

corresponding to its own class while testing all regions is performed on the same set of 

data.  

Numenta recommends HTM regions with a 2048 columns, 32 cells per 

column, 2% sparsity configuration. This was used as an initial configuration with a 

number of model parameters chosen using Numenta’s Swarming tool, which adapts a 

particle swarm optimization to search for optimal parameter values. Unfortunately, the 

tool was created with large continuous data streams in mind and only searches for a 
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small subset of parameters including encoder length and block size. Considering how 

extensive the list of parameters of an HTM region is and how they can all interact to 

achieve different run results, this scenario is far from ideal and forced us to resort to 

manual parameter selection in most experiments. We elaborate on this in the next 

section when results are presented.  

All components of the HTM stack were used including the classifier, with a 

scalar encoder chosen to encode the integer sequences of the Skywriter dataset. During 

training each region is presented with an element of the training sample with learning 

switched on. The element is encoded and fed into the SP, TP, and finally the classifier. 

At the end of the sequence, a reset is initiated to avoid learning inter-sequence 

transitions. During testing, regions are exposed to the same test sequence. With each 

presented element, an anomaly score and a prediction error are computed. These metrics 

are accumulated along the sequence and averaged at its end. They are used as 

performance metrics to gauge each regions response to a presented test sequence and 

are used to assign the sequence to the region that outputs the minimum value. Learning 

is turned off during this testing phase for all modules of the HTM stack to avoid 

sequences from other classes being learned by the class specific regions. Figure 7.2 

depicts a flowchart for the experimental setup used.   
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Figure 9.2: Flowchart displaying the experimental setup for HTM based classification 

 

2. Results  

Based on the experimental strategy discussed above, we proceed to testing the 

HTM-based classifier using the Skywriter dataset. This is performed under 3 learning 

scenarios. For comparison, we include results achieved through the use of a set of 

common and popular learning algorithms: Support Vector Machines (SVM), Template 

Matching, K-nearest Neighbor (KNN), and Hidden Markov Models (HMM).  

For SVM, we opt for a multiclass kernel based implementation using a radial 

basis function (RBF). The sigma of the RBF kernel and the soft margin parameter are 

selected using a grid search.  
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The HMM setup is similar to one depicted in figure 7.2. The number of states 

of models is left as a free variable. The number that achieves the best performance for 

each user is the one selected. Other parameters like the number of iterations used in the 

Baum-Welch algorithm and the degree of oversampling are dependent on the learning 

scenario. 

Template matching is conducted by averaging training samples then comparing 

the test samples to that mean vector. Euclidean distance is used as a distance metric, 

which proved to be comparable or superior to the alternatives. 

Finally, the Nearest Neighbour algorithm is implemented with 3 values of K 

which dictates how many neighbours are used in classifying the test sample. 

While the dataset was created using samples from 15 users, we only present the 

test results achieved for 5 users due to the time cost associated with running HTM and 

the other algorithms presented. Community training sets were still created from all 15 

users. 

 

a. User-Dependent 

For this scenario, each user’s data is partitioned using 5 fold cross validation 

into training and testing partitions. Specifically, 64 training samples and 16 testing 

samples. Table 7.1 shows the results for all considered learning algorithms with HTM to 

the far right. Most algorithms performed well with average accuracies above 90% with 

SVM being a clear winner. HMM showed unexpectedly poor performance which we 

speculate is related to the very low number of training and testing samples. 

Oversampling the training set and varying Expectation Maximization (EM) iterations 

did not offer significant improvement.  
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HTM, on the other hand, struggled for most users with classification based on 

cumulative prediction error performing very poorly with 52.75% average accuracy rate. 

This was expected since prediction error here is calculated as the sum of squared errors 

between the original trace and the predicted trace, a basic type of template matching 

methodology that doesn’t lend itself to character recognition. Based on cumulative 

anomaly score, it fared better with user 3 achieving rates as high as 93.75% beating out 

most of the other algorithms. Unfortunately, the same didn’t hold true for the rest of the 

users where inconsistent performance was observed, some as low as 72.5%. Overall, at 

an average rate of 81%, HTM performed rather poorly. 

 

Table 9.1 : Classification accuracy (%) for 5 users under the user-dependent scenario 

USER SVM TEMPLATE 1-NN 2-NN 3-NN HMM HTM* HTM** 

1 96.25 92.5 91.25 91.25 95 68.75 72.5 43.75 

2 97.5 92.5 96.25 96.25 95 77.5 88.75 63.75 

3 97.5 91.25 92.5 92.5 93.75 72.5 93.75 56.25 

4 95 95 92.5 92.5 91.25 70 73.75 52.5 

5 92.5 88.75 87.5 87.5 90 68.75 76.25 47.5 

AVE 95.75 92 92 92 93 71.5 81 52.75 

*   Accuracy based on minimum cumulative anomaly score  
** Accuracy based on minimum cumulative prediction error  
 

 

b. User-Independent  

Here, no data from the user is used for training. Instead, the samples collected 

from all other users are aggregated into a training set. We refer to this set as the 

community set. Testing is carried out on all 80 of the target user’s samples.  

Again, the learning algorithms chosen performed very favourably with SVM 

coming out on top as seen in table 7.2. A majority of them benefited from having access 



 

86 

to community data as well. That’s especially true for HMM, which made a significant 

jump in accuracy to become comparable to the other methods with its 91.75% average 

classification accuracy.  

HTM fared even worse in the user-independent case revealing a trend contrary 

to what was observed by the other algorithms. While almost all other learning 

algorithms experienced an increase in accuracy rates aided by the larger number of 

diverse training samples, HTM suffered for it which brings its generalization abilities 

into question. More on that in the discussion section below.  

 

Table 9.2 : Classification accuracy (%) for 5 users under the user-dependent scenario 

USER SVM TEMPLATE 1-NN 2-NN 3-NN HMM HTM* HTM** 

1 97.5 92.5 96.25 95 95 88.75 75 42 

2 100 97.5 98.75 97.5 98.75 92.5 81.25 51.25 

3 93.75 82.5 91.25 91.25 91.25 88.75 75 52.5 

4 98.75 88.75 98.75 97.5 97.5 97.5 77.5 46.25 

5 96.25 91.25 93.75 95 92.5 91.25 67.5 41.25 

AVE 97.25 90.5 95.75 95.25 95 91.75 75.25 46.65 
*   Accuracy based on minimum cumulative anomaly score 
** Accuracy based on minimum cumulative prediction error  

 

 

c. Mixed 

In this final scenario, we merge the previous two approaches by partitioning the 

user’s data into training and testing sets, then supplementing the training set with the 

community set. This grants the system the advantage of having a higher number of 

sufficiently diverse training samples and having access to the user’s own unique 

samples.  

Table 7.3 shows the classification accuracies for this scenario. SVM achieves a 

remarkable higher accuracy of 99% thus outperforming itself in the previous scenarios 
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making the case for the merit of the mixed approach. The other algorithms show a 

similar trend but to lesser effect with HMM remaining comparable despite lagging 

drastically in the first scenario.  

In this scenario, HTM’s poor performance persists. Prediction error based 

accuracy improves compared to the user-independent case, but at 49.5% it becomes 

clear that this metric is not reliable for this sort of classification task. Anomaly based 

classification persists at 70+% average classification rate which is not competitive with 

other algorithms tested. 

 

Table 9.3 : Classification accuracy (%) for 5 users under the user-dependent scenario 

USER SVM TEMPLATE 1-NN 2-NN 3-NN HMM HTM* HTM** 

1 97.5 91.25 96.25 95 95 92.5 68.75 41.25 

2 100 98.75 98.75 97.5 98.75 100 73.75 57.5 

3 98.75 85 97.5 97.5 95 92.5 82.5 60 

4 100 90 98.75 98.75 97.5 100 77.5 42.5 

5 98.75 92.5 92.5 95 92.5 93.73 72.5 46.25 

AVE 99 91.5 96.75 96.75 95.75 95.75 75 49.5 
*   Accuracy based on minimum cumulative anomaly score  
** Accuracy based on minimum cumulative prediction error  
 

 

d. Discussion 

Despite a promising start in the user-dependent scenario, HTM’s overall 

performance was subpar given the fact that the dataset itself was a relatively easy one as 

evident by the performance of the more basic classifiers tested. Model optimization is 

complicit in this result. With a majority of learning algorithms, model parameter 

selection is essential and is usually performed via brute force methods like grid searches 

or more guided techniques like particle swarm optimization (PSO). We saw an example 

of that with SVM testing where we optimized for two model parameters to achieve the 
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impressive rates detailed in the tables above. While HTM’s code base is accompanied 

by a PSO, it is not tailored to classification tasks like the ones carried out here since 

classification itself is not an inherent capability of HTM. More importantly, the PSO 

implementation fixes certain parameters like column number and cell number to values 

that the Numenta team has had the most success with. Unfortunately, configuring the 

HTM regions with the recommended values yielded very poor results. Instead, we had 

to resort to manually changing the parameters until good enough performance was 

achieved. The results above were achieved with HTM regions with 100 columns, 32 

cells per column, and 40% sparsity; far from the recommended settings. This was a very 

laborious task and is easily one of the more limiting factors of deploying HTM. This 

becomes a more evident concern when considering the number of parameters that 

directly affect performance. A minimum of ten parameters was identified. Considering 

the amount of computations executed in every region throughout the HTM stack, model 

parameter selection presents itself as a significant undertaking with even small regions 

requiring days to optimize.  

Beyond difficulty in model configuration, HTM seems to exhibit undesirable 

behaviour at the algorithmic levels. While the other algorithms show a general trend of 

improving from one scenario to the next. HTM does the opposite. This pattern becomes 

more interesting when we note that an ability to generalize from learned data is required 

for performance to improve from the user-dependent scenario to user-independent and 

mixed scenarios. The other algorithms made great use of community samples to create 

more general models of the learned data, which allowed them to handle novel test data 

quite well. HTM, on the other hand, seems to degrade in performance when tasked with 

making inferences about data beyond what it was explicitly taught. In fact, when tested 
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for learning accuracy (i.e. identical training and testing sets), all but one user achieved a 

100% rate with the other user achieving 98.75%. Therefore, it can be concluded that 

over-fitting is at play. Whether the over-fitting is a result of the non-optimal models 

selected or an inherent flaw in HTM is up for question.  

 

B. Case Study II: Irregular Breathing Detection in CPAP Assisted Patients Using 

HTM 

The second case study we investigate here focuses on anomaly detection, the 

core feature of HTM. HTM performs anomaly detection online—as data samples are 

fed into its model—as opposed to more conventional batch or post processing methods. 

To achieve that, HTM leverages its memory model to learn the “normal” patterns in the 

data stream so that when anomalous behavior occurs, it is able to capture it in or ahead 

of time. This online anomaly detection mechanism works best with data that reveals 

clear normal patterns for an extended period of time before an irregularity causes it to 

diverge clearly from its established patterns. Failures in mechanical systems or DoS 

attacks on servers are prime examples. Data of this nature has been used by Numenta to 

showcase HTM’s anomaly detection performance. In this case study, we subject HTM 

to data that exhibits more complex anomaly patterns. To that end, we procured from the 

Department of Internal Medicine at The American University Hospital data on 

premature infant respiratory complexity.  

Preterm or premature infants often suffer from respiratory complications.4 Due 

to their lack of development both physically and neurologically, these infants struggle 

with breathing on their own and maintaining a healthy proper gas exchange. The 

reflexive behavior that would allow them to breathe normally is not fully developed at 
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that stage when they would typically be dependent on the mother for oxygenation. 

Therefore, respiratory support becomes necessary. A non-invasive method for such 

support is Nasal Continuous Positive Airway Pressure, NCPAP. NCPAP relies on nasal 

tubing and creating positive pressure in the nostrils in order to compensate for the weak 

negative pressure surrounding a premature infant’s lungs. It can be set to multiple levels 

of pressure depending on the severity of the case. The end goal is to regulate breathing 

and counteract episodes of apnea (interruption of breathing) and hypopnea (shallow 

breathing).  

Despite having access to monitored breathing patterns of several patients, we 

had to be selective in choosing which to use for the anomaly experiment. Almost all but 

one of the patients exhibited patterns that were so irregular that attempting to use HTM 

to detect their anomalies would have put it at an unfair advantage. Figure 7.3 shows an 

example of that with the voltage output of the CPAP plotted. We therefore opt out of 

performing a multi-user experiment that would customarily be needed for validation and 

instead focus the case study on one patient whose data is highly regular except for 

instances that a human, expert or not, would be able to reliably discern and categorize 

like the one shown in figure 7.4 below. In what follow, we introduce a window-based 

anomaly detector, which was designed to compare with HTM and assess how it 

performs in relation to methods that incorporate domain knowledge. We then introduce 

the Numenta Anomaly Benchmark (NAB) repository that was used to carry out the 

experiments and finally present the results of HTM and a select number of online 

anomaly detectors.  
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Figure 9.3: Breathing patterns recorded for patient 4 showing a high ratio of anomalous 

to regular patterns. 

 

 

Figure 9.4: Breathing patterns recorded for patient 14 showing a proper ratio of 

anomalous to regular patterns. 

 

1. Periodicity Detector 

Anomaly detectors investigated in research or deployed in various industries 

are typically driven by domain knowledge from experts. HTM, as well as other online 
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anomaly detectors, attempt to provide one-size-fits-all models that are independent of 

such knowledge. While this makes for easier and more application agnostic deployment, 

the models stand to suffer due to working in a vacuum, with no assumptions about the 

data and its typical patterns. They instead resolve to extract—on the fly—information 

from data streams in order to form a model of what is normal and what is not. To 

provide the reader with insight into how these two approaches compare for a given 

application, we implemented our own heuristics-based domain-driven detector. This 

detector operates on a frame-by-frame basis where a frame of a predefined size is 

processed and labeled as normal or anomalous accordingly. While not online, this 

method of detection falls more in line with traditional anomaly detectors and will serve 

as a good competing technique to compare HTM with since it is not biased toward any 

specific type of anomaly. Detectors of the latter nature like apnea detectors are beyond 

the scope of this brief case study. 

The custom detector presented here performs its processing with the 

assumption that regular and healthy breathing patterns are marked by periodic patterns. 

These patterns can change their baseline or offset but their repeatability is maintained 

throughout. Additionally, the frequency of the periodic patterns doesn’t show drastic 

changes over time since no activity is being performed by the patient being monitored. 

With that knowledge, we designed the detector to act as a periodicity detector. Every 

frame of data is de-trended first to eliminate offset and lower frequency trends and is 

then correlated with itself to produce an autocorrelation waveform. Periodic signals 

produce autocorrelation waveforms that are similarly periodic. Therefore, we test for 

periodicity of the frame by checking for that of its autocorrelation waveform. To that 

end, we used a series of heuristics that involve peak detection and computing peak-to-
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peak horizontal separations. If the separations are close in value, the detector interprets 

that as indication of periodicity within the frame and labels the frame as normal. This is 

done by calculating the mean and standard deviation of the separations and checking if 

the deviation is less than 15% of the mean separation. The value of 15% was 

empirically selected as it provided the best performance for a predefined frame size. A 

frame that fails this test is labeled as anomalous. Figure 7.5 shows a flowchart of the 

processing performed by the detector.  

 

 

Figure 9.5: Flowchart of custom detector 

 

 

2. The Numenta Anomaly Benchmark 

a. What is NAB? 

The Numenta Anomaly Benchmark is an open source repository created by 

Numenta, aimed at providing a framework to benchmark and compare online anomaly 

detectors. NAB includes in its current version a corpus consisting of synthetic and real 

world data including server metrics, machine sensor readings, and temperature readings. 
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A total of 32 time-series make up the corpus and are either labeled for ground truth 

anomalies by volunteers or accompanied by a list of known anomalies.22  

NAB includes three detectors: HTM-based detector, Etsy/Skyline detector, and 

a random detector. The Skyline detector is an open source, real time anomaly detection 

system, designed for use wherever there is a large quantity of high resolution time-series 

data which requires constant monitoring.28 The random detector is provided as a trivial 

baseline for comparison. Its anomaly scores are chosen at random from a uniform 

distribution. The three inbuilt detectors as well as any custom detectors a NAB user can 

add are referred to as Detector Under Test (DUT).  

DUT testing is performed in three stages: detector phase, threshold 

optimization phase, and scoring phase.  

In the detector phase, every DUT processes the time-series data files in the 

corpus and produces raw anomaly scores for each data point read. The scores are stored 

in CSV format.  

During the threshold optimization phase, the raw anomaly scores are 

discretized to values indicating the presence or absence of anomaly. This is done using 

an optimized threshold. NAB includes a simple hill-climbing routine for finding the 

optimal threshold given the scoring rules. The threshold used is the one that produces 

the best score.  

Finally, in the scoring phase, the DUT detections are scored with respect to the 

ground truth timestamps producing a final score for each data file in the corpus. A 

sigmoid function is used as a scoring function and is weighted according to the 

application profile chosen. The application profiles enable us to vary the relative cost of 

the scoring metrics. We elaborate on the scoring routine in the following section.  
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Figure 9.6: Flowchart of NAB’s workflow 

 

b. NAB Scoring 

For evaluation of DUTs, NAB implements a custom scoring methodology, 

which qualifies the degree to which the DUT meets the standards of an ideal detector. 

The ideal detector, as defined by Numenta, is one which: 

 Detects all anomalies present in the streaming data 

 Detects anomalies as soon as possible, ideally before the anomaly becomes 

visible to a human 

 Triggers no false alarms 

 Works with real world data 

With raw anomaly scores of the DUT thresholded, NAB proceeds to compare 

the predicted anomalies with the ground truth anomalies. More specifically, this 

comparison is performed on anomaly windows centered on the ground truth anomalies. 

The rationale behind the use of windows is two-folds: 1- anomalous data often occurs 

over time, rather than a single point, and thus defining the anomaly windows improves 
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the NAB scoring efficacy, and 2- anomaly windows allow the DUT to not be penalized 

if its detections are slightly before or after the ground truth.  

The scoring mechanics are centered on the scaled sigmoid S(x) in (7.1), with x 

being the relative position within the anomaly window. Figure 7.7 shows the scoring 

function as well as the boundaries of the anomaly window where it is applied. The 

scoring function was designed in such a way as to reward detections that occur at or 

slightly ahead of the ground truth anomaly the highest, while scoring later detections 

gradually less as they lag behind the ground truth.  

 

𝑆(𝑥) =
2

1+𝑒−5𝑥 − 1                                                      (7.1) 

 

 

Figure 9.7: Scaled sigmoid scoring function 

 

For anomalies correctly predicted, only the first data point labeled positive 

within the anomaly window is used to calculate the change in score. Further data points 

within the anomaly window labeled positive are ignored and do not contribute to the 
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score. The score is additionally weighted by a parameter that controls the weight 

associated with true positives (TP).  

 

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒 + 𝑆(𝑥) ∗ 𝑇𝑃𝑤𝑒𝑖𝑔ℎ𝑡                                          (7.2) 

 

A data point labelled as positive outside of the ground truth anomaly window 

gets a negative valued scoring function and decrements the overall score according to 

(7.3). Again, the score is weighted by a parameter associated in this scenario with the 

weight of a false positive (FP). It is worth mentioning that the NAB documentation 

doesn’t detail any special handling of other FPs within the neighbourhood of the first 

like it does for TPs. This suggests that NAB rewards a single TP per anomaly but 

penalizes the DUT for all the FP around it. This is evidence that the scoring routine 

favours DUTs that produce very few anomaly detections, a feature that is problematic if 

the repository is to include DUTs that produce consistent anomalies for the length of an 

anomalous pattern.  

 

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒 + 𝑆(𝑥) ∗ 𝐹𝑃𝑤𝑒𝑖𝑔ℎ𝑡                                          (7.3) 

 

Finally, if no anomaly is detected within a ground truth anomaly window, the 

overall score is reduced with S(x) being assigned a value of -1. A weighting parameter 

is used here as well, which represents the weight associated with false negative (FN). 

 

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒 − 𝐹𝑁𝑤𝑒𝑖𝑔ℎ𝑡                                          (7.4) 
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There is no minimum NAB score. The maximum on the other hand is the 

number of ground truth anomalies multiplied by the TP weight. Scoring weight as seen 

in (7.2), (7.3), and (7.4) are configured as part of different application profiles, which 

either reward low FN, reward low FP, or weight all detections uniformly.  

 

3. Results 

The first step to running a set of detectors through NAB is to provide ground 

truth anomalies for the time-series being processed. We perform manual anomaly 

selection on the CPAP voltage output of patient 14 using three anomaly types: 

apneas/hypopneas, sighs, and general irregularities. This produces three separate ground 

truth files for NAB to process. Figure 7.8 shows the selection of apneas. For each apnea, 

we select the starting point where breathing flatlines. The size of the resulting anomaly 

windows is dictated by a heuristic that NAB enforces and is equal to 10% the length of 

the time series divided by the number of anomalies. Due to the small number of apneas 

in this file, the result is a window that is 388 samples wide which extends further into 

the regular patterns than we would like.  
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Figure 9.8: Selection of ground truth apnea anomalies  

 

Figure 7.9 reveals the manual selection of the ground truth anomalies for sighs. 

These anomalies were chosen by selecting the peak of each sigh. The resulting window 

size here is 258 and does a decent job of containing both the peak and slopes of the sigh 

patterns. 

 

 

Figure 9.9: Selection of ground truth sigh anomalies  
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Finally, we manually select all irregular patterns. These include apneas, 

hypopneas, sighs, and any sort of miscellaneous irregularity in the data. Since none of 

the detectors involved can be biased toward one type of anomaly, this is the most 

important ground truth file to consider. Unfortunately, due to the large number of 

anomalies, window size is limited to 88 samples. This results in anomalous patterns 

between neighbouring anomalies to fall outside the anomaly windows. This can be seen 

in the second subplot of figure 7.10. 

 

 

Figure 9.10: Selection of ground truth general anomalies  

 

Having established the ground truth anomalies, we finally run the data through 

the detectors. Figure 7.11 shows the result of feeding the patient’s breathing patterns 

into HTM. The model parameters included in the NAB repository were used in order to 

assess how HTM performs with no assumptions on the nature of the data other than min 

and max allowable values. This approach is applied to all detectors involved. HTM 

seems to align well with sighs but it misses the last one despite being really pronounced 
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and preceded by a long lasting normal pattern. Additionally, HTM does not appear to 

respond well to apneas and throws a number of false positives. 

 

Figure 9.11: Anomaly detection using the HTM-based detector 

 

With a frame size of 150 samples, the result of running our custom detector on 

patient 14’s data can be seen in figure 7.12. While some false positives can be seen, the 

detector does an admirable job of picking up on every major anomaly. All frames 

containing apneas, hypopneas, sighs (peaks), or irregular breathing patterns are labeled 

as anomalous.  
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Figure 9.12: Anomaly detection using the custom periodicity detector 

 

NAB scoring is the last step. The data files were run through NAB to produce 

scores for each of the anomaly files. The scoring was performed under three different 

application profiles: 1- Reward Low FN with weights TP=1, FP=0.5, and FN=2 which 

rewards detectors that don’t miss any true anomalies; 2- Reward Low FP with weights 

TP=1, FP=2, and FN=0.5 which rewards detectors with few false alarms; and 30- 

Standard with weights TP=1, FP=1, and FN=1. Table 7.4 shows the raw scores as well 

as the normalized totals across all datasets. The best raw score for every dataset is 

highlighted in yellow while the best normalized total score is in dark grey. The custom 

detector proposed performs the best in 8 out of the 9 scored tests with the 

Numenta/HTM detector redeeming itself with a single win against it while 

outperforming the other detectors. This is isn’t surprising given the fact that the custom 

detector, though simple in design, incorporates domain knowledge and benefits greatly 

from it especially when it comes to detecting general non-specific anomalies. Still, we 

suspect that our detector, despite capturing every apnea, suffered for yielding anomalies 
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that were more delayed and therefore scored less via the scaled sigmoid scoring 

function. To account for the penalization of having delayed detections, we replace the 

scaled sigmoid scoring function by a square pattern having a value of 1 within the 

anomaly window and -1 outside its bounds. Table 7.5 shows that normalized total 

scores naturally improved but the overall result is the same. 

 

Table 9.4: Raw scores and normalized total scores after NAB testing using a scaled 

sigmoid scoring function 

 Random Skyline Numenta Custom 

Application 

Profile 

Low 

FN 

Low 

FP 
Standard 

Low 

FN 

Low 

FP 
Standard 

Low 

FN 

Low 

FP 
Standard 

Low 

FN 

Low 

FP 
Standard 

Sighs -13.6 -7.2 -6.6 -6.4 -9.0 -9.0 -7.1 -5.9 -3.2 -5.1 -5.1 -2.1 

Apneas -12.7 -7.5 -6.7 -14.3 -6.0 -6.0 -6.7 -2.4 -4.2 -6.3 -6.5 -3.3 

Irregular -50.0 -25.7 -25.0 -43.7 -26.0 -26.0 -41.2 -22.9 -20.0 -35.4 -19.4 -16.4 

Normalized 

Total 
4.4 0.6 2.9 13.0 0.0 0.0 21.3 11.4 15.9 27.8 11.5 22.42 

 

Table 9.5: Normalized total scores after NAB testing using a square scoring function 

 Random Skyline Numenta Custom 

Application 

Profile 

Low 

FN 

Low 

FP 
Standard 

Low 

FN 

Low 

FP 
Standard 

Low 

FN 

Low 

FP 
Standard 

Low 

FN 

Low 

FP 
Standard 

Normalized 

Total 
5.6 2.4 24.8 14.5 0.0 0.0 22.3 11.8 16.7 30.4 14.6 26.2 

 

Finally, we present some additional testing stats for analysis for the HTM-

based detector and the custom detector after a second run of the NAB testing in table 

7.6. We make the following observations: 

 The HTM-based detector doesn’t yield the same result for every run. As 

emphasized in earlier chapters, this is due largely to the random initialization 

of the HTM model. The result is non-repeatable performance. Here, HTM 

performs better than the earlier run as seen in the scores.  
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 The custom detector has bad precision. This is mostly linked to its rigidity in 

detecting periodic patterns. As evidenced in figure 7.12, the detector is a lot 

less forgiving towards slight irregularities. This results in a high number of 

FP, which in turn yields a low precision. The HTM-based detector is aided 

by having a significantly lower number of detections.  

 Recall numbers are extremely low due to the FN counts. As alluded to 

earlier, NAB’s scoring routine rewards the first true positive but penalizes all 

FNs. This is a consequence of using anomaly windows that force all data 

samples within to have a ground truth value of 1. When compared against 

sparse anomalies like the ones produced by the detectors investigated, this 

naturally and problematically results in artificially high FNs, which reduce 

the recall rate. 

 The scoring routine used in NAB has little correlation with standard stats 

commonly used to evaluate learning algorithms like precision, recall, and F1 

score. This is evident in the results shown where these metrics are rendered 

meaningless and offer little to no insight into how the DUTs are performing.  
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Table 9.6: Results of a second run of NAB testing on the HTM-based detector and our 

custom detector for the standard profile 

 TP TN FP FN Score Precision Recall F1 

Custom 

Sighs 8 18200 29 1552 -2.1 21.6% 0.51% 0.99 

Apneas 6 18588 31 1164 -3.3 16.2% 0.51% 0.98 

Irregular 7 18328 30 1424 -16.4 18.9% 0.48% 0.93 

Numenta 

Sighs 10 18225 4 1550 0.07 71.4% 0.64% 1.26 

Apneas 0 18605 14 1170 -7.5 0.0% 0.0% 0.0 

Irregular 7 18351 7 1424 -17.4 50% 0.48% 0.95 
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CHAPTER VIII 

CONCLUSION 

10. Ch8 
 

HTM is a novel, cortically inspired learning algorithm. It stems from a long 

line of connectionist learning models but sets itself apart by its focus on biological 

plausibility and its incorporation of time as a central cog in its workings. Having had 

very little time to mature, HTM hasn’t had the opportunity to position itself as a viable 

learning algorithm in machine learning. Subsequently, the work presented in this thesis 

did not attempt to build on it but rather evaluate its foundations. This was done by 

targeting all modules of the HTM stack and running them through a set of experiments 

that showcased their functionality as well as positioned them in relation to competing 

techniques.  

We explored HTM’s clustering potential by leverage the quantization 

capability of both its encoders and spatial pooler with both synthetic and real data. A 

number of performance metrics were used to compare HTM against common clustering 

methods, which revealed that HTM could be competitive in select datasets but generally 

demonstrated inconsistency in results. Additionally, overlap in SDRs at the spatial 

pooler level was shown to be a non-robust metric for similarity, which further 

diminished HTM’s merit as a standalone clustering algorithm.  

HTM’s performance as a sequence learner was investigated as well using small 

examples on different types of sequences. Sequence learning tests showed HTM’s 

capacity for fast and precise learning for discrete sequences. Investigations of the 

number of cells and columns used and their effect of sequence learning performance 

revealed some concerns again with HTM’s consistency. More importantly, the manner 
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by which lateral connectivity is established brought on doubts about how contexts are 

learned and pooled together. Nevertheless, overall performance on sequence learning 

within the bounds of the experiments presented was admirable.  

It was in the case studies where HTM’s standing suffered most. Two case 

studies were conducted with real work data. The first ventured to evaluate HTM in 

classification, a task that is not inherent to HTM. Using a dataset acquired from a 

gesture recognition and tracing framework created by the author, HTM and a set of 

classifiers were evaluated in multiple learning scenarios. HTM’s performance in all the 

experiments lagged significantly behind the other classifiers which managed 90%+ 

accuracy rate while HTM peaked at 93.75% for a single user but coasted in the 70%-

80% range for the rest. Additionally, two problems were identified with the use HTM. 

The first was the difficulty in model selection. With at least ten parameters directly 

affecting HTM’s performance, optimal parameter selection was not practical. Numenta 

offers a PSO-based swarming tool but it only optimizes for a few parameters and is 

more tailored for dense data stream prediction. The result was the unavoidable reliance 

on manual searches and the inevitable suboptimal performance observed. A second 

concern was the scalability of HTM. Runtimes, while not presented here, were 

significantly higher than those of the competing algorithms. Models had to be 

configured in single region fashion and attempts at hierarchical structures were very 

prohibitive in testing. We refer the interested reader to a thesis titled “Hierarchical 

Temporal Memory Cortical Learning Algorithm for Pattern Recognition on Multi-Core 

Architectures”24 which presents a study of HTM’s scalability and the benefit of a multi-

core implementation.  
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The second case study was more in line with HTM’s strong suit, anomaly 

detection. The Numenta Anomaly Benchmarking tool was used to test multiple 

detectors on breathing patterns from an infant respiratory complexity clinical study. 

Only one patient whose data revealed abundant normal patterns with distinct anomalies 

was chosen for testing. In addition to HTM and the set of detectors provided by NAB, 

we proposed and designed a simple heuristically driven batch detector for comparison. 

After NAB testing, HTM and the custom detector where shown to perform best with the 

latter coming in first place.  Analysis of the scoring scheme carried on by NAB reveals 

a few concerns that we attribute to the beta status of the tool. 

Although HTM shows hints of promise as a learning algorithm, it is still held 

back by its immaturity. While it continues to improve and find its footing with the 

backing of the team at Numenta, future work should focus on providing a proof of 

convergence as a first step. We deem that essential for HTM to gain any traction with 

the machine learning research community. Additionally, the framework needs to be 

reworked to include more of the operational principles of the brain. This is already in 

motion with Numenta’s work on sensory-motor integration but many aspects including 

feedback, input reconstruction, and true temporal pooling are necessary to make HTM a 

solid contender.  
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